
Preface 

The area of  Order Statistics received a tremendous attention from numerous 
researchers during the past century. During this period, several major  theoretical 
advances were made in this area of  research. As a matter  of  fact, two of those 
have been adjudged as breakthroughs in the field of  Statistics [see: Kotz, S. and 
Johnson, N. L. (1991). Breakthroughs in Statistics, Vols. 1 and 2, Springer-Verlag, 
New York]. In the course of  these developments, order statistics have also found 
important  applications in many  diverse areas including life-testing and reliability, 
robustness studies, statistical quality control, filtering theory, signal processing, 
image processing, and radar target detection. 

Based on this immense activity, we decided to prepare this Handbook  on 
Order Statistics and Their Applications. We feel that we have successfully brought 
together theoretical researchers working on theoretical and methodological 
advancements on order statistics and applied statisticians and engineers devel- 
oping new and innovative applications of  order statistics. Altogether, there are 44 
articles covering most  of  the important  theoretical and applied aspects of  order 
statistics. For the convenience of readers, the subject matter  has been divided into 
two volumes, the first one (Handbook  - 16) focusing on Theory and Methods and 
the second one (Handbook  - 17) dealing primarily with Applications. Each 
volume has also been organized according to different parts, with each part  
specializing on one aspect of  Order Statistics. 

The articles in this volume have been classified into nine parts as follows: 

Part I - Introduction and Basic Properties 
Part  II - Orderings and Bounds 
Part I I I  - Relations and Identities 
Part  IV - Characterizations 
Part V - Extremes and Asymptotics 
Part  VI - Robust  Methods 
Part VII - Resampling Methods 
Part VII I  - Related Statistics 
Part  IX - Related Processes 

We have also presented an elaborate Author  Index as well as a Subject Index in 
order to facilitate an easy access to all the material included in the volume. 

Part  I contains three articles - the first one by N. Balakrishnan and C. R. Rao 
presents an introduction to order statistics, the second one by H. L. Hat ter  and 
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N. Balakrishnan presents a historical perspective on the developments in 
the subject of  order statistics, and the last article by P. R. Tadikamalla and 
N. Balakrishnan discusses the computer simulation of order statistics. 

Part  II  contains three articles - the first one by B. C. Arnold and J. A. Villasenor 
discusses some results on the Lorenz ordering of order statistics, the second one 
by P. J. Boland, M. Shaked and J. G. Shanthikumar discusses results on the 
stochastic ordering of order statistics, and the last article by T. Rychlik reviews 
results on bounds for expectations of  L-estimates. 

Part  I I I  contains an exhaustive review article by N. Balakrishnan and 
K. S. Sultan on the recurrence relations and identities for moments  of  order 
statistics from arbitrary as well as many specific distributions. 

Part  IV contains three articles - the first one by C. R. Rao and D. N. Shanbhag 
discusses some recent methods used for characterizations results based on order 
statistics and record values, the second one by U. Gather,  U. Kamps  and 
N. Schweitzer reviews the characterization results based on identical distributions 
of  functions of  order statistics, and the last article by U. Kamps  reviews the 
characterization results based on recurrence relations and identities for moments  
of  order statistics. 

Part  V contains three articles - the first one by J. Galambos  provides an 
exposure to the univariate extreme value theory and applications, the second 
article by P. K. Sen elaborates various applications of  the asymptotic results, and 
the last article by R. J. Tomkins and H. Wang reviews the zero-one laws for large 
order statistics. 

Part  VI contains two articles - the first one by D. R. Jensen and D. E. Ramirez 
discussed some exact properties of  Cook ' s  distance while the other article by 
A. Childs and N. Balakrishnan presents some results on order statistics arising 
from independent and non-identically distributed Pareto random variables and 
illustrates their application to robust estimation of the location and scale pa- 
rameters of  the Pareto distribution. 

Part  VII  contains two articles - the first one by R. L. Strawderman and 
D. Zelterman explains a semiparametric bootstrap method for simulation extreme 
order statistics while the other article by C. Ma and J. Robinson discusses some 
approximations to the distributions of  sample quantiles. 

Part  VIII  contains two articles - the first one by H. A. David and H. N. Nag- 
araja reviews the developments on concomitants of  order statistics while the 
second article by V. Nevzorov and N. Balakrishnan provides an updated review 
on records. 

Part  IX contains two articles - the first one by B. Szyszkowicz elaborates on 
weighted sequential empirical type processes with their applications to change- 
point problems while the second article by M. Cs6rg6 and B. Szyszkowicz 
discusses sequential quantile process and Bahadur-Kiefer process. 

It needs to be mentioned here that the companion volume (Handbook - 17), 
focusing on applications of  order statistics, has been divided similarly into six 
parts. 



Preface vii 

While preparing this volume as well as the companion volume (Handbook 
17), we have made a very clear distinction between order statistics and rank order 
statistics, the latter being an integral part of the area of Nonparametric Statistics. 
Even though there is an overlap between the two and also that order statistics 
play a role in Nonparametric Statistics, one of the most important uses of order 
statistics is in the development of parametric inferential methods, as is clearly 
evident from this volume. Unfortunately, some researchers still view Order Sta- 
tistics as part of Nonparametric Statistics. Strangely enough, this view is also 
present in Mathematical Reviews. 

We express our sincere thanks to Mr. Gerard Wanrooy (North-Holland, 
Amsterdam) for his interest in this project and for providing constant support 
and encouragement during the course of this project. We also thank Mrs. Debbie 
Iscoe for helping us with the typesetting of some parts of this volume. Thanks are 
also due to the Natural Sciences and Engineering Research Council of Canada 
and the U.S. Army Research Office for providing individual research grants to the 
editors which facilitated the editorial work of this volume. Our final special 
thanks go to all the authors for showing interest in this project and for preparing 
fine expository articles in their respective topics of expertise. 

We sincerely hope that theoretical researchers, applied scientists and engineers, 
and graduate students involved in the area of Order Statistics will all find this 
Handbook to be a useful and valuable reference in their work. 

N. Balakrishnan 
C. R. Rao 
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Order Statistics: An Introduction 

N. Balakrishnan and C. R. Rao 

1. Introduction 

Let )(1,X2,... ,Xn be n random variables. Then the corresponding order statistics 
are obtained by arranging these n X/s in nondecreasing order, and are denoted by 
XI:n,X2:,, • • •, Xn:,. Here, XI:, is the first order statistic denoting the smallest of  the 
X/s, X2:n is the second order statistic denoting the second smallest of the X/s, . . . ,  
and X~:n is the n th order statistic denoting the largest of the X~'s. It is important to 
mention here that though this notation for order statistic is used by most authors, 
some other notations are also employed in the literature. For  example, some 
authors use X(i) to denote the ith order statistic in a sample of size n. In situations 
where the sample size does not change, this notation will obviously cause no 
confusion. Some authors also use Xi,n o r  Xn: i o r  X(i)n to denote the ith order 
statistic. Because all these notations are prevalent in literature, we have deliber- 
ately allowed all these notations in the volume. Since any notation used by the 
author(s) in any specific chapter will remain consistent, and hence will not cause 
any confusion to the readers, we have left the notation exactly as used by all the 
authors. 

Observe that the above definition of order statistics required neither the X/s to 
be independent nor the X[s to be identically distributed. However, a major 
portion of  the remarkably large body of  literature on order statistics has focussed 
on the case when the X/s are independently and identically distributed. Of course, 
the common distribution may be continuous or discrete. Most of the early work 
on order statistics dealt with the continuous case assuming a probability density 
function f(x) and a cumulative distribution function F(x). 

Developments on order statistics until 1962 were synthesized in the edited 
volume of  Sarhan and Greenberg (1962) which also contained many valuable 
tables. The two volumes prepared by Harter (1970a,b) presented numerous tables 
which facilitate the use of  order statistics in tests of  hypotheses and in estimation 
methods based on complete as well as doubly Type-II censored samples from 
many different life-time distributions of interest. These two volumes have been 
recently revised and expanded by Harter and Balakrishnan (1996, 1997). An 
encyclopedic treatise on order statistics has been given by David (1970, 1981), 
while Arnold, Balakrishnan and Nagaraja (1992) presented a textbook on order 
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statistics at an introductory level. Galambos (1978, 1987) prepared a volume 
dealing primarily with the asymptotic theory of extreme order statistics; appli- 
cations of this extreme value theory in engineering problems have been high- 
lighted in the volume by Castillo (1988). An excellent survey of all the 
developments concerning outliers has been made by Barnett and Lewis (1978, 
1984, 1993). Arnold and Balakrishnan (1989) synthesized in their monograph the 
recurrence relations, bounds and approximations for order statistics. Finally, the 
book by Balakrishnan and Cohen (1991) elaborated various methods of estima- 
tion based on complete and censored samples. Naturally, these volumes should be 
consulted if one wishes to get an authoritative treatment to any of the topics 
mentioned above. 

In this Chapter, we simply give an elementary introduction to order statistics 
which should be regarded as "a bare essential description" on the topic that 
would facilitate the reader to follow all the other chapters present in this hand- 
book. We present the marginal distributions, joint distributions, moments and 
product moments of order statistics. We also present brief details on bounds and 
approximations for order statistics, exact distribution results for some specific 
distributions, asymptotic results, and on few related statistics such as concomitant 
order statistics and record values. 

2. Marginal distributions of order statistics 

The cumulative distribution function of X/:n (1 < i < n) is given by 

(2.1) 

fo y(x) t i - l (1  t) , - i  
n! 

dt  
( i -  1)!(n - i)! 

for -oo  < x < ~ .  Specifically, we find from (2.1) the cumulative distribution 
functions of XI:, and X,:n to be 

F l : , , ( x ) = l - { 1 - F ( x ) } " ,  - ~ < x < ~  , (2.2) 

and 

Fn:,(x) = {F(x)}", - ~  < x < to . (2.3) 

Instead of writing the cumulative distribution in a binomial form [as in (2.1)], one 
may express it in a negative binomial form as [see Pinsker, Kipnis and Grecha- 
novsky (1986)] 

F/:n(x) ~- Z n - 1 r F ( x ) } i { 1  _ F(x)}n_i_r ,  - o o  < x < to  . 
r=0 i-- 

(2.4) 
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Observe that  all the expressions given above hold for any arbi t rary popula t ion  
whether  cont inuous or discrete. Fo r  discrete populat ions,  the probabil i ty mass 
funct ion of  X/:~ (1 < i < n) may  be obtained f rom (2.1) by differencing as 

J~:n(x) = Pr(Xi:. = x) = F//:n(X) - Fi:n(x-) 

= [F(x) n! ti_l( 1 _ t) ,_id t (2.5) 

aF(x-) ( i -  1)[(n -- i)! 

In particular,  we also have 

and 

fl:n(x) = {1 - F ( x - ) } "  - {1 - F ( x ) } "  , (2.6) 

f~:,,(x) = {F(x)}" - { F ( x - ) } "  . (2.7) 

The review paper  by Nagara ja  (1992) lucidly accounts all the developments  on 
discrete order  statistics. 

On the other  hand, if the popula t ion  is absolutely continuous,  then the prob-  
ability density funct ion of  X i:, can be obtained f rom (2.1) by differentiation as 

j~:n(X ) = n[ { F ( x ) }  i 1{ 1 _ F(x)} ,_ i f (x ) ,  
( i - -  1 ) ! ( n -  i)[ 

- - ~  < x  < o c  . 

(2.8) 

- o c  < x < oc , (2.9) 

- o c  < x < ~ . (2.10) 

In particular,  we have 

fl: ,  (x) = n{ 1 - F(x) } ' - I f  (x), 

and 

fn:n (x) = n { F ( x )  } n - l f ( x )  ' 

3. Joint distributions of order statistics 

The joint  distributions of  order  Statistics can be similarly derived and will natu- 
rally look a lot more  complicated.  For  example, the joint  cumulative distribution 
funct ion o f  X,.:n and Xj:, (1 _< i < j _< n) can be shown to be 

Fi,j:n(Xi,Xj) = Fj:n(xj) for  xi >_ xj 

£ £  
s=j r=i F!(S -- F)!(fl -- S)! { f ( x i ) } r  (3 .1 )  

x {F(xj) -F (x i ) } s - r {1  - F ( x j ) }  " - '  for  xi < x j  . 

This expression holds for  any arbi t rary popula t ion  whether  cont inuous or dis- 
crete. 
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For discrete populations, the joint probability mass function of X/:n and Xa:n 
(1 < i < j < n) may be obtained from (3.1) by differencing as 

f i , j:n(xi ,xj)  = Pr(X/:n = xi, Xj:~ = xj)  

= F,.4:, (x,, x j )  - F~4:, ( x i - ,  x j)  (3.2) 

- F,a:, (x,, x j -  ) + &j : .  ( x , - ,  x j -  ) . 

On the other hand, if the population is absolutely continuous, then the joint 
probability density function of X/:n and Xj:~ (1 _< i < j _< n) can be obtained from 
(3.1) by differentiation as 

n! 
~4:~(x i 'x j )  = ( i -  1 ) ! ( j - i -  1 ) ! (n- j ) !  { F ( x i ) } i - l  { F (x j )  - F (x i ) }J - i -1  

x {1 - F ( x j ) } "  J f ( x i ) f ( x j ) ,  xi < xj  . (3.3) 

This expression may also be derived directly by starting with the joint density 
function of all n order statistics given by 

n 

fl.2,...,~:,(Xl x2 . . .  ,xn) = n! 1 - I f ( x i ) ,  xl  < x2 < ' "  < x,, , (3.4) 
i=1 

and integrating out all the other variables. In fact, from (3.4) we can obtain the 
joint density function of X/~:~,Xi2:~,... ,X/+:~ (1 < il < i2 < -.- < ik < n) by inte- 
gration as 

n! 
fl'l'""ik:n(XiI " ' "  ' X i k )  = ( i l  - -  1)!(i2 - il -- 1)!--. (n - ik)[ {F(x i ' ) } i '  1 

× { F ( x i 2 ) - F ( x i l ) }  i : - i ' - I  × ' " ×  {1--F(Xik)} n-ik 

× f ( x i , ) f ( x i 2 ) ' "  " f ( x i e ) ,  

- -  OO ~.  Nil  < Xi2 < " ' "  < Xik < OO . (3.5) 

This joint density function, particularly for the cases of k = 3 and 4, become very 
useful in developing Edgeworth approximate inference for some distributions; 
see, for example, the article by Balakrishnan and Gupta (1998) in the companion 
volume. 

This joint distribution will be far more complicated in the discrete case due to 
the possibility of ties. The joint probability mass function of Xh:n,X/2:n,... ,X/k:n 
(1 <_ i l  < i2 < " ' "  < ik <_ n )  in this case can be shown to be 

f i l  ,i2,...,ik:n (Nil , X i2 ,  • • • , Xik ) 

n! fB - - ( i l - -  1)!( i2+i l --  1)!---(n--ik)! uZil~ l ( u i 2 - u i ~ ) i 2 - i ' - l ' ' "  

× (Uik --  U" )i~-/k-I-l(1 n-ie - -  Uik) du i ,  . . .  duik  (3.6) i k - I  l 

where B is the k-dimensional space given by 
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B = { ( / A i , , . . . ,  u i k ) :  uit ~ ui2 ~ . . .  ~ uik , F ( x r - )  <_ ur <_ F(xr )  

for r = il, i2 , . . . ,  ik}  • 

For more details on discrete order statistics, one may refer to Chapter 3 of Arnold, 
Balakrishnan and Nagaraja (1992) and the review article by Nagaraja (1992). 

4. Properties 

Order statistics from an arbitrary distribution possess some interesting properties. 
It is important to mention here that, though there are marked similarities between 
order statistics from continuous and discrete distributions, some important 
properties satisfied by order statistics from continuous distributions do not hold 
for order statistics from discrete distributions. 

For  example, in the continuous case, it is well-known that order statistics form 
a Markov chain. On the other hand, order statistics from discrete distributions do 
not form a Markov chain in general and do so under some conditions. Reference 
may be made to Nagaraja (1986a,b) and Rfischendorf (1985) in this regard. 

For a review of  some results concerning various stochastic orderings connected 
with order statistics, refer to the articles by Arnold and Villas~nor (1998) and 
Boland, Shaked and Shanthikumar (1998) in this volume. 

Due to the fact that the cumulative distributions of order statistics are tail 
probabilities of a binomial distribution, and that binomial tail probabilities form 
a log-concave sequence, the distribution functions of order statistics form a log- 
concave sequence. This result has been further generalized to the case when the 
order statistics arise not necessarily from an i.i.d, sample; see Balasubramanian 
and Balakrishnan (1993a). 

5. Moments and product moments 

Let us denote the single moments of order statistics, k . (k), E(Xi:n), by ~i:n 1 < i < n. 
Clearly, these moments can be determined in the continuous case by 

F x fi:.(x) dx (5.i) I:n o~ 

/? = n! 2{F(x)}  i 1{1-F(x)}" if(x) dx 
( i -  1)!(n-- i)! ~ 

and in the discrete case by 

I z(k) Z x k f . : , ( x )  1 < i < n (5.2) i:n = ~ " 
x 

Similarly, let us denote the product moments of order statistics, ~ e E (Xi:nXj:n), by 
#})':~n ) for 1 _< i < j < n. Once again, these moments can be determined in the 
continuous case by 
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- -  H <f y%:+(x,y)dx dy 
n! JJx<yxkye {F(x) } *-1 {F(y) = (i-- 1 ) ! ( j - i - -  1 ) ! ( n - j ) [  - F ( x ) } J - i - 1  

x {1 - F ( y ) } " - J f ( x ) f ( y )  d x d y  , (5.3) 

and in the discrete case by 

k e . (5 .4 )  pl~':e) = ~_,  ~-~x y fi,j:n(X,y), 1 ~ i < / < n 
x<_y 

For convenience, let us denote .(1) by and " (L1) by Pia:,,. # i :n  ['li:n tAi,j:n 

The variances of order statistics, Var(X,.:,), are denoted by ai,i:, (1 < i < n), and 
can be determined as 

~i,i:, Var(X,..,) = • (2) 2 (5.5) : . t~i:n - -  #i:n~ 1 < i < n . 

Similarly. the covariances of  order statistics, Cov(X/:n,Xj:.), are denoted by aij:n 
for 1 _< i < j < n, and can be determined as 

O'i,j: n = C o v ( X / : n , ~ j : n )  = I..li,j:n - -  ]2i:nl, lj:n, 1 <_ i < j <__ n . (5.6) 

These moments can all be derived in explicit form in the case of  some distri- 
butions such as uniform, exponential, Pareto, power function, logistic, extreme 
value and Weibull. However, they have to be determined by numerical methods in 
most other cases. Reference may be made to the handbook of tables by Harter 
and Balakrishnan (1996) for tables of means, variances and covariances of order 
statistics for numerous distributions. See also the papers by Basu and Singh 
(1998), Balakrishnan and Chan (1998), Balakrishnan and Aggarwala (1998), and 
Balakrishnan and Lee (1998) in the companion volume. 

By starting with the joint density function of three, f o u r , . . ,  order statistics and 
performing integration or summation, we can similarly determine third-order, 
fourth-order, . . .  moments as well. For  example, see the paper by Balakrishnan 
and Gupta (1998) in the companion volume. 

6. R e c u r r e n c e  re la t ions  and ident i t i e s  

From the basic identity 

= , (6.1) 

several identities for single and product moments of order statistics can be es- 
tablished. For  example, by choosing g = 1 and taking expectations on both sides, 
we get the identity 
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n 

v ' ,  (k) = nE(X k) (k) 
2 . ~  #i:n = n#1:l  " 
i=1 

(6.2) 

Similarly, by taking k = 1 and g = 2 and then using binomial expansion, we 
obtain 

n n-1 ~ n n 1 ~ 

ZX,.:2, + 2 Z X/:,Xj:n = Z X , 2  + 2 ~ X/Xj. 
i=1 i=1 j= i+ l  i=1 

Now taking expectations on both sides, we get 

• (2) 2 ~  = n E ( X  2 )+  I~i:n q- #i,j:n 
i=1 i=1 j= i+ l  

i=1 j= i+l  

2n(n  - 1) 
2 {E(X)}2 

which, when used with (6.2) and simplified, yields an identity for product mo- 
ments of order statistics as 

n 2 
- / 6 3 /  

i=1 j--i+l 

These and several more identities are reviewed in the article by Balakrishnan and 
Sultan (1998) in this volume. 

Another topic in which considerable amount of work has been carried out is in 
the derivation of recurrence relations. For example, by starting from (2.1), one 
can establish the t r iangle  rule  for single moments of order statistics from any 
arbitrary distribution given by 

r, (k) (n -- r]# (k) (k) (6.4) /*r+l:n -~" J r:n ~ l't#r:n-1 " 

A similar recurrence relation for the product moments of order statistics from any 
arbitrary distribution is given by 

(r 1)#!,k;:~ + (s , (ke) , ,  (ke) (k.e) . (6.5) 
- -  - -  r)#r"_l,s:" q- (n -- s + l)#r'_'l, s l:n = n # r £ 1 , s - l : n  

These and many other recurrence relations satisfied by the product moments of 
order statistics from any arbitrary distribution are reviewed in the article by 
Balakrishnan and Sultan (1998) in this volume. These authors, in addition, also 
review recurrence relations satisfied by the single and the product moments of 
order statistics from several specific continuous distributions. The monograph by 
Arnold and Balakrishnan (1989) also provides an elaborate discussion on this 
topic. 

In this context, it is important to mention here a duality result satisfied by 
recurrence relations and identities among order statistics established by Bala- 
subramanian and Balakrishnan (1993b) in the most general case when X/'s are 
jointly arbitrarily distributed. 
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7. Bounds  

For any continuous distribution with mean/~ and variance a 2, Hartley and David 
(1954) and Gumbel (1954) have shown that the universal bound for the mean of 
X~:, is given by 

E ( X , : n ) < _ I z + a ( n - 1 ) / ~ l ,  n = 2 ,3 , . . .  , (7.1) 

and that this bound is attainable if and only if the population inverse cumulative 
distribution function is 

v / ~  - 1 (nun 1 1), 0 < u < 1 . (7.2)  F - I ( u ) = P + a  n~--I 

Similarly, for any continuous symmetric distribution with mean # and variance 
a 2, a tighter universal bound can be obtained for the mean of Xn:, and is given by 

1)l J2 
E(Xn:,)_</~+ V / 2 ( 2 n - l )  1 -  (22]12----- ~ n : 2 , 3 , . . .  (7.3) 

This bound is attainable if and only if the population inverse cumulative distri- 
bution function is given by 

a { 2n - 1 ~ 1/2{un 1 __ (1 - u)n-l}, 
F l ( u ) = # + ~  1--(2S__2)1J 

0 < u < l .  

(7.4) 

Several extensions and generalizations of these results are available in the liter- 
ature. There are also numerous other bounds for moments of order statistics as 
well as for some functions of order statistics. For a review of this topic, one may 
refer to David (1981) and Arnold and Balakrishnan (1989); see also the review 
article by Rychlik (1998) in this volume. 

8. A p p r o x i m a t i o n s  

Since, as mentioned earlier, the moments of order statistics are hard to compute 
for many distributions and particularly so for large sample sizes, it becomes 
highly desirable to develop some approximations for these quantities. One such 
approximation is due to David and Johnson (1954) and is based on the fact that 

Xi:, d F-l(Ui:n) , (8.1) 

where Ui:, denotes the ith order statistic in a sample of size n from the uni- 
form(0,1) distribution. Now, upon expanding F l(U/:n) in (8.1) in a Taylor Series 
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_ i = 1 and making of the expressions around the value E(Ui:,) = Pi - ~4T - qi, use 
for the central moments of uniform order statistics, we can develop the necessary 
series approximations for the single and the product moments of order statistics 
X/:n. For  example, we get the series approximation for #i:~ as 

lli:n : F - l ( p i ) q -  Piq-------2~' F ll21(pi) 
2(n + 2) 

P i q ~  -- 1 ~-- 1(4) (pi) ~ + ( n +  2) 2 {1 ( q i - P i ) F  l (3 ' (p i )+gpiq i r  
A 

(8.2) 
+ (nPiqi+ 2) 3 [_ l  (qi - p i )F -1¢3' (Pi) + ¼{ (qi - Pi) 2 - Piqi}F -114) (Pi) 

_]._ 1 2 2 F 1 (6) - -  ,,'] + lp iq i (q i -Pi )F-11S ' (P ' )  ~ P i q i  if)i)] , 

where F -~c'l (Pi), F-1121(Pi), F-1131(Pi), . . .  are the successive derivatives of F -l (u) 
evaluated at u = p~. 

David and Johnson (1954) have given similar series approximations for the 
first four cumulants and cross-cumulants of order statistics from an arbitrary 
continuous distribution F(.). Note that these approximations are all of  order 
0(1 In3). Recently, Childs and Balakrishnan (1998a) have given a Maple program 
which can be used to derive such series approximations up to any specified order 
by accounting for as many terms as desired in the underlying Taylor series ex- 
pansion in (8.1). 

Some other methods of approximation are also available in the literature. One 
may refer to David (1981) and Arnold and Balakrishnan (1989) for elaborate 
reviews of these developments. 

9 .  C h a r a c t e r i z a t i o n s  

Over the years, several interesting characterizations of distributions have been 
established based on some properties of order statistics. The earliest result in this 
connection is the one by Hoeffding (1953) which states that the entire triangular 
array of means of order statistics, {#i:n: 1 < i < n, n = 1,2, . . .} ,  characterizes the 
parent distribution. Chan (1967) established the same result with the array of just 
means of extreme order statistics. Several refinements on this result have been 
made and a good survey of all these results has been made by Huang (1989). 
There are numerous other characterization results based on different properties of 
order statistics and of some statistics based on order statistics such as spacings 
and records. For  an authoritative treatment on all these developments, one may 
refer to Kagan, Linnik and Rao (1973), Galambos and Kotz (1978), Chapter 6 of 
Arnold, Balakrishnan and Nagaraja (1992), and Rao and Shanbhag (1993). The 
review articles by Gather, Kamps and Schweitzer (1998), Kamps (1998) and Rao 
and Shanbhag (1998) in this volume all provide updated reviews on different 
characterization problems involving order statistics. 
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10. Asymptotics 

Following the early works of  Fr6chet (1927), Fisher and Tippett (1928) and von 
Mises (1936), Gnedenko (1943) laid a rigorous foundation for the limiting be- 
havior of  extremes by providing specifically necessary and sufficient conditions 
for the weak convergence of the extremes. 

Assume that there exist sequences {an} and {bn > O} such that 

li+rn F n (an + b,x)  = G(x) (10.1) 

at all continuity points of  G(x). I f  such sequences {an} and {bn} exist, then the 
distribution F is said to belong to the domain o f  max imal  attraction of the non- 
degenerate distribution G. Under the condition in (10.1), the limiting cumulative 
distribution function G of the largest order statistic (appropriately normalized) is 
one of the following three types: 

GI(X) = e  -x-~, O < x <  o% c~>O , 

G2(x) = e -( x)=, - o c  < x < 0, e > 0 , 

and 

G3(x) = e -e-x, - c o  < x < oc . (10.2) 

G2 and G3 are referred to as the Fr6chet, Weibull and extreme value distri- GI~ 
butions, respectively. 

Similarly, if there exist sequences {an*} and {b; > 0} such that (Xl:n - a;)/b*~ 
converges in distribution to a nondegenerate random variable, then its distribu- 
tion function is one of the following three types: 

G*l(x ) = 1 - e  -(-x) ~, - c c  < x < O, ct > O , 
- - X  ~ G ~ _ ( x ) = l - e  , 0 < x < e c ,  0~>0 , 

and 

G*3(x ) = 1 - e - e ,  - c ~  < x < ~ . (10.3) 

There are numerous sophisticated results dealing with the asymptotic behavior 
of  order statistics and of some functions of  order statistics. For  an elaborate 
treatment on this subject, interested readers may refer to Galambos  (1987), 
Resnick (1987), Leadbetter, Lindgren and Rootz6n (1983), Castillo (1988), Reiss 
(1989), Serfling (1980), and Shorack and Wellner (1986). The articles by Gala- 
mbos (1998) and Sen (1998) in this volume will provide additional and up-to-date 
details on this topic. 

11. Best linear unbiased estimation and prediction 

Let X be the vector of  order statistics obtained from either a complete sample of  
size n or from a Type-II  censored sample obtained from n units. Then, if the 
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underlying family of distributions is a scale-parameter famil}¢ of distributions with 
density function 1 f (x) ,  the Best Linear Unbiased Estimator (BLUE) of o-is given 
by 

/ f ie  1 
a* - -  X , ( 1 1 . 1 )  / f fE- lp  

where/~ denotes the vector of means and E the matrix of variances and covari- 
ances of order statistics from the corresponding standard distribution. Further, 
the variance of this BLUE is given by 

Var(o-*) = o ' 2 / ( $ / T ] ~ - I / J )  . (11.2) 

Similarly, if X is the vector of order statistics obtained from a location-scale 
family of distributions with density function 1 f (~_~), then the BLUEs of # and o- 
are given by [Lloyd (1952)] 

~T~-I ( lpr  _ / l l r )E-1  
#* = -- (BTIE_I$)(1Tx]_ll) __ (BT~c_ll)2 X (11.3) 

and 

lrE=l(1/~r _ p l r )E  1 
0-* = (~T]~- lp ) (1T}2-11)  - ( /f ie -11) 2 X ,  (11.4) 

where 1 is a column vector of l 's of the same dimension as X. Furthermore, the 
variances and covariances of these BLUEs are given by 

Var(#*) = °-2(pTE-lP) 
(prX-1/,)(1rE-11) -- (/ff~2 -11) 2 ' (11.5) 

V a r ( o - * )  = °'2(1T~2-11) 
(VrE-1/~)(IrX-ll) - (~ T~2-11) 2 ' 

(11.6) 

and 

Cov(#* ,  o'*) = --G2(/[i r]~2-11) 
(~T]~ l~)(1T}2 11)_ ( ~ T z - l l ) 2  ' 

(11.7) 

These formulas may be used, along with the explicit expressions for the means, 
variances and covariances of order statistics from some specific distributions such 
as the uniform, exponential, power function and Pareto, in order to derive the 
BLUEs of the parameters of these distributions in an explicit form. In all other 
cases, the formulas in (11.3)-(11.7) may be used to determine the BLUEs by 
means of numerical methods. The papers by Balakrishnan and Aggarwala (1998), 
Balakrishnan and Chan (1998), and Balakrishnan and Lee (1998) in the com- 
panion volume all provide examples for this case. 
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Optimal properties of BLUEs and their large-sample approximations are all 
discussed in great length by Balakrishnan and Cohen (1991). Some other efficient 
linear estimation methods based on order statistics are also discussed by these 
authors. The papers by Sarkar and Wang (1998), Ali and Umbach (1998), 
Alimoradi and Saleh (1998), and Hosking (1998) in the companion volume all 
present additional details on this topic. Balakrishnan and Rao (1997, 1998) have 
recently established that the BLUEs are also trace-efficient as well as determinant- 
efficient linear unbiased estimators, and that they have complete covariance 
matrix dominance in the class of all linear unbiased estimators. 

Having observed the first r order statistics, (Xl:n,... ,Xr:n), from a sample of 
size n, the Best Linear Unbiased Predictor (BLUP) of Xs:, (s > r) is given by 
[Goldberger (1962)] 

Xs* n = #* -[- ¢7* #s:n -]- o j T • - I ( x - -  #*1 -- if*t[/) , (11.8) 

where #* and a* are the BLUEs of # and a based on the first r order statistics, and 
o~ r =  (al,s:,,...,ar,s:,,). Once again, this formula may be used along with the 
explicit expressions for the means, variances and covariances of order statistics 
from some specific distributions such as the uniform, exponential, power function 
and Pareto, in order to derive the BLUPs in an explicit form. For example, in the 
case of the exponential distribution with location parameter # and scale param- 
eter a, the BLUP of X~:,, in (11.8) reduces to 

xL = x~:, + ~* 
i = r + l n _ i +  l' , (11.9) 

where 

0"*-- 1 r 
l ~ Z ( n - i +  1)(X/:,-X/_l:n) (11.10) 
( r ]  i=2 

is the BLUE of a based on the first r order statistics. In most other cases, the 
BLUP may be determined by employing numerical methods in the formula 
in (11.8). 

Recently, Doganaksoy and Balakrishnan (1997) showed an interesting and 
useful connection between the BLUEs and the BLUPs. For an elaborate review 
on the prediction of order statistics, one may refer to the article by Kaminsky and 
Nelson (1998) in the companion volume. 

12. Inference under censoring 

In many life-testing experiments, it is quite common not to observe complete data 
and only to observe some form of censored data. This may be based on cost and/ 
or time considerations. Of course, there are many kinds of censoring possible as 
described briefly below: 
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Type-I censoring. Suppose n identical units are placed on a life test, and the 
experimenter decides to observe all the failures up to pre-fixed time T and then 
stop the experimentation at time T with possibly some units still surviving. Here, 
the number of  failures is a random variable (actually a binomial random vari- 
able), and this type of censoring is called Type-I censoring. More precisely, it is 
called Type-I right censoring as the censoring occurs only on the right side of  the 
sample. However, it is easy to introduce Type-I censoring on both sides of  the 
sample by assuming that the experimenter will observe all units that fail only in 
the pre-fixed time interval (TL, Tu). 

Type-H censoring. Suppose n identical units are placed on a life-test, and the 
experimenter decides to observe only a pre-fixed number of  failures, say n - s, and 
then stop the experiment as soon as the (n - s) th failure occurs (thus censoring the 
last s units still surviving). Here, the number  of  failures is fixed but the termi- 
nation time is random (actually the (n - s) th order statistic from a sample of  size 
n), and this type of censoring is called Type-H censoring. Once again, this is only 
Type-II  right censoring. But, it is easy to introduce Type-II  censoring on both 
sides of  the sample by assuming that the experimenter will not observe the first r 
items to fail and also the last s items still surviving. 

Hybrid Censoring. Instead of choosing either Type-I or Type-II  censoring, the 
experimenter may sometimes find it more convenient to combine the two forms of 
censoring and adopt  a censoring method as follows. Pre-fix a time T and also the 
number of  failures as n -  s. Then, the experimenter may observe only n -  s 
failures if they all occur before time T and then terminate the experiment im- 
mediately after the (n - s) th failure; or observe all failures (< n - s) that occur 
until time T and terminate the experiment at the pre-fixed time T. Thus, the time 
of termination in this case is min{Xn_~:n, T}. This method of censoring is called 
Hybrid censoring. 

Random Censoring. Suppose n subjects are placed on a life-test and with the i th 

subject there is a random censoring time Ct. In this case, the experimenter will 
observe Xi = min(Y/, G),  for i = 1 , . . . ,  n, where G is the censoring time and Y/is 
the failure time. It is common to assume that Y/and Ci are independent, but it is 
not necessary. Hence, each life-time is censored by an independent time and the 
experimenter will have the information whether the observation is the actual 
failure time or its censoring time. This type of censoring, which is commonly 
encountered in clinical trials, is called Random censoring. 

Progressive Censoring. Suppose n identical units are placed on a life-test, and the 
experimenter decides to observe only m failures and censor the remaining n - m 
units progressively as follows: At the time of the first failure, R1 of the n - 1 
surviving units are randomly removed from the life-test; at the time of the next 
failure, R2 of the n - 2 - R1 surviving units are randomly removed from the life- 
test, and so on; finally, at the time of the mth failure, all the remaining 
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n - m - R1 . . . . .  Rm 1 surviving units are removed from the life-test. This type 
of censoring is called Progressive censoring. More precisely, this is called Pro- 
gressive Type-II censoring. But, it is easy to introduce Progressive Type-I cen- 
soring by pre-fixing the times of censoring. 

No matter what type of censoring is adopted by the experimenter, it is easy to 
construct the corresponding likelihood function and derive the maximum likeli- 
hood estimates of the parameters of the underlying life-time distribution. For 
example, in the case of Type-II right censoring described above, the likelihood 
function is given by 

L = ~ .  xi:n 1 - -  F ( x n _ s : n ) }  s ,  X l :  n < . . .  < Xn_s:  n , 

with the first part corresponding to the n - s failures observed and the second part 
corresponding to the s censored units. Similarly, in the case of Progressive Type-II 
censoring described above, the likelihood function is 

L = n ( n - R l - 1 ) . . . ( n - R 1  . . . . .  Rm l - r e + l )  
m 

H { f ( x i ) { 1 - -  F(xi)}R'~, xl <x2 < "' '  <Xm • × 

i=1 

The maximum likelihood estimation of parameters based on all these different 
types of censored data has been discussed by numerous authors; see, for example, 
the books by Mann, Schafer and Singpurwalla (1974), Bain (1978), Nelson (1982), 
Lawless (1982), Cohen and Whitten (1988), Cohen (1991), Bain and Engelhardt 
(1991), Balakrishnan and Cohen (1991), and Harter and Balakrishnan (1996). 

13. Results for some specific distributions 

Though the distributional properties of order statistics and some statistics based 
on them are quite complicated and are impossible to derive in an explicit form in 
the case of most distributions, they do take on a nice and pleasing form in the case 
of some distributions like exponential and uniform. For example, if the order 
statistics Xl:,,...,Xn:n are from the standard exponential distribution, then the 
normalized spacings defined by 

z~ = nx~: , ,  z2  = (n - 1) (x2: ,  - x l : , ) , . . . ,  

z i = ( n - i + l ) ( X ~ : , - x ~  1:,), . . . ,  z o = x , : n - x ,  ~:~ 

(13.1) 

are all i.i.d, standard exponential random variables [Sukhatme (1937)]. From 
(13.1), it readily follows that 

i 

~ : n ~ - ~ / ( n - j + l )  . (13.2) 
j = l  
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These results have found very important applications in developing exact infer- 
ential methods for the exponential distribution. For  these and some other 
properties connected with order statistics from the exponential distribution, one 
may refer to the article by Basu and Singh (1998) in the companion volume. 

Next, let us consider the order statistics Ul:n,. . . ,  Un:/7 from the uniform(0,1) 
distribution. In this case, it can be shown that the random variables 

: : ( V1 U2:n'  ~ 3 : n J  " ' '  Vn-1 = Un-l:n n 1 ' \ - -~ . -n  J , V~ = U~:~ (13.3) 

are all i.i.d, uniform(0,1) random variables [Malmquist (1950)]. From (13.3), it 
readily follows that 

U/:, : I I  V)/; " (13.4) 
j=i 

Once again, these results have found very important applications in developing 
exact inferential methods for the uniform distribution. This result has also been 
utilized to develop some efficient simulation algorithms for the machine genera- 
tion of uniform order statistics; see the article by Tadikamalla and Balakrishnan 
(1998) in this volume. 

If the order statistics X l : / 7  , . . . ,Xn: n are from the normal N(#, a 2) population, 
then it can be shown that the statistic 

/7 

r = Z c i X i : n / S  (13.5)  
i=1 

is independent of both X and S, where X denotes the sample mean, S 2 denotes the 
n sample variance, and ~i=1 ci = 0. This result has found significant applications in 

the tests for potential outliers in normal samples; for example, see Barnett and 
Lewis (1993). Another interesting property of order statistics in this case is that 
the sum of the elements in any row or column of the variance-covariance matrix 
of all n order statistics is a 2. In other words, when 0 -2 = 1, the variance-covariance 
matrix is doubly stochastic. For more details on properties of order statistics from 
various distributions, one may refer to David (1981) and Arnold, Balakrishnan 
and Nagaraja (1992). 

14. Outliers and robust inference 

Order statistics enter into the areas of Outliers and Robust Inference in a very 
natural manner since outliers in statistical data are often expected to be a few 
extreme order statistics. Hence, test statistics based on extreme order statistics 
that measure the amount of departure of these observations from the rest of the 
data are used effectively to test whether those extreme order statistics are indeed 
outliers or not; see, for example, Barnett and Lewis (1993) for an exhaustive 
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treatment on this topic. The article by Jensen and Ramirez (1998) in this volume 
is a good example of this kind as it illustrates the role of Cook's distance in 
regression problems. 

Due to the suspicion (and also premise) that a few extreme order statistics are 
indeed the outliers, robust estimates and robust inferential methods can be pro- 
duced by either trimming or downweighing those extreme order statistics. Ex- 
amples of this kind of estimates include trimmed means, Winsorized means, and 
M-estimates. Their properties and usage in developing various inferential pro- 
cedures form the area of Robust Inference. A good review of this topic may be 
found in the books by Andrews et al. (1972), Huber (1981), and Tiku, Tan and 
Balakrishnan (1986). The article by Childs and Balakrishnan (1998b) in this 
volume discusses the moments of order statistics arising from a Pareto sample 
containing multiple outliers and uses them to examine the bias and mean square 
error of some linear estimators of location and scale parameters under the 
presence of multiple outliers, and then presents some robust estimators. 

15. Goodness-of-fit tests 

There are many subjective as well as objective statistical methods available in the 
literature for checking the assumption of a particular distribution for the data at 
hand, and most of these make use of order statistics either explicitly or implicitly. 
An excellent source for this area of research is the book by D'Agostino and 
Stephens (1986). 

One of the simplest and most commonly used methods is based on Q - Q plots. 
All this does is to plot the sample order statistics Xi:n against the corresponding 
expected values (from the standard distribution)/~i:n. A near straight line in the 
plot will suggest that the model assumed for the data is an appropriate one. While 
this is a subjective method, one could easily propose an objective method from it 
by using the correlation coefficient between the two sets of values as a test sta- 
tistic. 

Another well-known example for the use of order statistics in goodness-of-fit 
tests is Shapiro and Wilk's (1965) test for normality. These authors used the ratio 
of the best linear unbiased estimator of a (the population standard deviation) 
and the sample standard deviation S as a test statistic. The empirical distribution 
function statistic is another classic example illustrating the use of order statistics 
in goodness-of-fit tests. The papers by Lockhart  and Stephens (1998) and Sha- 
piro (1998) in the companion volume will provide additional valuable details in 
this direction. 

16. Related statistics 

Let X1 ,X2,. . .  be a sequence of i.i.d, random variables with common distribution 
function F. An observation Xj is called an upper record if it is at least as large as 
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the maximum of all preceding observations. Similarly, an observation Xj is called 
a lower  record  if it is at most as large as the minimum of all preceding observa- 
tions. These are referred to as classical  records  in the literature. In the case of 
absolutely continuous distributions, it is easy to show that for the n th upper 
record value R,, 

/ /  

Pr(R~ _> r) = {1 - F ( r ) } ~ { - l n ( 1  -F( r ) )}k /k!  , 
i=0 

from which the density function of R, can be readily obtained to be 

fR. (r) = f (r) { -  log(1 - F ( r ) )  } " /n !  . 

(16.1) 

(16.2) 

Similar expressions can be given for the lower record values as well. Glick (1978), 
Nagaraja (1988), Nevzorov (1987), Arnold and Balakrishnan (1989), Arnold, 
Balakrishnan and Nagaraja (1992, 1998) and Ahsanullah (1995) all provide ex- 
cellent reviews of all the developments on the theory and applications of records 
and related statistics. 

Instead of keeping track of the largest X yet seen, one may keep track of the k th 
largest X yet seen which then gives rise to the so-called k th record  values [Grudzien 
and Szynal (1985)]. There are many other record models, extensions and gener- 
alizations proposed in the literature. The article by Nevzorov and Balakrishnan 
(1998) in this volume provides an exhaustive up-to-date review on the subject of 
Records .  

Suppose (X1, Y1),..., (Xn, Yn) are n i.i.d, bivariate observations from the dis- 
tribution F ( x , y ) .  Further, suppose the pairs are ordered by their X variates and 
the order statistics of X are denoted as usual by X~:~, 1 < i < n. Then, the Y variate 
associated with ~:n is called the c o n c o m i t a n t  o f  the i th order  s tat is t ic  and is usually 
denoted by Y[i:n] [David (1973)]. These concomitant order statistics become useful 
in some problems involving selection. The probability density function of Y[i:,l can 
be written as 

f fYI~:ol (Y) = f ( y l x ) f i :~ ( x )  dx  , (16.3) 
o o  

where ~:,,(x) is the density function of the i th order statistic in a sample of size n 
from the marginal distribution of X. Similarly, the joint density function of 
glib:4,..-, Y[ik:,] (1 _< il < . . .  < ik < n) can be written as 

f~,:+...,~k:,,l(Yi, ,Yi2, . . . ,Yik) 

L/  52 
x i  k i k 

---- oo""  H f ( y i , .  [xi,.)fi,,...,i,:~(xi~,... ,x i , )  d x i , . . . d x i ,  . 
O0 r =  1 

(16.4) 

From this expression, for example, means, variances and covariances of con- 
comitants of order statistics can all be determined. 
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M a n y  distr ibutional  propert ies  of  concomi tan ts  and asymptot ics  have been 
studied. Inferential  me thods  have been developed for  the paramete rs  of  the un- 
derlying bivariate  distribution• Some other  models  of  introducing concomi tan ts  
o f  order  statistics have also been proposed  in the literature. The article by David  
and Naga ra j a  (1998) in this vo lume rev iewsa l l  these developments•  

K a m p s  (1993) has in t roduced g e n e r a l i z e d  order  s t a t i s t i c s  which includes order  
statistics as well as record values as special cases. 

17 .  G e n e r a l i z a t i o n s  

Suppose  X/ s  are independent  r a n d o m  variables distr ibuted as F/, i = 1 , 2 , . . . ,  n. 
Then,  the margina l  density funct ion of  the i th order  statistic X/:n can be writ ten as 
[Vaughan and Venables (1972)] 

f , : . (~ )  = ( i - -  1)!(n--  i)! 

+ F l ( x )  

Fl (X)  

f l  (X) 

1 - F1 (x)  

1 - F x ( ~ )  

• . °  

F . ( ~ )  + 

• .- i -  1 rows 

F , ( x )  

L(x) 
1 - F. (x) 

- . .  n - i rows 

1 - Fn (x)  

--Cx2 < x <  OG , (17.1) 

where +IAI + denotes  the pe rmanen t  of  the matr ix  A. Similarly, the joint  density 
funct ion of  X,:n and Xy:n (1 _< i < j  _< n) can be writ ten as 

1 
f i , j :n (x , y )  = (i - 1)!(j - i - 1)!(n - j ) !  

+ F1 (x) . . .  

F1 (x) . .  

f l ( x )  -- 

F~(y)  - F ,  (x) . .  

F, (y) - / : 1  (x) .. 

f , ( y )  .. 
1 - F1 (y)  .. 

1 - F l ( y )  " 

F~(~) 

F . ( x )  

f , ( x )  

Fn (y) - F, (x) 

+ 

i -  1 rows 

F .  (y)  - F~ (~) 

f , ,(Y) 

1 - F . ( y )  

1 - F o ( y )  

- o c < x < y < o c  . 

j - i -  1 rows , 

n - j rows 

(17.2) 
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U p o n  making  use of these pe rmanen t  expressions of order statistics and  some 

k n o w n  properties of permanents ,  most  of the results available on the momen t s  of 
order statistics f rom an i.i.d, sample have been generalized to the case when the 
order statistics arise from n independent  and non- ident ica l ly  distr ibuted variables. 
For  example, such a general izat ion of the triangle rule in (6.4) is given by 
[Balakrishnan (1988)1 

(n r ' (k) £ # [ i ]  ~k~ (17.3) V#r+l:n(k) _1_ -- )t~r:n = r:n-1. 1 
i=l 

where # [i](k~ denotes the k th m o m e n t  of the r th order statistic obta ined from n - 1 r:n-1 
variables (with X / h a v i n g  been removed from the original set of  n variables). It is 
impor t an t  to men t ion  here that these results have been further generalized to the 
case when the order statistics arise from n arbitrari ly jo int ly  distr ibuted r a n d o m  

variables. In  this respect, m a n y  properties (such as log-concavity,  duality,  etc.) of 
order statistics and  recurrence relations for moments  have all been generalized to 

this very general case. For  this purpose,  different approaches have been used to 
establish these results, including the method  of induct ion,  probabil is t ic  approach,  
indicator  method,  opera tor  method,  and  generat ing funct ion approach.  
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Order Statistics: A Historical Perspective 

H .  L e o n  H a r t e r  a n d  N .  B a l a k r i s h n a n  

1. Introduction 

Let 321, X2 , . . . ,X ,  be n independent and identically distributed random variables 
from a specified or unspecified population which, when arranged in non- 
decreasing order of magnitude, are denoted by Xl:n _< X2:, _< . . .  _< Xn:n. Then, 
Xkn,X2:~,... ,X,:, are collectively called the order statistics of the sample and X,:, 
(i = 1 ,2 , . . . ,  n) is called the i th order statistic of the sample. In another sense of 
the expression, order statistics is that branch of the subject of Statistics which 
deals with the mathematical properties of order statistics and with statistical 
methods based upon them. 

We make a sharp distinction, as does David (1970, 1981), between order sta- 
tistics and rank order statistics, which is a branch of nonparametric statistics. 
Though there is considerable overlap between order statistics and nonparametric 
(or distribution-free) statistics, the former is not (as some authors have claimed) a 
branch of the latter. This is readily evident from the fact that one of the most 
frequently encountered applications of order statistics is in the estimation of 
parameters of specified distributions. Examples include best linear unbiased es- 
timation based on all or some of the order statistics of a complete or censored 
sample, and maximum likelihood estimation based on a censored sample. Order 
statistics are also used in estimation of regression coefficients. Most of the al- 
ternatives to the method of least squares (unlike that method itself) are based on 
order statistics, as are methods for the treatment of outliers. Order statistics are 
useful not only in point estimation but also in point prediction and in determining 
confidence intervals, tolerance intervals, and prediction intervals. 

Other applications discussed include use of the range in statistical quality 
control; use of the studentized range in multiple comparison tests; use of order 
statistics in ranking and selection procedures; use of extreme values in hydrology, 
meteorology, seismology, econometrics, strength of materials, and other applied 
fields; plotting positions on probability paper; use of ordered characteristic roots 
in multivariate analysis; and use of the empirical cdf and spacings in goodness-of- 
fit tests. 
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Order statistics were discussed more or less extensively in a number of earlier 
books, but the first book devoted exclusively to order statistics [other than the 
book on extreme values by Gumbel (1958)] was a book edited by Sarhan and 
Greenberg (1962), containing contributions by the editors and several other au- 
thors. Other books on the subject were the two volumes by Harter (1970a,b) on 
order statistics and their use in testing and estimation, and the recent revision of 
these two volumes by Harter and Balakrishnan (1996, 1997). 

The first textbook on order statistics was the one by David (1970) [second 
edition, 1981]. More recently Arnold, Balakrishnan and Nagaraja (1992) pub- 
lished a textbook for advanced undergraduate courses that does not assume an 
advanced mathematical or statistical background. 

Harter (1978b [1983], 1983b, 1991a-d, 1992, 1993) published an eight-volume 
chronological annotated bibliography of order statistics. The first seven volumes 
give substantially complete coverage up through 1969. The first two volumes 
contain subject and author indices and citation lists, but those for Volumes 
I I I ~ I I  are combined in Volume VIII with a list of errata and comments by 
N. Balakrishnan on developments on order statistics from 1970 to date. 

In addition to the above mentioned volumes, a good number of other books 
and monographs have appeared in the literature discussing some specific issues 
relating to order statistics. We have cited these in the appropriate sections of this 
review article. 

2. Distribution theory and properties 

Distribution theory of order statistics has received considerable attention since 
the early 1900s. Numerous papers appeared dealing with general properties of 
order statistics from continuous as well as discrete populations. Order statistics 
(and their moments) from several specific continuous populations including the 
uniform, exponential, normal, logistic, Cauchy, lognormal, Gamma, Weibull, 
Pareto, extreme value, Laplace, t, and Beta have been studied by various authors. 
Similar work on order statistics from specific discrete populations including the 
uniform, geometric, binomial, Poisson, negative binomial, and multinomial has 
been carried out. The dependence structure of order statistics has also been 
studied in great detail. It has been proved, for example, that order statistics from 
discrete distributions, unlike in the case of continuous distributions, need not 
form a Markov chain. In addition, order statistics arising from finite populations 
under sampling schemes such as simple random sampling and stratified random 
sampling have also been discussed. Nagaraja (1992) has provided a detailed re- 
view of the distribution theory and properties of discrete order statistics. See also 
Chapters 2 and 5 of David (1981) and Chapters 2~4 of Arnold, Balakrishnan and 
Nagaraja (1992). 

Barlow and Proschan (1975, 1981) established some reliability properties of 
order statistics. For example, they proved that if F is IFR (Increasing Failure 
Rate) or DFR (Decreasing Failure Rate) or IFRA (Increasing Failure Rate on 
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Average) or D F R A  (Decreasing Failure Rate on Average) or NBU (New Better 
than Used) or NWU (New Worse than Used), then the distributions of order 
statistics from F also inherit the same reliability properties. Some extensions of 
these results have been provided by Takahasi (1988) and Nagaraja (1990). 

The article by Balakrishnan and Rao (1998) in this volume reviews various 
developments that have taken place on the distribution theory and properties of 
order statistics, while the papers of Arnold and Villasefior (1998) and Boland, 
Shaked and Shanthikumar (1998) review results on some stochastic orderings of 
distributions of order statistics. 

3. Measures of central tendency and dispersion 

Order statistics and functions of order statistics are often used as descriptive 
statistics for samples and for finite populations. The most common measures of 
central tendency are the mean and the mode (not based on order statistics), the 
median and the midrange. The median of n ordered observations is defined as the 
middle observation when n is odd (i.e. X0.5(n+l):n), and as the average of the two 
middle observations when n is even (i.e. (X0.sn:n + X0.5(n+2):n)/2)- The midrange is 
defined as the average of the two extreme observations. Less commonly used are 
the quasi-midranges (quasi-medians), which are defined as the midranges of the 
observations remaining after discarding equal numbers of largest and smallest 
observations. The midrange was used by the ancient Greeks and Egyptians and 
by the Arabs during the middle ages. The median seems not to have come into use 
until early in the modern era. The quasi-midranges have been used, though less 
frequently, for over a century. 

Common measures of dispersion include the standard deviation and the av- 
erage deviation from the mean (both not based on order statistics), the range, the 
quasi-ranges, the quartile deviation (semi-interquartile range), and the average 
absolute deviation from the median. The range is defined as the difference be- 
tween the largest and smallest observations, and the quasi-ranges as the differ- 
ences between the largest and smallest observations remaining after discarding 
equal numbers of largest and smallest observations. The quartile deviation (semi- 
interquartile range) is defined as half the difference between the first and third 
quartiles, which are defined by Qa =Yo.z5(n+l):n and Q3 = Xo.75(n+l):n, where a 
fractional subscript indicates interpolation between adjacent order statistics. The 
average absolute deviation from the median is the average of the absolute values 
of the deviations of the observations from their median. The range has been used 
since ancient times, and the average absolute deviation from the median and the 
quartile deviation for well over 200 and 150 years, respectively; the quasi-ranges 
apparently were first used in this century. 

Some of the above described measures of central tendency and dispersion have 
since become so basic and important a part of descriptive statistics that even 
introductory texts in Statistics (for example, see Moore and McCabe, 1993) have 
now incorporated these details. 
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4.  Regression coefficients 

The problem of determining the coefficients in the equation of the straight line 
which best fits (in some specific sense) three or more non-collinear points in the 
(x,y)-plane whose coordinates are pairs of associated values of two related 
variables, x and y, dates back at least as far as Galileo Galilei (1632). This 
problem of linear regression in two ,variables can be generalized to non-linear 
regression and/or regression in more than two variables. 

Over two hundred years ago, two methods based on order statistics were 
proposed for determining the best-fitting straight line through three or more 
points. Boscovich (1757) proposed a method based on two criteria: 

• the sums of the positive and negative residuals (in the y-direction) shall be 
numerically equal; 

• the sum of their absolute values shall be a minimum. 

Boscovich (1760) presented a geometric method and Laplace (1793) an analytic 
method based on the above two criteria of Boscovich. Laplace (1786) gave a 
procedure for minimizing the maximum absolute deviation from the fitted line, a 
criterion suggested earlier by Euler (1749) and Lambert (1765). The method of 
least squares (not based on order statistics) was proposed independently by 
Legendre (1805), Adrain (1808) and Gauss (1809). Because of its computational 
simplicity and because of a mistaken belief in the universality of the normal law of 
error, on which it is based, it soon superseded the method of least absolute values 
and the minimax method in general practice. However, a few authors continued 
to study the two earlier methods. Fourier (1823, 1824) formulated both as what 
would now be called linear programming problems. Later authors, notably 
Edgeworth (1887), dropped Boscovich's first criterion, which constrains the line 
to pass through the mean point (2, 3~), and applied the second criterion without 
this constraint. The revival of interest in the method of least absolute values and 
the minimax method has continued in the present century, accelerated in the 
second half of the century by the development of powerful computers, which 
made computational simplicity less important. A summary of the history of these 
two methods of estimation is given in the Encyclopedia articles by Harter 
(1985a,b). Robustness considerations have also led to the development of many 
more methods (based on order statistics either explicitly or implicitly). A fuller 
account of the method of least squares and various alternatives, along with the 
related problem of the treatment of outliers, is given in a six-part article by Hatter 
(1974-1976). 

Of course, the problems of determining the best sample measures of central 
tendency and dispersion (for use in estimating the unknown population mean and 
standard deviation) and the best linear or non-linear regression equation are 
closely related. The solutions of all three problems depend upon the distribution 
of the errors or residuals (deviations of the observed values from those predicted 
by the regression equation). If  the error distribution is normal, the maximum 
likelihood estimators are the sample mean and standard deviation (with n, not 
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n -  1, in the denominator) and the least squares regression coefficients. If the 
error distribution is double exponential (Laplace), the maximum likelihood esti- 
mators are the sample median, ~ times the mean absolute deviation from the 
median, and the least absolute values regression coefficients (see, for example, 
Johnson, Kotz and Balakrishnan, 1995). If the error distribution is uniform, the 
maximum likelihood estimators are the sample midrange, the sample semirange/ 
x/-3, and the minimax regression coefficients. 

5. Treatment of outliers and robust estimation 

Another problem arises when the data may be contaminated by spurious obser- 
vations (outliers) which come from distributions with different means and/or 
different standard deviations than the assumed distribution. Many methods have 
been proposed for testing outliers as well as for rejecting or modifying them (or 
their weights). Among the earliest criteria for rejection of outliers were those of 
Peirce (1852) and Chauvenet (1863). Newcomb (1886) proposed reducing the 
weights of extreme observations suspected of being spurious instead of discarding 
them entirely. Rider (1933) gave an excellent summary of methods proposed up to 
that time. Later methods include those of Grubbs (1950) and Dixon (1950), both 
of which make extensive use of extreme order statistics. 

Robust estimation procedures have been developed by Huber (1964, 1972, 
1973, 1977, 1981) and others for use when the underlying distribution is unknown 
or when the presence of spurious observations is suspected. These include trim- 
med and Winsorized procedures which are based on trimmed and Winsorized 
estimators, and also some adaptive procedures which make use of the sample data 
to decide what estimator to rise. These procedures were developed by Tukey and 
McLaughlin (1963), Dixon and Tukey (1968), Hogg (1967, 1972, 1974), Harter 
(1974-1976, Part V), and Harter, Moore and Curry (1979), among many others. 

Further information about the treatment of outliers and robust estimation is 
contained in several books including those by Tukey (1970), Andrews et al. 
(1972), Doornbos (1976), Launer and Wilkinson (1979), Hoaglin, Mosteller and 
Tukey (1985), Rousseeuw and Leroy (1987), Hawkins (1980), Tiku, Tan and 
Balakrishnan (1986), Hampel et al. (1986), Barnett and Lewis (1994), and 
Maddala and Rao (1997). Reference may also be made to a series of journal 
articles by Harter (1974~1976) and several Encyclopedia articles by Harter 
(1983a, 1985a,b). In the paper by Geisser (1998) in the companion volume, the 
Bayesian treatment of the outlier problem has been reviewed. 

6. Maximum likelihood estimators 

Fisher (1922) laid a firm mathematical foundation for the method of maximum 
likelihood and gave it that name for the first time, though it had previously been 
used by him [Fisher (1912)] and much earlier by Lambert (1760), Daniel Bernoulli 
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(1778), and Gauss (1809) [see Sheynin (1966)]. Maximum likelihood estimators 
(MLEs) are not in general based on order statistics, but they do involve order 
statistics in two important cases: 

• When the domain of the population is limited in one or both directions and 
the limit(s) must be estimated from the data. For example, given a sample of size n 
from a uniform distribution over the interval (a, b), the smallest order statistic is 
the MLE of a and the largest order statistic is the MLE of b (assuming that a and 
b are unknown, of course); 

• When Type II censoring (single or double) occurs. If the sample is Type II 
censored from below (from above), the smallest (largest) uncensored observation 
plays a special role. 

Among the earliest authors to consider maximum likelihood estimators from 
censored samples were Cohen (1950, 1957, 1959) and Halperin (1952). During the 
1960's, Harter and Moore (1965, 1966a,b, 1967a,b, 1968a,b, 1969) and Cohen 
(1961, 1963, 1965, 1966) published several papers on the maximum likelihood 
estimation, from censored samples, of the parameters of various populations. 
Each of these articles includes the derivation of the likelihood equations, a dis- 
cussion of the numerical solution of these equations, and the asymptotic variances 
and covariances of the estimators. These results have been summarized in book 
form by Harter (1970b) and by Cohen (1991). A revision [Harter and Bala- 
krishnan (1996)] of the first volume is also worth mentioning here. In addition to 
these volumes, numerous other books have appeared in the life-testing and reli- 
ability literature wherein details of the maximum likelihood estimation based on 
censored samples from different populations may be found; see, for example, 
Mann, Schafer and Singpurwalla (1974), Bain (1978), Kalbfleisch and Prentice 
(1980), Nelson (1982), Lawless (1982), Schneider (1986), Cohen and Whitten 
(1988), Bain and Engelhardt (1991), Balakrishnan and Cohen (1991), and Bala- 
krishnan (1995). 

7. Best linear unbiased estimators 

The basic idea of using linear functions of sample order statistics to estimate 
population parameters (particularly, the location and scale parameters) goes back 
at least as far as papers by Daniell (1920) and Karl Pearson (1920). Interest in 
such procedures and others based on order statistics was heightened by landmark 
papers by Mosteller (1946) and Wilks (1948). Godwin (1949b) found best (min- 
imum variance) unbiased estimators of the standard deviation of a normal 
population from complete samples of size n _< 10. Ogawa (1951) and Lloyd (1952) 
made seminal contributions on the use of the Gauss-Markov theorem on least 
squares to derive best linear unbiased estimators (BLUEs), and applied the results 
to estimation of parameters of normal and other populations. Gupta (1952) 
found BLUEs of the mean and standard deviation of a normal population from 
censored samples of size n _< 10. He also derived alternative linear estimators 
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(ALEs), which are unbiased, but not of minimum variance, and compared their 
efficiency with that of the BLUEs. The property of unbiasedness depends only on 
the expected values of order statistics, but the property of minimum variance 
depends on their variances and covariances. At that time, i.e. in 1952, the vari- 
ances and covariances of normal order statistics were available only for n _< 10 
[Godwin (1949a)]; the tables were extended up through n = 20 by Teichroew 
(1956), n = 30 by Yamauti (1972), and n = 50 by Tietjen, Kahaner and Beckman 
(1977) [and more accurately by Parrish (1992)]. By making use of the tables for 
these extended sample sizes, Balakrishnan (1991) prepared tables of BLUEs (for 
complete as well as Type II censored samples) for sample sizes up to 40. A book 
edited by Sarhan and Greenberg (1962) summarized a wide variety of contribu- 
tions to order statistics, including those of the editors and others on best linear 
unbiased estimators. One may also refer to the article in the companion volume by 
Sarkar and Wang (1998), which discusses the positivity of the BLUE of the scale 
parameter and also makes a comparison of this estimator with nonlinear ones. 

Mann (1965, 1967a,b, 1968, 1969) advocated the use of best linear invariant 
estimators (minimum mean-square-error estimators which are invariant under 
transformations of location and scale) instead of best linear unbiased estimators. 
In cases of highly asymmetric censoring, the best linear invariant estimators, like 
the maximum likelihood estimators, may be strongly biased, but if so they also 
have substantially smaller mean square error than the BLUEs, of which they are 
simple linear functions. 

Asymptotically optimum quantiles (spacings) for linear estimation and the 
corresponding weights (coefficients) have been tabulated by Ogawa (1951, 1962) 
and other authors for the normal population and by various authors for several 
other populations. These are especially useful for large samples, or whenever the 
expected values, variances, and covariances of the order statistics are not avail- 
able. A summary of work on this subject has been given by Harter (1971) as part 
of a discussion of optimization problems in estimation of parameters. Also in- 
cluded in this article is a list of Air Force Institute of Technology M.S. Theses on 
best and nearly best linear unbiased and linear invariant estimation. Chan and 
Cheng (1988) provided a review on this topic of research. The book by Bala- 
krishnan and Cohen (1991) has a chapter devoted to this topic in which work 
done on several other populations has been described and supplemented with a 
list of appropriate references. Ali and Umbach (1998), in their paper in the 
companion volume, have presented an elaborate review of various developments 
on this problem. 

The book by Harter (1970b) includes tables of expected values of normal, 
exponential, Weibull and Gamma populations. Added in the revision [Harter and 
Balakrishnan (1996)] are tables of variances and covariances for those popula- 
tions and of expected values, variances and covariances for several other popu- 
lations, and a discussion of their use in best and nearly best linear unbiased and 
linear invariant estimation. Harter (1988) summarized results on Weibull, log- 
Weibull, and Gamma order statistics and their use in point and interval estima- 
tion of parameters and plotting on probability paper. 
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8. Recurrence relations and identities 

In the 1960s, several papers were published dealing with recurrence relations and 
identities satisfied by single and product moments of order statistics; for example, 
see Sillitto (1964), Govindarajulu (1963a,b), Downton (1966), Srikantan (1962), 
Krishnaiah and Rizvi (1966), and Shah (1966, 1970). These results were extended, 
generalized and improved in a number of papers that followed. For example, by 
generalizing one of  the results of Govindarajulu (1963a), Joshi (1971) established 
that for symmetric continuous distributions one needs to evaluate at most one 
single moment if n is even and at most one single moment and (n - 1)/2 product 
moments if n is odd, in order to evaluate the means, variances and covariances of 
order statistics from a sample of size n (given these quantities for all sample sizes 
less than n). Similar improvement was made by Joshi and Balakrishnan (1982) 
who established that for an arbitrary continuous distribution one needs to eval- 
uate at most two single moments and (n - 2)/2 product moments if n is even and 
at most two single moments and (n - 1)/2 product moments if n is odd. Bala- 
krishnan (1986) extended this result to order statistics from discrete distributions. 
Balakrishnan and Malik (1986), by proving that the basic identities for the 
moments of order statistics will be satisfied automatically if some of the recur- 
rence relations are used in the computation of moments of order statistics, issued 
a warning that the basic identities should not be used for checking the compu- 
tations. Two simple identities established by Joshi (1973) also led to the derivation 
of several general identities for single and product moments of order statistics. 
Malik, Balakrishnan and Ahmed (1988) and Arnold and Balakrishnan (1989) 
have reviewed all the recurrence relations and identities for moments of order 
statistics from an arbitrary distribution. 

Furthermore, following on the lines of Shah (1966, 1970), who established 
recurrence relations for logistic order statistics, several recurrence relations were 
also derived for single and product moments of order statistics from specific 
continuous distributions such as the exponential, normal, Gamma, power func- 
tion, Pareto, half logistic, log-logistic, linear-exponential, generalized logistic, and 
generalized half logistic, and their truncated forms. For  many of these cases, the 
recurrence relations are also complete in the sense that they could be used sys- 
tematically in a simple recursive manner in order to compute all single and 
product moments of order statistics for all sample sizes. These results have all 
been synthesized in a review article by Balakrishnan, Malik and Ahmed (1988); 
see also Arnold and Balakrishnan (1989). 

The article by Balakrishnan and Sultan (1998) in this volume provides an 
updated review of various recurrence relations and identities that hold for mo- 
ments of order statistics from arbitrary as well as specific distributions. 

9. Bounds and approximations 

Universal bounds for moments of order statistics were first derived by Hartley 
and David (1954), Gumbel (1954b), Moriguti (1951, 1953, 1954), and Ludwig 
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(1959, 1960). Since then, numerous papers have appeared discussing bounds for 
moments of order statistics (or functions of them). Arnold (1985) used the H61der 
inequality (instead of the Cauchy-Schwarz inequality) to derive p-norm bounds. 
David (1986) [see also David (1988)] derived some bounds for order statistics 
arising from Xi's, where ~ = Yi + Zi (i = 1 , 2 , . . . ,  n) ,  which are in terms of the 
order statistics arising from Yi's and Zi's. Imputational-type bounds, assuming 
that the moments are known exactly for a few sample sizes, were derived by 
Balakrishnan (1990) which provide simple improvements over the Hartley-David- 
Gumbel bounds. 

An orthogonal inversion expansion method was proposed by Sugiura (1962, 
1964) to derive bounds and approximations for single and product moments of 
order statistics, which was extended by Mathai (1975, 1976) to the product mo- 
ments of k order statistics. Joshi and Balakrishnan (1983) and Balakrishnan and 
Joshi (1985) improved on the results of Sugiura by deriving imputational-type 
bounds, while Joshi (1969) modified Sugiura's method to make it suitable for 
cases where the moments of extreme order statistics do not exist (like Cauchy). 

Following the pioneering work of van Zwet (1964), inequalities for moments of 
order statistics in terms of quantiles of the distribution were discussed extensively 
by many authors including Barlow and Proschan (1975, 1981) and Gupta and 
Panchapakesan (1974). Dependence properties and stochastic comparisons of 
order statistics remains an active area of research. The paper by Boland, Shaked 
and Shanthikumar (1998) in this volume reviews this topic. 

While most of the developments have focused on the independent case, some 
papers have appeared dealing with bounds for order statistics in the dependent 
case. Surprisingly simple and elegant results were derived in this case by Arnold 
and Groeneveld (1979). Since then, a number of papers have appeared on this 
problem; David (1988), Arnold (1988), and Arnold and Balakrishnan (1989) have 
provided useful reviews. More recent reviews of the various developments on this 
topic have been presented by Rychlik (1998) in this volume. 

Series approximations for single and product moments of order statistics, 
which involve the derivatives of the inverse cumulative distribution function, were 
presented by David and Johnson (1954) and Clark and Williams (1958). Bala- 
krishnan and Johnson (1998), in addition to reviewing these, have presented (in 
their article in this volume) improved series approximations for the moments of 
order statistics in the case of symmetric distributions. An Edgeworth-type ex- 
pansion for distributions of order statistics has been discussed by Reiss (1983, 
1989), who has also demonstrated its application in inference problems. The paper 
by Balakrishnan and Gupta (1998) in to the companion volume is also in a similar 
vein, but is restricted to the case of the exponential and truncated exponential 
distributions and utilizes exact moments and mixed moments of order up to four. 

10. Distribution-free tolerance procedures 

Wilks (1941) presented a method based on truncated sample ranges [quasi-ranges] 
for determining the sample size required for setting tolerance limits 
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[L1 =Xr:n,L2 =-3~n-r+l:n, where X/:n (i = 1,2,... ,n) is the ith order statistic in a 
sample of size n] on a random variable X having any unknown continuous density 
function f (x)  and having a given degree of stability. 

Wilks (1942) defined 100R~% tolerance limits Ll(x~,x2,...,xn) and 
L2 (xl, x2 , . . . ,  x~) for probability level e of a sample $1 of size n from a population 
with density function f (x)  as two functions of the X's in $1 such that the prob- 
ability is e that at least 100R,% of the X's of a further indefinitely large sample $2 
(i.e. the population) will lie between L1 and L2. He then noted that the same 
notion clearly applies if $2 is a finite sample of size N, rather than an indefinitely 
large one, in which case we would be interested in the largest integer N, such that 
the probability is at least c~ that at least 100R,%(R, = N,/N) of the X's in $2 
would lie between L1 and L2. Assuming only that f (x)  is a probability density 
function (i.e. continuous), he used order statistics of the first sample $1, in par- 
ticular the smallest order statistic XI:, and the largest order statistic Xn:~, to set 
tolerance limits satisfying the above conditions. For  general values of n, N, and c~ 
(e.g., 0.99 or 0.95), he tabulated N~; also the limiting values of N, /N  =/~,  as n 
increases indefinitely. Scheff~ and Tukey (1945) validated Wilks's results, which 
had assumed a continuous probability density function, assuming only a con- 
tinuous cumulative distribution function, and then modified his results so that 
they are valid for any distribution function. 

Let X be a random variable having a density (or probability function) f(x; 0), 
with cdf F(x; O) where 0 is a vector of parameters. Let X1,X2,... ,X, be a random 
sample from f(x; 0), and X/:n, i = 1 , . . . ,  n, be the ith order statistic of the sample. 
Let/3 and 7 be two constants such that 0 </3 < 1 and 0 < 7 < 1. I l L  and L are 
determined so that 

P[Px(L_ < x < ~) >_ /3] ~_ 7 

for all O, then [L, L] is called a/3-content two-sided tolerance interval at confidence 
level y. A two-sided (7,/3) tolerance interval with limits L and L based on order 
statistics can be obtained from 

P[F(L) - F ( L )  >/31 = 7 

where L = Xr:,, L = X,-s+l:,. A lower (7,/3) tolerance limit is given by L = Xr:, and 
an upper (7,/3) tolerance limit is given by L = X,-s+l:,. If the cdf is not contin- 
uous, the statement of the two-sided tolerance intervals must be modified as 
indicated by Scheff6 and Tukey (1945). 

For  the two-sided tolerance intervals, one chooses any r,s > 0 such that 
r + s = m, and then finds the largest m for which 

11 ~ ( m , n - m +  l) >_ 7 , 

where Ip(a, b) is the incomplete Beta-function ratio. Somerville (1958) tabulated 
the m values for selected values of /~, 7 and n, and also the 7 values when 
r = 1, s = 1 for selected values of/3 and n. Murphy (1948) gave charts for selected 
values of/3, m and n. When r + s = 1, the two-sided interval reduces to a one- 
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sided interval [-ec,X,:n] or [Xl:n, eel, which requires solving fin _< 1 - 7  for n. 
When r = s =  1, the interval becomes [Xl:,,,Xn:,l, which requires solving 
n/~, 1_ ( n -  1)/3~ < 1 -  7. Owen (1962) tabulated the smallest n for selected 
values of fl and 7 when m = 1 or 2. Belson and Nakano (1963) gave tables and a 
nomograph for one-sided tolerance intervals, and Nelson (1974) gave a nomo- 
graph for two-sided tolerance intervals for the case m = 2. Govindarajulu (1977) 
gave methods for solving for any one of the four parameters m, n, /3 and 7 in 
terms of the other three. 

Wald (1943) extended Wilks' method for setting tolerance limits to the bi- 
variate and multivariate cases. Tukey (1947, 1948) discussed statistically equiv- 
alent blocks and tolerance regions in the continuous and discontinuous cases, 
respectively. Murphy (1948) gave further results (mostly graphical) on nonpara- 
metric tolerance limits and regions. Both Wilks (1948) and Wolfowitz (1949), in 
survey papers, presented Wald's results on multivariate tolerance regions, and the 
former also dealt with Tukey's generalization. Further advances on multivariate 
tolerance regions were made by Fraser and Wormleighton (1951), Fraser (1951, 
1953), Fraser and Guttman (1956), Kemperman (1956), Somerville (1958), Jilek 
and Lika~ (1960), Walsh (1962), and Quesenberry and Gessaman (1968). 

Further information on distribution-free tolerance procedures is given in 
monographs by Guttman (1970) and Guenther (1977) and review papers by 
Guenther (1972) and Patel (1986). Some of these authors also considered toler- 
ance procedures for specific continuous and discrete distributions and for re- 
stricted families of distributions. Jilek (1981) prepared an extensive bibliography 
on statistical tolerance regions, including distribution-free results. 

11. Prediction 

Considerable work has been done on the construction of prediction intervals and 
point predictions. Prediction intervals, unlike confidence intervals which provide 
intervals for parameters of the assumed distribution, provide intervals for some 
statistics concerning the experiment. Consequently, point predictions and pre- 
diction intervals have been used extensively in life-testing problems. 

Work has focused primarily on two types of prediction problems. In the first, 
referred to as the "one-sample problem", one is concerned with predicting the 
lifetime of a surviving unit having observed a censored sample. In the second, 
referred to as the "two-sample problem", one is interested in predicting the 
lifetime of an order statistic (often the smallest or the largest) from a future 
sample having already observed an independent complete or censored sample. 
Distributions of the pivotal quantities have been discussed for a variety of parent 
populations, and tables of percentage points of these pivotal quantities have also 
been constructed. Some approximate prediction intervals have also been pro- 
posed for some distributions. Patel (1989) provided an exhaustive review of 
various developments in this area of research, while Aitchison and Dunsmore 
(1975) consolidated the progress until the mid 70s. Hahn and Meeker (1991) have 
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recently discussed the usefulness of constructing such prediction intervals. 
Kaminsky and Nelson (1998), in a paper in the companion volume, have reviewed 
some developments on this topic. 

12. Statistical quality control and range 

m 

Shewhart (1931), the father of statistical quality control, proposed the use of X and 
a charts to determine whether or not a process is in a state of statistical control. 
These charts have center lines at X and ~, the means of the means and standard 
deviations, respectively, of a number of small samples (rational subgroups), and 3- 
sigma control limits at distances above and below the center lines depending upon 

and the subgroup size. The values of X and o- for successive subgroups are 
plotted on these charts, and if any of them fall outside the control limits that is an 
indication of lack of control and a signal that an assignable cause of variation must 
be found and eliminated to bring the process into control. Shewhart considered 
and tentatively rejected the use of the sample range R instead of the sample 
standard deviation a, but Pearson (1935) justified the use of the range for small 
samples, and tabulated factors for the calculation of control limits, based on the 
mean range R, for X and R charts. Pearson and Haines (1935) made a study of the 
use of range instead of standard deviation in quality control charts. They found 
that the mean subgroup standard deviation is slightly more powerful in detecting 
the presence of assignable causes than the mean range, but the difference is small 
for samples (subgroups) of size n _< 10. Because of the greater ease of calculating 
the range, it soon replaced the standard deviation in most applications of quality 
control. The paper by Schneider and Barbera (1998) in the companion volume 
highlights the role of order statistics in quality control problems. 

13. Multiple comparisons and studentized range 

If  an investigator wishes to compare the means of two groups of  observations, the 
standard procedure is to perform a Student t test at an appropriate significance 
level e. Suppose, however, he wishes to compare the means of m(_> 3) groups. If  
he were to perform m(m- 1)/2 t tests, one for each pair of means, each at 
significance level ct, then the probability that a significant difference would be 
found between the largest and smallest means would be larger than c~ (much larger 
for large m), even if the groups all came from populations with equal means. This 
dilemma was recognized a century and a half ago by Cournot (1843). Some 
protection against too many significant differences is provided by first performing 
an analysis of variance on the m groups and then performing t tests only if an F 
test shows overall significance of difference among means. This procedure, called 
the protected LSD (least significant difference) test, has often been used in 
practice, but it is not clear that it provides sufficient protection. During the past 
fifty-odd years, a number of other procedures have been proposed, including 
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several based on the studentized range, notably those of Newman (1939) and 
Keuls (1952), Tukey (1953), and Duncan (1955). 

The differences LSD and WSD between any two out of m means of samples of 
size n required for significance (at the c~ level) by the LSD test and Tukey's 
studentized range test, respectively, are given by 

LSD = t(~, v)s 2 = q (e ,  2, v)sz, 

WSD = q(c~, m,  v)s~ , 

where v is the number of degrees of  freedom for the error mean square, s2; t(cq v) 
is the 2-tailed c~ point (upper c~/2 point) of Student's t with v degrees of freedom; 
q(~, r, v) is the upper e point of  the studentized range of r observations with v 
degrees of freedom for s2; s~ is the standard error of the mean, s ~ ;  and s~ 
is the standard error of the difference between means, s2 = ~ = v~s~. 

The critical ranges ISD and SSD for p out of m ordered means of  samples of 
size n required for significance (at the ~ level) by the Newman-Keuls test and 
Duncan's multiple range test, respectively, are given by 

ISD = q(c~,p, v)sy, 

SSD = Q(p ,  ~, v)sz , 

where Q(p,c~, v) is the studentized range of p observations with v degrees of 
freedom for s and protection level ?p,~ = (~2,~) p-1 = (1 - c~) p l and where the 
other symbols are defined as above. In performing these tests, one first tests the 
range of all m means, then the ranges of (m - 1) ordered means, etc., stopping 
when significance is no longer found, since, by definition, if a set of means do not 
differ significantly, then no subset of that set differs significantly. 

Hatter  (1957) made a study of  error rates and sample sizes for the above multiple 
comparison tests and others, assuming an underlying normal distribution. Hatter,  
Clemm and Guthrie (1959) published a technical report containing tables of the 
probability integral and percentage points of the studentized range and critical 
values for Duncan's multiple range test. The tables of critical values for Duncan's 
test and excerpts from the table of percentage points of the studentized range were 
published in journal articles [Harter (1960a,b)]. All of the above results (with re- 
vised tables for error rates and sample sizes) were reproduced in book form [Hatter 
(1970a) and Harter and Balakrishnan (1997)], along with theory and tables for the 
range of  samples from a normal population, including (1) percentage points of the 
ratio of two ranges and related tables and (2) probability integral, percentage points, 
and moments of the range. See also the revision by Harter and Balakrishnan (1997). 

A fuller account of  the early history of multiple comparison tests was pub- 
lished by Harter (1980). Volume VIII of the collected works of John W. Tukey 
(1994) is devoted to his work on multiple comparisons during the period 1948 
1983, including his previously unpublished (but well-known and influential) 1953 
memorandum on the problem of multiple comparisons. Also included are a 
biography and a bibliography of John W. Tukey, and extensive references to the 
work of other authors. Tukey argues cogently for the use of confidence proce- 
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dures rather than significance procedures in almost all cases. However, multiple 
range procedures, which the authors prefer, are not adapted to the construction 
of confidence intervals. 

14 .  R a n k i n g  a n d  s e l e c t i o n  p r o c e d u r e s  

As an alternative to significance testing, multiple decision procedures called 
ranking and selection procedures were developed in the 1950's. Given k popu- 
lations, the problem is to select the best one (usually defined as the one with the 
largest mean or the one with the smallest variance) or a subset containing the best 
one. Two different approaches have been proposed. 

Under the indifference-zone approach, the object is to select the population 
with the largest mean (smallest variance) when the difference (ratio) of the two 
largest populations means (smallest population variances) lies outside the indif- 
ference zone comprising values near 0(i). The procedure is to draw a random 
sample of size n from each population and select the population corresponding to 
the sample with the largest mean (smallest variance), with ties broken by ran- 
domization. The selection is considered to be correct if the mean (variance) of the 
selected population lies within the indifference zone. The problem is to determine 
the common sample size n such that the probability of a correct selection is at 
least P* whenever #N -/~[k 1J > 6" for specified 6" > 0, [a 2 / 0  -2 ~> r* for specified - - [2j [1j - 
r* > 1], where the bracketed subscripts indicate ordering from smallest to largest. 
It is assumed that P * >  l / k ,  the value corresponding to random selection. 
Bechhofer (1954) [Bechhofer, Dunnett and Sobel (1954)] developed a single- 
sample [two-sample] multiple decision procedure for ranking means of normal 
populations with known variances [unknown common variance]. Bechhofer and 
Sobel (1954) developed a single-sample multiple decision procedure for ranking 
variances of normal populations. Desu and Raghavarao (1990) summarized work 
on the indifference-zone approach to selecting the best normal, Bernoulli and 
exponential populations. 

Under the subset-selection approach, the object is to select a subset containing 
the best population, usually defined as the one having the largest mean (or the 
smallest variance). Seal (1955) and Gupta (1956) developed decision procedures 
for selection, from a set of (n + 1) normal populations, of a subset containing the 
one with the largest mean. Gupta and Sobel (1962) developed a procedure for 
choosing a subset containing the population with the smallest variance. 

Gupta and Panchapakesan (1988) summarized work on both the indifference- 
zone formulation of Bechhofer (1954) and the subset-selection approach of Gupta 
(1956), with emphasis on procedures that are relevant to reliability models. Gupta 
and Sobel (1960) and Gupta (1963) developed procedures for binomial and 
Gamma populations, respectively. Gupta (1965) summarized results up to that 
date on ranking and selection procedures, using mainly the subset-selection ap- 
proach. The selection procedures select a non-empty, small, best subset such that 
the probability is at least equal to a specific value P* that the best population is 
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included in the selected subset. Selection of a subset to contain all populations 
better than a standard is also discussed. A thorough account of various devel- 
opments on ranking and selection problems may be seen in the volumes by Gupta 
and Panchapakesan (1979) and Gibbons, Olkin and Sobel (1977). 

15. Extreme values 

While the theory of extreme values has been worked out systematically only 
within the past 75 years, a few probabilists, engineers, and statisticians dealt with 
specific extreme-value problems much earlier. Nicolas Bernoulli (1709) found the 
life expectancy of the last to die of n men, who will all die within a year and who 
are equally likely to die at any instant during that time, to be n / ( n  + 1), the 
expected value of the largest observation in a sample of size n from a uniform 
distribution on the interval (0,1). Chaplin (1880, 1882) considered the relation 
between the tensile strengths of long and short bars. He showed that if the 
probability is p that the tensile strength of a bar of given length and cross section 
exceeds a specified value, then the probability is p" that the strength of the 
weakest of n such bars (or of a single bar of the same cross section but n times as 
long) exceeds the specified value. Galton (1902) and Pearson (1902) considered 
what ratio, in a competition, the first of two prizes should bear to the second one, 
assuming that the values of the prizes should be proportional to the respective 
excesses of merit of the two prize-winners over the third competitor, who receives 
no prize. 

Gumbel (1954a) dated the modern history of extreme-value theory from a 
fundamental paper by von Bortkiewicz (1922) on the distribution of the range and 
on the mean range in samples from a normal distribution. Dodd (1923) was the 
first to study the largest value for other than normal distributions. Tippett (1925) 
tabulated the probability integral of the largest value in a sample of size 
n = 1(1)1000 from a normal population, and the mean range for n = 2(1)1000. 

Fr6chet (1927) introduced the concept of a class of initial distributions, and 
was the first to obtain an asymptotic distribution of the largest values. He in- 
troduced the stability postulate, which states that the distribution of the largest 
value should be equal to the initial distribution, except for a linear transforma- 
tion. Fisher and Tippett (1928) used the stability postulate and found, in addition 
to Fr6chet's asymptotic distribution of largest values, two others valid for other 
initial types, along with analogous results for smallest values. R. yon Mises (1936) 
classified the initial distributions of the largest value, and gave sufficient condi- 
tions under which the three asymptotic distributions are valid. Gnedenko (1943) 
gave necessary and sufficient conditions, and pointed out that the results for 
largest values can easily be extended to smallest values. 

Gumbel (1954a) gave a concise summary of extreme-value theory and its ap- 
plications, including outlying observations, Galton's problem, floods and 
droughts, meteorological phenomena, gust loads, breaking strength of materials, 
quality control, duration of human life, extinction times for bacteria, radioactive 
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decay, and the stock market. A fuller account was given in his book [Gumbel 
(1958)]. More recent advances have been presented in a book by Galambos (1978) 
[1987]. 

Extreme-value distributions, especially the Weibult distribution, which is the 
third asymptotic distribution of smallest values, are often used as models for 
device life. The Weibull distribution also plays an important role in studies of the 
size effect on material strength, based on the weakest-link theory proposed by 
Chaplin (1880, 1882). In fact, the Weibull distribution was developed in this 
context [Weibull (1939a,b)]. Harter (1977) published a study of statistical prob- 
lems in the size effect on material strength. Harter (1978a) compiled a bibliog- 
raphy of over 600 publications on extreme-value theory, of which over 200 deal 
with applications to the size effect on material strength. In addition to this review 
article, the tract of de Haan (1970), the two editions of the book by Galambos 
(1978, 1987), and the volumes by Leadbetter, Lindgren and Rootzen (1983), 
Tiago de Oliveira (1984) and Resnick (1987) have provided an exhaustive cov- 
erage of this topic. Engineering applications of extreme-value theory have been 
highlighted, on the same lines as Gumbel (1958), by Castillo (1988). Considerable 
work on the asymptotic theory of central and intermediate order statistics, fol- 
lowing the works of Daniell (1920), Chibisov (1964) and Stigler (1973a,b), has 
been synthesized in the books by Serfling (1980), Shorack and Wellner (1986) and 
Reiss (1989). Review papers by Galambos (1998) and Sen (1998) in this volume 
will provide an elaborate treatment of these topics. 

Hydrologists, with their concern about such things as the return period of 
floods, have been among the chief users of extreme-value theory, and have been 
active in the development of various probability papers and in discussion of the 
proper plotting positions. While there is no consensus on the subject, Gumbel and 
many others contend that, at least for purposes of estimating return periods, the 
plotting position i / (n + 1) should be used for the ith order statistic of a sample of 
size n. This gives a return period of (n + 1) years for the largest o fn  annual floods 
(or the smallest of n annual droughts). This contrasts with a return period of 2n 
years corresponding to the plotting position ( i -  1 /2) /n  used by earlier authors. 
Further discussion of plotting positions is given in the next section. 

16. Plotting positions on probability paper 

Probability paper was used as early as 1896, and was mentioned in the literature 
more than 50 times before 1950, mainly by hydrologists, many of whom used the 
plotting position (i - 0.5)/n proposed by Hazen (1914). Gumbel (1942) consid- 
ered the modal position (i - 1)/(n - 1) and the mean position i /(n + 1) [the latter 
proposed by Weibull (1939a,b)], and chose the latter. Lebedev (1952) and others 
proposed the use of (i - 0.3)/(n + 0.4), which is approximately the median po- 
sition advocated by Johnson (1951). Blom (1958) suggested (i - c~)/(n + 1 - 2c~), 
where c~ is a constant (usually 0 < c~ < 1), which includes all of the above plotting 
positions as special cases. Moreover, by proper choices of c~, one can approximate 
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F[E(xi)],  the position proposed by Kimball (1946), for any distribution of interest. 
Gumbel (1954a) stated some postulates which plotting positions should satisfy. 
Chernoff and Lieberman (1954) discussed the optimum choice of plotting posi- 
tions in various situations. They showed that if the plotting position i /(n + 1) is 
used to plot sample data from a normal population with unknown standard 
deviation, the slope of the best-fitting (least squares) regression line seriously 
overestimates a. The best plotting position for estimating a appears to be F[E(xi)l, 
which is not equal to E[F(xi)] = i / (n + 1) for the normal distribution, or for any 
other distribution except the uniform. It is clear that the optimum plotting po- 
sition depends upon the purpose of the investigation and may also depend upon 
the underlying distribution [see Harter (1984) and Harter and Wiegand (1985)]. 
Barnett (1975) has also discussed the critical choice of plotting positions. Fowlkes 
(1987) has presented an exhaustive folio of several important distributions 
through their theoretical quantile-quantile plots. 

17. Simulation methods 

As the role of order statistics became increasingly important in many different 
problems including the treatment of outliers and robustness issues, methods 
of simulation of order statistics also became of great interest. Schucany (1972), 
using the beta distribution property of uniform order statistics, suggested the 
"descending method" starting from the largest order statistic. Lurie and Hartley 
(1972) similarly presented the "ascending method" starting from the smallest 
order statistic, which was observed by Reeder (1972) and Lurie and Mason (1973) 
to be slightly slower in general than the descending method. By combining the 
two methods, Ramberg and Tadikamalla (1978) and Horn and Schlipf (1986) 
presented algorithms for the simulation of central order statistics. While 
Schmeiser (1978) provided a general survey of simulation of order statistics, 
Gerontidis and Smith (1982) discussed the "inversion method" and the "grouping 
method" for generating order statistics. The books by Kennedy and Gentle (1980) 
and Devroye (1986) present a good discussion on this topic. A simple and efficient 
algorithm for generating a progressively Type II censored sample has recently 
been given by Balakrishnan and Sandhu (1995). The article by Tadikamalla and 
Balakrishnan (1998) in this volume provides a review of various developments on 
this topic of research. 

18. Ordered characteristic roots 

Hotelling (1933), one of the pioneers in the field of multivariate analysis, was 
among the first to use methods based on order statistics in that field. He intro- 
duced the method of principal components, which are ordered roots of deter- 
minantal equations, in multiple factor analysis. Related work was performed by 
Thomson (1934), Girshick (1936), Hotelling (1936a), Aitken (1937), Bartlett 
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(1938), Lawley (1940) and Tintner (1945). Hotelling (1936b) studied relations 
between two sets of variates, and obtained distributions of canonical correlations, 
which are also roots of determinantal equations, and of functions of canonical 
correlations, arranged in order of magnitude. Other early contributors to the 
theory of canonical analysis were Girshick (1939), Bartlett (1947a,b, 1948), and 
Tintner (1946). Fisher (1938), in a fundamental paper on linear discriminant 
analysis, dealt with s -  1 orthogonal comparisons of s components, arranged in 
order of magnitude of their contributions. No fewer than four authors [Fisher 
(1939), Girshick (1939), Hsu (1939) and Roy (1939)] independently published 
fundamental results on the distribution of the ordered roots of determinantal 
equations, and during the next ten years further results were obtained by Roy 
(1940a,b, 1942a,b, 1945, 1946a,b), Hsu (1941), Wilks (1943), Anderson (1945, 
1946, 1948), Bartlett (1947a,b), Geary (1948), Nanda (1948a,b), and Rao (1948). 
Tintner (1946) summarized some applications of four methods of multivariate 
analysis (discriminant analysis, principal components, canonical correlation, and 
weighted regression) to economic data. Tintner (1950) established formal rela- 
tions among the four methods, all of which depend on ordered roots of deter- 
minantal equations. 

During the decade 1950-1959, numerous authors contributed to distribution 
theory and/or computational methods for ordered roots and their applications to 
multivariate analysis. Test criteria for (i) multivariate analysis of variance, (ii) 
comparison of variance-covariance matrices, and (iii) multiple independence of 
variates when the parent population is multivariate normal were usually derived 
from the likelihood ratio principle until S. N. Roy (1953) formulated the union- 
intersection principle, on which Roy and Bose (1953) based their simultaneous 
test and confidence procedure. Roy and Bargmann (1958) used an alternative 
procedure, called the step-down procedure, in deriving a test for problem (iii), and 
J. Roy (1958) applied the step-down procedure to problems (i) and (ii). During 
the decade 1960-1969, further contributions were made to the use of ordered 
roots in multivariate analysis. Krishnaiah (1964) proposed an alternative test 
called the finite intersection test and investigated distribution problems associated 
with it. He showed that the confidence intervals associated with the finite inter- 
section test are shorter than those associated with the step-down procedure. 
Further results on simultaneous test procedures were given by Srivastava (1966, 
1969) and Krishnaiah (1969b). 

Ordered roots were used in studies of serial correlation and regression analysis 
by Durbin and Watson (1950, 1951), Hannan (1955), Watson (1955), Watson and 
Hannan (1956), Theil and Nagar (1961), Henshaw (1966a,b) and Watson (1967). 
Zonal polynomials, which are homogeneous symmetric polynomials of the or- 
dered characteristic roots of a symmetric matrix, were studied extensively by 
Constantine and James (1958), James (1960, 1961a,b), Constantine (1963), James 
(1964, 1966), and Constantine (1966), who applied them to a study of canonical 
correlations and other multivariate problems. Wigner (1959), Mehta (1960), and 
Dyson (1962a-c), among others, applied the theory of ordered roots to the study 
of the spacing of energy levels in nuclear spectra. 
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Further information on the theory and applications of ordered roots is given in 
books by Kendall (1957), Roy (1957), Anderson (1958), Pillai (1960), Lawley and 
Maxwell (1963), Rao (1965), Kendall and Stuart (1966), Morrison (1967), and 
Krishnaiah (1966, 1969a), and in review papers by Harter (1979, 1986). 

19. Goodness-of-fit tests 

Numerous methods have been proposed for testing the goodness of fit of a the- 
oretical distribution to observed data. For many years the standard procedure 
was the chi-square test (not based on order statistics) introduced by Pearson 
(1900). This test involves grouping the observed data into classes with theoretical 
(expected) frequencies not too small (> 5, say) and comparing the observed fre- 
quencies with the theoretical ones. The test statistic is 22 k O = ~i=1( i - E i ) 2 / E i ,  
where k is the number of classes and Oi and Ei are the observed and expected 
frequencies, respectively, of the ith class. The null hypothesis Ho that the observed 
data came from the completely or partially specified theoretical distribution is 

2 rejected if 22 > X~,~-p-l, where c~ is the significance level and p is the number of 
parameters estimated in the specification of Fo(x)  in the null hypothesis 
H0: F ( x )  = Fo(x) .  

Starting about 1930, several tests based on the empirical cdf were proposed. 
These include the Kolmogorov-Smirnov test [Kolmogorov (1933), Smirnov 
(1939)], the Cram6r-von Mises test [Cram~r (1928), yon Mises (1931)], the An- 
derson-Darling test [Anderson and Darling (1952)], the Kuiper test [Kuiper 
(1960)], and the Watson test [Watson (1961)]. These tests tend to have somewhat 
greater power than the chi-square test, but they have a serious drawback when the 
population is not completely specified and one or more parameters must be es- 
timated from the sample data. Whereas this situation can be handled very simply 
for the chi-square test by subtracting a degree of freedom for each parameter 
estimated from the data, it is much more troublesome in the case of tests based on 
the empirical cdf. While the critical values of such tests are distribution-free when 
the theoretical population is completely specified, this is no longer true when one 
or more parameters must he estimated from the data. In that case, it is necessary 
to compute separate tables of critical values for each population type, and 
modifications may be required to maximize the power of the tests. Lilliefors 
(1967) used Monte Carlo simulation to derive a modified test for normality using 
the Kolrnorgorov-Smirnov (KS) test statistic and tabulated critical values. Lil- 
liefors (1969) derived an analogous test for exponentiality. Green and Hegazy 
(1976) derived tables for modified tests for normal and other distributions using 
CramSr-von Mises (CvM) and Anderson-Darling (AD) statistics. Woodruff and 
Moore (1988) summarized work up to that time on modified tests based on the 
empirical cdf. 

The Kolmogorov-Smirnov two-sided test statistic D~ is defined by 

D n  -[- _ = max(D.,  D~ ) 
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where the one-sided test statistics D + and D~- are given by 

O,+7 = l.bl.b.l<_i<n [ i / n  - Fi], 

D-~ = l .u .b .~<i<,[F i  - ( i -  1)/n] , 

where Fi is the theoretical (population) cdf F ( x i )  corresponding to the ith order 
statistic of  a sample of  size n : x~:n _< x2:, _< --. _< xn:n. The sample cdfis  defined as 
a step function. I f  the sample cdf at xi:n is redefined as ( i -  0.5)/n, the value 
midway through the jump from ( i - 1 ) / n  to i / n  that takes place there, the 
analogous KS test statistics are 

d + • l.u.b.~<_i<_n[(i - . 5 ) / n  - Fi] = D + - . 5 I n ,  

d 2 = l .u.b.l<i<_n[Fi - ( i  - .5)/n] = D 2 - . 5 I n  , 

and 

dn = 1.u.b. l<i<_nl(i  - . 5 ) / n  - Fil = Dn  - . 5 / n  . 

Pyke (1959) and Brunk (1962) proposed defining the sample cdf at the ith order 
statistic of  a sample of  size n as i / ( n  + 1), which is the unbiased estimate of  the 
population cdf. I f  that is done, the test statistics analogous to the D's and d's are 

+ = l . u . b . l ~ i < , [ i / ( n  + l) - Fi], C+n = Cn 

C 2  = c 2 = l .u .b . l<i<_,[Fi  - i / ( n  + 1)] , 

and 

Cn : cn : max(C +, C2) : l . u .b . l<_ i<~l i / (n  + 1) - E] . 

Other possible definitions include (i  - 6 ) / ( n  + 1 - 26), 0 < g < 0.5, as suggested 
by Blom (1958). Miller (1956) tabulated critical values for the D's (corresponding 
to g = 0.5) and Durbin (1969) tabulated critical values for the C's (corresponding 
to g = 0). Harter,  Khamis and Lamb (1984) tabulated more critical values of  the 
C's and made a Monte Carlo study of  the power of  the tests based on the C's and 
D's for several hypothetical distributions. In a number of  cases they found that 
tests based on the C's are more powerful than those based on the D's, especially 
when the standard deviation is greater under the alternative than under the null 
hypothesis. Khamis  (1992, 1993) has summarized results on g-corrected KS tests, 
including results for the case when one or more parameters are estimated. Little 
work has been done on the g-correction for tests other than the KS test, but there 
is reason to believe that similar results hold for the Kuiper test (for which the two- 
sided test statistic is the sum, rather than the maximum, of the two one-sided test 
statistics) and perhaps others. 

Other methods of testing goodness-of-fit include graphical techniques based on 
plotting on probability paper [see Wilk and Gnanadesikan (1968)], tests related to 
outlier tests [see Tiku (1975) and Barnett and Lewis (1978)], and tests based on 
spacings (differences between successive order statistics) [see Pyke (1965)]. Sha- 
piro and Wilk (1965) introduced an analysis of  variance test for normality for 
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complete samples, and made remarks on extensions to incomplete samples and 
other distributional assumptions. Jackson (1967) proposed a comparable test for 
exponentiality. Shapiro, Wilk and Chen (1968) made a comparative study of 
various tests for normality. Mardia (1980) summarized results on tests of uni- 
variate and multivariate normality. 

Comprehensive studies of goodness-of-fit tests are given in a volume by Sha- 
piro (1980) and in a book edited by D'Agostino and Stephens (1986). The articles 
by Shapiro (1998) and Lockhart and Stephens (1998) in the companion volume 
provide more details on this area of research. 

20. Characterizations 

Following the fundamental papers of Hoeffding (1953), Fisz (1958), Rossberg 
(1960, 1972), Govindarajulu (1966), Ferguson (1967) and Desu (1971), numerous 
papers appeared discussing characterizations of several discrete and continuous 
distributions by making use of different properties of order statistics. Some of 
these characterizations are based on simple distributional properties which, 
therefore, become quite useful in the development of goodness-of-fit tests; see, for 
example, Cs6rg6, Seshadri and Yalovsky (1975). Kagan, Linnik and Rao (1973), 
Patil, Kotz and Ord (1975), Mathai and Pederzoli (1977), Galambos and Kotz 
(1978), Kakosyan, Klebanov and Melamed (1984), Ramachandran and Lau 
(1991), and Rao and Shanbhag (1994) all provide very elaborate and excellent 
discussions on various characterization results in addition to motivations and 
applications of these characterization results. While Galambos and Kotz (1978) 
deal with numerous characterization results based on properties of order statistics 
from exponential and some related distributions, the books by Kagan, Linnik and 
Rao (1973) and Mathai and Pederzoli (1977) mainly deal with characterizations 
of normal and stable distributions. The recent volume by Rao and Shanbhag 
(1994) illustrates nicely the role of Choquet-Deny type functional equations in 
characterization problems and has one of its chapters devoted to characteriza- 
tions via properties of order statistics and record values. 

Papers by Rao and Shanbhag (1998), Kamps (1998), Gather, Kamps and 
Schweitzer (1998) and Nevzorov and Balakrishnan (1998), in this volume, will all 
provide further details on this topic of research. 

21. Moving order statistics and applications 

Following the basic work of David (1955) on moving minima and moving 
maxima, distributions of moving order statistics were further discussed by Sid- 
diqui (1970), Inagaki (1980), and David and Rogers (1983). Usage of the moving 
medians as current estimates of the location and as "robust" alternatives to the 
moving averages was discussed by Tukey (1970) in his classical book on Empirical 
Data Analysis. These median filters have been discussed further by Kuhlmann and 



46 H. L. Harter and N. Balakrishnan 

Wise (1981), Gallagher and Wise (1981), and Arce, Gallagher and Nodes (1986). 
Filters based on general moving order statistics and also on linear functions of 
them have been proposed and discussed by Bovik and Restrepo (1987), Palmieri 
and Boncelet (1988), and David (1992a). 

Papers by Arce, Kim and Barner (1998), Barner and Arce (1998), Acton and 
Bovik (1998), Viswanathan (1998), in the companion volume, will all provide 
further details on developments in this area of research. 

22. Order statistics under non-standard conditions 

Some known results for order statistics in the i.i.d, case were extended, by Young 
(1967) and David and Joshi (1968), to the case when order statistics arise from 
exchangeable variables. In this case, Bhattacharyya (1970) and Dykstra, Hewett 
and Thompson (1973) also derived some inequalities for distributions of order 
statistics, while Maurer and Margolin (1976) presented an expression for the joint 
distribution of order statistics. 

The case when order statistics arise from independent and non-identically 
distributed variables has been studied at great length. Sen (1970) established 
inequalities between the distributions of order statistics arising from 
~, i =  1, .,n, and those arising from T i n . .  = ; y ' ~ 4 = i F i .  Pledger and Proschan 
(1971) and Proschan and Sethuraman (1976) have provided extensions as well as 
some applications to reliability problems. Distributions of order statistics in this 
case were expressed by Vaughan and Venables (1972) in terms of permanents. 
These expressions were in turn used, along with some known properties of per- 
manents, by Balakrishnan (1988, 1989), Bapat and Beg (1989), and Balakrishnan, 
Bendre and Malik (1992) to establish some relations for the moments of order 
statistics. David (1993) presented a simple probabilistic proof for some of these 
results. The permanent expression was also used by Bapat and Beg (1989) to 
prove the log-concavity of distributions of order statistics, a result for which 
simpler proofs as well as some extensions were given subsequently by Sathe and 
Bendre (1991) and Balasubramanian and Balakrishnan (1993a). Balakrishnan 
(1994) also discussed, in great detail, the order statistics arising from independent 
and non-identical exponential random variables, and illustrated their usefulness 
in the 'optimal' or 'robust' estimation of the exponential mean when possibly 
multiple outliers are present in the sample. 

By relaxing even the assumption of independence, Sathe and Dixit (1990) 
presented a probabilistic argument to extend some of the recurrence relations to 
the case of order statistics arising from n arbitrarily distributed variables. 
Balasubramanian and Balakrishnan (1992) provided a simpler method of proof 
(using indicators) for this result. A duality principle satisfied by order statistics in 
this general case was established by Balasubramanian and Balakrishnan (1993b). 
The equivalence of linear relationships for order statistics from i.i.d, and i.ni.d. 
cases, exchangeable and arbitrary cases, and i.i.d, and exchangeable cases 
were established by Balasubramanian and Bapat (1991), Balasubramanian and 
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Balakrishnan (1994) and David (1995), respectively. The last two simply imply 
that every linear relationship for order statistics known in the i.i.d, case also holds 
for the arbitrary case (with appropriate changes). 

23. Multivariate order statistics and concomitants 

Barnett (1976) presented a survey of various attempts that were made to intro- 
duce multivariate order statistics. Bivariate and multivariate extremes, in par- 
ticular, received considerable attention; for example, see Tiago de Oliveira (1975) 
and Galambos (1978, 1987). 

Concomitants of order statistics, which arise when multivariate data are or- 
dered by one of the components, were first introduced by David (1973); see also 
Bhattacharya (1974), who has discussed them under the name "induced order 
statistics". The asymptotic and small-sample theory of concomitants of order 
statistics has been discussed by David and Galambos (1974), Galambos (1978, 
1987), and a number of authors since then. Extensive reviews of the developments 
on concomitants of order statistics have been prepared by Bhattacharya (1984) 
and David (1992b). The paper by David and Nagaraja (1998), in this volume, 
provides an updated review on this topic of research. 

For the order statistics arising from a multivariate normal distribution, Siegel 
(1993) recently proved an interesting relationship among covariances [extending a 
result known in the i.i.d, case due to Govindarajulu (1966)]; see also Anderson 
(1993). This result (dealing with the minimum of multivariate normal variables) 
has been extended to the r th order statistic by Rinott and Samuel-Cahn (1994) and 
Wang, Sarkar and Bai (1996). Olkin and Viana (1998) have extended Siegel's 
result to the case of order statistics from elliptically contoured distributions. 

24. Records 

The first paper on this topic was written by Chandler (1952), who formulated the 
mathematical theory for the study of records. The asymptotic theory of records 
was developed in detail by Resnick (1973) and Shorrock (1973). Since then, nu- 
merous papers have appeared discussing diverse issues such as characterizations, 
bounds and approximations, relations, prediction and inference, and generalized 
concepts of records such a s  k th record, records from improving populations, 
records from non-identical variables, and records from Markov and point pro- 
cesses. Review articles by Glick (1978), Nevzorov (1987), and Nagaraja (1988) 
have all discussed various developments on records. Further treatment has been 
given in the books by Galambos (1978, 1987), Resnick (1987), Ahsanullah (1988), 
Arnold and Balakrishnan (1989), and Arnold, Balakrishnan and Nagaraja (1992). 

The paper by Nevzorov and Balakrishnan (1998), in this volume, provides an 
updated review of this topic of research. 
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Computer Simulation of Order Statistics 

Pandu R. Tadikamalla and N. Balakrishnan 

1. Introduction 

Recall from the earlier chapters that if X1, X2,.. .  ,X, denote a random sample 
from a distribution with distribution function F(x)  and XI:, < X2:, _< -.. _< X,:, 
are the corresponding ordered observations, then XI:,, X2:,,... ,Xn:n are called the 
order statistics corresponding to X1, X2,...,X~. Since order statistics play an 
important role in statistical inference, there has been considerable interest in 
computer generation of order statistics for Monte Carlo simulation studies. 

A straightforward method for generating these order statistics is to generate a 
random sample of size n from the corresponding distribution and then sort the 
sample to obtain the desired order statistics. For medium and large values of n, 
this sorting procedure can be very time-consuming. Hence, a direct method for 
generating order statistics is of great value. 

2. Direct generation of order statistics 

Suppose we are interested in generating order statistics from a continuous dis- 
tribution with distribution function F(.). If the inverse transformation method is 
used to generate the random sample [see Tadikamalla and Johnson (1981)], there 
is a direct correspondence between the order statistics of (X1, X2, . . .  ,X,) and the 
order statistics of the associated uniform sample (U1, U2, . . . ,  Un). Since F -I is a 
monotonic function, Y/= F -1 (U~:n), i = 1 ,2 , . . .  ,n, represent the order statistics 
from the distribution with distribution function F(.), where Ul:n <_ 
U2:n _< . . .  <_ Un:n are the order statistics from the uniform(0, 1) distribution. Thus, 
if the inverse transformation method is used to sample from the distribution F(.), 
the problem of generating order statistics reduces to the problem of generation of 
order statistics from the uniform(0, 1) distribution. 

3. Generation of uniform(0, 1) ordered samples 

Balakrishnan and Cohen (1991), David (1981), and Arnold, Balakrishnan and 
Nagaraja (1992) all discuss the marginal and joint probability densities of order 
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statistics from a continuous distribution with probability density function f ( x )  
and distribution function F(x). These results take a simple form in the case of the 
uniform(0, 1) distribution, yielding some simple methods for sequential genera- 
tion of order statistics. The i th order statistic from uniform(0, 1) has a beta density 
given by 

n! ui - l ( l  _ . ) n - i  O<S U <  1 (3.1) 
f ( u )  = ( i -  1)!(n - i)! ' " 

The joint density of the i th and jth order statistics (i < j)  from uniform(0, 1) is 
given by 

n! i l  
= u j : . )  , f(ui:n,uj:n) ( i -  1 ) ! ( j -  i -  1 ) ! ( n - j ) !  ui:n (uj:n -ui:n)J-i-l(1 - ~ j 

0 ~ bli: n < blj: n ~ 1 . (3.2) 

From (3.1), it can be seen that the distribution of the largest order statistic 
(Un:n) from a sample of size n reduces to 

fn:n(u) = nu n-1 , 0 < u < 1 . (3.3) 

Similarly, the distribution of smallest order statistic (Ul:n) from a simple of size n 
is given by 

fl:n(u) = n(1 - u) n-l, 0 < u < l . (3.4) 

Based on the above results and some other results pertaining to uniform and 
exponential spacings [Devroye (1986)], the methods for generating uniform(0, 1) 
order statistics can be summarized as follows. 

3.1. Sorting 

A naive approach is to generate i.i.d, uniform(0, 1) random variates and sort 
them. Devroye (1986) discusses several efficient sorting algorithms. Unsophis- 
ticated approach to sorting based on pairwise comparisons of the numbers 
would be very time consuming. The worst case and expected times taken by 
these algorithms are O(nlogn) [see Knuth (1973)]. In the case of uniform(0, 1) 
variates, one can take advantage of truncation and bucket sort the ui's in 
expected time O(n). For example, see Devroye and Klincsek (1981) and 
Devroye (1986). 

3.2. Ascending order 

Lurie and Hartley (1972) gave a direct method for generating a complete set of n 
uniform order statistics in ascending order, as follows: Let Vl, v2, v3, . . ,  be ob- 
servations from the uniform(0, 1) distribution. Set 
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b t l :  n ~ 1 - -  I)I/n 

u2:~ 1 - (1 " , 1/(,-1) ~_ - -  Ul:n)1)2 

Ui+l:n 1 (1 , 1/(,<) - -  _ bli:n)I)i+ 1 

Then ul:,, u2: , , . . . ,  un:, are order statistics from the uniform(0, 1) distribution• 

6 7  

3.3. Descending order 

Schucany (1972) used a similar approach to generate the order statistics in de- 
scending order, without sort, as follows: 

lln: n ~ vl l /n 

l / ( n - i )  
bin_i: n ~- bln_i+l:nVi+ 1 

Reeder (1972) suggested that generating order statistics in descending order is 
faster than that in ascending order, and Lurie and Mason (1973) confirmed this 
claim. 

3.4. Based on uniform spacing 

If  El, E2 , . . .  ,En+l are i.i.d, exponential variates and G is their sum, then 

Ul:, = E1/G 

u2:, = ul:n + E2/G) 

u j:. = u~ 1:. + ( E # G )  

~,.:. = u ~ _ l : .  + (E~/G) 

are n order statistics from uniform(0, 1) distribution• Tadikamalla and Bala- 
krishnan (1995) discuss several methods for generating exponential variates; also 
see Marsaglia, MacLaren and Bray (1964). 
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3.5.  S u b s e t s  o f  order  s t a t i s t i c s  

Suppose that one is interested in generating a subset of k consecutive uni- 
form(0, 1) order statistics from a sample of size n. If  the required k order statistics 
are at the upper extreme of the sample, they can be generated using Schucany's 
(1972) descending method. If the required subset is at the lower extreme, they can 
be generated using Lurie and Hartley's (1972) ascending method. 

Neither of these methods is convenient if the required subset falls near the 
middle of the sample. For  example, if we are interested in generating the middle 
two order statistics from a sample of size n = 50, then both of the previously 
described methods require the generation of twenty six order statistics. A more 
efficient approach may be to generate the l a rges t  r e q u i r e d  order  s t a t i s t i c  (26 th in 
our example) directly; then generate the remaining set conditionally using the 
descending method. Ramberg and Tadikamalla (1978) suggest generating ui,, as a 
beta variate (with parameters i and n -  i +  1) and generating Ui_l:n, bli_2:n,. . .  

using the above recursion algorithm suggested by Schucany (1972). If fast algo- 
rithms for generating beta variates are used [Schmeiser and Babu (1980) and 
Johnson, Kotz and Balakrishnan (1995)], this procedure may be worth the effort. 
This approach will probably be faster in generating a subset of  order statistics 
when the required subset is somewhere in the middle of the sample. 

Horn and Schlipf (1986) similarly discussed the simulation of the central 
n - 2i + 2 order statistics from a sample of size n from the uniform(0, 1) distri- 
bution. Their approach is first to generate u,-i+l:n directly as a Beta(n - i + 1, i) 
variate, next to generate ui:n as Hn_i+l:n I) where v is a Beta(i, n - 2i + 1) variate, 
and finally to generate ui+i:n,..., u~-i:n as order statistics from a sample of size 
n - 2i from the uniform(ui:~, un i+1:~) distribution. 

Instead, if one is interested in simulating the i largest and smallest order sta- 
tistics from a sample of size n from the uniform(0, 1) distribution, Horn and 
Schlipf (1986) proposed an algorithm by combining the ascending and des- 
cending algorithms. Specifically, their method is first to generate u,_i+l:n directly 
as a B e t a ( n - i +  1,i) variate, next to generate ui:n as Un_i÷l:n l) where v is a 
B e t a ( i , n -  2 i +  1) variate, and finally to generate (ul:~,.. . ,ui_l:,) and 
(u,-i+2:,,...,u~:~) as order statistics from samples of size i -  1 each from uni- 
form(0, ui:~) and uniform(u~_i+l:,, 1) distributions, respectively. 

4. Generation of progressive Type-II censored order statistics 

Let us first define a progressive Type-II censored sample. Under this censoring 
scheme, n identical items are placed on a life test; immediately after the first 
failure, R1 surviving items are removed at random from the test; after the next 
failure, R2 surviving items are removed at random from the test, and so on; 
finally, immediately after the m th failure, Rm remaining surviving items are re- 
moved from the test. Under this censoring scheme, we will observe in all m 
failures and R1 + R2 + • • • + Rm = n - m progressively censored items. 
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In the case of the uniform(0, 1) distribution, let us denote these progressive 
Type-II censored order statistics by Ul:m:n, UZ:m:n,..., Um . . . . .  

Then, with 

1 - -  Um_i+l:m: n 
v i -  for i =  1 , 2 , . . . , m -  1 and vm = 1 - u a  . . . . . .  

1 - Um-i:m:n 

and 
i+R -}-Rm I+'"-}-Rm-i+l w i = v  i " for i = l , 2 , . . . , m  , 

Balakrishnan and Sandhu (1995) have established that wi (i = 1 ,2 , . . . ,  m) are all 
independent and identically distributed as uniform(0, 1). Incidentally, this result 
generalizes a distributional property of uniform order statistics established by 
Malmquist (1950) and stated earlier in this article. Using this result, Balakrishnan 
and Sandhu (1995) proposed the following algorithm for generating a progressive 
Type-II censored sample: 

1. Generate m independent uniform(0, 1) variates denoted by wl,  w 2 , . . . ,  Wm. 

2. Set vi = W]/(i+Rm÷Rm 14' "" ]-Rm-i+[) for i = 1 ,2 , . . .  ,m. 

3. Set Ui:m:~ = 1 -  VmVm--I "' 'Vm i+~ for i = 1 ,2 , . . . ,m .  

Then, Ul ..... u2 ..... . . . ,  Um .... is the required progressive Type-II censored sample 
from the uniform(0, 1) distribution. Of course, upon setting Xi:m:, = F l(Ui:m:,) for 
i = 1 ,2 , . . . ,  m, we can produce the required progressive Type-II censored sample 
from the distribution F(.). 

Aggarwala and Balakrishnan (1998) have also proposed a similar algorithm 
for generating a general progressive Type-II censored sample with left censoring 
present. 

5. Miscellaneous topics 

5.1. Part i t ioning me thod  f o r  the m a x i m u m  o f  n i.i.d, random variables 

Schmeiser (1978) developed a technique for generating the maximum of n random 
variables X1, X 2 , . . . , X n .  The technique is based on partitioning the (0,1) interval 
and the range of X so that some times not all X~ need to be generated. He presents 
optimal single, optimal double and infinite partition plans. The technique is ap- 
plicable for both i.i.d, and non-i.i.d, cases and yields greater savings for non- 
identically distributed random variables. 

5.2. Generating the largest order statistic 

In generating X,: ,  = F -1 (u,:n), Devroye (1980) considers the case of u,:~ when n is 
very large and u,.n = VIi/~ may cause numerical problems. The problem is that for 
a large n, Vll/n is close to 1, so that in regular wordsize arithmetic, there may be an 
accuracy problem. This problem can be alleviated if we use G(x) = 1 - F(x )  and 
the algorithm will be as follows: 
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1. Generate an exponential variate E and a gamma variate G, (with shape pa- 
rameter n) [see Tadikamalla and Johnson (1981)]. 

2. Then set X.:n = G -1 (E/(E + G.)). 

Nagaraja (1979) has given an interesting probability result concerning this gen- 
eration problem. 

5.3. Methods for exponential order statistics 

Newby (1979) presents the following algorithm based on the exponential spacings 
(Sukhatme, 1937). If Ei,E2,. . .  ,E, are n i.i.d, exponential variates, then 

El:n = E1/n 

E2:~ =E~:~ + E 2 / ( n  - 1) 

Ei:n = Ei- l :n  4- E i / ( n  - i 4- 1) 

En:n = E.-l:n + E. 

5.4. Generating order statistics from arbitrary distributions 

Rabonowitz and Berenson (1974) and Gerontidis and Smith (1982) studied the 
so-called grouping method which is a hybrid version of the inversion method and 
the bucket sorting method. 

The grouping method can be briefly described as follows. Given an integer k 
(a suggested value is n/4), divide the range of the distribution into k equal 
probability intervals. Next, generate a multinomial vector (ml, m z , . . . ~ m k )  

corresponding to the division of n objects independently among k equally 
likely cells [see Fishman (1978), Ho, Gentle, and Kennedy (1979) and Johnson, 
Kotz and Balakrishnan (1997)]. Then, draw mj variables (from the specified 
general distribution) from the jth interval for 1 _< j < k, and sort each group of 
mj variables directly and put the k groups together to obtain a complete 
ordered sample. Gerontidis and Smith (1982) recommend the inversion method 
if F ~ exists in a simple closed form as is in the case of the exponential 
distribution. 
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L o r e n z  O r d e r i n g  o f  O r d e r  S t a t i s t i c s  a n d  
R e c o r d  V a l u e s  

Barry  C. Arnold  and Jose A.  Villasenor 

1. Introduction 

The Lorenz order is a natural tool for the comparison of variabilities of non- 
negative random variables. In certain contexts (e.g. reliability) variability com- 
parison of order statistics is of concern. Available results in this area are surveyed. 
Parallel results are described for record values. The record value results are of 
mathematical interest but, for the moment, do not seem to enjoy ready applicability. 

2. The Lorenz order 

We begin with a brief review of key ideas relating to the Lorenz order (a con- 
venient reference for further details is Arnold (1987)). 

Let LP denote the class of all non-negative random variables with finite positive 
expectations. For a random variable X in 50 with distribution function Fx, we 
define its inverse distribution function or quantile function Fx 1 by 

Fx 1 (y) = sup{x: Fx(x) < y} . (2.1) 

The Lorenz curve Lx associated with the random variable X is then defined by 

J0 u //0' Lx(u) = Fx 1 (y) dy Fx 1 (y) dy, u C [0, 1] (2.2) 
/ 

(cf Gastwirth (1971)). The Lorenz partial order <L on 5g is defined by 

x _<L r ~, Lx(u) _> L~(u) V ~ ~ [0, 13 . (2.3) 

I f X  <_L Y we say that X exhibits no more inequality than Y (in the Lorenz sense). 
The following two characterizations of Lorenz ordering date back to Hardy, 

Littlewood and Polya (1929). 

THEOREM 2.1. Suppose X >_ 0, Y >_ 0 and E(X) = E(Y). We have X <_c Y if and 
only if E(h(X)) < E(h(Y)) for every continuous convex function h: R + ~ R. 

75 
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THEOREM 2.2. Suppose X > 0, Y > 0 and E(X)  = E(Y) .  We have X _<r Y if and 
only if E[(X - c) +] < [E(Y - c) +] for every c E R +. 

A trivial but useful observation is that X _<L Y implies and is implied by 
cX  <_c dY  for any c, d E (0, oc). Rather than compare two random variables X 
and Y with possibly different expectations, it is sometimes convenient to compare 
E ( Y ) X  and E ( X ) Y  which necessarily have equal expectations. 

Another interpretation of Lorenz ordered random variables is that one of them 
is essentially an averaging of the other. This is made precise in the following 
theorem. 

THEOREM 2.3. (Strassen (1965)). Suppose X, Y C 5 °. X _<L Y if and only if 
there exist random variables y1, Z' defined on some probability space such that 
y d yr and X d= cE(Y,  IZ, ) for some c > 0. (Here and henceforth d denotes "has 
the same distribution as"). 

Explicit computation of Lorenz curves is frequently difficult. Consequently, 
Lorenz ordering is often not identified by direct use of its definition (equation 
(2.3)). Moreover Theorems 2.1 and 2.2 involve evaluation of expectations of a 
large class of functions and thus do not provide convenient tools for identifying 
situations in which Lorenz ordering obtains. Theorem 2.3 occasionally is just the 
right tool but in general the representation alluded to in the theorem, although it 
is guaranteed to exist, is rarely explicitly available. What is needed and what is 
available is a list of relatively simple to check sufficient conditions for Lorenz 
ordering. The following list is adequate for our present purposes. 

DEFINITION 2.1. We say that X is star-shaped with respect to Y, and write X _<, Y 
if F x  1 (u) /Fr -1 (u) is a non-increasing function of u. 

We can use ,-ordering to verify that Lorenz ordering obtains as a consequence 
of the following theorem. 

THEOREM 2.4. Suppose X, Y C Y, I f X  <,  Y, then X _<L Y. 

DEFINITION 2.2. We will say that X is sign-change ordered with respect to Y and 
write X _<s.c. Y, if [Fxl(v) /E(X)]  - [Ff-I(v)/E(Y)] has at most one sign change 
(from + to - )  as v ranges from 0 to 1. 

Sign change ordering is implied by but does not imply star ordering. It does 
however imply Lorenz ordering, i.e., 

TttEOREM 2.5. Suppose X, Y C L~ °. I f X  -<s.c. Y then X _<L Y. 

If densities exist, a simple sufficient condition can be stated for sign change 
ordering. 
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THEOREM 2.6. Suppose that X and Y are absolutely continuous members of 
with E(X) = E(Y) and densities f x  and f t .  A sufficient condition for X _<~.c. Y and 
thus for X _<L Y is that fx(x) - f y ( x )  changes sign twice on (0, ~ )  and the se- 
quence of signs of f x  - fY is - ,  +, - .  

Finally we list a theorem identifying a class of random transformations which 
increase variability in the Lorenz sense. 

THEOREM 2.7. Suppose that 9:R+2 ---+ R+ is such that 9(z,x)/x T as x T for every 
z. Suppose that X and Z are independent random variables with X E 5 a and 
Y = g(Z,X) E 2', then X _<L Y. 

3. O r d e r  s ta t i s t i c s  and  record  v a l u e s  

We focus on the absolutely continuous case corresponding to independent 
identically distributed observations XI,X2,. • • with common distribution function 
Fx and density fx .  The corresponding (i, n)  th o r d e r  statistic will have density 

n! 
f~:n(x) = ( i -  1 ) ! ( n -  i)! {Fx(x)}i-l{1 -Fx(x)}n- i fx(x)  " (3.1) 

Order statistics from a uniform(0, 1) distribution play a special role in the dis- 
cussion and will be denoted by Ui:n,i = 1 ,2 , . . .  ,n, n = 1,2, . . . .  For such order 
statistics (3.1) simplifies and one recognizes that uniform order statistics have beta 
distributions. Thus 

U i : ,  ~ Beta ( i ,  n - i + 1) . (3 .2)  

If the X/'s have common distribution function Fx(x) then a convenient repre- 
sentation of X/:n is available using the inverse distribution function (2.1). Thus 

X,.:, d= Fxl(ui:, ) (3.3) 

where Ui:, is the corresponding order statistic from a uniform(0, 1) sample. 
In the case of record values there are two useful representations available, one 

involving uniform samples and one exponential samples. Consider a sequence 
XI,X2,. . .  of  independent identically distributed random variables with common 
distribution function Fx and density fx .  Denote the n th upper record from this 
sequence by X (n) and the n th lower record by X(,). By convention the zero th upper 
and lower record is XI, i.e., X (°) = X(0) = )(1. We reserve the notation U(") and 
U(,) to denote record values (upper and lower) corresponding to uniform(0, 1) 
sequences and the notation X*("),X~,) to denote record values corresponding to a 
standard exponential sequence (i.e., X,~ ~ F(1, 1), i = 1,2, . . . ) .  It is not difficult 
to verify the following representations of upper and lower uniform records. For  
each n, 

U(, ) a= 1 - I I  Uj (3.4) 
j=0 
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and 

u(,) L I I  uj . (3.5) 
j=0 

The lack of memory property of the exponential distribution yields a simple 
representation of upper records from a standard exponential sequence. One finds, 
for each n, 

n 

X,( ,  ) d= ~ X j *  (3.6) 
j=0 

so that 

X *(~) ~ F(n + 1, 1) . (3.7) 

The general lower record sequence (corresponding to i.i.d. X's with common 
distribution function Fx) admits a representation involving a transformation of 
corresponding uniform lower records, thus 

X(,) L Fx 1 (U(,)) • (3.8) 

The general upper record sequence can be related to either uniform or exponential 
upper records. Thus one may write 

and 

where 

X(.) a= Fxl(U(. ) )  (3.9) 

X( ,  ) d= t)x(X,(,)) (3.10) 

I//x(U ) = F x I ( 1  - e "), u _> 0 . (3.11) 

4. Lorenz ordering of order statistics 

Representation (3.3) of the i,th order statistic X/:, suggests a special role for uni- 
form order statistics. It is then appropriate to first consider the Lorenz ordering 
relations which hold among various uniform order statistics. By examination of 
the densities of normalized uniform order statistics (i.e., of random variables of 
the form Vi.,. ---- ~-n+l g.-z:n, having mean 1) it is possible to confirm (via Theorem 2.6) 
that sign change ordering occurs between certain pairs of uniform order statistics 
and consequently, by Theorem 2.5, Lorenz ordering occurs also. In this fashion 
we may verify 

Ui+l:n ~-L gi:n, V i ,n (4.1) 

gi:n ~L Ui:n+l, V i, n (4.2) 
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gn-j+l:n+l ~ t  gn~j:n, V j ,  n (4.3) 

and 

U,+2:2,+3 <_L U,+1:2,+1, V n . (4.4) 

Alternative arguments based on Strassen's theorem (Theorem 2.3) are POssible for 
(4.1), (4.2) and (4.3) (Arnold and Villasefior (1991)). Since Lorenz ordering refers 
to the relative variability of scaled random variables, some of the relations 
(4.1)-(4.4) will not be intuitive. The last relation (4.4), which may be described as 
"sample medians exhibit less inequality as sample size increases", perhaps is the 
most intuitively plausible. 

It may be observed that in all cases in (4.1)-(4.4) it is the order statistic with the 
smaller mean which exhibits the most inequality as measured by the Lorenz order. 
Unfortunately, the condition i / (n  + 1) _> j / ( m  + 1) is not sufficient to ensure that 
Ui:n <_L Uj:m. It would be too much to hope that relations (4.1)-(4.4) would hold 
for order statistics from any parent distribution. In some cases they will not hold; 
in other cases they will be reversed(!). It is of interest identify non-uniform parent 
distributions for which relations (4.1)-(4.4) or their reversal will hold. Much 
remains to be done in this area but some results are available. For example 
power-function and Pareto order statistics behave well. To this end observe that 
the representation X = cU  6, 0 < ~ < 1 yields a random variable with a power 
function distribution while X = cU  6 with -1  < 6 < 0 yields a Pareto random 
variable (we have 6 > -1  here in order to have E ( X )  < ec). Density crossing 
arguments may be used to prove: 

THEOREM 4.1. If X has a power function distribution [i.e., F x ( x ) =  (x /c)  7, 
0 < x < c ,  7>0]then 

Xi+kn --<L ~:n, V i, n (4.5) 

X/:n _<L Xi:~+l, V i, n (4.6) 

and 

gn j+l:n+l ~Z gn-j:n, V j ,  n . (4.7) 

If X has a Pareto distribution [i.e. F(x )  = 1 - (x /c)  =, x > 0, c~ > 1, then the 
Lorenz orderings in (4.5), (4.6) and (4.7) are reversed. 

Density crossing arguments may be used to prove that (4.4) holds for a quite 
general class of distributions. 

THEOREM 4.2. Suppose that X has a symmetric density supported on the interval 
[0, c] for some c > 0, then 

Xn+2:2n+3 ~L Xn+l:2n+l, V n . 

There is one distribution for which it is possible to identify all pairs (i, n) and 
(/', m) for which Xj:m <--L Xi:n. It is the exponential distribution. The proof  relies on 
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the fact that it is possible to represent exponential order statistics as linear 
combinations of  independent exponential variables. One finds 

THEOREM 4.3. (Arnold and Nagaraja (1991)). I f X  has an exponential distribution 
(i.e., Fx(x) = 1 - e Z~,x > 0, 2 > 0), then for i < j the following are equivalent 

(i) Xj: m ~__L Xi:n 
(ii) (n - i +  1)E(Xi:.) < (m - j +  1)E(Xj:m). 

Thus for observations from an exponential distribution (4.3) and (4.4) hold, (4.2) 
is reversed while (4.1) holds for i < (1 - e-1)n. 

Theorem 2.7 may be used to derive sufficient conditions for (4.2) to hold. We 
have 

THEOREM 4.4. Suppose F, the common distribution of the X's satisfies 

F '(uF(x))/xT a s x T  V u C ( 0 , 1 )  . (4.8) 

It follows that 

(i) Xi+l:n <L X,.:n and 
(ii) Xi:n _<L X/:.+I. 

PROOF. Observe that 

~:n d F_l(ui: iF(Yi+l:n))  

where the two random variables on the right are independent, then apply 
Theorem 2.7. This proves (i). To prove (ii), use Strassen's theorem and the fact 
that X,.:,+1 ~ F I(U~+I:,+IF(X,.:,)), where the two random variables on the right 
are independent. 

REMARK. If F is differentiable it is not difficult to verify that a necessary and 
sufficient condition for (4.8) to hold is that 

xFr(x)/F(x) T as x T (4.9) 

Condition (4.8) holds for distribution functions which increase relatively 
quickly on their support. For  example it is satisfied by the distribution function 

F(x)=e x - l ,  0 < x < l o g 2  . 

Finally we remark that Lorenz ordering is often inherited by order statistics 
from their parent distributions. Thus 

THEOREM 4.5. (Shaked and Shanthikumar 1994, p. 108). IfX,X1,... ,X, are i.i.d. 
and Y, I:1,1:2,..., Yn are i.i.d, and i f X  _<. Y then for every i,n 

X/:n ~L ~/:n • 
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Note that the hypothesis of Theorem 4.5 is stronger than the assumption X _<L Y. 
Star-ordering is however inherited by order-statistics and then the conclusion of 
Theorem 4.5 follows as a consequence of Theorem 2.4. The theorem does not 
guarantee that Lorenz ordering is inherited (unless R occurs in the stronger form 
of star ordering). The Shaked and Shanthikumar approach (cf Theorem 5.5, 
below) can also be used to argue that if for some (j, m) we have Xj: m ~ ,  Yj:m then 
for every (i, n) we have X/:, _<L Y/:,. 

5. Lorenz ordering of record values 

First we consider two particularly well behaved record value sequences: upper 
exponential records and lower uniform records (for definitions refer again to 
Section 3). Note that for upper exponential records we have 

X *(n) ~ F(n + 1, 1) 

and via a density crossing argument we find 

Y *(n) <L x *(n-l) (5.1) 

Turning to lower uniform records we have available the representation 

g(n) = gi 
i=0 (5.2) 

d 
= U(n_I)U n 

where the random variables appearing on the right hand side are independent. It 
is then a straightforward consequence of Strassen's theorem (Theorem 2.3) that 

@~ ~)_<L u(~) (5.3) 

To identify other parent distributions for which lower or upper records are 
Lorenz ordered, it is natural to turn to representations (3.8), (3.9) and (3.10). We 
are led to seek conditions on Fx to ensure that 

(5.4) 

which will guarantee that lower X records are Lorenz ordered (with inequality 
increasing as n increases). In parallel fashion we may seek conditions on Fx to 
ensure that either 

(5.5) 

or, equivalently, 
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i=0 / \ i=1 / 
(5.6) 

Conditions (5.5) and (5.6) would guarantee that upper X records are Lorenz 
ordered (with inequality decreasing as n increases). 

First we consider possible extensions of  (5.2) (Lorenz ordering of lower uni- 
form records). Recall that (5.2) was an obvious consequence of  Strassen's theo- 
rem. It is reasonable to ask whether there exist forms for Fx I which will allow us 
to conclude Lorenz ordering of records via Strassen's theorem. Two simple ex- 
amples are readily found; but only two. 

THEOREM 5.1. (i) IfFx(x) =x~ ,0  < x  < 1 for some 7 > 0 then 

<_L x ( , )  

(ii) If-Fx(x) = x-~,x > l, for some 3 > 1 (to ensure that E(X) exists), then 

x(n -1 )  ~L x(n)  

PROOF. (i) Here X d= U1/y and clearly 

x ( , )  = = x(n_ lu2/  
i=0 

where the random variables on the right are independent. From Strassen's the- 
orem we have X(, 1) _<L X(,). 

(ii) Here X d= 1/uU~ and 

X (~) = 1/(U(,)) 1/~ 

= ~I  U~I/~ =X('-JlU, 1/~ 
i=0 

and so by Theorem 2.3, again, X (~-j) <_t X(').  

Thus we have Lorenz ordering for lower records from a power function dis- 
tribution and for upper records from a Pareto distribution. 

Next consider possible extension of (5.1), which dealt with Lorenz ordering of 
exponential records. It will be recalled that (5.1) was justified by a density crossing 
argument (though it could have been justified as a consequence of the fact that 
sample means are Lorenz ordered, see e.g. Theorem 4 of Arnold and Villasenor 
(1986)). It is reasonable to seek sufficient conditions on Ox to guarantee that (5.6) 
holds via a density crossing argument (i.e., via Theorem 2.6). 

To this end it is convenient to present the form of the density of X(')/E(X(')) 
when X(n) is as defined in (3.10). (Note we must divide by E(X(')), to use the 



Lorenz ordering of order statistics and record values 83 

density crossing (or sign-change) ordering which assumes equal  means,  to con- 
clude Lorenz  ordering.) To  simplify expressions we introduce the no ta t ion  

t ~(") = E(X  (")) (5.7) 

and observe that  #(") <_/~(~+l), obviously.  Since X*(") ~ F(n + 1, 1) it follows that  
X(")/t  ~(~) has density of  the fo rm 

L ( x )  = [h(#(')x)]% hO'(")~)h'(t~(")x)[t~(")/n!], 0 < x < Fx l (1 ) / t  ~(") 

(5.s) 

where for  convenience we have int roduced the no ta t ion  

h(x) = Ox 1 (x) (5.9) 

and have assumed h to be differentiable. In order  to conclude that  X(") _<L X(" '), 
it will suffice to require condit ions on h which will ensure that  the funct ion 

log f , (x )  - log f,,_l (x) 

changes sign twice on the interval (0, F x 1 (1)//~(~ 1)) and that  the sequence of  signs 
is - ,  + ,  - .  One case in which this is relatively s t ra ight forward is the case in which 
h(x) = x ~, 6 > 0 which corresponds  to Weibull  r a n d o m  variables.  

THEOREM 5.2. I f  F--X(x) = e x p - ( x / a )  1/'~ for  some a > 0 and c5 > 0 (i.e., X has a 
Weibull  distr ibution) then 

X (") <_L X (n-l) 

PROOF. Here  h(x) = crx '~ and log f , (x )  - l og f ,_ l (x )  is o f  the fo rm c + 71og(x/b) - 
x /b  for  certain constants  b and c and the sign sequence - ,  + ,  - on (0, ec) will be 
evident. 

I f  the suppor t  o f  X is bounded  above,  i.e. i f F x  1 (1) = M < co, then it is evident 
since #(~) >_ #(,-1) that  l o g f n ( x ) - l o g f , , _ l ( x )  will be - o c  on the interval 
(M/#(n),m/t~ (~-1)) and it will suffice that  on the interval (o ,m/ l~ ("1) it exhibit 
either two sign changes ( - ,  + , - )  or just one with sign sequence - ,  +.  F r o m  this 
observa t ion  we may  conclude that  a sufficient condi t ion for X (~) <_L X ("-l) when 
Fx l (1 )  = M < o c ,  is that  l o g f , , ( x ) - l o g f n  !(x) be m o n o t o n e  increasing on 
(O,M/t~(")). We may  formalize this as follows. 

THEOREM 5.3. (Arnold and Villasenor (1995)). I f  Fx l (1 )  = M < oc then a suffi- 
cient condi t ion to ensure that  X (n) _<e X (n-l) is 

,.h'(ul h"(u)] 
T a s u  T (5.10) 

on (0,M) where h(u) = ~x~(U) = - l o g ( 1  - F x ( u ) ) .  
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PROOF. Consider d [ logf~(x) -  logf~_l (x)] ~ A(x) where f~ is as given in (5.8). 
This will be always positive i f xA(x)  is always positive. The given condition readily 
follows. 

Perhaps the most important application of Theorem 5.3 involves uniform 
upper records. In order to haveX ~ uniform(0, l) we must have Ox(u) =- 1 - e " 
and consequently hx(u) = - log(1 - u). In such a case we have 

1 

- 1 - .  

and 
1 

- ( 1  - . ) 2  

It follows that 

(n- I) h/(u) -h ' (u )  ' hn(u)] (n- l)u 
T(u) ± h - T - ~ ] U = ( l - u ) [ - l o g ( l - u ) ]  

and by differentiation we can readily verify that this is an increasing function on 
(0, 1). Thus, reverting to our U (n) notation for upper uniform records, we con- 
clude from Theorem 5.3 that 

U (") _<L U (~ 5) (5.11) 

Analogous computations may be used to verify that (5.10) holds for both of 
the following examples 

h x ( u ) = - l o g I ( 1 - u ) ]  6, 0 < u <  1 where 0 < 6 _ <  1 

and 

h x ( u ) = I - l o g ( 1 - u a ) ] ,  0 < u <  1 where 6 > 0  . 

The first of these corresponds to a distribution function of the form 

Fx(x) -= l - ( 1 -  x) ~, 0 < x < l ,  

where 6 E (0, 1], while the second corresponds to a power function distribution, 
i.e., 

F x ( x ) = x  ~, 0 < x <  1 . 

For both such distributions we have Lorenz ordered upper records, i.e. 

X (") _<L X (~-l) 

It may be observed that conditions (such as those in Theorem 5.3) on hx may 
be rephrased in terms of  conditions on Fx and its corresponding density f x  since 
hx(x) = - l o g ( 1 - F x ( x ) ) .  Thus Theorem 5.3 admits the following alternative 
phrasing. 
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THEOREM 5.3A. (Arnold and Villasenor, 1995). If Fxl(1)  - - M  < ec then a suf- 
ficient condition for X (") <_L X ('-1) is that 

[J)(x) + nfx(x) ] T as x T (5.12) 
x [ f - ~  [1 - Fx(x)][- log(1 - Fx(x)) 1 

For this, a sufficient condition is that 

xf•(x)/fx(x) T as x T (5.13) 

and 

xfx(x)/Fx(x) T as x T (5.14) 

PROOF. (5.10) and (5.12) are readily seen to be equivalent since hx(x)= 
- l og (1  - F x ( x ) ) .  To verify that (5.13) and (5.14) imply (5.12) we need only ob- 
serve that a / { ( l - a ) I - l o g ( 1 - a ) ] }  T as a T and so consequently Fx(x)/ 
([1 -Fx(x)]I-log(1 -Fx(x)]) T a sx  T. 

As an example in which conditions (5.13) and (5.14) are satisfied, consider 

Fx(x) !(x + x '~) 0 < x <  1 (5.15) ~ 2  

where 6 > 1. Upper records from this distribution are consequently Lorenz or- 
dered. 

It is of course possible to have upper records that are Lorenz ordered in the 
reverse direction, i.e. to have X (~-1) <_L X (~). Theorem 2.7 provides us with the 
following sufficient condition for such Lorenz ordering of upper records. 

THEOREM 5.4. Suppose that for each z > 0, Cx(Z+ w)/Ox(W ) T as w T then 
X (n-l) _<L X('). 

PROOF. Since we can write 

x( ' )  = + ¢;1 (x(.-1))) 

where X~ and X ('-1) are independent, then a sufficient condition to ensure 
that X(" l) <_L X(') is, by Theorem 2.7, that Cx(z + Ox 1 (x))/x $ as x T for each z. 
But, writing w =  ~xl(x), this is equivalent to Cx(Z+W)/¢x(W) T as w $ for 
each z. 

EXAMPLE. If we consider Ox(x) = e x p v / 1  + x  it is readily verified that 
Cx(Z + w)/Ox(w) T as w T for each z. 

REMARK. If we assume that Fx is differentiable then a sufficient condition for 
@x(z + w)/¢x(W) T as w T Vz and hence for X ("-1) _<L X ( ' / is  that zF~v(z)/Fx(z ) $ 
as z i". 
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A result parallel to that described for order statistics at the end of section 4, is 
true for record values. Thus Lorenz ordering for record' values is often inherited 
from the parent distributions. 

THEOREM 5.5. I f X ,  X 1 , X 2 , . . .  are i.i.d, and Y, 111, Y2,..., are i.i.d, and i f X  _<, Y 
then for every n 

X (') ~_L Y(') 

PROOF. Referring to Eq. (3.9) we may write 

- 1  1 - 1  FxS~ ~ (u)/Fy(.', (u) : F x ' (Fu(. ~ (u)) /Fy (F~(.)(u)) 

and conclude that this ratio is a non-increasing function of u since F{(~)(u) is an 
increasing function and, by hypothesis, Fff 1 (u ) /F~  l (u) is a non-increasing func- 
tion of u. Thus X (') <,  y(,) and consequently X(') _<L Y('). 

Note that the hypotheses of the theorem is stronger than the assumption that 
X _<L Y. A parallel argument confirms that if for s o m e  m , X  (m) <7,, y(m) then for 
every n , X  (~) <_, Y(') and hence X (~) _<L Y('). 

6. Remarks 

It will be observed that most of the explicit results obtained deal with exponential, 
Weibull, uniform, power-function and Pareto distributions. This is disappointing 
but perhaps not surprising. These are indeed the distributions on the positive half- 
line which have the most analytically tractable distribution functions. They rea- 
sonably are most easily dealt with. Open questions abound in this area. For 
example, it is intriguing that the non-standard example displayed in equation 
(5.15) for which Lorenz ordering of records obtained, is a mixture of two dis- 
tributions for each Of which the Lorenz ordering of records obtains. Further 
insight into the structure of the class of distributions for which X(') _<t X (" 1), is 
needed. Similarly it would be desirable to characterize the classes of distributions 
for which respectively (4.5), (4.6) or (4.7) (or their reversals) hold. 
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Stochastic Ordering of Order Statistics 

Philip J. Boland, Moshe Shaked and J. George Shanthikumar 

1. Introduction 

There are many ways in which one might say that the random variable X is 
smaller than the random variable Y. In the "usual!, stochastic ordering, one says 
that X is stochastically smaller than Y (and write X <_st Y) ifFx(t) > Fy(t)for all t. 
That  is X <_st Y if the distribution function Fr of Y is everywhere dominated 
by that of X. If X1,2-2,.. . ,Xn is a set of random variables, then XC1 / _< 
X(2) <_ . . .  _< X(n) will denote the corresponding order statistics. When it is im- 
portant to emphasize the number n of observations, then X(1:,,) _< 
X(2:~) <- . . .  <- X(n:~) will be used. It is clear from the definition of order statistics 
that they are ordered in the usual stochastic ordering, that is X(i) <_st 3;-0) for any 
i < j. However there are many other stochastic orders which are of interest in 
various settings. The hazard rate (or failure rate) ordering is of particular interest 
in reliability and survival analysis situations. The likelihood ratio ordering is a 
powerful ordering of random variables which is possessed by many one parameter 
families of distributions. Other orders which are considered here are dispersive 
ordering, convex transform ordering, starshaped ordering and superadditive 
ordering. In this chapter an attempt is made to summarize many of the known 
results on stochastic ordering of order statistics in a compact way. The text 
"Stochastic Orders and Their Applications" by Shaked and Shanthikumar (1994) 
is a comprehensive treatment on stochastic orderings. Indeed further character- 
izations of the orders discussed here together with proofs of many of the results 
may be found in this treatise. In section 2 the definitions and some character- 
izations of the stochastic orders mentioned above are given. Various notions of 
positive dependence between two random variables X and Y are also reviewed. 

In section 3 we give results on stochastic comparisons of order statistics based 
on one set of observations X1, )(2, . . .  ,X,. Furthermore the bivariate dependence 
between order statistics X(0 and X0. ) is treated, with implications for conditional 
ordering of order statistics. In section 4 the emphasis is on comparisons of order 
statistics from two independent sets of observations X1, X2, . . . ,X,  and 
Y1, Y2,...,Yn. 
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2. Stochastic orderings 

In this section we give definitions of many of the commonly used stochastic orders 
for comparing random variables. We also summarize some of the equivalent 
characterizations and properties of these orderings which we will find useful for 
our discussion of stochastic ordering of order statistics in sections 3 and 4. 

Fx will denote the distribution function and Fx  = 1 - Fx the survival function 
of the random variable X. I f X  is absolutely continuous (discrete), f x  will denote 
its density (mass function). We say that a function g is increasing if it is nonde- 
creasing, and a/O is interpreted as oc for a > 0. 

The random variable X is smaller than the random variable Y in the usual 
stochastic order (X _<st Y) if Fx(t) >_ Fy(t) or equivalently Fx(t) _< Fr( t )  for all t. 
A very useful characterization of this stochastic order is X _<st Y 
E(g(X)) _< E(9(Y)) for all increasing g whenever the expectations exist. Although 
our interest here is principally on univariate orderings, we mention the natural 
extension of the usual stochastic order to random vectors given this character- 
ization of the univariate order. The random vector X = 0(1 ,X2,. . .  ,X,) is smaller 
than the random vector Y = (I71, Y2,..., Y~) in (the usual) stochastic order (and 
written X_<st Y) if E(9(X)) _< E(g(Y)) for all increasing functions g whenever 
the expectations exist. It is easy to see that it is closed under mixtures in the sense 
that if X, I7, and O are random vectors where [X]O = 0] _<st [YIO = 0] for all 0, 
then X _<st Y. The usual stochastic order is closed under convolutions whereby if 
X1,X2, Y~, and Y2 are independent and N _<st Yi for i =  1,2, then X1 +)(2 _<st 
Yl @ Y2. 

The hazard rate ordering is an ordering for random variables which compares 
lifetimes with respect to their hazard rate functions. If X is an absolutely con- 
tinuous nonnegative random variable with density fx, then we define 
rx(t) = fx(t)/-ffx(t) to be its hazard rate (or failure rate) function. I f X  and Y with 
respective hazard rate functions rx and rr  satisfy rx(t) >_ rr(t)  for all t > 0, then 
we say that X is smaller than Y in the hazard rate ordering and write X _<hr Y. 
Since the hazard rate function at time t represents the instantaneous rate of failure 
given survival to time t, X _<hr Y means intuitively that given the lifetimes X and Y 
exceed t (for any fixed t), then X is more likely to fail than Y in the 'immediate' 
future. The hazard rate ordering is particularly useful in reliability theory and 
survival analysis due to the importance of the hazard rate function in these areas. 
The hazard rate ordering can of course be extended to nonnegative random 
variables. The condition rx(t) >_ rr(t)  for all t is equivalent to the requirement 
that  Fr(t)/-Fx(t) is increasing in t, and this later condition can be used to define 
the hazard rate ordering in more generality (when for example densities don't  
exist). We will use this definition here, and hence say that X is smaller than Y in 
the hazard rate ordering (and write X _<hr Y) if Fy(t)/Fx(t) is increasing in t. 
Keilson and Sumita (1982) used this definition to define an order termed "uni- 
form stochastic order in the positive direction". It is easy to verify that 
Fy(t)/Tx(t) is increasing in t ~ P[X > t+s lX > t] _< PlY > t+s]Y > t] for all 
s > 0 and t ~ [XIX > t] _<st [YIY > t] for all t. Hence X _<hr }7 ~ conditional 
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on survival of both X and Y to t (for any t), X is less than Y in the usual stochastic 
order. This makes it clear that the hazard rate ordering is a stronger ordering than 
the usual stochastic ordering. A nonnegative random variable X with hazard 
function rx is IFR (increasing failure or hazard rate) if rx is increasing (equiva- 
lently Fx  is log concave on its support). Similarly X is D F R (decreasing failure or 
hazard rate) if rx is decreasing. The hazard rate ordering is not necessarily closed 
under convolutions since if X1, X2 are independent and Y1, Y2 are independent 
where Xi ~hr Yi for i = 1,2, then it does not necessarily follow that 
X1 _t_ X2 ~hr Y1 -~- I12. However it can be shown that X 1 -I-)t~2 ~hr I11 + Y2 if 
Xl, X2, I11 and I12 are IFR. See Keilson and Sumita (1982) and Shanthikumar and 
Yao (1991) for more on the hazard rate ordering and convolutions. Finally the 
hazard rate ordering is not necessarily closed under mixtures, although if X, Y, 
and O are random variables where [XIO = 0] ~hr IYI 0 = 0'] for all 0 and 0', then 
X ~hr Y (Shaked and Shanthikumar (1994)). 

If X and Y are continuous random variables with respective densities or mass 
functions f x  and fy,  then we say X is smaller than Y in the likelihood ratio 
ordering (X -<lr Y) i f f r ( t ) / f x ( t )  is increasing in t over the union of supports of X 
and Y. If {Xo: 0 c 0 c_ R} is a family of random variables where Xo ~lr No' for any 
0 < 0 I, then we say {Xo: 0 c O} has the monotone likelihood ratio property. This 
is equivalent to saying thatfo(q)fo,(t2) >_ fo(t2)fo,(tl) whenever tl < t2 and 0 < 0 I, 
or that the function h(O, t) = fo(t) is TP2 (totally positive of order 2) in 0 and t. 
The family of exponential distributions is but one with the monotone likelihood 
ratio property. It is well known that the likelihood ratio order is stronger than the 
hazard rate order. The likelihood ratio order is not in general closed under 
convolutions, but if Xl, X2 are independent and Y1, I12 are independent where 
X1 --~lr YI, X2 ~lr Y2 and the densities or mass functions of X2, Y2 are log concave, 
then X1 +)(2 _<lr I11 + 112 (Shanthikumar and Yao (1991)). The likelihood ratio 
order has a closure property for mixtures like that of the hazard rate order, that is 
if X, Y, and O are random variables where [XIO = O] <-lr [YIO = 01] for all 0 and 
0 ~, then X _<lr Y- The following Fig. 1 gives the implications between the three 
stochastic orders discussed up to this point. 

X ~lr Y ~ X _ ~ h r  Y ~ X  ~-st Y 

Fig. 1. 

The dispersive ordering is a variability comparison between two random 
variables. Let Fx 1 and F~ 1 be the right continuous inverses of Fx and Fr res- 
pectively. We say that X is smaller than Y in the dispersive order (X <--disp Y) if 
Fxl(fi) - Fxl(~) _< F~-I (fi) - Fr a(~) for all 0 < ct < fi < 1. This is a variability or 
tail like ordering as it requires the difference of any two quantiles of X to be 
smaller than the difference of the corresponding quantiles of Y in order for 
X _<disp Y. Unlike any of the orderings so far discussed, the dispersive order is 
closed under shifts, that is X ~disp Y ~ X @ C ~disp Y for any c. An equivalent 
definition o f X  _<disp Y is to require that F f  1 (Fx(t)) - t be increasing in t. It is easy 
to see that for example if Ui is uniform on (ai, bi) for i = 1,2, then U1 <_disv U2 if 
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bl - al _< b2 - a2. Also if X;. is exponential with mean 1/2, then 
21 > 22 ==~ X21 ~disp X22. The dispersive order is not closed under convolutions. 
A random variable Z is dispersive i fX  + Z ~disp Y -~- Z whenever Z is independent 
of X, Y and X ~disp Y. It can be shown (Lynch, Mimmack and Proschan (1983), 
Lewis and Thompson (1981), and Shaked and Shanthikumar (1994)) that Z is 
dispersive ~ Z has a log concave density (Z is strongly unimodal). Furthermore 
X _<disp X + Y for any Y independent of X e==> X has a log concave density 
(Droste and Wefelmeyer (1985)). 

Finally we define three orderings which we refer to as the transform orders: 
the convex, the star, and the superadditive orders (see Shaked and Shanthikumar 
(1994)). They are also dealt with extensively in Barlow and Proschan (1981). Let 
us now suppose X and Y are nonnegative random variables where X has interval 
support. One says that X is less than Y in the convex transform order (X <~ Y) if 
F~lFx(t) is convex on the support of X. If X and Y are Weibull random vari- 
ables with the same scale parameter but with shape parameters c~x and c~y res- 
pectively, then X _<c Y ~ c~r _< c~x. If Y is exponential with F~,(t) = 1 - e At, 
then Fr lFx ( t )=- lgnFx ( t )  has derivative rx(t)/2. Hence X is IFR (has in- 
creasing failure rate) e=* X _<c Exp(2), and this observation is one motivation 
for the definition of the convex transform ordering (which was introduced by 
van Zwet (1964)). We say that X is less than Y in the star order (X<,  Y) if 
F~lFx(t) is starshaped (that is FrlFx(t)/t  is increasing in t). It is well known to 
reliabilists that X <,  Exp(2) ~ X is IFRA (increasing failure rate average). 
Shaked and Shanthikumar (1994) show that the star order and the dispersive 
order are related by: X <_, Y e==~ gnX ~disp gnY. We say that X is less than Y in 
the superadditive order (X _<su Y) if F71Fx(s + t)> FTIFx(s) + F~IFx(t) for all 
s, t > 0 (that is FrlFx is superadditive on the support of X). Theorists in reli- 
ability know that X _<su Exp(2) is equivalent to saying that X is NBU (new 
better than used). Any increasing convex function on [0, oc) is starshaped, and 
every increasing starshaped function on [0, oc) is also superadditive. Figure 2 
shows the implications between the last four stochastic orders which have been 
introduced. 

X <_c Y ~ X ~,  Y ~ X <_su Y 

~nX ~disp ~n Y 

Fig. 2. 

There are many notions of positive dependence between two random variables 
X and g. The reader would do well to consult Jogdeo (1982), Barlow and 
Proschan (1981), and Tong (1980) for more extensive treatments of this subject. 
Perhaps the strongest notion of dependence between two random variables X and 
g is TP2 (totally positive of order 2) dependence. X and Y are TP2 dependent if 
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their joint density or mass function f (x ,y)  is totally positive of order 2 in x and y, 
or more precisely if 

f (x l ,y l )  f(xl,y2) > 0 
f(x2,yl) f ( x 2 , Y 2 ) -  

for any Xl < x2, yl < y2. We say that the random variables X and Y are right 
corner set increasing (RCSI) if for any fixed x and y, P[X > x, Y > y 
[X > x', Y > Y'I is increasing in x' and y'. One says that Y is stochastically 
increasing in X if P[Y > y[X = x] is increasing in x for all y, and write SI(Y[X). 
Lehmann (1966) uses the term positively regression dependent to describe SI. 

We say that Y is right tail increasing in X if PlY > y[X > x] is increasing in x for 
all y, and write RTI(YIX ). Similarly Y is left tail decreasing in X ifP[Y > y[X < x] 
is decreasing in x for all y, and we denote this by LTD(Y]X). The random vari- 
ables X and Y are associated (written A(X, Y)) if Cov[F(X, Y), A(X, Y)] >_ 0 for 
all pairs of increasing binary functions F and A. Finally we say X and Y are 
positively quadrant dependent if 

P[X < x, Y < y] > P[X <_ x]P[Y <_ y] 

for all x, y, and write PQD(X, Y). The various implications between these notions 
of dependence, at least for continuous random variables are summarized in the 
following Fig. 3 (Barlow and Proschan (1981)). 

I(S,T) 
,L 

SI(T IS) RCSI(S,T) SKS IT) 

/\/\/\ 
LTD(T IS) RTI(T IS) RTI(S IT) LTD(S IT) 

PQD(S,T) 
Fig. 3. Implications among notions of bivariate dependence. 
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3. Stochastic order for order statistics from one sample 

In this section we discuss stochastic order relations between the order statistics 
X(i) and X(j) based on one set of observations )(1, X2,. . .  ,Am. The first two results 
concerning the usual stochastic order and the hazard rate order hold in consid- 
erable generality. We next consider the case where )(1, X2,. •., Xn are independent 
and identically distributed, and then proceed to the situation where XI, X2, . . . ,  X, 
are independent but otherwise arbitrarily distributed. The case when 
)(1, X2,. . .  ,X~ represent a random sample taken without replacement from a finite 
population is also mentioned. Most of the results are for the situation where 
X1, X2 , . . .  ,Xn are absolutely continuous with density functions. 

It should be clear from the definition of the order statistics X(i) and X0. ) (where 
i < j)  that PIX(j) > t] >_ P[X(i ) > t] when X1 ,X2 , . . .  ,Xn is any set of  random vari- 
ables. Therefore in general one has the following result. 

THEOREM 3.1. Let X 1 , X 2 , . . . , X n  be random variables. Then for i < j ,  
x(,1 _<st x~) .  

The next Theorem shows that for any independent random variables Xl, 
X2, . . . ,  X,,, the order statistics are ordered with respect to the hazard rate ordering. 
The proof  for the case when X1, X2,. . .  ,An are absolutely continuous was given in 
Boland, E1-Neweihi and Proschan (1994). The proof  given here is new but is 
similar in nature to that of  the main result in Shaked and Shanthikumar (1995). 

THEOREM 3.2. Let X1, X 2 , . . . , X ,  be independent random variables. Then for 
i < j, X(i ) --<hr X(j). 

PROOF. For  any t, let Nt = ~7=11(Xi > t). Now 1 (8  > t) has log concave density, 
and it is easy to see that as t increases I(Xi > t) decreases in the likelihood ratio 
ordering. Using the aforementioned result on preservation of the likelihood ratio 
order under convolutions (see also Theorem 1.C.5 of Shaked and Shanthikumar 
(1994), or Shanthikumar and Yao (1991)), it follows that Nt decreases in the 
likelihood ratio order as t increases. Since the likelihood ratio order is stronger 
than the hazard rate order, it follows that Nt is decreasing (with t) in the hazard 
rate order. Note now that P(Nt > n - j +  1) = P(X(j) > t). Hence for any s > 0 
and i < j,  one has that 

P(Nt > n - j +  I) P(Nt > n - i +  l) 
P(Nt+s > n - j + l ) P(Nt+, > n - i + l ) 

P(X(j) > t) P(X(i) > t) 
o r  

P(X•) > t + s) P(X(,) > t + ~) 

or P(X(i) > t + ~) < P(X~) > t + s) 
P(X(,) > t) - P(Xc,) > t) 

or X(i) --<hr X(7) [] 
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Figure 4 illustrates the hazard rate functions of the order statistics 
X(1), X(2), X(.3) and 2(4 ) (denoted respectively by r(l)(t), r(2)(t), r(3)(t) and r(4)(t)) 
when Xl, 22, X3, X4 are independent exponential random variables with respec- 
tive parameters 1, 2, 3 and 4. 

Now suppose )(1, X2,. . .  ,Xn are independent identically distributed random 
variables with common density f .  The density function of the ith order statistic is 
given by 

n! Fi l ( t ) f ( t ) f f ,  i ( t )  . 
f ( i ) ( t )  = ( i -  1)](n- i)! 

Therefore the ratio of the density functions of X0. ) and X(i) for i < j is given by 

f(i) (t) - c which is increasing in t . 

This yields the following result (see Chan, Proschan and Sethuraman (1991)). 

THEOREM 3.3. Let 2I,  X2,. . .  ,Xn be independent identically distributed random 
variables with common density. Then X(i) -<lr X(j) for i < j. 

Another likelihood ratio order result for maximums and minimums is given by 
Shaked and Shanthikumar (1994). Their result compares the maximum (mini- 

0 

c O .  

r (1)(t) 

r(2)(t) 

r(3)(t) 

r(4 ) (t) 

010 015 110 115 210 215 

Fig. 4. Hazard rate functions of exponential order statistics. 
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mum) of {Xl, X2,.. .  ,Am} with the maximum (minimum) of {Xl, )(2,.. .  ,X,, X~+I } 
in the independent identically distributed (i.i.d.) case where X is either absolutely 
continuous or discrete. 

THEOREM 3.4. Let XI,X2,. . . ,X, ,  X,+I be independent identically distributed 
random variables which are either absolutely continuous or discrete. Then 

X(n:n) ~lr  X(n+l:n+l) and X(l:n ) -~ir X(l:n+l) • 

We consider now the dispersive ordering in the i.i.d, case. Although we expect 
the jth order statistic X(j) to be larger than X(i) (i < j) in many senses, it is not 
clear if we should expect X0. ) to be more "dispersed" than X(i). It is true however 
in the case where)21, X2,. . .  ,X,, are exponentially distributed with parameter 2. In 
this situation it is well known that X(j)=X(i)+ (X(j)-X(i)) where X(i ) and 
(Xo.) -X(i)) are independent, and X(/) -X(i) is the sum o f j -  i independent ex- 
ponential random variables. X(j.) -X(i) has log concave density since the sum of 
independent random variables with log concave densities has log concave density, 
and therefore it follows from our discussion of the convolution properties of the 
dispersive order in Section 2 that X(i ) ~<~disp X(j). Bagai and Kochar (1986) (or see 
Theorem 2.B. 13 in Shaked and Shanthikumar (1994)) have shown that i fX --<hr Y 
and either X or Y are DFR, then X ~disp Y. We know (Theorem 3.2) that when 
X1,X2,... ,Xn are independent then X(0 -<hr X0-) for any i < j,  and hence if either 
X(0 or X0. ) is DFR it follows that X(i ) ~disp X(j). 

The following example shows that in spite of the above situation for expo- 
nential random variables, there is not much hope for the dispersive ordering of 
order statistics in general. In this example we see that the minimum X(1) and the 
maximum X(2) from a sample of size 2 of uniform random variables on [0, 1] are 
not ordered in the dispersive order. 

EXAMPLE 3.5. Let X1 and X2 be independent random variables uniformly dis- 
tributed on [0, 1]. If  X0) and X(2) are the minimum and maximum of {X1 ,)(2}, we 
have that Fo)(t ) = 1 - (1 - t) 2 and F(2)(t ) = t 2. Hence 

e=~ v / 1 - c ~ + v ~ <  V/ f l+V/ ] - - f l  for 0 < c ~ < f l _ <  1 . 
(3.1) 

The function g(t) = ~ + v~ on [0, 1] is symmetric around ½ and increasing on 
[ 0,!]2" Hence (3.1) is valid if e < fl _< ½ and the reverse holds if½ _< e < fl _< 1. In 
particular X(~) is not less than X(2) in the dispersive ordering, although one might 
be tempted to say that X(l) is less dispersed than )((2) for lower quantiles (and the 
reverse for higher quantiles). 

It seems natural to expect some degree of positive dependence between the 
order statistics X(i) and X@.) from any set of observations XI, X2,.. .  ,X~. In the 
independent identically distributed case where i < j and f is the common density 
function, then the joint density f(i),(j) of)((/) and X(j) is given by 
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c(i,j,  n)F i-I (s)[F(t) - F(s)] j=i-1 [ff(t)]n-Jf(s)f(t) s <_ t 
f(i),(/) (s, t) = 0 otherwise 

where c(i,j ,  n) is a constant. Algebraically it is easy to see that f(i),(j) is TP2 in s 
and t is equivalent to 

IF(h) - F(Sl)] [F(t2) - F(s2)] > IF(t2) - F(Sl)l IF(q) - F(s2)] , 

which is always true. This proves the following result: 

THEOREM 3.6. Let X1, )(2, . . .  ,X~ be independent identically distributed random 
variables which are absolutely continuous. Then X(i) and )20.) are TP2 dependent. 

Note then in particular that for any i < j,  P[X(j) > tlXli ) = s] is increasing in s, 
and that as a result the family of conditional random variables 
{X0. ) IX(i) = s: s E Support X} is increasing in the usual stochastic order. 

The next two Theorems of Boland, E1-Neweihi and Proschan (1994) provide 
results for the hazard rate ordering when comparing order statistics from 
X1, X2, . . .  ,Xn with those from X1, X2 , . . .  ,X, ,X,+I.  Hence we use the notation 
X(i:n) and X(i:.+l) to denote the ith order statistic from )(1, X2,. . .  ,Am and 
X 1 , X 2 , . . . , X , , X n + I  respectively. In the first of these results we assume that 
r,+l(t) < rk(t) for all t and k = 1, . . .  ,n, while for the second we assume that 
r,+l(t) _> rk(t) for all t and k = 1 , . . . , n .  

THEOREM 3.7. Let Xl, X2 , . . .  ,Xn,X,+I be independent random variables where 
Xk _<hr Xn+l for k = 1 , . . . ,  n. Then X(i_I:,) ~hr J((i:n+l) for i = 2 , . . . ,  n + 1. 

THEOREM 3.8. Let X1, X2,...  ,Xn,Xn+l be independent random variables where 
Xn+l ~hr Xk for k = 2 , . . . ,  n. Then X(i:n) ~hr X(i:n+l) for all i = 1 , . . . ,  n. 

Note that the continuous version of Theorem 3.4 is a special case of Theorems 
3.7 and 3.8. 

One might expect the order statistics to be ordered in the independently dis- 
tributed case with respect to the (even stronger) likelihood ratio order. Surpris- 
ingly enough we will see in the following example that this is not the case in 
general (even for n = 2), although we know it is true if the Xi's are identically 
distributed. It will also provide us with an example of two random variables X 
and Y where X ~hr Y but X fir Y. 

m 

EXAMPLE 3.9. Let J} and Fi = 1 -  Fi be the density and survival function 
of X / , i =  1,2. The densities of X(2) and X(1) are given respectively by: 
f l  (t) (1 - ff2 (t)) + f2 (t) (1 - F1 (t)) and f l  (t)ff2 (t) + f2 (t)ffl (t). Now X(2) is greater 
in the likelihood ratio ordering than X(1) +==~ (fl(t)(1 - F 2 ( t ) )  +f2(t)  
( 1 - Fl  (t))) / (Ji (t)F2 (t) + f2 (t)F1 (t)) is increasing in t. Equivalently by taking the 
derivative of the right-hand side and performing simple algebraic manipulations 
we must have 
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~q (t)f~(t) - fz(t)f((t)] I-F2 (t) - F1 (t)] (3.2) 

+2~fl( t) fz( t )  +fz(t)f~(t)] > 0 for all t > 0 . 

Clearly one can construct f l  ,f2 such that the left-hand side of (3.2) is negative for 
at least one t > 0. Here is such a choice: let 

3 0 < t <  5 
f l ( t )  = 

0 otherwise , 

and let 
1 

f z ( t ) =  1 - 2 5 ( t - . 5 0 )  . 5 0 < t < . 5 2  

.50 . 5 2 < t < 1 . 4 9  . 

Now the right hand limit of the left side of (3.2) as t approaches .50 is equal 
to 

[ 3 ( - 2 5 ) -  0] [1-¼] + 2 (2+9  ) = - 1@6° + ! ~ < 0 , 

and hence XC1 ) is not smaller than X(2) in the likelihood ratio order. 
Although the order statistics from an independent set of random variables are 

not necessarily increasing in the likelihood ratio ordering, Bapat and Kochar 
(1994) have proved that this is true under mild conditions if the independent 
random variables are themselves ordered according to the likelihood ratio order. 
Their result is the following theorem, which is proved using the theory of per- 
manents. Note that Theorem 3.10 seems to be more general than Theorem 3.3 
since identically distributed random variables are likelihood ratio ordered, how- 
ever the proof  of Theorem 3.10 requires differentiable densities with common 
interval support. 

0 < t <  .50 

THEOREM 3.10. Let 3;'i, X2,. . . ,X,,  be independent random variables with re- 
spective differentiable density functions f l ,  f 2 , . . .  ,fn which have common interval 
support. IfXl ~<lrX2 _<lr " ' '  <~IrXn, then 

X(1) ~<lr X(2) ~<lr " ' '  ~<lr X(n) • 

Note that in particular if X1, X2,. . . ,Xn are independent exponential random 
variables with respective parameters 21, 22 , . . . ,  2n, then it follows from the above 
that X(1) _<lr X(2) _<It ' "  _<lr X(n). Another example is where X1, X2,. . .  ,X, are in- 
dependent normal random variables with variance o -2 and respective means 

~ 1 , / ~ 2 ,  • " " , # n '  

In the independent (but not necessarily identically distributed) case of random 
variables XI,X2,. . .  ,X,, it is not necessarily true that X(~) and X(j) are TP2 de- 
pendent. In fact even in the case where X1 and X2 are independent exponentials 
with respective means 1 and .5, X(l) and X(2) are not TP2 dependent (in fact they 
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do not even satisfy the weaker condition of RCSI - see Boland, Hollander, Joag-  
Dev and Kochar (1994)). The following result (Boland et al., 1994) does show 
however that in general X(/) is right tail increasing in X(i) whenever i < j. 

THEOREM 3.11. Let X1,)(2,.. •, X~ be independently distributed random variables. 
Then for any i < j,  RTI(Xci)IX(i)). 

Theorem 3.11 implies that as s varies, the family of conditional order statistics 
{(X(j)lX(i ) > s)} is stochastically increasing in s in the usual stochastic order 
whenever i < j.  

Now let us suppose that X1, X2,. . .  ,X, represent a random sample of size n 
taken without replacement from a finite population. Then X1,X2,...,X~ are 
identically distributed discrete random variables which are clearly dependent. The 
following result of Boland et al. (1994) shows a strong dependence between order 
statistics in this situation. 

Tt4EOe,~M 3.12. Let ( X 1 , X 2 , . . . , X , )  represent the observations of a random 
sample taken without replacement from a finite population. Then for any i and j,  
X(i) and X(~) have a TP2 joint mass function. 

A consequence of the above result is that in this finite population sampling 
situation, for any i < j,  SI(X(j)IX(i)). Hence in particular the family of conditional 
random variables {X(j)IX<i> = s }  is increasing in s in the usual stochastic order. 

Now suppose that IX I O = 01 is a random variable for each value of the random 
variable O. Then X itself is a mixture with respect to O. Let (X1, X2, . . .  ,X~) be a 
sample of size n from this mixture. Then although the X,'s are identically dis- 
tributed they are dependent through O. Boland and E1-Neweihi (1995) show the 
following dependence result for consecutive order statistics. 

THEOREM 3.13. Let X1, X2,. . .  ,Am be a sample of size n from a mixture distri- 
bution with respect to O, where the family of density functions {fo(t): 0 ~ O} has 
the monotone likelihood ratio property. Then for any i, XCi ) and X(i+l) are TP2 
dependent. 

4. Stochastic order for order statistics from two samples 

In this section we assume that XI, 322,... ,Am and Y1, Yz,. . . ,  Yn are two sets of 
random variables of size n, and we will make various stochastic comparisons 
between the order statistics X(i) and Y(i) for i = 1 ,2 , . . . ,  n. 

If X 1 , X 2 , . . . , X ~  is a set of n independent random variables and likewise 
YI, Y2,.--, Y~ where X/_<st Y/for i = 1 , . . . ,  n, then it is easy to verify that (Ross 
(1983)) X = (XI ,X2 , . . .  ,Xn) -<st (YI, Y2 , . . . ,  Yn) = Y. Using the fact that 
9(i) (x l ,x?, . . .  ,x~) = x(i) is increasing, we have the following result for the usual 
stochastic order. 
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T~IEOREM 4.1. Let X~,X2,... ,X~ be one set of independent random variables, and 
Y1,Y2, . . . ,Y~ be another set where N-<st Yi for each i =  1 ,2 , . . . , n .  Then 
X(i) -<st Y(i) for i = 1 ,2 , . . . ,  n. 

In order to give further results on stochastic comparisons of order statistics 
from two samples we introduce the concept of majorization of  two vectors 
a = (al, a2 , . . . ,  a,) and b = (bl, b2 , . . . ,  bn). We say a is majorized by b (and write 
a -< b) if sim=l a(i) <_ ~-~i~l b(~) holds for m = 1 , 2 , . . . , n  - 1 and ~ 1  a(0 = 
~i"=~ b(i). If a is majorized by b, then in particular a is less dispersed or spread out 
than b is. The interested reader should consult Marshall and Olkin (1979), for 
more on majorization and its applications. 

Now suppose X1,X2 , . . .  ,X, ,Y1, Y2 , . . . ,  I1,, are independent random variables 
with proportional hazard (or failure rate) functions with 2~,22,. . . ,2~, 
2,1, ,, a2, . . .  , 2, as the respective constants of proportionality. The situation where 
all of  the random variables are exponentially distributed is but one example. The 
following result of Proschan and Sethuraman (1976) compares the vector of order 
statistics of X with the corresponding vector of order statistics of Y, and gener- 
alizes earlier work of Pledger and Proschan (1971), and Sen (1970) on individual 
order statistics. 

THEOREM 4.2. Let X1,X2 , . . .  ,X, ,  I11, Y2 , . . . ,  Y, be independent random lifetimes 
with proportional hazard functions where "~1,22,..-, 2,, •Ii, 21, . . .  , 2tn are the 
constants of proportionality. Suppose 2 = (21,22,. .. ,2,) ~ (2'1, ,t2, ~' . . . ,  2") = 2r. 
Then (X(1),X(2),... ,X(,)) _<st (Y(1), Y(2),..., Y(n)) and in particular X(i) -<st Y(i) for 
all i = 1 , . . . , n .  

The following example shows that Theorem 4.1 for the usual stochastic order 
does not generalize to the hazard rate ordering. 

EXAMPLE 4.3. If X1, X2 (YI, 112) are independent exponential random variables with 
parameters or hazards 21,22 (2' 1, 2~), then X(2) (Y(2)) is the lifetime of the parallel 
system formed from XI and X2 (Y1 and Yz). We let r~,~ 2 (r;, ,~.~) be the hazard rate 

function of X(2) (1'(2)). If(21, J~2) = (.5, 15) and (2'1,2~) = (.5, 5), then sinceX~ _<st 
for i = 1,2 it follows from Theorem 4.1 that X(2/ _<st 1'(2). However it is not true (as 
seen from Fig. 5 below) that X(2) is smaller than Y(2) in the hazard rate ordering. 

The following result (see Lynch, Mimmack and Proschan (1987) or Shaked 
and Shanthikumar (1994)) gives reasonable conditions under which the order 
statistics from two samples are comparable under the hazard rate ordering. A 
slightly more general result (with technical conditions) is given in Shaked and 
Shanthikumar (1995). 

THEOREM 4.4. Let X I , X 2 , . . .  ,X,  and 2"1, Y2,--., Y, be two sets of independent 
random variables where Xi -<hr Y// for all i and j ,  ( i , j  = 1 ,2 , . . . , n ) .  Then 
X(i) -<hr Y(i) for i = 1 ,2 , . . . ,  n. 
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Suppose now that )((2) = max(Xl ,X2) where X1 and X2 are independent expo- 
nential random variables with respective parameters 21 and 22. The following result 
(see Boland, EI-Neweihi and Proschan (1994)) shows that the more spread out 
(Zl, 22) is in the sense ofmajorization, the greater X(2) is in the hazard rate ordering. 

EXAMPLE 4.5. Let )(1 ,X2, I11 and 112 be independent exponential random variables 
with respective parameters 21,Z2,2 i and Z 2. Then (21,22)-~ (211,2~) 

2"(2) _<h~ Y(2). 

The above result suggests that perhaps an analogue of Theorem 4.2 for the 
hazard rate ordering might be valid. However Boland, E1-Neweihi and Proschan 
(1994) show that this is not the case even when comparing the maxima of two 
samples of independent exponential random variables of size 3. In particular they 
show that if XI ,X2,X3, Yl, 112, and Y3 are independent exponentials with respective 
parameters 0.1,4,6,0.1, 1, and 9, then although (0.1,4,6) -~ (0.1, 1,9) it is not 
true that X(3) is smaller than Y(3) in the hazard rate ordering (although X(3) <_st Y(3) 
from Theorem 4.2). 

Chan, Proschan and Sethuraman (1991) prove the analogue of Theorem 4.4 
for the likelihood ratio order, as given below. 

THEOREM 4.6. Let X1,X2,... ,X, and I11, Y2,..., Y, be two sets of independent 
absolutely continuous random variables where Xi-<lr Yj for all i and j 
( i , j= 1,2, . . . ,n) .  Then X(i) ~.~lr Y(i) for i =  1,2, . . . ,n.  

,:5" 

c5" 

0 d '  

r.5,5(t) 

010 012 014 016 018 110 

Fig. 5. Hazard rate functions for the maximum of 2 exponentials. 
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Now suppose X1,X2, . . . ,Xn  is a set of  independent identically distributed 
random variables each with distribution equal to that of  X. Then it is well known 
(see Barlow and Proschan (1981)) that the distribution function of the ith order 
statistic X(i) is given by 

where 

(t) = B(",) (Fx(t)  ) 

n! [p 
n u i - l ( 1 - u ) n - i d u  for 0 < p <  1 . 

B(i) (P) ~- (i - 1)!(n - i)! J0 

Suppose also that 111,112,..., Y~ is another set of  independent random variables 
with the same distribution as that of  Y. Then it follows from the above repre- 
sentation that for any i = 1 ,2 , . . . ,  n, 

F, -1 YI,) (Fx ( i ) )  = F~' (Fx) 

This observation allows one to prove without much difficulty the following sto- 
chastic comparisons for order statistics in the dispersive and transform orders. 

THEOREM 4.7. Let X1,X2,.. .  ,Xn be independently distributed random variables 
with the same distribution as X, and similarly Y1, I12,..., Yn be independent ran- 
dom variables with the same distribution as Y. 

(a) I f X  ~disp Y, then X(i) <~disp Y(i) for i = 1 ,2 , . . .  ,n . 
(b) I f  X _<c Y, then X~(i) ~c Y(i) for i = 1 ,2 , . . . ,  n. 
(c) I f  X _<, Y, then X(i) <_, Y(i) for i = 1 ,2 , . . . ,  n. 
(d) I f  X _<su Y, then X(i) _<su Y(0 for i = 1 ,2 , . . . ,  n. 

Theorem 4.7 a is due to Bartoszewicz (1986), while the idea for Theorem 4.7b-d 
is in Barlow and Proschan (1981). As indicated earlier many of the results in this 
paper can be found in the extensive treatment of  stochastic orders by Shaked and 
Shanthikumar (1994). 
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Bounds for Expectations of L-Estimates 

T o m a s z  R y c h l i k  

1. Introduction 

An original sample of  a given size, say n, will be denoted by X1, . . .  ,Xn. The 
respective order statistics will be written as Xl:n < . . .  < X,:,. For  a given sequence 

n n (ci)i=l C ~n, the L-estimate will be defined as ~-~i=1 CiYi:n" Our objective is to 
present accurate bounds on the expectation of the L-estimates under various 
assumptions on the distribution of the original sample, with indicating the dis- 
tributions for which the bounds are attained. Usually, we focus the attention on 
deriving upper bounds. Some lower ones can be immediately obtained by simple 

n rt 
transformations, e.g. inf E ~ i = I  ciXi:n = -  sup E ~ i = I  (-ci)Xi:n. The special at- 
tention will be devoted to the case of  single order statistics. In principle, we 
consider two types of  assumptions: 

• X~, i = 1 , . . . ,  n, are identically distributed, but can be dependent in an arbitrary 
way (i.d case), 

• X/, i = 1 , . . . ,  n, are identically distributed and independent (i.i.d case). 

In Section 2 we shall study the expectations of L-estimates in the case of  
dependent random variables with a given common distribution function (for the 
i.i.d sample, there are well known formulas). For  single order statistics, we 
present a method of obtaining extremes of the expectation and variance of an 
arbitrary integrable function of the order statistic. Also, we consider the case of  
nonidentically distributed samples. In Section 3 we present some bounds for both 
the i.d and i.i.d cases in terms of natural location and scale parameters of  the 
marginal parent distribution, including the expectation and an absolute central 
moment ,  the left end point and the length of the support, The results for the i.d 
case enable us to find some sharp deterministic bounds which hold true for ar- 
bitrary samples. In Section 4 we obtain inequalities for the expectations of  order 
statistics based on variables coming from restricted families of distributions: life 
distributions with monotone failure probability and rate, symmetric and sym- 
metric unimodal. The inequalities will be expressed in terms of the first and 
second moments  of  the original variables. The bounds given in Sections 3 and 4 
were obtained by means of projecting the quantile and related functions onto 
convex cones. In Section 5 we apply the Jensen inequality to derive bounds for 
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expected order statistics coming from the restricted families in terms of quantiles 
of the parent marginal distribution. 

Some bounds presented in the paper were discussed in the monographs by 
David (1981, Chapter 4, mainly the i.i.d case), Arnold and Balakrishnan (1989, 
Chapter 3), Arnold et al. (1992, Chapters 5, 6). However, a significant part of the 
paper content have been obtained quite recently and is reviewed for the first time 
here. Also, some results have not been published by now. 

2. Distribution bounds 

2.1. I.d case. Assume that X I , . . . , X ,  are arbitrarily dependent and have a 
common fixed distribution function F. Let QF(X) = sup{t: F(t) <_ x} denote the 

. . . . .  1 respective right continuous quantlle function and let/~ = EXI = fo QF(X) dx be 
finite. Consider an arbitrary L-estimate with coefficients ci, i = 1 , . . . ,  n, and define 
C as the greatest convex function on [0, 1], vanishing at 0, and satisfying 

C 5 ci, j =  1 , . . . , n  . 
i=I 

THEOREM 1 (Rychlik, 1993a). With D standing for the right derivative of C, we 
have 

fo 1 E Z ciXi:~ < Qg(x)D(x) dx . (1) 
i=1 

The bound is best possible. 

Observe that both the C and D depend merely on the coefficients of L-esti- 
mates, which is ignored in notation, for brevity. Each D is a nondecreasing right 
continuous jump function which jumps at some multiplicites of ¼. This clearly 
allows us to write the right-hand side of (1) as a combination of subintegrals 

QF(X)D(x) dx = di Qg(x) dx , (2) 
i=1 

where 

i = 1  /3/ 

d n n In fact, ( i)i=l is the /2-projection of (ci)i=l onto the convex cone of non- 
decreasing sequences in ~n. In the special case of single m th order statistic 
D = Om:n - -  n+~-m 1[@), and, in consequence, (1) becomes 

< n [ 1  
EXm., • - n + 1 - m J a  @ QF (x)  d x  . (4) 
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We now turn to describing the conditions for which (1) becomes equality. We 
express them in terms of distribution functions of order statistics. It can be shown 
that F;:n, i = 1 , . . . ,  n, are the distribution functions of X;:~, i -- 1 , . . . ,  n, respec- 
tively, based on some possibly dependent F-distributed random variables iff 

n 

Z ~ : , ,  = nF , (5) 
i=1 

and, clearly, 

Ft.:, , ~ f/+l:n, i =  1 , . . . , n -  1 . (6) 

There are various ways of constructing ordered variables X;:,, i = 1 , . . . ,  n, with 
distributions satisfying (5) and (6) (the simplest one consists in taking QF,:,(U), 
i = 1 , . . . ,  n, for U being a standard uniform random variable). Also, there are 
many ways of constructing identically distributed parent variables X;, i -- 1 , . . . ,  n, 
whose order statistics have given distributions (the simplest one consists in the 
random reordering ofXl:n, . . .  ,X,:n). Let 0 = i0 < il < ..- < iv = n be the integers 
for which (-~, ~'iJ1 Ci), j = :  1 , . . . ,  v, belong to the graph of C. Some of kn are the 
break points of C. Then (1) becomes equality iff 

) P QF <Xi /_ ,+hn=Xi / :n<QF , j = I , . . . , V  = 1  (7) 

holds together with (5) and (6). Here [~,L~] is the interval of linearity of C that 
• i j  . contains both the ~ and (£. In particular, if all ~, j - 1 , . . . ,  v, are the break points 

of C, then the respective Fi:,, i = 1 , . . . ,  n, are determined uniquely: 

}} F i . , = m a x  min n F _ ; j  , 1 0 , 
• ( ( i j  - i j _ ,  ' ' (8) 

i = i j  l + l , . . . , i j ,  j = l , . , . , v  . 

On the other hand, for the special case of sample mean, yields C(x) = x, v = n, 
• • 1 n 1 and so (7) becomes trivial. Indeed, we see that E ; i ~ i _ l  X~:n = fo QF(X)  d x  : -  I 2 for 

any type of interdependence among the variables. 
Inequality (1) can be deduced from the representation 

" f + ~ £  E ~ ciXi:n = x ciFi:n (dx) , 
i = 1  oo i ~ l  

and the solution of the linear programming problem 

m i n £ c i F ; : , ( x )  = C ( F ( x ) ) ,  x E ~ , (9) 
i=l 

where the minimum is taken over all (F;:n(x))7_ l satisfying (5)-(6), and from a 
basic property of the stochastic order. This asserts that 

// i g(x)G(dx) < g(x)H(dx)  (10) 
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for  all nondecreasing functions g if G > H on (a, b) and G = H at the ends (see, 
e.g. Marshall  and Olkin, 1979, p. 444). At  each point  x, the minimum in (9) is 
at tained by a vector (F~..* n (x))7=1, whose coordinates form distribution functions, as 
x varies, with properties equivalent to (7). 

As a consequence of  Theorem 1, we get the best possible lower bounds 

n f 0  1 __ E ~ ciXi:,, >_ QF(X)D(x) dx , 
i=l 

where D: [0, 1 ) ~ . ~  is the right derivative of  the smallest concave function 
satisfying r (~)  _> 2~J__l c~, j = 0 , . . . ,  n. 

EXAMPLE 1. Tr immed mean (single order  statistic) 

k k 

_ _ _  X / : t /  k E k +  1 - j  ~=j 
(11) 

<- n + l - j  ,, y(x) dx , 

1 _< j < k < n. The same bounds hold for the expectat ion of  the Winsorized mean 
E ! [/iXj:~ k-I . + ~ i=j+ l  x~:. + (n + 1 - k)Xk:.]. 

] 

EXAMPLE 2. Difference of  two order  statistics 

0 <  E(Xj:n - X,.:,) < n + i _ j QF(x) d x -  7 (x) d x .  

It is worth  noting that  

Jo' - ± 1' h(QF(x))D(x) dx < E cih(Xi:n) < h(QF(x))D(x) dx (12) 
i=1 

for  every nondecreasing function such that Eh(X1) is finite, and equality in (1) 
implies that  in (12). 

Let  us now concentrate  on single order  statistics X,,:,, m = 1 , . . . ,  n, (cf (11)). In 
this case C has a single break at '~@, C(j) = ~ i J l  ci, j = 1 , . . . ,  m - 1, n, and 

P(Xm-l:n ~ Q F ( ~ n  l) <_Xm:n =xn:n) = 1 , 

and 

r n F  + l - m ,,] 
F,~:,,=maX~ n~_ ( - - m  ,V f (13) 

by (7)-(8), respectively. Plugging ht =-l(-o~,t] into (12) yields P(Xm:n _< t ) >  
F~:n (t). 
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THEOREM 2 (Caraux and Gascuel, 1992a, Rychlik, 1992a). For every sequence 
of dependent identically F-distributed random variables X1, . . . ,X, ,  we have 

maxf  nF-(x)+-l-m 0\. _ _ m i n { m F ( X ) , l  } n  (14) ~. n + l - m  , ) <_P(Xm:,<x)< 

For each lower and upper bound, for each n c .1if, and m = 1 , . . . ,  n, there exists a 
sequence of random variables satisfying the bound on the whole real axis. 

Accordingly, the joint distributions, which maximize (minimize) the expecta- 
tion of a given order statistic, minimize (maximize) uniformly the respective 
distribution function. There are numerous methods of constructing distributions 
with this property. The first example was presented by Mallows (1969) who 
constructed an n-dimensional density with uniform marginals for which EXI: n is 
minimal. Lai and Robbins (1976) extended the Mallows example to the case of 
arbitrary, possibly nonidentical marginals (the results were expressed in terms of 
the supremum of expected sample maximum), and noticed the existence of sto- 
chastically extreme distribution of the maximum. Lai and Robbins (1978) con- 
structed a sequence of i.d variables (deterministic functions of a single uniform 
variable) such that every element of the sequence of maxima has the maximal 
expectation. They proved that these maxima and those of i.i.d sequence tend in 
distribution to the upper end-point of the support of F at the same rate. Distri- 
butions of other extreme order statistics exhibit the analogous asymptotic be- 
havior (see Rychlik, 1992b). 

We now describe a method of calculating the accurate lower and upper bounds 
for the expectation and variance of an arbitrary measurable function h of a given 
order statistic, presented in Rychlik (1994). To omit trivial solutions we assume 
that Eh(Xl) and Varh(Xl) are finite. A first useful result, which is of an intrinsic 
interest, is the characterization of the all distributions of a given order statistic for 
the all possible dependent F-distributed samples. Distribution function Fm:n of 
some Xm:n is characterized by two conditions: one is that the increase of Fm:n does 
not exceed the increase ofnF, and the other is (14). In other words, each Fm:~ has a 
density function fm:, with respect to F, not greater than n F-almost surely and 
such that its indefinite integral 

f Fm:n(x) = fm:,(t)F(dt) satisfies (14) for all x C N . (15) 
OO 

Therefore 

Eh(X,~:,.) = h(x)fm:.(x)F(dx) . (16) 
[3O 

Varh(Xm:,) = h2(x)fm:,(x)F(dx) 
OO 

__(/~OOh(x)fm:n(x)F(dx))2 ' (17) 
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and, in consequence, the original problem can be replaced by calculating the 
extremes of the right-hand side functionals in (16) and (17) for fm:, from the 
convex set of  functions, say ~'m:~, satisfying 0 _< f,,:~ _< n and (15). Embedding 
~-m:~ into a properly chosen topological space, we can prove that the extreme 
values of  (16) and (17) are attained by some extreme points of  Ym:~. In the case of  
continuous F, a density fm:, is extreme in ffm:, iff 

fm:n = either 0 or n on 

{x: max{nF-(n~+l mm,O } { 1} < Fm:n < min mF(X), 1 , 

(18) 

which an open set, i.e. a countable, finite, or empty union of disjoint open in- 
tervals. For  general F, extreme fm:n may have at most one value between 0 and n 
on each subinterval of  (18) (for the precise definition, see Rychlik, 1994). 

Being confined to such a simple class of  densities, we can easily guess the form 
of solution for typical functions h. E.g., for h nondecreasing, the expectation is 
maximized by the density maximally moved to the right, i.e. f,,~:~- n+~-m on 
[QF(-m-y!), +oc)  (cf (12) and (13)). The variance can be maximized if we maximally 

• 7 - - "  disperse the density in the both directions so that we obtain f£.~ m on 
and n ~ m on [b,+oc) for some a < b, determined by conditions 

+ e ~  **~ - ff-o~ f~,:, (x)F(dx) = 1 and parametric maximization of (17). 

EXAMPLE 3. (Rychlik, 1994). Let )(1, . . .  ,Xn be uniformly distributed on I - l ,  1]. 
Then 

m m - 1  
- - - 1 _ <  EXm:n < - -  , 
n n 

with the notation k = max{m, n + 1 - m} 

( ~ - -  1 ) 3 - ( 2 k - 1 )  2 2 [ m(n+l 1£).]2 
6~ <- EXm:n <- 1 n(n + 

1 + ! -m).] 
+SL n(n +T) ' 

1 m 2 ÷ (n ÷ I -- m) 2 2n(n + 1) 
3n 2 _< VarXm:, _< 1 -~ 6n 2 3m(n ÷ 1 - m) 

x - + 1  
n + 1 2m) 2 +- 1 + 4 In + 1 - 2m I 

2.2• Related results. We shortly mention the case of  order statistics of possibly 
dependent, nondentically distributed random variables X1,. • • ,An, with distribu- 
tion functions F1, . . . ,Fn,  respectively. It is easy to generalize (14) to 
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so that 

max~ i21 [  n-T1--mF/(x)+l--m,o}<P(Xm:,_ <x)<_ _ min{ 1 l} 
1"2 I 

(19) 

fmn 1 fom 1 Q ~ F ~ ( x )  dx  > EXm:, > m Q ~ F , ( X )  dx  . (20) 
n + l - m  1 - - 

Generally, the bounds are not always attainable. Rychlik (1995) presented the 
necessary and sufficient conditions for/~}, i = 1 , . . . ,  n, so that each inequality in 
(19) and (20) becomes equality. E.g., the right-hand side bounds are attained if the 

n F, l all densities of F/, i = 1 , . . . ,  n, with respect to ~i=1 i are not greater than ~ on 
" E (-0% Q ~ ( m ) ] .  If ~i=1 i has a jump at Q~-~F~(m), then the condition can be 

weakened for this point. Observe that for m = 1, the condition is satisfied and the 
bounds are sharp for arbitrary marginals, which was obtained by Lai and Rob- 
bins (1976). Tchen (1980) proved that there exists an infinite sequence of de- 
pendent random variables (X~)i~l with arbitrarily chosen respective distribution 
functions (F/)i~__l such that EXn:, = f 2  1Q~F~(X) dx (equivalently, EXI:, = 
f0 ~ Q~F,  (x) dx) for all n E Jf  ~. 

As we can see, various problems for the case arbitrarily dependent random 
variables have surprisingly nice solutions. Serious difficulties arise when we make 
some assumptions on the interdependence of variables. Kemperman (1993) 
considered bounds for the expectations of L-estimates of variables with given 
k-dimensional marginals, 1 < k < n, and derived interesting lower and upper 
estimates of the bounds for expected order statistics from k-independent samples. 
In cooperation with Ott and Loh, he established that 

297 + 5v/5 77 
0.213421 ~ 1444 _< inf EXI:3 < ~-6 ~ 0.213889 

for the pairwise independent standard uniform variables X I , X 2 , X 3 ,  which im- 
proved a result of Mallows (1969) 

0.208333 ~ 5 _< inf gXl: 3 ~ 3 ~ 0.214286 . 

Gravey (1985) presented the following inequality for identically distributed 
(n + 1 - m)-exchangeable random variables: 

n 

• - m - 1 (m"-') -~ QFI:.+,_,.(X) dx . 

2.3. I . i .d  case. In this case, we have explicit formulas for the distribution func- 
tions of order statistics 

i=m 
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and for the expectation of arbitrary L-estimate 

n f 0  1 n 

i=l i=l 

where 

(21) 

n -  1"~ i-1 -"  (22) 
N i : n ( x ) = n  i l J X  ( l - x ) "  ', i = l , . . . , n ,  

is the Bernstein basis of the polynomials of degree not exceeding n -  1. For  
abbreviation, we write N instead of a combination ~i"=1 ciNi .... remembering the 
dependence of  N on the coefficients of the L-estimate. For  the mth order statistic 
N = Nm:,, which is the density function of mth order statistic of standard uniform 
sample of  size n. 

EXAMPLE 3 (continued). Let X1,. . .  ,Xn be independent uniformly distributed on 
[ -  1, 1]. Then 

2m 
EXm:n- 1 , 

n + l  
m(n + 1 - m)  

EX2m:,, = 1 - 4  (n+. 1 ) (n+2)  ' 

4m(n + 1 - m) 
VarXm:n : 

(n + 1)2(n + 2) 

3. Moment and support bounds 

3.1. L d  case. Suppose now that Xi, i = 1 , . . . , n ,  are dependent and identically 
distributed, but we merely know a pair of location and scale parameters of the 
parent distribution. Because dropping either of the parameter constraints would 
enable us to increase trivially the expectation of L-estimates beyond any bounds, 
these are the minimal reasonable assumptions on the marginal distribution. 

Suppose first that the expectation EX~ =/~ and the pth absolute central moment 
EIX 1 - #[P _-- o-P are given, where 1 < p < oc is fixed. Applying (1) and the H61der 
inequality, we can write 

° f01 E Z c/(X~: . - ¢t) < (Qg(x)  - # )D(x)  dx 
i=1 

I' = (QF(X) -- ,u)(D(x) - a) dx 

<_ l ID - allq   , 

for an arbitrary real a, and q = ~P. If we choose aq that minimizes lID - aHq , (in 
. p - t  . d n other words, aq is the coefficient of /q-projection of ( i)i=l onto vectors with 

identical coordinates (cf (3)), we obtain the sharp bound. Indeed, for the non- 
decreasing right continuous function 
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ap P - ~ -  aql sgn(D - aq) 
QF* = 12q II ,+/~6 - aqll} p 

fO (QF*(X) -- p)D(x) dx = lID - aqllq17p • 

l l 3  

(23) 

THEOREM 3 (Rychlik, 1993b). If X~, i =  1 , . . . ,  n, are identically distributed, and 
EX~ = 12, and E]X1 - 121 p = 17pP, 1 < p < +ec,  then 

n 

E Z ci(Xi:. - 12) <_ liD - aqllq17p = II (4 - aq)inl IIq17p , (24) 
i=1 

(cf (3)), which is equality iff the joint distribution of X 1 , . . . , X ,  satisfies (5)-(7), 
and the common distribution function F* has the quantile function defined 
in (23). 

Observe that for the mean-variance bound (p = q = 2), formula (23) can be 
1 n n significantly simplified so more that a2 = ;;~i=1 d i =  ~ i= l  ci- 

It was Arnold (1980) who adopted the application of the Hdlder inequality for 
establishing bounds on expected order statistics from the i.i,d samples to the 
dependent case. Using the Lai-Robbins distribution bound (13) for m = n and the 
Schwarz inequality, he determined the mean-variance bounds for the sample 
maximum and range (analogous results for p ¢ 2 are given in Arnold, 1985, see 
also Arnold, 1988). Other special cases of Theorem 3 are the mean-variance 
bounds for the expectations of order statistics: 

(_ 12 - m 172 -- < EXm:n - < 12 + + - m  172 , (25) 

given in Caraux and Gascuel (1992b). Arnold and Groeneveld (1979) proved (25) 
as well as the respective bounds for trimmed means and differences of order 
statistics, using the Schwarz inequality to the left-hand side of (24). 

Caraux and Gascuel (1992b) presented a version of (25) for nonidentically 
distributed variables, with 12 and 172 replaced by ~ ~ = l  EXi and 

Y27=1 [VarXi - (EXi - {t)2], respectively, where the equality cannot be reached for 
any mean and variance conditions, though. The necessary implicit condition is 
that all given moments come from marginal distributions satisfying the as- 
sumptions of Rychlik (1995). Aven (1985) proved two bounds on the expected 
maximum, dependent on means, variances, and variances of differences (or, 
equivalently, covariances): 

v n \i=1 [ V a r ( X i - X J ) + ( E X ' - # ) 2  EX,:, < 12 + 

I 

EX,:, < max EXi + n -  1 min V a r (X i -  . 
1<i<.____ n <~<n \/_~= 
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The former one was extented to all L-estimates by Lefhvre (1986) 

E ~i=1 ci(Xi:n - #) <_ cj --~Ci]n i=1 J /j (26) 

x min [Var(X~- -Xj.) + ( E X / -  ~)2 . 
l<j<n i=1 

d. n 
Repeating the proof  from David (1988) and applying the fact that  (~)i=1 is the 

C n /2-projection of  ( i)i=l onto nondecreasing sequences, we can essentially improve 
(26) for non-nondecreasing (ci)i~=l in the i.d case if we replace 
11 ( C ~ ;  1 ~ L 1  C i ) ; 1  [[2 by ¼11 (dj - ~in=l Ci)jL1112" 

now extend Theorem 3 to the case p = 1. 

THEOREM 4 (Rychlik, 1993b). For  the i.d case, with EXI = # and EIXI -/~l = {rl, 
we have 

n 
E ~--~Ci(~i: n -- #)  ~ lID - al  IlooOl = 1 (d  n _ dl)al • (27) 

i=1 

_ ik With 0 < ijn - < ~ < 1 denoting the first and last jump points of  D, (27) becomes 
equality iff 

P(X#+I:. = X/k:. = p) = 1 , 
ij £ 

~ -  EX;.:,, = ~ +  EX~:,, =9~1 
z . ,  

i=1 i=ik+l 

and (7) hold. 

THEOREM 5 (Rychlik, 1993b). If  X/, i =  1 , . . . , n ,  are i.d, EX1 = # ,  and 
P(a <X1 < b) = 1, then 

E ~ ci(Yi: n - #)  < (b - #)  C i - (b - a)C . (29) 
i=1 i=1 

Let ~ and ~ be the nearest left and right to ~ -  jump points of  D, respectively. Then 
equality in (29) is attained iff 

P(X/,:. = a) = P(X/k+,:. = b) = 1 , (30) 

ik b -  
Z P(X/:~ = a) = # (31) n b _  a ld 

i--ii+l 

'~--, b - 
P(X/:, = b) = ik - n b - a ' (32) 

i-ij+l 

and (7) hold. 
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The case p = cc (ess sup norm) is derived for # -  a = b - ~  = aoo. Fixing 
b - a, and minimizing the right-hand side of (29) with respect to b, we derive an 
accurate bound under given expectation and support length. 

COROLLARY 1. Under the hypotheses of Theorem 5 for some a, b satisfying 
l) b -  a = 2, and for ia. and ~ being the smallest jump point of D satisfying 

dik > ~i"=l ci, and the preceding one, respectively, yields 

E ~ c i(X/:n - -  # )  < Ci - -  Ci /~ • 
i=1 i = l  

If dik < ~i"=l ci, we have the equality in (33) iff 

P l : .=X/k : .= /~ - -  1-- 2, X / k + l : . = X . : . = # +  .t = 1 . 

(33) 

/ J ~  ik Otherwise, it suffices that (30)-(32) and (7) hold for some b,/~ + ~ < b _< # + g/o 
and a = b - 2. 

EXAMPLE 4. In the notation of Theorems 4--5, and Corollary 1, 

n 

EXm:n <- # -] 2(n + 1 - m) ~rl , 

m a x { ( b -  ¢t)n - ( m -  1 ) ( b -  a),0} 
EXm:. <_ b + # , (34) 

n + l - m  
m - I  

F ~ m :  n < ~ ~- .~ . 
n 

We can replace the mean by another location parameter: either of the support 
endpoints (assumed finite). It would be natural and convenient to consider 
nonnegative random variables (a = 0), with given either an ordinary pth moment 
EXf =/~Pp, p > 1, or the right support endpoint Poo. 

THEOREM 6. If X/, i = 1 , . . . ,  n, are nonnegative i.d random variables, then 

// 

E Z ciXi:n ~ II max{D, 0}]I~/~ = max{d,, 0}~t , (35) 
i=1 

B 

g Z c i X / : .  -< II m a x { D , O } l l q l t p  

i=, (36) 

= max ,0 q#p, 1 < p < ~ . 

The bounds are the best possible. 

We do not indicate here for which joint distributions bounds (35)-(36) are 
attained (see Rychlik, 1993b). Observe that we can similarly obtain the sharp 
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inequalities for the expectations of L-estimates of arbitrary i.d X/, i = 1 , . . . , n ,  
with a known absolutep th moment mp p = EIXI IP, p > 1 or rno~ = inf{M: P([X11 < 

: 1}:  

E Z e i X i : n  < [l(d/)i~=ll[qmp, 1 <<_p< ~ . (37) 
i=1 

3.2.  D e t e r m i n i s t i c  bounds .  We first analyze the quantile function (23). This is 
stepwise, v(< n)-valued, with jumps at some of ~, i = 1 , . . . , n  - 1. It will be 
convenient to write the respective marginal distribution as 

( X  1 . P ~  - aq[ sen(d/-aq)ffp)  1 (38) V : Xi: n ~-- [2 n k i [ ( p _ ~  i __ aq[)i%l ][q = -~ 

for i = 1 , . . . ,  n. If it happens that some xi*.. ~ coincide, then we simply add their 
probabilities and obtain a well defined probability distribution. Combination of 
(38) with (5)-(7), ensuring the equality in (24), can be replaced by the following 
one: 

P(X/-n * i =  1, . n ) =  1 (39) 
• = X i :  n ~ • . ~ • 

On the other hand, let Xi, i = 1 , . . . ,  n, be defined as the i th coordinate of a random 
permutation of given numbers x l , . . .  ,x, (intuitively, this is the outcome of ex- 
haustive drawing without replacement of n balls labelled x l , . . . ,x~  from an urn). 
It is easy to verify that X/, i = 1 , . . . ,  n, are dependent identically distributed with 
the expectation 2 1 n pth = ~ i = l x i ,  and absolute central moment spP= 
1 n ~ i = 1  Ixi - ~[P, and deterministic order statistics xi:n, i = 1, . .  . , n. By Theorem 3, 

n 
a n 

ce(x,: .  - <_ I I ( d / -  q)i=l I]qSp " (40) 
i:1 

Setting xi : xi*: n, i = 1 , . . . ,  n, with # and O-p replaced by their sample counterparts, 
we obtain the random sample with the distribution satisfying (38) and (39), and so 
(40) becomes equality. From inequality (24), concerning the expectations of 
L-estimates of i.d samples, we have concluded its deterministic counterpart (40), 
which holds for samples from arbitrary populations. 

It is easy to verify that for the other results obtained hitherto in this Section, 
except of Theorem 5, there exist jump marginal distribution functions with values 
in the set {~, i : 0 , . . . , n }  for which the respective upper bounds are attained. 
Repeating the above reasoning leading to (40), we obtain the sharp deterministic 
counterparts of (27), (33), (35), (36), and (37): 

£ ci(xi:n - 2)  < ½ (dn - dl )sl  , (41) 
i= 1 

~-~Ci(Xi:n--X) <{ik~- '~C i~= 1 ) 
i=I ~ r /  i=I Ci (x.:.-x1:.) (42) 

(ik is defined in Corollary 1), 



Boun& for expectations of L-estimates 117 

n 

~_j  Ci(Xi:n -- Xhn)  ~ m a x { d ~ ,  0}(2 - x l : . ) ,  

i=1 

n 1 ~ _ c i ( x i : n -  x.:,) _< H(max{di, O})i~=lllq ( x i -  xi:.) p , 
i=1 

n 

i=I &>0 
n n 

cix~:, <_ max{-dl ,  d, } Z Ixi[ ' 
i=1 i=1 

I 

~ CiXi:n ~ II(d~)7=ll[q Ixil p , 
i=1 i=1 

cixi:, <_ Idil max{ -X l :n ,X , : , }  . 
i=l i=1 

(43) 

ci (xi:,, - 2) <_ ]] (di - a.)in=, li. II (xi - x)iL1 ]l 
i=1 

(44) 

is the best possible bound, where ]l' II. is the conjugate norm of II' I1, and a. 
minimizes l l(4- a)'i'-i [L. in a E ~ .  This is a generalization of so called the Sam- 
uelson inequality on general L-estimates and symmetric norms. 

Samuelson (1968) raised and solved the problem of how much can a single 
observation deviate from the sample mean in the standard deviation units (the 
case of cl . . . . .  cn 1 = 0, c, = 1, p = 2 in (40), answer: x/n - 1). Samuelson's 
paper stimulated intensive investigations of the problem and its modifications: 
alternative proofs, rediscoveries of earlier results, and extensions. Six different 
proofs were reviewed by Arnold and Balakrishnan (1989). The earliest proofs 
found in literature were due to Thompson (1935) and Scott (1936), mentioned by 
Wolkowicz and Styan (1980). We do not attempt to present a complete record of 
consecutive contributions, referring the reader to Arnold (1988) for a compre- 
hensive bibliography, and Olkin (1992) for the most recent review, with yet an- 
other proof. We merely point out several partial results leading to (44), and do 
not mention generalizations of the Samuelson inequality in regression models. 

For the Samuelson assumptions (deviations from the mean in the standard 
deviation units), Scott (1936) established the bound for x,-l:n. The bounds for 
arbitrary order statistics follow directly from Mallows and Richter (1969), and 
were explicitly stated by Boyd (1971) and Hawkins (1971). Mallows and Richter 

1 ~- 'J  X (1969) established the inequalities for selection differentials ?z_~i=l i:,, and 
!~i~+l~ kxi:,, and their difference. The respective results for x , :n - x l :~ ,  
xn_l:~ -Xl: , ,  and the difference of arbitrary order statistics were derived by Nair 

Rychlik (1992c) proved that the p-norms, 1 <_ p _< +co, can be replaced by any 
symmetric norm I1" II on ~" ,  so that, 
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(1948), David et al. (1954), and Fahmy and Proschan (1981) (implicitly in Arnold 
and Groeneveld (1974)), respectively, and for the L-estimates with nondecreasing 
coefficients by David (1988). 

Beesack (1973) derived (44) for the single order statistics and smooth sym- 
metric Luxeburg norms. Arnold and Groeneveld (1981) proved (41) and (43) for 
the selection differentials, and Groeneveld (1982) obtained (42) and (43) for single 
order statistics and their differences. Mfirg~ritescu and Nicolae (1990) presented 
bounds on Xm:n - ~ in terms of differences of sample differentials, which cannot be 
deduced from (40)-(42). Boyd (1971) and Hawkins (1971) refined the trivial 
bound (40) on Xl:, in the case p = 2 as follows 

1 
Xl:  n - -  )C ~ ,.-------?S 2 . 

x / n -  I 

Also, Thompson (1955) noted that 

2x/~n 
Xl:  n - -  Xn: n ~ $2 . 

v/2n 2 - l + (-1)" 

3.3 .  I . i . d  case .  If X1,... ,X, are independent and identically F-distributed, with 
the expectation 12 and variance a2, then by (21), (22) and the Schwarz inequality 

/o 1 EXn:n - t~ : (QF(X)  - #)N,,:n(X) d x  

/o = (QF(X) -12) (N. :~(~)  - 1) d~ (45) 

< IlN.:n - II[21[QF - #H2 

n - 1  
- -  2 n V / ~ - ~  l 0"2. 

We can subtract any real from N,:,, above, but we minimize the norm by choosing 
f~ N~:,(x) dx = 1. Bound (45) is tight, and the equality is attained iff 

S. : ° (x )  - 1 v % -  1 
QF.(X)-12--i[Nn:.  _ 1"2 a211 -- n -- 1 (nx ~-1 -- 1)a2 , (46) 

i.e., for the i.i.d sample with the common distribution function 

F * ( x ) =  n - 1  x - # + l  , 

- - l  a 2  

v ~ -  I 
# 0"2 < x  < / 2 +  V / ~  - l a 2  • 

n--1  

(47) 

The result was presented independently by Gumbel (1954) and Hartley and David 
(1954). Observe that similar bounds can be derived for arbitrary L-estimates: 
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" N ~'~ci EZci(Xi: ,  - #) -< - - -  ¢2 , (48) 
i=1 i=1 2 

specified by Hartley and David (1954) and Ludwig (1960) for the cases of single 
order statistics and differences of them, respectively. However, (48) is not sharp 
unless the argument of the right-hand side norm, generally a polynomial of degree 
n - 1, is nondecreasing. This is actually nondecreasing for the sample range, and 
the selection differentials so that the bounds 

and 

~ 2 n  2 2(n!) 2 
E(X,:, -XI : , )  <_ 2 n -  1 ( 2 n -  1)! ¢2 (49) 

E ] Z 1 I) 
t=n+l-k i,j=n+l-k ki+j 2J 

due to Plackett (1947) and Nagaraja (1981), respectively, are accurate. Applying 
the H61der inequality, Gilstein (1981) provided the following sharp bound: 

EYn:n < n ~  Pn~llmp~ 1 < p < e~ , 

attained for 

2 p J n p -  1 ,,~ 
Q F . ( x ) = n ~ ' ~ _ l m p x ~ ' ,  O < x < l  . 

Likewise, Arnold (1985) obtained sharp bounds for the expected maximum and 
range of random variables with fixed expectation and pth absolute central moment 
%. The formulas are complicated and we omit presenting them here. 

Another extension of (45) is due to Lin (1988) 

/ ( n -  1) 2 
- - - U  a2k, ~ E ~ ,  kEJV" , 

becoming equality for 

F(x) = ° ~  + const (n, ~, ¢2k) x k • (50) 

Rustagi (1957), using variational methods, derived the sharp bounds on the ex- 
pectation of)(, : , ,  dependent on/z, ¢2, and ¢~ = inf{M: P(IX1 - # [  _< M) = 1}. 
The upper one is x / ~ -  lo-2, attained by a distribution function of the form 
" ~ ,  with possible jumps at the support ends (cf (47), (50)). The lower one is 
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attained by a three-point distribution. Analogous results were presented earlier by 
Hartley and David (1954) for the sample range. 

It was Moriguti (1953) who overcame the problems in establishing sharp 
bounds, caused b y  a generally nonmonotone polynomial N and went beyond 
special cases. He replaced the polynomials of the right hand side of (21) by 
properly constructed modifications such that their norms provide the best mean- 
variance bounds for the left-hand side. We present here a simpler version of 
Moriguti's Theorem 1: 

LEMMA 1 (Moriguti, 1953). Let f be an integrable function in some [a, b], and let 
Pf  be the right derivative of the greatest convex function, say G(x) = f2 Pf(t) dt, 
not greater than F(x) = J2f(t)  dt, the indefinite integral o f f .  Then 

f b g(x)f(x)  dx <_ g(x)Pf(x) dx (51) 

for all nondecreasing functions g for which both the integrals are finite. Fur- 
thermore, 

g(x) f (x)  dx = g(x)Pf(x) dx (52) 

iff g is Constant on every open interval where F > G. 

Relation (51), rewritten as 

f b g(x) F(dx) < g(x) G (dx) 

is fulfilled, since F precedes G in the stochastic ordering (cf (10)). Both F and G 
are continuous and {F > G} is a union of open intervals. If g is constant on an 
interval (c, d), where F > G and F = G at c and d, then 

f d g(x)f(x) dx = g(c)[F(d) - F(c)] 

( = g(c) Pf(x) dx 

~d 

= Jc g(x)Pf(x) dx 

and so (52) is justified. 
Observe that g = P f  is nondecreasing and satisfies (52), and, accordingly, this 

is the L2-projection o f f  onto the convex cone of square integrable nondecreasing 
functions in [a, b] (see, for example, Balakrishnan, 1981, Section 1.4). Applying 
(21), (51) and the Sehwarz inequality, we obtain 
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/0 [ /o 1 ] E Z ci(Xi:n -- #) ~ (QF(X) - #) PN(x )  - PN( t )  dt dx 
i = 1  

< P N -  ~Cii=l 2 ° . 2  ' 

(53) 

which becomes equality for 

PN(x)  - ~7 -1  Ci 
QF* ( x )  = - -  - -  ~ - - -  0"2  , (54) 

]hPS - ~i=1 <[12 

by (52). It is easy to note that P N  is defined by different formulas on the different 
elements of a partition of the domain. In some intervals, the projection coincides 
with the projected function, and in the other ones, this is the constant equal to the 
mean value of the original polynomial over the interval. However, the points of 
partition must be usually determined numerically. Moriguti (1953) described the 
form o f  P N  for the cases of single order statistics, and their differences. He did not 
state (53) and (54) for general L-estimates, because this notion was not known yet. 
Balakrishnan (1993) derived explicit formulas for a few extreme order statistics. 
Ludwig (1973) presented a table of the sharp bounds for expected differences of 
order statistics in small samples. 

Lemma 1 can be applied to calculating bounds more general than (53). 

For n i.d random variables with finite expectation # and pth absolute THEOREM 7. 
central moment 0.P, 1 _< p < oc, 

n 

g ~ ci(Xi:n - g) <_ IIPN - a q l [ q f f  p , (55) 
i--1 

is the best possible bound, where aq minimizes IIPN - all q in a ¢ .~. 
If p = 1, then 

IIPN - a ~ [ l ~  = ½ ( P N ( 1 )  - PN(O)) , 

and the equality in (55) is attained only i f P N  is constant on neighborhoods of the 
both endpoints, say on [0, c~] and [fi, 1], and F* is a three point distribution 
function, valued p - c, # + d, and g, with some probabilities a _< c~, b <_ 1 - fl, 
and 1 - a - b, respectively, and c and d satisfy: 

bd - ac = 0 , 

bd + ac = 0.1 . 

Otherwise the equality in (55) holds for no marginal distribution. 
If  1 < p < ec, then the equality in (55) holds iff 

P ~/]PN - aq[ sgn(PN - aq) 
QF* = # +  0.p • 

II P-~/I P N  - aql Ilq 
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I f p  = c~, then (55) becomes equality for any distribution such that 

P(X1 = It - 0-~) = sup{x: PN(x) < al} , 

P(X1 = It + 0-~) = sup{x: PN(1 - x )  > al} • 

Inequality (55) is an obvious extension of (53). It is sharp, because the func- 
tions providing the equality in the norm inequality satisfy conditions implying 
(52). Observe that the unique distribution function attaining the bound for some 
1 < p < ~ is a mixture of a finitely valued discrete distribution with an absolutely 
continuous one, being the ( p -  1)st power of the inverse of N, a polynomial of 
degree n - 1. 

Sugiura (1962) noticed that (48) can be treated as the first term expansion in 
the Legendre orthonormal basis 

_ ~ + l_n[N(n) 
~Pn (2n+ 1)! ,+l:2,+l, n _> 0 . 

~ b Setting QF = ~-~j=oajqgj, N = ~j=0 Jq~j, where aj = fQFO} and bj = fN~pj, and 
applying the Schwarz inequality, we have 

.~0 1 k i ~ QF(X)N(x) d x -  Z ajbj < Z ~ b~ , 
j=O j=k+l j=k+l 

and so 

E Z c i ( X i : n - l t ) - Z a j b j < _  ] l N l l ~ - Z b }  a 2 - Z a }  . 
i=1 j=I j=O j=O 

(56) 

Observe that for a given L-estimate, the coefficients b j, j >> O, are uniquely 
determined. Since each ~pj is a polynomial of degree j,  each aj can be considered 
as a combination of  expected order statistics from subsamples of size l _< j,  (e.g. 
subsequent sample maxima Xl:l). For single order statistics, Joshi (1969) multi- 
plied QF(X) by a polynomial factor xk(1 - x )  l taken from Nm:n(x), and following 
Sugiura's arguments derived a counterpart of (56) with It and 0-2 replaced by the 
respective moments of order statistics of smaller samples, which is useful when 
0- 2 =(X). 

Numerous bounds based on expectations of order statistics in smaller samples 
are presented in literature. For instance, Balakrishnan (1990), and Balakrishnan 
and Bendre (1993) refined inequality (48) for order statistics by making use of 
expectations of two maxima in smaller samples. Lin (1988) applied the Schwarz 
inequality to prove for nonnegative parent variables 

I 

E~m:n ~ (m - 1)(n + 1) EXm-l:n-I ' (57) 
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which becomes equality for the uniform marginal distribution. By means of 
H61der inequality, Kamps (1991) derived the following extension: 

n' ( ( r e + k - n - I ) '  F(m+~-~l )  
r ~ _ _  ~ /  E~2+k_n: , EXm:, 

(m 1)! k! F{(n+l)p-k-lk ~-l ) V 

n + 1 -- m < k < n, attainable by the power distribution 

F*(x) = const(p, n - k ) x ~  , 

where r > 0 and p > 1. Further generalization of (57) were presented by Gajek 
and Gather (1991), and Gajek and Lenic (1993). 

4. Moment  bounds for restricted families 

4.1. Symmetric random variables. Bounds for the case of symmetric (about #) 
random variables are obtained by a standard trick, making use of the property 

11 - Q F ( X )  = Q F ( 1  - x - O )  - ~ . (58) 

In consequence, for the dependent case, (1) can be rewritten as 

n f l 
E Z ci(X/:. - 11) _< (QF(X) - 11)DS(x) dx 

i= l  

= Z ( d n + l - i  - di) (QF(X) -- 11) d.x , 
i=l -~ 

(59) 

where/Y(x) = D(x) - D(1 - x - 0). Applying further norm inequalities, we con- 
clude 

THEOREM 8 (Rychlik, 1993b). If X/, i = 1 , . . . , n ,  are dependent symmetrically 
identically distributed about/& and EIX1 - #IP = ap for some 1 < p < oo, then 

E Z c , ( X ~ :  ~ 11) < 1 ' - ap i=1 _ ~ (~(x))q 

! 

1 ['1 [~] I q -- pv~ [n i~=l (dn+l_ i -d i )q  ap . 

(60) 

Inequality (60) is tight and becomes equality iff 
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/ 

P ( #  - X]:n = X . + I - j : .  - / ~  = d , , + l - j  - dj 

( d . + l - i  - 4)qJ ~p"  \ 2p Fx w';~]L. Z--~i=l 

For the cases p = 1 and p = +ec,  the best bounds immediately follow from the 
general ones presented in Theorems 4 and 5, respectively. F o r p  = 1, bound (27) is 
also the best possible for symmetric samples. Conditions of equality in (27) are 
analogous to those of Theorem 4, with (28) strengthened by 

E P ( X ~ : " - < P - x ) =  P(Xi:n_>p+x) for all x > 0  . 
i = I  i = i k + l  

For p = +oc, it suffices to replace a and b by # - am and # + ao~, respectively, in 
the statement of Theorem 5. In particular, the bounds (34), and 

~//n ~/min{m - 1, n + 1 - m} 
EX .... - /~  -<V ~ n T l - m  

E X ~ : , - #  < r a i n  n 1---m 1 ~ 

O-p , (61) 

(62) 

are sharp. The bounds for the expectations of quasiranges Xm:~- -Xn+l -m:n ,  
m > n@, are twice of those in (61)-(62) for the respective m th order statistics. 
Arnold (1985) determined the p-norm bounds for the sample maximum and range 
(the case p = 2 was treated in Arnold, 1980). 

In the i.i.d case, we obtain general bounds applying (58), and Moriguti's 
projection P (see Lemma 1). 

THEOREM 9. If Xi, i = 1 , . . . ,  n, are symmetric i.i.d random variables, with ex- 
pectation p and pth absolute central moment ap p, 1 _< p _< +oc, then 

n 1 
E Z ci(X/: n - /~)  < ,=x _ ~ IlPN'llqap (63) 

is an accurate bound, where 

// 

N ' ( x )  = N ( x )  - N(1 - x) = ~-~(c i  - cn+i- i )Ni:n(x) ,  ½ < x < 1 . 
i=l 

We leave to the reader to verify (63) and describe the conditions of becoming 
equality. As in the asymmetric case, the main difficulty lies in the precise de- 
termination of  the greatest convex minorant of a given polynomial. Generally, we 
can merely derive numerical approximations. Certainly, if the polynomial N s is 
actually increasing on [½, 1), it is its norm that gives the infimum of the bound in 
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(63). This occurs, e.g., for the polynomials corresponding with the sample max- 
imum and range, and selection differential. Plackett (1947) derived the equality in 
(49) for a symmetric distribution. Moriguti (1951) proved that 

2 1 2  B(n,n)a2 , (64) 
1 

EX.:, - # < n ~- 1 

generalized by Arnold (1985) to 

I 

E X , : , - g < ~  Ix" 1 - ( l - x ) "  1]qdx ~p, l < p < o c ,  

(half of the respective bound for the sample range). These bounds are attained by 
the respective quantile functions 

QF~(X) = # + const(p)P~x "-1 - (1 -- x) "-1 s g n ( x -  ½) . 

The bound for the selection differentials is a huge formula. On the other hand, 
analogous inequality for the single order statistics 

IB(2m - 1,2n +1_ u_}m!--  B(n,n)]½a2 
E~m: n - -  t l  ~ [ 2Be(m, n + 1 - m) (65) 

given in Sugiura (1962) is not sharp for 1 < m < n, because the function 

Q(x) =/~ + const(m) [xm-l(l - X)"-m _ X" m (1 -- X) m-l] (66) 

providing the equality in (65) is nonmonotone. In fact, the sharp bounds are 

1 

XO 

s q q ~rp (67) E X m : . - # <  (N~m:.(x))qdx+(N~,:.(xo)) ( l - x 0 )  ~ , 

where m > "@, and 1 _< p _< ec, and x0 is defined by 

/x01 S S Nm:,(xo)(1 - xo) = N~,:,(x) dx . 

Equality in (67) holds iff the distribution function F* is proportional to the 
(p - 1) st power of the inverse of N,~:, on the interval ( -  P - ~ ,  + P - ~ ) ,  
and has two jumps at the support endpoints of height 1 - x0. This problem is 
closely related to that of establishing bounds on mth quasirange of possibly 
asymmetric random variables, for which the bound, twice as large as (67), is 
attained for the same distribution. The solution was primarily derived for p = 2 
by Moriguti (1953, Example 4). 

Moriguti (1951) derived two sharp lower bounds on the variance of sample 
maximum. With the notation 
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we have 

and 

f l  n2[x n 1 _ (1 - - x ) n - l ]  2 

Z M.(2) = nix ~-1 + (1 - x) ~-~] - 22 ' 

VarX~:n -> (M~(0) 1) (EX,:n) 2 

VarX.:~ > 2"a 2 , 

where 0 _< 2n _< ~ is uniquely determined by Mn(2n) = 1. 

4.2. Projection method. We describe a method of determining sharp bounds on 
the expectations of L-estimates in terms of the first two moments of parent dis- 
tribution that comes from a given restricted family. The method, proposed re- 
cently by Gajek and Rychlik (1996), applies projections onto convex cones of 
functions. We actually apply the following lemma. 

LEMMA 2. Let c~ be a convex cone in a real inner product space 5F. If for a given 
f E 5F there exists its projection P ~ f  onto ~ (i.e., an element of ~ closest to f ) ,  
then P~f  is unique and satisfies 

( f ,  g) < (P~f,  g) for all g E cg , (68) 

( f ,  P e f )  = IlP~fJl 2 . (69) 

A more popular stronger version of Lemma 2 for the closed convex cones of 
the Hilbert spaces asserts that P~ef does exist and is uniquely characterized by 
(68)-(69) (see, e.g., Balakrishnan, 1981, Section 1.4). 

EXAMPLE 5. Suppose that 5f is the space of right continuous square integrable 
functions on [0, 1), with the inner product defined by ( f ,  g) = fo f ( x ) g ( x ) d x .  Let 
c( be the family of nondecreasing functions, orthogonal to constants in 5F. In 
other words, this is the class of all QF - #, where QF is the quantile of a distri- 
bution with a finite second moment and # is the respective expectation. By 
Lemma 1, PN (PN, 1) P n - = ~i=1 ci(Ni:n - 1) is actually the projection of N onto 
cg. Therefore, by (21), (68), and the Schwarz inequality, we have for the i.i.d case 

E ~ ci(Xi:~ - #) = ( Q F  - #,N) 
i=1 
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By (69), the equality holds for 

PuN - ~ i n = l  c i  
n QF* = # ~ iiP~ N _ ~ i=l  ci[l a2 . 

In fact, the majority of results in Section 3 follows from implicit applications of 
the projection method. The classes of all quantile functions and the all anti- 
symmetric about ½ quantiles are convex cones. These applications are not ap- 
parent for the i.d case, since D itself is nondecreasing. However, the deterministic 
bounds in Subsection 3.2 hold due to the fact that (di)i~=l is the projection of 
(nci)7=l onto nondecreasing sequences. 

The projection method provides a possibility of deriving sharp bounds for 
distributions from a restricted family, say ~ ,  if the corresponding family of 
quantile functions ~ = {QF: F ¢ Y}  is closed under positive combinations. It 
suffices to find the projections of functions N and D onto the family of quantiles, 
and calculate their norms. Then 

E ~-~ ciXi:, <_ IIP~Nl[m2 (70) 
i = 1  

in the i.i.d case, and 

n 

E~-]  ciY~:. <_ IlP~O[Im2 (71) 
i = l  

in the dependent one. If 9. - # = {QF - #: F E ~ }  is a convex cone, we can 
derive more subtle evaluations 

t7 

g }-~ c,(~.:. - #) _< IIP~-~ull~2 (72) 
i--1 

and 

n 

E Z c i ( X i : n  - #) _< IIP~_~DII~2 , (73) 
i = l  

respectively. Bounds (70)-(73) are attained by quantiles proportional to respective 
projections. 

Below we show applications of the projection method for deriving bounds on 
the expectations of  L-estimates from families determined by partial orderings of 
distributions. Other techniques for these families will be discussed in Section 5. 
First we consider the convex partial ordering (c-ordering) introduced by van Zwet 
(1964) for life distributions: F -% G iff QGF is convex on the support of F. The 
ordering allows to compare the skewness of life distributions (cf also Oja, 1981). 
Consider the family ~~-cG of all life distributions with finite second moments, 
succeeding G in the convex ordering. We assume that a fixed known distribution 
function G is continuous and strictly increasing on its support and has a finite 
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second moment. Two standard examples of such families are the ones induced by 
the uniform and exponential distributions. The elements of the former are the life 
distributions with decreasing failure probability (possible jump at 0 and a non- 
increasing density on ~+),  the latter consists of distributions with decreasing 
failure rate. We concentrate here on the dependent case. Note that 

£ ~ Q Z  G(x)G(dx)= ~ l  QZ (x) dx= #~ < oc, F C ~~-~.G , 

and 

fo fo 1 QFG(x)DG(x)G(dx) = Q~(x)D(x) dx . 

It follows that the compositions QFG, ~ . c ,  form the convex cone 

{ f0 = f :  [0, f ( 0 )  = 0, f2(x)G(dx) < 

(74) 

f - nondecreasing and convex /  m 

in the space of the right continuous square G-integrable functions with the inner 
product (f ,  9 ) =  f~f(x)9(x)G(dx). The problem of finding the accurate sharp 
bound on the expectation of a given L-estimate of i.d variables with a distribution 
function F E Y>~cc and a given second moment will be solved once we determine 
the projection of the respective function DG onto (74). The latter problem is not 
trivial, because there are no general methods of constructing projections onto 
convex functions like for projecting onto monotone ones (cf Swetits et al., 1989, 
Ubhaya, 1989, 1990). 

Fortunately, DG has a nice form: this is a nondecreasing jump function, taking 
v(_< n) values. For the case of single order statistics, Dm:,,G takes only two val- 
ues: zero near the origin and a positive value further. These specific proper- 
ties enable us to prove that the bounds on the expectations of the all L-estimates 
of F-distributed variables, F >-c G, are attained for distribution functions from a 
parametric subclass of @>-,c. The bounds for the expectations of single order 
statistics are explicitly derived. In description of distributions attaining the 
bounds, we confine ourselves to the presentation of the respective marginals. In 
each case, the construction of the joint distribution which satisfies 

" f01 E ~ ciXi:~ = OF (x)D(x) dx 
i=l 

is omitted (we refer to Section 2.1). 

LEMMA 3 (Gajek and Rychlik, 1996). (a) I f f  is a jump function in [0, oo) and has 
v values, then its projection P>-cGf onto (74) is a piecewise linear function, with v 
pieces at most. 
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(b) I f f  = 0 in [0, a), and M > 0 in [a, oc), then 

P~-~Gf(x) = max{2*(x - c~*), 0} G - a.e. , 

where ~* maximizes 

A(~) = [ f ~ ( x  - @G(dx)] 2 

f ~ ( x  - ~)2~(dx) 

for 0 _< a < a and 

2" = M J ~ ( x -  c~*)G(dx) > 0 . 
f~. (x -- 0~*)2G(dx) 

THEOREM 10. (a) For every L-estimate of a dependent sample with a distribution 
function F E Y>-cc and a second moment 112, there exists F* C if0 2 >-cG C ~;,-~.G, 

{ (yo ,' ) y o  = F : F ( x ) = G  + T j ( x - x j _ l ) + Z o q ( x i - x i  ,) 
>-cG 

i=1 

x c [ x j  1,xj] fo rsomey0>_0,~ l>_ . - -_>c~n>0,  (75) 

< ' " < x n = + o c ~  0 = x o  
J 

such that 

n ± 
EF ~-~eiXi:n ~ EF * c~Xe:, -~- IIP~-~GDGII112, F e Y>-cc  , 

i=1 i=1 

(76) 

and 

P>_ ~DG 
QF.G -- ][p>_ GDGI1112 . 

(b) In particular, for c~* E [0, Oc(-~@)) maximizing 

J2(x- ~)2~(dx) ' 

yields 

n ~/ m - 1  
EFXm:n < 1 A(~*)112, F E ~.~>-~ • 

- n + - l - m  n 

(77) 

(78) 

The equality in (78) holds for 

F* (x) = G (~* + x 
V/1 m,,1 A(c~*) 

A(~*)112 
( t -  ~*)G(dt) 
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Below we specify the results for G(x) = x and G(x) = 1 - e -x. Observe that in the 
former case (75) is the family of mixtures of a possible pole at the origin with not 
more than n uniform distributions with the left endpoint at 0. 

COROLLARY 2 (Gajek and Rychlik, 1996). Let X/, i = 1 , . . . ,  n, be i.d with a de- 
creasing probability life distribution and EX 2 = #2. 

If ~ 2  _< 1, then 

EXm:,, __< -~- 1 + ,u 2 
n 

where the equality 
[0, v%2]. 

Otherwise 

holds iff X/, i = 1 , . . . , n ,  are uniformly distributed on 

2( 2n 
EXm:n <- -, n + l - m #2 

which becomes equality iffX/, i = 1 , . . . ,  n, are [0, v /2n / (n  + 1 - m)/~2]-uniformly 
distributed with probability 3(1 - @ )  and have an atom at 0 with probability 
3 m - I  1 
2 n 2" 

COROLLARY 3 (Gajek and Rychlik, 1996). Suppose that X1,. . .  ,X~ have a com- 
mon DF R  distribution and EX 2 =/~22- Then 

/ ' /  1~2  ( l n ~ +  1 ) ~ ,  

Exm:, <_ v /2n / (n  + 1 - m)e 2, 

if m - ~ <  1 - e  1, 
n - -  

otherwise . 

The former bound is attained by the exponential distribution with the scale pa- 
rameter ~2" The latter holds iffF* is a mixture of the exponential distribution with 
the scaleY~/n/2e(n + 1 - m)#2 and the degenerate one at zero, with probabilities 
(1 - ~ ! ) e  and 1 - (1 - @ ) e ,  respectively. 

We can derive analogous results for the independent variables, if we determine 
projections of NG, a polynomial in G, onto (74). One can guess that projecting 
such functions is a more difficult task than for step functions and we cannot 
expect deriving simple analytic formulas. This means that, paradoxically, it is 
easier to establish bounds for all possible dependent samples than for that with 
the given precisely defined product distribution. The independent case was ex- 
amined in Gajek and Rychlik (1998), where various moment bounds for the i.d 
and i.i.d cases were also numerically compared. We note here that projections of 
general NG onto (74) are defined by different formulas on different intervals: the 
pieces where P~>GNG = NG alternate with pieces of  linearity. Also, P~-cGNm:nG may 
first coincide with Nm:nG, and then becomes linear. 

We proceed to present the bounds for i.d life variables with distributions from 
the restricted family 
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fo 
~--~co = {F: F -.% G, QZ(x) dx < oc} 

for a given G. The problem lies now in projecting DG onto 

-~<cc = I f :  [0, oc) H ¢~+: f (0)  = 0, f - nondecreasing, 
k concave,/0 ,2/x/O/ /  

Omitting details, we present merely the final results: a counterpart of Theorem 10, 
and respective implications for distributions with an increasing failure probability 
(J-shaped, for short), and for the IFR distributions. 

THEOREM 11. (a) For every L-estimate there exists F* C F ° ~,,.G~ 

@o = F: F(x) = G ~ j ( x - x j _ , )  + ui(xi-xi-1 ~cG 

x E [Xj 1,Xj] for some 0 _< cq <_ . . .  < e,, 
% 

0 = x 0  < . . .  < x n = + o o ~  C @-<,.a 
) 

such that for all F E Y-<ca 
gt n 

EF Z ciXi:, <_ EF* ~ ciXi:, = IIP~cGDGIIp2 • 

i=l i=1 

(b) If there exists e = e(m, n, G) > Q a ( ~ )  satisfying 

- x 2 o ( ~ )  = x a ( ~ )  , 

then 

,¢ EFXm., < 1 --  G ( ~ )  + x2G(dx) /22 ,  
• - n + T - m  -~ 

The equality holds iff 

) g*(x) = G 1 - G(~) + 7~ tZG(dt)x , 

0 < x <  

F E ~ - < c G  • 

Otherwise 

EF)~m:n <__ 
+ 1 - m ) ¢ £  x2G(dx) (n 

attained for a properly rescaled G. 

/22 

X/1 - c (~ )  + ~ 2 £  t~GIdt/ 

/22 

(79) 
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COROLLARY 4. Suppose that X~, i = 1 , . . . ,  n, are dependent i.d with a J-shaped 
distribution and EX 2 = #~. 

If ~-ln < ~3' then 

2 ( m -  1)# 2 EXm., < n 1 
• - n + l - m  7/~--n " 

The equality holds for a mixture of the [0, #2 /~1  - ~ ] - u n i f o r m  and the de- 

generate, concentrated at #2/~/1 2(m-l) and 1 - x / ~ @ ,  respectively. - -  - 4gn ' distributions with probabilities V/Bmnl 
If m~l > ~33' then 

E X  . . . .  ~ ~ -  1 ~ -  I.Z2 , 
n 

attained by random variables with the uniform distribution on the interval 
[0, v%2]. 

COROLLARY 5. IfXi, i = 1, . . .  ,n, are i.d with an IFR distribution and a given #2, 
then for c~ = c~(m, n) uniquely defined by 

2 ( 1 -  e - ~ ) e  -~ (1 m - 1 ) I n  ne 
n n +  1 - m  ' 

we have 

EXm.n  < n - -e-~x/e  ~ --  1 --  0~ #2  . 
• - n + l - m  c~ 

The equality holds iff 

F*(x)= 1 - e x p  ---e#2 2x/e - 1 - c ~ x  , 0 < x < v / e ~ _ l _ c ~  ' 

which is a combination of a right truncated exponential distribution with a pole at 
the truncation point. 

Combining the projection method for families restricted by the convex or- 
dering relations and the standard transformation of Subsection 4.1, we can es- 
tablish analogous results for families of symmetric distributions defined by means 
of s-ordering. We recall the definition: F -~s G iff QcF is concave and con- 
vex on the nonpositive and nonnegative parts of the support of F,  respectively. 
The s-ordering was defined and investigated by van Zwet (1964) (see also Law- 
rence, 1975). This is a comparison of distribution peakedness, and the s-ordering 
of a pair is inherited by the respective kurtoses. 

Let us consider the distributions symmetric about an arbitrary point # E ~ ,  
say F,, such that 

F ~ ( x ) = F ( x - # ) ,  and F ( x ) = l - F ( - x ) ,  x < 0  . (80) 
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Then, for a given G~, Fu ~-~ Gu (Fu -% G~) iff QFGI,~+ E ~-~-,.G (2~G, respectively) 
and (80) hold. This and (59) imply that the problem of determining the bound for 
an expected L-estimate of dependent variables with a given variance and a dis- 
tribution function F~ such that Fu ~ Gu, (G - fixed) consists in finding the pro- 
jection of the composit ion/YG onto 9~-~.c, and calculating its norm. In contrast 
with bound (76), the norm is multiplied by @220-2, which follows from 

fo QFG(x)G(dx) = ~0-2"~ 2 The bound is attained by F~ defined by 

Q F * G =  P>-~'GDSG 0-2 

]IP>-~GDSGN Vr~ 

(cf (77)) on the positive axis. According to (80), F* is extended on N_ and shifted 
by it. In the same manner we can obtain results for distributions F~ -~s G~, the 
only difference being in choosing the cone ~sG instead of ~-,G. 

Since/YG is also a step function, and 

/7 
DSm.n --  l [ m a x { ~ , l _ @ } , l  ) , 

• / 7 + l - m  

we can directly apply Lemma 2. In addition, every/Y has [@] values at most, and 
so we reduce nearly twice the number of parameters in representations (75) and 
(79). We shall not present here theorems for the classes of distributions deter- 
mined by the s-comparisons with a general G. These are similar to Theorems 10(a) 
and 1 l(a). We describe only the bounds for the special cases of symmetric uni- 
modal and U-shaped distributions, which follow and precede the uniform dis- 
tribution in the s-ordering. 

THEOREM 12 (Gajek and Rychlik, 1996). Suppose that X1,. . .  ,if, are i.d random 
variables, with a symmetric about # and unimodal distribution and variance a 2. 

If 0 < m@ < 1, then 

2n v / m -  1 EXm:/7 < # 0"2 • 
3(n + 1 - m) n 

This becomes equality iff X1 =/~ with probability 1 -  3 m-I and is uniformly /7 

 is r buted on + with   obab , t, 

I f  1 ~ m n l  ~ 2 t h e n  

EXm:n _< tt + v~  m - 1 0"2 , 
n 

which is equality iff X~ is uniformly distributed on [# - v~0-2, p + x/~0"21. 
If ~A > 3, then 

0" 2 . EXm:/7 < ~+~  + f - -m  
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Here the equality is attained by the mixture of the degenerate distribution at # 
and the [ # -  ~ 2 ,  P + ~ a 2 ] - u n i f o r m  distribution with probabilities 
3 ~A _ 2 and 3 (1 - ~_!), respectively. 

THEOREM 13. Suppose that Xi, i = 1 , . . . ,  n, are dependent random variables with 
a common symmetric about # and U-shaped distribution and a finite given 
variance a~. 

If l ~  A - ±12 < @33' then 

E X m . , < # 4  n ~/~ 1 m - 1  1 2 
" -  n + l - m  - ~  n 

The equality holds iff the distribution of X1 has the symmetric uniform density 

on [ # - a 2 / ~ l - 4 v ~ l m @ - ½ [ ,  # + a 2 / V / 1 -  4v/31v@-½l], and two atoms at 

the ends of the interval, with identical probabilities ½ - x/31 ~ 2  _ ½1. 

If @33 < l - ~  Z - ½ 1 <  ½, then 

EXm:. _< # + x/3 m - 1 ~2, 
n 

which becomes equality for Xi, i = 1 , . . . ,  n, uniformly distributed on [# - x/~2,  

We have not considered the trivial case of sample minimum, for which 
/)~a:n = 0. In fact, EX~:n attains the upper bound # iffXi, i = 1 , . . . ,  n, are identical 
whatever the parent distribution is. For the other order statistics of symmetric 
variables, there are joint distributions such that EXm:n > # (even for m = 2 and 
large n). This contrasts with the i.i.d case, in which we derive the trivial upper 
bound on EXm:n if m _< [~@]. 

The s-ordering is also well defined for pairs of asymmetric distributions. The 
families of compositions QFG for all F being in either of s-relations with G are 
closed under nonnegative combinations, and applying the approach developed in 
this Section we can derive tight bounds for these families. Barlow and Proschan 
(1966) defined the starshaped ordering of life distributions: F > ,  G iff OFa(X) is 

x 

nondecreasing, which is implied by F >-c G. We say that QFG is superadditive 
(subadditive) iff QFG(x +y) >_ (<_)QFG(X) + QFG(y) for all x and y. The relation 
allows to define another more general partial ordering (see Marshall and Pros- 
chan, 1972). The properties of being in this relation as well as in the ,-relation 
with the exponential distribution have a natural meaning in the reliability theory 
(see Barlow and Proschan, 1975). The counterpart of the starshaped ordering for 
the symmetric distributions, the r-ordering, was introduced by Lawrence (1975). 
For all these relations, with G fixed, the resulting families of compositions are 
convex cones, which, theoretically, makes it possible to determine a number of 
sharp bounds on L-estimates. 
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5. Quantile bounds for restricted families 

Another way of deriving bounds on expectations of L-estimates, with distribu- 
tions from restricted families determined by partial orderings makes use of the 
Jensen inequality. The bounds are expressed in terms of quantiles of the parent 
distribution. In this Section, we change the convention of presentation, assumed 
in the previous ones. We first discuss the bounds in the i.i.d case, which were 
presented in literature before. The basic results were published in the sixties. Then 
we derive the respective bounds for the dependent case. 

5.1. I.i.d case. Consider the sample X1,. . .  ,X~ with a common distribution F E 
Y-<,.G, G is fixed and known. Since QFG is concave, and Nm:nG(x)G(dx) is a 
probability measure, 

/01 EXm:n = QF(x)Nm:n(x) dx 

= QFG(x)Nm:nG(x)G(dx)  

< QFG(fo°~XNm:,G(x)G(dx)) (81) 

= OFG(fo 1 QG(X)Nm:~(X)dx) 

=- QFG(EYm:n) , 

where Ym:, is the mth order statistic of the independent G-distributed sample. If 
F ¢ ~-~-cc, we obtain 

F~m:n ~_ QFG(EYrn:n). (82) 

The equalities in (81)-(82) hold if F = G up to a location-scale transformation. 
The inequalities were obtained by van Zwet (1964). For the special case of uni- 
form G, we have the bounds derived earlier by Blom (1958) 

m EXm..,>__ QF(~ -~ )  (83) 

for F with a decreasing probability on its support and the reversed one for 
J-shaped distributions. 

Kamps (1991) used analogous arguments to establish bounds on moments of 
order statistics 

EX~:~ < ( > - ) Q ~ ( n ~ l ) '  r > 0  , (84) 

provided that Q~ is concave (convex), and becoming equality iff F is a power 
distribution with the exponent r. Inequalities (84) follow from the special case (83) 
if we replace the original variables by their r th powers. An intermediate gener- 
alization of (84) is 
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_< (___, r > 0 ,  

which is satisfied if ~;yF G is concave (convex, and linear, respectively) on the 
support of G, and G is the distribution function of Y,., i = 1 , . . . ,  n. 

We also write the implications of (81) and (82) for the IFR and DFR random 
variables, respectively. If X~, i = 1 , . . . ,  n, are 1FR, then 

EXm:n <_QF 1 - e x p  - n + l - - i  ' 

and for the DFR variables the inequality in (85) is reversed. The integral ap- 
proximations 

- - <  - - <  - -  

an+1-m x .= n ÷ l - i  dn+½-m x 

allow to simplify (85) by the evaluations 

for the IFR variables and 

for the DFR ones (cf (83)). Barlow and Proschan (1966) established the following 
sharp inequalities for the m th order statistic of IFR distributed random variables 
with a given pth quantile Q.F(P): 

m 1 ( : )  [QF(P' I xlnOFO')3J x,. ,, OFC~) 
ao 1 - e T T J  e v-n) n ,~-~- dx 

p 1 
< EXm:n_<max Q F ( p ) , _ l n ( l _ p )  . 

"= 

Van Zwet (1964) used c-comparisons with distributions, for which the for- 
mulas for the expectations of order statistics have simple analytic expressions, to 
approximate the respective expectations for the c-related distributions, which do 
not have such nice formulas. Comparisons with the Pareto and negative Pareto 
distributions G(x) = 1 - xl and - ¼, respectively, yield: i f ~  is convex (concave), 
then 

and if ~ is concave (convex), then 
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For instance, for the normal distribution function F both ~ and 1 F~5 are 
convex, and so we have 

Note that any convex combination ~i~1 c~N~:, is a probability density function. 
Replacing a single Ni:,~ by the combination in (81), we derive 

E ~f'~ciXi:n < QFO E ciYi: n , F C ~.~-<,c (87) 
i=1 

(cf Arnold and Balakrishnan, 1989, Section 3.4). It follows that 

and 

. - -  ici , F-J-shaped , E ciXi.n <~ QF n + 1 
i=1 

__~ ciYg:~ (1 ( ~.~=1~ ~+l_ ) ) E <_ QF - exp - ci , F - IFR . 
i=1 i=  j 

In particular, Nagaraja (1981) derived 

E 1 ~ Xi.~<QF{ 2 n + l - k )  
. - 

i=n+l-k 

and 

(88) 

(89) 

i=n+ l -k  j=k+ 1 

( < QF 1 (2n + 1)eJ ' 

respectively, Barlow and Proschan (1966) noted that (87)-(89) hold for nonneg- 
// 

ative combinations with ~i=1 ci _< 1, also. More generally, the inequalities are 
n ?/ satisfied if some ci are negative, but 0 < ~i~1 ci _< 1, and ~i=1 ciN:n _> 0 on [0, 1]. 

Indeed, by (87), vanishing of QFG at the origin, and its concavity, we have 

n n / /  n 

i = l  i = l  E i = I  Ci J 

= ~ CiQFG E ~:t=l eiYi:n" ~  i"_lc, J + 1 -  ci Q G(0) (9o) 
i=1 

<_ QFG E ~ ciYi:, . 
i=l ,/ 
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Necessary and sufficient conditions on the coefficients c l , . . . , cn  such that (87) 
holds were obtained by van Zwet (cf Lawrence, 1975, p. 423). 

Since Nm*:n, m > @ ,  is positive on (½, 1), and integrates to a number less than 1, 
we can repeat the arguments of (81) and (90) to deduce 

el 

EXm:n - # <_ ~ QF(x)NiSn(x)dx 
(91 

<_ QFG(E(Ym:n - YI)) 

for all F -~s G and m > ~ (van Zwet, 1964). Since QFG is antisymmetric, (9l) is 
n+~ For brevity, we assume further that F and G are symmetric reversed for m < -T" 

about 0. If F C ~ s G ,  then 

[EXm:nl >_ IQFG(EYm:n)I • 

For the special case of s-comparisons with the symmetric uniform distribution, we 
have 

IEXm:,,[ _< (_>) OF 

for symmetric U-shaped (unimodal) parent distribution functions F (see also Ali 
and Chan, 1965). Kabir and Rahman (1974) improved (92) assuming the stronger 
condition that OF(X) is convex (or concave) on (½, 1). 

Van Zwet (1964) proved that normal F -<s logistic G, and applying (91), the 
fact that EYm:n m 1 = ~j=,-m j-~' and an integral approximation, he derived 

EXm:n < QF 1 + exp - j  < QF , 

for all rn > ,+_!1, which improves (86). Analogous bounds for the selection differ- 
ential of the normal population were presented by Nagaraja (1981, p. 444). In this 
case, the inequality 

- - ~ - ~ E Y m . n  
• k ~ " k \ i=n+l-k i=n+ l  k 

follows from the fact that 

l=n+ l  - k  i=max { k,n-k } + l 

is a positive density of a substochastic measure on (1,1). Similar inequalities for 
n+l  n+l  and general L-estimates can be verified if ci = 0 for i < ~ - ,  and ci >_ 0 for i > ~ - ,  

~ i > ~ c i  < 1 (cf Arnold and Balakrishnan, 1989). Lawrence (1975) proved that 
the necessary and sufficient condition for 
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E Z ciXi:1/ <_ (>_)QFG E ciYm:,, 
i=1 i=1 / t  

for  all F -% (>-s)G is 

 ci- ci [x -J(1 -x/+xJ(1-x) E0,1]([-1,0]) 
i= l  j = l  i=1 

for  every ½ < x < 1. Lawrence (1975) also presented the respective conditions for 
asymmetric  distribution functions. 

5.2. I.d case. Suppose that  X/, i = 1 , . . . ,  n, and Y/, i = 1 , . . . ,  n, are two sequences 
of  dependent  r andom variables with life distributions F and G, respectively. We 
assume that  F -% G and G is known. Since QFG is a concave function on [0, oc), 
and Om:n - ~  1[~@,1) is a probabil i ty density function on [0, 1), 

/0 ' EXrnm ~ QF(X)Dmm(X) dx 

/? = QFG(X)Dm:nG(x)G(dx) 

< QFG(fooeeXDmmG(x)G(dx)) (93) 

= QFG(fo I QG(X)Dm:n(X)dx) 

= QFG(Sup EYm:1/) , 

where the supremum is taken over the all possible joint  distributions of  Y1,. • •, Y,. 
• - -  t l l  If  F ~-~. G, then for Dm.1/ -- m [0,,~), we can similarly prove 

EXm:n >_ QFG(fo 1 QG(X)Dm:n(X) dx) (94) 

= QFG(inf EYm:1/) , 

with the infimum taken over the same set as in (93). For  specific choices of  G, we 
obtain 

/'1 m -  1 \  

if F is J-shaped,  

EXm:n >- QF 

if F has a decreasing failure probabil i ty on ~ + ,  and, fur thermore,  

F~m:n ~ QF(1 n + l - - m )  
nc 
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if F has an increasing failure rate, and 

E~m:n > QF(1-  e-1 (n-@---~)~-I)  

if F is a DF R  distribution. 
Observe that the single order statistics in (93) and (94) can be replaced by 

L-estimates such that the respective jump functions D and D are nonnegative and 
integrate to one. The latter condition can be further weakened when QFG(O) = 0 
(cf (90)). Let us concentrate on the case of L-estimates such that D is a substo- 
chastic density function, i.e., 

' ° Jo' 
Z c i > O ,  j = l , . . . , n - 1 ,  0 < Z c i =  D(x )  d x _ < l  . (95) 
i=I i=I 

Then F -% G implies 

t l  

E ~ ciXi:. <_ 
i=l 

~ f l  QFG(X) DG(x) G(4~c) 
i=l 2--d= I Ci 

( 1 f01~-i ci ) <- Z c,O G OG(x)D(x) 
i=1 

+ 1 -  ci QFG(O) 

<_ QFG(~ 1 QG(X)D(x)dx) 

= QFG sup E ciYi:n 
i=1 

If we admit ~i"--1 ci > 1 in (95), we would merely have 

E ~ ciX~':,, < Z CiQFG -up 
i=1 i=I ~ i = l  Ci J 

t l  Likewise, under the assumption F >c G, ~i~=l c / >  0, and ~-~4=jci >_ O, 
j = 2, . . . , n ,  we derive 

E ~ '  c~Xi:,, > m a x i = l  - -  ~ i = 1  Ci~ I "  ~ZPt-r k m a x { ~ i = l C i ,  ~ - -  - -  

If F and G are symmetric about 0, and F -<s G, then 
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0£_1 EXm:n <_ QF (x)DSm:n (x) dx 

) <~ QFG Q~(x)DSm:~(x) dx 

= QrG(sup EYm:,) , 

(96) 

1 m -  1) 
EX.,:., <_ QF 

for the symmetric U-shaped distributions F, and 

for the symmetric unimodal ones. 
Certainly, we can verify 

E ~  ciX/:n < QFG , 
i=1 k, i=1 

provided that 

~ lLy(x) dx = C(1) - 2C(½) < 1 

(condition /Y(x) > 0, x ~ [½, 1 l, holds trivially). 
condition for (99) is 

J n - 2 j  ~ 1 "  
~ c i + ~ - - - - j )  ~ c i>-g-"ei  1 
i~1 i = j + l  - 2 ~  - 

(cf Rychlik, 1993a). Otherwise 

E ~ ciXi:n < 
i = l  

F -% G , (98) 

The 

tl 
for all O<j<_-~<k<n 

[i=~ ci - 2C ( ~ ) ]  QF G//sup E ~i~-t ci Y~~'~ ~-~_-~ ~ ~ ? ~  ) 

(99) 

necessary and sufficient 

(too) 

because/Y,~, n is a substochastic density on 1 ! , 1]. By similar arguments we conclude 
• 2 

for F >~ G 

EXm:n >_ QFG Qa(x)D~Sm:n(x) dx (97) 

= QgG(infEYm:,,) • 

Note that the right-hand side of (96) is positive for all m = 2 , . . . ,  n, in contrast 
with the i.i.d case, where the respective upper bound (91) is nontrivial for m > ~+l 2 ' 
only. Similarly, the lower bound in (97) is negative unless m = n. Plugging G being 
symmetric uniform into (96) and (97), yields 
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A counterpar t  of  (98) and (100) for F >-s G is 

E cix :o > max 2 e  -  ci, 1 
i=l i=1 

t / i n f E  ~ i ciYi.n 

X Q F G ~ m a x ~  ' ~ c i ,  l } )  

Also, 2C(½) - ~ i n l  C i ~ 1 iff 

J n ~ 2 j  + 1/_~_~ 1 1 
Zi=I Ci -~- 2(k - j )  i=Z~+l_ Ci ~ 2 ci -~- 

n 
for all O < j < ~ < k < n . 

We finally remark that the bounds  presented in this Subsection are sharp. For  
instance, (93) becomes equali ty iff F ~c G and the jo in t  d is t r ibut ion of  Xi, 
i = 1 , . . . ,  n, satisfies the condi t ions  described in Section 2. It is also worth no t ing  

that  since it is usually easier to determine the extremes of expected L-estimates in 
the i.d case than the respective value for the independent  sample, the bounds  
presented here may be used for approximat ions  in the i.i.d case. 
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Recurrence Relations and Identities for Moments 
of Order Statistics 

N. Balakr ishnan and  K. S. Su l tan  

1. Introduction 

The theory of statistical inference has been mostly developed assuming that the 
samples are drawn from some specific (known) probability distribution. These 
developments broadly fall into two main classes, viz., (i) statistical estimation, 
and (ii) tests of hypotheses. Yet there are numerous situations in practice wherein 
it may not be possible to assume a specific functional form for the underlying 
population distribution function. This led to the development of the so-called 
"nonparametric" or "distribution-free" methods in statistics that are based on 
relatively mild assumptions regarding the underlying population; see, for example, 
Gibbons and Chakraborty (1994), Hollander and Wolfe (1973) and Lehmann 
(1975). In the beginning [e.g., Scheffe (1943)], order statistics were also considered 
as a part of the nonparametric statistics and one was simply concerned with the 
properties of a random sample whose observations when arranged in ascending or 
descending order of magnitude. Order statistics and their moments quickly gained 
their importance in many statistical problems. Linear functions of order statistics 
were found to be extremely useful in the estimation of parameters and also in 
testing of hypotheses problems. The application of Gauss-Markov theorem of 
least squares by Lloyd (1952) [also see Sarhan and Greenberg (1962) and David 
(1981)] to derive linear functions of order statistics (termed as "linear estimators") 
for estimating the location and scale parameters of distributions, is one fine ex- 
ample. Blom's (1958, 1962) "nearly best linear estimators", Jung's (1955, 1962) 
"asymptotically best linear estimators", Dixon's (1960) "Winsorized estimators", 
and Tukey and McLaughlin's (1963) "trimmed estimators" are all based on order 
statistics and they simply demonstrate the importance of order statistics in sta- 
tistical inference. Knowledge of the moments of order statistics, in particular their 
means, variances and covariances, allows us to find the expected value and 
variance of a linear function of order statistics, and hence permits us to obtain 
estimators and their efficiencies. There are both theoretical and practical reasons 
for this sound development of the theory of order statistics. From a theoretical 
point of view, it is often desirable to develop methods of inference which remain 
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valid under a wide class of population distributions. It is also desirable from a 
practical point of view to make a statistical procedure as simple and broadly 
applicable as possible. Order statistics are most applicable in many engineering 
fields since in these cases the smallest, the largest or an intermediate future re- 
alization of a random variable is more important than the mean or the median of 
the distribution. For example, the lowest strength value of a critical structural 
component is an important factor in assessing the value of a structural design and 
the largest value is also important for some similar assessments. One could refer 
to Gumbel (1958) for many such practical examples where the usefulness of order 
statistics is stressed upon. In particular, applications of extreme order statistics in 
many practical situations have been mentioned by Gumbel (1958) and Castillo 
(1988), and the asymptotic theory of extremes and of related statistics has been 
developed at length by Galambos (1978, 1987). 

It is of interest to mention here that life tests provide an ideal illustration of the 
advantages of order statistics in the case of censored samples. It is often desirable 
to stop the experiment after the failure of a certain number of items under test 
instead of waiting for all the items to fail since such life-testing experiments may 
take a long time to complete (Mann, Schafer and Singpurwalla, 1974; Lawless, 
1982; Nelson, 1982; Bain and Engelhardt, 1991; Cohen, 1991; Cohen and Whit- 
ten, 1988, and Balakrishnan and Cohen, 1991). Note that in this situation, unlike 
in most other cases, the data arrives already in a naturally ordered way by the 
method of experimentation. A nice historical note on the history and different 
roles of order statistics has been prepared by Hatter (1988). 

In the recent years, order statistics have been used quite extensively in outlier 
detection (Barnett and Lewis, 1993; Hawkins, 1980), goodness-of-fit tests 
(D'Agostino and Stephens, 1986) and robustness studies. Several robust estima- 
tors and robust tests have been successfully developed using censored samples 
based on the fact that the lowest and highest few observations in a sample are the 
most likely to be the results of departure from assumed distribution of contam- 
ination; for example, see David (1979, 1981), David and Shu (1978), Dixon 
(1960), Dixon and Tukey (1968), Hogg (1967, 1974), Huber (1972, 1982), Mos- 
teller and Tukey (1977), Shu (1978), Yuen (1971), Andrews et al. (1972) and Tiku, 
Tan and Balakrishnan (1986). Another important application of order statistics is 
data compression (Eisenberger and Posner, 1965) wherein the sample may be 
replaced by enough order statistics to allow both satisfactory estimation of pa- 
rameters and also a test of the assumed underlying distribution. 

The moments of order statistics have assumed considerable interest in recent 
years and, in fact, have been tabulated quite extensively for many distributions. 
Many authors have investigated and derived several recurrence relations and 
identities satisfied by the single as well as product moments of order statistics 
primarily to reduce the amount of direct computations. However, one could list 
the following three main reasons why these recurrence relations and identities for 
the moments of order statistics are important: 

(i) they reduce the amount of direct computations quite considerably, 
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(ii) they usefully express the higher order moments of order statistics in terms of 
the lower order moments and hence make the evaluation of higher order 
moments easy, 

(iii) they are very useful in checking the computation of the moments of order 
statistics. 

In addition, Joshi (1973) and Joshi and Balakrishnan (1981b) have demon- 
strated a very interesting application of these recurrence relations and identities 
among order statistics in establishing some combinatorial identities. For the 
normal distribution, Davis and Stephens (1978) have illustrated a very good 
application of an identity between moments of normal order statistics in ob- 
taining an improved approximation of the variance-covariance matrix of normal 
order statistics. 

Exact lower order moments of order statistics in small samples from the 
normal distribution, along with some relations satisfied by these moments, were 
first obtained by Jones (1948). Godwin (1949) recognized some more recurrence 
relations and extended Jones's results for larger sample sizes. A simple recurrence 
formula between moments of order statistics, commonly known as the "nor- 
malized moments" was derived by Cole (1951). Sillitto (1951, 1964) established 
some recurrence relations for an arbitrary distribution and also used them to 
obtain some relations for means of range from different sample sizes. Srikantan 
(1962) derived some recurrence relations between probability density functions of 
order statistics and extended them for the moments of order statistics; he also 
investigated the numerical error propagation in such recursive computations. 
Some additional relations between probability density functions of order statistics 
were recognized by Young (1967). Recurrence relations which are closely related 
to Srikantan's results, between expected values of functions of order statistics, 
were obtained by Krishnaiah and Rizvi (1966). While Melnick (1964) showed that 
Cole's result is also valid for samples drawn from discrete populations, Arnold 
(1977) presented an alternative proof for Cole's result covering mixtures of 
continuous and discrete distributions and also obtained some additional relations 
exactly on the same lines. Some more relations for both single and product 
moments of order statistics were established by Downton (1966). David and Joshi 
(1968) noted that many of these results hold even for order statistics obtained 
from exchangeable variates. David and Joshi's (1968) result has been further used 
by Balakrishnan (1987b) in proving some additional results for order statistics 
obtained from exchangeable variates. Balakrishnan and Malik (1986a) displayed 
that two well-known identities among moments of order statistics follow directly 
from some basic recurrence relations satisfied by these moments. As a result, 
Balakrishnan and Malik (1986a) showed that it is not meaningful to apply these 
identities for the purpose of checking the computations of these moments 
whenever these recurrence relations are used in the computational procedure. 
In an interesting paper, Govindarajulu (1963a) derived some relations between 
the moments of order statistics from a symmetric distribution and the moments 
of order statistics from its folded distribution (folded at the center) and also 
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investigated the cumulative rounding error committed by using these relations. In 
another article, Govindarajulu (1963b) summarized many of these results and 
established some more recurrence relations and identities satisfied by the single 
and product moments of order statistics and used these results in order to de- 
termine the number of single and double integrals to be evaluated for the cal- 
culation of means, variances and covariances of order statistics in a sample of size 
n, assuming these quantities for all sample sizes less than n to be known, for an 
arbitrary continuous distribution symmetric about zero. He showed that in this 
case, one has to evaluate at most one single integral and (n - 2)/2 double inte- 
grals if n is even, and one single integral and (n - 1)/2 double integrals if n is odd. 
By a simple generalization of one of the results of Govindarajulu (1963b), Joshi 
(1971) displayed that for distributions symmetric about zero the number of 
double integrals to be evaluated for even values of  n is in fact zero. Joshi and 
Balakrishnan (1982) established similar results for an arbitrary continuous dis- 
tribution and showed that, in that case, one has to evaluate at most two single 
integrals and (n - 2)/2 double integrals if n is even, and two single integrals and 
(n - 1)/2 double integrals if n is odd. Some more relations and identities satisfied 
by variances and covariances of order statistics are also given by Joshi and 
Balakrishnan (1982). For  even values of n, in addition, Balakrishnan (1982) 
proved that the sums ~---i ]lr,r+i:n' (1 < i <  n -  1), of sub-diagonal product 
moments of order statistics from a sample of size n can all be calculated 
from the single and product moments of order statistics from samples of size less 
than n. 

Joshi (1973) proved two interesting identities involving order statistics and 
applied them to obtain some combinatorial identities. Following a similar 
method, Joshi and Balakrishnan (1981b) used many recurrence relations and 
identities between order statistics in exhibiting different methods of deriving such 
combinatorial results. By this process, they gave alternate proofs to several 
identities given in Riordan (1968). Joshi's (1973) identities have been generalized 
by Balakrishnan and Malik (1985). Similar results for the joint distributions of 
two order statistics have been derived by Balakrishnan and Malik (1987b). These 
results also have their usefulness in establishing several interesting combinatorial 
identities. By making use of  Khatri 's (1962) integral representation for the joint 
probability mass function of two order statistics from an arbitrary discrete 
population, Balakrishnan (1986) showed that most of these results among mo- 
ments of  order statistics hold for the case of discrete distributions as well. Using 
these results then, Balakrishnan (1986) established the above described bounds of 
Joshi and Balakrishnan (1982) for any arbitrary discrete distribution. These 
bounds can be further improved for the case of symmetric distributions as 
mentioned above. These recurrence relations (ones for the product moments in 
particular) are highly useful as the computation of the product moments is very 
difficult and expensive too; see Barnett (1966). In addition, for some specific 
distributions like the normal, logistic, Cauchy, double exponential, exponential, 
Paret0, power function, etc., some more recurrence relations and identities can be 
derived for the moments of order statistics by making use of  the functional 
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relationship between the probability density function and the cumulative distri- 
bution function of the underlying population. In many of these cases, the re- 
currence relations are also complete in the sense that they will enable one to 
compute all the single and product moments of all order statistics for all sample 
sizes in a simple recursive manner. 

In this review article, we update the reviews of Malik, Balakrishnan and 
Ahmed (1988) and Balakrishnan, Malik and Ahmed (1988). Bearing in mind the 
importance and usefulness of recurrence relations and identities for moments of 
order statistics, we list and analyze all these results. We present the recurrence 
relations and identities satisfied by the single moments of order statistics for any 
arbitrary distribution in Section 3, and the recurrence relations and identities 
satisfied by the product moments and covariances of order statistics in Section 4. 
We also mention the interrelationships between many of these results. In addition 
to all these results, several recurrence relations satisfied by the moments of order 
statistics from some specific continuous distributions are also available and these 
are presented in Sections 5-19. For the normal distribution, some identities sat- 
isfied by the covariances of order statistics have been used by Davis and Stephens 
(1978) in obtaining improved approximation for the variance-covariance matrix 
of normal order statistics. Joshi and Balakrishnan (1981 a) have applied some such 
identities among the covariances of normal order statistics in obtaining ..an ex- 
pression for the variance of standardized and studentized selection differential. 
Besides, for distributions like the logistic, exponential, double exponential, power 
function, Pareto, Lomax, log-logistic, Burr, mixture of two exponential, parabolic 
and skewed distributions and their truncated forms, these recurrence relations can 
be used effectively to compute all the single and the product moments of order 
statistics for all sample sizes. It must be remarked here that only simple algebraic 
operations are performed for the evaluation of both single and product moments 
when using these recurrence relations and therefore, the rounding errors can be 
kept negligible at least for small and moderately large sample sizes by performing 
the necessary calculations at a high precision on a computer. Many of the results 
mentioned above have been synthesized in the monograph by Arnold and 
Balakrishnan (1989); see also Balakrishnan (1988). 

2. Notations 

Let X be a continuous random variable having a cumulative distribution function 
(cdf) F(x )  and probability density function (pdf) f ( x ) .  Let X 1 , X 2 , , . . .  , X ,  be a 
random sample of size n from this distribution and Xl:n _< X2:n _< . . .  <_ X,:, be the 
corresponding order statistics obtained by arranging the X~'s in ascending order of 
magnitude. Then the pdf of Xr:n (1 < r < n) is given by [see David (1981, p. 9) and 
Arnold, Balakrishnan and Nagaraja (1992, p. 10)] 

fr:~(x) = { B ( r , n  - r + 1)} l[F(x)]r-l[1 -- F(x)]n-~f (x) ,  - o c  < x < oc, 

(2.1) 
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and the joint  density of  Xr:n and X~:n (1 _< r < s _< n) is given by [see David (1981, 
p. 10) and Arnold,  Balakrishnan and Nagara ja  (1992, p. 16)] 

f . , ,:, ,(x,y) = { B ( r , s -  r ,n  - s + 1)}-2[F(x)]r-2[F(y) - F(x)]* ~-I (2.2) 

× [1 - F(y ) ] " -~ f ( x ) f ( y ) ,  -cx) < x < y < oc , 

where B ( a , b ) = F ( a ) F ( b ) / F ( a + b )  is the complete beta function and 
B(a ,b , c )  = F ( a ) F ( b ) F ( c ) / F ( a  + b + c), ( a ,b , c  > 0), is the generalized beta 
function. 

We shall denote the single moment  E(X~n) by #~k2, (1 < r < n, k _> 1), the 
j k , (/,k) n), and the covariance be- product  moment  E(X/:nX~:~) by ~,s:,, (1 _< r < s _< 

tween Xr:, and Xs:, by cry,s:,. Note  that  for  1 < r < s < n, Prs', = Psi', and 
- -  ( 2 ) -  '" ( 2 ) ' '  

a~,s:n = as,r:.. Fo r  simplicity, we shall also use #r:. for  #r:., #~,~:, for  #~:,,, # ...... for  

p~y:., and o-~,r:, for  variance of  X~:.. We shall also assume that all these quantities 
exist. 

Also, the distribution function o f  X~:. (1 < r < n) is [see David (1981, p. 8) and 
Arnold,  Balakrishnan and Nagaraja  (1992, p. 12)] 

F~:. (x) = ~,=~. ( 7 )  {F(x)} i {1  - F ( x ) } " - i  (2.3) 

= I F ( x ) ( r , n - - r + l ) ,  - - o o < x < o c  , 

where 

I (a,b) = { B ( a , b ) }  2 f[ua-,(1 _ du, a, b > 0 (2.4) 

is the incomplete beta ratio. 

3. Recurrence relations for single moments 

With the density function of  Xr:. as given in Eq. (2.1), the single moment  
p!~) (1 < r < n ,  k _  1) i s g i v e n b y  

F #(It) = {B(r,  n - r + 1)} -1 xk[F(x)] r-I [1 -- F(x)]n-r f (x )  dx . (3.1) 
r : n  oo 

, (k) satisfy the following recurrence relations and Then the single moments  ~*r:. 
identities. 

RELATION 3.1. For  any arbi t rary distribution, 

~ # ( k )  = nE(X k) = n, (3.2) 
(k) 

r:n t ~ l : l  " 

r =  1 

For  example, for  k = 1 we have Y'}.~=l Pr:. -- nE(X) = n#1:l , and for k = 2 we have 
Z;=2 pf2) nE(X2) t(2) = = nl 1:2, as noted by Hoeffding (1953). 
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RELATION 3.2. For  any arbi t rary distribution, 

r" (k) (n r ' (k) (k) (3.3) ~ + l : n +  - )~r:n 1 < r < n  . : n # r : n _  1 : 

Relat ion 3.2 was derived by Cole (1951) and it just requires the value o f  the k th 

momen t  o f  any one order statistic in a sample o f  size n in order  to compute  k th 

momen t  o f  the remaining n - 1 order statistics, assuming that  these moments  in 
samples of  size less than n are known.  This relation has been extended to the case 
of  discrete distributions by Melnick (1964); also see Abdel -Aty  (1954) and David  
(1981). A n  alternative p r o o f  which covers mixtures o f  discrete and cont inuous 
cases has been given by Arnold  (1977); also see Balakrishnan and Malik (1986a). 

RELATION 3.3. For  n even, say n = 2m, and k _> 1, 

1 {#(k) ) , (k) 
I x m + l : 2 m  -1- #(km:)2m : t~m:2m 1 " (3.4) 

This relation follows directly f rom Relat ion 3.2. Note  that  for k = 1, in partic- 
ular, this relation simply implies that  the expected value o f  the median in a sample 
of  size n = 2m (even) is equal to the expected value of  the median in a sample o f  
size n - 1 = 2m - 1 (odd). 

RELATION 3.4. For  any arbitrary distribution symmetric about  zero, 

#(k)r:n ~- ( - - l ) k # ~ k ) - r + l : n '  r = l, 2, . . . ,  [n/2] . (3.5) 

This result was first derived by Jones (1948) for the special case of  the s tandard  
normal  distribution. 

RELATION 3.5. For  any arbitrary distribution symmetric about  zero, and n even, 
say n = 2m, 

r (k) 
#(~) = ~ #m:~, k even (3.6) 

m:~-I [. 0, k odd 

This follows immediately if we use Relat ion 3.4 in Relat ion 3.3. 

RELATION 3.6. For  m = 1 ,2 , . . .  ,n - r and k _> 1, 

( _ r ) ( i / ( . ) ( m - i /  . tZr+i:n_m+i 
i = 0  

where (n) (m) denotes n ( n -  1 ) ( n -  2 ) . . .  ( n -  m +  1). 

(3 .7)  

RELATION 3.7. For  1 < r < n - 1 and k _> 1, 

u (k) = ~- '~(-1 j ~ J - . (k) 
r-r:n r - -  t'tJ:J " 

J=r 

(3.8) 
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This relation follows directly f rom Relation 3.6 if we set m = n - r. Note  that this 
relation expresses the k th moment  o f  the r th order statistic in a sample o f  size n in 
terms of  the k th moment  o f  the largest order  statistic in samples o f  size 
r, r + 1 , . . . ,  n. In fact, this relation is the solution for Relat ion 3.2 in terms of  the 
largest order statistic in samples up to size n. Refer to Balakrishnan and Malik 
(1986a) for addit ional comments  on the use o f  Relat ion 3.7. 

RELATION 3.8. For  m = 1 ,2 , . . .  , r  - 1 and k > 1, 

( r - -  1)(m)#! k) = (rrl--rl+j)(n-m+J)(#i)(n-J)cn_j)#r m:j " 
j~#l B4 

(3.9) 

RELATION 3.9. For  2 < r < n, 

(k) • ~ (__l) j-n+r-l(J--  lr) (Pl~#(k) (3.10) 
~:. j /  l : j "  

j=n -r+ 1 \I~1 

This relation follows directly f rom Relation 3.8 if we set m = r - 1. This relation 
expresses the k tla momen t  o f  the r th order statistic in a sample o f  size n in terms of  
t h e  k th moment  o f  the smallest order statistic in samples o f  size 
n - r + 1, n - r + 2 , . . . ,  n. As a mat ter  o f  fact, this relation is the solution for 
Relat ion 3.2 in terms of  the smallest order statistic in samples up to size n. One 
has to be careful, however, while using Relations 3.7 and 3.9 as increasing values 
o f  n result in large combinator ia l  terms and hence in large error. A detailed 
discussion of  this has been made by Srikantan (1962); also see Balakrishnan and 
Malik (1986a). 

Stating these results also in terms of  distribution functions o f  order statistics, 
Lange (1996) has recently illustrated the usefulness o f  Relations 3.7 and 3.9 
through two applications to waiting time problems in urn sampling. 

RELATION 3.10. For  1 < r < rn < n and k _> 1, 

)( (nhp(k)  = ~  r + i -  1 n - - r - - i ' ~  (k) 
\ m /  r:m i=O i m -- F ) #r+i:n " (3.11) 

This result was derived by Sillitto (1964). Note  that  this relation expresses the k th 
momen t  o f  the r th order statistic in a sample o f  size m in terms o f  the k th moment  
o f  r, r + 1 , . . . ,  n - m + r order  statistics f rom a sample o f  size n larger than m. 

RELATION 3.1 1. For  j + g _< n -- 1 and k _> 1, 

_ i ) ( g ) # ( k  ) n ( i -  1)(J)(n , i:, = j ! e !  , (~1 ~j+l.j+g+l • 
~_j+l J + g + 1 

(3.12) 

This result, due to D o w n t o n  (1966), follows immediately f rom Relation 3.10 if we 
s e t r = j + l  a n d m = j + g + l .  
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RELATION 3.12. For n _> 2 and k > 1, 

~ l,(k)  ~ 1  (k) 
;~r:,~ = __2~ rS~: ,  - 

r= l  

157 

(3.13) 

RELATION 3.13. For n >_ 2 and k > 1, 

1 #(k) = S-" 1 ,  (k) (3.14) 
rzn ~ ~ I~r:r " 

r=l ( n - - r +  1) r=l 

Relations 3.12 and 3.13 were derived by Joshi (1973). These two results are quite 
useful for checking the computations of the single moments of order statistics and 
also in establishing some interesting combinatorial identities. These results have 
been generalized by Balakrishnan and Malik (1985) and their general results are 
given in the following four relations, where we denote 

1, for i = 1  
Ci~- (n+l) (n+2) . . . (n+i-1) ,  for i =  2 ,3 , . . . .  

RELATION 3.14. For i _> 1 and k _> 1, 

n 1 ~ - ~ ( r + i - 2 " ~  (k), 
Z#!k")/{r(F-~-l)'''(r-~-i--l)}=fiir=lr=l i--1 J Izl:r/r" (3.15) 

Note that for i = 1 this result reduces to Relation 3.12. 

RELATION 3.15. For i > 1 and k > 1, 

(k) n 1) (n + 2) (n r + i) } ~r : , /{ (  - r +  - r  . . . .  

~-1 (3.16) in ?+/-2) 

Note that for i = 1, this result reduces to Relation 3.13. 

RELATION 3.16. For i > 1 and k > 1, 

l~!~)/{r(r + 1)(r + 2) . . .  (r + i -  1 ) (n -  r +  1) 
r = l  

× ( n - r + Z ) . . . ( n - r + i ) }  (3.17) 

/ =-- ~,,~, + s~ /r. 
C2i r= l  i 
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RELATION 3.17. Fo r  i , j  _> 1 and k _> 1, 

~!~2/{,'(r + I)(~+ 2) - ( r+ ; -  1) (n  - ~ +  1) 
r= I 

x ( n - r + 2 ) .  ( n - r + j ) }  (3.18) 

1 ~l~(r+i+j--2)l~(k ) (r+i+j--2) } 
- C 7  z - - ~ r /  i - 1  J 1:~+ j - 1  #f~) " i+j r=l k 

Note  that  for  i = j ,  this result reduces to Relat ion 3.16. 

RELATION 3.18. For  an arb i t ra ry  distribution, 

1_ ~-~ i 1 I r -  j + i - 1 )  
In+ 1~ /n+r/,=l~':n+rj-~,n+r;1-s_ _ r - 1  

n+r 1 

- r) i l i ( i -  1 ) . . . ( i  r>_ 1 , 

(n q- l )  "-" (n q- F) i . -1 = 1 

n+r 1 

=i=~r+li(i_ 1 ) . . . ( i _ r ) f l l : i  , r >  1 . 

(3.19) 

(3.20) 

RELATION 3.19. For  an arbi t rary  distr ibution and m = 1 ,2 , . . . ,  

1 n+~ i 1 

( n + l ) . . . ( n + r )  Z #i:n+~ Z (n+r  + l - j ) . . . ( n + r  + m - j )  i=r+i j=r+l  

r+ - j - 1  = • Z  i + m - r - 2  1 
× - 1  mi=r+i m 1 i ( i - 1 ) . . . ( i - r )  t~i:i' 

f o r r = l , 2 , . . .  , (3.21) 

1 1 + i - 1  

In+ 1/.- (n + r / ~ ' : " + r ~ s 0 +  l / . . .C/+m- ~/ -1 

ln+r( ) 
=77,, Z i + m - r - 2  1 

mi=r+l m 1 i ( i -  1)- • ( i -  r) #1:i, for r = 1 , 2 , . . .  , 

(3.22) 

where cl = 1 and Cm = (n + 1 ) ' . .  (n + m - -  1) for  m = 1 , 2 , 3 , . . . .  
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RELATION 3.20. For an arbitrary distribution, 

j=l (n + 2k)! #~+j:,+2k 

( k ) ! ( j + k -  1)! 
#k+hj+2k, k >_ 1 , 

(3.23) 

t'lk+j:n+2k 

(3.24) 

( k ) ! ( j  + k -  1)! 
j = ,  1 . 

Relations 3.18, 3.19 and 3.20 were derived by Joshi and Shubha (1991). Note that 
these relations are generalizations of the results given by Joshi (1973) and 
Balakrishnan and Malik (1985) and presented in Relations 3.12-3.17. 

Now let us denote )G:r=#r+hn--#r:~ ( r =  1 , 2 , . . . , n - - 1 )  and W , = l ~ n : ~  - 

/*h,, n > 2. Note that )~r:~ is the expected value of the difference between (r + 1) th 
and r th order statistics in a sample of size n, while w, is the expected value of the 
range w,, = #~:, -#1: ,  in a sample of size n. We present here some relations 
satisfied by these quantities. 

RELATION 3.21. For n > 3, 

n w , _ l  - (n - 1 ) w ,  = I~, l :n  - -  ~ 2 : n  • (3.25) 

This is easily derived from Relation 3.2. 

RELATION 3.22. For n >_ 3, 

1 
Wn ~ - W n  1 = - - ( • n : l q - ) {  . . . . .  1)  • 

n 

This is obtained directly from Relation 3.21 by noting that 

]ln_hn --  /A2: n - -  W .  = - - 0 { n : l  -}- )~n:n) • 

These identities were proved by SiUitto (1951) and Cadwell (1953). 

(3.26) 
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RELATION 3.23. For  1 < r < n - 1, 

( ~ ) r ~ _ . ~ ( 1 )  i+1 ( ~ )  
z_. . , , ---  W n - r + i  = Xn:r -~ Xn:n-r  " (3.27) 
i=0 

In particular, if we set r = 1 in the above result, we deduce Relation 3.22. 

RELATION 3.24. For  n > 3, 

{1 -- ( - - 1 ) n ) w n  = W n 1 ~- ~--~(--1) i+1 (3.28) 
i=I i wi+~ ; 

for odd values o f  n, we have 

2 w ,  = wn-~  + ~ ( - 1 )  i+1 (3.29) 
i=1 i W n - i  " 

This result follows f rom Relation 3.23 by setting r = n - 1 and then making use 
o f  Relat ion 3.22. 

RELATION 3.25. For  n ___ 3, 

{1 - ( - 1 ) " } w .  = ~ -~( -1 )  j wj ; (3.30) 
j=2 

for odd values o f  n, we have 

2w, = ~ -~ ( -1 )  j w j  . (3.31) 
j=2 

These relations are due to R o m a n o v s k y  (1933) and SiUitto (1951). 

RELATION 3.26. For  any arbitrary distribution, 

;'/~n-l:r-1 -- (;'/ -- r-]- 1)9~ . . . .  1 = r)~ .... 2 < r < n -- 1 . (3.32) 

This relation was derived by Sillitto (1951). Note  that this relation expresses the 
expectation o f  the difference between the ( r +  1) th a n d  r th order  statistics in a 
sample o f  size n in terms of  the expected values o f  the differences between the r th 

and ( r -  1) th order statistics in samples o f  size n and n - 1, respectively. The dis- 
tr ibution o f  these differences was first discussed by Gal ton  (1902) and was inves- 
tigated further by Pearson (1902). Relat ion 3.26 follows easily f rom Relation 3.2. 

RELATION 3.27. For  v _< r -  1, 

z . : ,  - ,=0 i ( .  + 0(i/Z  , 
(3.33) 
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where, as before, (n)(~)= n ( n -  1 ) ( n -  2) . . .  ( n -  v + 1). This relation was es- 
tablished by Sillitto (1951) and it follows directly by a repeated application of 
Relation 3.26. Note that it expresses )~n:r in terms of the )(s in samples of size less 
than or equal to n and of order less than or equal to r. In particular, setting v = 1 
in the above result, we deduce Relation 3.26. 

More generally, denoting the ith quasi-range X,,_i:~ -X/+I:,,, (i = 0, 1 ,2 , . . . ,  
[ ( n -  2)/2]), by W/,n and its expected value E(W/,,)= #, i : n -  # i + l : n  by wi~,, we 
immediately have the following relations. Note that W0,, will be the sample range 
and w0,n will be its expected value according to this notation. 

RELATION 3.28. For any arbitrary distribution symmetric about zero, 

wi,~ = 2#n_i:n, i =  0, 1 , 2 , . . . , [ ( n -  2)/2] . (3.34) 

This follows directly from Relation 3.4. 

RELATION 3.29. For any arbitrary distribution, 

iWi,n + (n  --  i ) w i - l , n  : n W i - l , n - 1 ,  i : 0 ,  1, 2, . . . ,  [(n - 2)/2] . ( 3 . 3 5 )  

These results were obtained by Govindarajulu (1963b). Note that Relation 3.29, 
after dividing both sides by n, can be used for working downwards in numerical 
evaluation of the expected values of the sample quasi-ranges, without serious 
accumulation of rounding errors. The above result follows easily from Rela- 
tion 3.2. 

4. Recurrence relations for product moments 

With the joint density of Xr:n and X~,:n as given in (2.2), the product moment 
# ..... (1 _< r < s _< n) is given by 

# . . . . .  = { B ( r , s - r , n - r + l ) }  -1 xy[F(x)]r-l[f(y)_F(x)]Sr 1 
oo 

x [1 - F(y)]" -S f (x ) f (y )  dydx  . 

(4.1) 

Then, the product moments # ..... satisfy the following recurrence relations and 
identities. 

RELATION 4.1. For any arbitrary distribution, 

. . . . .  =  E(x + - 1 ) { E ( x ) }  = + • 

r = l  s = l  

(4.2) 
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RELATION 4.2. For any arbitrary distribution, 

Z # , , x : ,  = n (n  - 1){E(X)}2/2 = / z  2 . 

r = l  s = r + l  

(4.3) 

This result follows immediately upon using Relation 3.1 in Relation 4.1. 

RELATION 4.3. For  any arbitrary distribution, 

n n 

Z Z CY ..... = nVar(X) = n a  2 . (4.4) 
r = l  s = I  

This result follows immediately upon using Relation 3.1 in Relation 4.1. 

RELATION 4.4. For  any arbitrary distribution symmetric about zero, 

~r,s:n : ~n-s+l  . . . .  +lzn • (4.5) 

RELATION 4.5. For  any arbitrary distribution symmetric about zero, 

Crr,s:n : ¢7n s + l , n  r + l : n  • (4.6) 

This result follows immediately upon using Relation 3.4 in Relation 4.4. 

RELATION 4.6. For  any arbitrary distribution, 

(r  -- 1)]~r,s: n 4- (S --  r)[2r_ 1 .... 4- (n - s 4- 1)p,._l, s 1:~ 
(4.7) 

= nl~r- l , s - l :n -1 ,  2 <_ r < s <_ n . 

This result was established by Govindarajulu (1963b). Note that, due to this 
relation, it will be enough if we compute n - 1 suitably chosen product moments, 
e.g. the immediate upper-diagonal product moments #r,~+l:, (1 < r < n - 1) in 
order to determine all the product moments since the remaining product mo- 
ments, viz. p ..... (1 _< r < s _< n, s - r > 2), can all be obtained by making use of 
Relation 4.6. Also refer to Balakrishnan and Malik (1986a) for additional com- 
ments on the use of Relation 4.6. 

Using Relations 4.6 and 3.2, Balakrishnan (1989) has established the following 
relation satisfied by the covariances of order statistics. 

RELATION 4.7. For 2 _< r < s < n, 

(n - r)ar,s:. 4- (s - r )ar  1,s:. -r (n - s 4- 1)ar-Ls-1:. 

=n{Crr - I , s  l:n-i 4-(llr_l:n 1- -] l r  ,:n)(]~s--l:n 1- - /Zs:n)}  • (4.8) 
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RELATION 4.8. For  any arbitrary distribution, 

n--I £ 

#i , j : .  = - 1)#1,=:2  • 
i=1 j=i+l 

This result is due to Govindarajulu (1963b). 

(4.9) 

RELATION 4.9. For  any arbitrary distribution and even n, 

t7 #2 . (4.10) #1 .... = ~ (_1)i 1i~ #i:i#n_i:n_i+~(__l)(n 2)/2 ~2 n/2:n/2 

This result, due to Govindarajulu (1963b), has been generalized by Joshi (1971) as 
follows. 

RELATION 4.10. For any arbitrary distribution and 1 < k < n - 1, 

B(1,n_k,k)g<~:n + ~ ( _ l ) , _  i k - 1  B ( 1 , n _ k , k _ i ) # l . ,  k+l:, i 
i=0 i ' 

= Z ( _ l ) O  1 1 
i=1 i -  1 ~ # i : i # n - i : n - i  • 

(4.11) 

It must be noted that Relation 4.10 contains both the product moments #1, k+l:n 
and #k,,:," Hence, for any arbitrary parent distribution, Relation 4.10 is useful 
only for k = 1 and in this case it simply becomes Relation 4.9. 

RELATION 4.11. For  any arbitrary distribution symmetric about zero and 
l < k < n - 1 ,  

{ l+(-1)n}B(1,  n - k,k)#l,n k+l:, 

( )  = E ( _ I ) ~ _ i +  1 k - 1  B ( 1 , n _ k , k _ i ) # l , ,  k+l:, i 
i=1 i (4.12) 

w-~,_l,n-~ i n - k - 1  ~ 1  + #i:i#n-i:n-i i - 1 i ( n - i )  
o 

i=2 

This result follows easily from Relation 4.10 upon using Relation 4.4. From 
Relation 4.11, it follows that if the parent distribution is symmetric about zero, 
then for even values of n all the product moments gl,s:n (s = 2, 3 , . . . ,  n) can be 
obtained provided that all the first and product moments in samples of sizes less 
than n are available. 
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RELATION 4.12. For  any arbitrary distribution symmetric about  zero and n even, 

2]./1,2: n = ~ ( - - 1 )  i-1 ~tl,2:n_ i . (4 .13)  
i=1 

This result follows immediately from Relation 4.11 by setting k = n - 1 and is 
due to Joshi (1971); see also Govindarajulu (1963b) who proved this result for the 
normal case. 

RELATION 4.13. For any arbitrary distribution symmetric about  zero, 

B(1, 2m - 1, 1)ttl,2m:2 m = E ( -  
i=2 

1 
x i(2m+ 1 - i) ]2i:i[22m+l-i:2m+l-i ' 

and 

(4.14) 

2m-2 ( 2 m - -  2"] 1 
2B(1,2m - 1, 1)~1,2m:2 m = Z ( - -1 ) i -1  i) ]2i:i~2m i :2m-i  " 

i=2 k i -  1 J i ( 2 m  - 

(4.15) 

These results have been established by Joshi (1971). The first result is obtained by 
setting k = 2 and n = 2m + 1 in Relation 4.11 and noting that the LHS becomes 
zero. The second result follows in a straightforward way by setting k = 1 and 
n = 2m in Relation 4.11. 

In addition, making use of  Relations 3.2, 3.5, 4.4, 4.6 and 4.11, Joshi (1971) 
also arrived at the following result. 

THEOREM 4.1. In order to find the first, second and product moments  of  order 
statistics in a sample size n drawn from an arbitrary continuous distribution 
symmetric about zero, given these moments  for all sample sizes less than n, one 
has to evaluate at most one single integral if n is even, and one single integral and 
(n - 1)/2 double integrals if n is odd. 

RELATION 4.14. For  1 < r < s _< n, 

..... + ( - 1 )  ]An s - j + l , n - - r  j+l:n i - j  
i 

i=0 j=0 (4.16) 

i=1 S - -  i r - -  1 ]Js i : s - i l2 i :n -s+i  • 

This result, due to Joshi and Balakrishnan (1982), is a generalization of Joshi's 
(197l) result. Note that if we set s = n in the above result, we deduce Rela- 
tion 4.10. 
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RELATION 4.15. For  1 < r < n - 1, 

[At,r+1:, + (-1)"[A,--r,n-r+l:, 

r l n - r l  ( ~ ) (  ) 
: ( - 1 ;  . _ j 

i=0 j=l i [An r - j  . . . .  j+ l :n - i - j  (4.17) 

+~(- - l )n- i+l ( : ) [An-r :n  r+l:n i+(:)[Ar:r[Al:n-r " 
i=1 

This result follows simply by setting s = r + 1 in Relat ion 4.14. Note  that  when n 
is odd, we only need to calculate ( n - 1 ) / 2  produc t  moments  [A~,~+l:, (1 _< 
r _< (n - 1)/2) since the remaining moments  [At,r+1:, {(n + 1)/ 2 < r < n -- 1} can 
all be obtained by using Relat ion 4.15. Similarly, when n is even, say n = 2m, 
we only need to calculate ( n - 2 ) / 2 =  ( m - 1 )  produc t  moments  [At,r+1:, 
(1 < r < m -- 1) since the remaining moments  [A~,~+I:, (m < r < n - 1) can all be 
obtained by using Relat ion 4.15. 

RELATION 4.16. For  n even (say n = 2m) and m >_ 1, 

2#m,,~+,:2m = ~ ( - - 1 )  i+j- '  
,=0 j=x ) 

,---,. 1.i_ 1 2 2m + [Am,m+ l :2m-i ~- [Am:m[Al :m • 
i=1 m 

(4.18) 

This follows directly f rom Relat ion 4.15 by setting n = 2m and r = m. Note  that  
this result will enable us to compute  the momen t  #m,m+l:2m f rom the single and 
produc t  moments  in samples o f  sizes less than 2m. 

RELATION 4.17. For  r = 1 , 2 , . . . ,  In/2], 

{1 ~- (--1)n}[Ar,n r+l:n = -1  j k [Ar-j . . . .  j+l:~-j-k 
j~ l  k=0 

r-1 

+ ~ ( - 1 ) n - k + l  ( k ) P  . . . .  + l : , k  (4.19) 
k=l 

n 

i = 1  - -  1 

)< [An--r i+l:n-r-i+l[Ai:r+i--1 • 

Relat ion 4.17 shows that  if n is even, then the produc t  moments  # . . . . .  +1:, for 
1 < r < [n/21 can all be obtained f rom the moments  in samples o f  sizes n - 1 
and less. Fo r  even values o f  n, if we set r = 1 in Relat ion 4.17 we deduce Rela- 
t ion 4.9. 
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These results have been established by Joshi and Balakrishnan (1982). Making 
use of  these relations along with Relation 3.2, they also arrived at the following 
result. 

THEOREM 4.2. In order to find the first, second and product moments  of  order 
statistics in a sample of  size n drawn from an arbitrary continuous distribution, 
given these moments  in samples of  sizes n - 1 and less, one has to evaluate at 
most two single integrals and ( n -  2)/2 double integrals if n is even, and two 
single integrals and (n - 1)/2 double integrals if n is odd. 

RELATION 4.18. For  an arbitrary distribution symmetric about  zero and n even, 

2#r,s:n = 2ktn s+l,n r+l:n 

i~7 s - - i - - ( s n i  =Z(--1)s-r i+l( r_l  1 ) )#l:s-ifli:n s+i 

÷ Z ( - - I ) i - 1  i ]2n-s+l'n-r+l:n-i (4.20) 
i=1 

+ . 
j -1  i=0 i ~n-s-j+l,n-r-j+l:n-i- j  • 

Relation 4.18, due to Joshi and Balakrishnan (1982), gives an explicit expression 
for the product moments/,~,,:~ for even values of  n, in terms of  the single and 
product moments  of  order statistics in samples of  sizes (n - 1) and less. Hence, for 
distributions symmetric about  zero and even values of  n, all the product moments 
#~,,:n can be evaluated from moments  in samples of  sizes less than n and note that 
this is in accordance with Theorem 4.1. In addition, setting r = l and 
s = n - k  + 1 in Relation 4.18, we obtain Relation 4.11. 

Thomas and Samuel (1996) have obtained the following comparatively simpler 
alternate forms for Relation 4.15 and Relation 4.17 when n is even. 

RELATION 4.19. For  1 < r < n - 1, 

1 n = ( _  1)j+ 1 n 
[lr,r+l:n÷(-- ) ~n-r,n r+l:n ~ #r,r+l:n-j 

(j)  421/ @ (-1) "-j+l #n r:n-~+l:~-j + 
j=l  
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where  

j" 0 if  r = 1, 
(4.22) { 1 o t h e r w i s e .  

RELATION 4.20. F o r  r = 1 , 2 , . . . ,  [n/2], 

r-1 ( )  ln-2r ( ) 
12r,n_r+l:n=~OrZ(_l)J+l n ~ Z ( _ _ l ) r + j  1 r+j--1 j=l j 12r,n-r+l:n-j Jr- j=0 F- -  1 

,)( ,,; 
X 12r+j,r+j12n-r-j:n-r j t r-1 r+ 

(4.23) 

where  q~r is def ined  as in  (4.22). 

RELATION 4.21. F o r  a n  a rb i t r a ry  c o n t i n u o u s  d i s t r i b u t i o n  a n d  for 1 < r < n - 2, 

( 0 '  
-- -- Z 1 2 n  j_l,n_k:n k = n(l'l -- 1)12n_ i 1,n-i:n i • ( .  - i )  (n  i 1) j_~0(~)_2)k:  0 

(4.24) 

Th i s  resul t  for  the case i = 1 is a special  case o f  R e l a t i o n  4.6 for r = n - 1 a n d  
s = n. N o t e  t ha t  if  we set i = n - 2 in  the a b ove  result ,  we deduce  R e l a t i o n  4.8, 

wh ich  is the  same  as R e l a t i o n  4.2 since t21,2:2 ~- 12~:1 = 122. 

RELATION 4.22. F o r  a n  a rb i t r a ry  d i s t r i bu t ion ,  

n-1 ~ (//) n-1 QR ) 
}212r.r+l:. + n~:j = } 2  12j:~n:. ~ r=l ' j=2 J j=l J 

(4.25) 

RELATION 4.23. F o r  1 < r < n - 1 a n d  1 < k < n - r, 

n-k+l(;_s ) ~_~ r+k ( ] _ i _ 1 1 )  ( n--s ) 
i=1 s=r+l r -- n -- k - r 

(4.26) 

RELATION 4.24. F o r  1 < k < n - 1, 

,=S 2 = 
s=2 g/ -- k -  1 #l,s:n 121:k121:n-k " 

(4.27) 
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The above results are due to Joshi and Balakrishnan (1982). Relation 4.24 follows 
directly from Relation 4.23 if we set r = 1. Note that in Relation 4.24, the 
equation for k is same as the equation for n -  k, and so there are only In/2] 
distinct equations. Also note that Relation 4.22 contains #l,s:, (2 < s < n) and 
first order moments  only. Thus, for even values of  n, knowledge of (n - 2)/2 of  
these, e.g., #l,2:n,  /21,3:n, ' ' ' ,  ]'ll,n/2:n, is enough to calculate all the product mo- 
ments provided the first moment  in samples of  sizes n -  1 and less are known. 
Similarly, for odd values of  n, it is sufficient to know ( n -  1)/2 moments,  e.g., 
#~,2:,, #1,3:,, • •.,/q,(,+l)/2:,. Note that these numbers are precisely the same as the 
numbers given in Theorem 4.2 for the double integrals to be evaluated for the 
calculation of all the product moments. This is quite expected since the moments  
#l,s:n (2 < s < n) along with Relation 4.6 are also sufficient for the evaluation of 
all the product moments. 

RELATION 4.25. For 1 < r < n - 1, 

• #r,s:n -}- ~ t~i,r+l:n = nlll:l#r:n 1 • (4.28) 
s=r+ l  i=1 

This result follows immediately by setting k = 1 in Relation 4.22. 
David and Balakrishnan (1996) have recently given a new interpretation for 

Relation 4.25 and applied it to derive a convenient computat ional  formula for the 
variance of a lightly trimmed mean. Balakrishnan and David (1998) have gen- 
eralized this result and have derived a convenient computat ion formula for the 
variance of a lightly trimmed mean when multiple outliers are possibly present in 
the sample. 

RELATION 4.26. For  1 < r < n - 1, 

~rr,s:nq- {Ti,r+l:n = r # l : l -  Z / 2 i : n  (#r+l:n--]2r:n). (4.29) 
s=r+I  i=1 i=1 

Relations 4.25 and 4.26, established by Joshi and Balakrishnan (1982), give 
extremely simple and useful results for checking the computations of  product 
moments  and covariances of  order statistics in a random sample of  size n. In 
particular, setting r = 1 and r = n - 1 in Relation 4.26, we derive the relations 

2o',,2:~ q- ~ G l , s :  n = (/~1:1 - / / l :n)(/22:n - ~ l : n )  ( 4 . 3 0 )  
s=3 

and 

n - 2  

2an_, .... + ~5-2~ai .... = (/~,,:n -/~,:l)(#n:n - - /~  ,:,) , (4.31) 
i=1 

respectively. 
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RELATION 4.27. For  an arbitrary distribution symmetric about  zero and for 
l < r < n - 1 ,  

~ / *  ..... + ~ # i , r + l : n  = 0  • (4.32) 
s=r+l i=1 

This result follows directly f rom Relat ion 4.25 upon  using the fact that  #1:1 = 0 in 
this case. 

RELATION 4.28. For  an arbi t rary distribution symmetric about  zero and even n, 
say n = 2m, 

~ ]'li,m+l:2m = 0 . (4.33) 
i=1 

This result follows f rom Relation 4.25 by setting n = 2m and r = m, and then 
using Relat ion 4.4. 

RELATION 4.29. Fo r  an arbi t rary distribution and for 1 < i < n - 1, 

Z l ~ r . r + i : n  = (_ 1)J-' , 
r=l ' ~=1 j=l r + i - - j  

( n - r - i + j - 1 )  (4.34) 
x j -  1 121:n-r-i+j]Jr:r+i j 

~=l i -- 1 r + i ~l,r+i:r+i • 

This result has been derived by Balakrishnan (1982). 

RELATION 4.30. For  n >_ 2, 

(4.35) 12r,r +l:n ~ 121:n-rlAr:r 121 .... • 
r=l r=l r=2 r 

This result is obtained simply by setting i = 1 in Relat ion 4.29. 

RELATION 4.31. For  any arbitrary distribution and even n, 

(n-2/2)t=, ( n.. "~ 1(_1 )  (n-2)/2 (n/2)#2:~/2.n 

(4.36) 

This result is obtained by setting i = n - 1 in Relat ion 4.29. 
Note  that  Relat ion 4.31 expresses the produc t  moments  /*l,n:n for even values 

o f  n in terms of  means o f  smallest order  statistics in samples o f  sizes (n - 1) and 
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less, while Relat ion 4.9 similarly expresses it in terms of  the means of  largest order  
statistics in samples of  sizes (n - 1) and less. 

For  even values of  n, it can be easily seen from Relat ion 4.29 that sums of  the 
sub-diagonal product  moments  o f  order  statistics in a sample of  size n, that is, 
sums of  the form ~--- i  ]~r,r+l:n (1 < i < n -- 1), can all be calculated from the 
single and product  moments  of  order  statistics f rom samples of  sizes (n - 1) and 
less. This result has been noted by Balakrishnan (1982). 

Now we present the identities established by Balakrishnan and Malik (1987b). 
These could be regarded as extensions to the identities involving the single mo- 
ments that  have been derived by Joshi (1973) and Balakrishnan and Malik (1985), 
which have been presented earlier as Relations 3.13 3.18. 

RELATION 4.32. For  an arbi t rary distribution and n > 2, 

n s - 1  n s - 1  

s = 2  r = l  s = 2  r =  l 

= n ~-~'(- 1)" & _ l , , : , / { ( s -  1)s} (4.37) 
8 = 2  

( )  = n ~ - ~ Z ( _ l ) ,  s - 1  i~r+l.~+2:r+2/{(r+l)(r+2)} . 
s =  I r = 0  r ' 

RELATION 4.33. For  n > 2, 

n s 1 n s - 1  

s = 2  r = l  s = 2  r = l  

( ; ; )  n Z ( _ l )  , 1 = / h , , : , / { ( s -  1)s} 
s = 2  

(4.38) 

n ( : )  
= n ~ Z ( _ l )  r s 1 #l, , .+2:r+2/{(r+l)(r+2)} " 

s = l  r = O  

RELATION 4.34. For  n > 2, 

n s - 1  n s - 1  

..... / ( . - , +  
s = 2  r = l  s = 2  r = l  

(;_1) 
= n~-'}~(-1)s 1 /~ l '2 : J{(s -  1)s} (4.39) 

s = 2  n,s, ( : )  
= /q,e:r+Z/{(r + 1)(r + 2)} . 

s =  1 r = O  
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RELATION 4.35. For n > 2, 

n s - I  n 1 ~ (  

I 
s=2 r=l  r=l  s=r+l  

+ (_l)r+ 1 (s). ) 
(n -- s + r + 1)r 

× #.,.+1 . . . .  + . + l / { r ( n - s + r +  1)} , (4.40) 

where (n)r denotes ( n -  1 ) (n -  2 ) . . .  ( n -  r), for r > 1. 

RELATION 4.36. For n > 2, 

Z I  a ..... / { r ( n -  s + 1)} 
s=2 r=l  

. I ~ ((-I) "+' (-~r ;) 
- - - -Z 1+  ( n - s  +1)  

r=l s=r+l  

X llr,n s + r + l : n _ s + r + l / { r ( n  --  S -1- r -}- 1 ) )  . 

(4.41) 

RELATION 4.37. For n > 2, 

~ s 1 

- - s + 1 ) }  

s=2 r=l  

=~:~I £(1+(_i).+' (S)r ;) 
.=1 .=r+a (n - s + r + 1) 

x/*,-s+l,, s+r+2:,s+r+l/ {r (  n - s + r + 1)) . 

(4.42) 

5. Relat ions  between moments  of  order statist ics  from two related populat ions  

Let Xl:n _< X2:, _ . . .  _< X,:, be the order statistics obtained from a random sample 
of size n drawn from a symmetric population (symmetric about zero) with 
cdfF(x) and pdff (x) .  Further, let Yl:~ <__ Y2:n _< "'" _< Y,:n be the order statistics 
obtained from a random sample of size n drawn from the population having 
pdf f*  (x) and cdf F* (x), where 

F * ( x ) = 2 F ( x ) - I  and f * ( x ) = 2 f ( x ) ,  x > 0  . 

That is, the distribution of Y's is obtained by folding the distribution of X's at 

zero. Denoting E(X~,) (k) k . (k) 0), i j by.,# .... E(Yr':, ) by Vr:, (1 < r < n, k > E(X~':,,X~:n) by 
. (i,j) i j v~i~ ( l <_ r < s < E(Y/:~Yj:n) n, i , j  > re,s:, and by 0), Govindarajulu (1963a) ob- 
tained the following relations satisfied by these moments: 

For 1 < r < n a n d k > 0 ,  

r:, m ) - r  m:,,-m + (--1) k m /  m-r+k~. ; (5.1) 
L m=O m=r 
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for 1 < r < s _ < n a n d i , j > 0 ,  

l . l ( i ' J ) : 2 - n I ~ ( n ~ , , ( i ' J )  ( - - 1 ) i ~  ( ~ ) / )  (i) 
r,s:n m -r+ 1 :m ~ m J Vr-m,s m:n-m + 

L m=0 m=r (5.2) 
/ q  

( 
× m + ( -1 / '+ j  

Y/ (i,j) 
m=s \ m J vm-s+l'm-r+l:m ; 

for 1 < r < n  a n d k > O ,  

(1-i-(--1) n+k l)v!k~ : 2 ( n - r + l ) ~ ( - - 1 ) m ( n - - # ' m q - m ) l . l ! k ) m :  n 

m:O (5.3) 
n 1 

+ ( - 1 ) k ~ - ~ ( - 1 ) 2  ~ m ( n  )v(k) • 
m = r  \ m r:m 

and for l _ < r < s < n a n d i , j > O ,  

v (i'j) = 2" ~--~(-1)2-m ( n 3l.l(i,j ) r,s:n ) r-m,s-m:n-m ~- (--1) r+i 
m=O 't. rn 

s--r / 
× ~ r ( s - m )  -1 n -  r "~,,(i) ,,(J) 

m=l S -- r -- m J -= m:s-m°m:" s+m (5.4) 

)(,+°,,) ~-(--l)r+i+J~-~ ~ (--1)m-1 s + m ' - - I  r - m  
m=l m~:l 

.0,i) 
X Um~,s r+mt:s_r+m+m, 1 . 

Relations (5.1) and (5.2) express the #'s explicity in terms of the v's; hence, both 
single and product moments of order statistics from the symmetric distribution 
(symmetric about zero) can all be obtained with a knowledge of the single and 
product moments of order statistics from its folded distribution. Making use of 
the explicit expressions available for the moments of order statistics from the 
exponential distribution, Govindarajulu (1966) has applied these relations to 
compute both single and product moments of order statistics from the double 
exponential (Laplace) distribution. Similar work has been carried out for the 
double Weibull distribution by Balakrishnan and Kocherlakota (1985). Ba- 
lakrishnan, Govindarajulu and Balasubramanian (1993) have also given an in- 
teresting probabilistic interpretation for relations (5.1) and (5.2). 

6. Normal and half normal distributions 

For any differentiable function 9(x) such that differentiation of  9(x) with respect 
to its argument and expectation of 9(X) with respect to an absolutely continuous 
distribution are interchangeable, Govindarajulu (1963b) has shown that 
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Eg'(Xr:,) = - ~ EIg(Xr:,)f'(Xs:,)/f(Xs:,)l , (6.1) 
s ~ l  

for 1 < r < n, where f denotes the probability density function of the distribu- 
tion. For example, for g(x) = x, relation (6.1) gives 

- ~ E[X~:,f'(Xs:,)/f(Xs:,)l = 1, 1 <_ r < s <_ n . (6.2) 
s = l  

For the standard normal distribution with pdf  

1 _x2/2 
f ( x )  : ~ e  " , --Cx3 < X < O0 , 

it is easy to see that fr(x)  = - x f ( x ) ,  and hence relation (4.2) immediately gives the 
identity 

~]lr ,s :  n = 1, 1 < r < n ; (6.3) 
s=]  

also see Seal (1956). Also since ~=1/~s:,  = nE(X) = 0, Eq. (6.3) yields the iden- 
tity 

~ a  ..... = 1, 1 < r < n  . (6.4) 
s = l  

In other words, each row (or column) in the varlance-covanance matrix of nor- 
mal order statistics add up to 1. These identities have been applied by Davis and 
Stephens (1978) for checking the accuracy of the approximation for variances and 
covariances of normal order statistics while improving David and Johnson's 
(1954) approximations for these quantities. Note that identities (6.3) and (6.4) 
also hold for the half normal (chi) distribution with pdf 

f ( x ) = x / ~ e  -x2/2, x > 0  , 

as in this case also we have f ' ( x )  = - x f ( x ) .  
For normal and half normal distributions, Govindarajulu (1963b) has also 

established the relation 

u (2) = 1 + r  (_1) m 1 n - - r  
~-~:" m:0 ~ m #m+; 1,m-cr:m+r , (6.5) 

for 1 < r < n. Proceeding on similar lines, Joshi and Balakrishnan (1981a) have 
established the following identities satisfied by the moments of order statistics 
from normal and half normal distributions: 

n 

~_ ,# l , s :n  =- 1 ; (6.6) 
s = l  
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f o r 2 < r < n ,  

n n 

for 1 < r < n - 1 ,  

£ l~r,s:n = ~ # ( 2 ) - ( n - r )  " s : n  
s = r +  1 s = r +  1 

f o r 2 < r < n ,  

n 

~ #~,,:~ = 1 + n/.q:l/z~_kn_ 1 ; 
s = l  

f o r n >  I, 

~ a l  .... = 1 - #~:~#l:. ; 
s = l  

and for 2 < r < n, 

(6.7) 

( 6 . 8 )  

(6.9) 

(6.10) 

~_~ Or,,:n = l -- ( n - - r +  1)~l:l(#r:n -- ~tr_l:~) . (6.1l) 
s = I  

Note that identities (6.6), (6.9), (6.10) and (6.11) reduce to the identities (6.3) 
and (6.4) for the normal distribution by making use of  the fact that 
~t:a = E ( X ) =  0. Identities (6.6)-(6.11) have been applied by Joshi and Bala- 
krishnan (1981 b) for obtaining an expression for the variance of standardized and 
studentized selection differentials of reach statistics. See also Schaeffer, Van Vleck 
and Velasco (1970) and Burrows (1972, 1975) for some related work on the 
selection differential for the normal distribution. 

Balakrishnan and Malik (1987c) have established the following identities sat- 
isfied by the moments of normal order statistics: 

For n >_ 2, 

- = - I*,,~:~/(n s +  1) (n 1 ) -  (2) 
s = 2  r = l  r = 2  (6.12) 

n 

= ( n -  1 ) -  n Z l a ~ ) / { ( r -  1)r} ; 
r - -2  

for n >_ 2, 

s-2 ~=1 (6.13) 
n 

= (1/2 + 1/3 + . - - +  1/n) - N~--" ,,(2)/r " r - r : r  i 

r - - 2  
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and for i = 3, 4 , . . . ,  

n s 1 

Z # ..... / { ( n - s + l ) ( n - s + l ) . . . ( n - s + i ) }  
s = 2  r = l  

_ Ci 2 2 ) _ ( i _ 1 ) } _ ~ ( r + i - 3 ) t ~ ! 2 ) 1  (i 1)(/ 2 ) [ { (  n + i  
- -  i - -  r = 2  - \ i - 3  ' 

(6.14) 

where Ci = l /{(n + 1)(n + 2 ) . . .  (n + i -  2)}. 

7.  C a u e h y  d i s t r i b u t i o n  

For the Cauchy distribution with density function 

1 
f(x) n ( l + x 2 ) ,  - e c < x < e c  , 

Barnett (1966) has obtained the following recurrence relation between the first 
and second order single moments of order statistics: 

For 3 < r < n -  2, 

u(2) = _n (/~r:,-1 - #r-l:, 1) - 1 , (7.1) r-r:n TC 

so that the variances are given by 

n 
Var(X~:,) = ar,~:, = ~ (#~:,_~ - #r l:n-1) - -  1 - ]2(2)r:, (7.2) 

for 3 < r < n -- 2. More generally, Barnett (1966) has obtained the following 
recurrence relation for the higher order moments: 

r:, _ n { (k- l )  , ( k - l )  "~ 
#(4) ( ~  ~#r:.-, -- ~ - , : . - 1 )  --/~f 2) (7.3) 

for k ÷  1 < r < n - k .  
Relations (7.1)-(7.3) provide a very reasonable way of obtaining the variances 

and also higher order moments since the expected values of order statistics could 
be easily calculated to any required accuracy. Similar results have been obtained 
for the truncated Cauchy distribution by Khan, Yaqub and Parvez (1983). 

Recently, Vaughan (1994) has derived general recurrence relations for the 
single moments of order statistics from the Cauchy distribution in terms of infi- 
nite series: 

~(k)  j - 1  (_ 1)in ~'1~(2j-2i  1) . ( 2 j - 2 i - 1 ) ' ~  
r : " = ~ - - ~ ( 2 ] ~ - - 1 ) \  r:,-a --/~r-1:,--1 ) + ( - - 1 )  j '  if k = 2 j  

i=0  

(7.4) 
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and 

( - I )  j-~ II , '  #(k) 
~ 2a 

~:"= ~=o ? .... ' -"~-':"- 'JJ + ( -  )~':": 
if k = 2j + 1 . (7.5) 

In particular, if k = 2, Eq. (7.4) reduces to (7.1). One advantage of such 
formulae is that the calculation of/ ,~)  requires lower order moments of lower 
order statistics for smaller sample sizes [i.e., ( n -  1)]. 

Infinite series expression for mean/~!I, ) = #~:, of Xr:, has been derived recently 
by Joshi and Chakraborty (1996a) in terms of Riemann zeta functions (see 
Abramowitz and Stegun, 1964) 

~-~ k -s ( ( s )  = , s > 1 . 
k=l 

This is given by 

where 

and 

[(n-2)/2] ~(2m + 1) (7.6) 
llr:n z Z d2m+i 7~2m+i 

m= 1 

n ! ( 2 m  + 1)!hm 
a2m+i = (--1)m (m -- r ) ! ( r  - -  1)!22m ' 

am= ~ (-1)J (7.7) \ J )  \ 2 m + l J r + j  j=rnax(O,2m-r+2) 

They have also tabulated the coefficients dzm+l for 4 < n < 10 and [(n + 3)/2] < 

Joshi and Chakraborty (1996b) have applied the techniques given in Joshi and 
Chakraborty (1996a) for deriving expressions for the single and product moments 
as:  

_ - n  , ( k - l )  2 ( n ) !  oo ( r  + 2 i  - 2 ) !  . . . . .  ( k - l )  
fl~k) 7~(~'~_ 1) #*r_l:n_l -t- 7~(-77~) ! ~ ~ q_~.~ -~)lgCAl)flr+2i_l:n+2i_l , 

(7.8) 

and 

_ n , ¢ ~ .k -1  ]A(k)r:n rc(n --  r)  t*r:,,-i 
2(n)! ~ ( n - r + 2 i - 1 ) !  . (k 1) 

~ ( ~ - r ) !  ~ -(n~- 2i~- ]-)i ~(2')#r:"+2i-1 

(7.9) 
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In approximat ing #~) by first few terms of  the series expansions given above, it is 
observed that  Eq. (7.9) gives faster convergence than Eq. (7.8) for  
k + l  < r < [ ( n + l ) / 2 ] .  

For  the produc t  moments  #r,*:,, Joshi and Chakrabor ty  (1996a) have shown 
that  

n 

/~r,*:~- ~ ( r - 1 )  & 1:~ 1-~ 

2(n)! oo 
~-----1)!  Z ( r  + 2i - 2)!b,-l(i)&+2i-l:,+2/ 1 

i=1 

(7.10) 

_ n 2 (n ) [  
=~--_-s)! ~=(( n - s ÷  2 i -  1) !bn- l ( i ) lAr :n+2i  1 , 7~(n __ S)  IAr:n-I 

(7.11) 

~(2/) where bt(i)- (2i+t)!, t -  0,1,2, . . . ,  with Eq. (7.10) giving better results than 
Eq. (7.11) for  r + s < n in the sense of  faster convergence. 

Again, Joshi and Chakrabor ty  (1996b) have derived another  form for /~r,,:n as 

n(n - 1) 2(n)~ 
I~r's:" = n2(r - 1)(n - s) + zr2(r - -~) (n  - s)! ~ ( n  - s + 2i - l)!bn_2(i) 

i=1 

2(n)! 
+ r~2(r - 1)!(n - s) Z ( r  + 2i - 2)!b. 2(i) (7.12) 

i=1 

_ 4(n)! ' ~ ( r  + 2i - 2)[(n - s + 2j - 1)!an-2(i,j) , 
 2(r_ 1)!(n- s)! j=l 

¢(20¢(2j) for t = 0, 1,2, .  where at(i , j )  - -  (2i+2j+t)! ~ " ' "  

8. L o g i s t i c  a n d  r e la t e d  d i s t r i b u t i o n s  

With the density funct ion given by [for more  details, see Balakrishnan (1992); 
Johnson,  Kotz  and Balakrishnan (1995)] 

f ( x ) = e - X / ( l + e - X )  e, - o c < x < c ~  , 

and the cumulative distribution function given by 

F ( x ) =  1 / ( l + e - X ) ,  - c c < x < o c  , 

it is easy to see that  

f ( x ) = F ( x ) { 1 - F ( x ) } ,  - o c < x < o c  . 



178 N.  Ba lakr i shnan  a n d  K.  S. Su l tan  

Making use of this relation, Shah (1966, 1970) has derived the following recur- 
rence relations: 

For 1 < r < n and k = 1 ,2 , . . . ,  

(k) =#(k) ( ! ) ! k - l )  (8.1) 
r+l:n+l r:n -[- ]A . ; 

for 1 < r < n - 1 ,  

n + l  [ ( ~ ' ~  /,t(2) 1 ] 
[Ar'r+l:"+l n - -  r Jr- 1 [Ar'r+ :n --  t n  + 1) r+l:.+l - # l ~ l t r : n  ; (8 .2)  

and for 1 <_r<s<_n, s-r>_2, 

(8.3) 

n - s + l P r : ~  • 

to the symmetry of  the distribution, we also have the relations #~:k)_- D u e  

(--1)kt~]r+l:n,"' #1,2:2 ---- 0 and/~r,~:, = ~n ,+l,n-r+l:n as noted earlier in Sections 3 
and 4. Making use of these relations along with recurrence relations (8.1)-(8.3), 
one could compute all the single and product moments of order statistics for all 
sample sizes. Explicit expressions for these moments are also available; see, for 
example, Birnbaum and Dudman (1963), Gupta and Shah (1965), Gupta,  
Qureishi and Shah (1967), and Balakrishnan (1992). 

By considering the half logistic distribution with cumulative distribution 
function F(x) and density function 

f(x) = 2e-X/(1 + e-X) 2, 0 _< x < oe , 

and noting that 

f(x) = F(x){1 - F(x)} + (1/2){1 - F(x)} 2 

= {1 - g ( x ) }  - ( 1 / 2 ) { 1  - F(x)} 2 

= (1/2){1 -F2(x)} , 

Balakrishnan (1985) has established the following recurrence relations satisfied by 
the single and product moments of order statistics: 

Forn_> 1 and k = 0,1, 2, . . ., 

,:.+, = 2 f , : .  - ; 

forn_> landk=0,1,2, . . . ,  

2:n+l = /,/ 1 : . -  t T )  i'll:n+, 

(8.4) 

; (8.5) 
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f o r 2 < r < n  and k = O, 1 ,2 , . . . ,  

/2(k+1) 1 [(n_+ 1)(k+_ 1)/2(k) + [ n + l ~  (k+l) 
r+, : , ,+,  = 7 L (n - ~ + 1) r:,, ( ~ - - j , u , .  ,:,, 

n - - 2 r + l , ( k + l ) ]  . 
2 /*r:n+ I J 

(8.6) 

for l < r < n - 1 ,  

2 ( n + l )  [ 11(2 ) ( 1 ) ] 
- -  /2(2) -J- - - - r - q  £ i /2r,r+l:n --r-r:n --  ~ /2r:n /2r,r+l:n+l - -  r ,n+l /7 - -  

for n >_ 2, 

, (2) (/7 1) [ {n'~ (2) 1 /22,3:.+, = .~ : .+~ + + /2~: . -  (~)/2,: .  ,j ; 

for 2 < r < n -  1, 

.(2) n + 1 [ { _ , (2)  x ]  
1,] j  

--  S ~- /2r:n 

for 1 < r <  n - 2  and s - r > _  2, 

/2r,s:n+I = /2rs-l:n+l ~- . . . .  ' / 7 -  7 - 4 ~  /2~":" /2r,~-,:. 

; (8.7) 

(8.8) 

(8.9) 

(8.10) 

f o r 3 < s < n ,  

[ ] /22,~+l:.+z =/23,s+k.+1 + ( n + l )  p~: . -  ~ /fi,s-l:~ 1 ; (8.11) 

and for 2 < r < n -  2 and s -  r >_ 2, 

n + l  
/2r+l,s+l:n+t =/2r+2,a'+l:n+l q- ? ' ~ 7  i ) [ 2p , :~ -  n(/2r,,_,:,_ , --/2r 1,s-l:n-1)] • 

(8.12) 

Starting with /q:l = log4 and /2(2)= rc2/3, recurrence relations (8.4)-(8.12) 1:1 
could be systematically applied in order to compute all the single and product  
moments  of order statistics for all sample sizes in a simple recursive way. This 
recursive evaluation of the means, variances and covariances of order statistics 
from a half logistic distribution has been successfully employed by Balakrishnan 
and Puthenpura (1986) while determining the coefficients for the best linear un- 
biased estimators of the location and scale parameters of a half logistic 
distribution. 
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These results have been extended by Balakrishnan and Kocherlakota (1986) to 
the doubly truncated logistic distribution with cumulative distribution function 
F ( x )  and density function 

1 
f ( x )  - p _ Qe-x/(1 + e-X) ?, Q1 _< x < PI 

where Q and 1 - P (Q < P) are, respectively, the proportions of truncation on 
the left and right of the standard logistic distribution, and Q1 = log(l@Q) and 
& = log(t@). Denoting Q2 = Q(1 - Q ) / ( P  - Q) and P2 = P(I  - P ) / ( P  - Q), it 
can be seen that 

f ( x )  = (1 - 2 Q ) F ( x )  - (P  - Q){1 - F ( x ) }  2 + Q2 

= P2 + ( 2 P -  1){1 - F ( x ) }  - ( P -  O){1 - F ( x ) }  2 

= P2 + ( 2 P -  1)g(x){1 - g ( x ) }  + ( P +  Q -  1){1 - F ( x ) }  2 . 

Making use of these relations, Balakrishnan and Kocherlakota (1986) have 
established the following recurrence relations: 

For k = 0, 1,2, . . . ,  

~(k+l) =~+1  1 [ 
,:2 + p - - ~  P2(/~1+1 -Q~1+') + ( 2 P - l )  

(8.13) 
X ~/'fl(k-Cl)l:l -Q~I ÷1) - ( k  -}-1),Rlkl] ," 

for n > 2 and k = O, 1,2, . . . ,  

#(k+l) = Q~I+I 1 ~rJ/" (k+l) 1:,+, + ~---Q it2 ~./~1:,, - Q~I+I) + ( 2 P -  1) 

(8.14) 

>:, -¢,+') - S l:nJ 

for k = 0, 1,2, . . . ,  

(k+l) = ~ + 1  1 [ 
2:2 -- P-----Q Q2(Plk+I - Q~I+I) + (1 - 2Q) 

(8.15) 

x (p~+l , (k+l)'~ (k) 1 -,~m ) - ( k + l ) ~  m ; 

for n > 3 and k = 0, 1,2, . . . ,  

#(k+l) (k+U n + 1 [ P2 (~(k+l) _ fl(k+l)'~ 2 P -  1 
2:,+1 =#1:,+1 + ~ - - ~ [ n _  i t  ' 2:n-1 1:, lJ q n 

(8.16) 
/p(k+l)#(k+l)'~ _ (k + 1) , (k)l . 

X k, 2:n l:n ] n(n--1)•2:nJ ' 



Recurrence relations and identities for moments of order statistics 181 

f o r 2 < r < n - 1  and k = O, 1 ,2 , . . . ,  

#(k+l) _ n + 1 [ k +  1 #(~) 
~+1:,+1 r(2fi--- 1) _ n Z r q  2 1 r:, 

1 
n + 1 {(n + 1)(P + Q - 1) - r(2P - l~l', J--r:'(k+l).+, 

1" (e+l)] q- ( P - } - Q -  )#r-l:n] ; 

for n _> 2 and k = O, 1 ,2 , . . . ,  

~t(k+l ) n + l  [ ( 
n+l:n+l -- n(2fi-- 1) (k + 1)# (k) ,  n:. - nP2 P~l +l _ tXn-l:n-1)" (k+l) "~ 

1 
n + 1 {(n + 1 ) ( P +  O -  1) - n(2P- 1)} 

#(k+l) . (k+l)l 
X n:n+l -[- (P + Q - 1)t*._l:./ ; 

J 

nP2 {, (k+l) , (k+l) "~ 
n - - r +  1 \~'r:n I - e>-l:~-lj  

(8.17) 

(8.18) 

#L2:3 = #(2)1:3 + 2(P Q) 2P2 Plgl:l t*l:l} 

q-(2P-1) (# , ,2 :2-  #{2:~)-#1:2] 
(8.19) 

#2,3:3 m #(2) 3:3 q- 
3 

2(P -  Q) [#2 :2 -  2Q2(#{2:1- QI#1:I) 

q- (2Q-1)  (#~:22)- #1,2:2)] 

for 1 < r < n - 2 ,  

#r,r+l:n+l ~- #(2) _[_ , r:n+l 

for n >_ 2, 

(8.20) 

n + 1  [ riP2 (#r,r+l:n-1- #(2) "~ 
( n - r + l ) ( P - Q )  k n - r  r:, 1} 

n - r # r : n  ; 

(8.21) 

,(2) r / q - l [ (  
#n-I .... ÷1 =t*n-l:n+l -t 2 ( ~ Q )  nP2 Pl#n-l:n 1 -#(2)n-l:n-lJ'~ 

+ ( 2 P - 1 ) ( # ,  1,,:,, ,(2) ~ ] - -  l ~ n - l : n J  - -  # n - l : n  ; 

(8.22) 
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for n > 2, 

//2,3:n+1 = //(2)3:n+1 q 2 ~  ~n-{- 1 [Q)//2:n - n Q 2 ( / / l : ~ 2 - 1 - Q 1 / / l : n - l )  

( 1  2Q)((2)  ) ]  • 
- -  - -  / / 2 : n  - -  / / 1 , 2 : n  , 

f o r 2 < r < n -  1, 

_ / / ( 2 )  
l l r+l , r+2:n+l  - -  r+2:n+l -I- 

for 1 < r < n - 2 ,  

/ /r ,n:n+l = ]~r,n l:n+l q- - -  

f o r s < n - 1  a n d s - r _ > 2 ,  

(8.23) 

- -  ~ / / r ' n -  1 - -  / / r -  1 ,r:n- 1 ( r +  1) (P-Q)  7//~+':" r 

r (2) ) ]  " (8.24) - (1 - 2Q)~ , / / r+ l : .  - - / / . ,~+1: .  , 

n + 1 F 
lne2(e,// ..... 1 - / / . - , : . - , )  

2(p - Q) 

+ (2p - 1)(//~,~:. -//~,.-1:,,) -/~r:./ ; 
3 

(8.25) 

n + 1 r riP2 
/ (// . . . . . .  i -//r,s-i:~-l) /lr,s:n+l =//.,s-1:.+1 + (n - s + 2)(P - Q) _ n - s +  1 

+ ( 2 P - - 1 ) ( / / r , ~ : . - - / / r , s _ l : . ) - - n _ s + l / / , . : .  ; (8.26) 

for s > 3, 

n + l  [ 
//2,s+t:n+I ~--- //3,s+l:n+l q- 2 ( ~ Q )  //s:n -- nQ2(//l . . . . .  1 - Ol//s-l:n-l) 

( 2 Q -  1)(//2,s: n -//14:.)] ; (8.27) + 

and for r > 2, s - r > > 2 ,  

n +  1 [1 nQ2 
/ir+l,s+t:.+l = //r+2,.+|:.+~ + (r + 1)(P - Q) [r/is:" r 

X ( / / r , s - l : n - I  - -  / / r - l , s - l : n - 1 )  -}- (2Q - 1)(//~+,,~:. -/l~,s:.) [ 4 

(8.28) 
(2) Now starting with the values of//l:~ and/ /H,  for example, recurrence relations 

(8.13)-(8.28) could be systematically applied in a simple recursive way in order to 
compute the first two single moments and product moments of all order statistics 
for all sample sizes; also see Balakrishnan and Joshi (1983). Exact and explicit 
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expressions for the first two single moments  and product  moments  of  order sta- 
tistics f rom the doubly  t runcated logistic distribution have been derived by Tarter  
(1966). 

The pdf  of  a generalized half logistic distribution is given by 

2(1 - kx) (l/k)-1 
f ( x ) =  2, O < x < l / k ,  k _0  , 

[1 + (1 - kx) ~/k] 

and the cdf  is given by 

1 - (1 - kx) 1/k 
F(x)  = O < x < l / k ,  k > O 

[1 + ( 1 - k x ) ' / k ]  ' - ' 

It is easy to note that 

(1 - lo t ) f  (x) = 1 - F(x )  - (1/2){1 - F(x)} 2 . 

Using the above differential equation, Balakrishnan and Sandhu (1995) have 
established the following recurrence relations: 

F o r n >  1 and i = 0,1, 2, , . ., 

(i+1) 2 [ (i+1) i + 1 . (i+1)~ 1 
~,]21:n -- ~,:n )J ' ~/l:n+l = [/~l:n f (0 . (8.29) 

for 1 < r < n a n d i = 0 , 1 , 2 , . . . ,  

]2(i+~)'~] /~r+l:n+"(i+" = ~r:n+l(i+l)+r/+l [ 2 ( i + l ) r  [ /77r-+  1 ( / / ! i ! -k#!:+l))  - ( #!I+1)- r - l : n ] J  

2 ( 0 = 0 ,  for n > l a n d  i = 0 , 1 , 2 , .  - (8.30) 
O : n  - -  " " 

for 1 < r < n - 1 ,  

,(2) 2 ( n + l )  [ , (2 )+  1 (k#~#+l: _p~:~)] ; 
~r,r+l:n+l = t~r:n+l q- / 7 /~7#  i I'lr,r+l:n --  I~r:n 11 - -  r 

(8.31) 
for 1 < _ r < s < n a n d s - r > 2 ,  

2(n + 1) [ 
]2r,s:n+l = ~r,s:n+l -~ - - -  [~r,s:n--  lAr.s-l:n -~ n - s + 2  

1 (k]2r,s:n_ ]2r:~) ] ; 
n - s + l  

(8.32) 
f o r 2 < r < n -  1, 

]dr+l,r+2:n+l = ]2(2 ) 2(n + 1) 
r+2:. + r(r + 1--------{ 

--n--{'(2) ]2r ,,r:n-1)] ; x [Pr+l,:. - k#.,r+l:. 2 \t~r:. 1 - 

(8.33) 
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for 2 < r <  s < n and s - r  > 2, 

~r+l ,s+l:n+l  = ~tr+2,s+l:n+l q- - -  

and for n > 3, 

] / l , n + l : n + l  - -  

2(n + 1) [ 
r ( r  + 1) ~_ I~r:n --  kl~r's n 

2n (~.~- 1:.-1~ - ~-1,~-1:~-1)] 
(8.34) 

2(n + 1) [ n - 1  
n ( n  - -  1) (n - 1 + k)#l,.:. + P1,.-1:. n + 1 #1,.:n+1 

J n + 1 PI,n-l:n+l -/~:~ (8.35) 

Letting the shape parameter k -~ 0 in the relations (8.29)-(8.35), we obtain the 
relations for the half logistic distribution presented in Eqs. (8.4)-(8.12). 

The recurrence relations in (8.29) and (8.30) will enable one to compute all the 
single moments of all order statistics for all sample sizes. Also, the recurrence 
relations (8.31)-(8.35) are complete in the sense that they will enable one to 
compute all the product moments of all order statistics for all sample sizes in a 
simple recursive manner. This can be done for any choice of the shape parameter 
k, and the required recursive computational algorithm is explained in detail by 
Balakrishnan and Sandhu (1995). 

Moreover, recurrence relations between moment generating functions as well 
as factorial moment generating functions of order statistics from the doubly 
truncated logistic distribution have been established by Mohie El-Din, Mahmoud 
and Abu-Youssef (1992) and Mohie El-Din and Sultan (1995), respectively. 

9. Gamma and related distributions 

For the gamma distribution with probability density function 

f ( x )  = e-Xxm-1/r(m), x > 0, m > 0 , (9. l) 

explicit expressions for the moments of order statistics have been derived by 
Gupta (1960) for integral values of m, and by Krishnaiah and Rizvi (1967) for 
a general value of m; see also Breiter and Krishnaiah (1968). Note that for the 
gamma random variable X with density function given by (9.1), the k th mo- 
ment 

E(X k) = r(m + k ) / r (m)  

exists for all k > - m  and consequently, #!:k) also exists for k > - m  (David, 198l, 
p. 34). For integral values of m, Joshi (1979a) has established the following 
recurrence relations satisfied by the single moments of order statistics: 
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For  k = 1 ,2 , . . . ,  

#(k) 
= ( k / n ) r ( m )  

and for 2 < r < n and k = 

m-I  
(t+k m) l . ,  

#1:n / /2  , 
t=0 

1 , 2 , . . . ,  

m - I  

(9.2) 

presented earlier in Section 3 and the recurrence relations (9.2) and (9.3), it is clear 
that  if the negative moments  of  orders - (m - 1), - (m - 2 ) , . . . ,  - 1 of  the smallest 
order  statistic in samples of  size j < n are known,  then one could calculate all the 
moments  #!~,) for  1 < r < n and k = 1 ,2 , . . . .  

Young  (1971) has also established a simple relation between moments  of  
order  statistics f rom the symmetrical  inverse mult inomial  distribution and the 
order  statistics of  independent  standardized gamma variables with integer 
parameter  m. 

Thomas  and M o o t h a t h u  (1991) have obtained a recurrence relation for the 
moments  of  different orders of  the largest order  statistic f rom a gamma distri- 
but ion with shape parameter  m, which is 

where 

n 
An 1j#!:kn -n+j) = F ( k  ~- n m  -- n + I) n_k_(m 1)n 

;=1 ( r ( m ) )  n 

(i) n>_2  is an integer and k is a real number  such that  k > m a x ( - m ,  
- n ( m  - 1) - 1), 

(ii) f o r r = l , 2 , 3 , . . . , n - - l ,  A 0 , 1 = l ,  
A r j  = - r - I l k - r +  1 + ( n - r ) ( m  - 1)]At-l j ,  

(iii) for j = 2, 3 , . . . ,  r, 
A r j  = r - I  (n - r ) A r - l , j - I  - r -1 [k - r + j + (n - r ) ( m  - 1 ) ] A r - l d ,  

Ar,r+l = r -1 (n - r )Ar - l ,~  

and #!0:! = 1. Thomas  and M o o t h a t h u  (1991) have presented a numerical  example 
for illustrating the application of  recurrence relation (9.4). 

(9.4) 

#(k) = #(k) ) ~ H(t+k-m)/tv (9.3) 
r : n  r - l : , - I  + ( k i n  r-r:n , -"  " 

t=0 

Relat ion (9.2) expresses the k th order  momen t  of  Xl:n in terms of  the lower 
order  moments  of  XI : , .  In particular,  it expresses the mean of  XI : ,  in terms of  
moments  of  orders - (m - 1), - (m - 2 ) , . . . ,  - 1 of  Xl:n. Similarly, relation (9.3) 
expresses the k th order  moment  of  Xr:, in terms of  the k th order momen t  o f  X r - l : n - 1  

and lower order  moments  of  Xr:~. Hence, f rom the relation 

(k) ~'-~ ( 1 ) j - n + r - l ( ~ - - l r ) ( ; ) . ( k )  
r:n = - -  ,Ul:j 

j=n -r+ 1 
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Based on the functional  relat ionship between the distr ibution functions of  
g a m m a  r a n d o m  variables with shape pa rame te r  m and m -  1, m > 1, T h o m a s  
(1993) has derived the following recurrence relation: 

Fo r  n _> 2 and r and m real numbers ,  r > 0, m > 1, 

.-1( ) k+, u(~) ~ n -  1 
~'.,.:m k ( m -  l ) - k - I ( - - 1 )  k V ~ A ( k ' J )  . (r+j) 

~ . . ¢ ~ k + r + l , n - k - l , k + l : m - I  # n , n : m - I  , 
k=0 j=l  

(9.5) 

where 

, (k) #!~) with shape pa rame te r  m, (i) ,r,,:m = 
. a(  °,U (ii) f o r k =  1 , 2 , . . , t - l , - r : , t : m = l ,  

(iii) •(k.l) - ( s  + k ) - l [ r -  k + l + (t k)(m . . . .  (k-L~) --r,s, t:m : - -  - -  l ) jAr , s , t :m , 

_ l ~ l A ( k - l , J ) ]  (iv) A (k'j) = (s + k) -1 (t - ~ z ( k  ~d-1) [ r -  k + j + ( t -  k)(m - :j r,,,t:m J r~s,t:rn '~ ]" " r~s,t:m 

--(k,k+l) /~A (k- 1,k) 
(v) ana  n~,s::m = (s + k)-l(t-. .:.~,,s,t:m • 

Certain appl icat ions of  relation (9.5) are presented by T h o m a s  (1993). 
Recently,  for  the generalized g a m m a  distr ibution 

g(x; a, b, c) = bc-ab{F(a)}- lxab-% .(x/C)", X > 0 , (9.6) 

where a > 0, b > 0 and c > 0, T h o m a s  (1996) has proved  the following two 
theorems based on the momen t s  of  the largest order  statistic. 

Fo r  1 < r < n a n d k =  1 ,2 , . . . ,  

/~(k) C )  x k { G ( x ; a ' b ' c ) } ' - '  r:,;a,b: = r (9.7) 

× {1 - a(x; a, b, c)}n-rg(x; a, b, c) dx , 

where #(0) = 1 and G(x; a, b, c) is the corresponding cdf. Also, he has p roved  r:n;a,b,c 
the following two L e m m a  which are used to prove  the two theorems.  

LEMMA 9.1. I f  M(u,  v, w; a, b, c) is defined as 

/0 = b c~:: M ( u , v , w ; a , b , c )  xU(G(x;a, :.: lg (x ;a ,b ,c ) }Wdx  , (9.8) 

where u is a non-negat ive  real number ,  v and w are integers such that  v > 1 and 
w > I, then the integral  in (9.8) is finite for  those values o f  u and w for  which 
u +  ( a b - 1 ) w +  l > 0 .  

LEMMA 9.2. I f  M ( r , s , t ; a , b , c )  is defined as in (9.8), where r is a positive real 
number ,  s and t are integers such that  r_> t - 1 ,  s > 0 and t > 2, then for  
k = 1 , 2 , . . . ,  t - 1 we have the following: 
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where 

k+l 
M ( r ,  s, t; a, b, c) (kd) = Z Jr,s,t;a,b, c M ( r  -- k + j b  - b , s  + k, t - k; a, b, c) , 

j=l 

= tlt(k-1, I) r(k,1) _ ( s  + k ) - l  ( a b ( t _  k) + r + l - O r~sJ;a,b,c J~  r:s,t;a~b~e 1 

j (k , j)  = (s + k) -1 (! -- k ] b c - b J  (k-l ' j -1) 
r,s~t;a~b,c / r~s,t;a~b~c 

(k- ~ ,j) 
- ( s + k )  l {b(a t  + j - a k - 1 ) + r +  l - t }J ; , s , ta ,b ,  c 

(9.9) 

for j = 2 , 3 , . . . , k ,  and 

j(&k+l) = (s + k ) -~ ( t  - k~bc bj(k-l ,k) r,s,t;a,b,c ] r,s,t;a,b,c " 

THEOREM 9.1. IfX.:.;a,b,c denotes the largest order statistic in a r a n d o m  sample o f  
size n > 2 drawn f rom the generalized gamma  distribution (9.6) and for any 
p _> 0, let 

_ _  P ii (p) _ E(Xl:n;a,b,c) " n:n;a,b,c 

then for any finite real r > n - 1, we have 

-1 I fb  ° let "+Ir( (ab . -n+r+ 1)/b) 
~ :~ ; :~1 )  (b- 1)) = ~"[r,O,n;a:b,c~ ~ { F ( a ) } n F l ( a b n - n + r - k l - b ) / b  

n- 1 ) 
K'-~j (n- l , j )  (r-n+jb b+l) 

- L r,O,n;~,b,~P.:,~;~,b,c , (9.10) 
j=l 

where the J ' s  are constants  as defined in Lemma 9.2. 

THEOREM 9.2. Let n _> 2 be an integer, k be a real number  such that  k _> - b ,  and 
let 

= E  k 
~n:n;a,b,c :n;a,b,c " 

Then for every cz > 1, we have 

) • (k) = C-b ( _ b ) - i ( a  #n:n;a,b,c Z n -- 1 _ i)_i_ 1 
i=0 i 

i+1 1 (id) " I 
X ~ ~i+k+b,n~i_ 1 ,i+ 1 ;a- 1 ,b,c #~k:n+:abJ-')l b c 

J 

(9.11) 
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j£(o.1) +b,n- l , I ;a- l ,b ,c  ~ 1 , 

and the other J 's  are constants as defined in Lemma 9.2. 

(9.12) 

10. Exponential and related distributions 

With the probabililty density function being 

f ( x ) = e  -x, 0 < x < o c  , 

and the cumulative distribution function being 

F ( x ) =  l - e  -x, 0 < x < e c  , 

it is easy to see that 

f ( x ) =  1 - F ( x ) ,  O < x < o c  . 

Making use of this relation, Joshi (1978, 1982) has established the following 
recurrence relations: 

For n > 1 and k = 1 ,2 , . . . ,  

(k) (k 1) (10.1) 

f o r 2 < r < n a n d k =  1 ,2 , . . . ,  

#(k) =/~(k) 
~:. ~_~:._~ + ( k l , , ) # L  -~) • (lO.2) 

for 1 < r < n - 1 ,  

~,r+~:,, = -r:."(2) + ~ : . / ( .  _ ,.) , (10.3) 

and for 1 < _ r < s < _ n a n d s - r > _ 2 ,  

I~ ..... = #~,,-1:,, + #r:,/( n -- S + 1) . (10.4) 

Note that the relations in (10.1)-(10.4) could be used in a simple recursive way 
in order to compute all the single and product moments of order statistics for all 
sample sizes. 

These results have been extended by Joshi (1979b) and Balakrishnan and Joshi 
(1984) for the doubly truncated exponential distribution with cumulative distri- 
bution function F(x)  and probabilitiy density function 

1 
f ( X ) - p _ Q e  -x, QI < _ x < P l  , 

where Q and 1 - P  (Q < P) are the proportions of truncation on the left 
and right of the standard exponential distribution, respectively, and 
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Q1 = - l o g  (1 - Q )  and P1 = - l o g ( 1  - P ) .  D e n o t i n g  (1 - Q)/ (P  - Q) b y  Q2 and 
(1 - P ) / ( P  - Q) b y  P2, it is easy to see that  

f ( x )  = Q2 - F(x )  

= P 2  + {1 - F ( x ) }  . 

Making use of  these two differential equations,  Joshi (1979b) and Balakrishnan 
and Joshi (1984) have derived the following recurrence relations: 

For  n > 2 and k = 1 , 2 , . . . ,  

#(k) _~ Q~IQ2 . (k) r~ (k/tl)#1k..n 1) (10.5) l:n -- /Xl:n- 1/-2 ~- ; 

f o r 2  _< r_< n - - 1  a n d k = l , 2 , . . . ,  

2(k) . (k) ~ . (k) r )  ( k - l )  
r:, =/~r-l : , -1V2 -/~r:,-l~-2 + (k/n)#r: ,  ; (10.6) 

for n > 2 and k = 1 , 2 , . . . ,  

#(k) = #2k) lQ2 _ PfP2 + ( k / n ) # O ;  1) ; (10.7) 

for 2 < r < n and k = 1 , 2 , . . . ,  

#(k)=#(k) ( n ) [  " 
r:n r-l:n + k ._.,_l~-~( - O2)" -JB(r , j  - r + 1 #.  1) ) !k/-- 

r -  1 j=r (lO.8) 

for  2 < r < n and k =- 1 , 2 , . . . ,  

.[ 
(lO.9) 

r , ~  ( k - l )  ] 
- k ~ Q r S J B Q l ' -  l , n - r  + z)g)_l:n_r+jJ ; 

j=2 

for  1 < r < n - 2 ,  

#r,r+l:n~_#(2)_~ _ _ 1  [ _ ( _ . (2)  "~] .  (10.10) ~:" n - - r  #~:" nP2 #~,r+l:n-1 lar:n-1)J , 

for  n >_ 2, 

,(2) -}- # n - l : n -  n P 2 [ P l g n - l : n - 1 -  #(2) ] (10.11) #n-l,n:n ~ t~n-l:n n - l : n - 1  ; 

for 1 < r < s < n a n d s - r > _ 2 ,  

1 
# ..... -= #r,s-l:n q- [#r:n -- nP2(#r,s:n-1 - #r,s-l:n-1)] " (10.12) 

n - s + l  
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and for 1 < r < n - 2 ,  

~tr,n:n -~- [-tr, n-l:n + ktr:n -l'lP2[Pl~lr:n 1 - -  ]~r,n-l:n 1] • ( 1 0 . 1 3 )  

Starting with the values of #H and , (2) for example, the recurrence relations t~l:l , 
(10.5)-(10.13) would enable one to evaluate the means, variances and covariances 
of all order statistics for all sample sizes in a simple and systematic recursive way 
for arbitrary values of the proportions of truncation Q and P. This computation 
of the moments could be carried out by means of a simple computer program 
without introducing serious rounding errors. Explicit finite series expressions for 
the first and second order single moments and product moments of order statistics 
for the special case of the right truncated exponential distribution have been 
derived by Saleh, Scott and Junkins (1975). 

Similar simple recursive computational procedures have been suggested by 
Balakrishnan and Joshi (1981a) and Khan, Yaqub and Parvez (1983) for the 
evaluation of the single moments of order statistics from the Weibull distribution. 

Recurrence relations between the moment generating functions of order sta- 
tistics from the doubly truncated exponential distribution have been established 
by Mohie El-Din, Mahmoud and Abu-Youssef (1992). Again, recurrence relation 
between factorial moment generating functions of order statistics from the doubly 
truncated exponential distribution have been derived by Mohie El-Din and Sultan 
(1995). 

11. Power function and related distributions 

With the probability density function being 

f ( x ) = v a  ~x ~-1, O < x < a ,  a , v > O ,  

and the cumulative distribution function being 

F ( x ) = a - V x  v, O < _ x < a  , 

it is easy to see that 

F(x )  = x f ( x ) / v ,  O < x < a . 

Making use of this relation, Balakrishnan and Joshi (1981b) have established 
the following recurrence relations for the single and product moments of order 
statistics: 

For l < r < n -  1 a n d k =  1,2, . . . ,  

r~t l  

for n _> 1 and k = 1,2, . . . ,  

(k) = aknv . 

( n v + k )  ' 

(11.1) 

(11.2) 
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f o r n > 3 a n d  1 < r < n - 2 ,  

v 
"r,r+l:n -- v(n -- r)4- 1 [(n -- r]/J (2) . . . . . .  -~/7("r,r+l:n-I- .(2)n_ljj)l 

for n > 2, 

v [( . )  ( .(2) )] 
- -  [ " n - l : n  -~-/7 al2n_l:n_ 1 --  ftn_l: n 1 ; ]ln-l'n:n V + 1 

for s - r _ >  2 and 1 < _ r < s < n ,  

v 

#~,s:. v ( n - s + l ) + l  

; (11.3) 

(11.4) 

[(n- x + I)/~.,. I:. + n(. ..... I-- " .... 1:n 1)] ; 

(11.5) 

. (k) n v  ( p  .(k) ~) 
~I:. --  nv--+ k ~, 21%,, 1 - Q2Q ," (11.S) 

for n _> 2 and k = 1 ,2 , . . . ,  

(k) V (p2pkl _ Q2Q~I) " (11.7) 
1:1 - -  U + k  

and for 1 < r < n - 2 ,  

_ v [#r,,_,:n+n(a# . . . .  l - - " r , n  l : n - l ) ]  " (11.6) 

Note that the recurrence relations ( l l .1)-( l l .6)  could be used in a simple 
recursive way in order to compute all the single and product moments of order 
statistics for all sample sizes. Explicit expressions for these moments are also 
available and are due to Malik (1967a). 

These results have also been extended by Balakrishnan and Joshi (1981b) for 
the doubly truncated power function distribution with cdfF(x) and the density 
function 

1 va-VxV 1 Q1 < x < Pl,  a , v  > 0 f ( x )  - P _ Q 

where Q and 1 - P are, respectively, the proportions of truncation on the left and 
right of the power function distribution, and Q1 = aQ 1/~ and /'1 = aP1/L De- 
noting Q~ (P - Q) by Q2 and P~ (P - Q) by P2, it is easy to see that 

x f ( x )  = v{Q2 + F(x)} 

= v [ P 2 - { 1 - F ( x ) } l ,  O, <_x<_Pl . 

Making use of these two differential equations, Balakrishnan and Joshi (198 lb) 
have derived the following recurrence relations: 

F o r k =  1 ,2 , . . . ,  
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for n _> 3, 2 < r < n - l ,  a n d k = l , 2 , . . . ,  

( k ) _  nv { D . ( k )  ,~ .(k) 
r:n Eli)+k-- ~r2~r'n. 1 - -  ~ : ~ 2 # r - - l : n - 1  ; 

for n _> 2 and k = 1 ,2 , . . . ,  

~(k) __ E l ~  (p2pk _ Q2j~l .n_  1 ) 
n:n Ell) + k 

f o r n _ > 3 a n d  1 < r < n - 2 ,  

I) 

Pr,r+l:n - v ( n _ r )  + l [ ( n - r ) t ~  ), +nP2(P~,~+I:. ,- '(2)• . . . .  i J )]A 

(11.9) 

(11.10) 

(11.11) 

(11.16) 

(11.17) 

(11.18) (n + 1 Q'  (k) (n . . . .  (k v) _ r p 1  (~) ) I~r:n -~ + l)F'a ] A r m  p21~r+l:n+l ; 

( ~ + E l l  [l(k) k v (k v) (k) z - -  r:n 1) a P]2r: n + nllr_l:n_ 1 

= - a Q ~ t ~ ~ - ~ + r  n + l + v  Pz r+l:.+I ; P2J r:" V " 

for n > 2, 

#.-1, . : .  - v + 1 [ .-1:.  + nP2 - ; 

for 1 < r < s < n a n d s - r > 2 ,  

V 

/Ar,s:n-~-V(El_S@ 1)@ 1 [(El--S-~- 1)~lr,s l:n + nP2(~r,s:.-I -~r,s-l:n-1)] ; 

(11.13) 

and for 1 < r < n - 2 ,  

#r,n:. - v +v 1 IP . . . .  • l:n +ElP2(Pl] 2 . . . .  l - - ~ l r , n - l : n - l ) ]  . (11.14) 

Recurrence relations (11.7)-(11.14) can be used systematically to obtain all the 
single and product moments of order statistics from the doubly truncated power 
function distribution for any sample size. 

Recently, Mohie El-Din, Mahmoud and Sultan (1996) have used the properties 
of the hypergeometric function and its contiguous functions to derive the 
following recurrence relations between the moments of order statistics from the 
doubly truncated power function distribution: 

n + 1 + k ~ p  (k) k-avPp!~n') -~-(El F 2[- )].lr+l: n ; - r  = - 1" (k) (11.15) 13/ r:n V 
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and 

P + n + l - ~ 2  2 n + l - r + 1 ) / j  r:~ 

k a v (k-v) ( U)" firm , = v P Q  #~:~ + n +  l + k ~  _~, , (~)  . 
(11,19) 

( !  ) r:,, = k o a ~ #  (k-v) r , (k) • (11.20) + r  #(k) 1)~ r:n + ~r+l:, , 

- - r" (k) . (11.21) P r + v  ~:, = n + l + 1 ) j  ~_~:, 

( ! )  ( k )  _~ (k+v) rP" (k) (11.22) n + l - r +  e#!:~)= n + l +  v a #r:. -- /~r+l:. ; 

P l + - + ( r - 1 ) 1 )  pzjt~r:, = n + l +  v a #r:= - - . -  

[ )1" P n + l - 2 r - ~  + n + l - r  ~ : .  

, (k) n (k) = Q(n + 1 - r)fr_l:" -- rr#r+l:= ; 

P ( = + l ) = + l - r - E  + = +  j j  ~:. 

= Q(~ + 1)(n + 1 - )#r 1:= -- rP n + 1 + k'~ /~t 

n - - -  ( ) rP .(k) n ~  (k) . P r - n + + I) P2 #r:n ~- ffr+l:n - -  (~#r  l :n - I  , 

i1(  P(n + 1) n - ~ 2  2 + r + n  r:. 

(k) _ r P ~ 2 2 ( n  1 v)#r+l:n+'  ' = n(n + 1)Qur_l:n_ 1 + + k ~  (k) 

(11.23) 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

1 2 .  P a r e t o  a n d  r e l a t e d  d i s t r i b u t i o n s  

With the probabil i ty density funct ion as 

f ( x )  = vaVx (v+l),  x ~ a ,  a ,  I) > 0 , 
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and the cumulative distribution function as 

F(x)  = 1 -  aVx -v, x > a , 

it is easy to see that 

1 - F ( x ) = x f ( x ) / v ,  x>_O . (12.1) 

For  the Pareto distribution, single and product moments of order statistics have 
been discussed by several authors; for example, see Downton (1954), Malik 
(1966), Kabe (1972) and Huang (1975). 

In particular, Huang (1975) has shown that #~k) exists for v > k / ( n  - r + 1), 
and is given by 

n! F ( n -  r + 1 - k / v )  p(k) = a k 
F:n ( n - r ) !  r ( .  + l - k / v )  ' 

where F(.) is the complete gamma function. Making use of the relation in (12.1), 
Balakrishnan and Joshi (1982) have derived the following recurrence relations: 

For  n > 1 and k = 1 ,2 , . . . ,  

(nv k' (k) , (12.2) - -  )}tl: n = nva k . 

f o r 2 < r < n a n d k =  1 ,2 , . . . ,  

(nv k (k) (k) (12.3) - -  )]2r:  n -~- n V ~ t r _ l : n _  1 ; 

for 1 < r < n - 1 ,  

{(n - r)v - l}l~r.r+l: n ,  = v(n - r)/tr,, ,(2)" (12.4) 

and for 1 < r < s _ < n a n d s - r > _ 2 ,  

{ v ( n - s + l ) - l } #  ..... = v ( n - s + l ) #  .... 1:, • (12.5) 

Note that when v > k, relations (12.2)-(12.5) could be used to compute the first 
k single moments and also product moments of  all order statistics for all sample 
sizes. In particular, if v > 2, these relations would enable one to evaluate the 
means, variances and covariances of all order statistics for any sample size. 

However, in the case of the doubly truncated Pareto distribution, range of X is 
finite and so tt!~, ) exists for all r, n and k. Without loss of any generality, taking the 
scale parameter a = 1 since the random variable Y = X / a  has a one-parameter 
Pareto distribution, Balakrishnan and Joshi (1982) have considered the doubly 
truncated Pareto distribution with cdfF(x)  and density function 

1 
f ( X ) - p _ Q v X  -(v+l), Q1 < _ x < P I  

where Q and 1 - P (P < Q) are, respectively, the proportions of truncation on the 
left and right of the standard Paetro distribution, and Q1 = (1 - Q)- l / v  and 
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P1 = (1 - P) 1/~. Now denoting (Q - 1 ) / (P  - Q) by Q2 and (P - 1 ) / (P  - Q) by 
P2, Balakrishnan and Joshi (1982) have established the following recurrence re- 
lations for  the single and product  moments  of  order  statistics: 

For  n >_ 2 and k =  1 , 2 , . . . ,  

--  ~:~2/*n l : n - l )  , (12.6) 

for n >_ 2 and k = 1 , 2 , . . . ,  

k <k) n v ( D  " (k) - QzQ{1) ; (12.7) ( n v - - ) # l : n  = kr2 /~ l : ,_ l  

f o r n > _ 3 ,  2 < r < n - 1  a n d k = l , 2 , . . . ,  

(nv  k (k) ( (k) ,q , (k) "~ (12.8) --  )#r:n = n v  Pz#r:n-1  - SZ2/~r-l:n 1) ; 

f o r n > _ 3 ,  2 < r < n - 1  a n d k =  1 , 2 , . . . ,  

{(n  r q- 1)v k (k) [ , ,  (k) ( ( k )  _ #(k) ) ]  . --  - }#r:n = v (n - r + l ) # r _ l :  n -}- nP2 #r:,-1 ~ l:n-lJJ , 

(12.9) 

for n_> 2, 

:(2)  ( ,(2) . 
( v - 1 ) # .  1 .... =V[#n-l:n +nP2 Plllr-l:n-i - - 'n- l :n- lJJ  , 

(12.10) 

for n > 3 and 1 < r < n - 2 ,  

{ V ( n -  r ) -  1}#r,r+l:  n =-- V [ ( ,  --  r ] #  (2) q - n P 2 ( # r , r + l : n _  1 
#(2) 

. . . .  ~:, 1]] 

(12.11) 

for  n_> 2, 

(V -- 1)#1,2: n = V L 2:n q- 

for  n_> 3 a n d 2 < r < n - 1 ,  

V r (2) [ (2) #r-l ,r : , -1)]  ' (12.13) (1"12 --  1)l, lGr+l:n = U L #r+l :n  -}- n Q z k # r : , - 1  - 

for s - - r  >_ 2 and 1 < _ r < s < _ n ,  

{ v ( n - s +  1 ) -  1}#r,s: . = v [ ( n  - s +  1)#r, s 1:, (12.14) 

q - l i P 2 ( #  . . . . .  - l  - # r , s - l : n - l ) ]  ; 

and for 1 < r < n - 2 ,  

(v - 1)# . . . . .  = V[#r,n l:. + n P 2 ( P l # r : . _ l  - #r ,n - l :n -1)]  ; (12.15) 
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i f v ( n - s + l ) =  1, t h e n f o r  l _ < r < s _ < n a n d s - r _ > 2 ,  

(S - -  r - -  1)[~r,s: n = tl[P2]Ar,s:n_ 1 - -  Q 2 ~ r , s - l : n - 1 ]  - r]Ar+l,s:n , (12.16) 

and for  1 < r < n - 2 ,  

( n - r -  1)lit,n: n =rt[P2Plllr:n_ I - O 2 l Q n - l n  1] --rlAr+l,n:n " (12.17) 

Thus,  s tart ing f rom 

/~(k) 
1:1 = I o g ( Q a / P 2 ) / ( P -  Q ) ,  if k = v 

_ v_ ( P 2 P ~ -  Q2Q~), if k ¢ v 
v k 

obta ined by direct integration,  recurrence relations (12.6)-(12.8) would enable 
one to obtain  all the single momen t s  o f  order  statistics, except when k = nv. 
Note  that  it is possible to have a si tuation with k =  nv. For  example,  
when n = 6, v = 1/6 and k = 1. Fo r  this case, relations (12.6)-(12.8) immediately  
yield 

#(k) = p . (k) / ,~ 
~-~:n 1 2#r: , - i /~2,  2 < r < n -  l , (12.18) 

and 

#(k) = PzP~/Q2 (12.19) n - i : n - I  

Not ing  now that  relations (12.6)-(12.9) a long with relations (12.18) and (12.19) 
would enable one to evaluate all the single (k) (k) momen t s  except /~n:, and #1:~, 
Balakr ishnan and Joshi (1982) have obta ined the following explicit finite series 
expressions for  these momen t s  when nv = k is an integer: 

Fo r  n _> 1, 

#(:k! = n ( _ l ) n - l ( p _  O ) - ,  og(Qz/P2) + ~-~ P2(J+I) /(j" + l) 
j=0  

and 

n 2 

¢ t(k)l:n = n(P - Q)-n log(Qz/P2) + Z ( - 1 ) J Q 2 ° + u / ( j  + 1) 
j=0  

Further ,  note that  relations (12.10) and (12.11) could be applied to evaluate 
#r,r+l:n (1 < r < n - 1) recursively except when v(n - r) = 1 and that  relations 
(12.12) and (12.13) could be applied to evaluate /#,r+l:, (1 < r < n -  1) recur- 
sively except when vr = 1. Hence,  the recurrence relat ions (12.10)-(12.13) give the 
p roduc t  moments/~r#+l:n (1 < r < n -- I) for  all values of  r, n and v except for  the 
case when vr = v(n - r) = 1, that  is, when n = 2m, r = m and v = 1/m. However ,  
for  any arb i t ra ry  cont inuous  distribution, we also have the relat ion 
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m,m  (2;) i/2m - j'~ 
2/Zm,m+l:2m = ~ ( - - l )  j+k-1 ~k k ) l z m - j ' m - j ÷ l : 2 m - j - k  

j=l k=O 

m-I ( 2 m )  ( 2 m )  
+ ~-~( - -  1)k+l k ]Am'm+l:2m-k  ~-  #l:m] 2 . . . .  

k=] m 

ment ioned earlier in Section 4, which will enable one to determine/-/m,m+l:2m when 
v = 1 /m,  using the single and produc t  moments  of  order  statistics f rom smaller 
sample sizes. Note  that  in this way, one could systematically compute  all the 
p roduc t  moments  ]2r,r+l: n (1 < t" < iv/ -- 1) for  all choices of  r ,n  and v, and the 
remaining produc t  moments  /~,~:, (1 _< r < s < n, s - r > 2) could all be deter- 
mined by using Relat ion 4.6. 

Khurana  and Jha (1991) have used the properties of  the hypergeometr ic  
funct ion and its contiguous functions [see Rainville (1960)] to obtain some re- 
currence relations between moments  of  order  statistics f rom the Pareto distri- 
bution.  They  are as follows: 

( k -  vr (k) )/4:. ; (12.20) )lAr:n k(1 - O (k+,) (k) = - -  Vr l l r+ l :  n 

(n~  - k ~ . ( ~  ~ /  _ k ( 1  - 0) . ! :~+o~ J r:n ~ l'll)lAr:n-i (12.21) 

1 ' (k) v(n 1 k / v ) ( n  + 1 r" (~) ( n +  l ) [ k Q 2 + v ( n - r +  )]t.r:n = + - - )t~r:n+l 

+ kQ2(n + 1)(1 - P)/z!: a+~) ; (12.22) 

/ \ 
(1 P ( k ) = u ( k - v )  { - - . ~ , 1 )  ) r:n+l - ) ~ : n  r-~:. - 1 r ( p _ o ~ t , ( ~ )  

\ n ~ - l j  
; (12.23) 

+ 1 - k / v )  (1 - P)/~(,~2 (1 ,-,, (k) _n ( r  • 
. . . .  ~ ) # r : n + l  (12.24) 

(n+ l-2k/v) k/v ~ ( ~ 1 -  . ( k - ~ / _ _ ( l _ p ) ~ r : °  ; 
~Q 7  r:n - 1 - - Q  r-r:n I) 

(12.25) 

(n + 1 - r - k/v)g!k: ) = (n + 1 - r ) l A ~ l ,  n - k (1 - -  P)IA~:k# v) ; (12.26) 
• ' V 

(1 Q ) ( n +  1 r k/v)l*!~ ) (n + 1 - -k /v) l~:k~ ~) r(1 P '  (k) . __ - -  - -  . = - -  __ )12r+l: n , 

(12.27) 

(r - k / v ) ( 1  - P)#!~) = (n + 1 - k/v)#(r:k~ v) _ (n ÷ 1 - r)(1 - Q~#(k)j ~-,:~ ," 

(12.28) 
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[ ( l  - O ) ( 1  - k / v )  + (. - r ) ( P  - O ) ] # ~ n  ) 

(n + 1 - k/v)#!:kn -~) n(1 ~" (k) . ~_ _ _ l - ' ) [ A r : n _  I : 

(12.29) 

n + 1 - 21 Q2 j#r:h - - r )~r - l :n - -  l_Qt~r+l :n  

(12.30) 

n +  1 - k / v  ] #(k) 
Q 2  r r:n 

(~ + 1 - k / v ) ( n  + 1 - ~) , (kl ~ 1 - P (kl 

(n + 1)Q2 / ~ r : n + l  + 1 - Q t~r+I:n ; 

(12.31) 

and  

(n +k/v / . ] t ,<~ /  (~ + 1 , ~/ 1 - P , /~>  
1 - r Q 2  ] r : n  = - -  r ) # ¢ _ l :  n - n 1 _ Q.~.n+I. ; (12.32) 

- ] ~(1 - P) ( k / v  + r - 2n 1). u(~) _ ,(k) 
n - 02 -rm i - - - Q  --~:n-1 

+ (~ + 1 - k / v ) ( ~  + 1 - ~ ) ,  (~3 

(n + 1)Q2 t%:n+' " 

(12.33) 

Recur rence  relat ions for  m o m e n t s  o f  o rder  statistics for  u n t r u n c a t e d  Pa re to  
d i s t r ibu t ion  are readi ly ob ta ined  f r o m  (12.20)-(12.33) on sett ing Q = 1 - P = 0. 
These are: 

{ ( k / v )  r (k) . (12.34) = - -  r ] ~ r + l :  n : 

(~ + 1 - ~ - k / v ) ~ ! ~ )  = (~  + 1 - ~ / v ) ( n  + 1 - ~) I~l . 
/'l q- 1 /Xr:n+l (12.35) 

(12.36) 

r - I : n  - -  . +1 ; (12.37) 

(n + 1 - r - k / v > ! ~ . ~  = (n + 1 - k / v > ! : ~ .  -°~ ; (12.38) 

and  

(n + 1 r - k/v)t~)~ (n + 1 ' (~) (12.39) - -  = __ r ) / A r _ i :  n 
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13.  R a y l e i g h  distribution 

With the density function as 

f ( x )  = xe -x2/2, x >_ O , 

and the cumulative distribution function as 

F ( x )  = 1 - e -x2/2, x >_ 0 , 

it is easy to see that 

f ( x ) = x { 1 - F ( x ) } ,  x>_0 . 

Making use of this relation, it is easy to establish the following recurrence rela- 
tions for the single and product moments of order statistics: 

F o r n >  1 and k = 0,1, 2, . . ,  

for 2 < r  

for 1 < r  

for 1 < r  

(k+2) k + 2, (e) 
l:n - -  t~l:n 

/7 

< n and k = 0, 1,2, . . ,  

#(k+2) = #(k+2) k + 2 #(k) . 
. . . . . .  l:n -{- n ~ r ;  1 r:n , 

< n - 1  a n d i , j > O ,  

/~/,j+2) = #(i+j+2) + J + 2/~i/+) . 
, r+ l :n  r:n l 'n , n - - r  ' " 

< s < _ n ,  s - r  >_2, and  i , j>_O,  

/,(i j+2)= tt~ij_+2~ + J + 2 #(i0) . 
r,s:, n - - s ~ - I  r,s:~ , 

(13.1) 

(13.2) 

(13.3) 

(13.4) 

for n > 2, and i , j  > O, 

~, ( iO) ( n -  1~" (i+j+2) . (i+2,j) = ( i  + z ) t q  2:n + " (13 .5 )  /Zl,2:n , ) /Zl :n  

f o r 2 < r < n - 1 ,  and i , j  > 0, 

2 #(~,j) _ ( ( i + 2 ~ / ) ) .  (13.6) . ( i+2, j )  i -}- 1 ( n  - -  r )~ / !{n  + j + 2 )  - -  r t # r _ l . r : n _ . l ]  , 
t2r 'r+l:n = r r ,r+l:n r 

and for 1 < r < s _ n , s - r > 2 ,  and i , j>_0 ,  

( ( i + 2 j )  ' • ) i + 2  (ij) (13.7) / . t( i+2,j  ) = ( i+2, j)  1l - -  IA~ i22 j ) - l . n - I  ~-  ttr.s:n " 
. . . .  . ; r 

Exact and explicit expressions for the first two single moments and also the 
product moments of order statistics have been given by Dyer and Whisenand 
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(1973a,b). After computing these moments from the exact and explicit expres- 
sions, the recurrence relations (13.1)-(13.7) could then be systematically applied 
in a simple recursive way in order to compute the higher order single and product 
moments of order statistics for all sample sizes from the Rayleigh distribution. 

14. Linear-exponential distribution 

With the density function of  the linear-exponential distribution with increasing 
hazard rate as 

f ( x )  = ()~ -k vx)e  -('ax+vx2/2) , 0 < x < oc,  )c, v > 0 , 

and the cumulative distribution function as 

F ( x )  = 1 - e  -(;°~+vx2/2), O < x < oo , 

it is easy to note that 

f ( x )  : (2 + vx){1 - F(x)} 

= ( 2 + v x ) - ( 2 + v x ) F ( x ) ,  x > O . 

Making use of these relations, Balakrishnan and Malik (1986b) have estab- 
lished the following recurrence relations for the single and product moments of 
order statistics: 

For n > 1 and k = 0, 1 ,2 , . . . ,  

;,(k+2) k + 2 / 1  (k) 2 ;~(k+1)'] 
hn - -  V kn//'l:n k + l  1:, J '  

for 2 < r < n and k = 0, 1 ,2 , . . . ,  

]~(k+2) . (k+2) k + 2 In I 2 
r:n = #~-l:n + p(k) _ v - r + l  r:. k + l  

for 1 < r < n - 1  a n d i , j > O ,  

(i,2+2) u(/+j+2) + j + 2 [ 1 i~(i,j) 
#r,r+l:, = r-r:, ~ ~n -- r r#+l:n -- - -  

for l <_r < s < _ n ,  s - r  > _ 2 a n d i , j > O ,  

/z~ifn+2) =_ ~ i j + 2 ~  _}_ j q- 2 In 1 li(i,j ) 
- ~ + l  ",s:" - j .  

(14.1) 

)] r:n - -  tXr l:n-1 

(14.2) 

(14.3) 

+ I  ':"}J 
(14.4) 
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for n > 2 and i , j  > O, 

/~li+2j) i +  2 [/~(i,,) 2 ~ _ , ,  (i+j+l) ,, ) "  ] 
/') L 1,2:n i @ 1  v (// /Al-~-::'J).* - -  1)/~1,:~ + 

- ( n -  D .(i+j+2) 
)t*l:n 

(14.5) 

f o r 2 < r < n - 1  andi , j>_O,  

/~(i+2,j) i + 2 [. (i,j) 2 (i+j+l) (i+l,j) (i+l,j) "~] 
r) l~r:n rr+l:n --  FV ' i-I- 1 , [/*r r+l:n t (  n nl2r-1 . . . . .  1 rl2r,r+l:njj  + 

1 f .. . . \ .  (i+j+2) (i+2j) 
~. (n - r)/~r: n r - n/~r-l'r:n-1 } ; (14.6) 

and for 1 <_ r < s <_ n, s -  r > 2 and i , j  > O, 

r ~ " ~ ' 

i + 2  [ll(i,j) -~ f t e ( i+l j )  (i+ld) "~ 
+ rv [ .... , - i +  1 ~n~,/zrs-i:" 1 '  --/~r-,s-l:,-,/,  (14.7) 

r /A;~lls{~ (iq-l,j)~ I1 - ( ; j j .  

Letting v --+ 0 in these recurrence relations, we deduce the recurrence relations 
presented earlier in Section 8 for the single and product moments of order sta- 
tistics from exponential distribution. 

Setting 2 = 0 and v = 1 in these recurrence relations, we deduce the recurrence 
relations presented earlier in Section 11 for the single and product moments of 
order statistics from the Rayleigh distribution. 

Exact and explicit expressions for the means and product moments of order 
statistics have been derived by Balakrishnan and Malik (1986b). The recurrence 
relations (14.1) (14.7) could then be systematically applied in a simple recursive 
way in order to compute the higher order single and product moments of order 
statistics for all sample sizes from the linear exponential distribution with in- 
creasing hazard rate. 

The doubly truncated linear-exponential pdf is 

• -}- /)X 2 2 _ e-(~x+~x / ) f ( x )  ~ - ~  , Ql <_X<P1, 2, v > 0 ,  (14.8) 

where P :- 1 - e-(~l+Ve~/2) and Q = 1 - e-(2Q'+vQ~/2). 
l - O  _ 1 - P  Letting Q2 = F---Q and P2 -gz-- 0 , the cumulative distribution function (cdf) is 

f(x) 
X(x)  = Q2 (2 + vx) ' (14.9) 
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and hence 

f ( x )  = P2(2 + vx) + (2 + vx)(1 - F(x)) . (14.10) 

Making use of  the relation (14.10), Mohie  El-Din et al. (1997) have derived the 
following recurrence relations: 

F o r n >  1 a n d k = l , 2 , 3 , . . . ,  

#(k) n~ [ ( k + l ) _ p  .(k+l) k+l)] 
- -  [ # l : n  ~- 2Pl-n-1 - -  Q 2 Q I  l:n k- I -  I 

(14.11) 
//V [. (k+2) p (k+2) k+2)] 

+ ~ - ~  [~1:, + 2 # l : n - 1  - -  QzQI ; 

for 2 < r < n, 

.(k) n2 [ # ( k + l ) ,  D ,(k+l) ~ (k+l) ] 
= -- ~ 2 # r - l : n - l J  ~'~:" k + f k r:. ~- rZPr:n-I 

(14.12) 
fry I#(k+2 ) p (k+2) ,-~ (k+2) ] 

Jr- k - ~  i r:n -~- 2#r:n 1 -- (~2#r- l :n-I  ; 

for 1 < r < n - 1 and i, j > 0, 

#(i,j) /'I,a-P2 ~- (i,j+l) __ #(i+j+l)]  re)P2 [#~ii++2~_ 1 #(i+j+2)] 
r.~+, :, - -  j "Jr- 1 [#rr+l:n-1, r,n-l J - r - ' j ~  -- r.n-1. J 

_~_ 7 ~ f , . --  (i+j+l) T -~-~ , . -- (i+j+2) 

(14.13) 

for l <_r < s < _ n ,  n - r > _ 2 a n d i , j > O ,  

p(i,j) n2P2 F (i.j+,) P~IJ+I~ I] nvP2 
..... j + 1 . . . . . . .  

4 ) - + 1  ' ' ' 
(14.14) 

-~ v(nj+2-s + 1) [#!iS+z) _ #¢ij+2~J., 

for n __> 2 and i , j  >> O, 

#(i,j) /~ [ .-~ (i+j+l) __ #(i+j+l) __ (i+l,j)] 
- -  -'1- ]21 2:n J [? 't ~'2 #1 :n- 1 2:n 1,2:n i + 1 

v rn,~ . (i+j+2) __ #(i+j+2) _~ #],f:2n,J)" "] 
+, :75[  2,. (14.15) 

['~Q2 Q{ +1 / ) 0 2 ~ + 2 ]  ~ ' ~ _  . 

" [ 7 7 1  + i 7 2 1  ' ' 
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for 2 < r < n - 1 and i , j  > O, 

r,r+l:n - -  i + 1 - - k r,n-1 ]2r - l , r :n -1 )  rk l2r+l :n  --  , . 

(14.16) 

a n d f o r l < r < s < n ,  s - r > 2 a n d i ,  j > _ O ,  

[Ar,s: n' = ; . . . .  

i + 2 [ (i,j) )~ F ~  i / (i+1 d) 
+ rv ~r>,~:~ i ÷  1 . . . .  - [~d2n~ #r,_~ ~ _ ! -  #~/_+11~, ,,_1) (14.17) 

/" (i+ld") __.!is+.:l,J)) 

Letting Q1 = 0, Q2 = 1 and P2 = 0 in the relations (14.11)-(14.17), we obtain 
the results of Balakrishnan and Malik (1986b) for the untruncated case. 

15. Lomax distribution 

With the density function and cumulative distribution function as 

f ( x ) = e ( l + x )  (~+~), x>_0, ~ > 0  , 

F ( x ) = l - ( l + x ) ,  x>_0, 

it is easily noted that 

( l + x ) f ( x ) = e { 1 - F ( x ) } ,  x > 0  . (15.1) 

A good discussion on some properties of this distribution, with special reference 
to the distributions of sample median and range, is given by Burr (1968) and Burr 
and Cislak (1968). For this distribution, we have /~(k)= E(X k) = e B ( k +  1, 1:1 

- k), B(., .) being the complete beta function, which exists for all k < e. Hence, 
the single moments of order statistics #~k) exist for all k < e. Making use of the 
relation in (15.1), Balakrishnan (1987a) has established the following recurrence 
relations for the single and product moments of order statistics: 

For n >_ 1 and k = 1 ,2 , . . . ,  

~(k) (k-l) 
= k l:. • ( 1 5 , 2 )  

1 :n 

f o r 2 < r < n a n d k =  1 ,2 , . . . ,  
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for 1 < r < n -  1, 

#r,r+l:n : ( ( n -  r)c~#!:2n ) + p r : , ) / { ( n -  r ) a -  1} ; (15.4) 

and for 1 < r < n a n d s - r _ > 2 ,  

#~,s:n : {(n - s + 1)O~#r,s_l: n + #~:n} / { (n  - s + 1)c~ - 1} . (15.5) 

Note that the recurrence relations (15.2)-(15.5) would enable one to obtain all 
the single and product moments of all order statistics for any sample size in a 
simple recursive way. 

16. Log-logistic and related distributions 

With the density function as 

f ( x ) = f l x ¢ - I / ( l  + x ¢ )  2, x > _ O ,  f l > O  , 

and the cumulative distribution function as 

F(x) =x~/(1 +x~), x > 0 , 

it is easy to note that 

x f ( x )  = f i F ( x ) {  1 - F(x)} (16.1) 

= f l [ F ( x )  - F2(x)] (16.2) 

= f i [ { 1 - F ( x ) } - { 1 - F ( x ) }  2] . (16.3) 

Note that the log-logistic distribution is a particular member of the family XI1 of 
distributions of Burr (1942) (also see Johnson, Kotz and Balakrishnan, 1994). 
Some further discussion on properties of Burr's family XII of distributions, with 
special reference to the distributions of sample median and range, have been made 
by Burr (1968) and Burr and Cislak (1968); also see Malik (1967b), Block and 
Rao (1973), O'Quigley and Struthers (1982) and Bennet (1983). Note that, for this 
distribution, we have plk:l = E(X k) = F(I + k / f l ) F ( 1  - k / r )  and it exists only for 
k < ft. Hence, p!~) exists for all 1 < r < n only if k < ft. 

Making use of the relations (16.1)-(16.3), Balakrishnan and Malik (1987a) 
have established the following recurrence relations for the single and product 
moments of order statistics: 

Forn_> 1 a n d k = l , 2 , . . . ,  

/~(k),:~+~ = (1 _ ~ )p (~)  .,:,~, (16.4) 

for 1 < r < n  a n d k =  1 ,2 , . . . ,  

( k )  (k) (16.5) #(k) = 1 + #r:~ ; r +  l :n+ 1 F]~ 
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for 1 < r < n - 1 ,  1[/ ,( 
#r#+1: .+1--  n - r + l  n + l  1 

1 r' (2) ] 

for 1 < r < n - 1 ,  

1 r" (2) #r+l,r+2:n+l = ~'T1 [(n-l- ')Q1 +-~)#rr+X:n-- (rl--)#r+l:n+lJ ' 

for 1 <_r<s<_nands - r>_2 ,  

#r,s:n+l = #r,s-l:n+l ~- - -  
n + l  

n - s + 2  

(16.6) 

(16.7) 

I( 1 ] 1 (n - s + 1) #r,s:. - -  #r,s-l:n ; 

(16.8) 
and for 1 < _ r < s < n a n d s - r > _ 2 ,  

#r+l,s+l:n+l -~- #r+2,s+l:n+l ~ -  ~ 1 + # ..... -- #r+l,s:n+l • (16.9) 

Starting with the first k moments of X (assume/ />  k), the recurrence relations 
(16.4)-(16.9) could be used recursively in order to evaluate the first k single 
moments and also the product moments of all order statistics for any sample size. 
Thus, for example, starting with the values of E(X) = F(1 + 1//~)r(1 - 1///) and 
E(X 2) = F(1 + 2 / f l ) C ( 1 -  2///), one could evaluate the means, variances and 
covariances of all order statistics for any sample size. The necessary values of the 
gamma function could be obtained either from the detailed tables of the complete 
gamma function given in Abramowitz and Stegun (1964) or by using the 
algorithem due to Pike and Hill (1966) or by using G A M M A  subroutine from 
IMSL. 

By considering the doubly truncated log-logistic distribution with cumulative 
distribution function F(x) and density function 

1 fix ~-1 
f ( X ) = p _ Q ( l + x ~ ) 2 ,  Q1 <x<_Pl, / / > 0  , 

and noting that 

x f  (x) =//[QQ2 + (1 - 2Q)F(x) - (P - Q)(F(x) )21 

=//[PP2 - (1 - 2P)(1 - F ( x ) )  - ( n -  Q)(1 -F(x))21 , 

where Q and 1 - P (Q < P) are, respectively, the proportions of truncation on the 
/" Q ,~ l / f l  -- / p \ l / f l  , ,-~ 

left and right of the log-logistic distribution, Q1 = ~ 0 )  , Pl = [ ] " Z ~ )  , ~ = 
/1 Q\ l/fl /1 p\ l/fl 
~)_--2~) , and P2 = ~ )  , Balakrishnan and Malik (1987b) have established 

the following recurrence relations for the single and product moments of order 
statistics: 
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F o r k =  1 , 2 , . . . ,  

y(k),:2 - p _ l  Q [PP2P~ - {(1 - 2P) + k/fi}tz{{l - QQ2Q{~] ," 

for n _> 2 and k = 1 , 2 , . . . ,  

~(k) _ 1 [pp2fll:k~_ 1 - { ( 1 -  2 P ) + k / n f l } y l k . . ~ - Q Q 2 Q ~ l ]  l:n+l p Q 

(16.10) 

(16.11) 

for n _> 2 and k = 1 , 2 , . . . ,  

#(k) _ 1 [ 
2:°+, P -  0 

(16.12) 
n,~,~ / (k) 

for 2 < r  < n -  1 a n d k =  1 , 2 , . . . ,  

, (k) 1 [ _ _ p ,  (k) 
t~r+l:n+' P Q L{(I - 2Q) + k/nfl}#~?2 - (1 - Q -  )]Ar+,: n 

(16.13) 
nQQ2 f (k) ) ]  

r " " 

f o r k =  1 , 2 , . . . ,  

l , ( k )_  l [ Q Q 2 Q ~ l + { ( l _ 2 Q ) + k / f i } # i k l _ p e z p ~ ] .  (16.14) 2:2 p - Q 

for n _> 2 and k = 1 , 2 , . . . ,  

_ _ (k) ,(~) 1 [QQ2# ,_ , . , _ ,  + { ( 1 - 2 Q ) + k / n f l } y ~ ) . - P P : P ~ ]  " t%+l:n+l p Q . . , 

(16.15) 

for n 2 2, 

,(2) (n + 1) [ 
]/2,3:n+1 ~--- t~3,n+l -~- 2 ~  ~ Q) ~{(1 - 2Q) + 1/fl}#1,2: , - (1 - 2Q)#~2~ 

/ (2) - Q , b q : , q ) ]  , (16.16) - nQQ2 ~IZl:n_ 1 

f o r 2 < r < n - -  1, 

• (2) n + 1 f 
} lr+l ,r+2:n+I = #r+2:n+l -1- r ( r  ~ ] ' ~ Y - -  Q) k{r(1 - 2Q) + 1/fi}#~.~+,:, 

r(1 2 ~'" (2) [y(:) ) ]  -- -- (2)#r+l:n -- nQQ2 k . . . .  1 -- #r 1.r:n-1 ; 

(16.17) 
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for 1 < r < n - 2 ,  

//r,r+l:n+l ~--- //(2)r:n+l + 
n + l  

(n - r ) (n -  r + 1 ) ( P -  Q) 

x ](n - r)(1 - 2P)//! 2) - {(n - r)(1 - 2P) + 1/fi}//r.r+l:. 

+ rlpp2(//r,r+l:n_ 1 _ / / (2 )  ~1 • . . . . .  1}j , ( 1 6 .18 )  

for n_> 2. 

//(2)n_l:n+l 2(pn -t-_ 1Q) =I = -t (1 - 2P)//(2)1:. - {(1 - 2P) + 1/fi} //n l ,n:n+l 

X //n-l,n:n + nPP2 (P1//n-l:n-I  , (2) ~ ]  . - e ,  l : . - l J J  , ( 16 .19 )  

f o r s - r _ > 2 a n d  1 < r < s < n - 1 ,  

n + l  
//},s:n+l z //r,s-l:n+l -} ( n - s +  1 ) ( n - s +  2 ) ( P -  Q) 

× ]nPP2(#r,s:n 1 -- //r,s l : n - 1 )  + (rt - -  S -~- 1)(1 - 2P)IQs-l:n 

- {(n - s + 1)(1 - 2P) + 1//~}//r,s:.] ; (16.20) 

for 1 < r < n - 2 ,  

n + 1 
[nee2(P1// .... 1 - -  / / r , n - l : n  1) // ..... +1 ~- //r,n l:n--1 + 2 ~ 7 q ~  
k (16.21) 

1 
+ (1 - 2P)//r,._,: . - {(1 - 2P) + a/fi}//r,.:~] ; 

for 3 < s < n, 

n + l  [ 
/ /2 , s+ l :n+ l  = / /3 , s+ l :n+ l  -j 2 ( ~ Z Q )  {(I - 2Q) + 1/fl}//1,s:n 

-- nQQ2(//1,s l : n - 1  - -  Q l / / s - l : n  1 )  - -  (1 - 2Q)//2,s:n] ; (16.22) 

and for r >_ 2, s _< n and s -  r_> 2, 

n + l  
//r+l,s+l:n+l z //r+2,s+l:n+l "~ r(r + 1)(P - Q) 

× /{r(1 - 2Q) + 1/fi}// ..... - nQQ2 (//r,s (16.23) l :n-1  

-- //r-l,s I n - l )  - -  r(1 - 2Q)//r+l,,:,, / 
J 
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Starting from #Ik.l, the recurrence relations (16.10)-(16.23) along with the re- 
lation/'1,2:2 =/'12:1 would enable one to obtain the first k single moments and also 
the product moments of  all order statistics for any sample size in a simple re- 
cursive way. Thus, for example, starting with the value of 

= E(X) 1 [1-o /*(1) -- u- i /B(1 -- u)l/fl du , 
1:1 - - P  Q . l l - e  

and 

]./(2) = E ( X  2) l ~ j 2 p Q u  2//~(I-u) 2/[1 du 1:1 - -  p _ 

the recurrence relations (16.10)-(16.23) could be used systematically in a simple 
recursive manner in order to evaluate the means, variances and covariances of all 
order statistics for all sample sizes. Note that for fl _> 2, the above expressions 
could be rewritten as 

/*(I),:, = E(X) - P _1 QB(1 - 1/fl, 1 + 1/fl){Ii_Q(1 - 1/fl, 1 -t- 1/fl) 

- I 1  p(1 - 1/fl, 1 + l / f i ) }  , 

and 

] 2(2)I:1 = E(A*2) - -P  _1 QB(1 - 2/fi, 1 + 2/fi)  

× {I,_Q(1 - 2/fi, 1 + 2/fl)  - I,_p(1 - 2/fi,  1 + 2/fl)} , 

where I~(a, b) is the incomplete beta ratio defined by 

lv)f0  I ~ ( a , b ) - - B ( a ,  t a - l ( 1 - t ) b - l d t ,  a , b > O ,  0 < c ~ <  1 , 

whose values could be taken either from the extensive tables of Pearson (1968) or 
from Harvard Computation Laboratory (1955) or by using BETA! subroutine 
from IMSL. 

The probability density function of a logqogistic distribution with scale pa- 
rameter 0 is 

f ( x )  = flOxfl-i(1 -}- Oxl3) -2, 0 < x < oo , (16.24) 

where p is the shape parameter. This is a special case of Burr type XII distribution 
(Tadikamalla, 1980). 

It is easy to note that 

F(x){1 - F(x)} = ~ f ( x )  , (16.25) 

x I-/~ 
(1 - F(x)) 2 = - ~ f ( x )  , (16.26) 
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where F ( x )  = 1 - (1 + Ox~) -1 , 0 <_ x < co.  
Ali and K h a n  (1987) have used (16.25) and (16.26) to derive the following 

recurrence relat ions for  the single as well as p roduc t  momen t s  of  order  statistics: 
For  2 < r < n, 

l~!k£_e)_ ( n - r  + 1)0/~}21: n . (16.27) 

f o r n _ >  1, 

.pO 
: k l : n + l  , 

for  1 < r < n and 0 =  1, 

for  k < fi, 

E(X~)  = ~(~/ 1:1 = o - k / ~ r (  1 - U / ~ ) r (  1 + k//~) ; 

for  1 < r < s < _ n - 1 ,  

~v,~t = ~wk/ ~ . {1 - k//~(,, - ~)} 
r,s:n r,s- 1 :n I'l -- S -~ 1 

x i a(j'kl n i~(j,k ) . 
r,s:n-I n -- S + 1 ,.,~- l:n- 1 

for  1 < r < n - 2 ,  

(16.28) 

(16.29) 

(16.30) 

(16.31) 

#(j,k) #(j,k) nk  . (j,k) 

. . . . .  : r.n-l:n + fi(n -- r - -  1)#,-., 1:.-1 (16.32) 

r ( , (j,k) '~ . 
n - -7-}-  1 l'l~'ifll)n:n' -- /*r+l,n-l:n) , 

and for  1 < _ r < s _ < n ,  

p(j,k-p) flO(n - s + 2)(n - s + 1) {,(j ,k) I ~tJ'k) "~ (16.33) 

Some of  these are identical to the results presented earlier. 

17. Burr and truncated Burr distributions 

The p d f  of  the doubly  t runcated Burr  distr ibution is 

: ? P ; x P - ' ( 1  -]- OXP) -(re+l), Q, <<_ X ~ P, f ( x )  

where Q and 1 - P (Q < P) are the p ropor t ions  of  t runcat ion  on the left and right 
o f  the Burr  distribution. 
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As convention,  K h a n  and K h a n  (1987) have taken 

(k) 
= P~, n > 1 • (k )=Q~,  n > 0  and t%,_~' 

# O : n  - -  . 

and 

(17.1) 

#(j,k) = /10+k) 1 < r < n and ~/7-1'(J'k)/7:n-1 -- P~/~-)1./7-1 . (17.2) /*:P:n /*:/7 ~ 

They  then derived the following recurrence relations for  the single momen t s  of  
order  statistics and well as p roduc t  momen t s  of  order  statistics: 

F o r 2 < r < n -  1 a n d k C m n p ,  

(1 k/mnp>#!~)~ Q2#~)v/7 1 p . ( k )  + k #(k-p) . (17.3) 
- -  = . - -  21~r:n 1 mnpO r:n 

and for  l _ < r < s _ < n - 1 ,  s - r _ > 2 a n d k # ( n - s + l ) m p ,  

{1 - k / m p ( n  - s 4 -  1)~# (j'k) - -nP2 I#(j,k) _pO,k) ] 
. . . .  s:~ n - s + 1 L r,s:/7-1 ~,s-l:/7-1j 

i~(j,k ) k #O,~-p) 
÷ ~,s-l:, -~ mpO(n - s + 1) ..... 

where Q2 = (1 - Q)/ (P  - Q) and P2 = (1 - P ) / ( P  - Q). 
The impor tan t  deduct ions for  k ¢ mnp in view o f  (17.1)-(17.4) are: 

17.4) 

17.5) (I k ' m  " (k) Q2Q~I -P2P~ 4- k ~(k-p) . - / P)#1:1 = ~ 1:1 , 

(1 k/mp)pl:k] OzQ~I P "  (k) k (k p) (17.6) - -  = - -  2 / Z l : n _ l  Av m ~ 0 / A l : n  , n _> 1 ; 

(1 k/mnpl.  ! • - P 2 P  + k--L-.(k-;l, > 1 
- -  = ~ ' 2 / ~ n - l : n  1 mpnO n:n - -  " 

17.7) 

I f  k = mnp, one can write f rom (17.3) 

Q2. (k) ~_ ~ ,,(k-p) < 1 , (k) - - # r - 1 : . - 1  . . . .  2 < r n - -  
t~r:n 1 = P 2  - - I P 2 0 r ~  

(17.8) 

The results which are presented in this section are also true for  L o m a x  dis- 
t r ibut ion ( p =  l, 0 =  1/a), W e i b u l l - G a m m a  ( 0 =  1/a), Weibul l -Exponent ia l  
(m = 1, 0 = 1/a) and Log-Logis t ic  distr ibution (m = 1, 0 = a-P). 



Recurrence relations and identities for moments of  order statistics 211 

18. D o u b l y  truncated parabol ic  and s k e w e d  distributions 

The doubly t runcated parabolic  distribution has its pd f  as 

6x(1 - x) 0 < Q1 _-. x < P1 < 1 
f ( x )  -- P -  Q , (18.1) 

where P = p2(3 - 2P1) and Q = Q2(3 - 2QI). 
Mohie  El-Din, M a h m o u d  and Abu-Youssef  (1991) have derived the following 

recurrence relations for the single and product  moments  of  order  statistics: 
F o r 2 < r < n - 1 ,  

1 + 3 n J  ~:n = ~z2~-1:~-1 - r 2 / z  . . . .  1 6n  " ' 

for 1 < r < n - 2 ,  

and 

k x (j,k) riP2 (flU,k) ]g(j+k) 
1 +  3(n---r))/~r'~+':" = #r0~k) - n - r  \ ~ ' r+ ' : " - ' -  r : , - , )  

-~ 6(n 2_ r) . . . . .  

k~ (j,k) n (j+k) -- n-  //ok (j) #(j+k) 
1 +'~)fln-l,n:n = ~n-l:n /J2~ lktn_l:n_l -- n-l:n-l} 

k ( . @,k 2)"~ 
-]- 6 [~'-klTl:~ Jr- 'Un l,n:n) ' 

where P~ . (k) = ~,:,-1, /'2 = (1 -- P ) / ( P  - Q) and Q2 = (1 - Q ) / ( P  - Q). 
The doubly t runcated skewed popula t ion  has its pd f  as 

(18.3) 

(18.4) 

f ( x ) -  1 2 x Z ( 1 - x ) ,  0 < Q l _ < x < _ P l  < 1 , (18.5) 
P - Q  

where P = P~(4 - 3Pl) and Q = Q~(4 - 3Q1). 
Mohie  El-Din, M a h m o u d  and Abu-Youssef  (1991) have derived the following 

recurrence relations for the single and product  moments  of  order  statistics in this 
case: 

For  2 < r < n -  1, 

l + ~ n  ~ ' r :n=U2"r  l:,-I z~, , . :n+T~ n # ~ ; 1 ) + ~ r : ,  +~'~:n ) , 

(18.6) 

and for 1 < r < n - 1  a n d s - r _ > 2 ,  
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1 +  
k "~ ]/(j,k) _ 

4(n - s + 1)J .... " 

P2(n-  1) (']/u,k) _ ]/u,k) 
~ S ~ 4 -  1 ~. . . . . .  1 r,s ,:n-') 

k (]/r0sknl) Jr- ]/r((,.skn 2 ) Jr- ]/~skn3) ) 
+ 1--~n . . . . . .  

where P2 = (1 - P)/(P - Q) and Q2 = (1 - Q)/(P - Q). 

, (18.7) 

19. Mixture of two exponential distributions 

The pdf  of  a mixture o f  two exponential  distributions is 

f ( x ) = ) . f l ( x ) + ( 1 - 2 ) f 2 ( x ) ,  x_>0,  0 < 2 <  1 , (19.1) 

where 
fj(x) = 5je -~sx, j = 1,2 ; (19.2) 

the corresponding cdf  is 

g ( x ) = ) . F , ( x ) + ( 1 - 2 ) g 2 ( x ) ,  x_>0,  0 < 2 <  1 , (19.3) 

where 
F j ( x ) =  1 - e  -~/x, j =  1,2 . (19.4) 

Nassar  and M a h m o u d  (1985) have used (19.1)-(19.4) to obtain the following 
recurrence relations for the moments  of  order  statistics: 

For  r = 0, 1 , 2 , . . . ,  and n = r +  1 , r +  2 , . . . ,  

1 1 
]/12/r+ ~ :. - ¢2~r:. = { ( 1 / < )  + (1/~2)} 727_ r ] / ~ + , : . _  + { (~ /< )  + (1/~2)} n _-~ 

0 
X (~, 0 52 ~ 2  ]/r+,:n) (19.5) ~l]/r+,:n -- 

and f o r r =  1 , 2 , . . . ,  a n d n = r + l , r + 2 , . . . ,  

/,/(]/(2) ]/(2) "~ 
\ r:n - -  r - l :n  lJ = {(1/5,) -~- (1 /52 ) ) ] / r :n  - ~ - { ( 1 / O q )  + (1/52) } (o o) 

X 51 -~151]/r:. --  g2--~---52]/r: n . 

(19.6) 

20. Doubly truncated Laplace distribution 

The pdf  of  the doubly t runcated Laplace distribution is 

e Ixl 
g(x) 2 ( 1 - P - Q ) '  Q1 - -<x<Pl  , (2o.1) 
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where Q1 = log(2Q) < 0 and P1 = - l o g ( 2 P )  > 0, and the corresponding distri- 
bution function is 

0, x < Q1 
e x 2Q 

2(1-P-Q) ' Q1 < x < 0 
G(x) = 2-2Q - e - x  

20-P-Q------7' 0 < x < P1 

1, otherwise . 

(20.2) 

Lien, Balakrishnan and Balasubramanian (1992) have proved the following 
theorem for the single moments  of  order statistics. 

THEOREM 20.1. The k th moment  of  the ith order statistic from a random sample 
of  size n drawn from a (Q,P)-truncated Laplace distribution in (20.1) can be 
written as: 

k (k) #!k),:, = A~)e(i n ) +  ( -1 )  Ap,Q(n - i , n )  , (20.3) 

where A~)e(i n)satisfies the following recurrence relation: 

= - Q~-A (k) ( i -  1, - 1) A(~)(i ,n)  ( -k /n )A~,p1) ( i ,n )  { Q / ( 1 - P -  , j  P,O' n 

+ { ( 1 - P ) / ( 1 - P - Q ) } A ~ b ( i , n - 1 ) ,  k_> 1 , (20.4) 

A~,)e(i, n) = - (1 - P - Q)-"(1 - 2Q) i-l (1 - 2P) n i+12 nC(n, i - 1) 

.(o) ~. 
@ L~p,Q~I- 1, n )  , (20.5) 

n! 
A~)(0, n) : ~ ,  and C ( n , i - 1 ) =  ( i - 1 ) t ( n - i + l ) [ '  

A ~ ) ( n , n -  1) = 0  . 

Similarly, for the product  moments  of  order statistics of  doubly truncated 
Laplace distribution, Lien, Balakrishnan and Balasubramanian (1992) have 
proved the following theorem. 

THEOREM 20.2. The product  moment  of  the ith and (i + 1) th order statistics from 
a random sample of  size n drawn from a (Q, P)-truncated Laplace distribution in 
(20.1) can be written as 

]2 i , i+l :  n = AQ,p( i, n) + AQ,p(n - i, n) -- A~ ) ( i, i)A (~,) (n - i , n  - i)C(n, i) , 

(20.6) 

where A~)( i  i) and . (1 ) ,  Zxp,Qin -- i, n - i) can be calculated by using Eqs. (20.4) and 
(20.5), and AQ,p(i, n) satisfies the following relations: 
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and 

AQ,p(i,n) = A~)(i, + 1,n) -i-1 A(1)Q,p (i + 1,n) ~ nQ 
i(1 - P - Q) 

x [A~)(i,n - 1 ) - A Q , p ( i - 1 , n - 1 ) ]  , 
(20.7) 

_ n Q ( 1 - Q ~ )  A~,)(1,n - 1 ) -  (n - 1 )  [A~)(1, n) - ,  ~Q,pt~,A(1) (' n)] Ao,P(1, n) -~--_ p-Z_-Q) 

°(' 

20.1. Non-overlapping mixture model 

Let X be a two component mixed random variable, 

X D { Z1 with probability g (20.9) 
Z2 with probability 1 - ~ , 

where Z1 Dfl (z l )  and Z2 D fz(Z2), and supports R1 = (al,b~) and R2 = (a2, b2), 
al > --oc, bl < oc and bl < a2. 

From (20.9), we have 

0 for x < a 1 
~F1 (x) for x E R1 

F(x) = ~r for bl _< x _< a2 (20.10) 
7 t+(1-~)F2(x)  for xCR2 
1 for x > b2 . 

Let us denote the single and product moments of order statistics corresponding to 
the components Z1 and Z2 by (k) #!k) #i:, [1], ,:. [2] and #i,j:n[l], #i,j:n[2], respectively. 
Then, Lien, Balakrishnan and Balasubramanian (1992) have proved the following 
two theorems. 

THEOREM 20.3. For 1 < i < n and k = 1 ,2 , . . . ,  

i-I ~ ( 7 )  
, ~ : ,  = - - ,~)  u i : ,  [1]  

t=0 t=i 

( 2 0 . 1 1 )  

THEOREM 20.4. For 1 < i < j _< n, 

£(7) = - - ~ )  u i j : t [ 1 ]  
t=O t=j 

j-1 
+ ~ C ) ~ t ( 1 -  ~)'-tfj_t: , t[2]. (20.12) 

t=i 
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The results given in Theorems  20.3 and 20.4 can be extended to the case when X is 
a m - c o m p o n e n t  mixed r a n d o m  variable defined by 

X D= Zt with probabi l i ty  ~t, ~ rot = 1 , 
t=l 

(20.13) 

where ZI ,Z2 ; . . . , Zm  are r a n d o m  variables with p d f ' s  f l , f 2 , . . . , f m ,  cd f ' s  
FI ,F2 , . . . ,Fm and suppor ts  R1 = (al ,b l ) ,  R2 = (a2 ,b2) , . . . ,Rm = (am,bin), res- 
pectively, with bt-1 _< at for  t = 1 , 2 , . . . , m ,  al > - e c  and bm< oc. 

F r o m  (20.13), it is clear tha t  the cumulat ive  distr ibution funct ion of  X is 

0 for  x < al ,  

F(x)  = 7r(t-i) q- g tF t ( x )  for  x C Rt, t = 1 , 2 , . . . , m ,  

rc(t ) for bt ~x~-~atl+l, t :  1 , 2 , . . . , m -  1, 

1 for x > b m  , 

(20.14) 

= ~ t  nj. As before, let us denote  the single momen t s  of  where n(0 ~ = 0 and n(,~ j=~ 

order  statistics by #!~) and the p roduc t  m o m e n t s  of  order  statistics by #i j:, and the ~:n (k) ' 
cor responding  quantit ies for  the individual c o m p o n e n t  Zt by #i:,, It] and #i,j:n[t], 
for  t = 1 , 2 , . . . ,  m. Then,  by proceeding exactly on the same lines as in Theorems  
20.3 and 20.4, Lien, Balakr ishnan and Ba la subraman ian  (1992) have established 
the following two theorems.  

THEOREM 20.5. Fo r  1 < i < n, and k = 1 , 2 , . . . ,  

. (k) 1l --P - - q - P  (1 . - q  (k) 
-~- --  7~(t)) #i p:q-p[t] #i:n 

t=l p=O q=i , q - - p , n - - q  ~(t-l)'~t 

(20.15) 

THEOREM 20.6. For  1 G i < j _< n, 

= -- TO(t)) # i -p , j -p:q-p[  t] #i,j:n /Z(t_l) ~ t (1 n q 
t=l  p=0 q=j , q - - p , n - - q  

+Z 
t=l t'=t+lp=O q=j r=i s=r , i - p + s - r , r - i , q - s , n - q  

D i-p+s-rt" , ,r-i  q-s  
X 7g(t l)7~t [TC(t, 1) --  7~(t)) 72 t, 

X (1 n-q -~( t ' ) )  Pi p:s-r+i pit] #j s:q_s[t'] . (20.16) 

It  m a y  be noted  tha t  Theorems  20.5 and 20.6 reduce to Theorems  20.3 and 20.4 
when m = 2. 
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Furthermore, recurrence relations between factorial moment generating 
functions from the doubly truncated Laplace distribution have been derived by 
Mohie El-Din and Sultan (1995). 

21. A class of probability distributions 

Consider a class of probability distributions F given by [Kamps (1991)] 

d F - l ( t ) = l t P ( 1 - t )  q p-I, t~ (O,  1) , (21.1) 

where p and q are integers and d > 0. 
From (21.1), we have four cases with respect to p and q, c E R: 
(i) Putting p = 0 and q = 0 in (21.1), we get 

d - 1  __ 1 
~ F  (t) d(1 t ~ '  and hence, F(x) = 1 - e  -d(x c), x E (c, oc) 

which is the exponential distribution. 
(ii) Putting p = 0 and q # 0 in (21.1), we get 

~F-d ~ ( t ) =  ~1 ( 1  - -  t) q-l, and hence, 

( c -  1/dq, c), q > 0 
F(x)= l - [dq (c - x ) ]  1/q, xE (c 1/dq, oc), q < 0  ; 

q < 0: Pareto, special Burr XII (Lomax) distributions. 
(iii) Putting p # - 1  and q = p +  1 in (21.1), we have 

d -1 1 ~t F (t) = ~t p, and hence, 

( c , c +  1/dq), q > 0 
F(x)= l - [ d q ( x - c ) l  1/q, xE (-oc, c+l/dq) ,  q < 0  ; 

q > 0: power function distributions. 
(iv) Putting p = - 1  and q = - 1  in (21.1), we get 

d ~ 1 
( t ) - d t ( 1 - t ) '  and hence g(x)= [1 + e  -d(x c)J -1, q 

x c , 

which is the logistic distribution. 

Kamps (1991, 1992) has proved two theorems for obtaining general recurrence 
relations between moments of order statistics based on the class of probability 
distributions (21.1). They are as follows. 
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THEOREM 21.1. Let X be a r a n d o m  variable with distr ibution funct ion F,  rn > 1 a 
constant ,  and F satisfying (21.1) with F -1 (t) _> 0, if m ¢ N. Then  for  all k, n E N, 
2 _< r _< n, satisfying 1 _< k + p  _< n + q, and Xr:n the r th order  statistic with 
- o c  < E(X~:,), E(X~'_I:,) , E(Xff+~:~+q) < oo, the identity 

m m ( m-1 ) (21.2) E(X~:n) - E(X;_,:n) = mC(k ,n ,p ,q )E  X~+p:.+q , 

with the cons tant  C(k, n,p, q) as 

1 (knl) (21.3) 

holds true. 
In Table  1, some examples  as special cases are presented for  the relation (21.2). 

F r o m  Table  1, we observe that: 

(i) The  recurrence relations for  m o m e n t s  of  order  statistics f rom exponential  
distr ibutions have been obta ined  by Joshi (1978) with d = 1, Khan ,  Y a q u b  and 
Parvez (1983) with d = 1, Azlarov  and Volodin (1986) with m = 2, and Lin 
(1988a,b) with d = 1. 

(ii) The  recurrence relations for momen t s  of  order  statistics f rom Pare to  and 
L o m a x  distr ibutions have been derived by K h a n  and K h a n  (1987) and Lin 
(1988a,b). 

(iii) The recurrence relations for  momen t s  of  order  statistics f rom power  
funct ion dis tr ibut ion have been derived by Lin (1988a,b) with d = 1 and q = 1. 

(iv) The  recurrence relations for  momen t s  of  order  statistics f rom logistic 
dis t r ibut ion with d = 1 have been derived by Shah (1970). 

THEOREM 21.2. Let  c~ E R, fi > 0 with e + fl : / 0 ,  and a funct ion hi on (0,1), with 

d 1 
~thl( t)  = tP(1 - t) q-p-l, t E (0, 1) , (21.4) 

and constants  d > 0, p,q  E Z be given, such tha t  the expression {fihl(t)} ~/~ is 
defined, if fl > 0. 

Fur the rmore ,  let F be given by 

( exp{hl( t )} ,  /3 = 0, t E (0, 1) 
F-1  (t) = 

L > 0 , 
(21.5) 

~+/~ EgX ~+/~ ~ a n d  E(Yr+p:n+q) of  order  statistics exist and let the m o m e n t s  E(X~:~ ), ~ r-l:nJ, 
for  some integers r, n with 2 < r < n, and 1 _< r + p < n + q. Then  the recurrence 
relat ion 

~+~ ~+~ fi)C1E(X~+v:n+v) (21.6) 



218 N. Balakrishnan and K. S. Sultan 

Table 1 
Some examples based on Theorem 21.1 

p, q F(x)  Distribution dC( k, n,p, q) 

0, 0 1 - exp[-d(x - c)], Exponential 1 n-k+l 
x c (c, co) 

o, > o 1 - [dq(c - x)]l/q, n!(,,-k+q)! (n+q)!(n-k+l)! 
x E (c - 1/dq, c) 

n!(n k+q)! O, < 0 1 - [dq(c - x)] l/q, Pareto (n+q)!(n-k+I)] 
X C (C -- 1/dq, ec) Lomax 

- 1,0 exp[d(x - c)], 1 k-I 
X E (--OO, C) 

> - 1 , p  + 1 [dq (x -  c)] I/q, Power function ,!(~+p-U! (n+p+l)!(k 1)! 
x E (c, c + 1/dq) 

< - 1 , p +  1 [dq(x -- C)] l/q, n!(k+p-l)! (n+p+])!(~ J)! 
x C  ( - e e , e  + 1/dq) 

-1 , -1  [1 + exp(-d(x - c))] -1 , Logistic (k-l)~ k+l) 
xz  ( - ~ , ~ )  

1 (rnl) h o l d s .  with C1 = d (r+P)("r+~ 

Table  2 presents some examples  of  probabi l i ty  distr ibutions included with 
respect to the integers p, q and the parameter /~ ,  wherein 

DI :  Pareto  distr ibution [Malik (1966)]. 
D2: Weibull  dis tr ibution [Khan, Y a q u b  and Parvez (1983)], especially Rayleigh 

distr ibution and exponential  distr ibution when fl = 1 [Joshi (1978), Khan ,  
Y a q u b  and Parvez (1983), Azlarov  and Volodin (1986) and Lin (1988a)]. 

D3: power  funct ion distr ibutions (/? > 0,q = 1,c = 1 / d )  (/~ = 1 in Lin (1988a)). 
Burr  XI I  distr ibutions when q < 0 [Khan and K h a n  (1987)], L o m a x  distri- 
but ions when fl = 1 [Lin (1988a)], and log-logistic distr ibutions [/~ > 0, 
p = O , q = - l ,  d =  fl, c = - l /  fl]. 

D4: logistic distr ibution [Shah (1970), Khan ,  Yaqub  and Parvez (1983) and Lin 
(1988a)]. 

D5: power  funct ion distr ibutions [Malik (1967a)]. 

K a m p s  and Mat tne r  (1993) have generailized the above  results o f  K a m p s  
(1991) by proving the following theorem. 

THEOREM 21.3. Let F satisfy (21.1), and let k be an integer with 2 < k < n and 
1 < k + p < _ n + q .  T h e n  

E[g(Xk:n)]  --  E[g(Xk l:n)] = C E[g ' (Xk+p:n+q)]  , (21.7) 

where C - (~2~) holds for every absolutely cont inuous funct ion g provided 
 /k+pl 

that  the right hand  side in (21.7) exists. 
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T a b l e  2 
Some examples based on Theorem 21.2 

p, q, fl F(x)  D i s t r i b u t i o n  (~ + fi)Cj 

O, O, 0 1 - exp(cd)x  d, DI d(.~'+1) 
x E (e C,oo) and c ~ R 

O, O, > 0 1 - exp( -d[x~  / fi - cl) , D2 :+~ d(n r+l) 
x ~ ((pc) ~/~, ~) ,  c > o 

O, ¢ O, 0 1 - [dq(c - logx)] l/q, ~(n+q-r)!n! d(n+q)!(n r+l)! 
(e c-1/dq,ec), q > 0 

x E (e c-l/dq,oo), q < 0 

n!(~+fi)(n+q-r)! O, # O, > 0 1 - [dq(c - x~/fi] l/q, D3 d(n r+l)!(n+q)! 

{ ([fl(C -- l/dq)] 1/~, [flc]l/[J), q > 0 

X E ([fi(C 1/dq)] ' /~ ,oe) ,  q < 0 

c >  l / d  e 

n(c~+l) I --1,--1, 1 1 + [exp(-d(x - e))] -1 , D4 d(~-l)!(. ,-+1)" 

- l, 0, 0 e ~dxd, D5 d(~l) 
~ (0,e ~) 

Recently, Mohie El-Din, Abu-Youssef and Sultan (1996) have proved the fol- 
lowing theorem for obtaining a general identity for product moments of order 
statistics in a class of distribution functions, including Pareto, Weibull, expo- 
nential, Rayleigh and Burr distributions. 

THEOREM 21.4. Let ~ E R, fl _> 0 with ~ + f i ¢  O, h(t) be a function on (0, 1) with 

d l ( l_ t )q  1 d>0,  q E Z  (21.8) h(t) = 

F be given by 

fexp{h(t )} '  fi = 0  
F - l ( t )  (21 o9~ 

I, P > o 

where (fih(t)) lIB E R, and let 

- o c  < E(X/:,X;:, ), E :,Xs l:n , g :n+qX~:n__q < oG, j • 0 , 

for some integers r,s and n with 1 < r < s _< min(n,n + q), n + q > 2. Then the 
recurrence relation 

(21.10) 
is valid, where 
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n!(n + q - s ) !  (21.11) 
C(n,q,s) = d ( n -  s+ 1)!(n + q)! " 

Note that Theorem 21.4 corresponds to Theorem 21.1 in the case of  single 
order statistics. 

Some examples of  probability distributions based on the above theorem are 
presented and the corresponding values of  the integer q and parameter ft. 

EXAMPLES. (i) q = O, fl = 0 a n d  c C R, 

Then, 

F(x)= 1--e~dx -d, xE (e ~,oc) 

i .e . ,  the Pareto distribution. 
(ii) q = 0, fi > 0 and c _> 0 ,  

1 (ll~_t) h( t )=~ log + c  . 

Then, 

)} F(x)= 1 -  exp - d  x f l - c  , x E  ( (fi~)~, oo) 

i.e., the Weibull distribution, exponential distribution with fl = 1, and Rayleigh 
distribution with fl = 2. 

1 (iii) q < 0, fi > 0 and c _> N, 

1 
h(t) = - ~ q ( 1  - t) q + c . 

Then, 

F(x)= l -  [dq (c -~xB)]  ~, 

i.e., the Burr distribution. 
(iv) q ¢ O, fl = 0 and c E R, 

Then, 

1 
h ( t )  = - = (1  - t ) q  + c aq 

F(x) = 1 --[dq(c- logx)]~, / 
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Table 3 
Some Examples Based on Theorem 21.4 
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q, 13 F(x)  Distribution (~ + 13)C(n, q, s) 

0, 0 1 - eCdx -d, c 6 R, Pareto a(,-~l) 
x c (e C, co) 

0, > 0 1 - exp{]-d(~x ~ - c)}, Weibull d(,-s+l) 
x ~ ((13c?, ~ ) , c  _> o 

0, 1 1 - exp(-d(x - c)), exponential j + l  d(n-s+l) 
X C (C, 00) 

0,2 1 - exP( ld (X2 /2  - c)), Rayleigh ~+2 
x E ((2c) -~, oo) 

< O, > 0 1 - (dq(c - ~x[~))~, n!(c~+[I)(n+q-s)! Burr d(n s+l)!(n+q)[ 

> 0, 0 1 - (dq(c - logx))~, 
x E (e -~,e ~) 

i 

< 0, 0 1 - (dq(c - logx));, 
~ c  (e ; , ~ )  

Table  3 shows the pa r t i cu la r  cases o f  the results  which are k n o w n  f rom the 
l i terature .  

F r o m  Table  3, we note  the following: 

(1) The recurrence re la t ion  o f  o rde r  stat ist ics for  Pa re to  d i s t r ibu t ion  which is 
special  case f rom (2.15) have been reviewed by Ba lakr i shnan ,  Ma l ik  and  
A h m e d  (1988). 

(2) The  p roduc t  m o m e n t s  o f  o rder  statist ics f rom Weibul l  d i s t r ibu t ion  have been 
der ived by  K h a n ,  Parvez  and  Y a q u b  (1983). 

(3) K h a n  and  K h a n  (1987) have der ived the recurrence re la t ion  between the 
p roduc t  m o m e n t s  o f  o rde r  stat ist ics f rom Burr  d is t r ibut ion .  

(4) Ba lakr i shnan ,  M a l i k  and  A h m e d  (1988) have presented  the recurrence rela- 
t ion for  the p roduc t  m o m e n t s  o f  o rde r  statist ics for exponent ia l  d is t r ibut ion .  

A c k n o w l e d g e m e n t  

This work  was done  while the second au tho r  was visit ing M c M a s t e r  Univers i ty  as 
a Channe l  Scholar  funded  by the G o v e r n m e n t  of  Egypt .  
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Recent Approaches to Characterizations Based 
on Order Statistics and Record Values 

C. R. Rao and D. N. Shanbhag 

I. Introduction 

Ferguson (1964, 1965) and Crawford (1966) were amongst the earliest authors 
who characterized geometric and exponential distributions via properties of order 
statistics. In various papers, Ahsanullah, Govindarajalu, Arnold, Galambos and 
many others have since obtained interesting characterization results based on 
order statistics. Galambos and Kotz (1978), David (1981), Azlarov and Volodin 
(1986), Arnold, Balakrishnan and Nagaraja (1992), Rao and Shanbhag (1994), 
Aly (1988), and Kamps (1995) among others have reviewed the existing literature 
on important properties of order statistics. 

Shorrock (1972a,b, 1973), Nagaraja (1977), Gupta (1984), Dallas (1981), 
Nayak (1981), and Rao and Shanbhag (1986) have observed properties of, or 
established characterizations based on, record values. The monographs of 
Galambos and Kotz (1978), Azlarov and Volodin (1986), and Rao and Shanbhag 
(1994) have reviewed some of the major results on the topic. 

Many of the characterization results based either on order statistics or record 
values have implicit links with the integrated Cauchy functional equation or its 
variants. The monograph of Rao and Shanbhag (1994) gives the relevant details 
as regards this and shows that the recent advances on the functional equation lead 
us, in places, to improved and unified versions of the results in the existing 
literature. (A slightly restrictive coverage of the link that we have referred to here 
appears in Ramachandran and Lau (1991).) 

The purpose of the present paper is to review characterization results based on 
order statistics and record values, having links with the integrated Cauchy 
functional equation or its variants, and make further observations on these going 
beyond what Rao and Shanbhag (1994) have already pointed out. In the process 
of doing this, we show that many of the cited results could be arrived at via the 
strong memoryless property characterization of the exponential and geometric 
distributions. We also give some statistical applications of the characterization 
results discussed. 

231 
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2. Some basic tools 

The following are some basic tools that are to be referred to in the present 
discussion. 

THEOREM 1. Let f be a non-negative real locally integrable Borel measurable 
function on R+, other than a function which is identically 0 almost everywhere 
ILl, such that it satisfies 

f (x )  = f f ( x  +y)#(dy)  for almost all [L]x E R+ (2.1) 
d R  + 

for some a-finite measure # on (the Borel a-field of)  R+ with kt({0}) < 1 (yielding 
trivially that #({0} c) > 0), where L corresponds to Lebesgue measure. Then, ei- 
ther # is arithmetic with some span 2 and 

f ( x  + n)o) = f (x )b  ~, n = 0, 1, . . .  for almost all [L]x ~ R+ 

with b such that 

o o  

n - - 0  

or/~ is nonarithmetic and 

f(x) oc exp(~x) for almost all [L]x c R+ 

with r/such that 

~ exp(t/x)bt(dx)= 1 Q 

+ 

The theorem is due to Lau and Rao (1982) and it has several interesting proofs 
including that based on exchangeability, given by Alzaid, Rao and Shanbhag 
(1987); see Ramachandran and Lau (1991) or Rao and Shanbhag (1994) for more 
details. 

COROLLARY 1. Let {(vn,wn): n = 0, 1, . . .} be a sequence of vectors with non- 
negative real components such that vn ¢ 0 for at least one n, w0 < 1, and the 
largest common divisor of the set {n: w, > 0} is unity. Then 

OQ 

1) m = ~ Um+nWn, m = 0, 1 , . . .  (2.2) 
n = 0  

if and only if 

Vn =VO bn, 

for some b > O. 

o o  

n = O ,  1 ,2 , . . . ,  and Z w " b ~ =  1 
n = O  
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PROOF. The " i f "  part is trivial, and to have the "only i f "  part, apply the theorem 
considering f :  R+ ~ R+ such that 

f(x)=V[x], x ~ R +  , 

where [-] is the integral part, and # as a measure concentrated on {0, 1, . . .} such 
that #({n}) = w, for n = 0, 1, . . . .  

COROLLARY 2. Le tX  be a nonnegative random variable with P{ X  = 0} < 1 and h 
be a monotonic right continuous function on R+ such that E(Ih(X)I ) < oc and 
E(h(X)) ¢ h(O). Then 

E { h ( X - x ) l X > _ x }  = e ( h ( X ) ) ,  x e R +  with P{X>_x}  > 0  (2.3) 

if and only if either h* is nonarithmetic and X is exponential, or for some 2 > 0, h* 
is arithmetic with span 2 and P { X > _ n 2 + x } = P { X > _ x }  (P{X _> 2})", 
n c N0,x ¢ R+, where 

(h(x) - h ( O ) ) / ( E ( h ( X ) )  - h(O)), > 0 
h*(x)=  0, x < 0  

(We define h* to be arithmetic or nonarithmetic according to whether the measure 
determined by it on R+ is arithmetic or nonarithmetic.) 

PROOF. Note, writing F(x) = P { X  >_ x} ,x  ¢ R+, that (2.3) is equivalent to 

R+P(x + y)#h.(dy) =-if(X), X E R+ 

where Ph* is the measure determined by h*. Theorem 1 then establishes the "only 
i f "  part of the assertion. As the " i f "  part of the assertion is trivial, we then have 
the corollary. 

Corollary 1 is essentially given in Lau and Rao (1982) and is a slight gener- 
alization of a lemma established earlier by Shanbhag (1977). (Shanbhag takes 
Wl > 0 in place of the condition that the largest common divisor of the set of n for 
which wn > 0 is t, even though he does not assume a priori w0 < 1.) Corollary 2, 
in the form that we have presented here, has appeared earlier in Rao and 
Shanbhag (1994, p. 108); a somewhat different version of this result has been 
given by Klebanov (1980). If Y is a nonnegative random variable and we take 

h(x) = p { r  _< x}, x R+ , 

then it follows that for a nonnegative random variable X which is independent of 
Y with P { X  >_ Y} > P{Y  = 0}, (2.3) is equivalent to 

P{X  > Y + xIX > Y} = P { X  > x}, x E R+ . 
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Consequently, we have that the characterization based on the strong memoryless 
property, for the exponential and geometric distributions, given by Shimizu 
(1978) and Ramachandran (1979) follows essentially as a by-product of Corollary 
2. (It is a simple exercise to see that the characterization based on the version of 
the strong memoryless property appearing above gives as a corollary that based 
on the version of the property with " > "  in place of "_>"). 

THEOREM 2. Let f be a nonnegative real locally integrable Borel measurable 
function on R, other than a function which is identically zero almost everywhere 
[L], such that it satisfies 

f ( x )  = f R f ( x + y ) # ( d y  ) for almost all [L]x c R (2,4) 

for some o--finite measure p on R satisfying p ( { 0 } ) < 1  or equivalently 
#({0} c) > 0 (with L as Lebesgue measure). Then, either p is nonarithmetic and 

f ( x )  = Cl exp{rhx} + c2 exp{~/2x} for almost all [L]x E R , 

or # is arithmetic with some span 2 and 

f ( x )  = ~1 (x) exp{r/lX } + ~2(y) exp{r/2x } for almost all [L]x E R , 

with Cl and c2 as nonnegative real numbers, ~1 and ~2 as periodic nonnegative 
Borel measurable functions having period 2, and qi, i = 1,2 as real numbers such 
that fR exp{~/ix}/~(dx) = 1. (For the uniqueness of the representations but for the 
ordering of the terms, one may assume for example that c2 = 0 and ~2 = 0 if 

~1 = ~2-) 
Theorem 2 is a corollary to a general theorem of Deny (1961). For the details 

of various proofs for this theorem and other related results, see Ramachandran 
and Lau (1991) and Rao and Shanbhag (1994). It is interesting to note here that if 
in Theorem 1 f is bounded and/~(R+) < oc, then the theorem follows easily as a 
corollary to Theorem 2 (see Fosam, Rao and Shanbhag (1993) for more details). 
Also, even when it is not of much relevance to characterization problems dis- 
cussed in the following sections, it is worth pointing out in this place that the next 
result is a corollary to Theorem 2 and is in the same spirit as Corollary 1 of 
Theorem 1. (Use an argument analogous to that used in the proof  of Corollary 1 
to see the validity of this result.) 

COROLLARY 3. Let {(vn,w~): n = 0, +1 , . . . }  be a sequence of two-component 
vectors with nonnegative real components such that w0 < 1 and at least one 
v, ¢ 0. Then 

Urn = ~ WnVn+m, m=0,~l , . . .  

if and only if 



Recent approaches to characterizations based on order statistics and record values 235 

v m = B ( m ) b  m + C ( m ) c  m, m = 0 , + l , . . .  

and ~m°~=_~ wmb m = ~,~--oo Wm cm = 1 for some b, c > 0 and non-negative peri- 
odic functions B, C with the largest common divisor of {m: Wm > 0} as their 
common period. 

Corollary 3 was proved via a direct proof  by Ramachandran (1984). 
Davies and Shanbhag (1987), Shanbhag (1991), and Rao and Shanbhag (1994) 

have given general results subsuming versions of  Deny's  theorem as well as the 
Lau-Rao  theorem, via arguments based on exchangeability, amongst other 
things. Although these arguments turn out to be involved due to technical diffi- 
culties one has to encounter in the general cases, one could illustrate a key idea 
appearing in these through a proof  for Corollary 1 via de Finetti 's theorem. 

As the " i f "  part  of  the result is trivial, it is sufficient if we establish the "only 
i f "  part  of  the result. There is no loss of  generality in assuming that w0 = 0. The 
functional equation in the lemma implies that 

OO 

Vm = EVm+nW*'  m = 0, 1 , . . .  (2.5) 
n = l  

with 

(3O 

* Z 2  kW~k) Wn= , n = l , 2 ,  , 
k = l  

where {w (k) } is the k-fold convolution of {wn} with itself. There exists then some 
no > 0 such that w~* > 0 for all n >_ no. Substituting for Vm+n, n = 1, 2, . . . ,  no - 1 in 
(2.5) successively (when no > 1), we can get from (2.5) 

Vm = ~__~Vm+n~, m = 0, 1 , . . .  (2.6) 
n~l ' l  0 

with ~v~ > 0, n = n0, n0 + 1, . . . .  (2.6) implies that v~ > 0 for all n. (Note that here 
Vm = 0 e=~ Vn = 0 for all n > m.) Define a sequence of exchangeable random 
variables {An: n = 1 ,2 , . . .}  such that 

P{X1 = x l , . . .  ,Xn = X~} = Vx,+.+x° fVx, . . .  f%,  Xi > no, 
vo 

i =  1 ,2 , . . . , n ;  n =  1 ,2 , . . . .  

We have then, in view of de Finetti 's theorem, that for all x , y  E {no, no + 1, . . .},  

1 
0 = ~0 {V(x+Y)+(x+Y) -- 2V(x+y)+x+Y q- Vx+y+x+Y} 

= E{((P{X1 = x + ylY}lCvx+y) 
- (P{X1 = x [ J } / # x ) ( P { X l  = y[J} /~vy) )  2} 

where ~-- is the tail a-field of {X,}. Hence, it follows that 
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(P{Xl  = xlJ}/#x)(P{X  = 

= P{X~ = x +y]3-}/YVx+y, x , y  = no,no + 1 , . . . ,  a.s. , 

which implies that there exists a positive real number b such that 

P { X "  1 = x l ~ ' } / w  x = b x, x = no ,  no -}- 1 , . . . ,  a.s . (2.7) 
OO 

with ~ #nb n = l. (Note that b is unique.) From (2.6) and (2.7), we get that 
n = r t  0 

Vx bX ' x O, 1, . , 
I)0 

which implies, in view of (2.2), that ~ wnb ~ = 1; consequently we have the re- 
quired result. ,=0 

The above proof  simplifies slightly if the assumptions of Shanbhag's lemma are 
met. With minor alterations in the proof, one could also produce a proof  based 
on de Finetti 's theorem for Corollary 3; further details in this respect will be 
available from a forthcoming article of  the authors. 

The next result that we need is Theorem 3 given below; in the statement of  the 
theorem, we assume the following definition. 

DEFINITION. Let X be a real-valued random variable with E(X +) < oc. Define a 
real-valued Borel measurable function s on R satisfying s(x)  = E{X - x l X  > x}  
for all x such that P { X  _> x} > 0. This function is called the mean remaining life 
function (m.r.1. function for short). 

The restriction of the m.r.1, to ( -oc ,  b) where b is the right extremity of  the 
distribution of  X is clearly left continuous and hence is determined by its 
knowledge on a dense subset of  ( - e c ,  b). 

THEOREM 3. Let b(_< ~ )  denote the right extremity of  the distribution function 
(d.f.) F of  a random variable X with E(X +) < oc and let s be its m.r.1, function. 
Further, letA = {y: limxTyS(X) exists and equals 0}. Then b = oe ifA is empty 
and b = inf{y: y E A} ifA is non-empty. Moreover,  for every - o c  < y < x < b 

1 - F (x - )  s(y) ( fx dz "l 
- exp - - -  (2.8) 

and for every - o c  < x < b, 1 - F ( x - )  is given by the limit of  the right-hand side 
of  (2.8) as y ~ -oo .  

For  a proof  for Theorem 3 as well as some other interesting properties of  the 
m.r.1, function, see Kotz and Shanbhag (1980) or Rao and Shanbhag (1994). 

3. Characterizations based on order statistics 

Ferguson (1964, 1965) and Crawford (1966) were among the earliest authors who 
characterized geometric and exponential distributions via properties of  order 
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statistics. They showed that if X and Y are independent nondegenerate random 
variables, then min{X, Y} is independent of X - Y if and only if for some c~ > 0 
and fl E R, we have e(X - fi) and e(Y - fi) to be either both exponential or both 
geometric (in the usual sense). Using effectively the strong memoryless property 
characterization of the geometric and exponential distributions, Rao and 
Shanbhag (1994; pp. 196-197) have essentially established the following extended 
version of the Ferguson-Crawford result. 

THEOREM 4. Let X and Y be as in the Ferguson-Crawford result and y0 be a point 
such that there are at least two support points of the distribution of rain{X, Y} in 
( -~ ,Y0] .  Let ~b be a real-valued Borel measurable function on R such that its 
restriction to (-oo,y0] is nonvanishing and strictly monotonic. Then X - Y and 
~b(min{X, Y})I{min{x,Y)<yo} are independent if and only if for some e E (0, oc) and 
fl E R, e(X - fl) and c~(Y - fi) are both exponential, or geometric on No, in which 
case X - Y and rain{X, Y} are independent. 

The " i f "  part (of the theorem) and the result that rain{X, Y} and X - Y are 
independent i f X  and Y are as in the " i f "  part are trivial. To prove the "only i f "  
part here, one could follow Rao and Shanbhag to show first that if 
P { X  _> Y} > 0, then the assertion implies that l E ( -c%y0)  a, P { Y  = l]X >_ Y, 
Y_<Y0[< 1, and 

P ( X  > Y + xlX >_ Y, Y _<Yo} 

= P { X > _ *  l + x l X _ > *  1}, x E R +  , 

where I is the left extremity of the distribution of Y and "_>*" denotes "_>" if l is a 
discontinuity point of the distribution of Y and it denotes " > "  otherwise. Observe 
now that i fP{Y = l} = 0, then, unless P { X  = I} = 0, we have 

P { X -  Y < 0} = P { X -  Y < 0]min{X, Y} = l} 

= P { X -  Y < O [ X =  I} = P { Y  > I} = 1 , 

contradicting the condition that P { X  _> Y} > 0. In view of the observation that 
we have made in Section 2 on Corollary 2, we may then appeal to Corollary 2 to 
have that the conditional distribution of X - l given that X >_ l is exponential if 
the conditional distribution of Y - l given that Y _< Y0 is nonarithmetic, and that 
of )~[(X - / ) / 2 ]  given that Y >_ l, where [.] denotes the integral part, is geometric 
on {0, 2, 22, . . .}  if the conditional distribution of Y -  l given that Y < y0 is 
arithmetic with span 2. This, in turn, implies, because of the "independence" 
condition in the assertion, that the left extremity of the distribution of X is less 
than or equal to that of Y and that P{Y _> X} > 0. Hence, by symmetry, a further 
result with the places of X and Y interchanged (and the obvious notational change 
in l) follows, and one is then led to the result sought. 

I indeed, it now follows trivially that l < Y0 since P{min{X, Y} <_ y} ~ cP{X >_ Y, Y < y} for each 
y E (-c~,y0] and some c > 0. 
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Rao and Shanbhag (1994, p. 197) have effectively observed the following two 
simple corollaries of Theorem 4; the latter of these two results essentially extends 
a result of Fisz (1958). 

COROLLARY 4. If  in Theorem 4, X and Y are additionally assumed to be iden- 
tically distributed, then the assertion of the theorem holds with IX - YI in place of 
X - Y .  

PROOF. The corollary follows on noting that, under the assumptions, for any 
y E R, IX - Y] and ~b(min{X, Y})Z{min{X,Y}<_y} are independent if and only i fX - Y 
and ~b(min{X, Y})I{min(X,r)<_y} are independent. 

COROLLARY 5. Let X and Y be two i.i.d, nondegenerate positive random variables 
and y0 be as defined in Theorem 4. Then min{X,Y} /max{X,Y}  and 
min{X,  Y}I{min(X,y)<_yo} are independent if and only if for some e > 0 and 
fl ~ R, c~(logX - fl) is either geometric or exponential. 

PROOF. Define X* = logX, Y* = log Y and y~ = logy0. (Note that Y0 here has to 
be positive.) Noting that -log(rain{X, Y}/max{X,  Y}) = IX* - Y*I and 

min{X, Y}I{log(min{X,y})<logyo} = exp{min{X*, Y*}}I{min{x.,y.}<ya} 
we can hence get the result from Corollary 4. 

REMARKS 1. (i) If  we replace in Corollary 5, the condition on the existence of y0 
by that there exists a point y~ such that there are at least two support points of the 
distribution of max{X, Y} in ~v~, co), then the assertion of the corollary with 
min{X, Y}I minx Y < replaced by max{X, Y}I max x r > : and logX replaced { { ~ }-_y0} { ,{ ' }--Yo} 1 
by - l o g X  holds. This follows because min{X-' ,  Y-'} = (max{X, Y})- and 
max{X-l,  y - l}  = (rain{X, Y}) ~. The result that is observed here is indeed a 
direct extension of Fisz's (1958) result, and it is yet another result mentioned in 
Rao and Shanbhag (1994). (Fisz characterizes the distribution in question via the 
independence of max{X, Y}/rain{X, Y} and max{X, Y}.) 

(ii) Under the assumptions in Theorem 4, the condition that X -  Y and 
qS(min{X, Y})I{min{x,Y}<vo} be independent is clearly equivalent to that for each 
y E ( - o c , y 0 ] , X -  Y be independent ofI{min{X,y}<y }. (The remark with X -  Y re- 
placed by IX - YI applies to Corollary 4, i.e. when we have the assumptions as in 
the corollary.) 

(iii) Theorem 4 remains valid if the "independence" condition appearing in the 
assertion is replaced by that conditional upon rain{X, Y} c (-oc,y0],X - Y and 
min{X, Y} are independent. (The corresponding remark in the case of Corollary 4 
is now obvious.) 

(iv) If  the assumptions in Theorem 4 are met with P{X > Y} > 0, then on 
modifying slightly, the Rao Shanbhag argument that we have referred to in the 
proof of the theorem proves that conditionally upon min{X, Y} E (-oo,y0], 
(/{x=r}, ( X - Y ) + )  and min{X, Y} are independent only if l E (-oc,y0), the 
conditional distribution o fX  - l given that X _> l is exponential if the conditional 



Recent approaches to characterizations based on order statistics and record values 239 

distribution of Y - l given that Y _< Y0 is nonarithmetic, and that of 2[L~ 2] given 
that X > l is geometric on {0, 2, 22, . . .} if the conditional distribution of Y - l 
given that Y _< y0 is arithmetic with span 2, where l is the left extremity of the 
distribution of Y and [.] denotes the integral part. 

(v) The version of Theorem 4 with min{X, Y} in place of qS(min{X, Y}) holds if 
in place of "two support points" we take "two nonzero support points" or in 
place of "there are ... in (-oc,y0]" we take "the left extremity of the distribution 
of min{X, Y} is nonzero and is less than Y0". The result in (iii) above and that 
mentioned here are essentially variations of Theorem 8.2.1 of Rao and Shanbhag 
(1994). (Incidentally, the cited result of Rao and Shanbhag requires a minor 
notational alteration such as the one where "(1, rain{X, }r})I{min{X,y}<_yo}" appears 
in place of " m i n { X ,  Y}I{min{X,Y}<_y0}" .) 

There is an interesting variant of Theorem 4; Rossberg (1972), Ramachandran 
(1980), Rao (1983), Lau and Ramachandran (1991), and Rao and Shanbhag 
(1994) among others have produced versions of this theorem. A special case of 
this result for n = 2 was given in a somewhat restricted form by Puri and Rubin 
(1970); see also Lau and Rao (1982), Stadje (1994) and Rao and Shanbhag 
(1995a) for comments and extensions on the Puri-Rubin (1970) result. We give 
this variant as our next theorem and show that it is also linked with the strong 
memoryless property characterization of the exponential and geometric distri- 
butions. 

THEOREM 5. Let n >_ 2 andX1, . . .  ,Xn be i.i.d, random variables with d.f. F that is 
not concentrated on {0}. Further, let Xl:n _< -'- <_ X,:~ denote the corresponding 
order statistics. Tlaen, for some 1 _< i < n, 

Xi+l:n - X / : n  d X l m  i , (3.1) 

where Xl:~-i = rain{X1,... ,Xn-i}, if and only if one of the following two condi- 
tions holds: 

(i) F is exponential. 
(ii) F is concentrated on some semilattice of the form {0,2,22, . . .}  with 

F(0) --~ and F ( j 2 ) -  F ( 0 " -  1)2) = (1 -~ ) (1  -/~)/3 j-z for j = 1,2, . . .  for some 
c~ C (0, (,)-l/i] and/~ c [0, 1) such that P{~+~:, > X~:n} = (1 - c~) n-i (which holds iJ J 
with e = (~) 1/i or/3 = 0 if and only if 

and 

(:) 

F ( 2 ) - F ( 2 - ) =  I -  ( n )  -1/i 

for some 2 > 0). (The existence of cases/~ > 0 can easily be verified.) 
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Note that (3.1) is equivalent to the assertion that P{X/+~:~>N:,} 
= P{Xj: , - i  > 0} and we have independent nonnegative nondegenerate random 
variables Y and Z such that 

P { Y > Z + y I Y > Z } = P { Y > y I Y > O } ,  y E R +  

with Y =d Xl:~-i and Z ~ X/:i (in obvious notation). For  nonnegative nondegen- 
erate independent random variables 11i and Y2 with supports of their distributions 
to be equal, we have 

P{Y1 >Y2+yIY~ > Y2} =P{Y~ >YlYl >0 } ,  y E R +  

if and only if the conditional distribution of 111 given that YI > 0 is either expo- 
nential or geometric on {2, 22, . . .}  for some 2 > 0 or degenerate at some positive 
point. If F is of the form 

F = c~F1 + (1 - c~)F2 

with F1 as degenerate at the origin and F2 as either exponential or geometric on 
{2,22, . . .}  or degenerate at a positive point, then it is easily seen that 
P{X/+I:,, > X/:,} = P{X~:~_i > 0} if and only if either ~ = 0 and F is exponential or 
c~ E (0, (( ~i )-1/i] and F is as in (ii) in the statement of the theorem. In view of what 
we have observed here, the theorem is then obvious. 

The following two remarks are taken from Rao and Shanbhag (1995a). These 
explain respectively as to how the existence of fi > 0 in the theorem above (i.e., 
Theorem 5) follows and how the recent result of Stadje (1994) is a corollary to the 
theorem. 

REMARK 2. Suppose we consider a family of the distributions of the form in (ii), 
but not necessarily satisfying the condition that P{X/+I:n > X/:n} = ( 1 -  e)~-i. 
Then, if we take a fixed fl E (0, 1) and allow ~ to vary, we get for a sufficiently 
small ~,P{X/+I:n > X/:n} < (1 -c~) "-i, and for e = (~)-Ui, we get 
P{X/+1:n > X/:,} > (1 n-i - c~) ; since we have now P{Xi+l:n > X/:n} to be a contin- 
uous function of  c~, we have the existence of an c~ value such that 
P{Xi+l:n >X~:,} = (1-c~) ~-i. This proves that the claim made by us under 
brackets immediately after the statement of the theorem is justified. 

REMARK 3. I fn  = 2 and i = 1, we get (~) ~/i = 1/2. In this case, if neither ~ = I /2  
nor f l = 0 ,  we get P { ~ + 1 : , > X i : , } =  1 -P{X1  = ) ( 2 } = { 2 ( 1 - c ~ ) ( ~ + f l ) } /  
(1 + fl); consequently we have here P{X/+I:, > X/:,} = (1 - e) , - i ,  i.e. the proba- 
bility to be equal to 1 - ~, if and only if fi = 1 - 2e. One can hence see as to how 
Stadje's result follows as a corollary to Theorem 5. 

The sketch of  the argument that we have produced above to see the validity of 
Theorem 5 tells us further that the following theorem holds. Arnold and Ghosh 
(1976) and Arnold (1980) have dealt with specialized versions of this result; see, 
also, Zijlstra (1983) and Fosam et al. (1993) for further specialized versions and 
some comments on the earlier literature. 
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THEOREM 6. Let n _> 2 and X1,. . .  ,Am be nondegenerate i.i.d, random variables 
with d . f .F .  Also, let Xl : , , . . .  ,X~:, be order statistics as in Theorem 5. Then, for 
some i > 1, the conditional distribution of N+I:, -X/ : ,  given that Xg+l:~ -X~:, > 0 
is the same as the distribution of Xl:,_i, where Xl:~-i is as defined in Theorem 5 if 
and only if F is either exponential, or, for some 2 > 0, geometric on {2, 22, . . .} .  

The next two theorems are in the same spirit as Theorem 6 and extend slightly 
the results given in Fosam and Shanbhag (1994). Once again these results follow 
as corollaries to the strong memoryless property characterization of the expo- 
nential and geometric distributions. The results given in Fosam and Shanbhag 
(1994) and hence so also the theorems given here, in turn, subsume the specialized 
results given by Liang and Balakrishnan (1992, 1993). 

THEOREM 7. Let n _> 2 and 1 < k < n - 1 be integers and Y1, Y2, • •., Y, be inde- 
pendent positive random variables such that P{Yl > I12 > "'" > Y,} > 0 and for 
each i =  1 ,2 , . . . , k ,  the conditional distribution of Y~+I given that 
Y/+I > Y/+2 > " ' "  > Yn be nonarithmetic. (The condition on Yi's is clearly met if 
Y/s are independent positive random variables such that for each i = 2 , . . . ,  n and 
y > 0,P{Yi > y} > 0.) Then 

P{Yi  - Yi+l > ylY~ > }12 > > Yn} = P{Yi  > YlY1 > Y2 > "'" "~ Yi}, 

y > 0 ;  i =  1 , 2 , . . . , k  (3.2) 

(where the right-hand side of the identity is to be read as P{Y1 > y} for i = 1) if 
and only if Y/, i =  1 ,2 , . . .  ,k, are exponential random variables. (The result also 
holds if " > "  in (3.2) is replaced by "_>" with "Y1 > I12 > "'" > Y," and 
"Y~+I > Yi+2 > - "  > Y," in the assumptions replaced respectively by 
"I11 _> Y2 _> ' "  _> Yn" and "Y/+I _> Yi+l _>'- '  _> Yn".) 

PROOF. Defining for each i = 1 ,2 , . . . ,  k,X (i) and y(0 to be independent positive 
random variables with distribution functions P{Y/<_xlYl > Y2 > "'" > Yi}, 
x E R+ and P{Yi+l _< xlYi+l > Y/+2 > " "  > Yn}, x E R+, we see that (3.2) can be 
rewritten as 

p { x ( i ) >  y(i)+xlX(i) > y ( O } = p { x  (i) >x} ,  x > 0 ;  i =  1 , 2 , . . . , k  . 

Consequently, in view of the strong memoryless characterization of the expo- 
nential distributions, it follows that (3.2) is valid if and only if the distribution 
functions P{Y/_< xlY1 > Y2 > " '  > Y/},x  E R+, are those corresponding to ex-  

p o n e n t i a l  random variables for i = 1, 2 , . . . ,  k. It is easy to see inductively that we 
have the distribution functions P{Yi <_x]Y1 > I12 > . . .  > Y/},x E R+, for 
i = 1 ,2 , . . . ,  k as those corresponding to exponential distributions if and only if 
the random variables YI, • . . ,  Yk are exponential. Hence we have the theorem. 

THEOREM 8. Let n >_ 2 and 1 < k < n - 1 be integers and Y1, I12,..., I5,, be 
independent nonnegative integer-valued random variables such that 
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P{YI _> 112 _> "'" _> Y~} > 0 and for each i =  1 ,2 , . . . , k ,  the conditional distribu- 
tion of Yi+l given Y,+I _> Y/+2 _> ""  _> Y~ be arithmetic with span 1. Also, let 

P{Yi+I =0]Y1 _> 112_>'"_> Yn} < 1, i =  1 , 2 , . . . , k  . 

(The conditions on Y~'s are dearly met if Y/'s are independent nonnegative integer- 
valued random variables such that P{171_> 1 } > 0 , P { Y / = I } > 0  for 
2 < i < k + j  and P{~ = 0} > 0 for k + j  < i <_ n for some j_> 1.) Then 

P{Y, - Y,.+I _> ylY1 _> Y2 _> . . .  _> Yn} = P { ~  _> yrY~ _> g2 _> - . .  _> ~ }  

y = 0 , 1 , . . . ;  i =  1 , 2 , . . . , k  (3.3) 

(where the right-hand side of the identity is to be read as P{Yj >_ y} for i = 1) if 
and only if Y~, i = 1 ,2 , . . . ,  k, are geometric random variables. 

Theorem 8 follows essentially via the argument in the proof of Theorem 7 but 
with "geometric" in place of "exponential". 

REMARKS 4. (i) As observed by Fosam and Shanbhag (1994), the specialized 
version of Theorem 7 given by them subsumes the "only i f "  part (i.e. the major 
part) of the Liang-Balakrishnan (1992) theorem; note that i f X  and Y are inde- 
pendent positive random variables such that 0 is a cluster point of the distribution 
of Y, then, conditionally upon X > Y, the random variables X -  Y and Y are 
independent only if 

P{X > Y +x[X > Y}(= I ~ P { X  > Y +xlX > Y, Y _<y}) 

= P { X > x } ,  xE(O,o@ . 

Consequently, it follows that under the weaker assumption in the Fosam- 
Shanbhag result in place of its original assumption, the Liang-Balakrishnan 
theorem holds. This improved theorem also holds if A is replaced by 
A*= {YI >_ Y2 >_... > Yn}. 

(ii) If X and Y are independent nonnegative integer-valued random variables 
such that P{Y = 0} > 0, then, conditionally upon X > Y, the random variables 
X - Y and Y are independent only if 

P { X >  Y+xIX>_ Y}(=P{X>_ Y+xIX>_ Y,Y = 0}) 

=P{X>_x}, x=O, 1,... 

In view of this, we have that comments analogous to those on the Liang-Bala- 
krishnan (1992) theorem (but with Theorem 8 in place of Theorem 7) also apply 
to the Liang-Balakrishnan (1993) theorem. (Note that in this latter case, we 
restrict ourselves to the independence conditionally upon A*, where A* is as in 
(i)). 
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(iii) Under a somewhat more complicated assumption, it can be shown that the 
equation (3.3) with " > "  replaced by " > "  leads us to characterizations of shifted 
geometric distributions. 

Before discussing further results that are linked with Corollary 2, let us give the 
next general result. This latter result could be viewed as one of the important tools 
in the remainder of the present study: 

THEOREM 9. Let Y and Z be independent random variables with distributions 
such that the corresponding supports are equal and Y is continuous. Further, let 
q5 be a nonarithmetic (or nonlattice) real monotonic function on R+ such that 
E(I~b(Y - Z)]) < ec. Then, for some constant c ¢ ~b(0+), 

E { ~ ( Y - Z ) I Y > _ Z , Z } = c  a.s. (3.4) 

if and only if Y is exponential, upto a change of location. (By the conditional 
expectation in (3.4), we really mean the one with I{y>z} in place of Y _> Z; the 
assertion of the theorem also holds if "Y >_ Z" is replaced by "Y > Z.") 

Under the stated assumptions in Theorem 9, we have (3.4) to be equivalent to 

E { q S ( ( Y - z ) + ) l Y _ > z } = c  for e a c h z E s u p p [ G ] w i t h P { Y > z }  > 0  , 

(3.5) 

where G is the d.f. of  Y. If z l , z 2 E s u p p [ G  1 such that zl <z2 with 
P { Y  >_ z~} = P { Y  >_ z2} > 0, then, from (3.5), it easily follows that the equation 
in it holds for each z c [zl ,z2]; consequently, we see that (3.5) is equivalent to the 
assertion obtained from it by deleting "E supp[G]" and we get Theorem 9 as a 
consequence of Corollary 2. (One could also arrive at the result directly without 
appealing to Corollary 2, from Theorem 1.) 

COROLLARY 6. Let F be continuous and, as before, let Xl:n,... ,Xn:, for n _> 2 be n 
ordered observations based on a random sample of size n from F. Further, let i be 
a fixed positive integer less than n and q5 be a nonarithmetic (or nonlattice) real 
monotonic function on R+ such that E(IO(X~.+I:~ -Xi:n)]) < ec. Then, for some 
constant c ¢ qS(0+), 

E(qS(Xi+l:n -Xi:~)IX/:~) = c a.s. (3.6) 

if and only if F is exponential, within a shift. 
We can express (3.6) as (3.4) with Y and Z as independent random variables 

such that Z __a X/.i and Y d • = XI:, i; consequently, we get Corollary 6 as a corollary 
to Theorem 9. 

One could now raise a question as to how crucial is the assumption of conti- 
nuity of Y for the validity of Theorem 9. The continuity assumption (when taken 
in conjunction with other assumptions in the theorem) implies that 

E{~b(Y-z)]Y > z} = c for a.a.[Glz E R (3.7) 
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is equivalent to 

E { O ( ( Y - z ) - ) ] Y > z } = c  f o r e a c h z E R w i t h P { Y > z }  >O , (3.8) 

where G is the d.f. of  Y. The equivalence mentioned here (or any relevant alter- 
native version of it) is the reason as to why one is able to get Theorem 9 via 
Corollary 2 or Theorem 1. Suppose we now have the assumptions in Theorem 9 
met with Y nondegenerate in place of continuous. Then, if 4) is left continuous 
and satisfies the condition that 

G(x + .) = G((y + . ) - )  a.e. [14)('+) - 4)(0+)[] 
(3.9) 

whenever 0 < G(x) = G ( y - )  < G(y) , 

then it easily follows that (3.7) is equivalent to (3.8); thus, we have cases other 
than those met in Theorem 9 under which (3.7) and (3.8) are equivalent. 

Taking a clue from the observations made above and using essentially the same 
arguments as those that led us to Theorem 9 and Corollary 6 respectively, we can 
now give the following theorem and corollary. The theorem given here answers 
the question that we have raised above partially. 

THEOREM 10. Let Y and Z be independent nondegenerate random variables such 
that the corresponding distributions have the same support and the same set of 
discontinuity points. Let 4) be a monotonic real left continuous nonconstant 
function on R+ for which (3.9) is met (or, more generally, a monotonic real 
nonconstant function for which (3.7) and (3.8) are equivalent) and 
E(I4)(Y - Z)l ) < ec, where G is the d.f. of  Y. Then, for some constant c ¢ 4)(0+), 

E{4) (Y-Z) [Y > Z , Z }  = c a.s. (3.10) 

if and only if the left extremity l, of  the distribution of Y is finite, and either 4) is 
nonarithmetic (or nonlattice) and the conditional distribution of Y - l given that 
Y > l is exponential, or for some 2 > 0, 4) is arithmetic (or lattice) with span 2 and 
the conditional survivor function, Gt, of Y - I given that Y > l satisfies for some 
t i c  (0,1) 

Gt (x+n2)=f inGz(x) ,  x > 0 ;  n = 0 , 1 , . . .  

COROLLARY 7. Let Xl:n,...,Xn:, be ordered observations based on a random 
sample of size n(> 2) from a nondegenerate distribution with d . f . F .  Let 
1 < i < n -  1 be a given integer and 4) be a monotonic real left continuous 
nonconstant function on R+ such that E(]4)(Xi+l:n-X/:,)[) < e~ and (3.9) met 
with F in place of G. Then, for some constant c ¢ 4)(0+) 

E(4)(Xi+l:.  - & . ) I X , + ~ : .  > X,:.,X~:.) = c a.s. 

if and only if the left extremity, l, of  F is finite, and either 4) is nonarithmetic (or 
nonlattice) and (with X1 ~ F) the conditional distribution of  X1 given that X1 > l 
is exponential, within a shift, or for some 2 > 0, 4) is arithmetic (or lattice) with 
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span 2 and the conditional survivor function, Fl, of X1 given that X1 > l satisfies 
for some fi E (0, 1) 

F l (x+n2)=f i " f f t (x ) ,  x >  l; n = O ,  1 , 2 , . . .  . 

REMARKS 5. (i) Suppose now that the assumptions in Theorem 10 are met, but, 
with (3.7) and (3.8) such that "Y _> z" appears in place o f "Y  > z" in both of them 
and "q~(.+)" appears in place of "q~(.-)" in (3.8), and with "right continuous" in 
place of "left continuous". Then (3.10) with "Y > Z" replaced by "Y > Z" holds 
if and only if l, the left extremity of Y, is finite, and ~b is either nonarithmetic and 
Y - 1 is exponential, or for some 2 > 0, q5 is arithmetic with span 2 and for some 
f i e  (0,1) 

P { Y - I > _ x 4 - n 2 } = 3 ~ P { Y - I > x } ,  x E R + ;  n = 0 , 1 , . . . .  

(This follows essentially via the same argument as in the earlier case.) 
(ii) As a further corollary of Corollary 7, it follows that if X1:,,... ,X,:, are as 

defined in Corollary 7, then conditionally upon {Xz+l:, >X/:~}, the random 
variables X/+l:n - X/:, and X/:n are independent if and only if conditionally upon 
X1 > I, the random variable X 1 -  l is either exponential or geometric on 
{2, 22, . . .} for some 2 > 0, where Xl ~ F. This latter result gives as a corollary 
Rogers's (1963) extension of Fisz's result. 

(iii) In view of Shanbhag's (1977) lemma, it follows that the following variant 
of Corollary 7 holds: 

THEOREM 11. Let XI and X2 be i.i.d, nondegenerate integer-valued random 
variables with support of the type I n Z with I as an interval and 4~ : No ~ R 
a function such that E([~b(lX1-X21)l)<oc, qS(1)>q~(0) and ~b(n+2)-  
2qS(n + 1) 4. q~(n) >_ 0 for all n E No (i.e., the second differences of q~ are non- 
negative on No). Then, for some c, 

E(~b(IX1 - X 2 [ ) l m i n { X l , X 2 } )  = c a.s. 

if and only if X1 is geometric, but for a shift. (For a proof of the theorem, see Rao 
and Shanbhag (1994, pp. 200-201).) 

(iv) Specialized versions of Corollary 6 and Theorem 11 have appeared in Beg 
and Kirmani (1979), and Kirmani and Alam (1980) respectively. (See, also Rao 
and Shanbhag (1986).) Corollary 7 is essentially due to Rao and Shanbhag (1994). 

(v) Let 321:n _< " "  _< Xn:n denote the n ordered observations in a random sample 
of size n(_> 2) from a nondegenerate d.f. F concentrated on No. Arnold (1980) 
effectively raised the question as to whether the independence of X2:, -Xl:n and 
the event {Xl:n = m} for a fixed m _> 1, when obviously F ( m )  - F ( m - )  > 0, im- 
plies that F is geometric (possibly within a shift or a change of scale). Some partial 
results on the conjecture have appeared in Sreehari (1983) and Alzaid et al. 
(1988). 
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However, that the conjecture in its existing form is false is shown by the 
following example. 

EXAMPLE. Let m be a positive integer and for each c E (0, 1), let f(c): (0, 1) 
(0, ec) such that 

f(C)(q) q-m{ll_ @ 1 } = + ~ L ~ _ c ,  q E ( 0 , 1 )  . 

Note that for each c, 

l~f(C)(q) = liqmlf(~)(q ) = o o .  

Also, we have for each c,f  (<) (q) to be strictly decreasing when q E (0, X / ~ ,  and 

for each c E (0, 1/2],f(C)(q) to be strictly increasing in q when q E [ mV/--~+l, 1); this 
could be verified by obtaining the derivative of f(C)(q) with respect to q and 
observing that this is uniformly negative and (for c E (0,½]) uniformly positive 
respectively, on the intervals in question. Consequently, for a sufficiently small c, 

limf(C)(clq) f(~)(c/ m ~ )  > f(<)( m ~ )  

As f(<) is continuous for each c, it then follows that for a sufficiently small c, we 
have a q E (c, c~ V / ~  such that 

f(c) (q) = f(c)(c/q) 
with q # c/q. Hence, it follows that we can find distinct ql,q2 E (0, I) such that 

m 1 m 1 | / 
q( { l _ ~ i 2 + l _ ~ l q 2 } = q 2  { 1 - ~ 2 2 + l - q l q ~ - ~ _  " 

Suppose now that X1 and )(2 are independent identically distributed random 
variables such that 

P{X1 =j}=(q(q-q~)l{(1-ql) -l+(1-q2) -1}, j=0,1,. . .  
It is then a simple exercise to check that 

P{IX, - Xzl = j, min{X, ,X2} = m} 

= P{iX, -X2[ =j}P{min{X1,X2} = m}, j = O, 1,... , 

implying that the conjecture is false. 
There are characterization results based on order statistics, which are arrived 

at in the literature via techniques different from those we have used so far in the 
present study. We give below three such results. These results follow respectively 
via Theorem 2, Theorem 3 and essentially the technique that we have used im- 
mediately above the statement of Theorem 3, to prove Corollary 1 (together with 
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a certain uniqueness property appearing in Rao and Shanbhag (1995b). The 
details of the existing literature on these results could be found in Kagan, Linnik 
and Rao (1973), Rao and Shanbhag (1994), and Rao and Shanbhag (1995b); 
note, in particular, that Theorem 12 is essentially due to Rao and Shanbhag 
(1994) and it extends a result of Shimizu, and Theorem 14 is due to Rao and 
Shanbhag (1995b) and it deals with a conjecture of Dufour. (A special case of 
Theorem 14 was established earlier by Leslie and van Eeden (1993).) 

THEOREM 12. Let X 1 , . . . , X n , n  >_ 2, be i.i.d, positive random variables and 
al , .  • •, an be positive real numbers not equal to 1, such that the smallest closed 
subgroup of R containing log a l , . .  •, log an equals R itself. Then, in obvious no- 
tation, for some m >_ 1 

min{Xlal , . . .  ,Xna , }  d= Xl:m (3.11) 

if and only if the survivor function of X1 is of the form 

f ( x )  = e x p { - ) ~ l  xel  - }c2x~Z}, x E R+ (3.12) 

with 21,22 >_ 0,21 +22 > 0 and O~r(r = 1,2) as positive numbers such that 
~ i n  1 a/-c~r = m. (If 0~ 1 = C(2, the distribution corresponding to (3.12) is Weibull.) 

The theorem is an obvious consequence of Theorem 2 since, defining F to be 
the survivor function of X1, we have (3.11) to be equivalent to 

n 

I I  f(x/ai) = (f(x))m,x ~ R+ , 

i=1 

which implies, in view of the assumption in the theorem (i.e. in Theorem 12) on 
ai's and N's,  that ff is nonvanishing on R+ with F ( 0 + ) ( =  F(0)) = 1; note that the 
" i f "  part of the result here is trivial and hence it is sufficient if we prove its "only 
i f "  part. 

THEOREM 13. Let F be a continuous d.f. with finite mean andX~:n,... ,Xn:n be the 
ordered observations based on a random sample of size n(>_ 2) from it. Then, for 
some 1 < i < n 

E(X/:n ]Xi+l:n = x) = ax - b for almost all [F]x e R . (3.13) 

only if a > 0 and the d.f. has the following form, to within a shift and a change of 
scale: 

(i) F ( x ) = e  x f o r x < 0 i f a = l .  
(ii) F ( x ) = x  ° for x E [0,1] if a c (0,1). 
(iii) F(x )  = ( - x )  ° for x _< - 1  if a > 1, where 0 = a[i(1 - a)] -1. 

As (3.13) implies that 
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fx-°°yFi(dy)  - ax - b, x ¢ (l, oc) n supp[f'] , (3.14) 
(F(x) )  i 

where l is the left extremity o fF ,  and the left hand side of the equation in (3.14) is 
an increasing nonconstant function on (l, oo)N supp[F], it follows that a > 0. 
This, in turn, implies that the right-hand side of  and, hence, the left-hand side of 
the equation in (3.14) is strictly increasing on (l, ec) Nsupp[F], giving us 
(l, oo) N supp[F] as an interval. As the relation (3.14) can then be translated into 
that corresponding to the mean residual life for the random variable -Xi:i, we 
then get Theorem 13 as a corollary to Theorem 3. 

THEOREM 14. Let r and n be positive integers greater than or equal to 3 such that 
either r ,n  ¢ {3,4} with r = n, or r ,n  >_ 5. Also, let X~,. . .  ,X,, be i.i.d, positive 
random variables and Xhn,. . .  ,X~:n be the corresponding order statistics. Define 
Xo:, = O, 

D i , , , = ( n - i + l ) ( X i : , - X i _ l : n ) ,  i = l , 2 , . . . , n  , 

and 

n 

S , ' , n = Z D j , n ,  i =  1 , 2 , . . . , n  . 
j = l  

Then, if (Sl,n/~r,n,~2,n/Sr,n,...,Sr_l,n/Sr,n) is distributed as the vector of order 
statistics relative to a random sample of size r - 1 from the uniform distribution 
on (0,1), we have )(1 to be an exponential random variable. 

Essentially using the theme involved in the proof  based on exchangeability, 
given in Section 2 for Corollary 1, but without involving de Finetti's theorem, 
Rao and Shanbhag (1995b) have proved Theorem 14 when r, n _> 5; the result for 
r = n = 3, 4 follows from the certain uniqueness theorem on the problem, es- 
tablished by Rao and Shanbhag (1995b). (The validity of the result for r, n = 3, 4 
also follows from the existing literature, see, Leslie and van Eeden (1993) for the 
relevant references.) Theorem 14 for r, n _> 5 has also been proved independently 
via a different argument by Xu and Yang (1995; private communication). 

REMARKS 6. (i) The Proof  of Theorem 13 sketched here provides a link between 
Theorem 13 and the uniqueness theorem corresponding to the mean residual life 
function (i.e. Theorem 3), and reveals the analogy between Theorem 13 and a 
characterization result given in Hall and Wellner (1981). (Incidentally, 
Theorem 13 is a result of Ferguson.) 

(ii) We have not dealt with in this review characterization results of the type 
considered in Chan (1967). 
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4. Characterizations involving record values and monotonic stochastic processes 

Some characterization results essentially of the type met in the last section for 
order statistics also hold for record values: 

DEFINITION. Let {Am: n = 1 ,2 , . . .}  be a sequence of i.i.d, random variables such 
that the right extremity of the common distribution of Xj's is not one of its 
discontinuity points. 

Then, if we define {L(i): i = 1 ,2 , . . .}  such that L(1) = 1 and for i > 1 

L(i) = inf{j: j > L ( i -  1),Xj > XL(i_I) } , 

the sequence {XL(i): i = 1 ,2 , . . .}  is called the sequence of record values and the 
sequence {L(i): i = 1 ,2 , . . .}  as that of record times. 

To give us some idea regarding characterization results based on record values, 
we shall touch upon here briefly three characterization results. These are res- 
pectively due to Witte (1988), Rao and Shanbhag (1986, 1994) and Dallas (1981). 
(The result given by Dallas though is slightly weaker than that given here; the 
present version is due to Rao and Shanbhag (1994). We also present the Rao-  
Shanbhag result in a somewhat different form with a different proof.) Lau and 
Rao (1982), Rao and Shanbhag (1986) and several others have given specialized 
versions of Witte's result. Gupta  (1984), and Huang and Li (1993) among others 
have given specialized versions of the Rao-Shanbhag result (i.e. Theorem 16). 

THEOREM 15. Let {Ri: i = 1 ,2 , , . .}  be a sequence of record values corresponding 
to a d.f. F (as in the definition above). For  some k _> 1,Rk+l - Rk __a )(1 whereX1 is 
a random variable with d.f. F, if and only if X1 is exponential or, for some 
a > 0,X1 is geometric on {a ,2a , . . . }  (i.e. a 1)(1- 1 is geometric in the usual 
sense). 

The following condensed version of essentially Witte's proof  is given in Rao 
and Shanbhag (1994, pp. 205-206): 

PROOF. Clearly the condition that Rk+l -- Rk d= XI is equivalent to that X 1 > 0 a.s. 
(i.e. f(O) = O) and 

f F(x+Y)Fk(dy)  = ~ ( x ) ,  x E (0, oc) , (4.1) 
J(0,~) T(y) 

where f~ is the d.f. of  Rk and F(-) = 1 - F ( - ) .  Note that if (4.1) holds with 
F(0) = 0 then given any point so E supp[F] there exists a point sa c supp[Fk] such 
that so + Sl E supp[F] and hence E supp[F~]. Consequently, from the condition, 
we get that the smallest closed subgroup of R containing supp[Fk] equals that 
containing supp[F]. In view of  Theorem 1, we have then immediately that if (4.1) 
holds with F(0) = 0, then either X1 is exponential or for some a > 0, a-iX1 - 1 is 
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geometric (in the usual sense). The converse of the assertion is trivial and hence 
we have the theorem. 

The above proof  is in effect that corresponding to a version of the strong 
memoryless property characterization of the exponential and geometric distri- 
butions. Note that for F concentrated on (0, oc), we can express (4.1) as 

where # ,  denotes the integral with respect to #, and #1 and #2 are measures 
concentrated on (0, oc) such that for every Borel subset B of (0, oc), 

and 

H I ( B )  =PF(B) 

#2(B) = ~ (~)-IF k(dy) , 

where PF is the measure determined on (the Borel a-field of) R by F. 

THEOREM 16. Let {Ri: i= 1,2, . . .}  be as in Theorem 15, k be a positive integer, 
and 4) be a nonconstant real monotonic left continuous function on R+ such that 
E(lqS(Rk+l - Rk)l) < oc and (3.9) is met with G replaced by Fk, where Fk is the d.f. 
of  Rk. Then, for some c ¢ qS(0+), 

E{q~(Rk+l - Rk)lRk} = c a.s. (4.2) 

if and only if the left extremity, lk, of the distribution of Rk is finite, and either q5 is 
nonarithmetic and the conditional distribution of Xl - lk given that XI > lk is 
exponential, or for some 2 > 0, q5 is arithmetic with span 2 and for some fl C (0, 1) 

P { X l - l k > _ x + n Z } = f i ' P { X l - l k _ > x } ,  x > 0 ;  n = 0 , 1 , . . .  , 

where X1 is a random variable distributed with d . f .F .  

(4.2) can be expressed as (3.10) with Y such that its distribution is given by the 
conditional distribution of X1 given that X1 _> lk and Z ~ R~, and hence the 
theorem follows easily as a Corollary to Theorem 10. (Note that we allow here the 
case with P{Y = Ik} > 0 and P{Z = lk} = 0.) 

COROLLARY 8. Let the assumptions in Theorem 16 be met. Then the following 
assertions hold: 

(i) I f F  is continuous or has its left extremity as one of its continuity points and 
~b is nonarithmetic, then, for some c ¢ ~b(0+), (4.2) is met if and only if F is 
exponential, within a shift. 

(ii) If  ~b is arithmetic with span a and F is arithmetic with span greater than or 
equal to a, then, for some c ¢ ~b(0+), (4.2) is valid if and only i f F  has a finite left 
extremity and the conditional distribution of the residual value of X1 over the kth 
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support point o f F  given that this is positive is geometric on {a, 2a , . . .} ,  where Xl 
is a random variable with d . f .F .  

(The corollary follows trivially from Theorem 16.) 

THEOREM 17. Let {Ri} be as defined in the two previous theorems, but with F 
continuous. Let k2 > kl _> 1 be fixed integers. Then, on some interval of the type 
( - oc , a ) ,  with a > the left extremity of the distribution of Rkl, the conditional 
distribution of Rk2 -- Rkl given Rk, = x is independent of x for almost all x if and 
only of F is exponential, within a shift. 

It easily follows that the independence in question is equivalent to the condi- 
tion that for almost all [F]c E ( -oc ,  rain{a, b}), where b is the right extremity of 
F, the r.v.R(~ ) k, - c, where R2~ )._k, is the ( k 2  - kl) th record value corresponding to 
an i.i.d, sequence with d.f. Fc such that 

F(x)-F(c) 
Fc(x) = 1 F(c) if x > c 

0 otherwise, 

is distributed independently of c. As F is continuous, the latter condition is seen 
to be equivalent to the condition that the left extremity, l, of  F is finite and for 
some a > l 

(1 - F ( c  +x)) = (1 - F ( l  +x))(1 -F(c)) ,  
c E (-cxD, a)N supp[F],x C R+ . 

(note that the last equation implies that b = ~ ) .  In view of the Marsaglia-Tubilla 
(1975) result, the assertion of the theorem then follows. (Incidentally, the Mars- 
aglia-Tubilla result referred to here could be arrived at as a corollary to either of 
Theorems 1 and 2.) 

REMARKS 7. (i) Downton's  (1969) result (with the correction as in Fosam et al. 
(1993) may be viewed as a specialized version of Theorem 15 for k = 1. Moreover, 
if we assume F to be concentrated on {0, 1 ,2 , . . .}  with F(1) - F ( 1 - )  > 0 (and the 
right extremity condition met), then as a corollary to the theorem it follows that, 
for some k > 1,R~+I - R k  =a X1 + 1 if and only i f F  is geometric. 

(ii) When F is continuous, Theorem 16 holds without the left continuity as- 
sumption of ~b. (This is also so of Corollary 7 of the last section.) 

(iii) A version of Dallas's (1981) result has also appeared in Nayak (1981). 
With obvious alterations in its proof, one could easily see that Theorem 17 holds 
with Rk2 and Rkt replaced respectively by Xk2:n and Xkl:? t (assuming of course that 
n _> k2 > kl _> 1). A variant of this latter result appears in Gather (1989); the 
result in this case is that i f F  is a continuous d.f. with support equal to R+, then F 
is exponential if and only if Xjr:n-X/:~ d xjr_i:n_i,?" =. 1,2 holds for fixed 
1 <_i<jl <j2<_nandn>_3. 
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Finally, in this section, we mention a theorem that leads us to a characteristic 
property of  Yule and Poisson processes. Rao and Shanbhag (1989, 1994) have 
shown implicitly that there is a link between a version of Theorem 1 (revealed first 
in Rao and Shanbhag (1986)) and this result: 

Suppose that {X,: n = 1, 2 , . . .}  is a sequence of independent positive random 
variables. Define N(t) = sup{n: X1 + - - - + A m  < t},t > 0. Let no(_> 2) be a fixed 
positive integer and let {Xn: n = 1 ,2 , . . .}  be such that it satisfies additionally 
P{N(t) = n} > 0 for n = 1 ,2 , . . . ,  no and all t > 0. We have then the following 
theorem. 

THEOREM 18. The conditional distribution of N(y) given N(t )= n for each 
0 < y < t, t > 0 and n = 1 ,2 , . . . ,  no is nondegenerate binomial with index n and 
success probability parameter  independent of  n if and only if for some 20 > 0 and 
2 ¢ 0 such that 2o + n02 > 0, 

P { X / > x } = e x p { - ( 2 0 + ( i - 1 ) 2 ) x } ,  x E R + ,  i =  1 , 2 , . . . , n 0 + l  

(4.3) 

(For a proof  of  this theorem, see Rao and Shanbhag (1994; pp. 218-219).) 

As a corollary of  Theorem 18, we have the characterization given below: 

COROLLARY 9. I f  we assume P{N(t) = n} > 0 for every n _> 1 and every t > 0, 
then the conditional distribution of N(y) given N(t) = n is nondegenerate bino- 
mial with parameters as stated in Theorem 18 for every 0 < y < t < ec and every 
n > 1 if and only if the process {N(t)} is Yule. (The process constructed with 
intervals such that P{X, > x} = e-{;~°+(n-1);~}X,x E R+, with 20 > 0 and 2 _> 0, is 
referred to as Yule; the process reduces to a Poisson process if 2 -- 0.) 

REMARKS 8. (i) In Theorem 18 and Corollary 9 the success probability parameter  
corresponding to the binomial distribution equals (e & - 1)/(e 2t - 1) if 2 ¢ 0 and 
y/t  if 2 = 0. 

(ii) From the proof  of  Theorem 18 in Rao and Shanbhag (1994), it is clear that 
both Theorem 18 and Corollary 9 remain valid even when in each case, the 
requirement of  the conditional distribution is replaced by that P{N(y)= 0] 
N(t) = n} and P{N(y) = nIN(t ) = n} are as in the conditional distribution. 

(iii) Corollary 9 gives us a characterization of a Poisson process if it is assumed 
additionally that for some i , j  with i ¢ j and some x > 0, P{N < x} = P{Xj < x}. 
It also gives us a version of Liberman's  (1985) characterization of a Poisson 
process in the class of  renewal processes as a special case. (Suppose that we have a 
renewal process generated by a positive i.i.d, sequence, with index set [0, oc) and 
that t > 0 and n is a positive integer. Then for the process, we have the conditional 
distribution of the epochs at which the events during (0, t] occur given that during 
the interval there are n events, to be the same as that of  n ordered observations 
from the uniform distribution on (0, t] only if for each 0 < y < t, the conditional 
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distribution of the number of events during (0,y] given that there are n events 
during (0, t] is binomial (n,y/t). Also, if we have a renewal process on [0, ec), 
then, under the assumptions in question, the criterion of Theorem 18 with no = 2 
characterizes a Poisson process. 

(iv) Even when the a priori conditions that P{N(t) = n} > 0 for n = 1 ,2 , . . . ,  no 
and all t > 0 in Theorem 18 and that P{N(t) = n} > 0 for every n >_ 1 and every 
t > 0 in Corollary 9 are not assumed, the respective results still hold, provided we 
understand by the conditional distributions their versions selected such that they 
are as stated whenever P{N(t) = n} = O. 

Characterization problems arise naturally in areas such as reliability, statistical 
inference and model building where one is interested in knowing whether a 
particular hypothesis or model is equivalent to some other hypothesis or model 
that is appealing in some sense. For example, the problem of whether the uni- 
form-order-statistics distribution of the vector in Dufour 's conjecture, charac- 
terizes exponential distributions appears when one bases a test of the hypothesis 
that the r.v. Xl is exponentially distributed on the vector in question. (This is also 
true of the analogous characterization of the Poisson process met in Remarks 8, 
iii).) There are several tests of uniformity available and the result relative to the 
Dufour conjecture suggests a possible way of testing the exponentiality of a 
sequence of ordered observations before the complete set is observed. The strong 
memoryless property characterization of exponential distributions has interesting 
and important applications in queuing theory and other areas (see, for example, 
Rao and Shanbhag (1994).) The property in the characterization result given by 
Liang and Balakrishnan (1992) was shown to be of relevance in estimation theory 
by Sackrowitz and Samuel-Cahn (1984); it is now natural to ask whether the 
property in question is valid for nonexponential Y1,..., Yk so that one could 
explore the possibility of using it for other distributions. However, that it is a 
characterization property of exponential distributions tells us that the possibility 
does not arise. 

The results that we have listed here mostly concern exponential or geometric 
distributions in one form or another. Although these are theoretical results, we 
expect these to be of potential importance in applications. Some illustrations of 
these are provided above. Also, we have made, in this article, an effort to unify a 
certain set of results in characterization theory via techniques cited in Section 2 of 
the article. 
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Characterizations of Distributions via Identically 
Distributed Functions of Order Statistics 

Ursula Gather, Udo Kamps and Nicole Schweitzer 

1. Introduction 

The theory of order statistics provides a variety of useful distributional equations 
for specific underlying distributions. The question arises as to whether, under 
suitable regularity conditions, such an identity is a characteristic property of the 
corresponding distribution. This paper reviews corresponding characterization 
results. 

Related characterizations using order statistics are based, e.g., on inequalities 
for moments (see Rychlik, Chapter 6), recurrence relations for moments (see 
Kamps, Chapter 10), conditional moments, and the independence of functions of 
order statistics (cf Rao and Shanbhag, Chapter 8). For earlier surveys of this 
material and additional results we refer to Kotz (1974), Galambos (1975a,b), 
Galambos, Kotz (1978), Azlarov, Volodin (1986), Arnold et al. (1992, Chapter 
6.4), Rao, Shanbhag (1994) and Johnson et al. (1994, 1995). 

Throughout this paper, let 351,... ,Xn, n _> 2, denote i.i.d, random variables 
each with distribution function F. Let Xl,n _<... <_X,,, be the corresponding 
order statistics. Let N denote the set of positive integers. Moreover, let F -1 be the 
pseudo-inverse of F defined by f l(y) = inf{x;F(x) >_ y}, y E (0, 1). 

There is a large number of publications on characterizations of distributions 
via moments of order statistics initiated by Hoeffding (1953) who shows that the 
triangular array (EXr:n)l<r_<~, ~ ~N of expected values of order statistics charac- 
terizes the underlying distribution if the first absolute moment exists. We do not 
consider results of this type here, but refer to Galambos, Kotz (1978, Chapter 3.4), 
Kamps (1995, Chapter II.2) and to the review articles of Hwang, Lin (1984), 
Huang (1989) and Lin (1989). 

It should be noted however that characterization results where moment con- 
ditions are involved are certainly not necessarily stronger than a result where a 
corresponding distributional identity is assumed. In theorems based on moment 
conditions the existence of these moments is often implicitly assumed and this is 
of course restrictive. 

257 
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The starting point for many characterizations of exponential distributions via 
identically distributed functions of order statistics is the well-known result of 
Sukhatme (1937): The normalized spacings 

(1.1) Dl ,n=nXl , ,  and D , v , = ( n - r + l ) ( X r , , - X r  1,,), 2 < r < n  

from an exponential distribution with parameter 2, i.e., F ( x ) =  1 - e  ~,  
x _> 0, 2 > 0 (F ~ Exp(2) for short), are again independent and identically ex- 
ponentially distributed (cf David 1981, p. 20). Thus, we have 

(1.2) F ~ Exp(2) implies that Dl,n, . . .  ,D,,~ are i.i.d. ~ Exp(2) . 

This property is also valid for several other models of ordered random variables. 
In Kamps (1995, p. 81) it is derived for so-called generalized order statistics. 

Malmquist (1950) considers ratios of order statistics from a standard uniform 
distribution U[0, 1] and obtains 

F ~ U[0, 1] implies that (Xr,,/X~+I,,) ~, 1 < r < n - 1, 
(l .3) 

are i.i.d. ~ U[0, 1] . 

Malmquist points out that for exponential distributions (1.2) follows by trans- 
formation. Motivated by this work, Renyi (1953) proves (1.2) by direct argu- 
ments, and notes that 

t" 

Xr,.= EOi,n/(n-i+ I )  . 
i = l  

Thus, an order statistic from an exponential distribution can be represented by a 
weighted sum of i.i.d, exponential random variables, i.e., 

r 

F ~ E x p ( 2 )  implies X r , ~ = ~ Y i / ( n - i + l ) ,  1 < r < n ,  
(1.4) i~l 

with 11i,..., Y, i.i.d. ~ Exp(2) . 

Independently from Malmquist and Renyi, (1.2) is derived by Epstein, Sobel 
(1953). They also show that 

(1.5) F ~ Exp(2) implies X~+~,~ -X~,~ ~Xl , , - r  for all 1 < r < n -  1 . 

We note that the early work of Sukhatme (1937) is not referred to in Malmquist 
(1950), Epstein, Sobel (1953) and Renyi (1953). 

The distributional relation (1.5) can be stated in a more general form as 

(1.6) F ~ E x p ( 2 )  implies X~,, , -X~,~X~ . . . . .  for all l _ < r < s _ < n  , 

since, applying (1.4), we have 

S - - t "  

. . . . .  

i=r+ i i-- i 

Characterizations of special distributions by distributional identities are often 
related to those of the exponential distribution. On the one hand, the ideas of the 
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proofs may be applied in the discrete case to characterize the geometric distri- 
bution. Considering (1.6), then the condition Xr+l,,, > Xr,,, is imposed to avoid 
ties, i.e., equality of adjacent order statistics (cf Section 6). On the other hand, 
transformations of the exponential distribution yield characterizations, e.g., of 
power function, Pareto and Weibull distributions (cf Section 3). 

The following sections discuss step by step the development of characteriza- 
tions corresponding to the above types of results, namely via spacings, in Section 
2 for exponential distributions and by transformations for other continuous 
distribution functions in Section 3. With respect to general distributional char- 
acterizing properties, uniform distributions are treated in Section 4 whereas other 
specific continuous distributions are discussed in Section 5. 

We do not present proofs in the present collection of results. However, it is 
evident that many of the characterizing distributional properties of order statistics 
are reduced to simple defining functional equations of distributions. Under weak 
assumptions, the main part of some proofs consists in the solution of more 
complicated and general functional equations such as the integrated Cauchy 
functional equation (ICFE) (cf Ramachandran, Lau 1991, Rao, Shanbhag 1994). 

Finally we note that though aiming at a complete survey, we might have 
overlooked some contributions to the field. 

2. Characterizations of  exponential distributions based on normalized spacings 

From Section 1 we summarize the following properties for exponential distri- 
butions. Let 1 < r < s < n E N .  

Normalized spacings are exponentially distributed 

(2.1) Dr,n ~ Exp(2) (cf (1.2)) 

and hence distributed according to the underlying distribution function 

(2.2) Dr,  ~ F (cf (1.2)) . 

Different normalized spacings are identically distributed 

(2.3) Dr# ~ D,,n (cf (1.2)) . 

Each order statistic is distributed as a weighted sum of i.i.d, exponential random 
variables Y1,..., Y~ 

r 

(2.4) X~,n ~ ~ ~ / ( n  -- i + 1) (cf (1.4)) . 
i--1 

Moreover, there are several characterizations based on 

(2.5) X,,, -Xr , ,  ~Xs . . . . .  ~ (cf (1..6)) . 

Often, the above properties are replaced by corresponding relations for expec- 
tations, densities or failure rates. For r = 1, (2.2) and (2.4) are connected and then 
read 

(2.6) nXl,n ~ X1 or nXl,~ ~ F . 
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The proofs of several results need certain aging properties of the underlying 
distributions to be fulfilled. Those properties are introduced first. 

F is called IFR (DFR) (more precisely: F possesses the IFR (DFR) 
property) (IFR: increasing failure rate; DFR: decreasing failure rate) if 

(2.7) [1 - f ( x + z ) J / [ 1  -F(x)]  decreases (increases) with respect to x on the 
support of F (supp(F) for short) for all z > 0. 

If F is absolutely continuous with density function f ,  then F is IFR (DFR) if its 
failure rate f / ( 1  - F )  increases (decreases) on the support o f F .  

The following conditions are weaker than the above ones. 

F is called NBU (NWU) (NBU: new better than used; NWU; new worse 
(2.8) than used), if 

1 - F(x +y)(<)(1 - Y(x)) .  (1 - F(y)) for all x,y, x + y  E supp(F) . 

F is called DMRL (IMRL) (DMRL: decreasing mean residual life; 
(2.9) IMRL: increasing mean residual life) if 

1 fx~(1 - F(y)) dy decreases (increases) with respect to x on supp(F). 1 X(x) 

2.1. Results based on Dr,, ~ Exp(2) 

The following result is due to Rossberg (1972) with a proof based on complex 
analysis. 

(2.1.1) (Rossberg 1972) Let c~(F) = inf{x;F(x) > 0} > -oo.  Suppose that for 
some fixed r, n E N, 2 < r < n, the Laplace transform f~F) e-SX dF" 1 (x) is non- 
zero for all s C C with Re(s) > 0. Then Dr,~ ~-, Exp(1) iffX~ - ~(F) ~-, Exp(1). 

The assumption concerning the Laplace transform can not be dropped since (2.1) 
is satisfied by other distributions than the exponential. Rossberg (1972) gives the 
following example. If 

F ( x ) = F R ( x ) =  1 - e  X ( l + ~ ( 1 - c o s a x ) ) ,  a_>2x/2, x > 0  , 

then (2.1) is fulfilled, but the corresponding Laplace transform has zeros in 
{s E 112; Re(s) > 0}. A related stability result is shown by Shimizu (1980). For 
specific distributions it may be difficult to verify the assumption concerning the 
Laplace transform. Therefore, in Pudeg (1990) it is replaced by an aging prop- 
erty. 

(2.1.2) (Pudeg 1990) Let F be IFR (or DFR) and let ~(F) > -oo.  Then (2.1) 
holds for a pair (r,n), 2 < r < n, iffXl - ~(F) ~ Exp(2) for some 2 > 0. 

Obviously, the assumption " F  is IFR (or DFR)"  can be replaced by 
"1 - (1 - F )  n-~+l is IFR (or DFR)".  Pudeg points out that this condition in 
(2.1.2) can be weakened to "1 - (1 - F )  ~-r+l is D M R L  (or IMRL)".  Moreover, 
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she shows that Rossberg's example still serves as a counterexample. FR does not 
possess the D M R L  or IMRL property and hence is neither IFR nor DFR. 

In a recent paper, Riedel and Rossberg (1994) treat the problem of charac- 
terizing exponential distributions by a distributional property of a contrast 
Xr+s,n --Xr,n (see also Section 2.5). Their main assumption concerns the asymp- 
totic behaviour of the survival function of the contrast. For  further results and 
details as well as for a discussion we refer to Riedel, Rossberg (1994). 

(2.1.3) (Riedel, Rossberg 1994) Let F be absolutely continuous with a con- 
tinuous and bounded density f on [0, ec), and let 2 > 0. Then F ~ Exp(2) if one 
of the following conditions is satisfied. 

a) There exists a triple ( r , s , n ) ,  1 < s < n - r, such that 

P(Xr+s,n  - xr,  >_ x )  - e r)x = o ,  

and f ( x ) / [ 1  - F(x)]  - 2 does not change its sign for any x _> 0. 
b) There exists a quadruple (r, s l , s 2 , n ) ,  1 <_ Sl < s2 <_ n - r, such that 

P ( X r + s i , n - - X r , n > _ x ) - - e  "~(n-r)X~-o(xS~), X---+O, f o r i = l , 2  . 

Seshadri et al. (1969) are interested in applications of characterizations to 
goodness of  fit tests. They assume for instance that all normalized spacings (cf 
(2.1.1)) are exponentially distributed to conclude that the underlying distribution 
is exponential. Other results of Seshadri et al. (1969) are presented in Section 5. 

(2.1.4) (Seshadri, Cs6rg6, Stephens 1969) Let F-~(0+) >_ 0, 2 > 0 and n > 2. 
Then F ~ Exp(2) iff Dj, ,  ~ Exp(2) for all 1 _< j _< n. 

Fang and Fang (1989) give a multivariate characterization result which can be 
seen as an extension of(2.1.4). In a previous paper Fang, Fang (1988) introduce the 
class ~, of multivariate / l-norm symmetric distributions which are versions of 
multivariate exponential distributions. More precisely, v, is the class of all mul- 
tivariate distribution functions of non-negative random variables )(1, . . .  ,Xn for 
which P(X1 > Xl, . . .  ,Am > x~) = h(~in_l Xi) for all (Xl,... ,xn)  E [0, oo) n and some 
function h on [0, ec). 

Obviously, the joint distribution function of n i.i.d, exponential random 
variables is a member of ~ .  

(2.1.5) (Fang, Fang 1989) Let X1,. . .  ,Am > 0 be exchangeable random vari- 
ables with a joint distribution function G and a joint continuous density function. 
Then G E r~ iff ( X 1 , . . .  ,Xn)  ~ (DI,~ . . .  ,D~,~). 

2.2. Resu l t s  b a s e d  on Dr,n ~ F a n d  re la ted  charac ter i za t ions  

For the particular case r = 1, Desu (1971) proves a characterization result based 
on nXl,n ~ F (i.e., (2.6)) for all n _> 2 (see also Bell, Sarma 1980). There is a link 
here to extreme value theory where limits of minima and maxima with respect to n 
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are considered (see Galambos 1978, p. 188 and Galambos 1975a, p. 78). The 
requirement "for all n E N "  has been modified in three ways. The distributional 
identity (2.6) needs to hold only for some special n or for two different values ofn.  
Moreover, the equality of expectations nEXl,n = EX1 for all n E N sulIices to 
characterize the exponential distribution. This is shown in Chan (1967). It is also 
possible to choose certain subsequences of positive integers (see the remarks in 
Section 1). Property (2.6) is analyzed more generally by Shimizu (1979). 

(2.2.1) (Shimizu 1979) Let m, hi , . . . ,  rim C N ,  c, a l , . . . ,  am > 0 with 

{ ~ >  maxak,  i f m > l  
1 <k<m and let 

= al, if m = 1 

{ ~ uniquely positive m be the determined real number with ~ a~ = c a, if m > 1 
k=l 

> 0 arbitrary, if m = 1. 

Let the trivial case m = n~ = al = 1 be excluded. Let (X!k)] be i.i.d. \ J ]l<_j<_nk, l<k<m 

random variables with distribution function F satisfying 0 = F(0) < F(x) < 1 for 

some x > 0, and X~k~)k = min,<j<nk XJ k). Then 

/ 1/~ \ 
min Icnk X (k) ~ 

- -  1 nk  l < k < _ m ~ a k  , ) ~ F  

iff 

1 - e x p ( - x ~ H ( - l n x ) ) ,  x > 0 
F(x) = O, x < 0 

where H is a positive, bounded function with periods A~=ln(cn~/~/ak), 
l < k < m .  

The above general setting reduces to the case c = c~ = 1 by means of the mono- 
(k) -+ (k) tone transformation Xj ( c X j )  . Davies, Shanbhag (1987) point out that the 

proof  can be simplified applying the integrated Cauchy functional equation 
(ICFE; cfLau,  Rao 1982, Rao, Shanbhag 1986, Alzaid et al. 1988, Ramachandran, 
Lab 1991, Rao et al. 1994, Rao, Shanbhag 1994). As corollaries, characterizations 
of exponential distributions result without assuming continuity of F. Galambos 
(1975b, p. 92) notes that therefore there is no discrete distribution satisfying (2.6). 
However in the discrete case a similar condition can be considered (see Galambos 
1975b, p. 92, Bagchi 1989, (6.13), (6.14)). 

For  the special case m = a~ = c = c~ = 1, nl = n, we obtain the following 
corollary from (2.2.1). 

(2.2.2) (cf Shimizu 1979) Let F be as in (2.2.1). Then (2.6) is satisfied iff F is 

1 - e xH(-lnx), X > 0 with some positive, bounded function given b y F ( x ) =  0, x < 0  

H having period In n. 
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Under additional conditions, known characterization results for exponential 
distributions are obtained. 

(2.2.3) (Arnold 1971, Shimizu 1979) Let supp(F) = (0, oc). Then F N Exp(2) 
iff niXl,n, ~ F for 1 < nl < n2 with lnn l / lnn2  irrational. 

Arnold (1971) requires (2.6) for two different values of n and Gupta (1973) re- 
quires "limx-~0 F ( x ) / x  = 2 for some 0 < 2 < co". Desu's (1971) result is obviously 
contained in Arnold's (1971) result. Dallas (1977) (not cited by Shimizu 1979) 
states a general solution of the distributional identity (2.6) which is equivalent to 

(1 - F(x) )"  = 1 - F(nx)  

(see also Bosch 1977, Riedel 1981, Galambos, Kotz 1983 and (5.2.5)). 
The relation between the periodic function A in Dallas (1977) and the function 

H in (2.2.1) is given by 

H ( -  lnx) = n A(l°g"x) 

Because of the above representation of F, additional conditions are of interest 
which guarantee that H is constant. Gupta (1973) and Dallas (1977) point out 
that such conditions must restrict the behaviour of F at the origin, since the 
function A(log, x) oscillates infinitely often in neighbourhoods of zero. This 
motivates Gupta 's  (1973) condition requiring 0 < limx~0+ F ( x ) / x  = 2 < oe. 

We also refer to Arnold et al. (1992, p. 146) for a discussion of the functional 
equation. The particular case n = 2 in the above equation appears in Kamps 
(1990) in a different context. Marshall, Olkin (1991) work on a multivariate 
version of the above functional equation leading to a multivariate characteriza- 
tion result analogous to Desu's (1971) theorem. 

Arnold, Isaacson (1976) discuss solutions to min(X,Y) ~ a X  and 
min(X, Y) ~ a X  N b Y  for positive constants a and b and independent non-neg- 
ative random variables X and Y. 

Galambos (1975a) points out that prior to Desu (1971) there was a stronger 
result of Sethuraman (1965) which is quoted by Galambos as follows. We present 
Sethuraman's result in detail in (5.3.2) and (5.3.3). 

(2.2.4) (Sethuraman 1965, Galambos 1975a) Let supp(F) = (0, ec). If we have 
for el,  e2 E IN, in cq / In e2 irrational, and for n l ,  n2 E N that 
CqXl,n~ ~ e2Xl,n2 ~ F, then there exist e > 0 and 2 > 0 such that X ~ ~ Exp(2). 
The constants el and e2 are necessarily of the form ei n 1/~ = i , i = 1 , 2 .  

For  further details see Galambos (1975a). Another corollary of Shimizu's result is 
the following. 

(2.2.5) (Shimizu 1979) Let F be as in (2.2.1), a l , . . .  ,an > 0 with ~ = 1  ak = 1 
and l n a i / l n a j  irrational for some i , j E { 1 , . . . , n } .  Then F ~ E x p ( 2 )  iff 
minl<k<n Xk/ak  ~ F.  
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Using failure rates, a weaker condition that (2.2) is sufficient to characterize 
exponential distributions. 

(2.2.6) (cf Ahsanullah 1981) Let F be absolutely continuous, F(0) ----0 and 
strictly increasing on (0, oc). Let the failure rates rx~ and rD,,, of )(1 and D,v,, 
respectively, be continuous on the right at zero. Moreover, assume that rx, attains 
its maximum or minimum at zero. Then F ~ Exp(2) iff there exists a pair 
(r, n), 2 < r < n, such that rDr.° (0+) = rx, (0+). 

In Ahsanullah's (1981) paper, the equation rD,.,(x)= rxj(X) is required for all 
x _> 0, whereas the validity for x = 0 is sufficient as Gajek, Gather (1989) point 
out. Moreover, the IFR or D F R  property of F is assumed which can be replaced 
by the condition that zero is an extremal point of rx,. 

In Ahsanullah (1977) the weaker condition of NBU or NWU is assumed. 
However, there is a gap in the proof  (cf Gather 1989) and we only have the 
desired result in the particular case r = n. 

(2.2.7) (Ahsanullah 1977) Let F be absolutely continuous, strictly increasing 
on (0, oo) and NBU or NWU. Then F ~ Exp(2) iffD,,n ~ F for some n E N. 

The related characterization (2.2.8) is shown in Ahsanutlah (1987) where the 
characteristic property reduces to (2.6) in the case r = 1. Kakosyan et al. (1984) 
and Ahsanullah (1988a,b) also deal with random sums. 

(2.2.8) (Ahsanullah 1987) Let F be absolutely continuous with density function 
f ,  strictly increasing on (0, oc) and let f be continuous on the right at zero. Then 
F ~ E x p ( 2 )  iff there exists a pair (r,n), 2 < r < n - 1 ,  such that 

/" r ~i=1Di,n ~ ~ j= l  Y] with Y1,..., Y~ i.i.d. ~ F. 

We now turn to a random sample size. Let (X/)ieN be a sequence of i.i.d random 
variables with an absolutely continuous distribution function F. We consider a 
sample Xa, . . . ,  XN of  random sample size N. The random variable N is assumed to 
be independent of (X/)ieN. In (2.2.10) and (2.2.11) below, N is also assumed to be 
geometrically distributed with P(N = k) = (1 _p)pk- i ,  k E N, p E (0, 1). Let 
X1,N <_ "'" <_ XN,N be the corresponding order statistics. Kakosyan et al. (1984, 
p. 77) characterize exponential distributions via identical distributions of NXI,N 
and X1 which is a corollary of (5.3.6). 

(2.2.9) (Kakosyan, Klebanov, Melamed 1984) Let (X/)icN be a sequence of 
i.i.d, random variables with distribution function F, X1 > 0, F continuous for 
x _> 0, and let limx__+0 F(x)/x exist and be finite. Moreover, let N >_ 2 be an integer- 
valued random variable independent of (X/)ic~. Then F ~ Exp(2) for some 2 > 0 
iff NX1,N ~ X1. 

Kakosyan et al. (1984) conjecture that the distributional identity 

N 

(1 - p )  ~ ,x, , , ,  
i--1 
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for some fixed n E N where N is geometrically distributed characterizes an ex- 
ponential distribution. Under the additional assumption that F is IFR or DFR,  
Ahsanullah (1988a) deals with this assertion and points out that nXl,, can be 
replaced by NX1,N. In Ahsanullah (1988b) the following more general result (with 
respect to r) is shown. 

(2.2.10) (Ahsanullah 1988b) Let (X/)i c N be a sequence of i.i.d, random variables 
with distribution function F, F absolutely continuous, F(0+)  >_ 0, let F be IFR or 
DFR, EX1 < oc, and 0 < lim~_+o+F(x)/x = 2 < oc. Moreover, let N be a geo- 
metrically distributed random variable independent of (X/)i e ~. Then F ~ Exp(2) 

iff there exists a pair (r, n), 1 < r < n, such that (1 -p)~U=~ X, ~ D~,,. 

(2.2.11) (Ahsanullah 1988a) Let (X/)icN be a sequence ofi.i.d, random variables 
with distribution function F, F - l ( 0 + )  _> 0, F(x) < 1 for allx > 0, F IFR or DFR,  
EX 1 < ec, and 0 < limx~0+ F(x ) / x  = 2 < co. Moreover, let N be a geometrically 
distributed random variable independent of (X,.)ieN. Then F ~ E x p ( 2 )  iff 
(1 - p ) ~ X l  Xt ~ NX1,N . 

2.3. Results based on Dr,, ~ Ds,n 

Normalized spacings from an exponential distribution are identically distributed. 
For  the class of IFR (DFR) distributions, Ahsanullah (1976, 1978a) shows that 
(2.3) with r = 1 and s = r + 1, respectively, is sufficient to characterize expo- 
nential distributions. In Ahsanullah (1978b) we find that (2.3) is a characteristic 
property of the exponential distribution if the underlying distribution function is 
absolutely continuous. 

(2.3.1) (Ahsanullah 1978b) Let F be absolutely continuous, strictly increasing 
on (0, o c), and IFR or DFR. Then F ~ Exp(2) iff there exists a triple 
(r, s, n), 2 _< r < s < n, with (2.3). 

Gajek, Gather (1989) do not use (2.3) as a distributional identity, but only require 
the equality of the corresponding densities or of the failure rates at zero. 

(2.3.2) (Gajek, Gather 1989) Let F be absolutely continuous, F - l ( 0 + )  = 0, 
strictly increasing on (0, oc), and IFR or DFR. Moreover, the densities fDr., and 
fDs,n of Dr,n and Ds,n are assumed to be continuous on the right at zero. Then 
F ~ E x p ( 2 )  iff there exists a triple (r,s,n), l _ < r < s < _ n ,  such that 
fD,.° (0) = fDs.n (0). 

We also find a result using expectations of Dr,, and Ds,n. Ahsanullah (1981) 
considers the case s = r + 1. 

(2,3.3) (Ahsanullah 1981) Let F be absolutely continuous, supp(F) = (0, oc), 
and 1FR or DFR.  Moreover, let EX1 < oo. Then F ~ Exp(,~) iffthere exists a pair 
(r,n), 2 < r < n, such that EDr,~ = EDr-1,~. 
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As pointed out in Gather, Szekely (1989) it is an open problem whether the fact 
that certain linear statistics are identically distributed characterizes exponential 
distributions. The answer can of course not be affirmative in general, since 
X,v, -X~-l,n and X~,,, -X~-l,n, 2 _< r < s < n, are identically distributed if F is 
uniform (see Section 4.1). 

2.4.  R e s u l t s  b a s e d  on X~,, ~ ~i~=1 Y~.(n - i + 1) 

As shown above, an order statistic from an exponential distribution can always be 
represented as a weighted sum of i.i,d, random variables. In characterization 
results such sums are assumed to have the same underlying distribution as some 
order statistic. Ahsanullah, Rahman (1972) assume the validity of (2.4) for all 
n E N and r _< n to characterize the exponential distribution. For  r -- 1 this is the 
result of Desu (1971) (see 2.2.). 

(2.4.1) (Ahsanullah, Rahman 1972) Let F be continuous, supp(F) _C (0, oc) 
and n > 2 .  Then F ~ E x p ( 2 )  iff (2.4) is satisfied for all l < r < n  with 
Y ~ , . . . , Y n  i.i.d. ~ F .  

This result and possible other assumptions are investigated in Huang (1974a). We 
note that it suffices to consider equality of corresponding moment equations for 
certain sequences of indices (cf Huang 1974b, Kamps 1992b), if the existence of 
the expectations involved is ensured. Huang (1974b) discusses Desu's (1971 ) result 
which corresponds to the case r =  1. Then, e.g., the condition that 
E(nXI,,,) = EXI is valid for all n > 2 can be weakened by using Mfintz's theorem 
and requiring equality for a sequence (ni)i~N C N with a divergent sum of re- 

OO ciprocals (}-~'i=, n; -I = oc). 

2.5.  R e s u l t s  b a s e d  on Xs,~ - X~,~ ~ Xs_~,~ 

Several papers deal with characterizations of exponential distributions based on 
equation (2.5): 

The first result is due to Purl, Rubin (1970) for the case n = 2. Rossberg (1972) 
gives a more general result where s = r + 1 which is also proved in Rao (1983) 
using the ICFE (see also Ramachandran 1982). 

(2.5.1) (Rossberg 1972) Let F be continuous and ~(F) = 0. Then F ~ Exp(2) 
iff there exists a pair (r, n), 1 < r < n, with (2.5) where s = r + 1. 

Continuity of F is required in (2.5.1) as pointed out by Becker (1984, Chapter 4). 
There has to be an assumption on the support of F to characterize exponential 
distributions. Related results are also available for discrete distributions (cf (6.8)). 

For  arbitrary s, either an aging property o f F  is assumed or (2.5) is required for 
two different values of s. We first quote a result of Gajek, Gather (1989) where 
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(2.5) is replaced by the corresponding moment equation. The moments are as- 
sumed to exist (see the remarks in Section 1). 

(2.5.2) (lwifiska 1986, Gajek, Gather 1989) Let F be absolutely continuous, 
F -1 (0+) = 0, strictly increasing on (0, oc) and NBU or NWU. Then F ~ Exp()o) 
iff there exists a triple (r, s, n), 1 < r < s _< n, with 

EXs,n - EX,.n = EArs ~,~_~ . 

A similar result is proven earlier by Ahsanullah (1984) using the stronger con- 
dition that (2.5) is fulfilled and that F is IFR or DFR. Moreover, Gajek, Gather 
(1989) show that, under suitable smoothness conditions, relation (2.5) can be 
replaced by the equality of ( s -  r -  1) th derivatives of the corresponding failure 
rates evaluated at zero. Under the conditions of (2.5.2) and based on (2.5), ex- 
ponential distributions were characterized before by Iwifiska (1985). 

(2.5.3) (Gather 1988) Let F be continuous and strictly increasing on (0, oo). 
Then F ~ Exp(2) iff there exists a quadruple (r, s l , s 2 ,  n) ,  1 <_ r < sl < s2 <_ n, 
such that (2.5) holds for s = sl and s = s2. 

This result, which is proved using Jensen's inequality, is already stated in 
Ahsanullah (1975). However, in the proof  the NBU/NWU property of F is im- 
plicitly used as pointed out by Gather (1988). The discrete analogue is shown in 
(6,5). 

Without any further assumption, the equation 

E X r  + l ,n - -  EXr,n = EXI,n- , .  

valid for one pair ( r , n ) ,  1 < r < n - 1, does not characterize exponential distri- 
butions. For  every choice of r and n there is a distribution different from the 
exponential with the above property as shown in Kamps (1991, 1992a). E.g., the 
distribution given by 

F ( x )  ( l+eCdx d) - '  n = , c > 0 ,  d - -  and x > 0  
n - - I  

satisfies the moment relation in the case r = 2. 
Similar to (2.1.3), Riedel, Rossberg (1994) prove characterizations of expo- 

nential distributions by comparing the survival functions on both sides of (2.5). 
For  further results and comments we refer to their paper. 

(2.5.4) (Riedel, Rossberg 1994) Let F be absolutely continuous with a con- 
tinuous and bounded density f on [0, oe) and F(0) = 0. Then F ~ Exp(2) for 
some 2 > 0 if one of the following conditions is fulfilled. 

a) There exists a triple ( r , s , n ) ,  1 < s < n - r, such that 

P(Xr+sm - Xr, ,  >_ x )  - P ( X s  . . . .  >_ x )  = o ( F S ( x ) ) ,  x ~ 0 , 

and f ( x ) / [ 1  - F ( x ) l  - f ( O )  does not change sign for x _> 0. 
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b) T h e r e  exis ts  a q u a d r u p l e  ( r ,  s l , s 2 , n ) ,  1 <_ Sl < s2 <_ n - r ,  such t h a t  

P(XFq- .... --X-F)// > _ x ) - P ( X ,  . . . . .  >_x) = o ( F ~ ' ( x ) ) ,  x - + O ,  i :  1,2 . 

3. R e l a t e d  charac ter i za t ions  o f  o ther  cont inuous  dis tr ibut ions  

By t r a n s f o r m a t i o n s  we i m m e d i a t e l y  o b t a i n  s imi la r  resul t s  (as in Sec t ion  2) fo r  
o t h e r  c o n t i n u o u s  d i s t r i bu t i ons .  Le t  G be the  u n d e r l y i n g  c o n t i n u o u s  d i s t r i b u t i o n  
f u n c t i o n  o f  Y 1 , . . . ,  Y, wi th  o r d e r  s ta t i s t ics  Yl ,n , . . . ,  Yn,,. M o r e o v e r ,  let  F be the  
e x p o n e n t i a l  d i s t r i b u t i o n  f u n c t i o n  wi th  p a r a m e t e r  2 > 0, ) ( 1 , . . .  ,X,  i . i .d ~ F a n d  
let  X I , ~ , . . .  ,Xn,n be the c o r r e s p o n d i n g  o r d e r  s ta t is t ics .  T h e n  we can  use the  re la-  
t ions  

(3.1) G 1F(Xr,//) ~ Y~,// , F - 1 G ( Y r , n )  ~X , . , n ,  1 < r < n , 

to  e s t ab l i sh  resul t s  s imi la r  to  those  in Sec t ion  2. 
The  f o l l o w i n g  t ab le  shows  s o m e  c o n t i n u o u s  d i s t r i b u t i o n  func t ions ,  the i r  

p s e u d o - i n v e r s e  func t i ons  a n d  expl ic i t  t r a n s f o r m a t i o n s  (Y~,n = a, Y~-I,// = b, 
I11 = c) c o n c e r n i n g  the d i s t r i b u t i o n a l  i d e n t i t y  (2.2). 

G(x)  x E dis t r ibut ion G -1 (y), y c (0, I) 

1 (x/v);" 2, v > 0 (0, v) power fct Dy 1/2 

2 1 - (v/x); 2, v > 0 (v, ec) Pareto v(1 -y ) - l /~  

3 1 - e  z~, 2, v > 0 (0, oo) Weibull \;. 1 y] 

4 (1 + e-;:¢) -1 )~ > 0 (-oo, ec) logistic l ln y 
5 1 -- (1 +x") ~ 2, v > 0  (0, e~) Burr XII i ( l ~ Y y ) - l / X - l )  l/~' 

G-'F(x) F IG(x) )(r,n -Xr-i,,,, r > 2 

1 v(1 - e -z*) ,/x -½1n(1 - (~,)~) ~ln((v;' - b~) / ( v  ;~ - aa)) 
2 ve ~ In x In 
3 X 1/r X v a ° - b ~' 
4 ~. ln(e z~ - 1) ½In(1 + e  z~) ½1n((1 + eaa)/(1 + e'~b)) 

5 (e x - 1) I/~' In(1 + x  v) ln((l +a")/(1 + b~')) 

dis t r ibut ional  identity (cf (2.2)) 

v~ b> n r+l 
v~-c ~ 

2 (~)~--r+l ~ :  
v 

3 ( n - r + l ) ( a " - b  ~') ~ c  L' 

1 + e  ;.a n-r+l 
4 ( ~ )  ~ 1  + e ;'c 

1 + a  n--r+l 
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Since 

according to (1.2) and (3.1), the last table shows distributional identities for 
several distributions. 

If G is the standard uniform distribution (2 = v = 1 in case 1) with order 
statistics Ul,n, . . . ,  U,,,, we obtain 

Observing that 

we get (1.3). 
Several authors use the above transformations to find results for power 

function and Pareto distributions (see Renyi 1953, Desu 1971, Rossberg 1972, 
Ahsanullah 1989). 

It has been noted in (1.3) that Malmquist (1950) derives (1.2) by applying his 
result to the uniform distribution. Rossberg (1972) deduces from (2.5.1) that G is 
the distribution function of a Pareto distribution with parameters 2 > 0 and v = 1 
iffthere exists a pair ( r , n ) ,  1 < r < n, such that Yr+l,n/Yr,n N gl ,n-r.  Rossberg also 
states a result analogous to (2.1.1). Desu (1971) transforms his result (see Section 
2.2) with respect to power function distributions. As a corollary to (2.2.7), 
Ahsanullah (1989) considers an absolutely continuous distribution function G 
with supp(G) = [0, 1]. The assumption of the NBU/NWU property of the un- 
derlying distribution in (2.2.7) is replaced by 

Then G is the distribution function of a power function distribution iff 
gl,n/Y2,n ~ G for some n ~ N (see (4.2.1)). 

Gupta (1979) shows a result concerning the independence of  functions of order 
statistics from exponential distributions and obtains analogous results for power 
function and Pareto distributions via transformations. In the same context, Shah, 
Kabe (1981) consider also Burr XII and logistic distributions. 

In two papers, Janardan, Taneja (1979a,b) deal with Weibull distributions. In 
the first, they are concerned with (2.5.3) for Weibull distributions in the same 
way as Ahsanullah (1975). Since the proof  of the latter fails without assuming 
the NBU/NWU property of  the underlying distribution function, a similar 
additional condition is needed. However, with the above transformation for 
Weibull variables, Gather 's (1988) result can be utilized. In Janardan, Taneja 
(1979b), analogues to Desu's (1971) and Gupta 's  (1973) result are shown in a 
direct way. 
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Applying Shimizu's (1979) result (for c~ arbitrary), we obtain characterizations 
of Weibull distributions without using a transformation. 

Dimaki, Xekalaki (1993) present a characterization of Pareto distributions via 
identical distributions ofX~,/Xn,  andX~ . . . . .  fo r s  E { S I , S 2 } ,  1 _< r < S 1 < S 2 ~ n. 
This assertion can directly be obtained via transformation from Gather's (1988) 
result (see (2.5.3)) which is not cited, however. The authors also restate Desu's 
(1971) result in terms of Pareto distributions. 

4. Characterizations of  uniform distributions 

In the previous section we mentioned results for uniform distributions which are 
obtained from characterizations of exponential distributions by a simple trans- 
formation. We now gather together several other results dealing with uniform 
distributions. 

4.1. Characterizations based on spacings 

Normalized spacings play an important role in characterization results for ex- 
ponential distributions as shown in Section 2. In particular, the distributional 
identity 

X~,. - x , . , n  ~x~ . . . . .  

is valid for 1 _< r < s _< n, if F ~ Exp(2) (cf (2.5)). 
A similar relation holds if F ~ U[0, a] for some a > 0: 

(4.1.1) Xs,n -Xr,n ~Xs ~,n 

(cf Hajds, R6nyi 1954). Several authors deal with characterizations of uniform 
distributions based on (4.1.1). In the exponential case, aging properties of the 
underlying distribution function are used as assumptions in some of the theorems 
(cf Section 2). In characterization results for the uniform distribution, super- 
additivity or sub-additivity of F are appropriate conditions. 

The distribution function F is called super-additive (sub-additive) if (4.1.2) 
F(x + y) > (~_)F(x) +F(y)  for all x ,y ,x  + y  E supp(F). 

Many interesting distribution functions have such a property. E.g., power func- 
tion distributions with F(x) = x ~, x E (0, 1), are super-additive if ~ > 1 and sub- 
additive if 0 < c~ < 1. Moreover, any NWU-distribution function is sub-additive. 
Huang et al. (1979) present a corresponding result. 

(4.1.3) (Huang, Arnold, Ghosh 1979) Let F be continuous, strictly increasing 
on supp(F), and let F be super-additive or sub-additive. Then F ~-- U[0, a] for 
some a > 0 iff there exists a pair (r, n), 1 < r < n - 1, such that Xr+l,n --Xn,, 

Xl ,t/. 
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By considering (4.1.1) for s = r +  1, the question arises whether the uniform 
distribution is the only one satisfying 

x / , , - x ~  1,, ~ x j , ~ - x j _ l , ,  

for some i C j .  A partial answer to this is due to Ahsanullah (1989). 

(4.1.4) (Ahsanullah 1989) Let F be absolutely continuous with density function 
f ,  F ( 0 ) = 0 ,  F ( 1 ) =  l, and either f ( x )>>f (y )  or f ( x ) < _ f ( y )  for all 
x,y  E (0, 1), x >_y. Then F ~ U[0, 1] iff there exists a pair (r,n), 2 < r < n, such 
that Xr,~ - Xr-l,, ~ Xr 1,, -- Xr-2,,. 

The assumption " r  ¢; (n + 1)/2" in Ahsanullah (1989) can be dropped since 
monotonicity o f f  excludes the case that f is an arbitrary symmetric density. 

Moreover, Ahsanullah (1989) proves a characterization result for the standard 
uniform distribution using (4.1.1) for s = n and r = 1. 

(4.1.5) (Ahsanullah 1989) Let F be absolutely continuous, symmetric, either 
super-additive or sub-additive, F - l ( 0 + ) =  0, F ( 1 ) =  1. Then F ~ U[0, 1] iff 
X,,, - X I , ,  ~ 32, 1,, for some n >_ 2. 

Without requiring super-additivity, Huang et al. (1979) prove the following result 
based on the first spacing in a sample of size n. 

(4.1.6) (Huang, Arnold, Ghosh 1979) Let F be strictly increasing on 
supp(F) = [0, a], 0 < a < oc, and let F be absolutely continuous with continuous 
density f on (0, a), f ( 0 + )  < o c ,  f ( a - ) < o c .  Then F ~ U [ 0 ,  a] iff 
x2,. - & , .  ~ Xl~.. 

Under the conditions of (4.1.6), the fact that a -X , , ,  and 32,,, -X , -1 , ,  have the 
same distribution characterizes the U[0, a]-distribution, too. A refinement of 
(4.1.6) is shown in Shimizu, Huang (1983) stating that, for an absolutely con- 
tinuous distribution function F being strictly increasing on supp(F), F ~ U[0, a] 
for some 0 < a < oc iff X2,n - X l , n  '-~ Xl,n for some n _> 2. 

4.2. Miscellaneous results 

As in the exponential case (cf (2.1.1) and (2.1.2)), Ahsanullah (1989) shows by 
transformation and applying (2.2.7) that if the ratio of the first two order statistics 
is uniformly distributed then the underlying distribution is uniform. 

However, XI,,/X2,, ~ F is not a characterizing property of the standard uni- 
form distribution. For  all power function distributions with F ( x ) = x  ~, 
c~ > 0, x E (0, 1), we have the same property. 

(4.2.1) (Ahsanullah 1989) Let F be absolutely continuous, F 1 ( 0 + ) = 0 ,  
F(1) = 1, and let either F ( x . y )  >_ F ( x ) . F ( y )  or F ( x . y )  < F ( x ) . F ( y )  for all 
x,y E supp(f) .  Then f ( x )  = x  ~, x E (0, 1), for some c~ > 0 iffXl,n/X2,n ~ F. 

We now quote two results of Madreimov, Petunin (1983) where the forms of 
expected (contrasts of) order statistics are used as characterizing properties. 
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(4.2.2) (Madreimov, Petunin 1983) Let F be continuous and let X1,.. .  ,Xn, 
X ~ F be independent random variables. 

a) Then F ~  U[0,1] iff E ( X , , n - X i , , )  = P ( X E  (X/,n,X,,,,)) for all i E N  and 
n>_i .  

b) Then F ~ U [ 0 , 1 ]  iff there exists a pair ( i , j ) ,  1 < _ i < j < _ n ,  such that 
E(Xi,n) = P ( X  E (Xj_/,,,Xj,,)) for all n _> 2. 

We refer to (5.2.7) for a simultaneous characterization of the standard uniform 
and of exponential distributions and to Section 5.6 for results of Ghurye (1960). 

Finally, we mention a characterization based on moments. It is well 
known that the property EXI,n = 1 / ( n +  1) for all n E N implies that the 
underlying distribution is standard uniform (cf Galambos, Kotz 1978, p. 55). 
A simple corollary of this is the following which is of interest for goodness 
of fit tests. 

y 

(4.2.3) (Galambos, Kotz 1978) Let F - l (0+)  >0 ,  Sr=} -~ i= lX i ,  1 < r < n +  1, 
and V,. = Sf fS ,+I ,  1 < r < n. Then F ~ U[0, 1] iff (V1, . . . , V~) ~ (XI , , , .  .. ,X , , , ) .  

5. Characterizations of specific continuous distributions 

In this section we review some characterization results for specific continuous 
distributions such as normal, exponential, WeibuU and logistic distributions. We 
do not consider further general characterizations of distributions such as the 
following by Kotlarski, Sasvfiri (1992) where for independent random variables 
X1,X2,X3 the joint distributions of max(Xa,X3) and max(X2,X3) as well as of 
max(Xa,X3) and min(X2,X3) determine the distributions of X1,X2,X3 (see also 
Kotlarski 1978 and (5.6.1)). 

Several of the results in this section are based on ratios of partial sums of 
random variables which behave like uniform order statistics. 

Throughout this section, U I , . . .  , Urn, m C N, are i.i.d, random variables from 
a standard uniform distribution with order statistics Ul,m <_ "'" <_ Um,m. 

5.1. Characterizat ions o f  normal  and  logarithmic normal  distributions 

(5.1.1) (Cs6rg6, Seshadri 1971a) Let F have mean/~ and variance 0 "2, 1/21 < OO, 

0 < a < co, and let n = 2k + 3, k _> 2. Moreover, let 

Zl  = (x ,  - x 2 ) / v ~ ,  z2 = (x ,  + x2  - 2 & ) / v ~ , . . .  , 

n 

z~_~ = (xi + . . .  + x ~ _ ,  - (n - 1 ) x ~ ) / ¢ - ~ ( ~  - 1), z~ = ~ x ~ / v ~  , 
i=1 

~ = z ~  , + z  ~ 2r, S r =  m/, l < r < k + l ,  a n d  
i=1 
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Vr= Sr/&+1, 1 < r < k . 

Then F ~ N(/~, 0- 2) iff (V1, . . . ,  Vk) ~ (Ul~k,. . . ,  Uk,k). 

The result (5.1.3) below for logarithmic normal  distributions is a corollary of  
(5.1.1). If  the mean  # is known,  then the following theorem may be used. 

(5.1.2) (Cs6rg6, Seshadri 1971a) Let  F have mean #, I#1 < ec, let F be sym- 
metric about  p and let n = 2k, k >_ 3. Moreover ,  let 

Z i = X i - ] l  , 1 < i < n ,  W~ =Z2~ l @ Z 2 r ,  S r = ~ W i ,  l < r < k ,  and 
i--1 

V~=Sr /&,  l < r < k - 1  . 

Then  F ~ N(/~, 0-2) for  some 0 < 0- < oc iff ( / /1 , . . . ,  Vk-1) N (Ul,k , , . . . ,  Uk 1,~-1). 

Two further characterizat ions of  normal  distributions are shown by the same 
authors  in Cs6rg6, Seshadri (1971b) based on two independent  samples of  ran- 
dom variables. This result is related to the Behrens-Fisher problem. 

(5.1.3) (Cs6rg6, Seshadri 1971a) Let  F be absolutely cont inuous with finite 
mean  /~ and variance 0 "2, I]21 < (3<3, 0 < 0- < OO, F -1 (0+) > 0, and let Y/= In)(,., 
1 < i < n , n = 2 k + 3 ,  k > 2 .  Moreover,  let 

Z1 = (Y1 - Y2)lv~,  Z2 = (Y1 + 112 - 2Y3)/v/6, . . .  , 

I n - 1  = (Y1 -}-"""-}- Yn-1 - (n - 1 ) Y , ) / V / ~  - 1), Z, = ~ Y~/v~ , 
i=1 

W ~ = Z 2 r _ I + Z  2>, S r = ~ W / ,  l < r < k + l ,  and 
i=1 

V r ~- S r / S k + l ,  1 < r < k . 

Then F is the distribution function of  the logarithmic normal  distribution with 
density 

f ( x )  = x- ' (2rcaz) - ' /2exp{- (20-  2) ' ( l n x - / ~ ) z } ,  x > 0, iff 

I v , , . . . ,  . 

Klebanov (1972) states a result based on identical distributions of  the range and 
the range of  or thogonal  t ransformat ions of  random variables. 

(5.1.4) (Klebanov 1972) Let  F be absolutely cont inuous with cont inuous 
density funct ion and n _> 4. Let  Yl,n _< "'" <_ Yn,, be the order  statistics based on 
Yl,. • . ,  Y, where (Y1, • • . ,  Y~)'= A ( X I , . . .  ,X,) '  for some or thogonal  t ransformat ion 
A: IR" ---+ IR". Then  F ~ N(0,0- 2) for  some 0 < a < eo iff X,.. -XI. , ,  ,.o y,.~ - YI.n 
for  any or thogonal  t ransformat ion A : IR" ~ IR ~. 
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Ahsanullah, Hamedani (1988) contribute two results concerning the distribution 
of the square of the minimum of two i.i.d, random variables. The minimum )(1,2 
can be replaced by the maximum X2,2. 

(5.1.5) (Ahsanullah, Hamedani 1988) Let F be absolutely continuous and 
symmetric about zero. Then F ~ N(0, 1) iff X12.2 ~ Z2(I) where X2(1) is the chi- 
square distribution with one degree of freedom. 

Without requiring a symmetric underlying distribution we find 

(5.1.6) (Ahsanullah, Hamedani 1988) Let F be absolutely continuous. Then 
F,.~N(O, 1)iffX~, 2 ~ Z2(1)and X1//g 2 " ~  C(O) where C(0)is  the Cauchy distri- 
bution with median zero. 

5.2. Characterizations of exponential distributions 

In this section we also consider two-parameter exponential distributions with 
density function 

f ( x ) = , ~ e x p { - 2 ( x - a ) } ,  x > a ,  2 > 0  , 

which we denote by Exp(,;t, a) so that Exp(2) = Exp(2, 0). 
The following theorems (5.2.1) and (5.2.2) are quoted in Cs6rg6, Seshadri 

(1971a). They are used to obtain two characterizations of the Poisson process. 
Several other characterizations of exponential distributions can be found in 
Section 5.3 on Weibull distributions. 

(5.2.1) (Seshadri, Csarg6, Stephens 1969) Let F have mean 1/2, 0 < 2 < oc, 
r a n d X l > 0 ,  n_>3. Let S ~ = ~ i = I X i  , 1 < r < n ,  and V~=Sr/Sn, l < r < n - - 1 .  

Then F ~ Exp(2) iff ( ld , . . . ,  V~ 1) ~ (Ul,n-1,..., U,, l#-~)- 

Cs6rg6 et al. (1975) and Menon, Seshadri (1975) point out that the original proof 
of (5.2.1) is incorrect and present a new proof for n > 3. In Cs6rg6 et al. (1975) an 
additional result for two-parameter exponential distributions is stated. A correct 
proof of the following characterization of Exp(2, a)-distributions is given in 
Dufour et al. (1984). 

(5.2.2) (Seshadri, Cs6rg6, Stephens 1969) Let n _> 3 and let F have mean 
r a + 1 / 2 ,  2 > 0 ,  X1 > a .  Define & = ~ i = l D i , n ,  1 < r < n ,  Xo,n=a, and 

V~=&/Sn, l < r < n - 1 .  Then F ~ E x p ( 2 ,  a) iff (V1,.. . ,V~_I)~ (UI,~-I, . . . ,  
U. lm-1)- 

Dufour (1982) conjectured that (V1,..., V~_~) ~ (U~,~_~,..., Ur_~,~_~), V~ = &~St, 
i D 1 < i < r -  i, Si = ~ j= l  j,~, 1 < i < r, for some 2 < r < n is a characteristic 

property of exponential distributions. Seshadri et al. (1969) and Dufour et al. 
(1984) (see (5.2.2)) prove this result for the uncensored case n = r > 3. It should 
be noted that the distributional identity D1,2/(D1,2-]-D2,2)~ U[0, 1] does not 
characterize exponential distributions (cf Menon, Seshadri 1975). Leslie, van 
Eeden (1993) prove Dufour's conjecture for the case r > 2n + 1 and they point 
out the use of such results in goodness of fit testing. 
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(5.2.3) (Leslie, van Eeden 1993) Let  F - l ( 0 + )  > 0, ~ n + l < r < n - 1 .  Let 
Si = ~ = 1 D j , , ,  1 < i < r, and ~ = Si/Sr, 1 < i < r - 1. Then  F ~ Exp(2) for  
some 2 > 0 iff ( / /1 , . . . ,  Vr_~) ~ (UI,~_~,.. . ,  Ur-l,~ 1). 

For  further character izat ion results used in the p roo f  of  (5.2.3) we refer to van 
Eeden (1991) and Leslie, van Eeden (1993). 

In Xu, Yang (1995) it is shown that  Dufour ' s  conjecture is true for all 
5 < r < n. The cases r = 2, 3, 4 are still not determined. If, however,  the distri- 
but ion of  Xl is restricted to either the class o f  N B U  or N W U  distributions, Xu, 
Yang (1995) show that  Dufour ' s  conjecture is true if r > 2. 

In Seshadri et al. (1969) we also find a related result based on spacings of  
uni form order  statistics. 

X~ n (5.2.4) (Seshadri, Cs6rg6, Stephens 1969) Let  XI > 0, EX1 = 1, V~ = r / ~ i = l  
Xi, 1 < r < n - 1. Then  F ~ Exp(1) iff (VI , . . . ,  V~_~) ~ (UI,, 1 , . - . ,  Un-l,n-l-- 
u,-2,,-1). 

Galambos,  Kotz  (1983) point  out  that Desu's (1971) result (see Section 2.2) is 
related to an assertion for the distribution of  the integer par t  of  a r andom vari- 
able. They  quote  a result based on a condit ional  distribution and give further 
details. 

(5.2.5) (Galambos,  Kotz  1983) Let F -1(0+)  > 0, Xff ) = [Xi/t] + 1, t > O, 
i = 1,2, where Ix] denotes the integer part  o f  x E IR. If  the distribution of  

rain (X(t),X~t))]X(t) + X~t)= 2m + 1  

is uni form on 1 , . . . ,  m for every m E N,  then F ~ Exp(2) for  some 2 > 0. 

Not  truncating the Xi's to integers, Galambos  (1975a) shows that the underlying 
distribution with cont inuous density is exponential  iff the distribution of  2Xi,2 
given X~ +X2 = s is uni form on [0,s] (see also Berk 1977, Patil, Seshadri 1964). 

For  characterizat ions of  exponential  distributions related to those o f  logistic 
distributions we refer to Section 5.5 and to a result of  Ghurye  (1960) which is 
ment ioned in Section 5.6. 

Huang  et al. (1979) restate (5.2.1) as follows and present a simultaneous 
character izat ion of  exponential  distributions and the s tandard uni form distribu- 
tion. 

(5.2.6) Huang,  Arnold,  Ghosh  1979) Under  the assumptions of  (5.2.1) we 
have F ~ Exp(2) iff (Vl, V2) ~ (UI,, l, U2,,-l). 

(5.2.7) (Huang,  Arnold,  Ghosh  1979) Let V1,. . . ,  V~_I be as in (5.2.1)i More-  
over, let Y l , , - I , . . . ,  Y,-I,, 1 be order  statistics of  i.i.d, r andom variables Y1,. . . ,  i1, 
with distribution function G and cont inuous density function. Then F ~ Exp(2) 
and G ~ U[0, 1] iff (V1, V2) ~ (Yl,n-1, Y2,n-1). 



276 u. Gather, U. Kamps and N. Schweitzer 

5.3. Characterizations o f  Weibull distributions 

As a corollary to their results, Cs6rg6, Seshadri (1971a) state the following 
characterization of Weibull distributions based on ratios of partial sums. 

(5.3.1) (Cs6rg6, Seshadri 1971a) Let F be absolutely continuous with finite 
r 

- - X  2 l < i < n ,  Sr~-~i=lYi, l < r < n ,  mean, X1 > 0  and n_>3. Define Y~- i ,  
V~ = Sr/S , ,  1 < r < n - 1. Then F is the distribution function of a Weibull dis- 
tribution with density function f ( x )  = 2 2 x e x p { - ~ 2 } ,  x > 0, 2 > 0, iff 
(~,. . . ,  ~-1)~  (ul,n-~,..., u,_~,,-l). 

Sethuraman (1965) shows a characterization result for distributions which, in 
extreme value theory, are well known as limiting distributions of normalized 
minima of i.i.d, random variables. For  details on characterizations based on 
asymptotic properties of extremes we refer to Galambos (1978). The random 
variables ) ( i , . . .  ,X, in (5.3.2) are not assumed to be identically distributed but 
only compatible which means that P(X~ > Xj) > 0 for all i ¢ j ,  1 _< i, j < n. A 
preliminary theorem is the following. 

(5.3.2) (Sethuraman 1965) L e t X l , . . .  ,Xn be compatible a n d X / ~  F,., 1 < i < n. 
Then there exist constants p 2 , . . .  ,pn > 0 with 

iff 

(1-F/(x))P~= 1 - F l ( x ) ,  2 < i < n ,  

XI,n "~ X1,,[XI,~ = Xi fora l l  1 < i < n . 

Obviously, i f p i  E N, then the equation (1 -F/(x))P '= 1 -F 1  (x) yields that F1 is 
the distribution of the minimum of a number o f p i  i.i.d, random variables with 
distribution function F,.. Such an interpretation is also possible when 1/pi E N.  
Sethuraman's main theorem reads as follows and characterizes Weibull, reflected 
Weibull distributions and the double exponential distribution. For  a related 
characterization of the latter we also refer to Dubey (1966). 

(5.3.3) (Sethuraman 1965) Let X1,. . .  ,Am be compatible, X / ~  F/, 1 < i < n, 
and let Xl,n ~ XI,, [XI,, = Xi for all 1 < i < n. Let F l , . . . ,  F~ be of the same type, 
i.e., there exist constants a2 >_ 1 , . . . , a n  >_ 1, b2 , . . . , bn  C IR such that 
F i ( x ) = F l ( a i x + b i ) ,  2 < i < n .  For a 2 > l  one has a i >  1, b 2 / ( l - a 2 ) =  
b i / ( 1 - a i ) ,  3 < i < n .  If  further l n a i / l n a j  is irrational for some pair 
( i , j ) ,  i , j  > 2, then 

F is of the type ~/)l.c~ P2 > 1 
F is of the type ¢b2,~, P2 < 1 . 

F o r  a l  = 1, one has a i  = 1, 3 < i < n .  If further bi/bj  is irrational for some pair 
( i , j ) ,  i , j  > 2, then F is of the type A. ~bl,~, ¢b2,~ and A denote the limiting dis- 
tributions of the sample minimum: 
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1 - e x p { - ( - x )  ~}, x < 0  
~ > 0 ,  

• l ,~(x)= 1, x > O '  

f 0, x < 0 
4~2,~(x) / 1 - exp{-x~}, x > 0 ' ~ > O, 

A ( x ) = l - e x p { - e X ) ,  x E I R  . 

In Shimizu, Davies (1981) and Kakosyan  et al. (1984) several characterizations 
of  distributions are shown which are based on relations similar to (2.6) (see 
Section 2.2 for characterizations of  exponential distributions). In Shimizu, Da- 
vies (1981) we find two characterizations of  Weibull distributions based on a 
modified condition (2.6). A solution of a general functional equation leads to 
(5.3.4) for order statistics from a sample with random sample size. Another  
characterization deals with order statistics of ratios of  independent random 
variables. 

Let Wei(2, c 0 denote the Weibull distribution with distribution function 
F(x) = 1 - exp{-)zd},  ct > 0, 2 > 0, x > 0. 

(5.3.4) (Shimizu, Davies 1981) Let (X/)i~N be a sequence of i.i.d, random 
variables with distribution function F. Let F be non-degenerate, e > 0, and N an 
integer-valued random variable independent of  (X,.)~ ~ N such that P ( N  > 2) = 1, 
lnN has finite expectation, and is not concentrated on a lattice (kp)k~ ~ for any 
p > 0. Then F ~ Wei()o, ~) for some 2 > 0 iff N1/~X1,N ,- )(1. 

(5.3.5) (Shimizu, Davies 1981) Let F be non-degenerate and e > 0. Let further 
Y I , . . . , Y ,  > 0 be random variables independent of  X 1 , . . . , X ,  such that 
P(~7=I  Yi ~ = 1) = 1 and P(ln Y//ln Yj is irrational for some i and j)  > 0. More- 
over, let Zz = N/Yi, 1 < i < n. Then F ~ Wei(2, e) for some 2 > 0 iff ZI,, ~ X1. 

In their book,  Kakosyan  et al. (1984, Chapter 3.1) consider characterizations by 
properties of  order statistics associated with non-linear statistics. The following is 
a corollary of  a more general theorem where XI,, is replaced by the infimum of a 
countable number of  random variables. 

(5.3.6) (Kakosyan,  Klebanov, Melamed 1984) Let (X/)ic~ q be a sequence of 
i.i.d, random variables with distribution function F. Let X1 > 0, F be continuous 
on [0, e~) and non-degenerate. Let (ai)zc~ be a sequence of positive constants 
satisfying ~i~1 aT = 1 for some e > 0 and let 0 < l imx~o+F(x) /x  ~ = 2 < oc. Then 
f ,,o Wei(2, c~) iff)(l ~ infic~ Xi/ai. 

Gupta ' s  (1973) result (see Section 2.2) is a consequence of (5.3.6) for 
al . . . . .  a, = ~, ct = 1. The theorem can also be extended to conditionally in- 
dependent random variables (see Kakosyan et al. 1984, p. 75). Moreover,  the 
numbers ai, i E N, can be replaced by random variables independent of  (X,)i~N, 
(see Kakosyan  et al. 1984, p. 77). 

For  related characterizations of  exponential, logistic and other distributions 
and for more details we refer to Chapter 3.1 in Kakosyan et al. (1984). 
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5.4. Characterizations o f  gamma distributions 

Csfrg6 Seshadri (1971a) also use the fact that certain ratios of partial sums are 
distributed as uniform order statistics to obtain the following characterizations 
for gamma distributions of order 1In the densities of which are given by 

f ( x )  = (7~/~ . ) - l /n (x  - a) -(" ,)/n exp{-2(x  - a)} , 2 > 0, x > a . 

These distributions are denoted by Gam( 1, 2, a). 

(5.4.1) (CsSrg6, Seshadri 1971a) Let n = 2k, k _> 3, X1 > 0. Let Y/=X2i 1 4- 
r X2i, 1 < i < k, S~ = ~i=1 Y//, V~ = &/&,  1 < r < k - 1. Then F ~ Gam(½,2, 0) for 

some 2 > 0 iff (VI, . . . ,  V,_I) ~ (Ul,k-1,. . . ,  Uk 1,~-1). 

In terms of normalized spacings the same authors obtain 

(5.4.2) (Cs6rg6, Seshadri 1971a) Let n = 2k, k > 3, X1 > a. Let Y/= X2i-1 + 
X2i , l < i < k , D ~ k = ( k - i + l ) ( Y i , k - Y i _ l , k ) ,  1 < i < k ,  Y0,k = 2a, & =  

r ~i=lD~k ,  l < r < k, ~ V~ = St~&, 1 < r < k -  1. Then F ~ Gam(½,2, a) for some 
2 > 0 iff ( ~ , . . . ,  Vk-1) ~-o (U1, k 1 , . . . ,  Uk- l , k  1). 

These results can easily be generalized to obtain characterizations of Gam(~, 2, a)- 
distributions as pointed out by Cs6rg6, Seshadri (1971a). 

5.5. Characterizations o f  the logistic distribution 

In George, Mudholkar (1981a) we find the following theorem on related char- 
acterizations of the standard exponential and the logistic distribution by prop- 
erties of  the minimum and maximum of two random variables. A random 
variable X has a (standard) logistic distribution, if its distribution function is 
given by F(x)  = (1 + e-X) - l ,  x E IR, briefly F ~ Lgc. 

(5.5.1) (George, Mudholkar 1981a) Let F(0) = 1/2 and t ~o(t) be integrable 
where ~0 is the characteristic function of F. Let a random variable Z with dis- 
tribution function G be independent ofX1,X2 ~ F. 

a) If G ~ Exp(1), we have 

F ~ Lgc iff X1,2 4- Z ~ Xl  iff X2, 2 - Z ~ Xl  • 

b) I f F  ~ Lgc, we have 

G ~ E x p ( 1 )  iff X l , z  4- Z ,',~ X 1 iff Xz,e - Z ~ X 1 .  

It is also possible to obtain a simultaneous characterization of  exponential and 
logistic distributions by the same arguments as in (5.5.1). For  further details we 
refer to George, Mudholkar (1982) and Galambos (1992). 

(5.5.2) (George, Mudholkar 1981a) Let Z1,Z2 be non-negative random vari- 
ables with some non-lattice distribution function G and independent of X1 and )(2 
which have distribution function F. Then F ~ L g c  and G ~ E x p ( 1 )  iff 
X1,2 4- Z1 ~ X1 and X2, 2 --  Z2 ,-..a X1" 
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George, Mudholkar (1981a) also present a characterization based on the char- 
acteristic function of the sample median and herewith generalize a result in 
George, Mudholkar (1981b). 

(5.5.3) (George, Mudholkar 1981a) Let F be absolutely continuous with den- 
sity function f and characteristic function q~, let n = 2m - 1 for some m E N and 
let ~Om,,, be the characteristic function of the sample median Xm~. Moreover, let 
F(0) =- 1/2, 

f ( x )  = o(ek~), x --+ cO, for every k E N, 

f ( x )  = o(e-~) ,  x ---, - oc ,  for every k E N, 

and t~q)(t) be integrable for every k c N . 

Then f ~ Lgc i f f  q)m,n(t) = 1-I7211 (1 + t2/ f)qo(t)  for all t E IR. 

As a consequence of the above theorem, George, Mudholkar (1981a) get the 
following theorem which again connects logistic and exponential distributions. 

(5.5.4) (George, Mudholkar 1981a) Let ZI , . . .  ,Z,, 1 be independent Laplace- 
distributed random variables with densities 91 , . . . , gn  1 where g j (z )=  
Jexp{-j lzl} , 1 _< j < n - 1. L e t X l , . . .  ,X2n-1 be independent of Z1,. . .  ,Zn-1, F be 
absolutely continuous and let the same conditions as in (5.5.2) be fulfilled. Then 
F ~ Lgc iff Xn,zn-1 -}- ~j~-] Zj ~ X1. 

George and Mudholkar (1981a,b) mention as special case of their result and 
under the above regularity conditions with respect to F that if Z is a Laplace 
variable with density g ( z ) = ½ e  Izl,z E IR, and independent of X1,Xz,X3, then 
F ~ Lgc iffX2,3 + Z ~ )(1. Since Z may be represented as a difference of two i.i.d. 
exponential random variables I11 and Y2, the above result can also be stated in this 
way. Let Yl and Y2 be i.i,d, standard exponentially distributed random variables 
which are independent of X1, X2 and X3. Then F ~ Lgc iff X2,3 + Y1 - Y2 ~ X1. 

An open problem regarding characterizations is mentioned in Arnold et al. 
(1992, p. 150). It is questioned whether a logistic distribution can be characterized 
by its property that the mid-range is distributed as the median in a sample of size 3. 

5.6. Miscellaneous results 

Kagan et al. (1973) give some remarks on order statistics. Actually they deal with 
linear statistics ~'~4n=laiXi which correspond to M-statistics of the form 
max((X1 - a ) / b l , . . . ,  (Xn -- a)/bn) with a C IR and b l , . . . ,  bn > 0. They state a 
result where, under several regularity conditions, identical distributions of two 
M-statistics characterize the underlying distribution function of the form 
F(x) = e xp{ -  ~ = 1  ei/(x - a)i}. Moreover, a theorem of Ghurye (1960) is cited 

X, (see Kagan et al. 1973, p. 443) where in the case that W = ~i=1( i -XI , , , ) ,  the 
uniform distribution of ( (X1-XI ,n ) /W, . . . ,  ( X n - X I , , , ) / W )  over some surface 
characterizes a two-parameter exponential distribution and a uniform distribu- 
tion in the case that W = X,,n -X l , , .  One further characterization of uniform 



280 U. Gather, U. Kamps and N. Schweitzer 

distributions is shown in Ghurye (1960) based on a uniform distribution of 
/ x , , , ,  . . . , x , / x n , , ) .  

Kotlarski (1979) presents the following theorem by using maxima of a random 
number of  random variables. The underlying distributions of the random vari- 
ables involved are uniquely determined but not explicitly given (see the intro- 
ductory remarks to this section). 

(5.6.1) (Kotlarski 1979) Let the random variables N, (X~.)ic~s, (Y,)i~ be in- 
dependent, supp(N) C N0,P (N -- 1) > 0, 

(X/)iEN ~ F, F continuous, F(a)  = O, F(b)  = 1, 0 < F(x)  < 1 for a < x < b, 
- e o  <_ a < b < oo, 

(Y/)icN ~ G, G continuous, G(c) = O, G(d) = 1, 0 < G(y) < 1 for c < y  < d, 
- o o  < c < d < oo. 

Moreover, let 

U = a  

V : c  

for N = 0 ,  and U=XN,N for N > 0 ,  

for N = 0 ,  and V=YN,N for N > 0  . 

Then the joint distribution of the two-dimensional random variable (U, V) 
uniquely determines the distributions of N, X1 and Y1. 

Under the additional assumption that X1 and 111 have positive densities on the 
interiors of their supports, Kotlarski (1985) shows a procedure to obtain the 
distributions of N, X1 and I11 if the joint distribution of U and V is given. He gives 
an example where g ( x , y ) =  (1 +x2y2)/2 ,  x , y  E [0, 1], is the joint distribution 
function of U and V which leads to standard uniform distributions of X1 and Y1. 

6. Characterizations of geometric and other discrete distributions 

A random variable X with distribution function F is said to be geometrically 
distributed with parameter p E (0, 1) and with the positive integers N or 
No = N U {0} as its support if 

P ( X = k ) = ( 1 - p ) p k - 1  for all k E N  

or if P ( X = k ) = ( 1 - p ) p ~  for all k E N 0  

We will also consider arbitrary lattice supports. 

(F ~ Geo(p) for short), 

(F ~ GeoN0 (p) for short), 

respectively 

There is a variety of characterization results based on the independence of 
functions of order statistics. For details and a review we refer to Becker (1984), 
Galambos (1975b) and Srivastava (1986). Some other characterizations are also 
based on a relation similar to (1.6). Since for non-continuous distributions ties 
may occur with positive probability, often conditional distributions are consid- 
ered. E.g., we find that i f F  ~ Geo(p), p E (0, 1), then 
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(6.1) Xs,n-Xr,nlXr+l, n >Xr,, ~Xs-r,,-~ for atl 1 <<r < s < n  . 

For certain applications it may be useful to define a geometric distribution with 
an arbitrary lattice as support. Assuming condition (6.1), the lattice structure of 
the support follows as shown by Becker (1984, p. 62). 

Concerning similarities and distinctions of the results and their proofs for ex- 
ponential and geometric distributions we refer to the remarks in Galambos (1975b) 
and Arnold et al. (1984). For  instance, there is no discrete distribution satisfying 
nXl,, ~ F (i.e., (2.6)). A related condition is considered in Galambos (1975b, p. 92) 
and in Bagchi (1989) (cf (6.12)-(6.14)). Arnold, Ghosh (1976) show that (6.1) for 
s = n = 2 and r = 1 characterizes geometric distributions within the class of non- 
degenerate distributions with supp(F) C No and P(XI = 1) > 0, which is explicitly 
used in the proof. They conjecture that (6.1) for s = r + 1 and arbitrary n _> s is 
also a characteristic property which indeed is proven by Arnold (1980) using 
Shanbhag's (1977) lemma. For  a different proof  of (6.2) we refer to Zijlstra (1983). 

(6.2) (Arnold 1980) Assume that supp(F) C No and 0 < P(XI = 1) < 1. 
Then F ~ Geo(p) for some p ~ (0, 1) iff there exists a pair (r, n), 1 <_ r < n, such 
that 

Xr+l~n - Xr,n ]Xr+l,n > Xr,n ~'~ X l , n - r  • 

Fosam et al. (1993) point out that the assumption P(X1 = 1) > 0 is also implicitly 
made in Arnold, Ghosh (1976). Without this assumption, a modified theorem can 
be shown by using a Lau-Rao  theorem where the geometric distributions are 
defined on some lattice: 

P(Xl = ilk) = (1 _p)pk-1 k E N , 

for some p E (0, 1) and some positive integer ft. 
Arnold, Ghosh (1976) and Arnold (1980) ask whether 

x,,. -Yr , . l x , , .  > yr,. ~Ys_,.,._,. 

for some r,s with s > r + 1 characterizes geometric distributions. However, 
Zijlstra (1983) points out that this is not a property of geometric distributions. 

Conditioning on X,.+l,n > Xr,, Zijlstra states the following theorem. 

(6.3) (Zijlstra 1983) Let supp(F) C No and (1 - F ( i +  1))/(1 - F(i)) >>_ 
1 - F(0) > 0 for all i E No. Then F ~ Geo~s0(p) for somep E (0, 1) iff there exists 
a triple (r, s, n), 2 _< r + 1 < s <_ n, such that 

P(Xs,~ --Xr,, > jlXr+,,, > Xr,,) = P(X~ . . . . . .  > j -  1) for a l l j  E No • 

The assumption of (6.3) is obviously fulfilled for NWU-distributions. 
Similar to the result (2.5.2) for exponential distributions, Arnold's (1980) result 

is generalized by Becker (1984) with respect to arbitrary spacings under the 
IFR/DFR-assumption and by Schweitzer (1995) under the NBU/NWU-as-  
sumption (cf (2.5.2) for exponential distributions). 
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(6.4) (Becker 1984, Schweitzer 1995) Let F be discrete and NBU or NWU. 
Then F ~ Geo(p) with support {mt; m C N} for some t E IR iff there exists a triple 
(r, s, n), 1 < r < s _< n, satisfying 

P(Xs, ,  - Xr~ <_ tlXr+l,, > Xr,o) = P(X~_~,o r <<- t) • 

Arnold et al. (1984) consider the particular case s = n = 3 and r = 1. Becker 
(1984) proves a characterization result of geometric distributions without an 
aging condition assuming the distributional identity for two different values of s 
and again applying Jensen's inequality. This result is similar to (2.5.3). 

(6.5) (Becker 1984) Let F be discrete and let co(F)= t > - e c .  Then 
F ~ Geo(p) with support {mt ;m  ~ N} iff there exists a quadruple (r, s l , s2 ,n ) ,  
1 _< r < Sl < $2 ~ n, such that 

Ys l ,n  -- Xr,~l lXY~-lflt > XV,I'I r~' XS  I r,n--y 

and 

>  rxr+,,o > =P(X.2_r, . -r  > 

As a corollary, Becker (1984) points out that, assuming a support with lattice 
structure, the validity of 

P(X, , ,  -X~,, > tJX~+l,, > X~.,,) = P ( X ~  . . . .  r > t) 

for s E {sl,s2}, 1 < r < sl < s2 _< n, is sufficient to characterize geometric distri- 
butions. If in addition we condition on XI,,, we obtain a characterization using 
only one distributional identity. 

(6.6) (Nagaraja, Srivastava 1987) Let F be non-degenerate, supp(F) c N 
and P(X1 = 1 ) > 0 .  Then F ~ G e o ( p )  for some p E ( 0 , 1 )  iff there exists a 
pair (s, n), 1 < s < n, such that 

P(X, , ,  - X , , ,  = j I X , , ,  = 1,X2,, > XI , , )  = P(X~-I ,o- ,  = j )  

for all j E supp(F) 

By considering the equality of the corresponding survival functions in (6.6), 
Schweitzer (1995) characterizes geometric distributions by means of the more 
general equation (r = 1 in (6.6)): 

P(Xs,. > jp x r , .  = > x,.,,) = e(X._r,.  > j )  

If the condition XI,, = 1 in (6.6) is changed into XI,, = i for some i > 1, then there 
are distributions other than geometric satisfying the distributional identity. 
Nagaraja, Srivastava (1987) also show a result in this framework for GeoN0(p) 
requiring this identity for two different values of i. 

(6.7) (Nagaraja, Srivastava 1987) Let F be non-degenerate, supp(F) C No 
and P(X1 = 0) > 0. Then F ~ GeoN0 (p) for some p E (0, 1) iff there exists a triple 
(s,n,i), 1 < s < n, i E N, such that 
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P(Xs,n - XI,n = j ]X l , n  = i,X2,n > Xl ,n)  = P (Xs - l , n -1  = j - 1 )  

for a l l j E N  , 

and there exists some k ¢ N, k > i, k + 1 and i + 1 relatively prime, such that 

P(Xs,n - Xl,n = j l X l , n  -~ k,X2,n > Xl ,n)  = e ( X s - l , n - 1  = j - 1) 
for a l l l _ < j _ < i  . 

For discrete distributions, Puri, Rubin (1970, r = l, n = 2), Ramachandran 
(1982), Zijlstra (1983, supp(F) C No) and Becker (1984) deal with the following 
general characterization result based on (2.5) with s = r + 1. Here ea denotes a 
degenerate distribution with mass in a E IR. Theorem (6.8) gives the answer to the 
question found in Galambos (1975b, p. 93). 

(6.8) (Puff, Rubin 1970, Ramachandran 1982, Zijlstra 1983, Becker 1984) Let 
F be some discrete distribution (i.e. supp(F) is countable). Then there exists a pair 
(r,n), 1 < r < n, such that 

X ~ + l , ,  - Xr , ,  ~ X l , , - r  

iff either 

i) F ~ e0 (F is degenerate) 
or ii) F ~Poeo  + (1 - p o ) e a  with p0 = (nr)-l/r~a > 0 ( f  has two mass points) 
or iii) F ~ p o e o + ( 1 - p o ) ( 1  - p),--,oo2_,m=l P.m letm with t > 0, 0 < P0 < (;)-1/~ and 

r 1 ---- p is determined by (~ )~ /=0( -  ) ' ( ~ ) ( 1 - p 0 ) i ( 1 - p ' - ~ ) / ( 1  _p , - , .+ i )  1. 
For every pair (r ,n) ,  1<_ r < n, there exist P0, P E (0, 1) satisfying this 
equation. (F is a mixture of a degenerate distribution and a geometric 
distribution). 

Puri, Rubin (1970) require an additional assumption for the support of F. 
Rossberg (1972) (see (2.5.1)) does not give the complete solution in the discrete 
case. However, it can be obtained by analytical methods. This is shown by 
Ramachandran (1982) using the Wiener-Hopf  technique. Rao (1983) (see (2.5.1)) 
applies the ICFE in the continuous case. Zijlstra (1983) and Becker (1984) con-. 
sider discrete distributions and make use of Shanbhag's (1977) lemma. 

As a corollary, Becker (1984) obtains explicit representations of the distribu- 
tion in (6.8) iii) for special cases. 

(6.9) (Becker 1984) Let F be discrete with more than two mass points. 

a) Then X2, n - -  X 1,n ~ X l , n  1 iff 

F ~  ( l  n - l n  1 1 - ~ )  e°+~m~°--in-ln ll-p"-p"- '(l-p)pm-'e~ m 

for some p ~ (0, 1) and t > 0. 

b) Then X3,, - X2,, "., X1, ,-2 (n >_ 3) iff F ~ ~m°°_oPmQm, t > 0 with 
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I - p "  ( ( 1 - p " ' ~ 2  ( 2 ) I _ - S ' ~  ~/2 
P0 = 1 1 - p" - '  ~- \ \1 --pT- f j  - 1 n ( n -  ~ 1 - pn-2) 

a n d p m = ( 1 - p 0 ) ( l - p ) p m - 1  m E N ,  pC(O, 1) . 

We now quote a result due to Puri (1966) characterizing geometric distributions 
by the identical distribution of X2,2 -XI,2 and a sum of two independent random 
variables. 

(6.10) (Purl 1966) Let supp(F) CN0,  0 <  1 - p = q = F ( 0 ) <  1. Then 
F ~ GeoN0(p) for somep  C (0, 1) iff 

x2,2 - x i , 2  ~ Y1 + 172 , 

where Y1 and Y2 are independent, Y1 ~ 1-@p e0 + ~ el (Bernoulli distribution) and 
Y2 ~ OeoN0 (p). 

Another result is based on two i.i.d, random variables characterizing discrete 
distributions by means of the distribution of the minimum conditioned on the 
sum of random variables. 

(6.11) (Galambos 1975b) Let F be non-degenerate, supp(F) c No such that if 
P(X1 = k) = 0 then P(X1 = m) = 0 for all m _> k. Moreover, let 9 and c be func- 
tions with 9(m) >>_ 0, c(m) > 0 for all m C No. Then P(X1 = k) = cg(k)v k for all 
k C No, for some v > 0 and a norming constant c iff 

m - 1  
P(X1,2 = k lXl  q-X2 = m) = c(m) 9(k) g(m - k), 0 < k < 

for all m E N, m odd satisfying P(Xl + X2 = m) > O. 

Galambos (1975b) discusses some special cases. E.g., taking c(m) = 2/(m + 1) and 
9(k) = 1 leads to a characterization of geometric distributions by the property 
that Xl,2 conditioned on X1 + X2 = m is uniformly distributed. Other choices yield 
characterizations of binomial, Poisson and discrete Pareto distributions. 

There are also characterizations of geometric distributions similar to results for 
exponential distributions based on (2.6). It is easily seen that the condition 

(6.12) P ( X l , n > k ) = P ( X l > k n )  fora l l  n E N  and k =  1 

characterizes geometric distributions. 

(6.13) (Galambos 1975b)Let  supp(F) c No. Then F ~ Geo~ ° (p) for some 
p E  (0,1)iffP(Xl,~ _> 1)=P(X1 >n) for all n_> 2. 

Bagchi (1989) requires (6.12) for two values of n and for all k E N. 

(6.14) (Bagchi 1989) Let supp(F) C No and F(0) < 1. Then F ~ GeoN0 (p) for 
some p C (0, 1) iff P(XI,, >_ k) = P(X1 >_ kn) for all k c N and for two incom- 
mensurable values 1 < nl < n2 of n (i.e., logn~ n2 is irrational). 
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Nei ther  assuming (6.12) for  all k and a single value of  n nor  for  all n and some 
k > 1 is sufficient to characterize geometr ic  distributions.  Bagchi (1989) considers 
some examples.  

Aly (1988) contr ibutes  the following theorem dealing with the distr ibution of  
the m i n i m u m  in a sample of  size n. 

(6.15) (Aly 1988) Let  supp(F)  = No (i.e., P(X1 = j )  > 0 for a l l j  E No) and let 
c > 0. Then  F ~ GeoN0(p) with p being that  roo t  o f  the equat ion  (c - n)x  ~ = 
c - nx ~-1 which lies in (0, 1) i f fP(Xl ,n  = j ,  X2,n - X l , n  ~ 1) = cP(XI ,n  = j )  for  all 
j E N 0 .  

Finally we summar ize  some character izat ion results o f  geometr ic  distr ibutions 
with suppor t  No due to Nagara ja ,  Sr ivastava (1987) which are usually referred to 
as character izat ions  by means  of  independence and condi t ional  independence (see 
also Naga ra j a  1992). 

(6.16) (Nagara ja ,  Sr ivastava 1987) Let  supp(F)  C No, P(X1 = O) > O, 
P(XI  = 1) > 0. Then F ~ GeoN0(p) for  s o m e p  E (0, 1) i f f there  exists a pair  (r, n), 
1 < r < n, such that  

P(Xr, ,  - X1,n = j lXI ,n  = O) = P(Xr,n - Xl,n = j lXl ,n  = 1) 

for  all j E supp(FXr."-x~.°). 

In the same pape r  we also find a theorem character izing modified geometr ic  type 
distr ibutions based on 

P ( X , , , - X r , n  = 01Xr,, = x ,  Xr,, > X r  1,n) 
=P(Xs,.--Xr,o=OIX ,n>Xr 1,n) 

for  a triple (r, s, n), 2 _< r < s < n, as well as a theorem character izing modified 
geometr ic  distr ibutions based on 

P(x . , .  -- Xr,. = j lXr , .  = 1, xr, .  > ,,.) 

= P ( X s , ,  - X ~ , ,  = j [ X r , ,  = 2 ,  X~,. >X~ a,,) 

for  a triple ( r , s ,n ) ,  2 < r < s < n, and for  a l l j  E supp(FXx."-x",°). 
For  more  details we refer to Nagara ja ,  Sr ivastava (1987). 
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Characterizations of Distributions by Recurrence 
Relations and Identities for Moments of Order 
Statistics 

Udo Kamps 

1. Introduction 

Recurrence relations and identities for moments  of  order statistics are often 
helpful in numerical computations as well as for theoretical purposes. They have 
been extensively investigated and we find a variety of results for arbitrary and 
specific distributions. 

The most important  recurrence relation for moments  of order statistics from 
arbitrary distributions is given by Cole (1951) in the continuous case and by 
Melnick (1964) in the discrete case and it is frequently used: 

(1.1) ( n - r )  E X ~ n ÷ r E X f f + l , n = n E X ~ n _ l ,  l < r < n - 1  . 

Let, throughout  this paper, X, X1,...,Am, n _> 2, be independent and identically 
distributed random variables with distribution function F, and let 
Xl,n _< " "  _< Am,,, denote the order statistics based on X1 , . . . ,X , .  

Using the integral representation of a moment  via the pseudo inverse of the 
underlying distribution function 

(:)/0' E x ~r,. = r ( Y - X ( t ) ) ~ t r - l ( 1  - t ) " - ~ d t ,  

(1.1) obviously holds true for arbitrary distributions. Moreover, the assumption 
of independence of X 1 , . . . , X ,  can be weakened; requiring exchangeable random 
variables turns out to be sufficient (David, Joshi 1968). 

(1.1) has the following interpretation. I f  all moments  of order ~ are known in a 
sample of  size n - 1 and if EXff~ is known for any i, 1 < i < n, then all moments  
of  order ~ in a sample of  size n can be computed. 

Here, the term "recurrence relation" is not used in the strict sense which means 
that it is not necessarily possible to reconstruct a whole system of moments  via 
some given set of  moments.  
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Identities for arbitrary distributions are shown in Govindarajulu (1963), David 
(1981), Arnold, Balakrishnan (1989), Balakrishnan, Cohen (1991), Arnold et al. 
(1992) and in the detailed review by Malik et al. (1988). Moreover, we point out 
the important results on recurrence relations and identities for the moments and 
distribution functions of order statistics from dependent random variables which 
can be found, e.g., in Young (1967), David, Joshi (1968), Balakrishnan (1987), Sathe, 
Dixit (1990), Balasubramanian, Bapat (1991), Balakrishnan et al. (1992), Balasu- 
bramanian, Balakrishnan (1993), David (1993) and Balasubramanian et al. (1994). 

The relation (1.1) can be modified to obtain 

iv/ - -  Y + l , n  - -  ,n  + l , n  - -  , n - 1  

(1.2) 
n E ~ ~ l < r < n - 1  ,n X r . n _  1 = r E X ¢  - EX~.+I,, , , n  ~ • 

The relations (1.2) are helpful to modify several identities shown in the sequel. 
For  reviews on recurrence relations and identities for moments of order statistics 
from specific distributions, we again refer to David (1981), Arnold, Balakrishnan 
(1989), Balakrishnan, Cohen (1991), Arnold et al. (1992) and to the detailed 
account of Balakrishnan et al. (1988). 

In the present article we focus on characterizations of distributions by 
identities and recurrence relations for moments of order statistics. If  not explicitly 
stated, the appearing expectations are always assumed to exist. 

In Section 2 we mention but do not review characterizations by sequences of 
moments and moment differences. Results of this type as well as characterizations 
by identities and recurrence relations are mainly based on complete sequences of 
functions. Several of these sequences are cited. Section 3 contains characteriza- 
tions of exponential distributions which are due to Govindarajulu (1975). Re- 
currence relations which are valid in classes of distributions and corresponding 
characterizations of distributions are subject matter of Section 4. There are also 
several characterization results which are based on a single identity in contrast to 
the ones deduced by means of a complete function sequence. Some of these results 
are cited in Section 5, and we refer to the literature on inequalities for moments of 
order statistics. Finally, we review some results based on product moments of 
order statistics including Govindarajulu's (1966) results for normal distributions. 

Other characterizations by means of order statistics are based on, e.g., iden- 
tically distributed functions of order statistics (see Gather, Kamps and Schweit- 
zer, Chapter 9), inequalities for moments (see Rychlik, Chapter 6), conditional 
moments and on the independence of functions of order statistics (cf Rao and 
Shanbhag, Chapter 8). 

Some characterization results based on identities for moments of order sta- 
tistics are also shown in Chapter 9 (Gather, Kamps and Schweitzer.) of this 
volume. Occasionally, the assumption of identically distributed functions of order 
statistics can be weakened to a corresponding moment condition. 

It should be noted that there are many characterization results based on 
conditional moments of order statistics. We do not review these results but refer 
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to, e.g., Ferguson (1967), Beg, Kirmani (1974), Galambos, Kotz (1978), Khan, 
Beg (1987), Khan, Khan (1987), Khan, Abu-Salih (1989), Rauhut (1989), Beg, 
Balasubramanian (1990), Mohie El-Din et al. (1991) and Balasubramanian, Beg 
(1992). 

Several of the results in this chapter, e.g., results via recurrence relations and 
inequalities for moments of order statistics, can also be shown for generalized 
order statistics. In Kamps (1995) a concept of generalized order statistics is 
proposed as a unified approach to a variety of models of ordered random vari- 
ables including, e.g., ordinary order statistics and k th record values. Well known 
results for ordinary order statistics and record values can be subsumed, gener- 
alized, and integrated within a general framework. Hence, these results are also 
valid in other models of ordered random variables such as sequential order sta- 
tistics, Pfeifer's records and k.-records from non-identical distributions. 

2. Characterizations by sequences of moments and complete function sequences 

Hoeffding (1953) showed that the expected values (gXr,n)l<_r<_n,nc N characterize 
the underlying distribution function, if the first absolute moment exists, The 
assertion remains valid, if only the sequence of minima (EXI,~),E~S or if the se- 
quence of maxima (EXn,,)nc~ is known (Chan 1967, Konheim 1971). Pollak 
(1973) assumes knowledge of some subsequence (EXr(n),~),~rs, choosing for each n 
some r(n) with 1 _< r(n) <<_ n. 

However, by this the original assumption of Hoeffding is not really weakened. 
The whole triangular array of expectations of the order statistics can be recon- 
structed by the cited sequences of moments via relation (1.1) as pointed out by 
Mallows (1973) and Kadane (1974). 

Interesting results can easily be obtained. The following examples are shown in 
Galambos (1975). 

(2.1) 

1 
i) I f E X I , , = -  V n E N ,  t h e n F ( x ) = l - e  -x, 

t/  

1 
ii) IfEXl,n n + l  V n E N ,  t h e n F ( x ) = x ,  

x > 0 .  

xE (0, 1). 

The connection between characterizations of distributions by moments of order 
statistics and the completeness of certain function sequences is indicated by the 
following. Let the random variables X and Y be distributed according to F and G, 
respectively. Thus, if the expectations EXr,n and EYr,n of order statistics coincide 
for some sequence of indices, then 

fo'  (F l ( t )  - -  G - l ( t ) ) t r - l ( 1  - -  t ) n - r d t  = 0 

yields the equality of F and G via a complete function sequence. 
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(2.2) (cf Hwang ,  Lin 1984a) Let L6(A) be the space of  ~-integrable functions 
on a measurab le  set A C 1R. A sequence ( f , ) ,cN of  functions in L6(A) is called 
complete  on L6(A), if  for  all functions g E L6(A) the condi t ion 

implies 

f g(x)f.(x) = o v .  N 

g(x)=O a.e. on A . 

Nota t ions:  L6(A) = La(a, b), i fA = (a, b); L(a, b) = L1 (a, b). 

We now list some complete  sequences of  functions. The  Mfintz-Szfisz l emma 
permits  the choice o f  a real subsequence of  Hoeffding 's  t r iangular  scheme; this 
result dates back  to Mfintz (1914), Szfisz (1916) and it is cited, e.g., in Boas (1954), 
Hwang,  Lin (1984a) and Lin (1989a). 

(2.3) (Mfintz 1914, Szfisz 1916) L e t  (rt j) jc N C N with nl < n2 < " - ' .  Then the 
sequence (x'J)jcN of  polynomials  is complete  on L(0, 1), i f f  ~fc~__ 1 n f  I = OO. 

OO In the sequel, a sequence (nj)jc N C N with nl < n2 < . . '  and ~ j = l  nj 1 ~ OO is 
called a Mfintz-Szfisz sequence. As an example  it m a y  be used to modi fy  the 
assertions (2.1). A generalizat ion of  this l emma is given in 

(2.4) (Hwang  1983) L e t f  be an absolutely cont inuous  funct ion on a bounded  
interval [a,b] with f ( a ) f ( b )  >_ 0 and If1(x)l _> k > 0 a.e. on [a,b]. Moreover ,  let 

OO (rlj)j6 N C N be a subsequence of  N with nl < n2 < • .. a n d  ~ j = l  nj 1 ~ O(3. Then 
the function sequence (f',(x))j~ N is complete  on L(a, b), i f f f  strictly increases on 

[., hi. 
The assert ion (2.4) remains valid, if the assumpt ion  I f (x) [  _> k > 0 a.e. on [a, b] is 
replaced by f ' (x)  ¢; 0 a.e. on (a, b) (cf Hwang,  Lin 1984a,b). In order  to modi fy  
the condi t ion imposed  on the funct ion f ,  a theorem of  Zaretzki  (cf Na t anson  
1961, Lin 1988b) can be applied. 

(2.5) (Zaretzki)  I f  f is a cont inuous  and strictly increasing funct ion on a 
bounded  interval [a,b], then f - I  is absolutely cont inuous  on [ / (a) ,  f (b ) ] ,  iff 
f ( x )  ¢ 0 a.e. on (a, b). 

In (2.6) we show some results on the completeness  of  sequences 

(X r-1 (1 -- x)n-r ) (r ,n)Ei  j . 

(2.6) For  any se t  I j  of  pairs o f  indices (r,n), 1 < r < n, the sequence of  
polynomials  (x r- l  (1 - x)'-r)(~,,)elj is complete  on L(0, 1): 

Ii = {(r,n)l let # E N fixed; for  each n > # choose some r = r,, 1 _< r~ _< n, with 
ru < r,  < ru + n - #} (Huang  1975), 

I2 = {(r,n)l  for  each n > 2 choose some r = r~ with 1 _< t", < n} (Huang,  H w a n g  
1975, see Hwang ,  Lin 1984a, p. 187), 
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/ 3 - { ( r , n ) l  each n E ( n j ) j c  ~ with n j -~oo , j - - -+oc ,  is combined with all 

r = rj, rj E {1, . . . ,n j}}  (Hwang 1978), 

14 = {(r,n)l for given sequences (nj)jcN, (/~/)j~N C N satisfying /~j+a > nj > 
cX? nj /~/> 1,j E N and ~/=1 ~ = ~ ;  ~ -- co, each n E ( n j ) j ~  is combined with 

all r = r/, rj E { # j , . . . ,  nj}} (Hwang, Lin 1984a). 

When deriving characterization results via a complete function sequence argu- 
ment, different sequences of polynomials can be chosen as shown above. In all 
such results shown in the sequel it then has to be ensured that the corresponding 
function 9 in the sense of (2.2) is integrable. In the following, the appropriate 
conditions are not always stated explicitly (cf (4.3)). Since such integrability 
conditions are obvious, they are omitted and implicitly assumed. 

Characterizations of distributions by sequences of moments, results on the 
completeness of certain function sequences and many other facts and inv- 
estigations may be found in Arnold, Meeden (1975), Galambos (1975), Gala- 
mbos, Kotz (1978) and in a series of papers by Huang, Hwang and Lin (see e.g., 
Huang 1975, Hwang 1978). The articles by Hwang, Lin (1984a), Huang (1989) 
and Lin (1989a) are reviews on this topic. 

In the above references we also find characterizations by sequences of moment 
differences. 

(2.7) (Lin 1988b) Let F -1 be absolutely continuous on (0, 1), E[X[ < co, and 
(nj)j~ N c N a Miintz-Szfisz sequence. Then the sequence (g(Xl ,nj-  Xl,n/+l))j~ N 
characterizes the distribution function F up to a location parameter. 

As corollaries from (2.7), Lin (1988b) shows characterizations of exponential and 
uniform distributions similar to those in (2.1). 

(2.8) (Lin 1988b) Under the conditions of (2.7) we find 

i) E(Xl .n j -X ln /+l ) -  . . . .  j(nT+l ) 1  for all j c N  iff F ( x ) = l - e x p ( - ( x - I ~ ) ) ,  

x E (/~, oo) for some/~ E IR. 

ii) E (XI ,+-X~.++I ) -  1 for all j c N  iff F ( x ) = x - c , x E  ( c , c +  1) for 
, ( n j+ l ) (n j+2 )  

some c ~ IR. 

Lin (1988b) also presents an analogue of (2.7) concerning a sequence of expected 
spacings. 

(2.9) (Lin 1988b) Let r E N and let the conditions of (2.7) be fulfilled. Then 
the sequence (E(Xr+I,+ - Xr,+)),s~+l characterizes the distribution function F up 
to a location parameter. 

For earlier results and more details we refer to, e.g., Govindarajulu et al. (1975), 
Saleh (1976) and Madreimov, Petunin (1983). 

Furthermore, there are characterizations of exponential distributions by id- 
entical expectations of 
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Xrj,,,, and ~ "  l - -  i + 
i=1 J 

for suitable sequences (rj, n j ) jc  N of  indices (cf Gather ,  K a m p s  and Schweitzer, 
Chap te r  9, Section 2.4, Ahsanul lah,  R a h m a n  1972, Kotz  1974, H u a n g  1974a,b and 
K a m p s  1990, 1992b). 

3. Characterizations of exponential distributions 

Govindara ju lu  (1975) presents characterizing recurrence relations which are 
shown in this section (see also Azlarov,  Volodin 1986, Chap te r  6). The charac-  
terizing propert ies  are assumed to hold true for  all sufficiently large sample sizes 
n E N.  Obviously,  the results can be weakened by applying complete  sequences of  
functions as in t roduced in the previous section. 

Let, th roughou t  this section, (X/ ) i~  be a sequence of  i.i.d r a n d o m  variables 
with some non-degenera te  distr ibution funct ion F,  F ( 0 ) =  0 and EX 2 < oo. 
Moreover ,  let X0,~ = 0 and F ~ exp(2) denote that  F is the distr ibution funct ion 
of  an exponent ia l  distribution: 

F ( x )  = l - e  -;~,  x > O, 2 > 0  . 

(3.1) (Govindara ju lu  1975) F ~ exp(2) iff 

E X / 2 + I , n _  EX[ 2  __ 2 i,. (n - i)2 EX/+I.  for  some i 6 No and for  all n > i + 1 . 

Applying  relation (1.2), this result can also be stated as follows. 

(3.2) (Govindara ju lu  1975) F ~ exp(2) iff 

2 
E~!~ - EX 2 - - - E X / ~  for  some i C N and for  all n > i 

, i - l , n  1 - -  n ) ~  ' - -  " 

(3.3) (Govindara ju lu  1975) F ~ exp(2) iff 

Var  X/__I, n - Var Xi,. = (EX/+I,n - EJ(.,.) 2 

for s o m e i E N 0  and for a l l n _ > i + l  . 

The condit ion in (3.3) can be rewrit ten as 

(3.4) EX/21,, - EX/2, = 2EX/+I,,,(EA~,.+1, - EA~,.,,) . 

Apply ing  (1.2), the assert ion (3.3) can also be stated as follows. 

(3.5) (Govindara ju lu  1975) F ~ exp(2) iff 
Var  X/,. - Var  X/ 1,.-1 = (EX,-,. - F~,_I, .  1) 2 

for  s o m e i E N a n d f o r a l l n > i  . 
Fo r  i _> 2, the relation in (3.5) can be rewrit ten as 
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(3.6) g x / 2 1 ,  n - EX,!, 1 = 2E~+l, ,(EX,.+l,n- EXm_, ) . 

Applying (1.1) to both sides we obtain (3.4). Other characterizations make use of 
covariances between order statistics. 

(3.7) (Govindarajulu 1975) F ~ exp(2) iff 

Var X/~, = Cov(X,.,,,,X/+l,n) for some i E N and for all n >_ i . 

(3.8) (Govindarajulu 1975) F ,,~ exp(2) iff 
1 n 

Var X,., -- ~ Cov(Xi, , ,Xj, ,)  
' n - i j  i + l  

for some i ff No and for all n > i + 1 . 

(3.9) (Govindarajulu 1975) F ~ exp(2) iff 

Cov(Yi,n,Yk,n) = Cov(Yi,n,Xk+l,n) 

for some i E No, k _> i, and for all n > k . 

I f  the rhs of  the characterizing identity in (3.10) is replaced by the constant 1, we 
obtain a characterization of the standard normal distribution (see (6.6)). 

(3.10) (Govindarajulu 1975) Let EX1 = 1/2. F ~ exp(2) iff 

n 

Cov(X,,.,xj,.) 1 = ~ EXi,, for some i E N and for all n > i . 
j=l 

4. Related characterizations in classes of  distributions 

Numerous articles on recurrence relations for moments  of  order statistics from 
specific distributions are found in the literature. For detailed surveys we refer to 
Balakrishnan et al. (1988) and Arnold, Balakrishnan (1989). The results can often 
be described as rather isolated; explicit expressions for the moments  of  some 
distribution lead to an identity. A step towards a systematic treatment is shown in 
Khan  et al. (1983) and Lin (1988b). They derive a representation for the difference 
of moments  of successive order statistics. Putting in special distributions leads to 
similar recurrence relations. Govindarajulu (1975) and Lin (1988b) state corre- 
sponding characterization results assuming the validity of some identity for a 
certain sequence of order statistics. 

Lin (1988b) considers relations for uniform, Pareto, exponential and logistic 
distributions of  the form 

EX~, - EX~_ I, , = c~ c( r, n, p, q ) EX~+ lp,,+q 

with integers p, q and certain constants c(r, n,p, q), and presents corresponding 
characterization results by applying a Mfintz-Szfisz sequence (cf (2.3)). 
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Motivated by the fact that there are similarly structured relations, a unified 
approach to several identities is shown in this section (cf Kamps 1991b). We 
proceed as follows. The starting point is a parametrized recurrence relation. 
Following, a characterization set-up may lead to a corresponding family of  dis- 
tributions applying an appropriate complete sequence of functions. Going 
backwards, the strong assumptions are dropped and the relation is verified within 
this class of distributions under mild conditions. This approach provides an in- 
sight into structural properties and relationships of several probability distribu- 
tions. Moreover, isolated results can be subsumed and well known results can be 
generalized with respect to the parametrization of the underlying distribution and 
to moments of non-integral orders. This method is demonstrated for the class @ 
of distributions introduced in Kamps (1991b). 

More generally, results of this type can be shown for generalized order statistics 
including the assertions for ordinary order statistics as well as identities for records 
and other models of ordered random variables (cf Kamps 1995, Chapter lII). 

Let Y be the class of distribution functions F, where F is given by the first 
derivative of its pseudo inverse function: 

(4.1) (F_~),(t)  = l tP(1  _ t)q-p 1 t C (0, 1) 

with a constant d > 0 and integers p,q. 
All possible pseudo inverse functions with (4.1) are shown in Kamps (1995, pp. 

119-121) and particular distribution functions out of Y are given by, e.g., (c E IR) 

F(x)  = 1 - exp{-d(x  - c)}, x E (c, oo) (exponential distributions) , 

F(x)  = 1 - (dq(c - x))  1/q, 

q>0  
(q < 0: Pareto, Burr XII distributions) , 

F(x )  = (dq(x - e) ) l/q, 

q>0  
(q > 0: power function distributions) , 

F(x )  = (1 + exp{-d(x  - c)}) - l ,  x E ( -oc ,  ec) (logistic distributions) . 

For any F E 2 ,  (4.2) shows a corresponding recurrence relation for the moments 
of order statistics. The constant c(r, n ,p ,  q) appearing in the equations turns out 
to be the expectation of a certain spacing. We restrict ourselves to positive mo- 
ments. In the case of  negative moments, regularity conditions concerning the 
support have to be made. Using the representation 

EXr~,, - EX; l,,, = c~ ( X - I ( t ) ) ~ - l ( F - 1 ) ' ( t ) t  r '(1 - dt 
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we derive 

(4.2) (Kamps 1991b) Let the appearing order statistics be based on some 
distribution function F E ~ ,  let c~ _> 1 be a constant and F l (0) > 0, if e ~ N. 
Then for all r, n E N, 2 < r < n, satisfying 

1 <_r+p<_n+q  

and 

EX~- 1 < EXL, r+p,,+q EX¢ 1,., < oc , 

the identity 

n, p, q) EXr+p,n+ q 

is valid where the constant c(r, n,p, q) is given by 

1 (21) 
c(r,n,p,q) = EX~,. - EXr-l,. = d (r + p) (.+q. ~ 

V+p/ 

Assuming the validity of the recurrence relation in (4.2) for an appropriate se- 
quence of pairs of indices ((rj, nj))je~s, the correspondingly parametrized distri- 
bution function in the family Y can be characterized. The sequence has to be 
chosen such that the sequence of polynomials 

{ t rJ - l (1- t ) ' J -~J+l} j (or{ (1- t ) ' i } j )  

is complete on the space L(0, 1). Appropriate sequences are shown in Section 2. 
Such a characterization of the exponential distribution is given by Govindarajulu 
(1975) (see (3.1)) in the case e = 2. Lin (1988b) obtains characterizations of ex- 
ponential, uniform, Pareto and logistic distributions applying the Mtintz-Szfisz 
Lemma (see (2.3)). 

The results are contained in 

(4.3) (Kamps 1991b) Let the order statistics be based on the distribution 
function F, let F -1 be absolutely continuous on the interval (0, 1) and let c~ _> 1 be 
a constant with 

]{tE(O, 1);F-I( t )=O}lC{O,  1}, ~ c N ,  c¢>2 

F -l( t)  > 0  for all t E ( 0 , 1 ) ,  c¢~N . 

Moreover, let integers p,q and a sequence ((rj.,nj))j~N according to the above 
remark are given satisfying the conditions 

2 <_ rj <_ nj, 1 <_ r j + p  < n j + q  
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and 

0~ 
--OO ~ EYr/,nj~ lS gg F Yc~-I ~Xrj  l,nj~ ~'rj+p~n/+ q ~ O0 

for all j ~ N. 

iff 

with 

Then for some constant d > 0 we have 

(F 1)'(t) = l tP(1  - t) q-p-1 a.e. on (0, 1) , 

o: ~--i EXr~,n / - EX;/ 1,n/ =- 7c(rj ,  nj,P,q)EXr,+p,r,/+q 

(+) 
1 ri-l c(rj, nj ,p,  q) 

= d 

for all elements of  the sequence ((r/, nj))/cN and assuming 

(F l ( t ) ) ~ - l ( d ( F - 1 ) ' ( t ) - t P ( 1 - - t )  q-p-l)  C L(0, 1) . 

I f  r C N is fixed (e.g., using sequences according to the lemma of Mtintz, Szfisz, cf 
(2.3)) the constant d may depend on r. Applying another complete function 
sequence (see (2.6)), an appropriately modified integrability condition is required. 
The characterization result itself is less important  in view of the strong assump- 
tions. However, this approach leads to a class of  distributions the elements of  
which are related by a similar recurrence relation for moments  of  order statistics. 
In this regard, the characterization set-up works as a method for a systematic 
treatment of  recurrence relations. 

The relation in (4.2) involves moments of  orders ~ and c~ - 1. A more general 
relation is shown in Kamps  (1992a) with moments  of  order c~ +/?  on the lhs and a 
moment  of  order ~ on the rhs of  the identity choosing ~ E ]R,/~ _> 0 and c~ + fl ~ 0. 
Characterizations can be derived by analogy with (4.3) using appropriate com- 
plete sequences of  functions. Several distributions possess recurrence relations of  
this type such as Weibull, power function, Pareto, Burr XII,  logistic distributions 
and logarithmic and reflected versions of  them. Some equations are shown earlier 
in Khan  et al. (1983) for Weibull distributions and in Khan, Khan  (1987) for Burr 
XII  distributions. For  more details and examples we refer to Kamps  (1992a) and 
to Kamps  (1995, pp. 129-133). 

A general identity for expectations of  functions of  order statistics is shown in 
Kamps,  Mattner  (1993). Let F C ~ 7  r, n ,p  and q be integers with 2 < r < n and 
1 _< r + p _< n + q. Then the relation 

(4.4) E(y(Xr,~) - 9(X,--1,n)) = c(r, n,p, q)Eqt(Xr+p,n+q) 
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holds true for every absolutely continuous function g provided that the rhs in 
(4.4) exists and with c(r, n ,p ,  q) as in (4.2). 

The choice g(x) = x ~ yields the equations in (4.2). Putting g(x) = x ~/~+1 with 
E IR,/3 > 0, a +/3 ¢ 0, and rewriting the results in terms of Y = (fiX) 1/~ leads to 

relations for moments of orders a +/3 and a valid in a transformed, and by this 
enlarged, class of distributions as shown in Kamps (1992a). Putting similarly 
g@) = e= and Y = e x yields identities involving moments of order c~ only. 
Choosing g(x) = e itx, t C IR, we obtain 

qOr,n(t ) -- (p,. 1,n(t) = ciGo,.+p,n+q(t) , 

where ~oj,~ denotes the characteristic function of Xj,n. Such identities for charac- 
teristic functions may be useful since simple explicit expressions are not available 
in general. Explicit expressions are available for power function distributions 
(Malik 1967), Pareto distributions (Malik 1966), and for the logistic distribution 
(Balakrishnan, Cohen 1991, p. 38). 

Characterization results based on (4.4) can easily be obtained. Let F be strictly 
increasing on its support and p, q and d fixed. If (4.4) holds for some fixed 
function g, with g'(x) ¢ 0 except for isolated points, and all r and n, then F is 
necessarily contained in ~ .  In fact, not all r and n are needed, applying certain 
complete sequences of functions as in (4.3) (in (4.3): g(x) = x~). If instead (4.4) 
holds for a fixed pair (r, n) and for a sufficiently rich class of functions g, then 
F ~ ~ follows again. 

Another parametrized recurrence relation for a class of distributions including 
Cauchy and doubly truncated Cauchy distributions as well as a corresponding 
characterization result are shown in Kamps (1995, pp. 134-137). 

Finally, we cite further results of Lin (1988b) and Dimaki, Xekalaki (1993). 
For  power function distributions, Lin (1988b) derives three characterizations by 
identities for moments of order statistics. 

(4.5) (Lin 1988b) Let r ,p ,  q E N, EIXI ~ < cxD for some ~ E N, c~ > p, and let 
(nj)jc ~ be a Mi;mtz-Sz/~sz sequence (cf (2.3)). Then for a given constant 2 > 0, the 
following statements are equivalent: 

i) F(x )  = (x /2)P/q,x  E (0,2), 

ii) EX2, 9 = ,~PF~r~Pna+q, for all nj >_ r, 

--- ~P ( E X a - P  _ E X  a p "~ iii) EX2,j "~ ~, r+q-l.ny+q-I r+q_l,ni+q] for all nj > r, 
c~ ~Pl~ yC~-p iv) E X ~  - EX~,,,j+~ = for all nj > r. "~ ~ ' r + q + l , n i + q + l  

Dimaki, Xekalaki (1993) show characterizations of Pareto distributions with 
distribution functions 

F(x)  = 1 - v x  -~, 

via 

v < _ x < o c ,  v > 0 ,  ~ > 0  

(4.6) 
i) 2 for all i E N  and n > i + l ,  and g x t : + l , n  __ gff(i.2n __ 2 E X - 2  , o~(n-i) i+l,n 

ii) EXi21,n - EX2i,n-1 __ ~2 EX2i+l,~ for all i E N and n _> i + 1. 
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The identity in (4.6) i) is shown in Kamps (1992a) for moments of arbitrary order. 
The relation (4.6) ii) is obtained from (4.6) i) by using (1.2). 

5. Characterizations based on a single identity 

In the previous sections, complete function sequences have been used to obtain 
characterization results based on identities for moments of order statistics. In 
other words, the validity of infinitely many identities has been required. Other 
characterizations can be found which are based on a single relation. We cite a 
result of Too, Lin (1989) and refer to characterizing relations which arise from 
characterizations via identically distributed functions of order statistics. Most 
important, there is a variety of results on inequalities for moments of order 
statistics. Arnold, Balakrishnan (1989) present an excellent annotated compen- 
dium of such results. We also refer to Rychlik's contribution to this volume 
(cf Chapter 4). If it is possible to characterize equality in some inequality for 
moments, we obtain a characterization of a probability distribution. In contrast 
to the ones deduced by means of complete function sequences, characterization 
results are derived under mild conditions and, simultaneously, recurrence rela- 
tions are obtained for those distributions characterized by equality. We now cite 
only some of these characterizations. 

First results on bounds for moments of order statistics date back to Plackett 
(1947) and Moriguti (1951) and are then generalized by Gumbel (1954) and 
Hartley, David (1954). We have: 

Let EX1 = 0 and EXI 2 = 1. 
Then 

n - 1  

( 2 n -  1) 1/2 ' 

and we find equality iff F is a special power function distribution: 

F(x) (l +bx) 1/('-11 n-1 
= - -  , b - ( 2 n _ l )  1/2' 

( (2n - 1)1/2 ) 
X E (2/I/ -- 1) 1/2 

r / - -  1 1 

Lin (1988a) applies the Cauchy-Schwarz inequality to representations of mo- 
ments of order statistics and record values to obtain characterization theorems for 
uniform and exponential distributions, respectively. 

(5.1) (Lin 1988a) If EX 2 < oo and 2 < r < n, then 

r/'/ 2 
(EXit,n) 2 5 ( r -  1)(H-]- 1 ) E X r - l ' n - I  
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with equality iff F is the distribution function of a degenerate distribution at 0 or 
of  a uniform distribution on (0, c) for some c > 0. 

Thus, results of  this type, i.e., characterizing equality in an inequality for mo- 
ments, lead to bounds for certain moments  of  order statistics as well as to new 
recurrence relations for moments  with respect to the distributions characterized by 
equality. 

In particular, we observe that fixing only two or three moments  is sufficient to 
determine the corresponding distributions uniquely; this fact is pointed out by Lin 
(1988a) (cf (5.1) and (5.5)). 

Theorem (5.1) directly implies the example (5.5) of Too, Lin (1989) which can 
also be deduced from (5.4). The result is remarkable in view of the variety of 
characterization theorems (see Sections 2, 3, 4) in which assumptions are imposed 
on a sequence of moments.  

The results of Lin (1988a) are taken up in Gajek, Gather  (1991) and Kamps  
(1991 a) and are generalized with respect to appearing powers and indices of  order 
statistics and records applying H61der's inequality and its inverse version (see 
Mitrinovi6 1970, p. 54, Beckenbach, Bellman 1961, p. 21/2). 

(5.2) (Gajek, Gather  1991) Let F be non-degenerate, cq, ~2, E IR, e = c( 1 -~ C(2, 
p l , p 2 c l R \ { O ,  1} ,n ,nl ,n2,  r, r l , r 2 E N ,  1 <_rl <_nl, 1 <_r2 <_n2, 1 < r < n  such 
that p [ l  +p~-i = 1,n = nlp~ 1 + n2P21 and r = r lPl  1 + r2p~ 1. Then we have for 
pl > 1: 

(~/'Q:)I -I ~ nl 15clpl) |/p' 

1 1/1~ 

The inequality holds with the reverse sign if 0 < pl < 1 or pl < 0 and it is gen- 
erally assumed that the upper bound is finite. 

The equality sign holds iff for some constant c > 0 

ir-l(l)l~lp,-e2p2 = ctrz-r,(l _ t)n2 r2-n,+rl for all t E (0, 1) . 

For several examples and particular cases of  (5.2), e.g., r l - - - r2  and 
na - r2 = nl - rl, we refer to Gajek, Gather  (1991). A similar result involving two 
moments  of  order statistics is shown in Kamps  (1991a). 

(5.3) (Kamps 1991a) Let F be non-degenerate, e > 0,p > 1, 1 < r < n, 1 _< 
i _< j <_ n satisfying n - r = j - i, F 1 ( 0 - ] - )  ~ 0 and EX ~p < oc. Then we have 

l-l/p 
× \(F(rp\p _-i~(lJ F (_(n + 1)p- (j + 7 _ ~  1 1).))-1 , (E~ ' )  I/p,,Jj 
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In the case i < r we have equality iff F is the distribution function of a power 
function distribution: 

F(x) = c-(P-I)/(P(r-e))x~(P ~)/(r-~) X E (O,c 1/~p) for some c > 0 . 

More details and further results using Jensen's inequality and inequalities of Diaz, 
Metcalf and P6eya, Szeg6 can be found in Kamps (1991a) and Kamps (1995, 
Chapter IV). Moreover, results of this type are valid for generalized order sta- 
tistics (cf Kamps 1995. Chapter IV) such that related inequalities hold true in 
several models of ordered random variables including order statistics and record 
values as particular cases. 

Too, Lin (1989) show characterizing recurrence relations for moments of order 
statistics and record values. If the existence of the appearing moments is ensured, 
then we have for p E N: 

(5.4) (Too, Lin 1989) 

1 2 ,  - 2 ( ( r + P ) ( ~ + p j j  E X r + p , n + p  

+ (r + 2p) + 2 p  = 0  

iff F is the distribution function of a power function distribution with 
F(x) = xl/P,x E (0, 1). 

The above theorem states that, without any further assumptions, two particular 
moments of order statistics characterize the underlying distribution function, if 
the identity in (5.4) is satisfied. The interesting and remarkable special case (5.5) is 
a simple consequence of  (5.4). 

(5.5) (Too, Lin 1989) 2EX 2 = E X 2 , 2 = 2  iff e ( x ) = x ,  x E ( 0 , 1 )  . 

Finally, we point out that characterizing moment relations can also be found in 
Chapter 9 of  this volume (cf Gather, Kamps and Schweitzer, Chapter 9 (2.3.3), 
(2.5.2)). Occasionally it is possible to weaken the assumption in characterization 
results based on identically distributed functions of  order statistics. It may be 
sufficient to consider corresponding moment equations. F ~ exp(2) denotes that 
F is the distribution function of an exponential distribution with parameter 
2 > 0 : F ( x ) = l  e -Z~,x>0.  

(5,6) (Ahsanullah 1981, cf Chapter 9 (2.3.3)) Let F be absolutely continuous, 
supp(F) = (0, oc) and IFR or DFR. Moreover, let EX1 < oc. Then F ~ exp(2) iff 
there exists a pair (r,n), 2 < r < n ,  such that EDr,, = EDr_I,. with Dl,n = nXl,, 
and Dr,, = (n - r +  1)(X,.,, - Xr-l,,), 2 < r < n. 

(5.7) (Iwifiska 1986, Gajek, Gather 1989, cf Chapter 9 (2.5.2)) Let F be ab- 
solutely continuous, F - I ( 0 + ) =  0, strictly increasing on (0, oo) and NBU or 
NWU. Then F ~-. exp(2) iff there exists a triple (r,s, n), 1 _< r < s _< n, with 

E/~s ,  n - E ~ r ,  n = E ~ s _ r , n _  r . 
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6. Characterizations of normal and other distributions by product moments 

In the previous sections we dealt with recurrence relations and identities for single 
moments of order statistics. There is also a variety of relations for product mo- 
ments of order statistics from arbitrary and specific distributions. Surveys of such 
assertions are given in Balakrishnan et al. (1988), Malik et al. (1988) and Arnold, 
Balakrishnan (1989). We now review related characterization results of Gov- 
indarajulu (1966) and Lin (1989b). Some of Govindarajulu's (1966) character- 
izations of normal distributions are generalized by Lin (1989b). For  further 
details on moments of order statistics from normal distributions we refer to David 
(1981, Chapter 3.2) and Arnold et al. (1992, Chapter 4.9). 

Let F be non-degenerate, E X  2 < OO and let 

S • 
(b(x) = (2~) 1/2 exp(-y2/2)  dy, x C IR , 

oo 

be the distribution function of the standard normal distribution. 

(6.1) (Govindarajulu 1966) 

EX,~2., - E(X,_I,,X,,,) = 1 for all n >_ 2 

iff there exists A E I-co,  co) such that F(x)  - ~(x)-~(A)l ~(A) , X E (A, oc). 

Replacing)( /by - X / i n  (6.1), 1 < i < n, we obtain 

(6.2) (Govindarajulu 1966) 

EX2, - E(XI,nXz,n) = 1 for all n > 2 

iff there exists B E ( - e c ,  oc] such that F(x)  = 4~(x) ~-~, ~c  ( -~ ,B) .  

(6.3) (Govindarajulu 1966) Let F(0) = 0. 

E(XI , ,Xj , , )=I  for all n>_2 iff F ( x ) = 2 ( b ( x ) - l ,  x E ( 0 ,  oc) . 
j = l  

Replacing Xi by - X / i n  (6.3), 1 < i < n, leads to 

(6.4) (Govindarajulu 1966) Let F(0) = 1. 

~ E ( X j , , X , , , )  =1 for all n_>2 iff F ( x ) = 2 ~ b ( x )  1, x E  ( - o c , 0 )  . 
j = l  

(6.5) (Govindarajulu 1966) Let EX = 0. 

n 

Z E(X/,,Xj,~) = 1 for some i E N and all n _> i 
j = l  

iff F(x)  = q~(x), x E IR . 
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The assertion (6.5) can be formulated in terms of  covariances since E X  = O. 

(6.6) (Govindarajulu  1966) Let E X  = O. 

~ Cov(Xi,,,,Xj,,~) = 1 for some i E N and all n _> i 
j = I  

iff F(x)  = q~(x), x E IR. 

On applying the representat ion 

j k = n! 
E(X;"cV;'") (r - 1)!(s - r - 1)!(n - s)! 

foo 1 J l ( F - I ( u ) ) J ( F  I(v))ku~-I(V-- u) s-~ ~(1 -- v)n-" dvdu  
g 

1 < _ r < s < _ n ,  j , k ~ N o  , 

for product  moments  of  order  statistics f rom arbi t rary distributions, Lin (1989b) 
derives characterizat ions of  uniform, exponential  and normal  distributions. The 
results use the Mtintz-Szfisz theorem (cf (2.3)); thus the following assumption is 
made. 

(6.7) Let  (ni)icN be a sequence of  integers satisfying 

1 
2 _ < n l < n 2 < . . .  and Z 2 = o c  . 

i=1 t 

The first result of  Lin (1989b) characterizes uniform distributions via a relation 
between single and product  moments.  

(6.8) (Lin 1989b) Let  g l x I  = < oo for some e _> 1, F - l (x)  > 0 for x E (0, 1) 
and F - l ( 0 + ) =  0. Moreover ,  let (6.7) be given and let 2 > 0. Then F ~ R[0,2] 
(i.e., F(x) = x / 2 ,  x E (0,2)) iff there exists a tuple ( j ,k) ,  j , k  E N 0 , j + k +  1 _< c~, 
such that 

( X  j X, k "~ 1 niEXJ+k+ I E \  1,hi 2,,~J = 2 ( / ' + 1 )  1,,,-1 f o r a l l  i E N  . 

In the special case j = k = 0 the characterizing proper ty  in (6.8) reduces to 
EXI,,,_I = 2/ni for  all i E N which is a well known characterizat ion of  uni- 
form distributions (see (2.1), Galambos,  Kotz  1978, p. 55, and Gather ,  Kamps  
and Schweitzer, Chapter  9). 

(6.9) (Lin 1989b) Let F -1 be absolutely cont inuous on (0, 1), EIXI ~ < oc for 
some c~ 2 1, F-1 (0) = 0, F 1 (x) > 0 for x E (0, 1). Moreover ,  let (6.7) be given and 
let 2 > 0. Then F ~ R[0, 2] iff there exists a triple (r, j ,  k), r, k E N,  j E N 0 , j  + k _< c~ 
such that 

\ , • , , /  r,ni ni  + 1 \ ~,n~+l ~+l,,,,+lJ for all ni ~ r + 1 . 
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With the same lhs as in (6.9), Lin (1989b) also obtains a characterization of 
exponential distributions. 

(6.10) (Lin 1989b) Let the conditions of (6.9) be given. Then F ~ exp(2) iff 
there exists a triple (r , j ,  k), r, k 6 N , j  E N0, j  + k < c~ such that 

E ,niXr+l . . . .  i 2 ( r £ - - ? ' ) ~ k  r'ni~'r+l'ni, ] for all ni > r + 1 . 

In the special case j = 0, (6.9) and (6.10) simplify to the relations between single 
moments of order statistics as shown in Lin (1988b) (cf Section 4). Moreover, Lin 
deals with an extended normal distribution with distribution function 

O,(x) = exp~--4-Z~ / d t  e x p ~ - ~ / ; / d r ,  x E IR, k 6 N . 
OO 

The following theorem extends Govindarajulu's (1966) characterization of trun- 
cated normal distributions (cf (6.1)). 

(6.11) (Lin 1989b) Let EX 2k < oc for some k E N and let (6.7) be given. Then 

EX;2 L _ E(X,,_,,n,X/,i,n, ) -- 1 for all i ~ N iff 

F ( x )  = Ok(x) - Ok(A) 
1-Ok(A)  ' x E ( A ,  ec) for s o m e A _ > - e c  . 

The following result generalizes a characterization of the standard normal dis- 
tribution due to Govindarajulu (1966) (cf. 6.5)). 

(6.12) (Lin 1989b) Let EX2k< ~ for some k E N and let (6.7) be given. 
Moreover, let EX 2k-I = 0 ,F  -1 differentiable on (0, 1) and r C N. Then 

n i  

~_~E(Xr,,,X;2~, - ' )  = 1  for all nt > r + l  iff F ( x ) =  Ok(x),  x E IR . 
s - - |  

N / 

In addition, Lin (1989b) presents a modification and extension of Govindarajulu's 
(1966) result (6.3) based on the identity in (6.12) for normal distributions trun- 
cated on the left at zero. 

(6.13) (Lin 1989b) Let EX2k< oc for some k E N and let (6.7) be given. 
Moreover, let F l(0+) = 0 and F 1 differentiable on (0, 1). Then 

n i  

~ E ( X I , , X i 2 ~ I )  = 1  f o r a l l i E N  iff F ( x ) = 2 O k ( x ) - l ,  x > 0 .  
x 

S = I  
] 

Finally, we refer to two recent papers. Khan (1995) applies a Mfintz-Szfisz se- 
quence to derive characterizations of power function and Pareto distributions via 
recurrence relations for product moments of order statistics. By analogy with 
(4.2), Mohie El-Din et al. (1996) present a general identity for the product mo- 
ments of order statistics where characterizations may be obtained as in (4.3). 
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Univariate Extreme Value Theory and Applications 

Janos Galambos 

1. Introduction 

For a long period of time, probability theory was meant to interpret the laws of 
averages but even within this theory occurrences now associated with extreme 
values had been viewed as accidents or surprises without regular laws. This view 
has changed only quite recently, and the present article is devoted to describe the 
present stage of extreme value theory both from the mathematical and practical 
points of view. Because the subject matter described by the extremes is very 
sensitive to slight errors in approximations, more controversies can occur in 
interpretation of results than when dealing with averages. This fact will become 
clear in the paper. We shall also see that a number of mathematical results 
developed independently of extreme value theory gain significant practical ap- 
plications; I would mention the fields of characterization of probability distri- 
bution and extensions of some Bonferroni-type inequalities. Although the present 
paper is not dealing with the above mentioned associated fields in detail, their 
significance will be demonstrated in a number of ways through examples. 

Extreme value theory is mainly a model building tool, but it can also be utilized 
in statistical evaluations. It concerns the largest or the smallest in a set of random 
variables where the random variables in question are either actual observations or 
just hypothetical quantities for describing a model. Hence, extreme value theory is 
more than the study of the largest or smallest order statistics since values other 
than the extremes may become meaningless in certain situations: a spacecraft may 
be destroyed by the first failure of essential components. The following examples 
well demonstrate the variety of applied problems and the mathematical difficulties 
faced in extreme value theory. 

EXAMPLE 1.1. (Fatigue failure). Let S be the random time to the failure of a sheet 
of metal used in constructing the body of an aircraft. Let us hypothetically divide 
the sheet into n smaller pieces and let Xj denote the strength (time to failure) of the 
jth piece in this division, where labelling is made by some predetermined rule. 
Then, by the weakest link principle (a chain breaks at its weakest link), 

S = min(X1,X2,... ,X,) 
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where the Xj are similar in nature to S, n is chosen by us, but we have no control 
over the interdependence of the Xj.. I f  n could be chosen arbitrarily large and if an 
acceptable model can be developed for the Xj, then a limiting distribution for the 
minimum in such a model should be the exact distribution of S. 

EXAMPLE 1.2 (Warranty period). The manufacturer of  a piece of  equipment with 
a large number n of  components wants to determine the warranty period in such a 
manner  that, with high probability, no (expensive) component  should fail during 
this period. That is, warranty period is determined by the distribution of the 
minimum of the time to failure of  the components. Here, the components can 
have a variety of  underlying distributions, and their interdependence may be very 
strong. Therefore, a single model cannot be expected to cover all structures. 

EXAMPLE 1.3 (Statistical outliers). Assume that each of n terminally ill patients is 
diagnosed to have an expected life of  one year. Can it be justified that one of these 
patients is still alive five years later ? Indeed, and this is what is expected from 
extreme value theory. Here we face n independent and identically distributed 
random variables with expectation one, and we want to determine the distribution 
of their maximum. Since 'terminally ill' will lead to the unique underlying dis- 
tribution F(x) = 1 - e -x,x > 0, (a characterization theorem), the exact distribu- 
tion of the maximum of n observations can easily be computed. 

There are very few applied problems when the population distribution can 
accurately be determined via a characterization theorem. In all such cases an 
approximation to the population distribution should be avoided. Rather, an as- 
ymptotic distribution theory should replace exact formulas and statistical infer- 
ence should be based on the asymptotic model for the extremes. This will be made 
very clear in the following sections. 

In extreme value theory we usually face two sequences of  random variables. 
The first sequence, which we denote by XI,X2,... ,Xn, is the one on which the 
extreme value model is based. These are some times statistical observations as in 
Example 1.3 and in other cases explicity present but unknown variables such as 
component  lives in Example 1.2 or just hypothetical variables as in Example 1.1. 
By specifying an extreme value model we mean that we make distributional as- 
sumptions on the Xj (univariate and multivariate), and we develop asymptotic 
distributions for the extremes 

/47,,, = min(Xi,X2, . . .  ,Xn) and Zn = max(X1,X2,.. .  ,Xn) 

after some normalization. The distribution function of-Y] is denoted by Fj(x) but 
if they are known to be identically distributed then the common distribution 
function is F(x).  We set 

Ln(x) = P(Wn <_ x) and Hn(x) = P(Z,, <_ x) . 

I f  more variables than just W~ or Zn become of interest, we use the standard 
notation of  the present book for order statistics: Xl:n _< X2:n _< --- _< X~:, for 
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X1,X2,... ,X, in a nondecreasing order. In such cases, evidently W~ = XI:, and 
Z, = X,:~. 

A second sequence Y1, Y2,..., YN of random variables in extreme value theor3; 
is a set of  (usually independent) statistical observations on an extreme of a model, 
and their common distribution function therefore is an extreme value distribution 
(of the model in question). These observations are usually utilized to test the 
model (its extreme value distribution) and to estimate parameters. 

EXAMPLE 1.4. Let Y be the age of the longest living European individual at the 
time of death of  all those currently living. Let n be a large number  and split the 
population of Europe into disjoint groups of n persons in each group. Assume 
that the number  of  groups is large as well. In a group, let X1, X2,.. • ,Xn be the ages 
(at death) of  the individuals of  the group. Now, whatever model we impose on the 
Xj, if a limiting distribution of Zn after some normalization exists then Z, in a 
randomly selected group is an observation on Y. Since n is assumed large, the 
distribution of Z, can be replaced by its asymptotic distribution (which we call an 
extreme value distribution), and upon selecting N groups at random, N obser- 
vations 111, Y2, • •., YN obtain on Y. (Since the values Yj are future values, one can 
only test the model in the form of P(Y > A) for a variety of  values of  A, or, by 
adding some stationarity assumptions in time, values from the past are used for Zn 
as Yj.) 

We now turn to a systematic description of the mathematical results of  extreme 
value theory and their practical applications. 

2. The classical models 

In a classical model, X1,X2,... ,Xn are independent and identically distributed 
(i.i.d.) random variables and their common distribution function is denoted by 
F(x). We assume that there are sequences an and bn > 0 such that, as n ~ +ec,  

H,(a, + b~z) = F'(an + b,)z) ---+ H(z) (2.1) 

where H(z) is a proper nondegenerate distribution function (since H(z) turns out 
to be continuous, convergence is pointwise). Such a model is called a classical 
model for the maximum, and H(z) is called an extreme value distribution 
(function) for the maximum (in a classical model). The distribution function F(x) 
satisfying (2.1) is said to be in the domain of attraction of H(z) which fact is 
expressed by the notation F E D(H). 

Similar definitions apply to the minimum W~. However, since 

W~ = min(Xl ,X2,. . .  ,Am) = - max(-X1,  -X2, • • •, -X,) (2.2) 

we make mathematical  statements on Z, only. We use (2.2) for transforming such 
statements to W~ when necessary. 
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Before proceeding further,  note that,  upon  replacing z by A + Bz and setting 
a* = an +bnA and b,~ = bnB, where A and B > 0  are arb i t ra ry  constants ,  (2.1) 
becomes 

Hn(a*~ + b•z) --~ H(A + Bz) (2.1a) 

Tha t  is, i fH(z )  is an extreme value distr ibution (in a classical model)  then so is the 
whole paramet r ic  family H(A + Bz) and their domains  of  a t t ract ion are identical. 
The  distr ibution functions H(z) and H(A + Bz) are said to have the same type, 
and the convergence in (2.1) is always unders tood  to be a convergence to the type 
of  H(z). 

F r o m  a classical theorem on the convergence to types (see L e m m a  2 on p. 
188 of  G a l a m b o s  (1995)) it follows that  if H(z) and H*(z) are two extreme 
value distr ibutions which are not  o f  the same type than  D(H) and D(H*) are 
disjoint. Fur the rmore ,  upon  writing up (2.1) in the following two ways for  a 
fixed m 

Fnm(an + bnz) ---+ Hm(z) and Fnm(anm + bnmz) --+ H(z) 

we get f rom the cited L e m m a  2 tha t  an extreme value distr ibution H(z) in (2.1) 
must  satisfy the functional  equat ion 

Hm(Am +Bmz) = H(z) all z and all m _> 1 (2.3) 

where Am and B m >  0 are suitable constants.  Depending  whether  B m >  1 or 
Bm < 1 or B m =  1 for  one m > 1 (and then for  all m > 1) the solution of  (2.3) is 
necessarily of  the same type as 

o r  

o r  

= ~ e x p ( - z - ~ )  if z > 0 (2.4) HI,~,(z) 
L 0 otherwise 

1 
H2,~(z) = e x p ( _ ( _ z ) y  ) 

if z > 0  
if z < 0 (2.5) 

H3,o(z) = e x p ( - e  z) all z (2.6) 

respectively. The  pa rame te r  7 > 0 in both  cases above.  In turn, each of  the above  
distr ibutions is o f  the same type as 

H ( c ) ( z ) = e x p { - ( l + c z )  -1/c} if l + c z > 0  (2.7) 

if we adop t  the convent ion that  H(0)(z) = lim H(c)(z) as c -+ 0 through values 
c ¢ 0. This way, H(c) (z) is of  the type of  (2.6) if c = 0, while (2.4) or (2.5) obtains 
depending whether  c > 0 or  c < 0. We use al ternatively (2.7) and (2.4) through 
(2.6) Whichever is convenient  for  a par t icular  result. The  fo rm H(~)(z) of  (2.7) 
appears  part icular ly convenient  in statistical inference since a decision a m o n g  the 
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forms (2.4) through (2.6) is a matter  of estimating the parameter  c, more precisely, 
we just have to decide whether c > 0 or c < 0 or c = 0. This, however, is not as 
easy as it sounds and, in fact, this 'simple task'  generates more controversy to 
extreme value theory than any other methodology. The problem and controversy 
stem from the fact that H2,y(z) represents a random variable which is bounded 
from above while the other two types are unbounded. The reduction of this very 
critical problem of boundedness to deciding whether a parameter  (c in (2.7)) is 
negative or not made the problem relatively simple. On the other hand, the 
conclusions of boundedness are not always acceptable which leads to the rejection 
of the classical model as appropriate in such circumstances. We shall return to 
specifics of  this problem in the next section. Here, we continue the mathematical 
analysis of the classical models. 

First, we define the endpoints of  a distribution function as 

ct(F) = inf{x: F(x) > 0} and co(F) = sup{x: r (x )  < 1} 

The following theorems on domains of  attraction are due to Gnedenko (1943) 
who unified and generalized the scattered results of  von Bortkiewicz (1922), Dodd 
(1923), von Mises (1923), Tippett  (1925), Fr6chet (1927), Fisher and Tippett  
(1928) and von Mises (1936). Gnedenko's  (1943) work is very thorough and 
generally accepted as the foundation of extreme value theory. For a review of 
Gnedenko 's  work and its influence on extreme value theory over the past half 
century, see Galambos  (1994). 

THEOREM 2.1. F E D(H1,7) if and only if, co(F)---+c~ and for all x > 0, as 
t -+ +oo, 

lim 1 - F ( t x )  _ x "  1 (2.8) 
1 - F ( t )  

The normalizing constants an and be, of  (2.1) can always be chosen as an = 0 and 
bn = inf{x: 1 - F ( x )  _< l /n}.  

THEOREM 2.2. F E D(H2,~) if and only if, co(F)<  +oc  and the distribution 
function f * ( x ) = f ( c o ( f ) -  1 / x ) , x>  O, belongs to D(HI,y). The normalizing 
constants an and bn of (2.1) can be chosen as an = co(F) and 

bn = c o ( F ) -  inf{x: 1 - F ( x )  < 1/n} 

THEOREM 2.3. F E D(H3,0) if and only if, there is a function u(t) > 0 such that, 
for all real x, as t ~ co(F) with t < co(F), 

lim 1 - F(t + xu(t)) = e- x (2.9) 
1 - F ( t )  

The normalizing constants an and bn of (2.1) can be chosen as an = inf{x: 1 -  
F(x) <_ 1/n} and bn = u(an). 
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These three theorems, when combined with the earlier quoted result on the 
possible types of  limiting distribution H(z) in (2.1), forms the foundation of 
extreme value theory for the classical models. Recall (2.2) in order to restate all 
the above results for the minimum. 

The theory is not complete in the above stated form. Theorem 2.3 has an 
unspecified function u(t) in its formulation, there is no mention of the quality of 
approximation (speed of  convergence, convergence of densities when exist) in any 
of the theorems, and the choice of  the normalizing constants might not be the best 
or most convenient. Gnedenko himself raised these questions but only partial 
solutions were provided by him through examples rather than general statements. 
Gnedenko also initiated the extension of weak convergence of (2.1) to weak laws 
and strong laws which mean that, with some constants An, either Zn/An converges 
to one or Zn - An converges to zero in probability and almost surely, respectively. 
All these problems have been addressed in the literature in the past three decades 
which lifted the classical theory to a well developed subject matter. 

Before we can formulate newer results we have to introduce two concepts. The 
conditional expectation 

R(t) = E(X - tlX > t), c~(F) < t < co(F) (2.10) 

where X is a random variable with distribution function F(x), is called the ex- 
pected residual life at age t. One can compute R(t) by the formula 

1 f~(F) R ( t ) -  1 -F ( t )  [1 - F(y)] dy (2.11) 

Next, assume that F(x) is differentiable. Then we define the failure rate or hazard 
rate of  X or F(x) by the limiting conditional instantaneous failure 

F'(t) 
r(t) = lira P(X <_ t + AtJX > t) - 1---T(t) (2.12) 

where At > 0 and At -+ 0. Let c~(F) _< m < co(F) be a fixed number, and let us 
integrate (2.12) starting at m. We get Lx 

g(x) = - l o g ( 1  - F(x)) = r(t) dt + C (2.13) 

where C = - log(1 - F(m)). The function g(x) is known as the cumulative hazard 
function which, of  course, is meaningful even if F(x) is not differentiable. Evi- 
dently, 

F(x) = 1 - exp(-g(x)) ,  ~(F) _< x < co(F) (2.14) 

The relations (2.13) and (2.14) entail that r(t) uniquely determines F(x). A similar 
statement is true in regard to R(t) as well. The following argument is instructive in 
which we assume that F(x) is continuous but only for the sake of allowing us to 
use Riemann integration and ordinary differentiation. The final conclusion is 
valid for all distribution functions. Now, for F(x), define 
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/qnt(x; C) = 1 - C  [1 - F ( y ) ] d y  (2.15) 

If we assume that R(t) is finite for F, then C can be chosen so that Fret(x; C) is a 
distribution function (we refer to/~nt as an integral distribution function of F). If  
F is continuous, then Fint is differentiable, and we have 

1/R e (t) =/~]nt (g) (2.16) 

where the subscripts in R and r emphasize the respective underlying distribution. 
From the uniqueness statement at (2.14) we thus have that Rx(t) uniquely de- 
termines Fret via (2.16). However, upon differentiating (2.15) the uniqueness of F 
itself follows. The mathematically oriented reader may want to note that the 
characterization of F(x) by the second conditional residual moment 
Rz(t) = E[(X - t)2iX > t] is much more difficult to prove but true. See Galambos 
and Hagwood (1992) for a proof  as well as for further references on the subject 
matter. 

With the introduction of R(t) and r(t) we can discuss the choice of u(t) in (2.9). 
In all early examples in the literature (2.9) was demonstrated to be valid with 
u(t) = 1/r(t). These examples were centered at the normal, exponential, gamma 
and some special cases of what is now known as Weibull distributions. One 
remarkable theorem of von Mises (1936) justified to view u(t) = 1/r(t) as the 
main choice in (2.9). It is established in von Mises (1936) that if, for all x close to 
co(F), the second derivative F"(x) exists and f ( x )  = F'(x) ¢ 0 then the limit 

lira d(1/r(x) ) _ 0 (x ---+ co(F)) (2.17) 
dx 

entails (2.9) with u(t) = 1/r(t) (in all conditions above, evidently x < co(F)). Let 
us record that (2.17), with the differentiation carried out, becomes (x < co(F) and 
x co(F)) 

l imf ' (x  ) [1 - Y(x)] = _ 1 (2.17a) 
f2(x) 

Since r(t) is not defined for all distribution functions F(x), one may expect that 
perhaps the hazard function 9(x) of (2.13) and (2.14) may lead to a universal 
choice of u(t) in (2.9). An attempt in this direction is the work of Marcus and 
Pinsky (1969) but their ultimate conclusion is that even if r(t) is defined one 
cannot always choose u(t) = 1/r(t) in (2.9). That is, (2.9) can be valid with some 
u(t) but not with 1/r(t). 

The universal choice of u(t) by R(t) was discovered by de Haan (1970). The 
proof  of the theorem of yon Mises, stated at (2.17), implicitly contains the fact 
that R(t) could have been used in place of 1/r(t) in (2.9). That is, it follows from 
(2.17) that R(t) is finite and 

R(t)r(t) -+ 1 as t -+  co(F) (2.18) 
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This is sufficient for replacing 1/r(t) by R(t) in (2.9) since (2.9) is a convergence of 
distributions to exponentiality. The recognition that (2.18) follows from (2.17) 
suggests that the universal choice of u(t) in (2.9) might be R(t). This is indeed the 
case. The following result is due to de Haan (1970). 

THEOREM 2.4. F E D(H3,0) if and only if, R(t) is finite and (2.9) holds with 
u(t)  = R(t ) .  

For special classes of distributions, covering most widely applied distributions 
in practice, Galambos and Xu (1990) established 

THEOREM 2.5. Assume that R(t) is regularly varying at infinity (implying that 
co(F) = +oc). Then F E D(H3,0) if, and only if, R(t)/ t  --+ 0 as t --+ +ec.  

We give the simple form of definition of regular variation. R(t) is said to be 
regularly varying at infinity with index ~ if R(t) = t6s(t), where s(t) satisfies 

i. s ( ;~t)  lms-- ~ - = 1 ,  2 > 0  fixed and t - -++ec  

In other words, s(t) is slowly varying. The theorem of Galambos and Xu thus 
states that if R(t) is regularly varying then either 6 < 1 or 6 = 1 and s(t) --+ 0 as 
t ---, +oc characterize D(H3,0). Note that (2.9) does not have to be tested. In many 
cases, one simply gets R(t) ~ fl (such is the case of  the normal distribution with 
6 = - 1 ,  and for the exponential distribution R( t )=  constant, i.e., ~ =0) .  A 
variant of Theorem 2.5 is also proved by Galambos and Xu (1990) for 
co(F) < +oo. Since Gnedenko has shown that, whatever u(t) in (2.9), u(t)/t  ~ 0 
as t --+ +ec  for co(F) = +eo, only the sufficiency part of Theorem 2.5 is new. 

There is more to the limit relation (2.18) than just its allowing us to choose 
between R(t) and 1/r(t) as a normalization at (2.9). It turns out (see Sweeting 
(1985)) that (2.18) is both necessary and sufficient for the densities to converge: 

nbnF n-1 (an + b,z)f(a,, + bnz) ---+ H~,o(Z ) 

locally uniformly, assuming that (2.1) holds with H = H3,0. Sweeting (1985) es- 
tablishes similar results for the other two domains of attraction as well. Since a 
result of Galambos and Obretenov (1987) states that if F E D(H3,o) and if r(t) is 
monotonic then (2.18) holds, we have that for monotonic r(t) we can use 1/r(t) as 
normalization in (2.9) and we can freely switch from convergence of distribution 
functions to convergence of densities. The investigations concerning (2.18) led to 
a better understanding of the yon Mises condition (2.17) as well. Pickands (1986) 
showed that (2.17) is both necessary and sufficient for (2.1) and its first and 
second derivative variants to hold with H =//3,0. 

There is a large number of other results on domains of attraction in which r(t) 
plays an important role. See Section 2.7 in Galambos (1987); several of the results 
appeared there for the first time. See also this book by the present author for a 
very extensive bibliography. 
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While Theorems 2.1-2.3 give specific instructions on finding normalizing 
constants an and bn for (2.1) to hold, these choices are not the only possibilities. 
However, there is nothing particular to extreme value theory on the extent to 
which one can modify one set of normalizing constants without violating (2.1). 
From a general rule on (weak) convergence of probability distributions we have 
that if (an, bn) and (a~,, b~,) are two sets of normalizing constants in (2.1) then we 
must have 

lim(an - a*~)/bn = 0 and limb*Jbn = l(n ~ +oc) (2.19) 

Conversely, if (2.19) holds and (2.1) holds with (an, bn) then (2.1) remains to hold 
with (a~, b~). There are two significant consequences of the relative freedom of 
choosing normalizing constants. First, we have the rule in (2.19) which tells us 
how accurately we have to solve the equation 1 - F ( x )  = 1In for a continuous 
distribution F(x) in order to get an an or bn by the cited instructions. Second, 
different choices of the normalizing constants result in different speeds of con- 
vergence in (2.1). This is evident by looking at numerical comparisons between 
Fn(an + bnz) and H3,0(z), say, when F i s  known to be in D (H3,0). By changing an 
or bn for a fixed (large) n but not changing z will result in a different Fn(an + bnz) 
but H3,0(z) remains unchanged. The first generally applicable estimate of the 
speed of convergence appeared in Section 2.10 of Galambos (1978), which esti- 
mate is a clear demonstration of the influence of the normalizing constants as well 
as of the population distribution on the speed of convergence. Namely, the two 
main terms in estimating (from above) the absolute difference 

I P(Zn <- an + b, z) - m(z) l 

* 2z2n(z) and r~,, =1 z,(z) + logH(z) I (2.20) a r e  r l ,  n - -  n 

where zn(z)= n i l -  F(an + bnz)]. Now, by taking logarithm in (2.1), Taylor's 
expansion yields that zn (z) ~ - log H(z) entailing that zn (z) is bounded for fixed z 
and r~, n ---+ 0 as n --, +co and z is kept fixed. Hence, r~, n is always of the magnitude 
of 1 In, regardless of F, an and bn, while no uniform estimate can be given for r~, n 
since it strongly depends on F as well as an and b,. In fact, if we choose an and bn 
by the instructions of Theorem 2.3 for a standard normal population, one finds 
from the estimates of Galambos (1978), Section 2.10, that the difference in (2.1) is 
asymptotically equal to (log log n)2/log n. Hall (1979) and (1980) established that 
this speed in the normal case can be improved by modified choices of an and bn, 
but it always stays above c/(logn), where c > 0 is a positive constant. On the 
other hand, W.J. Hall and J.A. Wellner (1979) show that, for the exponential 
distribution, the uniform speed of convergence is of the magnitude of 1 In. We 
have already seen in the discussion at (2.20) that such an estimate cannot be 
improved for any F and for any choice of an and bn. However, improvements in 
the speed of convergence can be achieved by modifying (2.1) itself. Since we know 
that H(z) in (2.1) is one of three types of distribution, let us insist that we ap- 
proximate F n by//1,~ regardless whether F is in its domain of attraction or not. 
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That is, let us consider the difference 

F"(an + b ,z )  - H,,~, (C~ + Dnz) (2.21) 

where a, and bn > 0 are computed by the rules of Theorems 2.1 through 2.3 and 
then 7n, C,, and D, are computed by some new rule based on F, an and b,, where 
this new rule is aimed at obtaining a smaller value in (2.21) than one would have 
for the difference with the proper H in (2.1). Under the assumption of the von 
Mises condition (2.17a), Gomes (1978) (or see its published form Gomes (1984)) 
worked out the details of such an approximation, known as penultimate ap- 
proximation. One of the major results of Gomes (1978) is presented in the book 
Galambos (1987), Section 2.10, which provides an opportunity for the reader to 
compare penultimate approximation with a variety of estimates on the speed of 
convergence. 

A further deviation from (2.1) is when one chooses some monotonic trans- 
formation of Zn rather than the linear one of  (2.1). One hopes with such a 
modification that a better approximation can be achieved as well as more types of 
H will result as limiting distribution. A systematic theory of this nature has been 
initiated by Pancheva (1985), which has already reached quite a high level of 
development. See Pancheva (1994) for a survey on nonlinear normalization. 

3. Applications and statistical inference 

We present practical problems which wilt be approximated by a classical 
model. Even though the independence of the underlying random variables will 
not always be justified the approximation by a classical model will be, due to the 
mathematical generalization of the results on classical models to so called weakly 
dependent or graph-dependent random variables. The discussion of such models 
is postponed to the next section. 

Let us start with the longest living terminally ill patient in a group of n, each 
having an expected life of  one year (Example 1.3). IfXj is the actual (remaining) 
life of patient j ,  the no-aging property of  the exponential distribution entails (see 
Galambos and Kotz (1978), p.8) that we may assume that P(Xj _<x)= 
1 - e -X ,x  >_ O, and the Xj are quite evidently independent. Then 

P(Zn <_ logn +z )  = (1 - e  log ~ z)n --+ exp(_e-Z) 

from which we have that if there are in the viewing range of a TV station about 
n = 200 such patients, then, with probability 1 -  e - l =  0.63 (we took z = 0 
above), Z200 > log 200 > 5, i.e., a patient will turn up at the TV station "who was 
condemned by a doctor to die in one year" but still alive after 5 years. Since news 
like this are taken over by TV stations in the USA, n is in fact much larger, and 
thus from the strong law P ( Z n / l o g n  --~ 1) = 1 (see p. 262 in Galambos (1987)) 
one can conclude that, almost surely, someone will turn up in the news who was 
declared terminally ill but still lives 8, 10, or even more years later. 
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The example above is a special example for statistical outliers. We have n 
independent observations and we assume (justified or not) that the underlying 
distribution is F(x). The data nicely fit F(x) but a few observations seem to be 
questionable. These can be outliers (mismeasurements, etc.), but it may equally be 
true that the assumption F(x) is wrong and extreme observations are the good 
signs for it. For  example, if F(x) is assumed standard normal, and the bulk of the 
data seem to confirm this (and in most cases this is true due to the asymptotic 
normality of  quantiles), then the strong law P(Zn/(21ogn) a/2 ~ 1) = 1 or the 
more informative strong law P(Zn - an -~ 0) = 1, where an is the solution of 
1-F(x) = 1In (see Galambos  (1987), p. 265 266) can be used to determine that 
how large the largest observation should be. 

The two examples above differ in the way in which F(x) is chosen but both 
utilize an exact model. The case of outliers requires the model to be exact, but the 
case of  terminally ill patients can be modified to just ill patients in a life-threat- 
ening disease to conclude that, with high probability, someone gets into the news 
for seemingly beating the odds. The only exception would be if life distributions 
F(x) for any group of people would have a very limited co(F) implying that no one 
in the group can survive beyond the age co(F). Can co(F) be infinity ? We got such 
a case with the exponential distribution. But note that with 
F(x) = P(X _< x) = 1 - e -x ,Y > 20, say, is still possible but P(X > 20) = 2/109 
would require, via the strong law of large numbers, to have hundreds of millions 
of  people terminally ill with E(X) = 1 in order to observe one of them living more 
than 20 years after getting ill. This is significant to understand when we discuss 
the next model. 

We, in fact, return to Example 1.4 and try to estimate the age of the longest 
living person in Europe. We assume that the random life lengths of  individuals are 
independent and identically distributed but we do not use or at tempt to identify 
the common distribution F(x). Rather, we decompose the total population into 
disjoint large subgroups, and we estimate the highest age in the population from 
the maxima in the subgroups. But the subgroups can further be decomposed into 
disjoint large subgroups, so the maximum in a subgroup is the maximum of other 
maxima, and so on. This process of  decomposition can go down in a large 
number  of  steps, and when we move back up we see that at every stage the 
maximum has the same type of distribution as the one whose maximum is taken. 
If  this process would never terminate we would get that the distribution at every 
stage is an extreme value distribution. The Decomposit ion Principle, that we now 
adopt, adds that the number of  steps in the above process is so large that a ' jump'  
to the limit is justified. With this we eliminated the most troubling parts we face in 
extreme value theory: we do not need the form of the population distribution and 
we will not argue with the very sensitive n th power of  distributions. Rather, we 
take the largest value from subgroups as observations whose underlying distri- 
bution is H(c)(A + Bz) of (2.7), and we want to decide whether c > 0, c < 0 or 
c = 0, and to estimate the parameters A and B. Since all observations are assumed 
to come from H(c) very little extreme value theory is remaining in the statistical 
inference. Indeed, Tiago de Oliveira (1984) suggests the use of  loglikelihood 
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functions and the Neyman-Pearson theory for developing the critical regions for 
choosing between any two of  the possibilities for c(c > 0 versus c = 0 or c < 0 
versus c = 0 or c > 0 versus c < 0). Tiago de Oliveira himself points out that the 
above method is not very effective if the sample size is not very large which is the 
case in our longest living problem. However, the method is applicable to large 
data sets. Two other test statistics are recommended in Tiago de Oliveira and 
Gomes (1984), one of which is refinement of a test first investigated by Gumbel 
(1958). This test statistic is based on four quantites only, and thus its simplicity is 
quite appealing. Usually one has larger sample sizes in hydrology where for flood 
levels The Decomposition Principle can again be applied (annual flood is the 
highest monthly floods, the monthly floods in turn can be decomposed into 
weekly floods, daily floods, etc). Thus, assuming that flood levels are distributed 
with He) and annual floods are sufficiently weakly dependent so a weak de- 
pendence model of the next section justifies the approximation by classical 
models, one can apply the cited methods. If the set of data is not large, it appears 
that The Decomposition Principle should be replaced by the full extent of  the 
limiting extreme value theory and statistical inference should be based on the 
'original' observations rather than on a single selected value from subgroups. 
However, when a characterization theorem is not available for the population 
distribution, it must not be attempted to be identified or even approximated. 
Instead, a domain of attraction is to be selected on a statistical basis and then 
inference is to proceed with the appropriate limiting distribution. In this direc- 
tion, three basic methods have been developed: (i) the threshold method, 
(ii) method by probability papers, and (iii) decisions based on limit results for 
domains of attraction. Before describing these methods, one should emphasize 
two very important rules. 

Rule 1. For making decisions on a maximum, use always upper extremes only. 
That is, ifX1,X2,. . .  ,Am are observations, decide on an r = r(n), and use only the 
order statistics Xn-r+l:n _< X, r+2:~ _< ""  _< Xn-l:n ~ Xn:n. Contrary to the views of 
some 'outsider statisticians', this does not lead to loss of information (see Janssen 
(1989)). More importantly, low indexed order statistics may simply mislead the 
observer. Castillo, Galambos and Sarabia (1989) give the following warning ex- 
ample. Let F1 E D(HI,~) and F2 E D(H3,0). Assume that the parameters ofF1 and 
F2 are such that Fl(zo) = F2(z0) = I/2. Then observations on 

f F1 (x) if x < z0 
F(x) 

I F2 (x) if x > z0 

will produce 50% of the data from F1 and 50% from F2, but the maximum will be 
among those which come from F2 and ultimately the observations generated by/71 
will become irrelevant for the maximum. Clearly, F E D(H3,0), but any statistical 
decision based on all observations would reject such a hypothesis. 

Rule 2. When in an applied problem a decision has been made on c and the 
parameters A and B of H(c) (A + Bz) have been estimated, the result must fully be 
utilized for future actions by observing that records (maxima) are guaranteed to 
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be broken (at least for continuous variables). That  is, preventive measures 
protecting against the level of a past disaster - such as a previous flood - is an 
open invitation for a new disaster. One must compute from H(c)(A + Bz) the 
likely and unlikely levels of  new disasters, together with their return periods, and 
only then should there be a decision on the magnitude of 'preventive invest- 
ments' .  

Let us return to the cited three statistical methods. 

(i) The Threshold Method. Assume that it has been decided by some logical 
argument that co(F) = +ec,  and the maximum satisfies (2.1). Hence, the problem 
is to decide whether F ~ D(H3,0) or F E D(HI~). Apply Theorem 2.4. Note that 
(2.9) with u(t) = R(t) means that in order for F E D(H3,0), the normalized variable 
(X - t)/R(t) must be asymptotically exponential, given that X > t. Hence, if we 
choose a large value t, select those observations which exceed t, say I11 = X~, 
Y2 =Xi2, . . . ,YN-~YiN.  Estimate R(t) by the arithmetical mean RN(t) of 
Yj - t, 1 < j _< N, and test the exponentiality of  (Yj - t)/Rm(t). Acceptance means 
the acceptance of F C D(H3,0) and rejection means accepting F E D(Ha,~). In the 
form just described the method is formulated in Galambos  (1980), which is en- 
hanced by the analysis of  the method by Tiago de Oliveira (1984) and Castillo 
(1988), p. 218. In a somewhat different formulation and in the context of  hy- 
drology, Todorovic (1978) and (1979) applied such a model, which has then been 
extended by a number  of  investigators. Smith (1984) and (1994) made the most 
extensive studies on this line. 

(ii) Method with Probability Papers. Plot the empirical distribution function of 
the observations on a Gumbel  probability paper, defined as a coordinate system 
(v, w) for the points (x, p), 0 < p <  1, using the scales v = x  and w =  
- l o g ( -  logp). Compare  the shape of the upper tail of  this plot with the shape of 
H(c) (A + Bz), also drawn on a Gumbel  paper. Whichever shape is imitated by the 
empirical distribution function Fn (x), F is in the domain of attraction of that He. 
More precisely, since 

w = - l o g ( -  logHc(A + Bz)) = ( l /c )  log[1 + c(A + Bz)] 

is the straight line w = A + Bz for c = 0, otherwise a logarithmic curve with co- 
efficient 1/c, w above is concave, convex (concave up) or straight line according as 
c > 0, c < 0 or c = 0. That  is, the shape of w is sufficient to make distinction 
among the possible three types of He. Now, Castillo and Galambos  (1986) and 
with more details, Castillo et al. (1989), proved that the upper tail, x >_ (n - r)/n, 
of  Fn(x) has the same shape as Hc if F C D(Hc). This can very effectively be 
utilized in one of two ways. Either the shape of the upper tail of  Fn is very clearly 
concave or convex or a line, in which case visual inspection is sufficient to con- 
clude that F E D(Hc). (Here, and throughout this section, D(Hc) is an abbre- 
viation for one of the three domains D(Hc : c > 0) = D(HI,~), D(Hc : c < O) = 
D(H2,~) and D(Hc, c = 0) = D(H3,0) of  attraction.) When visual inspection is not 
convincing, then the very accurate statistical method is available: choose a value r, 
and fit a straight line to the points (xj, wj), where xj =Xn ,,+j:n, and 
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wj = - l og ( -  logFn(xj)), 1 <_ j <_ r/2, using the method of least squares, and fit 
another line to (xj, wj) for r/2 < j <_ r. From the angle between these two lines, 
decide on the shape of the upper tail of  F,(x), using tables developed in Castillo 
(1988), pp. 219-226. 

(iii) Decisions from Limit Results. The results stated in Theorems 2.1-2.4 has 
been unified and extended by de Haan and his colleagues into a single form using 
D(Hc) and inverse functions of F(x). These results give specific forms, based once 
again on the upper extremes, which converge to c i f F  E D(Hc), and the accuracy 
of these limit theorems are also established. Such limit theorems are then used as 
estimators, both as point estimators and confidence bounds, for c. de Haan (1994) 
gives a detailed presentation of this method, including earlier references. We 
therefore omit further details. 

All these methods have widely been used in practice. We have mentioned 
the works of Todorovic in hydrology. The Method with Probability Papers 
(Castillo calls it The Curvature Method in his book, p. 219) has been applied 
to a wide variety of data in Castillo (1988), using the accurate rather than the 
visual method. This includes human life length, and the conclusion by Castillo 
is that the data are not sufficient to make a statistical decision between 
D(H2,~) and D(H3,0). From another set of data on length of human life , de 
Haan (1994), however, concludes, using method (iii), that F C D(H2,~), mean- 
ing that human life is bounded. The present author sides with Castillo on this 
matter. 

In a large number of  applied works, D(H3,0) is assumed without any statistical 
considerations. The reason for this is that co(F) < +ec  can some times be rejected 
on practical grounds, and D(HI,~) may not be reasonable for some practical 
problems due to the implication that if F E D(HI,~) then the moments E(Xjk), 
k > ~, are not finite. This can be deduced from (2.8), or see Theorem 2.7.11 in 
Galambos (1987). 

Let us look at one general problem when the minimum W~ of the components 
Xj, 1 _< j _< n, is our interest. The simplest one of such cases is an instrument 
which breaks down as soon as any one of its components breaks down. Such an 
instrument is equivalent to a series system for which an example is n electric bulbs 
connected to a single line, and thus if one of them burns out then the electricity 
stops flowing. Another example is the case of a sheet of metal discussed in Section 
1. The components now are hypothetical, and the strength S = W,,. In both of 
these last examples an approximation by classical models is justified (in the case of 
the metal, a weakly dependent model of the next section is to be utilized). By an 
appeal to (2.2), Theorem 2.1-2.4 can be applied in the same ways in which Z. is 
treated. In particular, if we know apriori that the random variable approximated 
by W~ is positive, then, via (2.2) 

L(z) = 1 - H2,~(-z) = 1 - exp(-zY), z > 0 

provides the underlying distribution, that is, we get a Weibull model. Although 
the Weibull family of distributions is used in engineering models quite frequently 
for no other reason than its possible use to fit a large variety of data, stemming 
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from the influence of the shape parameter on the densities L'(z), here we provided 
a theoretical justification for adopting Weibull models. 

For  another approach to material strength, applying extreme value theory and 
arriving at the Weibull model, see Taylor (1994) and its references. 

There are several ways of placing the statistical aspects of extreme value theory 
into a larger framework. See Falk and Marohn (1992), Falk, Hfisler and Reiss 
(1994), Marohn (1994), and Reiss (1989). 

There are a number of conference proceedings on the extremes (Galambos 
(1981), Tiago de Oliveira (1984), H~isler and Reiss (1989) and Galambos, Lechner 
and Simiu (1994)) and two basic books with emphasis on applications (Gumbel 
(1958) and Castillo (1988)). 

4. Deviations from the classical models 

There are two directions in which one can extend a classical model: (i) one can 
drop the assumption of stationarity of distribution but keeps independence, or 
(ii) one develops dependent models. Both come up in practice in a natural way, 
even within the topic of instrument failure. Even if we take the simplest models of 
instruments: parallel or series systems, it is against engineering experience that 
each such system's failure rate function is accurately a power function (Weibull 
distributions). It turns out that if we model such systems with independent 
component life but without the assumption of identical distributions, then the 
asymptotic distributions of the normalized extremes will include all distributions 
with monotonic failure rate and practically only these (additional mathematical 
niceties are required). This is one of the most pleasing results in extreme value 
theory: mathematical conclusions and practical experience come together in such 
a nice way. The first such result goes back to Mejzler (1949). For extensions of 
Mejzler's result, together with surveys of this subject, see Mejzler (1965) and 
Weissman (1994). See also Section 3.10 in Galambos (1987). 

The following graph-dependent model extends the result of Mejzler. For  a 
graph G = (V,E) with vertex-set V = {1 ,2 , . . . ,  n} and arbitrary edge-set E, the 
random variables )(1,X2,... ,Xn are called G-dependent (for the maximum), if, as 
x -+ min{co(Fj) : 1 _< j <_ n}, (i) disjoint subsets of the events {Xj > x} are as- 
ymptotically independent if there is no edge connecting these subsets, (ii) every 
subset of the events {Xj > x} with a single edge in the subset satisfies a bound- 
edness condition compared with the independent case, and (iii) the number N(E) 
of the edges of G is of smaller magnitude than the total possible number of edges 
n 2, then the asymptotic distribution of the properly normalized maximum Zn is 
the same as for independent variables. 

Note that the dependence structure of those subsets in which there are two or 
more edges have no influence on Z~. On the other hand, the model is accurate for 
the maximum in the sense that the assumptions do not guarantee the convergence 
of the distribution of X, l:n, even when normalized. In this regard the model is a 
significant deviation from independence. 
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The model with accurate translation of the assumptions into mathematical 
formulas is introduced in Galambos (1972) and developed further in Galambos 
(1988). See also Section 3.9 in Galambos (1987). 

If  one adds to the graph-dependent models that the sequence X1,X2,... ,X, is 
stationary and the edge set E is restricted to E =  {(i,j):  1 < i <  n - s ,  
i + 1 < j < i + s}, where s is an integer with s = s(n) --+ +oc and s(n) /n  ---+ 0 as 
n -+  +c~, we get the dependence model on which the book Leadbetter et al. 
(1983) is based. 

It appears that the most natural dependent model, that of exchangeable 
variables, is the most difficult to handle. If it is assumed that X1,X2 , . . .  ,Xn is a 
finite segment of an infinite sequence of exchangeable variables, and thus de 
Finetti's theorem entailing conditional independence when properly conditioned 
applies, then quite general results follow (Berman (1964)). However, for finitely 
exchangeable variables the present author's result, collected in Chapter 3 of 
Galambos (1987), is too abstract for practical applications. It would be of great 
interest and value to analyze exchangeable models with some further assumptions 
in order to obtain specific rather than abstract limit theorems. 

Both for the graph dependent models and for exchangeability Bonferroni-type 
inequalities provide the most effective tools. Define the events Aj = A j ( x ) =  
{Xj > x}, 1 < j _< n, and let mn (x) be the number of those Aj which occur. Then 

P(m,(x)  = O) = P(Zn <_ x) . 

Hence, by applying Bonferroni-type inequalities to the left hand side, inequalities 
on the distribution of Z~ obtain. Because the same kinds of inequalities do not 
apply to P(rn~ (x) >_ r) if r • 1 as to the case of rn~ (x) = 0, we can now understand 
why Z~ is special among all other order statistics. It should be noted that the 
classical Bonferroni-type inequalities do not suffice for obtaining meaningful 
bounds in the case of graph dependence. However, the theory of Bonferroni-type 
bounds is very rich, it has gone through a very fast development in recent years, 
although an extension of the classical Bonferroni-type bounds by R6nyi (1961) 
suffices for the graph dependent model. Since we shall deal with Bonferroni-type 
bounds elsewhere, we do not go into further details. 
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Order Statistics: Asymptotics in Applications 

Pranab Kumar Sen 

I. Introduction 

The very definition of order statistics is somewhat confined to univariate setups 
where ordering of the observations can be made unambiguously, although with 
some modifications, such interpretations can be made in some multivariate cases 
as well. To set the things in a proper perspective, let us consider a sample 
X1, . . .  ,Xn of n independent and identically distributed (i.i.d.) (real valued) ran- 
dom variables (r.v.), and assume that they come from a distribution F, defined on 
the real line .~. We arrange these Xi in an ascending order of magnitude, and 
obtain the so called order statistics 

Xn: 1 ~_Yn: 2 ~ . . .  ~ Yn: n , (1.1) 

where the strict inequality signs hold with probability one if F is continuous. I f  F 
admits jump discontnuities, ties among the Xi and hence X,:i, may occur with a 
positive probability, and in statistical analysis, these are to be taken into account. 
Conventionally, we let Xn:0 = - o c  and X,:~+I = ec; if the Xi are nonnegative r.v.'s, 
as is the case in reliability and survival analysis, we have F(0) = 0, so the X,:i are 
all nonnegative, and hence, we let X,:o = 0. Similarly, if the d.f. F has a finite 
upper endpoint b(< oc), we would let X,:~+I = b. An optimal, unbiased estimator 
of F is the sample (or empirical) distribution function Fn, defined by 

n 

F,(x) == n -1 ~ l { Y i  ~ x ) ,  x E ~ , (1.2) 
i=l 

where I(A) stands for the indicator function of the set A. In the case of a con- 
tinuous F, we have from the above two expressions, 

F,(x) -= k/n, for X,:k <_ x < X,:k+l, k = O, 1 , . . . , n  . (1.3) 

A simple modification of this relation holds for the discrete case where the jumps 
of F, occur at the distinct order statistics but their magnitudes depend on the 
number  of ties at those values. Note that even when F is continuous, F, is a step 
function, so the continuity property is not preserved by the estimator. Never- 
theless, the sample order statistics and the empirical distribution have a one-to-- 
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one relation, although both are stochastic in nature. For  this reason, in the lit- 
erature, order statistics and empirical distributions are often blended in a broader 
tone which allows the percolation of general asymptotics under appropriate 
regularity conditions; we may refer to Shorack and Wellner (1986), Koul (1992), 
Sen and Singer (1993) and Jure6kovfi and Sen (1996), among others, for some 
comprehensive treatise of  related asymptotics. Mostly there is a theoretical flavor 
in such developments where sophisticated probabilistic tools have been incor- 
porated, often justifiably, with deep coatings of abstractions. For  this reason, Sen 
and Singer (1993, Chapter 4) dealt with sound methodology at an intermediate 
level with due emphasis on potential applications in a variety of fields, including 
biostatistics. 

The primary objective of the current study is to focus on the basic role played 
by the asymptotics in order statistics in various applications. In order to put the 
things in a proper perspective, in Section 2, we start with some of the basic 
results in order statistics which provide the access to the general asymptotics to 
be presented here. These asymptotic counterparts are then provided in Section 3. 
One of the most useful application areas of order statistics is robust and efficient 
estimation in location-scale and regression-scale families of densities, and the 
related asymptotics for the so called L-estimators are presented in Section 4. In a 
parametric mold, estimators of  the scale parameters are generally obtained by 
using L-estimators as well. But in a semiparametric or nonparametric setup, 
asymptotic distribution (mostly, normal) of such L-estimators (or related test 
statistics) involve some nuisance (variance) functionals which are needed to be 
estimated from the sample as well. Jackknifing techniques play an important role 
in this context, and this is discussed briefly in the same section. Some emphasis 
has also been placed on functional jackknifing and other variants of the classical 
jackknife methodology. Censoring (truncation) schemes of various types arising 
in practice calls for some modification in the formulation of L-statistics, and 
these are briefly included in this presentation. Asymptotics for trimmed least 
squares and regression quantiles are presented in Section 5. Asymptotics for 
induced order statistics or concomitants of order statistics are considered in Sec- 
tion 6. These results are of considerable use in analysis of association or de- 
pendence pattern in bivariate models and in survival analysis and some related 
areas. In a multivariate situation, the conditional distribution of one of the 
variables, given the others, leads to a formulation o f  nonparametric regression 
models, where the linearity of regression or homoscedasticity condition may not 
be that crucial. In this context, conditional L-functionaIs are often used, and their 
methodology depends on a somewhat different type of asymptotics entailing a 
possibly slower rate of convergence; these are treated in Section 7. Applications 
to statistical analysis of  mixed-effects models are also considered in this section. 
Interesting applications of order statistics asymptotics relate to statistical 
strength of a bundle of parallel filaments, system availability and to some other 
measures in multicomponent systems arising in problems in reliability theory, 
and Section 8 deals with the relevant methodology. The total time on testing 
(TTT) concept, intimately associated with order statistics for nonnegative ran- 
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dom variables, occupies a prominant stand in the main avenue of reliability and 
life-testing models (where the failure time or length of life is typically non- 
negative). In this context, characterizations of different forms of aging properties 
depend of such TTT  transformations, and related TTT-asymptotics having 
genesis in asymptotics for order statistics are of basic importance from the ap- 
plication point of view; these are presented in a systematic manner in Section 9. 
The concluding section is devoted to some general observations on asymptotics 
in order statistics. 

2. Some basic results in order statistics 

An order statistic X,:k is classified as a sample quantile or an extreme value ac- 
cording as k/n is bounded away from 0 and 1 or not. Thus, X,,:~ is the lower 
extreme value, X~:, is the upper one, while X<,pj (for 0 < p < 1) is the sample 
p-quantile. We denote the distribution function (d.f.) of Xn:k by G,k(.). Then for 
every n, k and F, not necessarily continuous, we have 

r~k 
(2.1) 

In particular, for k = 1, we have Gnl(X ) = 1 - [ 1 - F ( x ) ]  n, and for k = n, 
G~,(x) = IF(x)] n. These results do not require the (absolute) continuity of the 
underlying d.f. F, but the i.i.d, structure of the X~ is presumed here. Sans inde- 
pendence, the relevance of the Binomial law in (2.1) is lost, while for independent 
but not necessarily i.d.r.v.'s, (2.1) provides some useful bounds on the actual d.f.; 
we may refer to Sen (1970) for some details. Galambos (1984) reviewed some 
interesting results in the dependent case. 

For  nonnegative random variables for which the support of the d.f. F is 
~ + =  [O, oc), closely related to the order statistics are the sample spacings 
{ln l , . . . ,  l,n}, which are defined by letting 

lnj = & : j - X n i j _ l ,  for j = 1 , . . . , n  , (2.2) 

where we set conventionally X,:0 = 0. Then l,j is defined as the jth spacing in a 
sample of size n from the d.f. F, j = 1 , . . . ,  n. Keeping in mind the simple expo- 
nential density for which the spacings were considered first, we may as well define 
the normalized spacings by letting 

dn j=(n - j+ l ) ln j ,  for j =  1 , . . . , n  . (2.3) 

In the aforementioned exponential case, the dnj are i.i.d.r.v.'s having the same 
exponential distribution. However this characterization of the exponential dis- 
tribution may not generally hold for other distributions, and much of the 
reliability theory deals with this aspect of the spacings. The concept of total time 
on test upto the k th failure point has its genesis in this setup. If we let 
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D n k = Z d n j ,  for k = l , . . . , n  . (2.4) 
j_<k 

then, for any timepoint t E [Xn:k,X,:k+l), in a without replacement scheme, the 
total lifetime of these n units upto the time t, when all of them enter into the 
scheme at a common timepoint, say 0, is given by 

D~(t) = D~k + ( n -  k)(t-X~:k), for k = 0 , . . . , n  , (2.5) 

where conventionally, we let D,0 = 0 , so that Dn(t) = nt, for all t < X,:l. This 
concept will be incorporated in a later section to provide related asymptotic 
results which are very useful in the context of life testing and reliability models. 
For  d.f.'s other than exponential ones, the study of the exact distributional 
properties of  the (normalized) spacings (including their i.i.d, structure) may en- 
counter considerable difficulties, although their asymptotic counterparts can be 
studied under fairly general regularity conditions. Asymptotics for order statistics 
play a basic role in this context too. 

Let us next consider a stochastic process Qn(') = Q~(t), t ff (0, 1), by letting 

Q,(t) = F£-l(t) = inf{x: F,(x) > t}, t E (0, 1) . (2.6) 

Then Qn is termed the sample quantilefunction. Side by side, we may introduce the 
population quantile function Q(.) by letting 

Q ( t ) = F  ~( t )=inf{x:F(x)_>t} ,  t f f  (0,1) . (2.7) 

Intuitively, at least, Q, estimates Q, although a more precise study of this esti- 
mation problem requires a good deal of asymptotics. While such quantiles are 
defined by a single order statistic, in general, functions of order statistics, such as 
an L-statistic, are estimators of a functional, say, O(F) of the d . f .F .  Such func- 
tionals may be location, scale, regression ones, and may even be more general in 
nature. Following Hoeffding (1948), we term O(F) a regular functional or esti- 
mable parameter if there exist a sample size m(_> 1) and a statistic T(XI,.. .  ,Xm), 
such that 

O(F) = , X , , ) }  

(2.8) 
= / " "  f T(Xl,...,Xm) d g ( x l ) ' " d g ( x m )  , 

for all F belonging to a class S ,  called the domain ofF .  I fm is the smallest sample 
size for which this estimability holds, it is called the degree of the parameter, and 
the corresponding T(.) is called the kernel which we may take to be a symmetric 
one without any loss of generality. A symmetric, unbiased estimator of O(F) is 
given by 

(2)' U~ = T(X,.,,...,X,m) , n > m . (2.9) 
{ 1 _<il <"" l ( i ~  ( ~ } 

It is easy to verify that 
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Un = ~ T(Xn:i,, . . . ,X,:i,,) , (2.10) 
{l<il<'"<im<n } 

so that U, is a function of the order statistics as well. This formulation of 
U-statistics has largely a nonparametric flavor wherein the d.f. F is allowed to be 
a member of a bigger class, and continuity properties are not that essential. Such 
U-statistics possess nonparametric optimality properties, and by virtue of the 
above characterization, order statistics share such optimality properties as well. 
As a matter of fact, the conditional distribution of the sample observations given 
the set of order statistics is (discrete) uniform over the set of all possible per- 
mutations, and hence, the vector of order statistics is (jointly) sufficient for the 
underlying d.f. F; it is complete under fairly general regularity conditions [see, 
Chapter 3 of Purl and Sen (1971)]. In a parametric setup, particularly for the 
exponential family of densities, minimal sufficient statistics exist and are appro- 
priate subsets of this vector (or lower dimensional functions), but in a nonpara- 
metric setup, such characterization of minimal sufficiency may not be universal. It 
is interesting to note that the above formulation of estimable parameters is tied- 
down to unbiasedness, so that in a nonparametric setup, the population quantiles 
may not be estimable in the same sense. For this reason, sample quantiles are 
generally not expressible as U-statistics, and the treatment of statistical meth- 
odology differs from one setup to another. Nevertheless, the above formulation 
has paved the way for the definition of location, scale or regression functionals for 
which order statistics are very appropriate, and we shall present the relevant 
methodology in a later section dealing with the so-called L-statistics; such 
L-statistics are related to linear functionals of F and often may be expressed as 
U-statistics as well. 

Although order statistics are well defined for all univariate F continuous or 
not, there may be tied observations (with a positive probability) if F admits jump 
discontinuities. For this reason, often, in practice, it is tacitly assumed that F is 
continuous, although due to rounding up or grouping, we may have in reality a 
discrete d.f. even if F is continuous. For a continuous F, if we denote by 

Yi=F(Xi)  and Y~:i=F(X,:i) ,  i = l , . . . , n  , (2.11) 

then the Y~ are i.i.d, with the uniform(0, 1) distribution, and therefore the Y,:i are 
the order statistics of a sample of size n from the uniform(0, 1) distribution. These 
are termed the reduced or uniform order statistics and the corresponding empirical 
distribution, denoted by Gn (t), t E (0, 1), is called the reduced or uniform empirical 
d.f. This reduction may not work out conveniently for F having jump disconti- 
nuities. Much of the asymptotics in the case of continuous F, to be dealt with in 
later sections, can be studied conveniently by appealing to this reduction to the 
uniform case. 

Let us look into the infrastructure of order statistics and the so called ranks 
antiranks, and for simplicity of presentation, we again consider the case of con- 
tinuous F. Let Ri be the rank of Xi among the n sample observations X1, . . . ,X , ,  
for i = 1 , . . . ,  n. Then, by definition we have 
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=Xn:R,, for i =  1 , . . . , n  , (2.12) 

and the stochastic vector Rn = (R l , . . . ,  R,)', termed the rank-vector, takes on each 
permutation of (1 , . . . ,  n) with the common probability (n!) -1. Likewise, we may 
define the anti-ranks Si by letting 

Xn: i = X s i  , for i =  1 , . . . , n  , (2.13) 

so that the vector of anti-ranks Sn = ($1, . . . ,  Sn)' also takes on each permutation 
of the numbers (1 , . . . , n )  with the common probability (n!) -1. Note that by 
definition 

R s i = i = S R i ,  for i =  1 , . . . , n  . (2.14) 

This basic relationship between the vectors of order statistics, ranks and anti- 
ranks provides a key to the (asymptotic) distribution theory of various statistics 
based on such vectors. 

The very definition of order statistics rests on an ordering of the sample ob- 
servations. In the bivariate (or more generally, multivariate) case, such an ordering 
of the sample observations may not exist. For  example, we may order the sample 
observations with respect to each of  the coordinates, but then these orderings may 
not be concordant. We may also order the sample observations by choosing an 
appropriate cutting function reducing the dimension to one; but such an ordering 
may depend heavily on the choice of this otherwise arbitrary cutting function. 
Therefore, it is clear that order statistics in the multivariate case may not be defined 
uniquely, and moreover, may not possess the affine invariance property which is 
usually shared by the classical linear statistics for linear models. In practice, in a 
multivariate setup, usually the coordinatewise order statistics vectors are incor- 
porated, and this may lead to some complications as will be discussed later on. In 
this setup, we will also encounter the so called induced order statistics or con- 
comitant o f  order statistics which are defined as follows. Let (X/, Y/), i = 1 , . . . ,  n, be 
n i.i.d, bivariate observations, and we denote the order statistics corresponding to 
the X-coordinate values by X,:i, i -- 1 , . . . ,  n. By the definition of the anti-ranks, 
made earlier, we have X,:i = Xsi, i = 1 , . . . ,  n. Let us denote by 

Y[i] = Yst, for i--- 1 , . . . , n  . (2.15) 

Then the Y[il are termed the concomitant of (or induced) order statistics, where 
ordering is with respect to the X-coordinate values and the concomitance is with 
respect to the Y-coordinate values. In passing, it may be recalled that whereas by 
definition the X,:i are ordered, the induced order statistics may not necessarily be 
ordered; in this sense, the term concomitant of order statistics, coined by Da- 
vid (1973), is more meaningful than its counterpart; induced order statistics, due 
to Bhattacharya (1974). It may also be noted that by virtue of the Bhatta- 
charya (1974) lemma, these induced order statistics are conditionally (given the 
order statistics X,:k) independent, but are not identically distributed in general. 
Thus, the Y[i] may not be generally exchangeable r.v.'s, although marginally, the Y/ 
are i.i.d.r.v.'s. 
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Another approach to multivariate models is to formulate the conditional 
distribution of one coordinate given the others, and quantile functions relating to 
such a conditional d.f. may then be used as suitable regression functionals. This 
formulation, however, has an uncomfortable feature: the definition of the sample 
counterpart of the conditional d.f. may entail some arbitrariness, and in view of 
that, some complications may arise in the definition of the sample conditional 
quantiles and in the study of their properties. Generally, slower rates of con- 
vergence hold in such a case, and we shall refer to these in a later section. 

Some other definitions and notions will be introduced as and when they are 
relevant in the subsequent sections. 

3. Some basic asymptotics in order statistics 

We look back at (2.1) and make use of the DeMoivre-Laplace Central Limit 
Theorem on the binomial distribution. This leads us to the following basic result 
for sample quantiles: whenever the d.f. F has a continuous and positive density 
f (x)  at the population p-quantile ~p, 

nl/2(Xn:[np] - ~p)"~ ,  ~ / ' ( 0 ,  p ( l  _p)/f2(~p)).  (3.1) 

It is not necessary to choose particularly the rank k = [np], and for the above 
asymptotic normality result to hold, it suffices to choose a k, such that 
jk - [np] I = o(nl/2). In this setup, it is not necessary to assume that the D.F. F has 
a finite second moment (as is needed for the sample mean), but the positivity of 
f({p) is needed here but not for the sample mean. If we assume further that the 
density f ( . )  is absolutely continuous with a bounded derivative at ~p, then fol- 
lowing Bahadur (1966), we may obtain the following asymptotic representation, 
termed the Bahadur representation for sample quantiles: 

/ /  

X,:I,pl = ~p - V({p)] ' ~ { I ( X i  < {p) - p }  + R,(p) , (3.2) 
i=1 

where I(A) stands for the indicator function of a set A, and 

R~(p) = O(n-3/4(logn) 1/2) almost surely (a.s.), as n -~ oc . (3.3) 

Ghosh (1971) managed to show that sans the differentiability condition on f ,  
(3.2) holds with Rn (p) = Op (n - 1/2). Various asymptotic results on sample quantiles 
emerge from (3.1), (3.2) and its weaker version due to Ghosh (1971). First, the 
result extends directly to the case of a vector [Xn:k,,... ,Xn:kq]' of sample quantiles, 
where kj = [npj];0 <P l  < "'" <Pq < 1. Parallel to (3.1), here we would have a 
q-variate normal distribution with null mean vector and dispersion matrix F = 
((?jt)), where Yjl = (pjAPl-  PjPl)/~(~pj)f(~p,)], for j ,  1 =  1 , . . . ,  q. The Bahadur 
representation extends to this vector case under parallel regularity conditions. 
Another important extension relates to multivariate observations where the 
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Xi = (X/l,... ,X/m)' are m-vectors, and for each of the m coordinates, we have the 
ordered observations. For the jth coordinate, the sample pj-quantile is denoted by 
X({ ) and its population counterpart by ~ ) ,  for j = 1 , . . . ,m,  where all the pj 

n:[npil ~/ 
belong to the open interval (0, 1), but they need not be all distinct or ordered. In 
this case, using the weaker version of (3.2) for each coordinate, we arrive at an 
asymptotic multinormal distribution with null mean vector and dispersion matrix 
F having the elements 7jr, J, 1 = 1 , . . . ,m,  where 7jj has the same form as in 
before, but related to the jth marginal density .~(.), while for j ¢  l, 
7jl = (Pjl-Pjpl)/[(j(¢~))][fl({(pl])], and pjl = P{X/j  <_ ~Ji),x/l <_ ~p(lt)}, for j ~ l =  
1 , . . . ,  m. Finally, an extension of this result for more than one quantile for each 
coordinate also emerges from the same Bahadur representation in its weaker 
form. 

We have noted earlier that the empirical d.f. and order statistics are inter- 
related, and this feature provides an asymptotic resolution of one via the other. 
As in after (2.11), we denote the uniform empirical d.f. by G,(-), and consider 
the so called uniform empirical distributional process W ° = {W,,°(t),t E [0, 1]}, 
defined by 

Wo(t) = n ' /2(G,( t )  - t), t E [0, 1] . (3.4) 

Also, let W ° = {W°(t ) ,  t ¢ [0, 1]} be a Gaussian function on the unit interval [0, 1], 
where EW°(t )  = 0 and E { W ° ( s ) W ° ( t ) }  = min(s, t), for all s , t  E [0, 1]. In the lit- 
erature, W ° is referred to as a Brownian bridge or a tied-down Wiener process. 
Then, we have the basic weak convergence result: As n increases, 

W, ° converges in law to W ° (3.5) 

It is well known [viz., Billingsley (1968)] that for the Brownian bridge, we have, 
for every 2(> 0), 

P{W°( t )  <_ 2, g t e [0, 1]} = 1 - e -2~2 , (3.6) 

and 

P{[W°(t) l  ~ A, V t E  [0, 1]} = 1 - ~ ( - 1 ) ~ - l e - 2 k ~ a 2  
k_>l 

(3.7) 

The last two equations provide simple asymptotics for the classical Kolmogorov-  
Smirnov type statistics. Specifically, for every continuous univariate d.f. F, 

l i m P { s u p n ' / 2 [ F , ( x )  - F(x)]  _> 2} = e -2a2 ," (3.8) 
x 

lim P{supnl/2tF.(x ) - F ( x ) [  _> 2)  = Z ( - 1 ) k - l e  2k2~'2 
n --+oo 

x k_>l 

(3.9) 

For finite sample sizes, the equality signs can be replaced by > signs, and also for 
F admitting jump discontinuities, we have a similar _> sign holding in this setup. 
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These provide access to one or two-sided (asymptotic) condifence bands for F, and 
by inversion, one also gets asymptotic confidence bands for the population 
quantile function Q(.) = {Q(t) = F-l( t ) ,  t E (0, 1)}. We may also define the uni- 
form empirical quantile process W,,*(.) = {W,*(t), t E (0, 1)}, by letting 

Wn*(t) = nl/2{G,l(t)  - t}, t E (0, 1) . (3.10) 

Then the same asymptotic distributions (as in the case of W fl) hold here. However, 
for a d.f. F different from the uniform(0,1), we need to incorporate the density 
function in the definition of W~*, and for the related asymptotics, appropriate 
regularity conditions are also needed. We shall discuss these briefly later on. 

These asymptotic results may not in general apply to the sample extreme 
values. Since the details of such extreme value asymptotics are provided in some 
other chapters of this volume, we shall refrain ourselves from a detailed discus- 
sion of them. Other asymptotic results cropping up in the subsequent sections will 
be presented as they arise. 

4. Robust estimation and order statistics: asymptotics in applications 

In the fifties, the generalized least squares (GLS) methodology has been success- 
fully adopted for the location-scale family of (univariate) densities to derive 
BLUE (best unbiased linear estimators) of location and scale parameters based on 
order statistics; the methodology immediately covered the case of censored ob- 
servations (including right and left truncation or censoring models) as well as the 
case of selected few order statistics; an excellent treatise of this subject matter is 
due to Sarhan and Greenberg (1962), believed to be the first one of its kind in a 
series of books, and some other monographs which are in citation in other 
chapters of this volume also deal with this important topic. The related devel- 
opments on linear models have taken place mostly during the past twenty-five 
years or so. In this setup, the primary task has been the compilation of extensive 
tables for the variance-covariance matrix and expectation vector of order statis- 
tics in a finite sample setting, and for various parent distributions, this formidable 
task was accomplished within a short span of time. Nevertheless, it came as no 
surprise that asymptotic expressions for the expectations and variance-covari- 
ances of order statistics (as presented in the last section) can be profitably used to 
simplify the procedure, at least, for large sample sizes, and in this manner, the 
BLUE theory laid down the foundation of asymptotically (A-)BLUE estimators. 
In this quest, there has been even a shift from a purely parametric formulation to 
more comprehensive nonparametric ones wherein considerable emphasis has been 
placed on the so called robustness properties (against outliers, error contamina- 
tion, gross errors and other forms of model departures). 

Typically, (A-)BLUE can be expressed as 

L~ = c~lXn:l + . . .  + cn~Xn:~ , (4.1) 
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where the coefficients {cni} depend on the argument i /n  as well as the underlying 
d . f .F .  The sample quantiles correspond to the particular case where only one of 
the cni is different from 0, although for finite sample sizes often an average of two 
or three consequitive order statistics is taken as a smooth quantile estimator. In 
this setup, we may as well conceive of a suitable score function Jn ( . )=  
{Jn(t), t C (0, 1)}, and express 

c , i = n  IJ~(i/n), for i =  1 , . . . , n  . (4.2) 

From the last two equations, it follows that L~ may be equivalently written as 

L~ = xJ~(Fn(x)) dFn(x) . (4.3) 
OO 

In passing we may remark that in a Type I (right) censoring scheme, for a prefixed 
point ~ < oc, the observations having larger values are censored. Thus, there are a 
(random) number (M) of  the c~i corresponding to these censored observations 
which are to be taken as equal to 0, while ordering of the uncensored observations 
yields the coefficients c~i as in the uncensored case. Thus, for L~ we have a similar 
representation as in above, though J~(.) will be taken to be equal to 0 at the upper 
end. A similar case arises with Type II (right) censoring, where there is an ad- 
ditional simplification that the number of censored observations is prefixed. 
Modifications for the left or both sided censoring schemes are straightforward. 
Bearing these features in mind, in an asymptotic setup, often, we justify that there 
exists a smooth score function J(-) = {J(t), t E (0, 1)}, such that 

J ~ ( t ) ~ J ( t )  as n---+ec, V t E  (0,1) , (4.4) 

where J( .)  may vanish at the tail(s). Further noting that the empirical d.f. F, 
converges almost surely to the true d.f. F, we may conceive of a function 

f /0 O(F) = xJ (F (x ) )  dF(x)  = F -1 (t)J(t) dt , (4.5) 
0 0  

which is a linear functional of the underlying d . f .F .  Much of the asymptotics 
deals with the behavior of Ln - O(F) with special emphasis on its stochastic (as 
well as almost sure) convergence, asymptotic normality and related invariance 
principles. Most of these details can be found in the books of Serfling (1980) and 
Sen (1981c) as well as in some later ones in this area. For  an up-to-date coverge at 
an advanced mathematical level, we may refer to Chapter 4 of  Jure6kovfi and 
Sen (1996). It follows from the above developments that an L-statistic is a linear 
functional of the empirical d.f. Fn, and hence, it belongs to the general class of 
(differentiable) statistical functionals, for which general asymptotics have been 
developed in a systematic manner. As such, we find it convenient to introduce 
such functionals and their related asymptotic theory, and incorporate them in the 
display of general asymptotic properties of a general class of L-estimators. In the 
von Mises-Hoeffding approach, a regular functional or estimable parameter is 
conceived as one which admits a finite-degree kernel that estimates it unbiasedly 
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for all F belonging to a nonempty class, termed the domain of the functional. 
However, this finite-degree clause may not be always tenable; a very simple case is 
the population quantile or percentile which for an arbitrary F may not have a 
finite degree kernel. In the current state of  art of  these developments, basically the 
aim is to express a functional 7(F,) in a Taylor 's  type expansion: 

T(F~) = T ( F )  + T~(F, - F)  + rem(Fn - F; T) , (4.6) 

where T) is the derivative of  the functional, defined suitably, and the remainder 
term has some nice and manageable properties. Therefore there is a need to 
introduce suitable mode of differentiability (in functional spaces) so that the 
above representation works out well. The Frechet differentiability considered 
earlier in this context appears to be more stringent than generally needed in 
statistical applications, and at the present time, Hadamard  or compact  differen- 
tiability appears to be more convenient for statistical analysis. 

Let U and ~## be two topological vector spaces and let 5°1 ( ~ ,  OF) be the set of 
continuous linear transformations from ~U to ~##. Let s¢ be an open set of  ~ .  
Then a functional z: ~4 -+ ~ is said to be Hadamard  differentiable at F E d if 

I 5Ol ( ~ ,  ~K), termed the Hadamard  derivative of  ~ at there exists a functional r F c 
F, such that for any compact  set X of ~ ,  

lim t - l  [~(F + tH)  - ~(F) - ~( tH) ]  = 0, 
t--~0 

uniformly for any H C ~ . 

(4.7) 

Thus, we have from the last two equations, 

Rem(tH, z) = z ( F  + tH)  - z (F )  - Z'F(tH) . (4.8) 

The concept of second-order Hadamard-differentiability has also been introduced 
in the literature, and we may refer to Jure6kovit and Sen (1996) for some detailed 
discussion; other pertinent references are all cited there. For  L-functionals there 
are certain additional simplicities in the smooth case at least, and we shall refer to 
those later on. In this context we may note that though F, estimates F unbiasedly, 
for a general nonlinear functional, T(F,) may not be an unbiased estimator of  
T(F). Moreover,  by virtue of the fact that T~(Fn - F; T) is a linear functional, its 
general asymptotic properties (such as stochastic or a.s. convergence and as- 
ymptotic normality) can be established by standard methods, but its asymptotic 
variance may depend on the unknown F in a rather involved manner. Therefore 
there is a three front task endowed to the statisticians in using such functionals for 
drawing statistical conclusions: 

(a) To eliminate or reduce the asymptotic bias of T(Fn). 
(b) To estimate the asymptotic mean squared error of T(F , )  in a robust and 

efficient manner. 
(c) To exhibit that the remainder term is negligible in the particular context. 

Jackknifing and functional jackknifing play an important  role in this context. To 
motivate jackknifing, we let T(Fn) = T, and suppose that 
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EF[T~] --- T ( F )  + n - l a ( F )  + n -2b (F )  + . . .  , (4.9) 

where a(F) ,  b (F)  etc., are possibly unknown functionals of  the d . f .F .  Let T,-1 be 
the same functional  based on a sample of  size n -  1, so that  EF[Tn-a] = 
T ( F )  = (n - 1) - la (F)  + (n - 1)-2b(F) + . . . ,  and hence, 

EF[nT, - (n - 1)r~ 1] : T ( F )  - [n(n - 1)] ' b (F)  + O(n 3)  . (4.10) 

Therefore,  the order  of  the asymptot ic  bias is reduced to n -2 f rom n 1. Motivated 
by this feature, f rom the base sample (X1,. . .  ,Xn), we drop the ith observation,  
and denote  the resulting est imator by ~ 0  I, for  i = 1 , . . . ,  n. In the next step, we 
define the pseudovariables as 

Tn,i = n T n  - ( n -  1)T}01, i =  1 , . . . , n  . (4.11) 

Then the jackknifed version T J o f  the original est imator T, is defined as 

i rJ = n -1 ~ T,,i • (4.12) 
i=1 

It follows f rom the last two equations that  

EFIT J] = T ( F )  + O(n -2) , (4.13) 

so that jackknifing effectively reduces the order  of  the asymptot ic  bias. Al though 
this was the pr imary reason for introducing jackknifing (nearly half  a century 
ago), these pseudovariables serve some other  impor tan t  purposes too. Toward  
this end, we define the jackknifed variance est imator V, /by 

n 

(n- l / '  Z(r ,i. r /2 
i= I  

n 

= (n - 1) ~- 'cT(i)  -- T,~) 2 
~ . .~  \~  n -  1 

(4.14) 

i = i  

n where T,* = n -1 }-~4=1 T(i). l" We define a (nonincreasing) sequence of  sub-sigma 
fields {cgn}, by letting ~n = ~(X,,:x,...,Xn:n: Xn+j , j  >_ 1), for  n _> 1. Then pro- 
ceeding as in Sen (1977), we may note that T¢* = E{T~_I [~g,}, and as a result, 

T J = T, + (n - 1)E{(T, - T, 1)1~,} , (4.15) 

so that jackknifing essentially adds the adjustment term based on the classical 
concept  of  condit ional  expectations. For  a reverse martingale sequence, this ad- 
jus tment  is null. Similarly, we have 

V~ J = n(n - 1)var(T,_llcg~) , (4.16) 

whenever these condit ional  moments  are defined properly. Again under  suitable 
regularity conditions, the right hand side of  the last equat ion converges a.s. to a~, 
the asymptot ic  mean squared error  of  nl/2[T, - T(F)],  so the second task is also 
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accomplished by the jackknife technique. Finally, we note that Hadamard dif- 
ferentiability ensures that 

[Rem(Fn - F; T)[ = o(llf. - Ell) , (4.17) 

on the set where [IF, - F I I  ---+ 0, and hence, the weak convergence results on the 
empirical d.f. imply the asymptotic negligibility of this remainder term. A better 
order of representation holds under second-order Hadamard-differentiability. In 
Jure6kovfi and Sen (1996), considerable emphasis has been laid down to suitable 
first-order asymptotic distributional representation (FOADR) results for various 
nonlinear statistics. Typically, we have the following: As n increases, 

n 

rn - T ( F )  = n 1 ~  ~b(X/;F) + Rn , (4.18) 
i=1 

where the score function ~b is so normalized that 

E F ~ ) ( X  i : F )  = 0 a n d  EF[ (~(X / :F ) ]  2 = 0 -2 1 (4.19) 

and the remainder term Rn satisfies some smoothness properties. In such a case, 
even without the Hadamard differentiability of T ( F ) ,  the bias reduction and 
consistency of the variance estimator in the jackknifing method have been es- 
tablished. There are some other variants of the classical jackknife method, and 
delete k-jackknifing and functional jackknifing are noteworthy in this perspective. 
We will present a brief outline of these variants of the jackknife and we refer to 
Sen (1988a,b) and Jure6kovfi and Sen (1996) for some discussion with good 
emphasis on the robustness aspects of these estimates. 

As a simple example, we may consider the case of sample quantiles where the 
classical jackknife may not work out well. However, if instead of taking all 
possible subsamples of size n -  1 from the base sample of size n, we take all 
possible [(~)] subsamples of size n - k, where k is (moderately) large but k / n  is 
small, then the delete-k jackknife works out well. On the other hand, in a regular 
case where the functional is sufficiently smooth, such a delete-k jackknife yields 
variance estimators that are asymptotically stochastically equivalent to the one 
provided by the classical jackknife [see, Sen (1989)]. This suggests that even in a 
regular case, instead of the classical jackknife, one may adopt a delete-k jackknife 
with a moderate value of k. For nonlinear statistics this may add more robustness 
flavor to the derived variance estimator. Along the same lines, we consider the 
functional jackknife. The pseudovariables T,,i defined by (4.11) are most likely to 
be less robust than the original Tn; this can easily be verified by considering a 
simple nonlinear estimator, such as the sample variance. Moreover, the jack- 
knifed version in (4.12) being the simple average of these pseudovariables inherit 
all the nonrobustness properties of sample means. Thus, in this setup, error 
contaminations or outliers in the sample observations may have more noticable 
impact on the pseudovariables in (4.11) and thereby the jackknifed estimator in 
(4.12) may lose its robustness prospects considerably. One possible way of re- 
covering such robustness properties would be to lay a bit less emphasis on the 
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bias-reduction role and jack-up the stability of variance estimators through the 
construction of other functionals. For  statistical functionals admitting F O A D R  
or Hadamard  differentiability, it can be shown that the pseudovariables in (4.11) 
are exchangeable random variables (in a triangular scheme), so that a suitable 
measure of  their central tendency can be advocated as an alternative jackknifed 
version. Such measures of  central tendency are themselves typically L-functionals, 
so that instead of the simple mean in (4.12), we may consider an L-statistic based 
on the psdeudovariables in (4.11). In this context, to emphasize on the robustness 
aspects, we may consider analogues of  the tr immed mean or Winsorized mean of 
these pseudovariables, or some other L-statistics for which the coefficients in the 
two tails are taken as equal to 0. Another possibility is to use a rank-weighted 
mean [Sen (1964)] of  these pseudovariables as a jackknifed version. I f  
Tn,(1),...,Tn,(n ) stand for the order statistics corresponding to the unordered 
pseudovariables in (4.11), then as in Sen (1964), we may define a k th order rank- 
weighted average as 

( )(;) n - 1 n j (4.20) 
T~,k = 2k + 1 k Tn,(j) , 

j=k+ 1 

where for k - - 0 ,  we have the mean of the pseudovariables (most nonrobust), 
while for k = [(n + 1)/2], we have their median (most robust). A choice of  k as 
small as 2 or 3 may induce considerable robustness without much sacrifice of  the 
efficiency aspect. Moreover,  such rank weighted means are smooth L-functionals, 
and hence, their robustness properties are retained to a greater extent. In fact, 
they are also expressible as U-statistics, so that variance estimation by the jack- 
knifing methodology can be easily accomplished. We refer to Sen (1988a,b) for 
various asymptotic properties of  such functional jackknifed estimators and their 
related variance estimators. 

It follows from the above discussion that under appropriate regularity con- 
ditions, for a statistical functional T(F~) there exist a suitable jackknifed version 
T J and a jackknifed variance estimator V J ,  such that as n becomes large, 

ni/2(rff - r (F)  )/[Vff] 1/2 -+~ ,3/(0, 1) . (4.21) 

The last equation provides the desired tool for attaching a confidence interval for 
T(F) based on {T J,  V~} and also for testing suitable hypotheses on the T(F). In 
both the cases, due emphasis can be placed on the underlying robustness aspects. 
A similar picture holds for Efron's (1982) bootstrap methods whenever the as- 
ymptotic normality property holds; we refer to Sen (1988b) for some detailed 
discussion. 

We conclude this section with some pertinent discussion on various types of  
censoring schemes arising in statistical applications, and on the scope of as- 
ymptotics already presented in the uncensored case. As has been discussed before, 
in a Type 1 (right) censoring case, observations beyond a truncation point are 
censored. This leads to an L-statistics where a (random) number of  coefficients of  
the extreme order statistics are taken to be 0. This situation is similar to the case 
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of the trimmed L-estimators, and we will discuss this in the next section. Sec- 
ondly, consider the case of Type II (right) censoring where a given number of the 
extreme cni are taken to be equal to 0. This results in a greater simplification of the 
boundedness and differentiability conditions for the associated L-functionals, so 
that the asymptotic theory for the uncensored case treated earlier remains ap- 
plicable in this context too. The situation is somewhat more complex in the case 
of random censoring schemes, and we present here briefly the necessary modifi- 
cations. 

In random censoring, we conceive of a set of censoring variables C1, . . . ,  Cn 
which are i.i.d, according to a d.f. G, such that Ci and X/are  independent. Then 
the observable random elements are 

Zi = min(X~, Ci) and (~i = I (X /=  Zi), i = 1 , . . . , n  . (4.22) 

Let us denote the order statistics for the Zi by Zn:x _< . . .  _< Z,,:n. Further, i f f f  and 
G stand for the survival functions corresponding to the d.f.s F and G respectively, 
then the survival function for the Zi is given by 

~r(x) = 1 - H ( x )  = F(x)-G(x),  x E ~ , (4.23) 

so that the Zn:i are intricately related to the empirical d.f. related to H = 1 - H .  
For the estimation of the percentile points or other measures of the d.f. F, we 
therefore need first to estimate the d.f. F itself. A very popular estimator, known 
as the Kaplan-Meier  (1958) product - l imi t  (PL-)estimator, can be formulated as 
follows. Let 

n 

N , ( y ) =  Z I ( Z / > Y ) '  y E ~ ;  

i=1 (4.24) 
o~i(y ) = I (Zi  <_ y,  6i = 1), i = 1 , . . . ,  n; y E ~ ,  

z n = m a x { Z / : l < i < n }  . 

Then the PL-estimator of F(y) is given by 

n 

-fin(y) = H{N. (Z~) / [N. (Z i )  + 1]}~i(Y)I(Y _< vn) 
i=l 

(4.25) 

: 1 1  ,f 
Jr1 / n i l  tZ.~ + 1] Y -< Zn , 

{i:Zi<_y} " n \  t )  

where H ,  = 1 - Hn is defined by 

n 

-H,(y) = n-~Nn(y)  = n - I  ~ -~ I (Z i  > y) ,  y C ~ . (4.26) 
i = l  

As such, it is possible to replace the empirical d.f. F, by the product-limit esti- 
mator P, and define an L-statistic in this random censoring scheme as a suitable 
(linear) functional of P,. The weak as well as strong convergence properties of the 
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PL-estimator have been extensively studied in the literature [viz., Shorack and 
Wellner (1986)], and as such, Hadamard differentiability and other tools adapted 
in the uncensored case may also be used in the random censoring case to yield 
parallel results. Finally, censoring in practice may be considerably different from 
that in theory and methodology [viz., Sen (1995c)], and there are certain basic 
issues that merit a careful examination. In a later section, we will discuss more 
about these findings. 

5. Trimmed LSE and regression quantiles 

L-estimators introduced in earlier sections work out well for the location-scale 
models. However, for the regression model 

Y~ = X , p + e ,  , (5.1) 

where Y, is the (n-)vector of sample observations, X, is an n x p matrix of known 
regression constants, known as the design matrix, and e, is an n-vector of 
i.i.d.r.v.'s with a d.f. F having location 0, the concept of sample quantiles deems a 
regression-equivariance property which is not apparent in general. Koenker and 
Bassett (1978) came up with a very clever idea of regression quantiles which 
satisfy such a basic requirement and thereby pave the way for further fruitful 
developments of robust estimation theory in linear models. Consider a fixed 

(0 < c~ < 1). Then their proposed c~-regression quantile ~,(c~) is defined by 

~n(c~) = arg min p~(Y/- x'lt): t E ~p , (5.2) 

where Y, = (YI,. . . ,  Yn)', xl is the ith row of Xn, for i = 1 , . . . ,  n, and 

p ~ ( x ) = l x ] { ( 1 - c ~ ) I ( x < O ) + ~ ( x > O ) } ,  x E ~  . (5.3) 

Koenker and Bassett (1978) also managed to show that their regression quantile 
can also be characterized as an optimal solution (/~) of the following linear pro- 
gramming problem: 

n n 

~ r  + + ( 1 - c 0 Z r ~ - = r a i n  ; 
i = 1  i - -1  

P (5.4) 
Z x i j f i J  + r + - r[ =Yi ,  i =  1 , . . . , n  ; 
j = l  

~j E ~ ,  j =  l , . . . , p ;  r+ >_ O, r~ > O, i = l , . . . , n  ; 

where r+(ri)  is the positive (negative) part of the residual E -x~/~, i = 1 , . . . ,  n. 
The Koenker-Bassett regression quantiles also lead to trimmed least squares 
estim~itors of the regression parameters. We choose two values 0 < cq < c~2 < 1, 
and define the regression quantiles/)~(cq) and ~(c~2) as in before. Let then 
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{ '/)n(e2)} i = l ,  . ,n  (5.5) c oi = I x l  L( 1) < < x i  , . .  , 

and let C~ = Diag(c,1, . . . ,  c~n). Then the (~1, c~2)-trimmed least squares estima- 
tor T,(el ,  c~2) is expressible as 

Tn(C~l ' 6(2) t - ' (5.6) : x,c Y , 

where D stands for a generalized inverse of D. For the simple location model the 
above equation reduces to that for the classical trimmed mean. In this context it 
may be noted that the centering constant for this trimmed least squares estimator 
may differ from the true/~ when ~1 and ~2 are not complementary to each other or 
the d.f. F is not symmetric. Hence, in practice, it is tacitly assumed that the error 
distribution is symmetric about 0, and we take ~1 : 1 -  ~2 = e, for some 
0 < ~ <  1/2. 

Jure6kovfi and Sen (1996, Chapter 4) have considered the asymptotic theory of 
regression quantiles and trimmed least squares estimators in general linear models 
in a unified and systematic manner. It follows from their general results that 
under mild regularity assumptions, denoting by T, (c~) = Tn (c~, 1 - c~), we have the 
FOADR: 

T ~ ( c ~ ) - / ~ = ( 1 - 2 @  I(X' ,X~)l~-~xiO(ei)+Op(n-1/2),  (5.7) 
i=1 

where O(e)=F-l(c~),  e, or F - l ( 1 -  7), according as e is < F-l(c~), F 1(~)_< 
e _< F- l (1  -c~), or > F 1(1 - @ .  The above representation also yields the fol- 
lowing asymptotic (multi-)normality result: 

Under mild regularity assumptions, as n increases, nl/2[Tn(o~) - /~] has 
asymptotically a p-variate normal distribution with null mean vector 
and dispersion matrix a2(7,F)Q 1, where 

{1 } o ' 2 ( ~ , r )  = (1 - 2 ~ )  1 ( f - l ( . ) )  2 d u + 2 ~ ( F  ~(~))2 , ( 5 .8 )  

l ! and it is assumed that n X,,Xn converges to a positive definite limit Q. 

It may be noted that for the location model, Q reduces to 1 and (5.8) specifies the 
asymptotic mean squared error of the classical trimmed mean. Moreover higher- 
order asymptotics for such estimators in the general case, where ~1 and 1 - e2 are 
not necessarily equal or F is possibly asymmetric, have been considered in detail 
in Section 4.7 of Jure6kovfi and Sen (1996). We therefore omit these details. 

We conclude this section with some remarks on robustness properties of re- 
gression quantiles and trimmed least squares estimators in linear model. The main 
motivation for such estimators is to borrow the robustness properties of sample 
quantiles through the regression-equivariance of these estimators, and at the 
sametime, by choosing c~ small enough, to retain their asymptotic efficiency to a 
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greater extent. Depending on the largeness of the sample size (n), one may choose 
c~ sufficiently small to achieve this dual goal. Finally, we may note that such 
regression quantites have also led to the development of another important class 
of robust estimators termed the regression rank scores estimators (Gutenbrunner 
and Jure6kovfi, 1992) which have close affinity to the classical R-estimators of 
regression parameters. Since these have been presented in a unified manner in 
Chapter 6 of Jure6kovfi and Sen (1996), we refrain ourselves from going over 
their details. 

6. Asymptotics for concomitants of order statistics 

For a sample of bivariate observations (X/, Yi), i = 1, . . .  ,n, we define the con- 
comitants of the order statistics (X/7:i) by Yn[i], i = 1 , . . .  ,n as in (2.15), and note 
that they are conditionally (given the Xn:i) independent but not necessarily iden- 
tically distributed random variables. If, however, X and Y are stochastically in- 
dependent then the Yn[iJ are i.i.d., and hence, in testing for stochastic independence 
of (X, Y), such concomitants of order statistics can be effectively used. Bhatta- 
charya (1974, 1976) and Sen (1976a) considered general asymptotics for the 
partial sum sequence 

Snk = ~'~{Y,/7~] - m(Xn:j)}, 
j<k 

where we set 

k = l , . . . , n ;  & o = O  , (6.1) 

m(Xn:k) = E(YnNIXn:k), k = 1 , . . . , n  , (6.2) 

so that they represent the regression function of Y on X. There is also an intricate 
relationship between the concomitant of order statistics and mixed-rank statistics 
for testing bivariate independence [viz., Sen (1981b)]. Towards this, we define the 
marginal ranks of the Xi and Y~ by R/Ti and &i respectively, so that 

n n 

R/Ti = ~--~I(Xy < ~ ) ,  &i : ~--~I(Yj < Y~), i =  1, . . .  ,n . (6.3) 
j = l  j = l  

Then a typical rank statistic for testing the hypothesis of independence of (X, Y) is 
of the following type: 

/7 

Mr,, = Z an (Rni)b/7 (S/Ti) , (6.4) 
i = l  

where the a/7(k), b/7(k), k = 1 , . . . ,  n are suitable scores. Side by side, we may de- 
fine a mixed-rank statistic as 

Q/7 = ~ an(R/Ti)b(Yi) , (6.5) 
i = l  
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where b(.) is a suitable score function. It is clear that we may rewrite Q, equiv- 
alently as 

t/ 

O~ = Z a~(j)b(Y,[/]) , (6.6) 
j = l  

so that Qn is a linear combination (of functions) of the concomitants of order 
statistics. In that way the general asymptotic results considered by Sen (1981b) 
extend the results for partial sums, mentioned earlier, to more general functions. 
Ghosh and Sen (1971) considered a general class of rank order tests for regression 
with partially informed stochastic predictors. These statistics are all mixed (linear) 
rank statistics, developed before the concept of concomitants of order statistics 
surfaced in the statistical literature, and hence, the general asymptotics presented 
in Ghosh and Sen (1971) may as well be streamlined along the lines of 
Sen (1981b). An accompanying article by H. A. David and H. N. Nagaraja (in 
this volume) deals with some other aspects of these induced order statistics, and 
hence, we omit the details to avoid duplications to a greater extent. 

There is, however, an important area where the concept of concomitants of 
order statistics has mingled with a more general concept of nonparametric re- 
gression function, and we will discuss this in more detail in a later section. In this 
section, we provide only an outline of this linkage and stress the role of asymp- 
totic theory in that context. Suppose that we aim to estimate the unknown re- 
gression function 

m ( x ) = E { Y [ X = x } ,  x C ~ ,  a compact set of .~ . (6.7) 

Although in the normal case this regression function is linear and hence is de- 
scribable by a finite dimensional parameter, in a general nonnormal setup, the 
regression function may not be linear or even be describable in terms of a finite 
number of parameters. For  this reason, a regression functional approach is more 
appealing from practical point of view. But, like the sample mean in the uni- 
variate case, re(x) in this conditional model may be quite sensitive (even to a 
greater extent) to error contaminations or outliers, and sans its plausible linearity, 
its appeal is greatly lost in a nonparametric setup. Therefore instead of defining 
the regression function in terms of the conditional mean, we may also define this 
in terms of the conditional median or some other robust measure of the central 
tendency of the conditional distribution of Y, given X = x. In either case, we need 
to estimate this unknown conditional d.f. (at a given x) from the sample data. 
Among various possibilities, the nearest neighbor (NN-) method and the kernel- 
smoothing method have emerged as the most popular ones. In a kernel method, 
we choose (i) some known density K(x) possessing some smoothness properties 
(viz., unimodality, symmetry, differentiability upto a certain order and bounded 
support etc.) and (ii) a sequence {h,} of  positive numbers converging to 0 (as 
n --+ oc), so that defining by F~ (x, y) the sample (empirical) (bivariate) d.f., we may 
set for an a E g,  
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rh,(a) = f f y K ( ( a - x ) / h , )  dFn(x,y) 
f f K ( ( a  - x)/hn) dFn(x,y) ' (6.8) 

and propose this as a nonparametric estimator ofm(a),  a E cg. It is clear that such 
an estimator becomes a linear combination of the induced order statistics with 
stochastic weights depending on the order statistics of the X values lying in the 
vicinity of the chosen point a. A somewhat simpler situation is encountered in a 
NN-method. There we define the pseudovariables (Zi) by letting 

Z / = [ 8 - a t ,  i = l , . . . , n  , (6.9) 

which depend on the pivot a and are nonnegative r.v.'s. We denote the corre- 
sponding order statistics by Z,:I _< . . .  <_ Z,:,. Consider then a nondecreasing se- 
quence {k~} of positive integers, such that k, goes to oc, but n-lkn --+ 0 as n ~ oc. 
Denote the concomitants of these order statistics by Y~Tj (a), for j = 1 , . . . ,  n. We 
define an empirical d.f. F~* (., a) by letting 

Ff~*(y;a) = kn ~ ZI(Yn[i](a) _<y), y C -~ • (6.10) 
j~_k. 

Then, we may consider an estimator 

rhn(a) = [y dF,*(y;a) = k ~ - l Z  Y,[/](a), a E ~ . (6.11) 
d j<k .  

The simplicity of (6.11) over (6.8) is evident from the constant weight (i.e., k, 1) 
against stochastic ones which depend on the choice of the kernel density as well as 
the order statistics for the X characteristics in the neighborhood of a. Never- 
theless, generally both the estimators are biased, and letting k, ~ nh,,, it can be 
shown that both the methods possess similar bias and mean squared error 
properties. We refer to Bhattacharya and Gangopadhyay (1990) for some deeper 
asymptotic studies relating to such estimators. In a general framework, we may 
consider suitable (L-)functionals of the conditional d.f. F(ytx ) and estimate the 
same by considering their sample counterparts based on F•(.tx ). We refer to 
Gangopadhyay and Sen (1992) where other references are also cited. From the 
point of view of applications, asymptotic normality and consistency properties of 
these estimators suffice, while the other deeper asymptotic results are mostly of 
academic interest only. 

In the area of survival analysis (with covariates), the Cox (1972) regression 
model or the so-called proportional hazard model (PHM) occupies a focal point. 
This is essentially a semi-parametric model where the regression of the survival 
time on the covariates is formulated in a parametric form, but the (baseline) 
hazard function is treated as arbitrary. We consider the simple model where n 
subjects have simultaneous entry into the study-plan: the ith subject (having 
survival time Y/ and a set of possibly stochastic concomitant variates Zi = 
( Z i l , . . .  , Ziq) t, for some q > 1) has the (conditional) hazard rate (given Zi = z i )  
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hi(y lz i )  = h o ( y ) . e x p ( f f z i ) ,  i =  1 , . . . ,n ,  y c ~+ , (6.12) 

where the baseline hazard function ho(y)  is an unknown, arbitrary nonnegative 
function, and ~ = (131,..., 13q)' parameterizes the regression (on the covariates). In 
survival analysis and life testing problems, the Y/are nonnegative r.v.'s, and they 
are observed in a time-sequential setup, namely, the smallest one (Yn:l) is observed 
first, the second smallest next, and so on, the largest one (Y,,:n) emerges last. Thus, 
just before the ith failure point (Yn:i - o), the risk set ~i  consists of the n - i + 1 
subjects which have not failed uptil that timepoint, for i = 1 , . . . ,  n. Then in the 
case of no censoring, proceeding as in Cox (1972), we obtain the partial likeli- 
hood function 

~__( eP'Z.i~j "1 
L*(fi) = !__11 / } - ~  e,'zj ) '  (6.13) 

where we note that by definition Z,[i] is the concomitant of the ith order statistic 
Y,:i, i = 1, . . .  ,n, and this definition is adapted to the vector case without any 
modification. For testing the null hypothesis H0: fl = 0 against the alternative 
HI: fl ~¢ 0, Cox (1972) considered the following test statistic (based on the scores) 

~ ,  = U,*'J; U~ , (6.14) 

where 

U*£ = (O/Of f ) logL ,~( f l ) l f=  0 ; (6.15) 

J2 = (o2/o1 o1 ') l o g  L;(p)I =0 , 

and A- stands for the generalized inverse of A. Let us write 

Z 2 [ i ] = ( n - i + l )  - 1 Z Z j ,  i =  1 , . . . , n  . (6.16) 
jcNi 

Then by some standard arguments [viz., Sen (1981a)] it follows that 

17 

U *  ~-- n[i] - -  Z n [  i ~ 

i = 1  

and 

° ( ) - ' J ; = ~ - ~ ( n - i + l )  1 ~  Z j -Z ; [ / ]  (Zj-Zn[i])  (6.18) 
i = 1  jE~,i 

Therefore U~ is a linear combination of the concomitants of the failure order 
statistics, and J~ is also completely expressible in terms of these concomitants of 
order statistics. In this context, the asymptotics for partial sums of concomitants 
of order statistics developed by Bhattacharya (1974, 1976) and Sen (1976a) may 
not be totally adoptable, and general asymptotics based on suitable martingale 
constructions developed by Sen (198 la) provide a better alternative for the study 
of the asymptotic properties of the Cox (1972) test. 
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In Section 4 we have mentioned about various censoring schemes as may arise 
in practice. In the context of survival analysis, such censoring schemes are more 
commonly encountered. For  Type I or II censoring, the modifications for the Cox 
procedure are straightforward. Instead of the sample size n, in the expression for 
the score statistic and the second derivative matrix, the sum (over i) extends only 
over the observable failure points. In the case of random censoring, the problem 
becomes more complex, and the Cox (1972) ingenuity leads to a very clever 
construction of the partial likelihood function where the risk sets are only adapted 
to the failure points (but not the censored ones). Thus the cardinality of the risk 
set ~i  will be a number, say, ri which is the number of subjects that have not failed 
or dropped out before the timepoint Y£*:i, and Y£*:i is defined as the ith failure point 
allowing possible censoring due to drop outs. Therefore if out of n units, m results 
in failure and the remaining n - m  are censored, we would have m terms in the 
likelihood score statistic. Again these terms are a (random) subset of the totality 
of n terms, and hence, the characterization in terms of concomitant of order 
statistics remains in tact, but some extra manipulations are needed to handle the 
asymptotic theory in a manageable way. The martingale approach of  Sen (1981 a) 
remains adoptable without any major alteration. 

In survival analysis, time-sequential tests based on progressive censoring 
schemes have received due attention in the recent past [viz., Sen (1981c, 
Chapter. 11)]. In the current context, this relates to a repeated significance testing 
(RST) of the same hypotheses (H0 vs. Hi) on accumulating data. Basically when 
the dataset relating to the flow of events upto the ith failure is acquired, one can 
construct a partial likelihood score test statistic as in the Cox case, for every i > 1. 
Let us denote this partial sequence of test statistics by 

{L*i ; i =  1, . . .  ,m, } , (6.19) 

where m, stands for the number of failure points among the n units in the study- 
plan. Marginally, for each L;,i, we may argue as in the case of total sample, and 
using the inherent permutational invariance structure (under H0) of the anti- 
ranks, we obtain a distribution-free test statistic. Therefore, the task is to con- 
struct a suitable stopping rule related to the partial sequence in (6.19), so that the 
resulting sequential test has some desirable properties. The invariance principles 
for concomitants of order statistics studied by Sen (1981a) in the context of the 
Cox (1972) model enables us to provide suitable Gaussian process (for q = 1) or 
Bessel process (for q _> 2) approximations, so that the usual sequential testing 
methodology can be easily adopted here when n is large. There is an additional 
simplification here: The stopping variable (say, K,) cannot be greater than m,, 
which in turn cannot be larger than n, so that n- lK ,  is a bounded nonnegative 
random variable. For  details, we refer to Chapter 11 in Sen (1981c). Motivated by 
this feature of progressive censoring schemes in survival analysis, Sen (1979) has 
considered a general class of quantile (history) processes based on suitable 
functions of concomitants of order statistics and incorporate them in the con- 
struction of suitable time-sequential tests. We start with a triangular array of 
constants (vectors) 
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{Cni; i = 1 , . . . , n }  . (6.20) 

These vectors may contain nonstochastic design variates and stochastic con- 
comitant variates too. Then in a RST setting, we construct a partial sequence of 
induced linear order statistics: 

T*nk=Zg(Yn: i )  Cn[i] -~ ( n  - -  k )  - 1  Cn[i] , k = l , . . . , n ,  
i= l  j = l  

(6.21) 

where we take without any loss of  generality ~7-1 cni = 0, and conventionally, we 
let T;0 = 0; for k = n, we have T* n = T* = ~-]i~__1 g(Yn:~)cn[i]. In the above setting, 
the functional form of g(') is assumed to be given. In the Cox model, we let 
g(y) = 1, V y, so that we have an extension of the Cox statistics where additional 
information on the survival function can be acquired through nonconstant 9(')- 
However, in the case of  a nonconstant 9('), we essentially endup with a mixed 
rank statistics, and hence, the basic distribution-free property prevailing in the 
Cox model may no longer be tenable here. Nevertheless, incorporating suitable 
martingale characterizations, invariance principles for the partial sequence in 
(6.21) have been studied by Sen (1979), and results parallel to the Cox model have 
also been derived. 

7. Concomitant L-functionals and nonparamctric regression 

In parametric linear models, apart  f rom the basic linearity of the regressors, 
independence, homoscedasticity and normality of the error component  constitute 
the basic regularity assumptions. Yet in practice, there may not be sufficient 
incentives to take these regularity conditions for granted, and plausible depar- 
tures from the model based assumptions can affect, often seriously, the perfor- 
mance characteristics of classical statistical tools. Moreover,  in analysis of  
covariance (ANOCOVA) or other mixed-effects models, there are, in addition to 
the fixed-effect components,  some other random-effects component(s) which may 
even violate these regularity assumptions to a greater extent. For  example, the 
regression of the primary variate on these stochastic (concomitant) regressors 
may not be closely linear, and even so, the conditional variance of the pr imary 
variate, given the covariates, may not be a constant at all levels of  these con- 
comitant variates. Therefore from robustness and validity considerations it seems 
more appropriate to formulate suitable nonparametric  regression models wherein 
the above regularity assumptions are relaxed to a certain extent. 

It will be more convenient for us to start with the simple nonparametric  re- 
gression model, introduced in the last section, and then consider the more general 
case of  mixed-effects models with some semi-parametric flavor. The formulation 
in the bivariate case sketched in (6.7) extends directly to the case where the 
concomitant  variables Xi are q-vectors, for some q >_ 1. However, statistical 
manipulations become cumbersome when q becomes large, and the rate of  
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convergence of estimators of  the type in (6.8) becomes slower. Moreover, the 
conditional mean, defined in (6.7) (6.8), may generally be highly nonrobust. 
Hence, we may find it more appealing to take recourse to suitable robust location 
functionals of the conditional distribution function, and in this respect, L-func- 
tionals including conditional quantiles are very appropriate. In our presentation 
here we mainly deal with the NN-methodology and note that parallel results hold 
for the kernel method as well. 

Consider a set (Xi, Y/), i =  1, ...,n of  n i.i.d, random (q + 1) vectors, and let 
F(ylx ) stand for the conditional d.f. of  Y, given X = x. A conditional functional is 
a function of this conditional d.f., and hence, depends on x as well. In the general 
case of  q-dimensional stochastic X's,  we conceive of a suitable metric 
p: ~q x ~q --+ ~+ ,  and for a chosen pivot Xo, define the nonnegative random 
variables 

D ° = p(Xi ,xo) ,  i = 1,...,n . (7.t) 

We denote the ordered values of the D ° by (0 _<)D°:I _< . . .  _< D,°:n, where the 
superscript indicates the dependence of these variables on the chosen pivot Xo. 
Also, we choose a sequence of positive integers {kn}, such that as n increases kn 
also does so, but n-lkn goes to 0. Typically, we choose k, ~ O(tlq/(q+4)). Next 
corresponding to the chosen metric p and the pivot Xo, we define the anti-ranks 
S °, i = 1 , . . . ,  n by letting D°:i = DOs o, for i = 1 , . . . ,  n. Then the k~-NN empirical 
d.f. at the pivot Xo is defined as 

k, 
f',,k,,(Y) = k , '  Z I ( Y s ,  <_ y), y C ,~ . (7.2) 

i--1 

In the particular case of  a conditional p-quantile function, we may set 
O(F(.IXo ) = inf{y: g(ylXo ) >_ p},  so the corresponding k , -NN estimator is 

O,,k,(Xo) = inf{y: F,,k,(ylXo) >_ [pk,]/k,},  p E (0, 1) . (7.3) 

In the sameway for a linear functional f J ( F ( y t X o ) ) a ( y  ) dF(ylXo ) with suitable 
score functions J(-) and a(.), we may consider the plug-in estimator 

0nsnCXo) = J J(L, oCyl"o))a(y) dFn,k,,(ylXo) , (7.4) 

which is typically a L-statistic in the set { Yso, i < k, }. Typically such L-functionals 
are location functional, so they are measures of central tendency of the condi- 
tional d.f. F(.[Xo). This explains the relevance of order and concomitants of order 
statistics in the study of nonparametric  regression. In this context, we need to 
allow the pivot Xo to vary over a (possibly compact) set cd c .~q, and formulate a 
functional cloud {0(F(-lx); x E cg}. In that way, we need to have deeper weak 
convergence results for some multidimensional t ime-parameter stochastic pro- 
cesses. Some general asymptotics in this vein are considered by Sen (1993b), 
where other pertinent references are also cited. 



Order statistics: Asymptotics in applications 359 

Next, we proceed to examine the role of conditional (L-)functionals in mixed- 
effects models. In a conventional (normal theory) model, we denote the primary, 
design and (stochastic) concomitant variates for the ith observation by Y~, ti and 
Zi respectively, for i = 1 , . . . ,  n. Then conditional on Z~ = zi, we have 

Yi = ~ ' t i +  7'ziq-ei ,  i =  1 , . . . , n  , (7.5) 

where /~ and ? are the regression parameter vectors for the fixed and random 
effects components, and the errors ei are i.i.d, normal with null mean and a 
positive (unknown) variance 02. The ei are assumed to be independent of the 
concomitant variates Zi, and the assumed joint normality of (Zi, ei) yields 
homoscedasticity, linearity of regression as well as the normality in the condi- 
tional setup. However, sans this joint normality (which may often be very ques- 
tionable), a breakdown may occur in each of these three basic postulations. As 
such, two different models have been proposed to enhance robustness properties 
of statistical analysis tools. First, with respect to the linear model, assume that the 
d.f. F(e]z) of  el, given Zi = z, is independent o f z  and is continuous. Thus only the 
normality part of the basic assumptions is relaxed here. In this still linear setup, 
the classical procedure works out well in an asymptotic setup when F has a finite 
second moment. However, it remains vulnerable to plausible departures from 
linearity as well as homoscedasticity. For this reason, in a nonparametric for- 
mulation [viz., Puri and Sen (1985, Chapter 8)] it is generally assumed that 
F/(ylz) = P{Yi _< YlZi = z) = F ( y  - ~:tilz), i = 1 , . . .  ,n, where F is arbitrary and 
continuous. Thus here we conform to a parametric (linear) form for the fixed- 
effects variables but to a nonparametric one for the stochastic covariates. In order 
to quantifying further this model in terms of appropriate regression functionals, 
we define a translation-invariant functional 0(F(.]z)) (typically a measure of lo- 
cation of the conditional d.f. F(.]z)), and consider the following quasi-parametric 
model: 

O(~(-Iz)) = o(r( ' lz))  + ~'ti, i =  1 , . . . , n  . (7.6) 

This model has a finite dimensional regression parameter for the design varlates 
but a regression functional for the random effect components. From robustness 
considerations this model appears to be more appropriate than the others. 
However, in this formulation the finite dimensional regression parameter p is 
estimable with the conventional v ~ rate of convergence, while the estimators of 
the regression-functional 0(F(-]z)) have a slower rate of convergence. In this way 
we end up with a robust estimator of the regression functional without com- 
promising much on the efficiency of the estimator of/~. 

The basic idea is simple. Recall that the Zi qualify as genuine concomitant 
variates if their distribution is unaffected by the design variates. Thus, if we 
consider the model in (7.6) and integrating over the concomitant variate z, we 
obtain the marginal model (sans the Z / )  where 

Y / = ~ ' t i ÷ e ~ ,  i =  1 , . . . , n  , (7.7) 
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where the e~ are i.i.d.r.v.'s with a continuous d.f., say, F*. This is the classical 
linear model for which L-estimators of/~ have nice properties (we may refer to 
Section 5 where regression quantiles and trimmed least squares estimators have 
been considered in the same setup). We denote such an L-estimator of/~ by ~n, 
and note that under appropriate regularity assumptions, as n increases, 

nl/2{~ - ~} - -~  JVp(0, Q l .  ~2) , (7.8) 

where Q has been defined in Section 5 and 4 2 is a positive scalar constant de- 
pending on the particular form of the L-estimator and the d.f. F*. Note that the 
v~-consistency property of this estimator is a consequence of the above result. In 
the next step, we consider the aligned observations (residuals) 

= -' , (7.9) l?ni Y/ -  ]~,ti, i = 1 , . . . , n  

and observe that by virtue of (7.8) and the bounded nature of the (fixed-)ti, the 
perturbations of the residuals in (7.9) (around their true values) are Op(n-1/2). 
Next we consider the set of aligned vectors (17~i, Zi), i = 1, . . .  ,n. On this set we 
incorporate the methodology of conditional functionals as has been presented 
before. However, we need to keep certain features in mind. First, these aligned 
stochastic vectors are not necessarily independent or even marginally identically 
distributed (though the Zi are i.i.d.). Second, in view of the stochastic nature of 
the Zi, we need to formulate a set cg E ~q (usually a compact one), and allowing z 
to vary over ~ and pointwise defining a conditional functional 0 ( z ) =  
0(F(.]z)), z ~ cg, we obtain a functional process: 

O(Cg) = {0(z): z ~ cg} . (7.10) 

Thus our primary task is to construct a functional estimator (process) to estimate 
the functional in (7.10). Third, in this venture, we need to pay due attention to the 
apparently contradictory outcomes: bias due to possible oversmoothing and 
slower rate of convergence due to the infinite-dimensional nature of the param- 
eter. Finally, a prescribed solution should be reasonably adoptable in actual 
practice when the sample size may not be enormously large. This last requirement 
may often preclude most of the contemporary refined local smoothing techniques 
based on pure asymptotic considerations. 

A linearity theorem based approach has been considered by Sen (1995b, 
1996b) and it works out reasonably well in this respect. If we denote by 
y/o = Yi-/~'ti, i =  1 , . . .  ,n, then we note that the (Y/°,Zi) are i.i.d.r, vectors, so 
that the formulation of conditional quantiles presented earlier remains valid in 
this setup. In the next step, we consider a compact ~" c NP and define 

Y~°(b) = Yi ° -n-1 /2b ' t i ,  i =  1 , . . . , n ,  b E ~4 ~ . (7.11) 

Note that the concomitant variates are not affected by this regression-translation, 
and hence, corresponding to a pivot Zo ccg, we can define the k,-NN order 
statistics (D°:/) as in before (7.2). With this definition, replacing the Y/in (7.2) by 
the corresponding Y°.(b) in (7.11), we define the k,-NN empirical d.f. by 
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~',,ko(ylzo;b), Zo E ~, b E Y . (7.12) 

Note that for b = 0, the asymptotics presented before hold. Then Sen (1995b, 
1996b) managed to show that under appropriate regularity conditions, as n -~ oc, 

sup sup sup k~ ~2lIb.,k,, (ylz; b) - F,,ko (YIz; 0) l --~e 0 . (7.13) 
zcCg bE~  yE,~ 

This last result in turn implies that for smooth L-functionals (viz., Hadamard 
differentiable ones), the perturbation does not affect the asymptotics upto the 
order k~ 1/2. Therefore conditional functionals based on the aligned residuals have 
the same (first order) asymptotic properties as the ones based on the true resid- 
uals. This methodology also suggests that we may improve the estimator of/~ 
based on the marginal model by gridding the compact set ~ into a number of 
buckets, estimating the parameters from each bucket by suitable L-functionals, 
and then combining these estimators by a version of the weighted least squares 
method. For  details, we refer to Sen (1996b). 

8. Applications of order statistics in some reliability problems 

There are various problems cropping up in reliability and life testing models 
where order statistics play a vital role. The related asymptotics, mostly adopted 
from Sen (1995a), are outlined here with a view to foster more applications in 
practice. We consider four basic reliability models: 

(a) Statistical strength of a bundle of parallel filaments; 
(b) Reliability of K-component system - in series; 
(c) Reliability of K-component system - in parallel; 
(d) Systems availability, under spare and repair. 

First, we consider Daniels' (1945) formulation of (a). Consider a bundle of n 
parallel filaments. Assume that a load to which the bundle may be subjected to is 
shared uniformly by the n filaments, whose individual strengths are denoted by 
X1, . . . ,  Xn respectively, and further that the X~ are i.i.d, nonnegative r.v.'s with d.f. 
F defined on ~+.  Let Xn:l < - .. < Xn:n be the order statistics associated with the 
X~. Then Daniels (1945) defined the bundle strength as 

B , = m a x { ( n - k + l ) X n : k :  1 < k < n }  , (8.1) 

and by very elaborate analysis he established the consistency and asymptotic 
normality of the perunit bundle strength (Z~ = n 1Bn). Note that Bn is a well 
defined function of the sample order statistics, but it is not a linear combination 
of the order statistic, nor an extreme order statistic. Hence the classical asymp- 
totic theory of  order statistics may not be of much use in this context. Never- 
theless, denoting by F~ the sample d.f., we may write, as in Sen, Bhattacharyya 
and Suh (1973), 

Z, = sup{x[1 - Fn(x)] : x E ~+} . (8.2) 
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This immediately suggests that the centering constant for Zn should be 

O(F) = sup{x[1 - F(x)]:  x E N+} = Xo[1 - F(xo)] , (8.3) 

where we assume that Xo = xo(F)  is a unique point where this supremum is at- 
tained. If the d.f. F is of known functional form (involving possibly some un- 
known parameters), O(F) can be expressed as a function of these parameters 
(often quite simple in form), so that optimum estimation of O(F) can be achieved 
through optimum parametric estimation of these parameters. However, such 
estimates are usually highly nonrobust [Sen, 1995a], and hence, we advocate the 
use of nonparametric asymptotics for this model. In this context the one-to-one 
relationship of the vector of sample order statistics and empirical d.f. plays a basic 
role in the formulation of general asymptotic results presented below. 

First, by establishing a reverse sub-martingale property of {Zn;n >_ 1}, Sen 
et al. (1973) were able to study (almost sure) convergence properties of Zn and the 
order of its asymptotic bias term too. But more remarkably, the weak conver- 
gence of  the empirical process W~ = {ni/2[Fn(x) - F(x)], x E ~+}  to a tied-down 
Wiener process provides a vastly simpler and shorter proof  of the asymptotic 
normality of nl/2{Zn - 0(F)} under minimal regularity assumptions on the d . f .F .  
It follows from this weak convergence result that the asymptotic mean squared 
error of nl/2(Zn - O(F)) is equal to 

72(F) = 0 2 ( F ) { F ( x o ) / F ( x o ) }  , (8.4) 

where O(F) = xoF(xo) ,  so that xo also depends on the underlying d.f. F, and can be 
estimated consistently. Second, this alternative approach enables one to encom- 
pass a large class of functionals (expressible as extrema of certain sample func- 
tions) and to establish their asymptotic properties under simpler regularity 
assumptions. Third, it also shows that there are possibly nonlinear and extremal 
type of functions of order statistics which are attracted by appropriate normal 
laws. Finally, this asymptotic normality and a related FOADR enable one to 
incorporate jackknife or bootstrap methods for estimating the (unknown) as- 
ymptotic mean squared error of such seemingly nonlinear estimators. We refer to 
Sen (1993a, 1994b) for some of these details. 

Consider next Problem (b). A simple example is a chain with K loops whose 
individual breaking strengths are denoted by X1,. . .  ,X~ respectively. Note that 
the chain breaks when at least one of the loops is broken, so that the breaking 
strength of the chain is defined as 

Cx = min{X/: 1 < i < K} = Xx:l • (8.5) 

If independent copies of the system lifetime are available, one may proceed di- 
rectly to incorporate the corresponding empirical d.f. in the estimation of the d.f. 
of Cx as well as suitable functionals of that d.f. In that respect, there is no 
additional complication involved in statistical modeling and analysis for this type 
of reliability models. A more interesting statistical problem arises when inde- 
pendent copies of the strength of the loops are available, and they provide 
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additional statistical information too. It may be plausible to assume that the )2,. 
are i.i.d.r.v.'s with a d.f. F defined on N+. Thus if we denote the d.f. of  CK by GK 
and the corresponding reliability function by GK = 1 -- GK, then we have 

GK(x) = IF(x)] K = {1 - F ( x ) }  K, x E -~+ . (8.6) 

The last equation provides a convenient means for estimating the reliability 
function Gx from the sample d . f .F .  when a number of independent copies of the 
X~ are available. We may consider the plug-in estimator of G as follows: 

G,(x) = 1 - {1 - fn(x)} K, x C ~+ , (8.7) 

although this estimator may not be strictly unbiased when K > 1. An optimal 
unbiased estimator of this reliability function is obtained by using Hoeffding's 
(1948) U-statistics theory. Define a kernel (of degree K) by letting 

~ ( x l , . . . , x x )  = min{xl , . . .  ,XK} , (8.8) 

and incorporate this in the following U-process: 

Ge,n(x) = Z I ( O ( X i , , . . . , X , k )  <_ x), x C .~+ , (8.9) 
n:K 

where the summation Y~'~n,K extends over all possible (}) 1 _< il < ' ' "  < iK ~ n. 

Apart from its unbiasedness, the U-process {Gv , , ( x ) , x  C N+} possesses the Gli- 
venko Cantelli type convergence property, the Hoeffding-decomposition and 
projection properties, and weak as well as strong invariance principles also hold 
for them. 

Suppose now that we want to estimate O(GK), the mean lifetime of the system. 
By definition, we have 

O(GK) = {1 - GK(x)} dx . 

Then the Hoeffding (1948) U-statistic for this estimator is given by 

U n = ( ; ) - 1  Z O(Xi , , . . .  ,XiK) 
n~K 

;) 
- -  1 x n : i  ' 

i=1 

(8.10) 

(8.11) 

where X n : l , . . . , X n :  n stand for the order statistics for a collection of 
n X/, i = 1 , . . . ,  n. Thus U, is an L-estimator and its asymptotic properties can be 
studied by an appeal to the standard U-statistics theory or the results presented in 
Sections 3 and 4. In general, we may consider a regular functional of the d.f. GK 
(such as a percentile or a measure of location) and employ appropriate L-esti- 
mators based on Ge,n. In the literature such estimators are often termed gener- 
alized L-estimators. 
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The case of the K-component system - in parallel follows parallel to the 'in 
series' case where instead of the min{Xx,.. .  ,XK}, we have to work with their 
maximum (as the system survives as long as at least one of the component is 
alive). Here Gx (x) = F x (x), x E .~+, and hence, similar changes are to be made in 
the definition of the kernel q5 as well as the U-statistics constructed above. The 
parallel expression for the last equation in this case is the following: 

U , =  K - 1  X,:z . (8.12) 
Z=I 

Therefore the relevance of order statistics asymptotics remains in tact in this case 
as well. In the same vein we may consider a k-out of-K multicomponent system 
and express the reliability function as well as regular functionals for this system in 
terms of the original d.f. F, so that similar order statistics based statistical analysis 
can be made. 

In a single unit system supported by a single spare and a repair facility, when 
the operating unit fails it is instantaneously replaced by the spare and sent to the 
repair shop. Upon repair it goes to the spare-box for its subsequent use. Thus the 
system fails when an operating unit fails but the spare box is empty. This occurs 
when the lifetime (X) of the operating unit is shorter than the repairing time (Y) of 
the last failed unit. Since to start with there is a spare with the same d.f. F as the 
original unit, if we denote the d.f. of  the repair times by G and if N is the number 
of operating units failure culminating in a system failure, then 

P { N = k + l } = a k - l ( 1 - ~ ) ,  k = 1 , 2 , 3 , . . .  , (8.13) 

where c¢ = P{X > Y} = f o  G(x) dF(x) is a positive fraction. Note that ED, the 
expected system downtime is 

/0 /0 ED = {G(x + t)/-G(x)} dF(x)a t  . (8.14) 

The meantime until the first system failure, measuring from a regeneration point, 
is given by 

/0 ET = (1 - ~)-10(F); O(F) = F(x) dx . (8.15) 

Assuming that (i) the repair of a failed unit restores it to its new condition, (ii) the 
original and spare units both have the same d.f., and (iii) X and Y are independent 
[viz., Barlow and Proschan (1991)], the limiting average availability of the system 
is defined by 

Am = ET{ET + ED} 1 

= O(F){O(F) + (1 - c¢)ED} -1 (8.16) 

In a strict parametric mold, this model has been treated extensively in the liter- 
ature, and reported in Barlow and Proschan (1991). A parallel nonparametric 
treatment is due to Sen and Bhattacharjee (1986) and Sen (1995a), among others. 
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Note that O(F) has the natural nonparametric estimator O ( F , ) = X , ,  the 
sample average of n lifetimes of the operating units. Moreover, a plug-in esti- 
mator of ED is given by 

D, = {G~(x + t ) /G,(x)}  aFt(x) dt 

(8.17) n n 

= n 1 Z l'l~l Z (Yn:j -- Xn:i)I(Yn:J > Xn:i) ' 
i=1 j=l  

where the X,:~ and Y,j stand for the order statistics of the X and Y sample values 
respectively, and 

n 

Hi = ~-~f(Yn:j > Xn:i), i =  1 , . . . , F /  . (8 .18)  
j=l  

Thus a plug-in estimator of AFG can be obtained by substituting these estimators 
in the form in (8.15). By definition this is a bounded and nonnegative random 
variable, and is expressible in terms of a (nonlinear) function of the order statistics 
X,:i and Y,,:j. Asymptotics for order statistics, albeit in a functional mode, play a 
basic role in the study of consistency and asymptotic normality of the plug-in 
estimator. Jackknifing has also been incorporated to reduce the order of the 
leading bias term and to obtain the jackknife variance estimator of this estimator. 
Some alternative estimators are also considered along the same lines. 

It is clear that this order statistics asymptotics based approach can also be 
adopted in other related problems in such reliability models. 

9. TTT asymptotics and tests for aging properties 

We have introduced the sample spacings and their normalized versions in (2.2) 
through (2.4), and the TTT function in (2.5). In reliability theory and survival 
analysis, such TTT statistics play a basic role, specially in the context of testing 
for some aging properties. We start with a nonnegative r.v. X having a d.f. F and 
survival function F, defined on N+. Thus F(0) = 1. F(x) is nonincreasing in 
x E N+, and F(oc) = 0. Moreover we assume that F admits a continuous density 
f ,  and define the hazard function as 

hF(X) = - (d /dx) logF(x)  = f ( x ) /F (x ) ,  x C ,~+ (9.1) 

Then he(x) is nonnegative and defining the cumulative hazard function as 
HF(X) = fo hF(t) dr, w e  obtain that 

F(x) = exp{--Hy(x)}, x E ~+ (9.2) 

Aging properties of life distributions are then formulated in terms of the (cu- 
mulative) hazard function, density function and other associated functionals. 
Among these the mean residual life (MRL) function eF(X) is specially noteworthy. 
Note that by definition 
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}/ eF(x) = F(y) dy -i(x) = E ( X - x l X > x ) ,  x E ~ +  . (9.3) 

By contrast, the mean life time is eF(O) = E(X) = #, say. Moreover corresponding 
to a d.f. F with finite mean #, we may define the first derived d.f. TF(.) by letting 

/0 TF(y)  = # 1 F ( x )  dx; 

(9.4) /? TF(y)  = 1 - rF (y )  = # 1 -if(X) dx, y C * +  • 

Before we proceed to introduce the characterizations of various aging properties, 
we may point out the role of order statistics and the TTT transformation in the 
formulation of  the sample counterparts of these measures. 

We define the order statistics X,:i as in (1.1), F, as in (1.2) (1.3), the spacings l,] 
as in (2.2), the normalized spacings d,j  as in (2.3), their cumulative entries D,k as 
in (2.4), and the total time on test upto the point t by D,( t )  as in (2.5). then the 
sample counterpart of # is the sample mean 

[~, = X ,  = n - l D . .  . (9.5) 

Likewise the plug-in estimator of IF@) is 

IF .@) = (~.)  ' D . ( y ) / n  = D . ( y ) / D n n ,  y < Xn:. .  (9.6) 

Then a plug-in estimator of the MRL function ee(y) is 

= d x  

: (n - k ) - ' { D , ,  - D,(y)}, for X,:k _< y < X,:k+l, k = 0 , . . . ,  n . 

(9.7) 

All these involve the TTT statistics at various timepoints, and as a result, are 
functions of the sample order statistics. 

At the base of the characterizations of aging properties lies the simple expo- 
nential model -i(x) = e x p { - x / p } I ( x  _> 0) for which we have the following char- 
acterizations: 

(i) P { X  > x + y l X  > x}  = F ( x  + y ) / F ( x )  = 17(y) =- P { X  > y}, for all x , y  >_ O. 
(ii) The hazard function hF(y) = if-1 is a constant for all y >_ 0. 
(iii) The MRL eF(x) = eF(O), for all x E N+. 
(iv) The dnj are i.i.d.r.v.'s having the same exponential d.f. 

The different aging concepts are related to the negation of such properties of the 
survival or reliability function. We mention here only the most commonly used 
ones. 

(i) N B ( W ) U  Class. A d.f. F is new better (worse) than used if 

F(y) _> (_<)-i(x+y)/-i(x),  V x, y > 0 . (9.8) 
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(ii) I(D)FR Class. A d.f. F has increasing (decreasing) failure rate if 

hF(y) is f ( ~ )  or HF(y) is convex (concave) in y E ~+ . (9.9) 

(iii) I(D)FRA Class. A d.f. F has increasing (decreasing) failure rate average if 

F(cx) is > (<)IF(x)] c, Vx, c > 0 . (9.10) 

(iv) D(I)MRL Class. A d.f. F has decreasing (increasing) mean residual life if 

eF(x ) is ~ ( / )  in x >_ 0 . (9.11) 

(v) NB(W)UE Class. A d.f. F belongs to the new better (worse) than used in 
expectation if 

eF(O) is _> (<) eF(X), Vx >_ 0 . (9.12) 

(vi) NB(W)RUE Class. Let {N(t), t _> 0} be a counting process relating to the 
number of renewals under instantaneous replacement (perfect repair) upto the 
time point t(_> 0) so that N(0) = 0 with probability 1 and N(t) is f ,  nonnegative 
and integer valued (r.v.). Under such repeated renewals it is well known that the 
remaining life 

N(t)+l 

L ( t ) :  Z X / - t ( t _ > 0 )  (9.13) 
i=1 

of the item in use at time t converges in law to a nondegenerate r.v. Xo (as t --+ oo) 
which has the d.f. TF(y), the first derived d.f. for F, already introduced in (9.4). 
Thus the corresponding MRL function is defined as 

eTF(Y) = E(Xo -y iXo >y) ,  y E ~+ (9.14) 

Then a d.f. F belongs to the new better (worse) than renewal used in expectation if 

eF(O) is _> (_<) eVF(y), Vy E ~+ . (9.15) 

There are some other concepts of aging (including the well known HNB(W)E 
property) which will not be included here. However, these are discussed in detail 
in a separate chapter in this volume, and hence the results to follow would apply 
to them as well. 

It is well known that there is a partial ordering of these classes of life distri- 
butions. While the exponential family is the pivot of this complex, the IFR class 
contains the exponential ones as a vertex point and it is contained in the IFRA 
class, which is a subclass of the NBU class, and the NBUE class contains the 
NBU class; finally, the NBRUE class contains the NBUE class. A similar picture 
holds when the NBRUE class is replaced by the HNBUE class, although the 
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NBRUE class is neither contained in or contains the HNBUE class. Also a 
parallel implication diagram holds for the NWU etc. Therefore in testing for 
exponentiality of a d.f. F, it is of natural interest to consider a more general class 
of alternatives, and in this respect, the NBUE and NBRUE alternatives therefore 
appear to be more appropriate than the others. 

Let us first consider the NBUE alternatives. Hollander and Proschan (1972) 
derived a test statistic for this class which can be expressed as 

Tnl =g/ l + ~ 3 ( n - - i )  i--1} 
i--~[ 2n 2n X,:i , (9.16) 

which is clearly an L-statistic with smooth weights. A more general class of 
L-statistics for this testing problem has been considered by Koul (1978), and for 
the asymptotic normality of such test statistics, we may make use of the general 
asymptotics presented in Sections 3 and 4. Let us look into this testing problem 
from a slightly different angle. Let 

~F(y)=~ -1 # F ( y ) -  -ff(x)dx , y > O . (9.17) 

Then for the exponential class, IF(Y) = 0, Vy _> 0, while under the NBUE class, it 
is nonnegative everywhere, and positive for the strict NBUE class. As such, as a 
measure of divergence from exponentiality along the NBUE avenue, we may 
consider the following: 

A(F) = sup IF(Y) • (9.18) 
y_>0 

In the above definitions replacing the d.f. F by its sample counterpart Fn, we may 
define the sample counterparts of ~g(') and A(F) respectively as 

~,(Y) = ~F,(Y), Y --> 0; and z~, = A(Fn) . (9.19) 

Further recalling the piecewise linearity of the ~n(Y), we may proceed as in 
Bhattacharjee and Sen (1995) and show that 

/~n = max{DL1D,k-- n- l k  : k = 0, 1 , . . . , n}  , (9.20) 

where the Dnk have been defined in (2.4). Again the above equation relates to a 
(nonlinear) function of the order statistics. The same statistic was proposed by 
Koul (1978) from a somewhat different consideration. Using a multivariate 
beta distributional characterization of the D,~ld~,k = 1,. . .  ,n, a simpler deri- 
vation of the asymptotic distribution of (n - 1)1/2A, under exponentiality is given 
in Bhattacharjee and Sen (1995). This paper also contains some extension of this 
distribution theory under various types of censoring; in the case of random 
censoring a similar functional of the Kaplan-Meier product limit estimator has 
been used along with suitable versions of the classical jackknifing and boot- 
strapping technique to provide a workable solution to the large sample distri- 
bution theory (as is needed for the actual testing problem). 



Order statistics." Asymptotics in applications 369 

Let us next consider the case of NBRUE alternatives. The situation is a bit 
more complex. Using the convex-ordering (-%) of TF and F, we may write 

F is NBRUE .#==> TF -% F , (9.21) 

so that if we let 

Jr (y )  = {F(x) - ~ ( x ) }  dx, y E ~+ , (9.22) 

then J F ( Y ) =  0, Vy _> 0 when F is exponential, and it is nonnegative for the 
NB R UE class. Thus as a measure of divergence from the exponentiality along the 
NBRUE avenue, we may consider a linear functional 

/0 /0 3~ = JF(Y) df2(y) = ~F(y)~?(y) dy , (9.23) 

or a sup-norm functional 

A(F) = sup{co(y)JF(y): y E ~+} , (9.24) 

where co(.) is a nonnegative weight function, and g2(y) is nonnegative and non- 
decreasing in y (>  0). In particular, we may choose Of2(y)/Oy = F ( y ) , y  >_ O, and 
co(.) ~ 1. 

It is quite natural to consider the plug-in estimators of these functionals 
wherein we replace the unknown F by the sample counterpart Fn. Proceeding as in 
Sen and Bhattacharjee (1996), we may then consider a rescaled statistic 

n-1  

L = ~_a{Dnkdn,k+l/D2nn q_ dn,k+12 /(2D2nn) 
i=1 

- nD,,kd,,,k+l/((n - k)D2,,,,) q- nd2k+l/(2(n - k)D~,) (9.25) 

+ n ( n - k ) - l [ D 2 . . d . : k + l  + D.~d.2,~+l 4-4.k+1/3]/D3nn} . 

Similarly, if we define 

Jn (Y) = n-1 {D,,. - D.  (y) } - D . .  1 {D,,,, - Dn (x) } dx, y >_ 0 , 

(9.26) 

then we have for each k(= 0, 1 , . . . ,  n), 

2, ,k = L ( x . : k )  = u,,j u,j_  
j=k+l n _ ) r +  1 n 

1 n nu2j 

n - j + l  ' 

where u,j = dnj /D, ,  and U,~ = ~j<k u,j. Then the sup-norm test statistic is 

(9.27) 
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i 

zX, = max{Lk : k _< n} . (9.28) 

Sen and Bhattacharjee (1996) employed the multivariate beta distribution of the 
u n j , j  = 1 , . . . , n  (under exponentiality of F) to provide simple L-statistic ap- 
proximation to L~ and also managed to show that the sup-norm statistic has 
asymptotically (under the null hypothesis) the same distribution as of the 
supremum of a Wiener process on the unit interval (0, 1). Again the general 
asymptotics discussed in earlier sections provide the necessary tools in this 
investigation. This functional approach to testing the null hypothesis of expo- 
nentiality against various alternatives based on aging properties opens the doors 
for the TTT statistics, and these in turn are liked to the original sample order 
statistics. Therefore, the general asymptotics for order statistics provide the de- 
sired tools for the study of asymptotic properties of related tests. 

10. Concluding remarks 

Granted the sufficiency and completeness of sample order statistics prevailing in a 
large class of statistical models, the relevance of these statistics in statistical in- 
ference problems is quite apparent. On the top of that order statistics crop up in 
many situations as handy tools for summarizing the statistical information, and 
hence, from practical applications point of view, they are generally appealing even 
in a broader setup. Censoring schemes in survival and reliability analysis are the 
most notable areas of such applications. The interrelations of order statistics and 
the empirical processes have also added to the convenience of incorporating the 
order statistics asymptotics in some other areas of research. There are, however, 
certain other fields where parallel developments require more research on order 
statistics. One of the most noteworthy areas relates to multivariate analysis. There 
may not be a complete ordering of points on a two or higher dimensional space, 
and hence, order statistics may not be properly defined. Typically if the obser- 
vations are themselves p vectors, for some p > 1, then for each coordinate, a set of 
order statistics can be defined as in the univariate case, and hence, these vectors of 
coordinatewise order statistics can be incorporated in drawing statistical con- 
clusions. However, such a matrix of order statistics would not necessarily be 
affine-invariant (a property possessed by linear estimators based on the unordered 
variates). This drawback is not of that major concern when the different coor- 
dinate variates are not that linearly conformable. Nevertheless, in many problems 
in design of experiments, the vector of residuals may not have the full rank, and 
hence, a choice of a subset of variates having the full-rank property may not be 
unique. In this case, the coordinatewise order statistics may lose some of their 
natural appeal. Even in most simple cases, such as the bivariate normal distri- 
butions, the exact distribution theory of coordinatewise order statistics may be- 
come unmanageable when the sample size is not small. The asymptotics for 
coordinatewise order statistics are potentially usable in a much broader setup, 
although motivations for their adoptations need to be initiated on other grounds. 
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Concomitants of order statistics and conditional quantile functions are important 
developments in this context. We expect more research work in this direction in 
the near future. 
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Zero-One Laws for Large Order Statistics 

R. J. T o m k i n s  and  H o n g  W a n g  

1. Introduction 

This article will present a survey of zero-one laws involving large order statistics 
of independent, identically distributed (i.i.d.) random variables. The importance 
of laws of this type in the study of the limiting behaviour of large order statistics 
has been established in the literature over the past forty years. In particular, these 
zero-one laws can be used to establish almost sure stability theorems for large 
order statistics. 

Let (~2, ~ ,  P) be a probability space, and let X1 ,X2,. . .  be a sequence of i.i.d. 
random variables defined on that space. For  any given positive integer r, and for 
each n > r, define Zr,, to be the r th largest value in {XI,... ,Xn}. Then {Zr,n, n ~ r} 
is called the r th maximum sequence of {An, n _> 1 }. If i _< n satisfies Xi = Zr,n, then r 
is said to be the rank of)( ,  among {X1,.. .  ,Xn}. 

Let F be the common distribution function (d.f.) of the sequence {An, n >_ 1}, 
i.e., F(x) = P{X  <_ x} for each real x. 

This article will focus on probabilities of the form 

P{Z~,~ > un i.o.} and P{Zr,n <_ un i.o.} , (1) 

where r _> 1 and {un} is a given real sequence. (The abbreviation "i.o." is used for 
"infinitely often".) It is an easy consequence of the Hewit~Savage Zero-One Law 
(see, for instance, Breiman (1967)) that the two probabilities in (1) can assume no 
values other than zero or one. 

Typically, as will be seen, a zero-one law for the large order statistics 
{Z,~, n >_ r}, r >_ 1, presents a series whose terms depend on F and {un} such that 
P{Z~,~ > u~ i.o.} (or P{Zr,,, <_ un i.o.}) equals zero if the series converges, and 
equals one if it diverges. Such a series is called a criterion series. 

Zero-one laws for P{Z~,, > u, i.o.}, the so-called upper-case probability, are 
generally easier to derive than those for P{Zr,, <_ U, i.o.}, the lower-case proba- 
bility. An overview of upper-case results will appear in Section 2. The funda- 
mental results in this case are due to Geffroy (1958/59) when r = 1, to Mori (1976) 
for general r > 1, and to Deheuvels (1986) and Wang (1991) when the ranks vary 
with n. 
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Zero-one laws for the lower-class probability will be presented in Section3. 
Barndorff-Nielsen (1961) and Klass (1984, 1985) did pioneering work for r = 1, 
while fundamental results for a general rank r _> 1 are due to Frankel (1972, 
I976), Shorack and Wellner (1978), and Wang and Tomkins (1992). 

Finally, Section 4 will be devoted to zero-one laws for probabilities of the form 
P{Zr,,n <<_ u~ i.o.}, where {r~,n >_ 1} is a non-decreasing sequence of integers 
obeying 1 < r~ _< n for every n. Such a sequence {r,} is called a rank sequence. 
Since n > r,, the random sequence {Zr,,,,} is well-defined. The study of this case 
was initiated by Deheuvels (1986) and extended by Wang (1991). 

It should be noted that the results to follow can easily be restated to produce 
zero-one laws for the r th minimum sequence {Xr,~,n >_ r}, where X1,, _< 
X2,, _< . . .  _< X~,, are the order statistics of {X1,X2,...,Am}, since -X~,, is the 
r th largest of { - X 1 , - X 2 , . . . , - X n  }. 

2. Zero-One laws for the upper-case probability 

Let {xn} and {u,} be real sequences such that u, is non-decreasing and u, --+ oo 
(under which circumstances we write "un Too"). Then it is a straightforward task 
to show that max{xl , . . .  ,x,} _< u, for all large values of n iff (if and only if) 
x, _< un for all large n. It follows easily that, if un Too, 

P{Z1 ,  n > u n i.o.} = P{X, > u, i.o.} 

for every sequence of random variables {X,}. In particular, i fX1,Xz, . . ,  are i.i.d. 
with common d.f. F, then it is a simple consequence of the Borel Zero-One Law 
(see, e.g. Chow and Teicher (1987), p. 61) that 

P { Z l , n  > Un i.o.} = 0 or 1 

according as 
oo 

~ { 1  - F(u,)} converges or diverges , 
n = 1  

for any real sequence u, Too. This result appears to have been derived first by 
Geffroy (1958/59). 

Tomkins (1996) produced a counter-example to show that the preceding results 
may fail if {u,,} is not non-decreasing. Furthermore, he proved that 

P{ZI,, > un i.o.} = P { Z ~ ,  > infuk i.o.} 
' k>_n 

when u, -+ oc, for every random sequence {X,}. It follows that, for any inde- 
pendent sequence {X~}, P{Z1,, > u~ i.o.} = 0 iff 

 (inr,k  l n=l \k>. / 
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whenever  un ~ oc. This  result can also be deduced f rom Theo rem 1 of  R o t h m a n n  
and Russo (1991), who defined the sequence {Mn} by 

M n = m a x { X / : n - a n < i _ < n }  

for  an integer sequence {an} such that  1 _<an < n ,  and proved  that  
P{Mn > un i.o.} = 0 iff 

oo 

- F ( v n ) ]  < , 

n = l  

where vn = inf{ui: i - ai <_ n < i}, whenever  un ~ oo. I f  an = n, clearly Mn = Zl,n 
and the result o f  Tomkins  (1995) follows. ( R o t h m a n n  and Russo ' s  Theo rem 1 is 
stated for  i.i.d, uniformly-dis t r ibuted r a n d o m  variables.  However ,  the foregoing 
s ta tement  of  their result for  a general independent  sequence follows via a stan- 
dard  t r ans fo rmat ion  argument . )  

Kiefer  (1972) was the first au thor  to tackle the upper-class probabi l i ty  for a 
general (fixed) r > 1. His result was refined by Mor i  (1976), as follows: 

THEOREM 2.1. Let  {Xn} be an i.i.d, sequence with d . f  F.  Then,  for  any integer 
r > 1 and any real sequence un T co, 

OQ 

P{Z~,n > un i.o.} = 0 iff Z n  r 1{1 - F ( u ~ ) } r  < oc . 
n = l  

Kiefer ' s  (1972) version of  Theo rem 2.1 conta ined the superfluous hypothesis  
that  {nil - F ( u , ) ] }  be non-decreasing.  Note  that  Theo rem 2.1 reduces to Geff- 
roy ' s  result when r = 1. 

As one might  anticipate,  the var iable- rank case is more  complicated.  Indeed,  
complete  results are not  yet available for the upper-class  probabi l i ty  in this case. 
We will present  some sufficient condit ions which guarantee  that  
P{Zr  ..... > un i.o.} = 0 for  a given rank  sequence {In}. First, here is a result o f  
Deheuvels  (1986). 

THEOREM 2.2. Let  X1,X2, . . .  be an i.i.d, sequence with d . f .F .  Let  {rn, n >_ 1} be a 
r ank  sequence such tha t  rn -~ ec and l i m s u p n ~ ( r n / n )  < 1. Let  {u,} be a non-  
decreasing sequence such that  

rn - n[1 - F(u~)] 
lira = ec . (2) 

n ---+ OO V ~  H 

Then  P{Zr,,n > Un i.o.} = 0 if 

1 ne - F ( u n  exp{-n[1  - F ( u n ) ] }  < oc . 

Deheuvels  (1986) also p roved  that  Theo re m 2.2 remains true for  a sequence 
{u,}, not  necessarily mono tone ,  if l imsup,~o~ r2~/n < oc, un < un+l whenever  

rn = rn+l, and l i m , ~ { r n  - nil - F ( u n ) ] } / x / ~  l og r ,  = oc. 
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More recently, W a n g  (1991) demonst ra ted  that the conclusion of  Theorem 2.2 
still holds under  the hypotheses nil - F ( u , ) ]  ~ ~ ,  lim supn_~oo r,[1 - F ( u , ) ]  < oo 
and 

tim rn - n[1 - F(u,)] = oc . (3) 
n - ~  v/n[1 _ F ( u , ) ]  

It is easy to check that  r~/n ~ 0 under  Wang ' s  assumptions,  so his result cannot  
imply Theorem 2.2 (which assumes only that lim sup,__+oo r , /n  < 1). However,  (3) 
implies (2), so neither Theorem 2.2 nor  Wang ' s  result can be deduced f rom the 
other. 

Finding condit ions under  which P{Z~n,, > u, i.o.} = 1 is an open 
problem. 

REMARK 1. I f  {r,} is a rank sequence such that  r~ ~ r for some integer r _> 1, 
then r~ = r for all large n, so that  P{Z~,,,n > u~ i.o.} = P{Z~,~ > u, i.o.}. Thus 
Theorem 2.1 can be applied in this case. 

REMARK 2. Let XI ,X2 , . . .  be i.i.d, with d . f . F .  Suppose {u~} is non-decreasing, 
but that  un ~ u < oc. Define x0 = sup{x: F(x) < 1}. Then Theorem 2.1 remains 
true. I f  u < x0, then P{Xn > u~ i.o.} _> P{X~ > u i.o.} = 1 by the Borel Zero-One 
law. It follows easily that  P{Z~,n > u, i.o.} = 1, r _> 1. The same conclusion holds 
if P{X1 = x 0 }  > 0, u = x 0  and u, < x0, n _> 1, since P{Xn =xo  i.o.} = 1 in this 
case. In either case, 2nC°=l H r-I [1 - F ( u n ) ]  r = 00. 

On the other hand, if u > x0 then u, > x0 for all large n, say n _> N. Hence 
P{X~ _< u~} = 1 for n _> N. It follows easily that  P{Zr,n > un i.o.} = 0, r _> 1. 
The same conclusion holds if un = x 0  for all large n (so that  u =x0) .  In 
either case, ~ n ~ l  nr-1 [ 1 - F(u,)]  ~ < c~, since all but  a finite number  o f  terms 
equal zero. 

Finally, suppose that  u = x0, u, < x0 for all n and P{Xl = x0} = 0. Define 
Y, = (x0 - A n )  -1 and v~ = (x0 - un) -1. Both {Y,} and {v,} are well-defined, and 
16, > v, iff X, > u,. Hence, for r > 1, 

P{Zr# > un i . o . }  = 0 iff P{F th max{Y1, . . . ,  Y,} > v~ i.o.} = 0 

oo 

iff ~ n r - l [ P { Y 1  > v~}] ~ < oc 
n = l  

oo 

iff ~ n r '[1 - F(u,) l  r < oo 
n = l  

by Theorem 2.1, which applies since vn I" oc. It  follows that  Theorem 2.1 is true 
under  the assumption that  {un} be non-decreasing, but not  necessarily divergent. 
This observat ion appears to be new. 
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3. Zero-one laws for the lower-case probability 

Barndorff-Nielsen (1961) proved that 

P{Zl,n <_ un i.o.} = 0 or 1 

according as the series 

~ , log logn  
r t,u~) n (4) 

n = l  

converges or diverges, provided that {u. } is non-decreasing and { [F(u.)]" } is non- 
increasing. Further, he showed by means of a counter-example that, in general, 
the hypothesis that {[F(un)] ~} be non-increasing cannot be dropped. However, 
that hypothesis is not needed to establish that 

P{Zl,n _< u. i .o .}  = 0 (5) 

when the series (4) converges. The proof of this part of Barndorff-Nielsen's re- 
suits hinges on the following clever refinement of the BoreDCantelli Lemma. 

LEMMA 3.1 (Barndorff-Nielsen (1961)). Let {An} be a sequence of events. If 
P(An) -+ 0 as n ---+ ec and oc c c ~n=lP(AnAn+l)  < o% where An+ 1 denotes the com- 
plement of An+l, then P{An i.o.} = 0. 

An easy consequence of Lemma 3.1 is the following result: if F"(u~) --+ 0 (or, 
equivalently, nil - F(un)] --+ oc) as n --+ oc and 

oo 

~ F n ( u n ) [ 1  - F ( u , ) ]  < oc , (6) 
n = l  

then (5) holds, provided that {un} is non-decreasing. Moreover, Wang and 
Tomkins (1992) proved that (6) implies Fn(un) --+ 0 and (4) if {n{1 - f(u~)]} is 
non-decreasing. 

Barndorff-Nielsen (1961) proved the "divergence part" of his theorem by 
means of a delicate analysis of the random sequence {Z1 .... n > 1}, where 
rnn = e x p { 4 n / l o g n } ,  n >_ 1; the sequence {ran} was used earlier (for different 
purposes) by Erd6s (1942). Barndorff-Nielsen proved that the divergence of the 
series (4), together with the monotonicity of {[F(un)]n}, yields P{Zl,m,, _< 
urn, i.o.} > 0, so that P{Z1# <_ un i.o.} = 1 by the Hewitt-Savage Zero-One 
Law. 

Suppose that {n i l -F(un) ]}  is non-decreasing and divergent. Then, using 
Barndorff-Nielsen's approach, it can be shown that P{ZI,n <_ u~ i.o.} = 0 or 1 
according as 

~ l o g  exp{-n [1 - F(u~)] } (7) log n 

n=3  
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converges or diverges (cf Galambos (1987), p. 252, and Wang and Tomkins 
(1992)). Under the same hypotheses, Robbins and Siegmund (1972) proved that 
P{ZI,, <_ un i.o.} = 0 or 1 according as the series 

oo 

~-~[1 - Y(un)] exp{-n[1 - F(un)]} (8) 
n = l  

converges or diverges. 
Using a different tack, Klass (1984, 1985) proved that if nil - F(u,)] ---, oc, 

then P{ZI,n <_ un i.o.} = 0 or 1 according as the series (8) converges or diverges. 
Notice that Klass's theorem places no monotonicity hypotheses on {n[1 - F(un)]} 
or { (F(un)) n }. Klass's approach also involved the study of the behaviour of {Zl,n } 
along a subsequence {n~} but, unlike Barndorff-Nielsen (1961), Klass defined 
{n~} so as to depend on the given sequence {u,} and the d . f .F .  Indeed, Klass 
presented a number of such sequences, called monitoring sequences. For instance, 
one monitoring sequence is given by: nl --- 1 and, for k _> 1, 

nk+, = m i n { / >  nk: ( j -  nk)E 1 -F(u,~)]  _> 2} , 

where 2 > 0. Klass (1984) proved that P{Zl,n <_ un i.o.) = 0 iff 

oo 

Zexp{- -nk [1  -- g(unk)]} < oc , (9) 
n = l  

and then (Klass (1985)) demonstrated that (9) holds iff the series in (8) converges. 
Godbole (1987) provided a shorter proof  of Klass's result using a martingale 

argument. 
Rothmann and Russo (1991, 1993) studied circumstances under which 

P{M,, <_ un i.o.} = 0, where Mn = max{X/: n - an < i _< n} and {an} are integers 
with 1 < an _< n, and presented criterion series for the validity of this equation for 
several families of sequences {an}, all obeying lira s u p n ~  an/n < 1. 

A natural consequence of the appearance of Barndorff-Nielsen's (1961) zero- 
one law for {Zl,n} was a quest for similar results for {Znn}, r > 1. Compared to 
the r = 1 case, the derivation of zero-one laws involving {Zr,n} is more compli- 
cated, mainly because the distribution function of Znn, that is, 

C) P{Zr,n ~< x} = ~ [1 - F(x)IJFn-J(x) , 

is much more complex than that of Zl,n (i.e., P{ZI,n <_ x} = Fn(x)) when r > 1. 
The first result in the general r case is due to Frankel (1972, 1976) who used 

techniques based on empirical processes to prove that, for r_> 1, 
P{Znn <_ un i.o.} = 0 iff 

{nil - F(un)] ~} exp{-n[1 - F(un)]} (10) 
n 

n - 1  
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converges, provided that  both  {u~} and {nil - F ( u ~ ) l  } are non-decreasing and 
that  nil - F ( u ~ ) l  ~ oc. Later,  Shorack and Wellner (1978) demonst ra ted  that  
Frankel 's  result remains valid if the monotonic i ty  assumption about  
{nil - F(u~)l } is replaced by: 

l iminfn[1 - F(u,)]  > 1 . 
n ~  log logn - 

Clearly, Frankel ' s  criterion series (10) reduces to (8) when r--- 1. It is natural  to 
ask whether  the other  three criterion series (4), (6) and (7) f rom the r = 1 case 
have analogues for a general r _> 1. An affirmative answer is given by the 
following theorem due to Wang and Tomkins  (1992). (See Wang  (1997) for  
refinements of  this result.) 

THEOREM 3.2. Let  {X,,n>_ 1} be an i.i.d, sequence with d . f . F .  Let  
nil - F(un)] --+ oc for a non-decreasing real sequence {u,}. Fix any integer r >_ 1 
and let Zr,, be the r th largest of  {X1,. . .  ,X,}, n _> r. 

(i) P{Zr,n <_ u, i.o.} = 0 if any of  the following series converges: 

o o  

~ F " ( u n )  ( l °g l °gn ) r  ; 
n 

n - 3  

o o  

Z n r - l [ 1  _ F(u,)]rg"(u,) ; 
n-1 

o o  

~-~P{Zr,, <_ u,}[1 - F ( u , ) ]  ; 
n - - r  

n r 1[1 - F(u.)]  ~ e x p ( - n [ 1  - F(u. ) ]}  ; 
n - - 1  

(log log n) ~ exp{-n[1  - F(u,)]  } . 
n 

n - 3  

(ii) If  {nil - g(u , ) ]}  is non-decreasing, then P{Z~,, <_ u, i.o.} = 1 if any of  the five 
series above diverges. 

REMARKS 1. If  liminf,,~o~ nil -- F(u,)]  < oc, then P{Zr,, _< u, i.o.} = 1 for every 
r >_ 1 (cf. Wang and Tomkins  (1992), Klass (1984)). Therefore,  it makes sense to 
assume that  n{1 - F ( u , ) ]  ~ oe in Theorem 3.2. 

2. Wang  and Tomkins  (1992) showed that  {nil - -F (u , ) ]}  is non-decreasing if 
{[F(u,)l" } is non-increasing, but  that  the converse is false, in general. Thus, 
Theorem 3.2 contains Barndorff-Nielsen 's  (1961) result for the case r = 1. 

3. It is evident f rom Theorem 3.2 that,  under  the condi t ion that  {nil - F ( u , ) ] }  
is non-decreasing, all o f  the series listed in Theorem 3.2 (i) converge if any one of  
them converges. 
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4. Zero-One laws for the lower-case probability when ranks vary 

This section will focus on circumstances under which 

P{gr.,~ <_ un i.o.} = 0 or 1 

for a given rank sequence {r,} and a given real sequence {u,}. 
By definition, 1 G r, < n and r, <_ r,+l,n >_ 1, so lim~__+~r, exists. I f  

limn_~o~ r, = r < ec, then r is a positive integer and r, = r for all large n. Hence, 

P{Zr,,, <_ u, i.o.} = P{Zr,n <_ u, i.o.} 

in this case, so Theorem 3.2 applies. Therefore,  we will restrict our  at tention to the 
case where lim,~oo r, = oo. 

The seminal work  for variable ranks was done by Deheuvels (1986), who 
employed a methodo logy  similar to the classical approach  of  Barndorff-Nielsen 
(1961) in the case r = 1. Deheuvels produced results for the lower order statistics 
f rom a uniform distribution on (0,1), but  also observed that  his results can be 
readily translated into zero-one laws for {Zr.,~, n _> 1} for a general i.i.d sequence 
{x.}. 

THEOREM 4.1 (Deheuvels (1986)). Let ) ( I ,X2, . . .  be an i.i.d, sequence with d.f. F,  
and let {u,} be a non-decreasing real sequence. Let {r,, n > 1} be a divergent rank 
sequence such that  lim sup~__,oo r,/n < 1 and 

lim nil - g(u.)l - r. = oc . (11) 

I f  
OO t Fn Z ~r~ (ne [1- F(u~)l exp{-n[1- F(un)]} (12) 

n=l  ?l 1. rn 

converges, then 

P{Zr,, ,  n ~. fA n i . o . }  = 0 . ( 1 3 )  

Deheuvels also showed that Theorem 4.1 remains true for non -mono tone  se- 
quences {u~} if u, _< U,+l whenever r ,  = r~+l and either 

lim infn[1 - F ( u ~ ) ] -  r. _< lim sup nil - F ( u ~ ) ] -  r. 0 < 
n--+oo log log n ~o~ log log n 

or l i m . ~  l o g r n + l / l o g r .  = 1, 

< o c  

n[1 - F ( . . ) J  
limsUP(n+n_   1)[1 - < oc  and  l i m i n f  n[ln oo -> 1 . 

THEOREM 4.2 (Deheuvels (1986)). Let X 1 , X 2 , . . .  be a sequence o f  i.i.d, r andom 
variables with d . f . F .  Let {rn} be a divergent rank sequence such that  
r,,/(npn) -+ 1 for some non-increasing sequence {pn}. Let {u,} be a real sequence 
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such that  n[1 - F(u. ) ]  _< (n + 1)[1 - F(u.+l)]  and u~ _< Un+ 1 whenever  r.  = r~+l. 
Suppose  that  either (a) n [1 -F (u . ) ] / l o g l ogn~ A  for  some A > 0 ,  r . =  
o ( log logn)  and liminf.__+oo r~/loglogn > 0, or (b) r.  = O( log logn)  and 

- 

0 < liminf n[1---F(u~)] < l imsup  . . . .  < oo . 
, , ~  log log  n - ,,--+oo log log n 

I f  the series (12) diverges, then 

P{zr  . _< u .  i .o .}  = 1 . 

W a n g  (1991) adapted  techniques of  Klass  (1984, 1985) to establish necessary 
and sufficient condit ions for  (13) for  a par t icular  class of  rank  sequences. 

THEOREM 4.3 (Wang (1991)). Let  XI,X2,... be i.i.d r a n d o m  variables with 
c o m m o n  d . f . F .  Let  {rn} be a divergent  r ank  sequence and {un} a non-decreasing 
sequence such tha t  n[1 - F ( u , ) l  ~ e c , F ( u , )  ~ 1, 

l imsupr , [1  - F(u,)]  < cc and limsupr~/(n[1 -F(u~)l ) < 1 . (14) 
n ~ o o  n ---~c(? 

Then  P{Zr,,,~ < un i.o.} = 0 or 1 according as the series (12) converges or diverges. 

Not ice  that  Wang ' s  hypotheses  in (14) imply that  l i m s u p , _ ~  r]/n < oc and, 
for  some ~ < 1, 

lim nil - F(un)]- rn = lim x / ~ (  nil - F(u,)]  1"~ 
/ 

_> lim , f ~ ( 6  -1 - 1) = oc . 
? / - ~  o o  

Consequent ly ,  (11) holds and r,/n ~ O, so Theo rem 4.1 can be invoked to show 
that  (13) holds when the series (12) converges.  However ,  unlike Theo rem 4.2, 
T h e o r e m  4.3 does not  require that  r ,  = O( loglog  n) and places no monoton ic i ty  
restrictions on {nil - F(u, ) ]} .  

Finally, we note  tha t  it follows readily f rom Stirling's fo rmula  that  the series 
(12) converges if and only if 

~ ( n )  [1-F(u~)]r"exp{_n[l_F(u~)]} < oo 
n = l  Fn l~l 

Notice  that,  if r ,  = r < ec for  all n >_ 1, it is now easy to show that  (12) is 
equivalent  to the convergence of  the series (10). 
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Some Exact Properties Of Cook's 

D. R.  Jensen  and  D.  E. R a m i r e z  

I. Introduction 

Cook's (1977) DI statistics are used widely for assessing influence of design points 
in regression diagnostics. These statistics typically contain a leverage component 
and a standardized residual component. Subsets having large DI are said to be 
influential, reflecting high leverage for these points or outliers in the data. 

In particular, consider a linear model Y = X0/~+~, with (Y,e)E IRN 
X0 E Fx×k, and with/~ c IR k unknown. Partition Y = / i , [Y1, Y2], X0 = [X', Z']', and 
~ = [ g l , ~ ] '  conformably, with (YI,~1) EIRn,(Y2,~z)EIRr,XcFn×k of rank 
k < n, and Z E Fr×k, where N = n + r and r _< k. To assess the joint influence of 
design points comprising the rows of Z, let i0 = (X~X0)-1X~Y be the least-squares 
estimator for/~ in the full data, with/~i = (X'X) X~Y1 from the reduced data. 
Versions of Cook's DI statistics, patterned after the generalized distance of 
Mahalanobis (1936), are obtained on specializing 

D, (~, M, c~ 2) : (~, - ~)IM(~, - ~)/c~ 2 , (l. 1) 

where M(k x k) is positive definite and 6 -2 is some estimator for the variance. 
Commonly used choices for M are X'X and X~Xo = (X~X + Z~Z), and for 6 2 are 
the residual mean square S 2 from the full data and S/2 from the reduced data, and 
for c is c = k. Related constructs are the DFBETA's to gauge the influence of  row 
I = i  of X0 in single-case diagnostics, as given by {DXflj,i = ( f l i j - - f l j ) /  
Si(Cjj)I/2; 1 <_ j <_ k} for elements of (i0 i - /~)  E IRk, with C/j as a diagonal element 
of C = (X~X0) -1. We return to these subsequently. 

In practice, benchmarks are essential for gauging whether Dr is large enough to 
be deemed "influential." Since DI is random, its stochastic properties are crucial 
in setting guidelines for its use. Exact properties of Dt in any of its forms es- 
sentially are unknown, despite an impressive list of references including books by 
Belsley, Kuh, and Welsch (1980), Chatterjee and Hadi (1988), Cook and Weisberg 
(1982), Fox (1991), and Rousseeuw and Leroy (1987). Thus benchmarks as 
currently prescribed at best are imprecise. Various authors refer DI(/~, X~X0, kS  2) 
to the Snedecor-Fisher distribution F(k, N - k), but with some distrust. Cook and 
Weisberg (1982) refer D~(~,X'oXo,kS 2) to the 50 th percentile of F ( k , N -  k), for 
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example, whereas Gray (1993) has questioned the appropriateness of scaling by k 
in the denominator. We return to these issues later. 

Here we seek structural parameters that drive D1 stochastically, thereby ac- 
counting for diagnostic trends against random scatter in the data. At the same 
time, we seek to dispel some commonly held misconceptions. We show that (i) the 
k-dimensional distribution of (/~1 -/~) is degenerate of rank r < k unless r = k; 
(ii) the numerator and denominator of/91(/}, X~X0,kS 2) are dependent, and the 
denominator is inflated stochastically by outliers resulting from shifted means; 
(iii) for r = 1 the distribution of / ) i  on scaling is F(I ,  v) with ~-2 chosen suitably; 
(iv) the exact distribution of D1 derives generally from a weighted sum, the 
weights depending on leverages and on variances before and after a shift; and 
(v) small values for/91 may indicate inliers, i.e., data points having error variance 
smaller than the remaining data. It is seen that design points having high leverage 
may mask the effects of a shift in either the mean or variance, whether the shift be 
up or down. 

An outline of the paper follows. Section 2 contains conventions for notation, 
essentials regarding certain nonstandard distributions, and steps for the simul- 
taneous reduction of rectangular matrices to quasidiagonal forms. The latter 
supports a canonical reduction of the model for subset diagnostics as in Section 
3, thereby unmasking the detailed structure of DI. Exact distributions are 
studied in Section 4; effects of leverage and shifts in the mean or variance are 
examined; and stochastic bounds are given for distributions of these types. 
Modifications to Dt are considered in Section 5, and Section 6 concludes with a 
brief summary. 

2. Preliminaries 

We first set conventions for notation; we next review essentials of some non- 
standard distributions; and we then undertake the simultaneous reduction of 
rectangular matrices of different orders to quasidiagonal forms. 

2.1. Notation. Spaces of note include the Euclidean k-space IRk; its positive or- 
thant IRk+; the collection Fn×k of real (n x k) matrices; and the symmetric (Sk), 
positive semidefinite (sO), and positive definite (S +) real (k x k) matrices. The 
transpose and inverse of A are denoted by A' and A -1 as appropriate; A I/z c S + is 
the symmetric root of A E S+; and O(n) is the group of real orthogonal (n x n) 
matrices. Special arrays include the unit vector In = [1, . . . ,  1] r c IR n, the identity 
matrix I~ of order (k x k), and the block-diagonal form Diag(Al , . . . ,Ar) .  
Probability density and cumulative distribution functions are abbreviated as pdf 
and cdf; ~(Y)  refers to the law of distribution ofY E IR"; and N,(/~, 12) designates 
the Gaussian law on IR n having mean E(Y)=/~  E IR" and dispersion matrix 
V(Y) = ~2 c S +. Standard distributions on IRI+ include the cdf G(-; v, 2) of the chi- 
squared distribution (Z 2 (v, 2)) having v degrees of freedom, and the cdf F(.; k, v, ,~) 
of the F-distribution having (k, v) degrees of freedom, both having noncentrality 
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parameter 2. The latter is omitted in the case of central distributions. Further 
classes emerge as follows. 

2.2. Special distributions. Suppose that elements of U =- [0"1, U2, . . . ,  Ur] ~ are in- 
dependent {Na(coi, 1); 1 < i < r} random variates; let {~1, e2 , . . . ,  c~r} be positive 
weights; identify T = ~ U~ + . . .  + erU~; and denote by gr(t; el, .  •., ~r, COl . . . ,  COr) 
its pdf, and by Gr(t; ~1, . . . ,  er, col , . . . ,  cot) its cdf. These are written succinctly 
on occasion as gr(t;~,co')  and Gr(t;e~,co') with ~ = [el,e2,. . . ,~r] and 
co'-- Icon,o)2,..., cor]. If in addition ~W(V) = G(.; v) independently of U, then 
the pdf of W = v T / r V = v ( c q U ~ + . . . + c t r U ~ ) / r V  is denoted by fr(w; 
ex, . . . ,e~,col , . . . ,cor ,  v), and its cdf by fr(W;O~l,.'..,O'~r,(D1,...,cor, V). Series 
expansions for g~(t; e l , . . . ,  er, c o l , . . . ,  cot) and Gr(t; ~ , .  . . , ~ ,  co~, . . . ,  cot), and 
bounds on errors due to truncating each series, are developed for central and 
noncentral distributions in Kotz, Johnson, and Boyd (1967a,b); see also Johnson 
and Kotz (1970) and Mathai and Provost (1992). Building on the work of Gur- 
land (1955) and Kotz et al. (1967a), Ramirez and Jensen (1991) derived series 
expansions for the central pdf and cdf of 5 ~ ( T / V ) ,  from which fr(w; c q , . . . ,  c~r, v) 
and F~(w; e~, . . . ,  er, v) follow directly on rescaling. Connections to standard dis- 
tributions are that Gr(t; C~,. . . ,  0~, COl , . . ' ,  (Dr) = G(t/~; r, 2) and 
Fr(w; cq . . . , ~, c o l , . . . ,  cot, v) = F ( w / e ;  r, v, 2), with 2 = co'e~/e. 

Basic stochastic ordering properties of these distributions are summarized in 
the following. 

LEMMA 1. Given the foregoing developments, consider the distributions 
Gr( t; o :1 , . . . ,  O:r, COl , . . . ,  CCOr) and Fr(w; e l , . . .  , O~r, COl , . . . ,  COr, •). Then 

(i) Gr(t; cq , . . . ,  c~r, col , . . . ,  cot) increases stochastically in each {cq; 1 < i < r}, 
i.e., for each fixed t and ~o r -- [o)1, co2,..., cor], Gr(t; e l , . . . ,  c~r, oJ ~) is a decreasing 
function of each {c~i; 1 < i < r}, and similarly for Fr(t; ~1, . . . ,  ~r, col , . . . ,  cot, v). 

(ii) Gr(t; ~ , . . . ,  c~r, COl,..., cot) increases stochastically in each {Icoi[; 1 < i < r}, 
i.e., for each fixed t and ~ ' =  [el, e2 , . . . ,  er], Gr(t; ~', o )1 , . . . ,  cot) is a decreasing 
function of each {Icoil; 1 < i < r}, and similarly for Fr(t; cq , . . . ,  er, cod,-.., cot, v). 

PROOF. First  consider Gr(t; 051,.. .  , O~r, COl , . . . ,  COr). F r o m  the assumption that  
[U1, U2, . . . ,  Ur] are independent {N1 (coi, 1);1 < i < r} random variates, it follows 
directly that { S ( U T ) =  Z2(1, co~); 1 < i <  r} are independent. It is well known 
that G(.; v, 2) increases stochastically with 2 for any v, so that ~(UT) increases 
stochastically with ]coil for each 1 < i < r. In a similar manner ~(~ iU 2) increases 
stochastically with cq for fixed Icoi] for each 1 < i < r. The first parts of conclu- 
sions (i) and (ii) now follow since the convolution of nonnegative random vari- 
ables is itself a stochastically increasing operator. Conclusions pertaining to 
fr(w; ~1, . . . ,  c~r, co~,..., cot, v) now follow on applying conclusions (i) and (ii) for 
Gr(t; e l , . . . ,  ~r, COl, . . . ,  COr) conditionally given V = v, and observing that the or- 
derings hold independently of v and thus unconditionally as well. This concludes 
our proof. [] 
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2.3. Rectangular matrix reductions. We undertake the simultaneous reduction of 
rectangular matrices X E Fn×k and Z c Fr×k to quasidiagonal forms. Details fol- 
low. 

LEMMA 2. Consider X E Fnxk of rank k < n, and let Z ~ Fr×k with r < k. Then 
there are orthogonal matrices Q~ E O(n) and Q2 E O(r), and a nonsingular ma- 
trix G E Fk×k, such that 

Q1XG = [Ik, 0]' and Q2ZG - = [Dy, O] (2.1) 

for r < k, whereas Q2ZG = D7 for r = k, where the elements {71 -> 72 ~ " ' "  ~ "Jr} 

of D r = Diag(71, 72, . . . ,  7,-) comprise square roots of the ordered eigenvalues of 
H = Z ( X t X )  1 Z t .  

PROOF. We offer a constructive proof using the expression Q2ZG = [D> 0] for 
r < k, with the understanding that Q2ZG = D r for r = k. Take (X,Z) into 
(X(X,X)-I/2,Z(X,X) 1/2), and postulate that orthogonal matrices P E O(k), 
Ql E O(n), and Q2EO(r )  exist such t h a t  QlX(XtX)-l/ZP'=[lk, O]t and 
Q2Z(X~X)-I/2P ~ = ID, y, 0]._1/2Existence, , ofl/2the,postulated~ ~1P',QI'. .. Q~}_. may_ be seen as 
follows. Clearly X(X X) P P(X X) X = X(X X) X is ldempotent of order 
(n × n) and rank k for any P E O(k), so that Q1 E O(n) can be found giving the 

t 1 t t t 1/2 spectral form Q1X(XX)- XQ1 = Diag(Ik,0). Moreover, since P(XX)-  
t t 1/2 t t 1/2 t t XX(XX)-  P = L f o r a n y  P E O ( k ) , i t  follows that Q1X(X X)- P =[Ik,01 

z 1/2 t 1/2 t t achieves the singular decomposition of X(X X) , i.e., X(X X) = Q1 [Ik, 0] P, 
with singular values lk. Now choose (Q2, P) such that Q2Z(X'X) 1/2p, = [DT, 0] 

t 1/2 l from the singular decomposition Z(XX)-  = Q2[D~,0]P. Here D,~ = Diag 
(71,7>.. . ,  7r) contains the ordered singular values of Z(X'X)-I/2, these being 
square roots of the nonvanishing eigenvalues of (X'X)-1/Zz'z(x 'x) -I/2, or 
equivalently, of H = Z(X'X)-IZ ~. The proof is now complete on identifying G as 
(X'X)-1/2P '. [] 

3. The structure of Cook's D1 

We first express the model in a canonical form making transparent the essential 
features of DI. We initially apply the method of least squares to uncover the 
structure of/9l,  requiring no assumptions on the errors beyond their joint non- 
singularity and centering at zero. We then impose specific requirements on the 
error distributions to support more detailed conclusions. 

3.1. The canonical form. Since the original model Y = X0/l + ~ and its canonical 
form are related one- to-one, it suffices to consider the latter. To consider effects 
of a shift in E(Y2), we begin with the model 

[xl, +[::l 



Some exact properties of Cook's DI 391 

for  r < k, where ~' = [~1, ~'2] such that  ~1 = 0 E IR ~ and ~2 E IW. We first apply 
QI E O(n) as in Lemma 1 to Y1 and el. Fo r  later reference part i t ion these as 
Q1Y1 [Url,U'2,U~] ' and Q181 , t t t = = [th,~/2,r/31, with (UI,r/1) E IRr,(U%I/2) E IW, 
and (U3, !/3) E IR t, such that  r + s = k and t = n - k. Fur ther  let Q2Y2 = U4 and 
Q 2 e 2 = l / 4 ,  with (U4,1/4) E I R  r. NOW choose G as in Lemma 1; take 
X -~ Q1XG, Z ---+ Q2ZG, and ~ --+ G-1/~ = 0 E lRk; and part i t ion the latter as 
0 : [0~1,0'2]', with 01 E IW and 02 E IW such that  r + s = k. In summary,  the 
model  (3.1) may  be written equivalently in canonical  form as 

ir [i)[' U 2 = 0 I~ 01 _ q2 (3.2) 
U 3 0 02 Jr- , t/3 
U4 D~/ ~/4 

i.e., as U --- W0 - ~N ~-/I  with 6 u = [0', 0', 0', 6'] and 6 = Q2~2 E ]R r. To  proceed 
we suppose for now that  6 = 0, i,e., that  Y = X0/~ + ~ and U = W0 + q are ap- 
propriate.  Then  solutions for  (3.1) and (3.2) under  the full and reduced data  are 
related one-to-one,  so that  (Pl - /~ )  = G(O1 - 0). The cases r = k and r < k often 
can be consolidated on letting 2 • 2 2 2 0 D~ = Dlag(T1,72~-.. ,  7k) E S~, with the under-  
standing that  D~ = Diag(72,72, . . . ,72  , 0 , . . . , 0 )  for  r < k. We reinstate 6 ¢ 0 
subsequently. 

Recall f rom Lemma 1 that  elements of  D~ = Diag(7~,7~,...,7,2,) for  r < k 
comprise the ordered eigenvalues of  H = Z ( X t X ) - I z ' .  This is now seen to be the 
predictive dispersion matr ix  in predicting at r points comprising the rows of  Z, 
based on 101 f rom the reduced data. I f  instead we predict at Z based on 10 from the 
full data,  then the predictive dispersion matr ix is given by H0 = 
Z(X'X + Z ' Z ) - I Z  ', with eigenvalues to be designated as {21 _> 22 _> . .-  >_ 2r}. 
The latter are clearly related to those of  H through {2i = 72/(72i., i + 1 ) ; 1  < i <  r}. 
As these eigenvalues assume a critical role in the developments  following, for later 

2 -1 reference we set Ar = Diag(21 ,22 , . . . ,  2r) = D~(Ir + D~) D 7. 
It should be noted that  an elementary change of  variables transfers 

D~(10, X~X0, cgZ), in terms o f  (101 - 10), directly into D,(O, M(7), c6 -2) in terms of  
(0z - 0 ) ,  i .e . ,  

(101 - 10)'(X'X + Z'Z)(101 - 10) = (01 - 0)'(Ik + D~)(01 - 0) , (3.3) 

where for later reference we let M ( 7 ) = ( I k ÷ D ~ )  for r = k ,  and 
M ( 7 ) = D i a g ( ( L + D Z ) , I s )  for  r < k .  This may  be seen on writing 
(XtX + Z 'Z)  = (X'x)VZP'(I~ + D~)P(X'X) 1/2 = G'-I(I~ + D~)G 1 as in Section 
2.3, then combining terms to^get  the expression (101-fl) '  G' l ( I k + D ~ ) G - 1  
(10, - 10) and substituting (01 - 0) for  G t(101 - 10). 

3.2. Basic properties of D1. Essential properties of  D1 follow directly. For  the case 
r = k ,  let U0 = [Url,U'2] ' =  Ux since U2 is now void, and observe that  
W' = [I~,0,D~]. It follows easily that  (01 - 0) = (Ik + D~) ID~(DTU0 - U4). 
F rom  the nondegeneracy o n  ~.N o f  ,.~fl(Y), and thus of  ~ ( U ) ,  we infer that  the 
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distribution of  ( 0 1 -  0) is nonsingular  on IRk, as is ( /~I-/~)  : G ( O t -  0). The 
residual vector in canonical form for the full data  is R ' =  [ ( U 0 - 0 )  p, 
U~, (U4 - D~O)P], and the corresponding sum of  squares is given by 

( N  - k ) S  2 : (0t - 0)^'D,-1 (Ik + D~)D~-I (0; - 0) + U~U3 , (3.4) 

as may  be seen on noting that  0r = U0 and combining the first and last terms of  
RIR.  

The case r < k is somewhat  more  delicate but  proceeds as follows. F r o m  the 
^I  ^ l  I P reduced data  in canonical  form it is seen that O; [011 , 012 ] = = [U1,  U2]  , whereas 

the corresponding error mean square is given by (n - k )S~  = U~U3. For  the full 
data  in canonical  form we have for r < k that W'W = Diag((I~ + D~), I~), and 
elements of  0 / ~̂ ^' = [01,02] are given in part i t ioned form as 01 = ( L + D ~ )  -I 

(UI 4- DTU4 ) and 02 = U2, whereas the residual vector is given by 

R' = [(U1 - 01)', (U2 - 02) I, U~,  (V4 - Dr01)  p] . (3 .5)  

The second subvector consists entirely of  zeros since 02 = U2. 
We next summarize essential features of  (jO t - /~) ,  S~, and S 2 under  the full and 

reduced data  sets, as they stem from straightforward least-squares analyses. 

THEOREM 1. Let /~  = ' -1 , (XoX0) X0Y and/~i  = (X 'X) - Ix ' y1  be least-squares esti- 
mators  for /~ in the full and reduced data  under  Y = X0/~ + e as in (3.1), where 
r _< k and 5P(Y) is nonsingular  on IRN. Then 

(i) (/~1 - /~ )  has a joint  distribution on IRk of  rank r _< k, singular for  r < k and 
non-singular for  r -- k. 

(ii) The residual sum of  squares under  the reduced data is given in canonical  
form as (n - k ) S  2 = U~3U3_ 

(iii) The vector ( 0 1 - 0 )  is a component  of  the residual sum of  squares 
( N  - k ) S  2 under the full data  with r = k, whereas (011 - 01) is a component  of  
( N  - k ) S  2 for  r < k. 

(iv) I rE(e)  = 0 = E(t/) in (3.1) and (3.2) with 42 and 5 not  necessarily null, then 
E(OI - O) = ( I  k +D~) - ID~5  and thus E(/~ 1 - i0) = G(Ik + D ~ ) - l D 7 5  for r = k, 
whereas E(O,I - 01) = (L + D~)-~D~5 and thus E(/~ I - ,6) = G I ( L  + D~)- ID,5  
for r < k, where G1 c Fk×~. 

PROOF, That  conclusion (i) holds for  r = k was shown in developments pre- 
ceding expression (3.4). For  r < k, choose G as in Lemma 1 and Section 3.1, 
to be part i t ioned as G =  [G1,G2] with GI ffFk×r, and observe that  
(~i - P) = G(Ol - 0) = GI(Oll  - 01) since (012-02)  = 0  identically. Moreover ,  
fi'om the nonsingulari ty of  Y(Y)  on A N we infer that  5¢((0tl - 01)) is nonsin- 
gu la r  on IRr, so that the joint  distribution of  (j01 - /~ )  on IR k is singular of  rank 
r < k. Conclusion (ii) is a direct consequence of  the canonical form as noted 
earlier. Conclusion (iii) is apparent  f rom (3.4) for  r = k, and for r < k it follows 
on noting that  
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(N - k)S 2 = (011 - 31 ) ' D y  1 (I~ + D~)D~ -1 (311 - 01)  -I- U ; U 3  , (3.6) 

where D r is now of order (r x r), together with the fact that (312 - 32) = 0 id- 
entically. To see conclusion (iv), we find from earlier developments with r = k that 
(31 - 0) = (Ik + D~)/z1D~(DTU0 - U4), so that E(3,  - 0) = (I~ + D~) 1D~[D70- 
(D~0 - 6)] = (Ik + D~) 1Dr6 under the model (3.2), and similarity for r < k. This 
completes our proof. [] 

The foregoing developments all follow from the least-squares principle as- 
suming only nonsingularity and centering of the errors. In the next sections we 
examine D1 for assessing influence under specific error assumptions, with refer- 
ence both to leverage and to outliers. 

4. Normal-Theory properties 

Properties of D1 are given next under Gaussian errors. The focus is on (~1 -/~) 
under a block-diagonal dispersion matrix V(Y), to be specialized as circumstances 
demand. 

4.1. Basic results. Properties of ( ¢ i -  ~) are developed through ( 0 i -  3). Let 
Q = Diag(Q1, Q2) with Q1 and Q2 as in Section 3.1; suppose that Y1 and Y2 are 
mutually uncorrelated with dispersion matrices ~21 E S~ + and f22 E S +, so that 
V(Y) . . . .  O Diag(Ol, ~2); and let Qf2Q' Z Diag(Q1 O1 Ql,t Q2f~aQ2) , ,  so that 
V(U) = Z with U as in (3.2). Now partition I2 = [Zij] conformably with 
U i l / / 1 = [ U 1 , U z ,  U 3 , U 4 ]  , s o  t h a t  Qzf22Q~ = 2244; o b s e r v e  t h a t  {2214~2224,1234} a l l  

vanish owing to the block-diagonal structure of Ig; and write 
220 = IX/j; i , j  = 1,2] = 1211 corresponding to U0 = [U' 1, U~]', since U2 and hence 
Z22 are now void for r = k. 

Proceed as in Section 3.2 and observe that ( 0 l - 0 ) ^ =  ( I k + D ~ ) I D  7 
(D~U0- U4) for r = k. For r < k it was seen that (312- 02)= 0 identically, 
whereas (011 - -  31)  = (I r @- D~)-'D~(DTU1 - U4). Essential properties of (/~1 -/~) 
may be studied through ( 0 i -  0) under Gaussian errors as follows, where we 
allow for a mean shift of 42 in E(Y2), namely, E(Y2) = Z/~ --  42 as in (3.1), and 
similarly for (3.2). To these ends define special arrays as 

/~(6) : (L + D~) ID76 , (4.1) 

where 6 = Q2~.2, and 

-~r(7) : (L + D~)-lD~(D~5211D~ + Y~44)D-/(L + D~) -1 (4.2) 

Both expressions apply for each r _< k, where 211 = Z0 for r = k as noted earlier. 
A central result is the following. 
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THEOREM 2. Suppose that A°(Y)= NN(Xofl-  ~,f2), with ~ ' =  [~j, ~]^such that 
41 = 0 and 42 E IR r, and with f2 = Diag(f21, g22), and consider (ill - fl), (0r - 0) 
for r = k, and (011 - 0~) for r < k. Then for r = k: 

(i) The distribution of (Oi -  O) is nonsingular on IRk and is given by 
Nk(Itk(6), Nk(7)), where 6 = Q2fi2, with/1~(6) as in (4.1) and -~k(7) as in (4.2). 

(ii) The distribution of ( i l l - /~)  is nonsingular on IR k and is given by 
Nk(Gitk(6), G'~k(7)G ') with G as defined in Section 3.1. Moreover, for r < k: 

(iii) The distribution of (011- 01) is nonsingular on IR" and is given by 
N~(/~r(6), ~r(7)), where/~r(6) and  ~,-(7) are given in (4.1) and (4.2). 

(iv) The distribution of (fir -/~) on IRk is the singular Gaussian distribution 
Nk(GII~(6),GI-~(i,)G'I), where G = [G1,G2] is partitioned as in the proof for 
Theorem 1. 

PROOF. These conclusions all follow from standard arguments pertaining to 
linear transformations of Gaussian variates. In particular, expected values follow 
from Theorem 1 (iv), to complete our proof. [] 

We turn next to structural parameters that drive/91 stochastically, in partial 
explanation for the occurrence of extreme values in practice. To these ends we 
specialize the matrix ~ to include the cases f2 = a2IN and 
g2 = ='(cry, ~r22 ) = Diag(a~I~, a~Ir). 

4.2. The scaling of D1. The matter of scaling in the denominator of DI(/~, M, c6 2) 
surfaces immediately. Prospects for a known distributional form of DI are 
predicated on a suitable scaling constant c and choice for 62. Recall from The- 
orem 1 (iii) that (01 - 0) is a component of (N - k)S 2 for r = k, as is (0rl - 01) for 
r < k. Moreover, Theorem 1 (iv) shows under Gaussian errors that the first 
quadratic form on the right of (3.4) has a noncentral distribution unless 6 = 0. We 
conclude that ( ( 0 I - 0 ) , S  2) are dependent, as are ( (0 r l -01) ,S  2) and thus 
((/~1 -/~),  $2), even under the Gaussian model LP(Y) = NN(X0fl ,  0-2IN). The con- 
ventional use of DI(10, X~Xo, kS 2) now may be seen to be flawed on three counts: 
(i) Its numerator has rank r _< k, with rank k if and only if r = k. Based on 
extensive numerical studies, routine scaling by k was questioned by Gray (1993), 
who suggested scaling by subset size. On structural grounds we now concur that 
scaling by r, the number rows of Z and hence the rank of ~(/~r -/~), now appears 
to be appropriate, giving Dr(/~, X~X0, r62) for each r < k. (ii) The numerator and 
denominator of D1(10, X~X0, kS 2) are not independent, thus precluding the emer- 
gence of known distributions for ratios of mean squares. (iii) Not only are 
((01 - 0), S 2) dependent, but the denominator of Dr(/~, X~X0, cS 2) will be inflated 
stochastically owing to its noncentral distribution when 6 ¢ 0. A mean shift 
therefore may mask evidence of influence otherwise apparent in the numerator of 
Dr (/~, X~X0, c62) if scaled properly. 

On the other hand, it is clear from Theorem 2 that ( (0 r -  0),S 2) are inde- 
2 2 pendent under Gaussian errors with dispersion matrix -(al,O-2), and that 

(?l -- k ) S  2 = U3U3t has a central distribution regardless of the value of 6. To avoid 
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anomalies of the foregoing types, henceforth we consider only versions of D1 of 
the type D~(/~, M, rS21), including the case r = k. 

4.3. Effects of leverage and outliers. Two versions of leverages are germane. The 
eigenvalues {7~,... ,;~} of H = Z(X'X) 1Z' serve as canonical leverages in pre- 
dicting at Z based on flI- Similarly, {2i = yz/(y2 + 1);1 < i < r} apply in pre- 
dicting at Z based on/~ from the full data as noted. Both figure prominently in the 
distribution of DI(~,M, rS~) under two commonly used choices of M to be 
studied next, followed by a comparative assessment of their diagnostic capabili- 
ties. 

Several possibilities emerge for modeling what might be deemed to be "out- 
liers." Here we consider (i) a possible shift in means, namely, E(¥2) = Z,8 - 32 as 
in (3.1) and the corresponding shift in (3.2), as well as (ii) a possible shift in 
variance between Y1 E IR n and Y2 c IR r in (3.1), or both. To model the latter, let 
V(Y1) = a~I~ and V(Y2) = %21,-, so that V(Y) ~- --~(0-21,0-2~2j = Diag(0-~I~, 0-~I,.) with 
r<_k. 

We first seek the distribution of D~(/~, X~Xo, rS 2) through the canonical form 
Dz(O,M(7),rS 2) with M ( 7 ) =  (Ik+D~) as defined following (3,3). To study 
5¢((01 - 0)'(Ik + D2)(0~ - O)/a21), we specialize Theorem 2, under the dispersion 
structure -=(a~, az) j to  infer for r = k that ~((0~ - 0)/o-1) = N~(&(al), F(a  2, a~)). 
Here 2 #-k2(0-')- 2 =211k(~)/0-12 2 as i 2 (4.1), and F(a 2, o-2) = =--k(7)/0-12 = 
( Ik+D~) DT(D. / +%/a1I~)  with ~-k(Y) as in (4.2), since diagonal matrices 
commute. To express £°((01 - 0)'(Ik + D~)(01 - 0)/o-12) in terms of Gk(t; c~', 0)') as 
in Section 2.2, we apply standard theory for distributions of quadratic forms in 
Gaussian variables, first constructing 0) = [F(a~, 0-~)]-1/2/1k(o-11).2 ~ 
(D~ + 0-2/0-~Ik) 1/26/0-1 with typical elements {coi= 6i/[al(y~ + 0-2/a2) / ]; 
1 < i < k}. The weights {cq, . . . ,  ek} in turn are eigenvalues of F(0-~, az2)M(7), to 
be recovered directly from 

F(0-12,0-22)M(7) (Ik 2 2 2 2  = + DT) D,(D? + 0-2/0-~Ik)(Ik + D~) (4.3) 

which reduces to F(0-~, 0-2)M(7) = (Ik + D~)-' D,;2 (D~2 + 0-2/0-2Ik) since the product 
is diagonal and diagonal matrices commute. Essential properties of 
DI(~, ' 2 X0X0 ~ rS~ ) and its canonical form may be summarized as follows, where 
elements of (7, o9, c~,a~/0-~} emerge as structural parameters that drive 
D~ (~, M, rS 2) stochastically. 

THEOREM 3. Suppose that Y(Y)=NN(Xop-~,~- (cr~ ,a2) ) ,  with E(0-2, cr 2) 
= Diag(a2In, a2L). Then 

(i) For each r _< k, L~((Ot - 0)'M(~)(0i t~)/~) = LP r - (~i=I cqUi2), such that 
{U1. U2, . . . ,  Ur} are independent random {N1(0)/, 1);1 < i < r} variates, where 
{0)i'=6i/[0-1(72i+a~/0-~)1/21;1 < i < r } ,  and {c~/=7~( ~ + a 2 / % ) / ( 7  i 2  2 2+1) ;1_<  
i <_ r}. Its cdf thus is given by Gr(t; cq, . . . ,  c~, o)1,..., 0)~). 

(ii) The distribution of D1(0, M(7), rS~), and thus of Dt(/~, X;X0, rS~), is given 
by F~(w;el , . . . ,e~,col , . . . ,co~,n--  k) for each r _< k. 
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(iii) For the case of outliers of neither type, the distribution ofDl(/~,^ XoXo , ,  rS 12) 
is given by the central cdf F~(w; 71,72,.--2 2 ,7r, n 2  _ k). 

PROOF. Arguments supporting conclusion (i) were outlined in the foregoing 
t 2 paragraphs. To continue, note that ~ ( U 3 U 3 / o - I )  = ~2(/,/ _ k, 0 )  independently of 

(01 - 0), so that standard developments yield the distribution 
~(DI(O, M(71, kS2)) for the case r = k as in Section (2.2). Parallel steps for r < k 
give ~(DI(O,M(7),rS2)) without difficulty. Claims for the distribution 

^ ! 2 5F(DI(/~, X0X0, rS~ )) then follow as in (3.3) for each r _< k, to give conclusion (ii). 
Conclusion (iii) now follows on specializing (ii), to complete our proof. [] 

We next consider DI(/~, X'X, rS~) as another version in common use, where our 
reasons for scaling by rS 2 persist. To these ends we proceed precisely as in the 
proof for Theorem 3, with the one exception that M(7) = (Ir + D~), as used there, 
is now supplanted by L for each r _< k. The principle findings may be summarized 
as follows. 

THEOREM 4. Suppose that 5f(Y)=NN(X0/~--~,,~(a~,a~)), with N(a~,a 2) = 
Diag(a~ln, a~L), and let {2i = 72/(72i.,i+ 1);1 < i <  r} be canonical leverages in 
predicting at Z based on p from the full data. Then 

( i )  2) = r . . . ,  - ( 2 / <  aiU2), such that {Ul, U2, Ur} are 
independent random {N1(coi, 1);1 < i < r} variates, where {coi = 5i/[o-l(y~+ 

2 2 2 r}. Its ~ /~)1/2] ;  1 < i < r} as before, and {c~i = 2i(72 + ~2/al)/(7i + 1);1 < i < 
cdf thus is given by Gr(t; ~1,. . . ,  c% 0)1,..., COt). 

(ii) The distribution of DI(O,L, rS2), and thus of D~(~,X'X, rS~), is given by 
F r ( w ; e l , . . . , c % c o l , . . . , m r , n -  k) for each r_< k. 

2 2 =  (iii) For the case %/% 1, the distribution of DI(O,L, rS~), and thus of 
DI(~,X'X, rS2), is given by E.(w;21,. . . ,2r,  col,...,cor, n - k )  for each r<_k, 
where {co/; 1 < i < r} are as before and {2i; 1 < i < r} are canonical leverages in 
predicting at Z based on/~ from the full data. 

(iv) For the case of outliers of neither type, the distribution OfDl(/~, X'X, rS~) is 
given by the central cdf Fr(w; 21, . . . ,  2r, n - k) for each r _< k, and this function is 
bounded below by F~(w; 21, . . . ,  )Or, n - k) > F(w; r,n - k) pointwise for each 
w > 0 .  

PROOF. Except as noted, the bulk of the proof runs parallel to that of Theorem 3. 
That the cdf in conclusion (iv) is bounded below by a standard F-distribution is a 
consequence of the bound {2i _< 1; 1 < i < r} together with the orderings of 
Lemma 1. [] 

The foregoing developments now support comparison of the diagnostic ca- 
pabilities of D~(~,X~oXo,rS 2) and Dz(~,X'X, rS2). This may be garnered by ex- 
amining in detail the shift {co/; 1 < i < r} and scale {~i; 1 < i < r} parameters of 
Theorems 3 and 4, when coupled with Lemma 1. 
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In the absence of outliers resulting from shifted means or variance, Theorems 3 
and 4 and Lemma 1 confirm that DI(~, X~Xo, rS 2) and DI(/}, X'X, rS 2) are driven 
stochastically by the canonical leverages {y2; 1 < i < r} and {2i; 1 < i < r}, res- 
pectively. These may be very small in either case or, in the case of 
D1(/}, X~Xo, rS2), very large, but are bounded above by 1.0 for D,(~, X;Xo, rS2i). 
Large outcomes thereby associate stochastically with high subset leverages, small 
outcomes with low leverages, and intermediate outcomes with moderate, or with 
a mix of high and low leverages. In particular, if all leverages are equal for a given 
subset, say {72 . . . . .  72 = 72} as in first-order orthogonal designs, then the 
distributions of Dl(/}, X;Xo, rS 2) and D,(/~, X'X, rS 2) relate to standard F-distri- 
butions through scaling as  F r ( w ; 7 2 , . . . , 7 2 , r l - k ) = F ( w / 7 2 ; r , n - k )  and 
F(w/2; r, n - k), respectively, as in Section 2.2. 

Nonetheless, since leverages can be found numerically from X0 independently 
of Y, we find no diagnostic merit whatever in gauging subset leverages vicariously 
through a chance outcome of either DI(/}, X;X0, rS~) or Dj(/}, X'X, rS2). This point 
of view in turn obviates the need for benchmarks on these statistics for assessing 
subset influence due to leverages. 

For diagnosing shifts in means or variance, the use of either version o f / ) i  is 
2 2 clouded by a complexity of interrelationships among {~, o,  7, 0-2/% }. Expressions 

for {COl; 1 < i < r} and {~i; 1 < i < r} from Theorems 3 and 4 link with Lemma 1 
to gauge the stochastic behavior of both statistics as follows. Specifically, an 
increase in each scale factor {c~; 1 < i < r} often is offset in part by a decrease in 
the corresponding noncentrality component {]coil; 1 < i < r}. For example, if 
and 7 are held fixed, then Iooi[ decreases, whereas c~i increases, with increasing 

2 2 0"2/0" 1 fixed, it is seen that [coil decreases and c~i 0"2/0-1" Similarly, with a and 2 2 
increases with increasing leverage 7~ for both statistics. Further such comparisons 
follow directly. 

Perhaps most striking is the multiplier effect exerted on each of the weights 
0"2/0"2~/[72 l ) ;  1 < < r) in Theorem 3 by the extra leverage fac- { 0~i = 72(72 7- 2 /  1 ' / \  i @" i 

t o r  7 2,~ dilating ei for 7 2, > 1 and contracting ei for 7] < 1. However, extreme 
dilation effects are preempted in Theorem 4 owing to the upper bound 
{2i_< 1;1 < i < r}. 

Stochastic effects of variance outliers (0"2/0"~ > 1) are masked by leverage, 
whether large or small, for both versions of D~. On the other hand, a ratio 0-2/0"12 2 
near zero, if coupled with low subset leverages, will further depress {~i; 1 < i < r}. 
In consequence, small observed values for either statistic may indicate a down- 
ward shift in variance from Y1 to Y2 if coupled with a subset having small 
leverages. It follows that benchmarks thus are needed for gauging not only 
whether each statistic is large enough to be deemed 'influential," but whether it is 
small enough as well. 

The diagnostic properties of both DI(/}, X~Xo, rS 2) and DI(/~, X'X, rS 2) at best 
are obscure, bringing into focus their practical merits as tools in subset diag- 
nostics. The occurrence of small, intermediate, or large values has no clear link to 
either type of outlier, and therefore the practical value of each is less than de- 
finitive. These difficulties stem in part from the somewhat ad hoc choices for M in 
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the statistic DI(/~, M, c62). In the next section we reexamine these choices in light 
of results provided in Theorem 2. 

5. Modified versions of DI 

Difficulties pertaining to DI(~, M, rS2), as noted for M = X;X0 and M = X'X, 
stem in part from the choice for M. We next embrace a more natural choice in 
keeping with conclusions of Theorem 2. Further developments then yield exact 
normal-theory inferences for shifted outliers as modeled in (3.1) and (3.2). 

5.1. Rescaling through M. Temporarily assuming an ideal model with no outliers, 
we choose M to achieve a central F- distribution as reference, not depending on 
leverages. We then reinstate outliers and examine diagnostic properties of the 
revised DI statistic. The main focus is the canonical form of (3.2), but those 
findings are lifted on occasion back to (3.1). 

The technical details run parallel to those of Section 4.3, but now using 
standard theory for distributions of quadratic forms in Gaussian variables to 
determine M. Specifically, we take M as the inverse B(7 ) -- D~ -1 (L + D~)D; 1 from 
V(011- 01) for r < k, and from V ( 0 I -  0) for r = k, as would be appropriate 
under homogeneous variance. Invertibility is assured by Theorem 2. Expressions 
for {co/; 1 < i < r} carry over intact, as these depend only on 5O(OI - O) and not 
M. In contrast to Section 4.3, the weights {el,- • •, e~} under a possible shift in 
variance are now eigenvalues o f / ' (o  -2, a~)B(7) as given by 

/'(~12, o.~)B(v) = (Ik + D,2-2) D72(D~2 + a~/o.2i~)D;2(ik + D~) (5.1) 

which reduces to F(o. 2, o.~)B(7) 2 1 2 2 2 = (I~ +D~) (D 7 + a2/O-lIk ) since the product is 
diagonal Further let V =  [ ( X ' X ) - ' - ( X ' X + Z ' Z ) - ' ] ,  and observe that 
V(/~ - p) = o.2V for the case that o.2 = o_2. With these preliminaries in place, we 
may stipulate as before the distribution of Dz(0, B(7), rS~) pertaining to (3.2). A 
corresponding version for (3.1) gives DI(~, V-, rS 2) = (/~, -/~)'V-(/~ 1 - ~)/rS 2 
with V to be stipulated. Basic properties of these forms are summarized in the 
following. 

THEOREM 5. Suppose that 5O(Y) = NN(X0p-- 4, N(o.~, o.2)), with N(o.~, o.2) = 
Diag(~r~In, a2L), and let B(7) = D ;  1 (L + D~)D; I. Then 

(i) For each r<_k, the representation 5°((011-01)'B(~) (011-01)/o-2) = 
O F . . " ,  (~'~i=leiU, 2) holds, such that {U1,U2, U~} are independent {Nl(coi, 1); 
1 < i < r} random variables, where the translation parameters are {coi = ~i/ 
[~l(72+o.~/a2)l/2];l<i<r} as before, and {c~i=(72+a2/o.2)/ (72+1); 
1 < i < r}. Its cdf thus is given by G~(~ cq , . . . ,  c~r, 0)1,...,  cot). 

2 1 2 (ii) For r = k, the distribution of D1(0, B(7), kSi ), and thus ofDz(/~, V , kS~ ), is 
given by Fk(w; 0~1, . . . , ~ k ,  C O l , . - . ,  O k ,  f /  - -  k), where V = [(X'X) 1 ( X t X  nt - Z t z ) - l ]  

as defined following (5.1). 



Some exact properties of Cook's D~ 399 

(iii) Suppose that  2 %/0-! = 1. Then for r = k, the distribution OfDl(/~, V -1 , kS 2) 
is the noncentral  cdf  F ( w ; k , n - k ,  2~(~2)) with noncentrali ty parameter 
2 k ( ~ 2 )  = Ilk(~2)tv-llRk({2)/0- 2, where l l k (~2)  = E(~ 1 - ~ )  = G(Ik + D~) 1D~Q2~ 2. 

(iv) For  ~ / 0  -2 = 1 and r < k, the distribution of  DI(~,V- , rS  2) is the non- 
central cdf F(w; r, n - k, 2r({2)), where V-  is any reflexive symmetric 9-inverse of 

l - 2 V, with noncentrali ty parameter  )or(~2)=/*~({2)V /~r(¢2)/0-, where /*r(~2) 
= E(/}, - / } )  : GI(L  + D~) 1D~Q2{2. 

PROOF. Conclusions (i)-(iii) follow along the lines of  the proof  for Theorem 4. In 
particular, the expressions for /tk(~2) as given in conclusion (iii), and /~r(~2) in 
conclusion (iv), follow from Theorem 1 (iv) and the relation 6 = Q2~2. Conclu- 
sion (iv) requires lifting those results to include (/~Z-/~) on IRk when its distri- 
bution is singular of rank r < k. However, since 5¢(0tl - 01) = Nr(/~(6), Or) with 

2 - 2  2 2 2 0-~Ir) in (4.2), we observe as before that  f2~ = (L + DT,)^ D, (~ID ~ + as 
(/~17-/~) 7 G 1 ( 0 t l - 0 1 )  with G =  [G1,G2] as in Theorem 1. It follows that  
S(/~I - /~)  = Nk(/~r(~2), Glf2rG~) with /g(~2) = GI (L  + D~)-ID~Q2~> Theorem 
9.2.3 of  Rao and Mitra (1971) now assures that  5e((/I 1 - / ~ ) ' V - ( / ~ -  ~)/a 2) 
= )~2(r, 2r(~2)), where V is any symmetric reflexive g-inverse of  V = GIOrGtI, 
where 2r(~2)= /tr(~2)'V-/~(~2). In particular, we may proceed constructively 
using V o = G1 ~ r  1 G '  1, to complete our proof. [] 

5.2. Exact inferences for 3. Here we assume that  E(~) = 0 and V(~) = ~-(o-~, ~2) 
~Diag(0.~I,,0.22Ir) in (3.1) as before. It is remarkable that  ( 0 i -  0), and thus 
( /~ i -  ,8), contain quantifiable information about  a mean shift. We focus on 
as in (3.2), since 42 in (3.1) is related one-to-one through ~ = Q2~2. We thus 
consider (011 - 01) for r _< k, with the understanding that  this becomes (01 - 0) at 

Recall that  E(0II^- 01)=/~r(3) = (L + D~)-ID~6 under E(t/) = 0 as in Theo- 
rem 1 (iv), with V(Oil - 01) as in (4.2) under  a block-diagonal dispersion struc- 
ture. Moreover,  under Gaussian errors, Y(011 - 01) is Gaussian as in Theorem 2. 
If  we now let t~= ( L + D ~ ) D ~ I ( 0 I I - 0 1 )  and specialize (4.2) for the case 
V(~) = N(a~, 0-2), then the following conclusions are immediate. (i) The statistic 
is unbiased for estimating 6; (ii) its dispersion matrix is V(~) = (G2D~ + a22L); and 
(iii) under  Gaussian errors its distribution is 5~(6) = Nr(& (0-~D~ + ~r~L)). If  we 
now fix 60 = [301,... ,30r] ~ E IW and then consider Dl((t~ - go), (L + D~)2 -1,rS~),2 
then its properties are found directly as before without  further difficulty. These 
may be summarized as follows. 

THEOREM 6. Suppose that  ~ ( Y ) = N N { X o P - ~ , ~ - ( a ~ , a 2 ) ) ,  and consider the 
statistic D1((6 - 60), (It + D~) -I , rS 2) = (6 - 60)'(It + D~)-l(6 - 6o)/rS 2. 

(i) Then the distribution of  O l ( ( t ~ - g o ) , ( l r + D ~ ) 1 , r S 2 )  has the cdf 
. . ~ . .  0 - 2 / 0 - 2 ~  1/21 . Fr(w;9:l, .,O~r, CO1 . , o ~ r , n - k )  with {(Di=((~i--30i)/[(71(~ )2-4- 2/ 1} 3, 

a2/a2~/c72 1); 1 < r}, for each r l < i < r } a n d { ~ i = ( 7 2 +  2t 11t~i + i<  <_k. 
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(ii) I f  2 2 ~2/~1 1, then the cdf of  D I ( ( 6 -  g0), (L z -1 2 = +D~) ,rSj) is given by 
f(w; r, n - k, 2(60)), with noncentrality parameter  2(60) = (6 - 60)'(L + D~) 1 
(6 - 60)/~ 2 = ~i~__1 ( g i -  goi)2/Ia2(7~ + 1)] for each r _< k. 

PROOF. The proof  proceeds step-by-step as in the proofs for Theorems 4 and 5, as 
no new difficulties are encountered. [] 

Theorem 6 supports exact normal-theory inferences for 3. To test H : 6  = g0 
against A: 6 ¢ go, an exact test at level e rejects H whenever 
DI((~ - g0), (L + D~) -1 , rS 2) th "le er t > F~ (r, n - k), the 100(1 - ~) percentl , und he 
assumption that ~/a~ = 1. Otherwise Theorem 6 (i) provides the distribution 
theory needed for a thorough study of disturbances in level and power of  this test 
under a given ratio 2 2 a2/~ 1 ¢; 1. Indeed, it is clear from Lemma 1 that the actual 
level will be greater than the nominal level whenever ~/a~ > I, and less for 

2 2 a2/o- l < 1. Regarding power of  the test, it is seen from 
= r 6 2r(go) ~ i = i (  i--60i)2/[a2(7~ + 1)] that leverages tend to mask a given shift 

( g -  g0) from the null hypothesis. In particular, a high leverage value 7~ may 
suppress even a moderate component  ]gi - goi] of (3 - 30). 

In addition to hypothesis testing, Theorem 6 supports an exact normal-theory 
confidence region for 6, with confidence coefficient 1 - e, as given by 

R ( 6 ) = { 6 E I R r : ( ~ - 6 ) ' ( L + D ~ )  l ( 6 - 6 ) < r S Z F ~ ( r , n - k ) }  . (6.1) 

It is of  some interest that the principal axes of  this ellipsoid are parallel to 
coordinate axes in the parameter  space 1W. This is a consequence of the canonical 
form (3.2). These hypothesis tests and confidence regions all carry over directly to 
include ~2 owing to the one-to-one relation 6 = Q2~2. 

6. Summary 

In this paper, we have adapted the theory of singular decompositions to trans- 
form a linear model into canonical form. The design matrix in canonical form is a 
partitioned matrix whose nonzero block entries are either identity or diagonal 
matrices. The quadratic form determining the numerator  of  Cook 's  Dr statistic is 
preserved under this canonical transformation, and we have studied transformed 
versions of  Cook 's  Dr in detail. 

With standard Gaussian assumptions, and using an independent estimator for 
the variance from the reduced data, we have determined the structure of  
DI(~, M, c62) statistics under each of two choices for M in current use, namely, 
X~X0 and X~X, corresponding to the full and reduced data, respectively. The 
numerators of  these statistics are shown to be represented in distribution as finite 
sums of weighted noncentral chi-squared variables, and the statistic D1 itself as a 
weighted sum of F-distributions when more than one row is deleted, and it is a 
scaled F-distribution when only one row has been deleted. In the presence of a 
mean shift or a shift in variance, the noncentralities of  the factors depend on both 
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the shifted means and variance, whereas the scaling parameters depend only on 
the variances. Both types of parameters depend on subset leverages, which tend to 
mask the effects of outliers of both types. These results are significant in both 
theory and practice, as they give the first derivation of the exact distributions of 
these statistics. 

We have introduced modified versions of D1 on utilizing the inverse dispersion 
matrix for (~1 - /~)  when its distribution is nonsingular, and a generalized inverse 
otherwise. Under the usual Gaussian assumptions, these modified statistics 
therefore have F-distributions as reference when there are no shifts in either 
means or variance. Under a shift in means, a further modification yields statistics 
having noncentral F-distributions, which in turn support exact normal-theory 
tests at level c~ for hypotheses regarding the shifts, as well as the construction of 
exact confidence sets with coefficient 1 - c~. 

Our findings have profound implications regarding some of the bewildering 
array of diagnostic tools now available to users. As a case in point, the DFBETA's 
are often presented in the literature as genuinely distinct gauges of influence in 
single-case diagnostics. How many DFBETA's are there? We claim for each fixed 
row of X0 that there is essentially only one. To support this claim, we apply 
Theorem 1 to infer for r = 1 that the joint distribution of [DFfil,i,... ,DFfik,i ] is 
singular on IRk of unit rank. In fact, the proof  for Theorem 1 shows that these 
statistics all are scalings of the single random variable (Oil-01)/Si.  The 
DFBETA's accordingly are in fixed ratios determined beforehand by the structure 
of X0, independently of the chance value taken by Y in a random experiment. 
Each collection [DF~l,i,... ,DF~k,i ] thereby is an equivalence class to be repre- 
sented by an arbitrary member as may be designated by the user. 

Numerical studies have been undertaken by the authors to examine the effects 
of leverage and outliers in the use of D1 in regression diagnostics. We have de- 
veloped the computer software to calculate the cdfs for these nonstandard dis- 
tributions in linear models under the usual Gaussian assumptions. We are thus 
enabled to answer the commonly asked questions regarding benchmarks for 
various versions of Cook 's / )1  in gauging the stability of a linear model under 
small perturbations. These numerical studies will be reported elsewhere. 
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Generalized Recurrence Relations for Moments 
of Order Statistics from Non-Identical Pareto 
and Truncated Pareto Random Variables 
with Applications to Robustness 

Aaron Childs and N. Balakrishnan 

1. Introduction 

Let X1,X2, . . . ,X,  be independent random variables having cumulative distri- 
bution functions Fl (x), Fz(x) , . . . ,  F,(x) and probability density functions f l  (x), 
fz(x) , . . .  , f ,(x),  respectively. Then the Xi's are said to be independent and non- 
identically distributed (I.NI.D.) random variables. Let Xl:, _< X2:, _<..- _< X,:, 
denote the order statistics obtained by arranging the n X~'s in increasing order of 
magnitude. Then the density function of X~:, (1 < r < n) can be written as (David, 
1981, p. 22) 

r-1 in I 1 
~Z~Hf . (x) f i , . (x  ) {1 - F~h(x)} , (1.1) 

fr:,(X) = ( r - -  1 ) ! (n -  r)[ p a=l b=r+l 

where ~ p  denotes the summation over all n! permutations ( i l , i2 , . . . , i , )  of 
(1 ,2 , . . .  ,n). Similarly, the joint density function of Xr:, and Xs:,(1 < r < s _< n) 
can be written as 

1 ,.-1 
fr,.:.(x,y) 

(r - 1)!(s - r - 1)!(n - s)! 2_., p a=l 

s-I i£ I × l - I  {F,~(y) - F ,~(x)}A (Y) { 1 - F~, (y)} ,  ~ < y .  
b--r+l c=s+l 

(1.2) 

Alternatively, the densities in (1.1) and (1.2) can be written in terms of perma- 
nents of matrices; see Vaughan and Venables (1972). 

In recent years, many of the recurrence relations for order statistics from I.I.D. 
samples have been generalized to the I.NI.D. case. This work was initiated by 
Balakrishnan (1994a,b) for the exponential and right-truncated exponential 
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distributions. Childs and Balakrishnan (1995a,b) generalized the I.I.D. recurrence 
relations for doubly-truncated exponential and logistic models, while Balakrish- 
nan and Balasubramanian (1995) generalized results for the power function dis- 
tribution. All of these results were obtained by exploiting a basic differential 
equation satisfied by the distributions under consideration. 

In this paper, we generalize the I.I.D. results for the Pareto and doubly- 
truncated Pareto models established by Balakrishnan and Joshi (1982). We first 
consider the case when the variables X/s are independent having Pareto distri- 
butions with density functions 

ft-(x) = viy -(vi+l), x -> 1, vi > 0 (1.3) 

and cumulative distribution functions 

F / ( x ) = l - x  -v', x_>l ,  v i > O  (1.4) 

for i = 1 ,2 , . . . , n .  For  a detailed discussion of various aspects of the Pareto 
distribution, one may refer to Arnold (1983) or Johnson, Kotz, and Balakrishnan 
(1994). The basic differential equations satisfied in this situation can be seen from 
(1.3) and (1.4) to be 

X 
~ ( x ) = l - - - J } ( x ) ,  i =  1 , 2 , . . . , n  . (1.5) 

Yi 

In order to guarantee the existence of all the means, variances, and covariances 
of  order statistics for all sample sizes n, it is sufficient to assume that vi > 2 for 
i = 1 ,2 , . . . ,  n. However, without this assumption certain moments may still exist. 
Let us denote the single moments E(X~n ) by " (k) • ~r:n,1 < r < n a n d k =  1 , 2 , . . . , a n d  

)](~) 
the product moments E(Xr:nXs.n) by #rs', for 1 < r < s < n. Let us also use/~j., 1 
an jtt #~,,:,_[i] 1 to denote the single and' the prod-uct mo~nents of order statistics 
arising from n - 1 variables obtained by deleting N from the original n variables 
XI ,X2,. . .  ,X,. 

In Sections 2 and 3 we make use of the differential equations in (1.5) to 
establish several recurrence relations satisfied by the single and the product mo- 
ments of  order statistics. These relations will enable one to compute all the single 
and the product moments of all order statistics in a simple recursive manner. In 
Section 4 we will use the results of Sections 2 and 3 to deduce a set of recurrence 
relations for the multiple-outlier model. We will then generalize to the case when 
the variables X/s are independent having doubly-truncated Pareto distributions in 
Section 5. In Section 6, we will use the multiple-outlier results from Section 4 to 
examine the robustness of the MLE and BLUE of the scale parameter cr of a one- 
parameter Pareto distribution. Finally, in Section 7, we will examine the 
robustness of the censored BLUE for the location and scale parameters of a two- 
parameter Pareto distribution, in the presence of multiple shape outliers. 
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2. Relations for single moments 

In this section, we use the differential equat ions  in (1.5) to establish the following 
recurrence relations for  single moments .  

RELATION 2.1. Fo r  n >_ 1 and k = 0, 1 , 2 , . . . ,  

1:. - ~ i"=1 vi k 

RELATION 2.2. Fo r  2 < r < n and k = 0, 1 , 2 , . . . ,  

v '~  v-, [tl(k) 
/A(k) A~i=I tt~r-l:n-1 

r:n = ~ . . . .  ~ i = 1  vi - k 

PROOFOF RELATION 2.1. For  n >_ 1 and k = 0, 1 , 2 , . . . ,  we use (1.1) and then (1.5) 
to write 

#(k)  _ 1 x k  
':n (n -1 ) !  ~ ' ( x ) H { 1 - F ~ ( x ) } d ~  

5=2 

_ 1 ~-~v,, ~ Z  lII{1--F/b(X))d~. 
(n 1)! p b=l 

In tegra t ing now by parts  t reat ing x k ~ for  integrat ion,  we obtain  

~:" (n - 1)! - ~ , ,  +v~,  x ~ / ~ ) I L : , ~ / 1 - F ~ ( ~ ) I a ~  
j= l  

= - -  Vi -t- Yi #l:n 
i=1 

which, when rewritten, yields Relat ion 2.1. 

PROOFOF RELATION 2.2. Fo r  2 < r < n and k = 0, 1 , 2 , . . . ,  we use (1.1) and then 
(1.5) to write 

#(k) = 
y : n  

O0 Y--1 n 

( r -  1)~(n - r)~ ~i, a=l b=r 

In tegra t ing now by parts  t reat ing x k 1 for  integrat ion gives 
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k#(k) = r;n (r - 1)~(n - r)~ ~ - '# x'  (x) F,. (x) 
j=l a=l 

a#j 

" S 'H S,,, × H{I - F/,(x)} dx + vi. x'  Fi.(x) (x) 
b=r a= i j = r  

J × H { 1  - ~ ( x ) }  ~ . 
b=r 
b#j 

We then split the first term in the above sum into two through the term 
{ 1 - F,. (x) } to obtain 

k/~(k) = r:n 
flee r-1 rl_ ~ 

(r - 1)!(n - r)! - 'i~ j=l a=l 
a#j 

n n × { 1 - F , . , ( x ) I d x + v , .  x k Z f o ( x  ) F~.(x) 
b=r+l j=l a=l 

a#j 

1~I f l  r-1 n 
× {1 - n ~ ( x ) } d u + ~ , .  ~x~IIn.(x)~f , , (x)  

b=r + 1 a= 1 j = r  

. ] 
× I I { 1  - n.~(~)} dx 

b=r 
b#j 

X-" v ,  [~j(k) V "  v , (k) 
~ - - ~ . _ . ¢  i l ~ r - l : n - I  ÷ " Z__~ i ' l ~ r : n  " 

,=, \i=l ; 
Relation 2.2 is derived simply by rewriting the above equation. 

The recurrence relations presented in Relations 2.1 and 2.2 will enable one to 
compute all the single moments  of  all order statistics that exist in a simple re- 
cursive manner  for.any specified values of  vi > 2 (i = 1 , 2 , . . . ,  n). 

Alternatively Relation 2.1 could be used, along with a general relation estab- 
• (k) kt h lished by Balakrishnan (1988) which expresses tz~:, in terms of the moment  of  

the smallest order statistic in sample sizes up to n, to compute all single moments  
of  all order statistics in a simple recursive manner. Another possibility is to use 
Relation 2.2 (with r = n) along with Balakrishnan's (1988) general relation which 

(k) th expresses/~:n in terms of the k moment  of  the largest order statistic in samples of  
size up to n, to compute all the single moments  of  all order statistics• 

We conclude this section by setting vl = v2 . . . . .  v, = v in Relations 2.1 and 
2.2 to obtain the following recurrence relations for I.I.D. Pareto random variables 
originally derived by Balakrishnan and Joshi (1982): 
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and  

# ( • )  _ nv  
l:n n v  - k 

/~(k)_ _nv #(k) 
r:n l'lY - -  k r - l : n -1  " 

3. Relations for product moments 

In  this sect ion we aga in  use the differential  equa t ions  in (1.5), bu t  this t ime to 
establish the fo l lowing fou r  recurrence  relat ions for  the p r o d u c t  m o m e n t s  o f  o rde r  
statistics. 

RELATION 3.1. F o r  n > 2, 

n ~i=1  [il Yi]21:n-1 
- -  n /Jl,2:n E i = I  Yi --  2 

RELATION 3.2. F o r  2 < r < n - 1, 

E i = I  " l l%-l , r :n-1  
]~r,r+l:n = Ein=l vi - 2 

RELATION 3.3. F o r  3 < s < n, 

n v • [/1 
E i = l  i t~s- l :n-1 

/21 ,s:n = E i n l  Vi --  2 

RELATION 3.4. F o r  2 _< r < s <_ n and  s - r >__ 2, 

Yi~ l r - l , s - l :n -1  

•r,s:n = Ein=l vi - 2 

PROOF OF RELATION 3.1. F r o m  E q u a t i o n  (1.2), let us cons ider  for  n _> 2 

P 1,2:. --  (n - 2)! p ~  xy f i ,  (x)J} 2 (y) Hc=3 { 1 - F,- c (y)} dy dx 

1 fl - ( n - 2 ) !  p ~ x f i , ( x ) I i ( x ) d x  , 

where  

(3.1) 
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fX ° 1~ I1 (X) = YJ~2 (Y) I I  { 1 - F/~ (y) } dy 
c~3 

fx =u,2 l-I{1 - Fio(y/} dy 
e=2 

upon using (1.5). Integrating now by parts yields 

z , ( x ) = v , 2 - x  { 1 - F ~ ( x ) } +  y £ { v ) H { 1 - F , c ( y )  } 
c=2 x j=2  c=2 

cCj 

which, when substi tuted in (3.1), gives 

1 ~ - ~ i  2 -- x2fil(X) i I { l _ _ F i c ( X ) } d x  /-/1,2:n - -  ( n  - 2)! p c=2 

+ xyfi,(x) fi,(y) { 1 - F/c(Y)) dy • 
1=2 c=2 

Alternatively, we may write 

/~,,2:, -- (n - 2)! xyf~ (x)f.z(y) I I { 1  - Fi~ (y)} dxdy  
c=3 

- ( n -  2)! yf,.:(v)II{1 - F,o (y) }/2 (y) d y ,  
c=3 

where 

f l  y 
h(y)  = .~ , (x)  dx 

= ~,, fY{~ - F~, (x)} dx 

upon  using (1.5). Integrating now by parts yields 

[, 71" h(y )  = vi, { 1 - & ( y ) } -  1 + xf,.,(x)dx 

which, when substi tuted in (3.3), gives 

1 ~ v i ,  y2fi2(y){1-Fi,(y)}II{1-Fic(y)}dy. /q,2:n - (n - 2)! p c=3 

- y~2(y) I I { ~  - F, cCv)} dy 
c=3 

fT1 . ] + xyfi,(x)fi2(y)ri{1 - F ~ ( y ) } d x d y  . 
c 3 

(3,2) 

(3.3) 

(3.4) 



Generalized recurrence relations for moments of  order statistics 409 

We now add the expressions for #1,2:= in (3.2) and (3.4) and simplify the resulting 
equat ion to get 

2 # 1 , 2 :  n ~ Vi # l , 2 : n  - -  i / Z l : n - I  • 
i=1 i=1 

Relat ion 3.1 is derived simply by rewriting the above equation. 

PROOF OF RELATION 3.2. F rom Equat ion (1.2), let us consider for 2 < r < n - 1 

1 
#~,r+l:. = ( r -  1 ) ! ( n -  r -  1)! 

r ~ r ~  r-1 

X ~ /  / xYHFia(X)fir(X)fir+l(y ) 
p J I J x  a = l  

r - I  

where 

{1- F c(y)} dydx 
c = r + 2  

(r - 1)!(n - r - 1)! p ~  x a=l Fio (x)fi,. (x)II (x) dx  , 

(3.5) 

I~ (x) = Yfir+, (Y) { 1 - Fic (y) } dy 
c = r + 2  

= ~)ir+l {1 --fic(Y)}dy 
c = r +  1 

upon  using (1.5). Integrating now by parts yields 

11 (X) = Yir+l - -  X { 1 -- F/= (x) } + Y Z JiJ (Y) 
c = r + l  ax j = r + l  

e = r + l  
c#j 

which, when substi tuted in (3.5), gives 

1 
#~,r+l:, = ( r -  1)!(n - - r -  1)! 

[ [ r-i n x ~ vi=+, - x 2 F,.o (x)fi, (x) { 1 - F/. (x) } dx 
p a = l  c = r + l  

r ~ r ~  r 1 

a = l  j = r + l  

c = r + l  
c#j 

(3.6) 
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Alternatively, we may write 

#r,r+ 1 :n = 
1 

( r -  1 ) ! ( n - r -  1)! 

g o o e y  r-1 I I  X ~pI j  1 J/, xYHFio(x)fi.(x)fi.-+,(Y)~=, c=r+2{ 1 - F//,. (y) } dx dy 

( r -  l ) t ( n -  r -  t ) tp~  YJ~r+, (Y) c=,+2{1 - P}c (Y) ) h  (y) dy , 

(3.7) 

where 

rY r-1 
12(y) = / xHFio(x) f . , ( x )dx  

J 1 a=l 
rY r-1 

= Vir J l  a=~iF/i~(x){l - - _  F/, ,(x)}dx 

upon using (1.5). Integrating now by parts yields 

I2 (y) = v,,. F~ a (y) { 1 - Fi,. (y) } - x , )  
a=l j=l 

× IIF, o(~){1 - ~r(~)) d~ + x~, (~) F~o(~) d~ 
a=l a=l 

which, when substituted in (3.7), gives 

1 
#,,r+l:, = ( r - 1 ) ! ( n - r - 1 ) f  p ~ v i "  

x Y H i,,(y)f.,.+,(y){l-F/,(y)} {1-Fi~(y)}dy 
a= 1 c=r+2 

c o o r Y  r-1  r l 

- / / Fio(xl{1-F r(Xl)fi,+, l 
31 31 j=l a=la~j  

× ( I  {1-F~(y))d~dy 
c=r+2 

foo /~y r-1 I ~  l 
+ 1  [ xYHF~o(x)f~r(X)f.r+~(y ) {1-F , .  (y)}&vdy 

dl J1 a=l c=r+2 

We then split the second term in the above sum through the term {1 -F/r(X)} to 
get 
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1 K-" 
#r,r + l :n 

( r  - 1 ) ! ( n  - r - 1)! Vir 

X y2IIFia(y){1 --Fir(y)}fir+l(y ) {1 -- ~,(y)} dy 
a= l  c=r+2 

f l lC~jfl .Yr-1 r-I -- xy~--~fij(X)~ I Fia(X)fir+l(y ) {1 -- ~ ( y ) }  dxdy 
j = l  a=laCj c=r+2 

+ x y ~ f i j ( x ) H  Fio(x)fi,÷,(y) {1 - Fi~(y)} dx dy 
j = l  a=laT~ j c=r+2 

/.oo /.y r--1 

+ / / I I  F,.o +, (y) 
,]1 d l  a= l  

I I  {1 - F~c(y)} dxdy] . 
c=r+2 

(3.8) 

We now add the expressions for #r,r+l:. in (3.6) and (3.8) and simplify the re- 
sulting equation to get 

2#r'r+l:n ~ ( ~ - ~ i )  #r 'r+l:n-~i~[i]- l ' r :n-I  i=1 

Relation 3.2 is derived simply by rewriting the above equation. 

The proofs of Relations 3.3 and 3.4 are similar to the above, and have been 
relegated to Appendix A. 

The recurrence relations presented in Relations 3.1-3.4 along with Relations 
2.1 and 2.2 will enable one to compute all the product moments, and hence the 
covariances, of all order statistics in a simple recursive manner for any specified 
values of vi > 2 (i = 1 , 2 , . . . , n ) .  

Alternatively, two of the general relations established by Balakrishnan, Bendre 
and Malik (1992) could also be used. One of these relations expresses #,-,s:~ in 
terms of product moments of the form #i,i+l:m for m up to n, and hence could be 
used in conjunction with Relations 3.1 and 3.2 to compute all the product mo- 
ments of all order statistics in a simple recursive manner. The other relation that 
can be used expresses # ..... in terms of product moments of the form #1d:m for m 
up to n, and so could be used in conjunction with Relations 3.1 and 3.3 to 
compute all of the product moments. 

We conclude this section by setting vl = v2 . . . . .  vn = v in Relations 3.1-3.4, 
to obtain the following results I.I.D. Pareto random variables: 

n v  

#l ,2:n ~- n v  - 2 / / l : n - l '  rt > 2 , 

nv 
#r , r+ l :n - -nv_2  #~ 1,r:n 1, 2 < r < n - 1  , 

n v  
#1,s: .  - -  n v _  2 # s  1:,, 1, 3 < s < n , 
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and 

nv 
t~r . . . .  n v  _ 2 f l r - l , s - l : n - l ,  2 <_ r < s < n, s - r > 2 .  

These relations may be derived from the results of Balakrishnan and Joshi 
(1982). 

4. Results for the multiple-outlier model (with a slippage of p observations) 

In this section we consider the special case where )(1, X2,.. .  ,X,_p are independent 
Pareto random variables with parameter v, while X ~ - p + l , . . .  , X ,  are independent 
Pareto random variables with parameter v* (and independent ofX1,X2,.. .  ,Xn_p). 
This situation is known as the multiple-outlier model with a slippage of p 
observations; see David (1979) and Barnett and Lewis (1994, pp. 66-68). 
Here, we denote the single moments by (k) mr:, [P] and the product moments by 

fir,s: n ~gJ . 
In this situation, the results established in Sections 2 and 3 reduce to the 

following recurrence relations: 

(a) for n > 1 and k = 0, 1 ,2 , . . . ,  

g(k) r.l = (n - p )  v + pv* . 
(4.1) 

(b) for 2 < r < n and k = 0, 1 ,2 , . . . ,  

p(k) In] = 
y :n  L~J 

(c) f o r n 2 2 ,  

(n (k) + v* (k) --P)V#r-l:n-l[P] P /~r-l:n-l[P-- 1] 
(n - p ) v  + pv* - k 

; (4.2) 

 l,2:.[pJ = (n -p)v l:n_l [p] [P -- 1J 
(n - p )  v + pv* - 2 

(d) f o r 2 < r < n - l ,  

; (4.3) 

(e) fo r3  < s < n ,  

(n -p)v/~r_l,r:~_~[p ] + p  #r-1 ..... l i P -  1] 
(n - p ) v  + pv* - 2 

; (4.4) 

and 

(F/--p)V~s_i: n 1~]-~PV*~s l:n-l~ 0 -  1] 
(n - p ) v  + pv* - 2 

(4.5) 

(f) f o r 2 < _ r < s < n a n d s - r > 2 ,  
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(l'l -- p)Vldr_l,s_l:n_l~l)] -}-p fir_l, s l : n - l [ P -  1] 
t~r,s:n [P] = (n - p)v + pv* - 2 (4.6) 

Note that these recurrence relations reduce (by setting p = 0) to those pre- 
sented in Sections 2 and 3 for I.I.D. Pareto random variables. Thus by starting 
with Equations (4.1)-(4.6) for p = 0, all of  the single and product moments for the 
I.I.D. case can be determined. These same relations could then be used again, this 
time with p = 1, to determine all of the single and product moments of all order 
statistics from a sample containing a single outlier. Continuing in this manner, the 
relations in (4.1)-(4.6) could be used to compute all the single and product mo- 
ments (and hence covariances) of all order statistics from a p-outlier model in a 
simple recursive manner. 

5. Generalization to the truncated Parcto distribution 

We now generalize all of  the preceding results by considering the case when the 
variables X~'s are independent having doubly-truncated Pareto distributions with 
density functions 

~ix-(v~+ 1) 
f i(x) L - ~ ' - U  ~, L < x < U ,  v i > O  (5.1) 

and cumulative distribution functions 

L--Vi __ x--Vi 

- L-v  - U L < < V, v, > 0 (5.2) 

for i = 1 ,2 , . . . ,  n. The differential equations in this case are 

where 

x 
F (x) = C i - @ ( x ) ,  i =  1 , 2 , . . . , n ,  (5.3) 

L - ~ i  
Ci (5.4) 

- L  -~ - U ~, 

We first point out though, that in a discussion of Balakrishnan (1994a), Arnold 
(1994) presented an alternative method for deriving the single and product mo- 
ments of order statistics arising from I.NI.D. exponential random variables. This 
alternative method uses the fact that I.NI.D. exponential random variables are 
closed under minima, i.e., the minimum of a set of I.NI.D. exponential random 
variables is again an exponential random variable. He points out that the same is 
true for Pareto random variables, and that his method is also applicable to dis- 
tributions close under maxima. Thus his method could possibly be used as an 
alternative to the recurrence relations presented in Sections 2 and 3 to derive all of 
the single and product moments of order statistics arising from I.NI.D. Pareto 
random variables. However, truncated I.NI.D. Pareto random variables are not 
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closed under minima or maxima. Hence, the method of Arnold (1994) does not 
apply to the truncated Pareto distribution case. 

On the other hand, the differential equation technique used in Sections 2 and 3 
easily handles the truncated Pareto case. We now use this method to generalize 
the recurrence relations established in Section 2 and 3 to the doubly-truncated 
Pareto model in (5.1). 

The recurrence relations derived in Section 2 for single moments generalize as 
follows: 

(a) for n > 2 and k = O, 1 ,2 , . . . ,  

n n 1 .~  s [i](k) 
• (k) L k  E i = I  G 1~i q-  ~ i = 1  ( - -  I " i ) V i f l l : n - 1  

/~I:n = ~ i n l  V i - -  k ; 

(b) f o r 2 < r < n -  1 a n d k = O ,  1 ,2 , . . . ,  

C'il~i[2r--l:n--1 q-  ~ i = 1  ( - -  n C i  ) Vi]2r:n- i ]i(k) = ~ i = l  / .  [i](k) n 1 ~ \  [i](k) 

r:n 
~-~in l  1) i - -  k 

and 

(c) for n _> 2 and k = O, 1 ,2 , . . . ,  

t /  

- -  CqVi#n  l : n -1  #(k) = Uk ~7=]( 1 Ci)vi + ~ i=1  ~ [i](k) 
n : n  

We will provide the proof  of recurrence relation (b) in Appendix B. Relations (a) 
and (c) may be proved on similar lines. 

The recurrence relations established in Section 3 for product moments can 
similarly be generalized and are given below (we will only provide the proof  of 
relation (i) in Appendix B; the other proofs are similar): 

(d) fo r  n > 3, 

n C V ' [i1 n 1 [i) 
L ~ i = l  t~i i / ' t l :n-1  -1- ~ i = l (  - C / ) V i # l , 2 : n - 1  

# l ,2 :n  = ~ i n l  Vi - -  2 ' 

(e) f o r 2 < r < n - 2 ,  

#r , r+l :n  ~-  

" c . v . ,  Iil ~ Iil 
~i=1 ~, ' t*r-l,r:n-1 -k }--~,i=1 (1 -- Ci)vil2r,r+l:n_l 

~-~in i V i - -  2 

(f) f o r n > 3 ,  
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E i = I  ~ [i1 n 1 C ' h v "  [i] n [JiYi]An-2,n-l:n 1 ~- U E i = I (  - 11 t t~n_l:n_l  

]An 1,n:n : E i L 1  Vi - -  2 

(g) for 3 < s < n - 1 ,  

L ~i=1 ~ [i1 n 1 [il • iY i ] A s - l : n - I  ~- ~ i = 1 (  - -  n Ci)vi]Al,s:n 1 

~i~=l vi - 2 
]Al,s:n : 

(h) f o r n > 3 ,  

L ~ i : 1  ~ [i1 n 1 c~ ~v ' [i] n I-~iVi[.2n_l:n_ 1 -~- U ~ i = I (  - ~ i ]  i/Xl:n_ 1 
n ]Al,n:n = ~ i = 1  Vi - -  2 

(i) f o r 2 < _ r < s < _ n - 1  a n d s - r _ > 2 ,  

and 

(J) 

n g~'V" [i] n 1 [i1 
~ i = l  ~z '/*r l,s l :n-1 ~- ~-2~i=1( - -Ci )Yi]A . . . . .  1 

[2 . . . . .  = ~ i L l  Vi - -  2 

for  2 < r < n - 2 ,  

P v [i] n 1 [i] 
~i=ln t-'i i]Ar 1.n ' n -1  @ U ~ i = 1 (  - -  Ci)vi~ . . . .  1 

]A . . . . .  : E i L I  Vi - -  2 
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Relat ions (a) - ( j )  are general izat ions of  the results o f  Balakr i shnan and Joshi 
(1982) to the I . N I . D  case. Fur ther ,  i fL  --+ 1 and U --+ ec, relations (a)-(c) reduce 
to Results 2.1 and 2.2, while relations (d) (j) reduce to Results 3.1-3.4. The 
results for the r ight- t runcated case ( left- truncated case) can be deduced f rom 
relations (a ) - ( j )  by letting L ~ I ( U  --+ ec). 

6. Robustness of  the MLE and BLUE 

In  this section, we introduce a scale pa rame te r  to the Pare to  distr ibution in (1.3) 
and consider the p-out l ier  model  described in Section 4. Specifically we consider 
the si tuat ion where X 1 , X 2 , . . . , X n  p have a Pare to  distr ibution with shape pa- 
rameter  v and scale pa rame te r  o-, 

f ( x )  = vaVx ( v + l )  X _> a, v > 0, cr > 0 (6.1) 

while X ,_p+l , . . .  ,An have the same distr ibution but  with shape pa rame te r  v* 

f ( x )  = v*oV*x -(~*+'/, x _> ~, v* > 0, ~ > 0 . (6 . : )  
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We will use the single and product moments obtained from the recurrence rela- 
tions in Section 4 to examine the robustness of  the maximum likelihood estimator 
(MLE) and best linear unbiased estimator (BLUE) of the scale parameter  a to the 
presence of multiple shape outliers. We will see how their bias and mean square 
error are affected by the presence of (possibly) multiple shape outliers. 

For  the I.I.D. case (p = 0) the MLE for a is 

(r = XI: ,  

while the best linear unbiased estimator (BLUE) is given by 

vn - 1 
a* - XI:, • (6.3) 

vna  

This expression for the BLUE may be obtained in the usUal way (as described in 
Arnold, Balakrishnan, and Nagaraja  (1992)) by inverting the covariance matrix 
of the standardized I.I.D. Pareto random variables. Alternatively, it may be 
obtained by observing that XI: ,  is a complete sufficient statistic for the parameter  
a. Thus the minimum variance unbiased estimator for a is a function of Xl:n. Since 
v-~JXl: ,  is unbiased, and a linear function of order statistics, it must also be the 
BLUE. See also Likeg (1969), and Kulldorff and Vfinnman (1973). 

In Table 1 we present the bias and mean square error of  the MLE and BLUE 
for n = 10,20, and 30, p = 0(1)5, and various values of v and v*. Whenever 
v* > v, the observations with shape parameter  v* are actually likely to be smaller 
than those with shape parameter  v. This case is therefore referred to as the 'inlier 
situation'. The actual outliers occur whenever v* < v. 

From Table 1 we see that in the outlier situation (v* < v) and the I.I.D. case 
(v* = v), the bias and mean square error of  the BLUE are considerably smaller 
than those of the MLE. As v* increases, the mean square error of  both estimators 
decreases. However, the mean square error of  the MLE decreases more rapidly 
than that of  the BLUE. The result is that for some of the larger values of  v*, for 
example v = 3, v* = 18,23, and 28, the mean square error of  the MLE becomes 
smaller than that of  the BLUE. However, when the MLE has smaller mean 
square error, it is usually only slightly smaller than the BLUE, except in the 
extreme inlier situation (v = 3, v* = 23 and 28). 

Therefore, for estimation of the scale parameter  a of  the Pareto distribution in 
(6.1) in (possibly) the presence of outliers, we recommend use of  the BLUE given 
in (6.3) since it is significantly more efficient in the outlier situation, and usually 
only slightly less efficient than the MLE in the inlier situation. 

7. Robustness of the censored BLUE 

In this section, we introduce a location and scale parameter  to the Pareto dis- 
tribution in (1.3) and consider the p-outlier model described in Section 4. Spe- 
cifically we consider the situation where X I , X 2 , . . . , X , _ p  have a Pareto 
distribution with shape parameter  v, location parameter  #, and scale parameter  o-, 
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Table 1 

102 (Bias of estimators of a) /a  and 104(mean square error)/a 2 in the presence of multiple shape o utliers 

n = 10 

v = 3 Bias 

v* 2.1 2.5 3 + 8 13 18 23 28 

p = 1 BLUE 
MLE 

p = 2 BLUE 

MLE 

p - 3 BLUE 

MLE 

0.1068 0.0585 0.0000 -0.4902 -0.8547 -1.1364 -1.3605 - t .5432 
3.5587 3.5088 3.4483 2.9412 2.5641 2.2727 2.0408 1.8519 

0.2206 0.1190 0.0000 -0.8547 -1.3605 -1.6949 -1.9324 -2.1097 

3.6765 3.5714 3.4483 2.5641 2.0408 1.6949 1.4493 1.2658 

0.3422 0.1818 0.0000 -1.1364 -1.6949 -2.0270 -2.2472 -2.4038 

3.8023 3.6364 3.4483 2.2727 1.6949 1.3514 1.1236 0.9615 

v - 3 Mean Square Error 

v* 2.1 2.5 3 + 8 13 8 23 28 
p =  1 BLUE 12.7190 12.3445 11.9048 8.8136 7.1975 6.3425 5.9051 5.7070 

MLE 26.2636 25.5184 24.6305 17.8253 13.4953 10.5708 8.5034 6.9881 

p = 2  BLUE 13.6432 12.8160 11.9048 7.1975 5.9051 5.6497 5.7545 5.9865 
MLE 28.0647 26.4550 24.6305 13.4953 8.5034 5.8445 4.2626 3.2457 

p = 3  BLUE 14.6946 13.3219 11.9048 6.3425 5.6497 5.8620 6.2564 6.6592 

MLE 30.0576 27.4443 24.6305 10.5708 5.8445 3.7023 2.5536 1.8671 

v - 5 Bias 

p -  1 BLUE 

MLE 
p = 2 BLUE 

MLE 

p = 3 BLUE 

MLE 

2.1 2.5 3 4 5 + 10 15 20 

0.1258 0.1075 0.0851 0.0417 0.0000 -0.1852 -0.3390 -0.4688 

2.1692 2.1505 2.1277 2.0833 2.0408 1.8519 1.6949 1.5625 
0.2685 0.2273 0.1778 0.0851 0.0000 -0.3390 -0.5797 -0.7595 

2.3148 2.2727 2.2222 2.1277 2.0408 1.6949 1.4493 1.2658 

0.4318 0.3614 0.2791 0.1304 0.0000 -0.4688 -0.7595 -0.9574 

2.4814 2.4096 0.3256 2.1739 2.0408 1.5625 1.2658 1.0638 

v = 5 Mean Square Error 

V* 

p = 1 BLUE 
MLE 

p - 2 BLUE 

MLE 

p = 3 BLUE 
MLE 

n = 20 
v = 3 Bias 

~)* 

p = 1 BLUE 
MLE 

p = 2 BLUE 

MLE 
p = 3 BLUE 

MLE 
p = 4 BLUE 

MLE 

2.1 2.5 3 + 4 5 + 10 15 20 

4.7353 4.6485 4.5439 4.3475 4.1667 3.4521 2.9690 2.6389 

9.6195 9.4529 9.2507 8.8652 8.5034 6.9881 5.8445 4.9603 
5.4622 5.2431 4.9899 4.5439 4.1667 2.9690 2.4126 2.1551 

10.9707 10.5708 10.1010 9.2507 8.5034 5.8445 4.2626 3.2457 

6.4008 5.9824 5.5194 4.7575 4.1667 2.6389 2.1551 2.0270 
12.6729 11.8994 11.0742 9.6618 8.5034 4.9603 3.2457 2.2878 

2.1 2.5 3 + 8 13 18 23 28 

0.0258 0.0142 0.0000 -0.1302 -0.2415 -0.3378 -0.4219 -0.4960 

1.7212 1.7094 1.6949 1.5625 1.4493 1.3514 1.2658 1.1905 
0.0524 0.0287 0.0000 -0.2415 -0.4219 -0.5618 -0.6734 -0.7645 

1.7483 1.7241 1.6949 1.4493 1.2658 1.1236 1.0101 0.9174 
0.0799 0.0435 0.0000 -0.3378 -0.5618 -0.7212 -0.8403 -0.9328 
1.7762 1.7391 1.6949 1.3514 1.1236 0.9615 0.8403 0.7463 

0.1083 0.0585 0.0000 -0.4219 -0.6734 -0.8403 -0.9592 -1.0482 
1.8051 1.7544 1.6949 1.2658 1.0101 0.8403 0.7194 0.6289 
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v = 3 Mean Square Error 
v* 2.1 2.5 3 + 8 13 18 23 28 

p -  1 BLUE 2.9655 2.9240 2.8736 2.4526 2.1490 1 . 9 2 8 3  1 . 7671  1.6495 
MLE 6.0286 5.9458 5.8445 4.9603 4.2626 3.7023 3.2457 2.8686 

p = 2  BLUE 3.0633 2 . 9 7 6 1  2.8736 2.1490 1 . 7671  1 . 5 6 4 1  1.4602 1.4134 
MLE 6.2216 6.0496 5.8445 4.2626 3.2457 2.5536 2.0614 1.6989 

p = 3  BLUE 3.1673 3.0300 2.8736 1 . 9 2 8 3  1 . 5 6 4 1  1.4314 1.4006 1.4168 
MLE 6.4239 6.1562 5.8445 3.7023 2.5536 1 . 8671  1 . 4 2 4 3  1.1222 

p ~ 4  BLUE 3 . 2 7 8 1  3.0858 2.8736 1 . 7 6 7 1  1 . 4 6 0 2  1.4006 1.4278 1.4861 
MLE 6.6362 6.2657 5.8445 3.2457 2.0614 t.4243 1.0426 0.7961 

v = 5 Bias 
v* 2.1 2.5 3 4 5 + 10 15 20 

p =  1 BLUE 0.0302 0.0259 0.0206 0.0102 0.0000 -0.0481 -0.0917 -0.1316 
MLE 1.0406 1 . 0 3 6 3  1 . 0 3 0 9  1.0204 1 .0101  0.9615 0.9174 0.8772 

p = 2  BLUE 0.0622 0.0532 0.0421 0.0206 0.0000 -0.0917 -0.1681 -0.2326 
MLE 1.0730 1 . 0 6 3 8  1.0526 1.0309 1 .0101  0.9174 0.8403 0.7752 

p = 3 BLUE 0.0963 0.0820 0.0645 0.0313 0.0000 -0.1316 -0.2326 -0.3125 
MLE 1.1074 1 . 0 9 2 9  1 . 0 7 5 3  1.0417 1 .0101  0.8772 0.7752 0.6944 

p = 4  BLUE 0.1327 0.1124 0.0879 0.0421 0.0000 -0.1681 -0.2878 -0.3774 
MLE 1.1442 1 . 1 2 3 6  1 . 0 9 8 9  1.0526 1 . 0101  0.8403 0.7194 0.6289 

v = 5 Mean Square Error 
v* 2.1 2.5 3 4 5 + 10 15 20 

p = 1 BLUE 1.0845 1.0752 1 . 0 6 3 8  1.0417 1.0204 0.9261 0.8486 0.7848 
MLE 2.1884 2.1702 2.1478 2.1039 2.0614 1 . 8 6 7 1  1.6989 t.5526 

p = 2  BLUE 1.1567 1 . 1 3 5 9  1 . 1 1 0 9  1.0638 1.0204 0.8486 0.7321 0.6523 
MLE 2.3275 2.2878 2.2396 2.1478 2.0614 1.6989 1 . 4 2 4 3  1.2112 

p = 3 BLUE 1.2382 1.2032 1.1620 1 . 0 8 6 8  1.0204 0.7848 0.6523 0.5769 
MLE 2.4802 2.4152 2.3375 2.1930 2.0614 1.5526 1.2112 0.9713 

p = 4  BLUE 1.3304 1 .2781  1 . 2 1 7 6  1.1109 1.0204 0.7321 0.5974 0.5350 
MLE 2.6485 2.5536 2.4420 2.2396 2.0614 1 . 4 2 4 3  1.0426 0.7961 

n = 30 
v = 3 Bias 

v* 2.1 2.5 3 + 8 13 18 23 28 
p =  1 BLUE 0.0114 0.0063 0.0000 -0.0591 -0.1122 -0.1603 -0.2039 -0.2437 

MLE 1 . 1 3 5 1  1.1299 1.1236 1 . 0 6 3 8  1 .0101  0.9615 0.9174 0.8772 
p = 2  BLUE 0.0229 0.0126 0.0000 -0.t122 -0.2039 -0.2801 -0.3445 -0.3997 

MLE 1 . 1 4 6 8  1.1364 1 . 1 2 3 6  1 .0101  0.9174 0.8403 0.7752 0.7194 
p = 3  BLUE 0.0348 0.0190 0.0000 -0.1603 -0.2801 -0.3731 -0.4474 -0.5081 

MLE 1.1587 1.1429 1.1236 0.9615 0.8403 0.7463 0.6711 0.6098 
p = 4  BLUE 0.0468 0.0255 0.0000 -0.2039 -0.3445 -0.4474 -0.5260 -0.5879 

MLE 1.1710 1.1494 1.1236 0.9174 0.7752 0.6711 0.5917 0.5291 
p = 5  BLUE 0.0592 0 . 0 3 2 1  0.0000 -0.2437 -0.3997 -0.5081 -0.5879 -0.6490 

MLE 1.1834 1 .1561  1 . 1 2 3 6  0.8772 0.7194 0.6098 0.5291 0.4673 

v = 3 Mean Square Error 
v* 2.1 2.5 3 + 8 13 18 23 28 

p =  1 BLUE 1.2890 1 . 2 7 7 1  1 . 2 6 2 6  1.1340 1.0307 0.9474 0.8799 0.8252 
MLE 2.6064 2.5827 2.5536 2.2878 2.0614 1 . 8 6 7 1  1.6989 1.5526 

p = 2  BLUE 1.3164 1.2920 1 . 2 6 2 6  1.0307 0.8799 0.7807 0.7155 0.6732 
MLE 2.6608 2.6123 2.5536 2.0614 1 . 6 9 8 9  1.4243 1.2112 1.0426 
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p = 3 BLUE 1.3450 1.3072 1.2626 0.9474 0.7807 0.6920 0.6466 0.6262 
MLE 2.7169 2.6425 2.5536 1 . 8 6 7 1  1 . 4 2 4 3  1.1222 0.9069 0.7482 

p = 4 BLUE 1.3748 1.3227 1.2626 0.8799 0.7155 0.6466 0.6231 0.6223 
MLE 2.7748 2.6731 2.5536 1.6989 1.2112 0.9069 0.7044 0.5629 

p ~ 5 BLUE 1.4059 1.3386 1.2626 0.8252 0.6732 0.6262 0.6223 0.6368 
MLE 2.8346 2.7042 2.5536 1.5526 1.0426 0.7482 0.5629 0.4388 

v -- 5 Bias 
v* 2.1 2.5 3 4 5 + 10 15 20 

p ~ 1 BLUE 0.0132 0.0114 0.0091 0.0045 0.0000 -0.0216 -0.0419 -0.0610 
MLE 0.6845 0.6826 0.6803 0.6757 0.6711 0.6494 0.6289 0.6098 

p--- 2 BLUE 0.0270 0.0231 0.0184 0.0091 0.0000 -0.0419 -0.0789 -0.1117 
MLE 0.6983 0.6944 0.6897 0.6803 0.67tl 0.6289 0.5917 0.5587 

p ~ 3 BLUE 0.0413 0.0353 0.0280 0.0137 0.0000 -0.0610 -0.1117 -0.1546 
MLE 0.7t28 0.7067 0.6993 0.6849 0.6711 0.6098 0.5587 0.5155 

p ~ 4 BLUE 0.0563 0.0480 0.0378 0.0184 0.0000 -0.0789 -0.1411 -0.1914 
MLE 0.7278 0.7194 0.7092 0.6897 0.6711 0,5917 0.5291 0.4785 

p = 5 BLUE 0.0719 0.0611 0.0480 0.0231 0.0000 -0,0958 -0.1675 -0.2232 
MLE 0.7435 0.7326 0.7194 0.6944 0.6711 0,5747 0.5025 0.4464 

v ~ 5 Mean Square Error 
v* 2.1 2.5 3 4 5 + 10 15 20 

p ~ 1 BLUE 0.4688 0.4662 0.4630 0.4566 0.4505 0.4220 0.3970 0.3751 
MLE 0.9434 0.9383 0.9319 0.9193 0.9069 0.8488 0.7961 0.7482 

p -= 2 BLUE 0.4887 0.4830 0.4762 0.4630 0.4505 0.3970 0.3558 0.3239 
MLE 0.9822 0.9713 0.9579 0.9319 0.9069 0.7961 0.7044 0.6277 

p = 3 BLUE 0.5102 0.5011 0.4901 0.4695 0.4505 0.3751 0.3239 0.2888 
MLE 1.0233 1.0060 0.9849 0.9447 0.9069 0.7482 0.6277 0.5342 

p = 4 BLUE 0.5335 0.5204 0.5048 0.4762 0.4505 0.3558 0.2991 0.2647 
MLE 1.0672 1.0426 1.0132 0.9579 0.9069 0.7044 0.5629 0.4601 

p = 5 BLUE 0.5588 0.5411 0.5204 0.4830 0.4505 0.3388 0.2797 0.2482 
MLE 1.1139 1.0813 1.0426 0.9713 0.9069 0.6644 0.5076 0.4004 

+ This is the I.I.D. case (p = 0). 

f ( x )  =- vaV(x  - #)-(v+l)  x >_ ~ + #, v > 0, a > 0 (7.1.) 

while Xn_p+l,... , Y  n have the same distribution but with shape parameter v*. 

f ( x )  ~- ~;* GV*(x-  #) -(v*+l), x ~ ry q- #, v* > 0 ,  r 7 > 0  . (7 .2)  

We will use the single and product moments  obtained from the recurrence rela- 
tions in Section 4 to examine the robustness of  the full sample and censored 
BLUE of  the location parameter # and the scale parameter a to the presence of  
multiple shape outliers. We will see how their bias and mean square error are 
affected by the presence of  (possibly) multiple shape outliers. 

Explicit expressions for the full sample BLUE may be obtained from the re- 
sults o f  Kulldorff and Vfinnman (1973). To compute the censored BLUE's,  we 
note that the covariance matrix of  the standardized Pareto order statistics (o-i,j:~) 
is o f  the form (a ib j )  where 
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F ( n  - i + 1 - 2 I v )  V ( n  - i + 1 - 1 / v ) V ( n  + 1) 
ai = F ( n -  i +  1 - 1 / v ) F ( n  + 1 - 2 / v )  - F ( n  - i +  1)F(n + 1 - l/v) 2 

(7.3) 

and 

I ' (n  + 1 ) r ( n - j +  1 - 1/v )  

bj  = V ( n  - j +  1) (7.4) 

These may be obtained from the results of Huang (1975). We are therefore able to 
invert the covariance matrix (o-i,j:.) and obtain explicit expressions for the cen- 
sored BLUE's #*(r) and o-*(r) of # and o- respectively, their variances var(#*(r)) 
and var(a*(r)), and their covariance cov(#* (r), o-*(r)), as described, for example, 
in Arnold, Balakrishnan, and Nagaraja (1992). We have, 

;} 
#*(r)  = \ { a l ( a 2 b l  - a l b 2 )  a i XI:~ 

~-r 2ai(bi+ I _ bi+2) + ai+l(bi+2 - bi) + at+2(bi - bi+l 

q- Z -(a~i+lb~--aibi+-~-l)(ai~+2bi+Z Z ai+lbi+~2) )Xi+l:n i=1 1) 
+ b, , - r (an-rbn-r  1 -- an-r lbn-r) xn-r:n o-ij __ \ i,j a lbl  ' 

\ k  i,j alka201 -- a l o 2 ) J  

n r 2  
_ ~ ai(bi+l_~ bi+____2)__+_ ai+l(bi+2~ bi) 4- ai+2(bi£- hi+l) Xi+l:n 

i=1 (ai+lbi - aibi+l)(ai+2bi+l - ai+ibi+2) 

- b n - r ( a n - r b ,  r , - a .  r - lbn  r)X.-r:n o-V _ 

/(v _ 1 ) ,  ,7,, var(#*(r)) = o -2 o-v a l b l  

and 

a l c  2 c2a22{yiJ  
tg / 

(7.6) 
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where ai and bi are given in (7.3) and (7.4) respectively, 

c = C(n + l - 1 / v )  , 

and ~ i , j  rrij is the sum of all of  the elements of  the inverse matrix of  the covariance 
matrix (rri,j:n) and is given by 

n r-1 ai l ( 2 b i  - b i + l )  - 2aibi 1 q- ai+lbi-1 
Z (7ij = ~ ~ 1  - - - ~ i - - l b - ~  ~ a ~  
i,j i=2 

a 2  - 2 a l  bn-r 1 
4 

al(a2bl - a~b2) b, r(an-rbn-r-1 - an-r- ibn-~)  " 

In Tables 2 and 3, we present the bias and mean square error of the BLUE's  
/~*(r) and a*(r), respectively, with r = 0, 10, and 20% of n, for n = 10 and 20, 
p = 0(1)4, and various values of  v and v*. Note that the mean square error for the 
I.I.D. case (p = 0) given in Tables 2 and 3 may be obtained using (7.5) and (7.6) 
respectively. 

From Table 2, we see that when v* >_ v (the inlier situation) the bias and mean 
square error for the censored forms of the BLUE for v are only slightly larger 
than those of the full sample BLUE. But in the outlier situation (v* < v), as the 
outliers become more pronounced, the bias and mean square error increase for 
each form of the BLUE. However, they increase much less for the censored forms 
of the BLUE than they do for the full sample BLUE, especially for the larger 
values of  p. The result is that as the outliers become more pronounced the bias 
and mean square error of  the censored forms of the BLUE start to become smaller 
than those of the full sample BLUE. The difference becomes quite significant as p 
increases. The same observations remain true for the BLUE's  for a in Table 3. 

Therefore, since the loss of  efficiency due to censoring when there are no 
outliers present is minimal as compared with the possible gain in efficiency when 
outliers are present, we recommend use of the BLUE with 10% censoring for the 
estimation of both the location parameter  # and scale parameter  a. 

8. Conclusions 

We have established in this paper several recurrence relations for the single and 
the product moments  of order statistics arising from n independent non-identi- 
cally distributed Pareto random variables. These recurrence relations are simple 
in nature and could be applied systematically in order to compute all the single 
and the product moments  of  order statistics arising from I .NI.D.  Pareto random 
variables for all values of  n in a simple recursive manner,  as long as the values of 
vi > 2 (i = 1, 2 , . . . ,  n) are known. The results for the case when the order sta- 
tistics arise from a multiple-outlier model (with a slippage o f p  observations) from 
a Pareto population are deduced as special cases. We have also generalized all of 
the results to the doubly-truncated Pareto distribution. We have then applied the 
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Table 2 
(Bias of estimators of/z)/a and (MSE)/a 2 in the presence of multiple shape outliers 

n = 1 0  

v - 3 Bias 

v* 2.1 2.5 3 + 8 13 18 23 28 

p = l  

p = 2  

p = 3  

p = 3  

BLUE0 -0.0548 -0.0258 0.0000 0.0812 0.0910 0.0891 0.0845 0.0793 
BLUE1 -0.0503 -0.0246 0.0000 0.0824 0.0925 0.0906 0.0859 0.0806 
BLUE2 -0.0467 -0.0234 0.0000 0.0859 0.0973 0.0955 0.0906 0.0850 
BLUE0 -0.1120 -0.0521 0.0000 0.1640 0.1939 0.2024 0.2048 0.2050 
BLUE1 -0.1036 -0.0498 0.0000 0.1665 0.I972 0,2059 0.2083 0.2086 
BLUE2 -0.0963 -0.0474 0.0000 0.1731 0.2073 0.2168 0.2196 0.2199 
BLUE0 -0.1717 -0.0789 0.0000 0.2458 0.2981 0.3185 0.3288 0.3348 
BLUE1 -0.1598 -0.0756 0.0000 0.2494 0.3031 0.3240 0.3345 0.3405 
BLUE2 -0.1488 -0.0720 0.0000 0.2586 0.3181 0.3411 0.3524 0.3590 

v - 3 Mean Square Error 
v* 2.1 2.5 3 + 8 13 18 23 28 

p = 1 BLUE0 0.2624 0.2278 0.2128 0.1886 0.1903 0.1923 0.1938 0.1948 
BLUE1 0.2470 0.2302 0.2165 0.1916 0.1934 0.1955 0.1970 0.1981 
BLUE2 0.2567 0.2416 0.2283 0.2010 0.2033 0.2057 0.2075 0.2087 

p -  2 BLUE0 0.3227 0.2449 0.2128 0.1783 0.1842 0.1874 0.1888 0.1895 
BLUE1 0.2876 0.2460 0.2165 0.1810 0.1873 0.1906 0.1922 0.1928 
BLUE2 0.2938 0.2568 0.2283 0.1893 0.1969 0.2010 0.2028 0.2036 
BLUE0 0.3947 0.2642 0.2128 0.1833 0.2020 0.2122 0.2180 0.2216 
BLUE1 0.3393 0.2639 0.2165 0.1863 0.2060 0.2166 0.2226 0.2263 
BLUE2 0.3408 0.2741 0.2283 0.1945 0.2177 0.2303 0.2373 0.2416 

v = 5 Bias 
v ~ 2.1 2.5 3 4 5 + 10 15 20 

p = 1 BLUE0 -0.1820 -0.1253 -0.0814 -0.0301 0.0000 0.0583 0.0732 0.0771 
BLUE1 -0.1227 -0.0961 -0.0687 -0.0280 0.0000 0.0603 0.0764 0.0806 
BLUE2 -0.1061 -0.0851 -0.0624 -0.0266 0.0000 0.0633 0.0818 0.0870 

p = 2 BLUE0 -0.3797 -0.2585 -0.1662 -0.0607 0.0000 0.1171 0.1510 0.1643 
BLUE1 -0.2772 -0.2074 -0.1434 -0.0567 0.0000 0.1211 0.1574 0.1718 
BLUE2 -0.2331 -0.1821 -0.1304 -0.0539 0.0000 0.1265 0.1681 0.1849 

p = 3 BLUE0 -0.5911 -0.3988 -0.2539 -0.0916 0.0000 0.1758 0.2299 0.2545 
BLUE1 -0.4567 -0.3313 -0.2234 -0.0861 0.0000 0.1813 0.2396 0.2659 
BLUE2 -0.3850 -0.2919 -0.2040 -0.0820 0.0000 0.1886 0.2549 0.2856 

v = 5 Mean Square Error 
v* 2.1 2.5 3 4 5 + 10 15 20 

p -  1 BLUE0 0.7934 0.2871 0.2192 0.1812 0.1674 0.1534 0.1534 0.1546 
BLUE1 0.2498 0.2294 0.2108 0.1877 0.1752 0.1599 0 .1601  0.1614 
BLUE2 0.2519 0.2371 0.2224 0.2022 0.1898 0.1722 0.1723 0.1740 

p = 2 BLUE0 1.5365 0.4576 0.2905 0.1973 0.1674 0.1464 0.1499 0.1532 
BLUEI 0.4231 0.3292 0.2649 0.2026 0.1752 0.1522 0.1564 0.1601 
BLUE2 0.3694 0.3159 0.2700 0.2168 0.1898 0.1630 0.1677 0.1725 

p = 3 BLUE0 2.4114 0.6838 0.3829 0.2159 0.1674 0.1467 0.1594 0.1685 
BLUEI 0.7149 0.4815 0.3393 0.2199 0.1752 0.1524 0.1667 0.1770 
BLUE2 0.5762 0.4378 0.3356 0.2337 0.1898 0.1622 0.1787 0.1918 
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n = 20 
v = 3 Bias 

v* 2.1 2.5 3 + 8 13 18 23 28 
p = 1 BLUE0 -0.0257 -0.0124 0.0000 0.0433 0.0517 0.0532 0.0526 0.0512 

BLUE2 -0.0237 -0.0118 0.0000 0.0441 0.0527 0.0543 0.0537 0.0522 
BLUE4 -0.0221 -0.0112 0.0000 0.0460 0.0553 0.0571 0.0565 0.0549 

p = 2 BLUE0 -0.0520 -0.0249 0.0000 0.0864 0.1048 0.1105 0.1122 0.1123 
BLUE2 -0.0481 -0.0238 0.0000 0.0879 0.1068 0.1126 0.1143 0.1144 
BLUE4 -0.0449 -0.0226 0.0000 0.0916 0.1121 0.1184 0.1203 0.1204 

p = 3 BLUE0 -0.0789 -0.0375 0.0000 0.1290 0.1581 0.1690 0.1738 0.1762 
BLUE2 -0.0732 -0.0358 0.0000 0.1313 0.1612 0.1722 0.1772 0.1796 
BLUE4 -0.0684 -0.0342 0.0000 0.1366 0.1692 0.1811 0.1864 0.1890 

p -  4 BLUE0 -0.1065 -0.0502 0.0000 0.1710 0.2111 0.2273 0.2356 0.2404 
BLUE2 -0.0990 -0.0481 0.0000 0.1740 0.2151 0.2317 0.2401 0.2450 
BLUE4 -0.0925 -0.0459 0.0000 0.1807 0.2258 0,2437 0.2526 0.2578 

v = 3 Mean Square Error 
v* 2.1 2,5 3 + 8 13 18 23 28 

p = 1 BLUE0 0.1019 0.0969 0.0939 0.0882 0.0885 0.0890 0,0893 0.0896 
BLUE2 0.1018 0.0985 0.0957 0.0899 0.0902 0.0906 0.0910 0.0913 
BLUE4 0.1065 0.1034 0.1007 0,0943 0.0947 0.0953 0.0957 0.0960 

p = 2 BLUE0 0.1117 0.1003 0.0939 0.0865 0.0886 0.0898 0.0904 0.0907 
BLUE2 0.1096 0.1017 0.0957 0.0881 0,0903 0.0916 0.0922 0.0925 
BLUE4 0.1137 0.1066 0.1007 0.0924 0.0950 0.0964 0.0972 0.0975 

p = 3 BLUE0 0.1235 0.1041 0.0939 0.0887 0.0945 0.0976 0.0992 0.1001 
BLUE2 0.1190 0.1053 0.0957 0.0924 0.0965 0.0997 0.1014 0.1024 
BLUE4 0.1224 0.1100 0.1007 0.0947 0.1019 0.1056 0.1076 0,1086 

p = 4  BLUE0 0,1372 0.1084 0.0939 0.0945 0.1063 0.1125 0.1160 0.1182 
BLUE2 0.1302 0,1093 0.0957 0.0964 0.1088 0.1153 0.1190 0.1212 
BLUE4 0.1327 0.1138 0.1007 0.1012 0.1155 0.1230 0.1271 0.1297 

v = 5 Bias 
v* 2.1 2.5 3 4 5 + 10 15 20 

p = 1 BLUE0 -0.0803 -0.0570 -0.0380 -0,0145 0.0000 0.0305 0.0400 0.0437 
BLUE2 -0.0563 -0.0447 -0.0324 -0.0136 0.0000 0.0315 0.0416 0.0455 
BLUE4 -0.0494 -0.0400 -0.0297 -0,0129 0,0000 0.0330 0.0445 0.0489 

p = 2 BLUE0 -0,1651 -0.1162 -0.0769 -0,0292 0.0000 0.0608 0.0803 0.0887 
BLUE2 -0.1183 -0.0924 -0.0662 -0.0273 0.0000 0.0629 0.0836 0,0924 
BLUE4 -0,1031 -0.0826 -0.0607 -0.0260 0.0000 0.0658 0.0893 0.0993 

p = 3 BLUE0 -0,2543 -0.1776 -0.1168 -0.0439 0.0000 0.0910 0.1208 0.1343 
BLUE2 -0,1865 -0.1434 -0.1013 -0.0412 0.0000 0.0940 0.1257 0.1400 
BLUE4 -0,1614 -0.1278 -0.0929 -0.0392 0,0000 0,0982 0.1341 0.1503 

p = 4 BLUE0 -0.3473 -0.2410 -0.1575 -0.0588 0.0000 0.1210 0.1612 0.1801 
BLUE2 -0.2609 -0.1974 -0.1377 -0.0553 0.0000 0.1248 0.1677 0,1877 
BLUE4 -0.2247 -0.1758 -0.1264 -0.0527 0.0000 0.1301 0.1785 0.2014 

v = 5 Mean Square Error 
v* 2.1 2.5 3 4 5 + 10 15 20 

p -  1 BLUE0 0.1612 0.0970 0.0865 0.0794 0.0765 0.0731 0.0731 0.0733 
BLUE2 0.0943 0.0907 0.0871 0.0825 0.0797 0,0761 0.0761 0.0763 
BLUE4 0,0985 0.0957 0.0928 0.0886 0.0859 0.0818 0.0817 0.0821 

p -  2 BLUE0 0.2649 0.1263 0.1002 0.0828 0.0765 0.0717 0.0729 0.0739 
BLUE2 0.1195 0.1077 0.0975 0.0856 0.0797 0.0746 0.0759 0.0771 
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BLUE4 0.1188 0.1102 0.1021 0.0917 0.0859 0.0799 0,0815 0.0830 
p = 3 BLUE0 0.3897 0.1651 0.1177 0.0868 0.0765 0 .0721  0.0760 0.0787 

BLUE2 0.1586 0.1319 0.1110 0.0892 0.0797 0.0750 0.0793 0.0824 
BLUE4 0.1485 0.1303 0.1142 0.0953 0.0859 0.0802 0.0853 0.0891 

p = 4 BLUE0 0.5374 0.2142 0.1393 0,0912 0.0765 0.0745 0.0824 0.0878 
BLUE2 0.2145 0.1643 0 .1281  0.0934 0.0797 0.0774 0.0863 0.0923 
BLUE4 0.1900 0.1568 0.1292 0.0993 0.0859 0,0826 0.0931 0.1005 

+ This is the I.I.D. case (p = 0). 

Table 3 
(Bias of estimators of a)/a and (MSE)/a e in the presence of multiple shape outliers 

n = 1 0  

v = 3 Bias 

v* 2.1 2.5 3 + 8 13 18 23 28 

p -  1 BLUE0 0.0540 0.0255 0.0000 -0.0834 -0.0965 -0,0975 -0.0952 -0.0921 
BLUE1 0.0497 0.0244 0.0000 -0.0846 -0.0980 -0.0990 -0.0967 -0.0934 
BLUE2 0.0462 0.0232 0.0000 -0.0880 -0.1026 -0.1037 -0.1012 -0,0976 

p = 2  BLUE0 0.1105 0.0516 0.0000 -0.1671 -0.2011 -0.2126 -0.2173 -0.2193 
BLUEI 0.1023 0.0494 0.0000 -0.1695 -0.2043 -0.2160 -0.2207 -0.2227 
BLUE2 0.0953 0.0470 0.0000 -0.1759 -0.2140 -0.2266 -0.2316 -0.2336 

p -  3 BLUE0 0,1694 0,0781 0.0000 -0.2490 -0.3051 -0.3282 -0.3403 -0.3477 
BLUE1 0.1579 0.0749 0.0000 -0.2524 -0.3099 -0.3335 -0.3458 -0.3532 
BLUE2 0.1472 0.0715 0.0000 -0.2613 -0.3244 -0.3500 -0.3632 -0.3711 

v = 3 Mean Square Error 
v* 2.1 2.5 3 + 8 13 18 23 28 

p = 1 BLUE0 0.2467 0.2142 0 ,200•  0.1777 0.1799 0.1822 0.1838 0,1849 
BLUE1 0.2323 0.2164 0,2035 0.1806 0.1829 0.1852 0.1869 0,1880 
BLUE2 0.2414 0.2271 0.2145 0.1894 0.1921 0.1949 0.1968 0.1980 

p = 2 BLUE0 0.3037 0.2304 0.2001 0.1698 0.1776 0.1822 0.1846 0.1860 
BLUE1 0.2708 0.2314 0.2035 0.1724 0.1806 0.1853 0.1879 0.1892 
BLUE2 0.2766 0.2415 0.2145 0.1803 0.1899 0.1954 0.1982 0.1998 

p = 3 BLUE0 0,3719 0.2487 0.2001 0.1771 0.1990 0.2112 0.2185 0.2232 
BLUE1 0.3200 0.2484 0.2035 0.1799 0.2028 0.2155 0.2231 0.2279 
BLUE2 0.3213 0,2579 0.2145 0.1878 0.2142 0.2290 0,2376 0.2431 

v - 5 Bias 
v* 2.1 2.5 3 4 5 + 10 15 20 

p = 1 BLUE0 0.1796 0.1239 0.0807 0.0300 0.0000 -0.0590 -0.0752 -0.0803 
BLUEI 0.1215 0.0952 0.0681 0.0279 0.0000 -0.0610 -0.0783 -0.0837 
BLUE2 0.1052 0.0845 0.0620 0.0265 0.0000 -0.0639 -0.0836 -0.0899 

p = 2 BLUE0 0.3748 0.2556 0.1646 0.0603 0.0000 -0.1182 -0.1537 -0.1687 
BLUE1 0,2744 0.2055 0.1423 0.0565 0.0000 -0,1220 -0.1601 -0.1759 
BLUE2 0.2312 0.1807 0.1296 0.0537 0.0000 -0,1274 -0.1706 -0.1888 

p = 3 BLUE0 0,5836 0.3944 0.2516 0.0911 0.0000 -0.1769 -0.2329 -0.2590 
BLUEI 0,4519 0.3283 0.2218 0.0857 0.0000 -0.1824 -0.2424 -0.2701 
BLUE2 0.3817 0.2897 0.2027 0.0817 0.0000 -0,1895 -0.2574 -0.2894 
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v = 5  

p = l  

p = 2  

p = 3  

n = 20 
v = 3  

p = l  

p = 2  

p = 3  

p = 4  

v = 3  

p - 1  

p = 2  

p = 3  

p = 4  

v - 5  

p = l  

p = 2  

p = 3  

Mean Square Error 
v* 2.1 2.5 3 
BLUE0 0.7630 0.2766 0.2111 
BLUE1 0.2408 0.2211 0.2031 
BLUE2 0.2427 0.2284 0.2142 
BLUE0 1.4786 0.4414 0.2803 
BLUE1 0.4086 0.3178 0.2555 
BLUE2 0.3568 0.3049 0.2604 
BLUE0 2.3223 0.6606 0.3699 
BLUE1 0.6916 0.4658 0.3279 
BLUE2 0.5577 0.4235 0.3242 

4 5 + 10 15 20 
0.1745 0.1612 0.1478 0.1481 0.1494 
0.1807 0.1687 0.1541 0.1545 0.1560 
0.1947 0.1827 0.1659 0.1662 0.1681 
0.0901 0.1612 0.1416 0.1459 0.1497 
0.1951 0.1687 0.1472 0.1522 0.1565 
0.2088 0.1827 0.1576 0.1631 0.1686 
0.2081 0.1612 0.1427 0.1566 0.1667 
0.2119 0.1687 0.1482 0.1638 0.1751 
0.2252 0.1827 0.1577 0.1756 0.1897 

Bias 

v* 2.1 2.5 3 + 8 13 18 23 28 
BLUE0 0.0255 0.0123 0.0000 -0.0439 -0.0532 -0.0557 -0.0560 -0.0553 
BLUE2 0.0236 0.0117 0.0000 -0.0447 -0.0542 -0.0567 -0.0570 -0.0563 
BLUE4 0.0220 0.0112 0.0000 -0.0465 -0.0568 -0.0595 -0.0597 -0.0590 
BLUE0 0.0517 0.0247 0.0000 -0.0874 -0.1072 -0.1142 -0.1170 -0.1181 
BLUE2 0.0478 0.0236 0.0000 -0.0889 -0.1092 -0.1163 -0.1191 -0.1202 
BLUE4 0.0447 0.0225 0.0000 -0.0925 -0.1145 -0.1221 -0.1250 -0.1261 
BLUE0 0.0784 0.0373 0.0000 -0.1303 -0.1611 -0.1733 -0.1793 -0.1826 
BLUE2 0.0728 0.0357 0.0000 -0.1325 -0.1641 -0.1765 -0.1826 -0.1859 
BLUE4 0.0680 0.0340 0.0000 -0.1377 -0.1720 -0.1853 -0.1917 -0.1952 
BLUE0 0.1058 0.0500 0.0000 -0.1724 -0.2143 -0.2319 -0.2413 -0.2469 
BLUE2 0.0984 0.0479 0.0000 -0.1753 -0.2183 -0.2362 -0.2457 -0.2514 
BLUE4 0.0921 0.0457 0.0000 -0.1819 -0.2288 -0.2480 -0.2580 -0.2640 

Mean Square Error 
v* 2.1 2.5 3 + 
BLUE0 0.0988 0.0940 0.0911 
BLUE2 0.0988 0.0956 0.0928 
BLUE4 0.1033 0.1003 0.0976 
BLUE0 0.1084 0.0973 0.0911 
BLUE2 0.1063 0.0987 0.0928 
BLUE4 0,1103 0.1034 0.0976 
BLUE0 0,1199 0.I011 0.0911 
BLUE2 0,1155 0.1022 0.0928 
BLUE4 0,1188 0.1067 0.0976 
BLUE0 0,1333 0.1052 0.0911 
BLUE2 0.1265 0.1061 0.0928 
BLUE4 0.1289 0.1105 0.0976 

Bias 

v* 2.1 2.5 3 
BLUE0 0.0798 0.0567 0.0378 
BLUE2 0.0560 0.0445 0.0323 
BLUE4 0.0492 0.0399 0.0296 
BLUE0 0.1641 0.1156 0.0766 
BLUE2 0.1177 0.0920 0.0660 
BLUE4 0.1027 0.0823 0.0605 
BLUE0 0.2527 0.1767 0.1163 
BLUE2 0.1856 0.1427 0.1010 

8 13 18 23 28 
0.0857 0.0860 0.0866 0.0870 0.0873 
0.0872 0.0876 0.0882 0.0886 0.0889 
0.0916 0.0920 0.0927 0.0931 0.0935 
0.0843 0.0867 0.0882 0.0890 0.0895 
0.0858 0.0883 0.0899 0.0908 0.0913 
0.0899 0.0929 0.0947 0.0957 0.0962 
0.0867 0.0933 0.0969 0.0989 0.1002 
0.0884 0.0952 0.0990 0.1011 0.1024 
0.0927 0.1005 0.1048 0.1072 0.1086 
0.0929 0.1057 0.1127 0.1168 0.1194 
0.0948 0.1082 0.1154 0.1197 0.1224 
0.0995 0.1148 0.1231 0.1278 0.1308 

4 5 + 10 15 20 
0.0145 0.0000 -0.0306 -0.0405 -0.0445 
0.0135 0.0000 -0.0317 -0.0421 -0.0464 
0.0129 0.0000 -0.0332 -0.0449 -0.0498 
0.0291 0.0000 -0.0611 -0.0812 -0.0901 
0.0272 0.0000 -0.0632 -0.0845 -0.0939 
0.0259 0.0000 -0.0661 -0.0901 -0.1006 
0.0438 0.0000 -0.0914 -0.1219 -0.1361 
0.0411 0.0000 -0.0944 -0.1268 -0.1417 
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BLUE4 0.1608 0.1274 0.0926 0.0392 0.0000 -0.0985 -0.1350 -0.1519 
p = 4 BLUE0 0.3452 0.2398 0.1568 0.0586 0.0000 -0.1215 -0.1624 -0.1821 

BLUE2 0.2596 0.1965 0.1372 0.0551 0.0000 -0.1253 -0.1689 -0.1896 
BLUE4 0.2238 0.1752 0.1260 0.0526 0.0000 -0.1305 -0.1796 -0.2031 

v = 5 Mean Square Error 
v* 2.1 2.5 3 4 5 + 10 15 20 

p = 1 BLUE0 0.1581 0.0952 0.0849 0.0779 0.0750 0.0718 0,0717 0.0720 
BLUE2 0.0926 0.0890 0.0855 0.0809 0.0783 0.0747 0,0747 0.0750 
BLUE4 0.0967 0.0939 0.0911 0.0870 0.0843 0.0803 0,0802 0.0806 

p = 2 BLUE0 0.2600 0.1240 0.0984 0.0813 0.0750 0.0704 0.0717 0.0729 
BLUE2 0.1174 0.1058 0.0957 0.0840 0.0783 0.0733 0.0747 0.0760 
BLUE4 0.1167 0.1082 0.1003 0.0900 0.0843 0.0785 0.0802 0.0818 

p = 3 BLUE0 0.3826 0.1623 0.1157 0.0852 0.0750 0.0710 0.0751 0.0780 
BLUE2 0.1559 0.1296 0 .1091  0.0876 0.0783 0.0738 0.0784 0.0816 
BLUE4 0.1460 0.1280 0.1122 0.0935 0.0843 0.0789 0.0842 0.0883 

p = 4 BLUE0 0.5278 0.2107 0.1370 0.0896 0.0750 0.0735 0.0818 0.0875 
BLUE2 0.2111 0.1617 0.1259 0.0917 0.0783 0.0764 0.0856 0.0919 
BLUE4 0.1870 0.1542 0.1270 0.0975 0.0743 0.0815 0.0923 0.1000 

+ This is the I.I.D. case (p = 0). 

multiple-outlier results to conclude that the BLUE is more efficient than the MLE 
of  the scale parameter a of  a one-parameter Pareto distribution. And we have also 
found that the censored BLUE's (based on 10% censoring) of  the location pa- 
rameter/~ and the scale parameter a of  a two-parameter Pareto distribution are 
both quite robust to the presence of  multiple outliers. 
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Appendix A 

PROOF OF RELATION 3.3. F r o m  

1 
~,,s:. = ( ~  _ 2 ) ! ( ~  - ~)! 

x H {1-&. 
c=s+ 1 

1 

(s - 2 ) ! ( n  - s ) !  

Equation (1 .2 ) ,  let us consider for 3 < s < n 

" 

xyf,, (x) I I  {F,.~ (y) - F,.,, (x)}I< (y) 
b=2 

(y)) dy dx 

~f ~ £ , ( ~ ) I ~ ( ~ ) d ~ ,  ( A . 1 )  



Generalized recurrence relations f o r  moments  o f  order statistics 427 

where 

r o e  s-1  

= c = s + l  

r o e  s - 1  n 

: Vi"'/x bH. 2 ( F i l ' ~ ) - F i i b ( X ) } H { '  c=s 

upon using (1.5). Integrating now by parts yields 

11 ( x )  = 

p o e  s - 1  x-1  n 

vi ,  - I Y~-,fo(Y)H {Fih(y)-F'b(x)} H {1 -F/~(y)}dy 
• ix  j = 2  b=2 c=s 

b=~j 

f 
oe s - I  n n ] 

+ YH{F~b(y) -- F/e (x)} Z J } s ( y ) H { 1  - F/< ( y ) }  dy  
b=2 j=s c=s 

cCj 

which, when substituted in (A.1), gives 

1 [ / , 7 /  /~l.s. = ( s -  2)!(n -s)!~p vis - xYfi'(x)Zfo(Y) 
j = 2  

x H {F/h(Y)- ~h(x)} H {1 --F/c(Y)} dY dx + xyfi,(x) 
b=2b¢ j c=s 

s 1 n n q 

x H{5~(y) - ~.~(x)) ~ , ( y ) H { ~  - F~<.(y)} dy dxI " (A.2) 
b=2 j=s c=s cCj 

Alternatively, we may write 

v l  . . . .  = ( s  - 2 ) ! ( .  - s ) !  xyf,, (x) 

s - I  in I x H{F~h (y) -- F~ (x)}J},(y) {1 - F~<.(y) } dx dy 
b=2 c = s + l  

= (s - 2)!(n - s)! y~.~.(y) {1 - F,<. (y) }h Ov) dy , (1.3) 
c = s + l  

where 

r y  s -  1 

b=2 

fl 
y s -1  

b=2 
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upon using (1.5). Integrating n o w  by parts yields 

s-1 jfly s-I 
I2(y) =Yi, -- HF/b(Y) @ x f i l (X)  H { F i b C Y ) -  F/b(X)} dx 

b=2 b=2 
f y  s-1 s-I ] 

+ x{1 - ~ , ( x ) } ~ f , , ( . ) I I { F i ~ f y )  - & ( x ) } d ~  
j=2 b=2 

bCj 

which,  when  substituted in (A.3), gives 

1 
t g l ' s : n  = ( S  - -  2)!(// -- S)[ p ~  Vii  

× - y Fib(Y)f~,(y) {1 -- F~c(y)} dy. 
b=2 c = s +  1 

f o o f y  s-i 
+ x y f ,  (x) H{F,.~ (y) - Fie (x) }f-~ Cv) {1 - ~c (Y)} dx dy 

b=2 c = s +  1 

+ ~y{1 - & (~)} Z £ ( x )  
j=2 

× I-[{F,b C~) - ~b(x)}f,s(y) {1 - g ~V)} dx dy 
b=2 c = s +  1 
bCj 

We then split the third term in the above  sum through the term {1 -F,-~ (x)} = 
{F~, (y) - F~ L (x)} + {1 - F,., (y)} to get 

jfloo s-1 in I 1 ~-~vi, x - yHFie(y) f : , (y )  {1-F ic (y)}dy  
#~":" = (s - 2)!(n - s)! p b 2 c=s+l 

f , 7  s, n + xyfil (X) H {F/~ (y) - Fth (X) }f," (y) { 1 -- F~, (y) } dx dy 
b=2 c=s+ 1 

(.oo f-y s-I s-1 n 
+ I I xy~f~,(,)II{<(y)-F,~(x)}~(y) I I { l - r , .  C~)} ~x dy 

dl dl j=2 b=l c=s+l 
b¢j 

+ xy{~ - F,, Cv)} ~ f , . , ( x )  
j=2 

fI ] x H{F,.~ (y) - F,-h (x) }J}.~ 0, ) {1 - F~,. (y) } dx dy 
b=2 e=s+ 1 
b¢j 

(A.4) 
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We now add the expressions for Pl,s:n in (A.2) and (A.4) and simplify the resulting 
equation to get 

(8) 2#l,s:n = V i ]Al,s:n - -  V i # s _ l : n _  1 • 

i+l 

Relation 3.3 is derived simply by rewriting the above equation. 

PROOF OF RELATION 3.4. From Equation (1.2), let us consider for 2 < r < s _< n 
and s - r > 2 

r o e  r o e  r 1 

1 ~p / [ xy H Fi~ (x)f,. (x) 
nr,s:n ~-  ( r - -  1 ) ! ( s - r -  1 ) ! (n-s ) !  ,.tl dx a : l  

s-1 I " I  
× H {Fie (Y) - Fib (X) }J}, (y) { 1 -- F/c (y) } dy dx 

b=r+l c = s + l  

1 rOe r - I  

(r - 1)!(s - r - 1)!(n - s)[ x Fio(x)fi,.(x)ll(g ) dx , 

(A.5) 

where 

oe s l  in_ [ 
]l(X) : fx y H {Fib(x) --Fib(X)}fi'(Y) {1 - F/c(y)} dy 

b=r+l  c=s+l 

roe  s 1 n 

= v i , /  U {Fib(Y)--Fib(X)} r I  {1 - Fi,.(y)} dy 
,* x b=r+ 1 e=s 

upon using (1.5). Integrating now by parts yields 

fxOO s - !  s 1 n 
Ii(x) = vi, - Y ~ fo(Y) H {F/b(Y)--Fib(x)}H {1 -- F"e(Y)} dY 

j = r +  1 b=r+ 1 c=s 
b C j  

+ Y 1-I {~b(Y)-  Fi~(x)} Z J } / ( Y ) I - [ { 1 -  FIc(Y)}dY 
b=r ÷ 1 j = s  e=s 

c¢j 

which, when substituted in (A.5), gives 
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1 [" r o o ~ o o  r-1  

s 1 s - 1  n 

× Z J~,(Y)H {F~a(Y)-F"a(x)}H{1-F~,.(y)}dydx 
j = r +  ] b=r+ 1 c=s 

bs~J ( A . 6 )  
/.c,c)/.oo s - I  s -1  

-- b=r+l  
. n ] 

j = s  c~s  
c¢j 

Alternatively, we may write 

1 r ° °  F Y  r - I  

~.,.:° = ( r_1) , (~_~_X),(~_s) ,~  x J, J, xYH~o(x)f.>(x)_ 
s - i  in. I × II {F~(y)-F,o(x)}£(y) {~-~c(y)}d~dy 

b=r+ I c=s+ I 

1 

( r  - 1 ) ! ( ~  - r - 1 ) ! ( n  - ~)! 
x yJ},(y) {1 - F/~ (y) }/2 (y) dy , (A.7) 

c=s+ l  

where 
f .y  r -1  s - l  

b= r+ l  

i . y r  1 s - 1  

_-v/.j, HF/o(x){l-F~.(x)} I-[ {&(y)-F,,(~)}& 
--  b = r +  1 

upon using (1.5). Integrating now by parts yields 

i f y  r -1  r 1 s 1 

• / 1 j = l  a = l  b=r+l  
a # j  

F Y  r - I  s - I  

-- b=r+l  
/ . y  r -1  s 1 s -1  3 

+ / xHF, o(~){1 - F~(x)} ~ ~(~) H (F~(y) - F,-~(x)} 1 d ] a ~  j = r +  1 b=r+ 1 
b¢j 

which, when substituted in (A.7), gives 
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i rOOl,y r 1 

1 Zv,, - I  I /*~'*:" = ( r -  1 ) ! ( s - r -  1 ) ! ( n - 2 ) !  p a l  d l  j=l 

r -1  s - I  n 

× I I ~ o ( x ) { ~ - ~ ( x ) }  I I { ~ ( y ) - ~ ( ~ ) } £  (y)I-[{ 1 - ~ o , ) }  dx dy 
a= 1 b=r+ 1 c=s+ 1 
aCj 

i'oo y y  r-1 s l 

+ / l xyl-IF, o(x)f,~(x) 1-I {~,,(y) - F,~(x)}f,-s(y) 
a l  a'l a=l  b=r+ l  

/ o o / y r - I  6'--I 

× {1-F~(y)} dx dy + xyl-IF, o(x){1-~,.(x)}y~ A,(x) 
c=s+] a= 1 j=r+ l 

fI ] × II {Fib(y)-Fib(x)}fii*(Y) { 1 - ~ ( y ) } d x d y  . 
b=r+ 1 c=s+ 1 
b#j 

We then split the first term in the above sum through {1 -F,;.(x)} and the third 
term through {1 - F/r(x)} = {Fir(y) - E-r(x)} + {1 - F/r(y)} to get 

1 
~r,~:~ = (r_  1)!(s-  r -  1)!9n-s)!  z v '  

P 
r pc<~py r - I  r - I  s - I  [ J, xY~f',(x)l-IF'o(~) II 

j = l  a=l  b=r+l  
aCj 

/ ~ y  r - ,  ri_ ~ 
x {1-F/~(y)} dx dy + xy Z J ~ ( x  ) F/o (x) 

c=s+l  j = l  a=l  
aT~j 

s ,  ( I  × I-[ {~b (Y) -- ~b (X) } £  (Y) { 1 - ~ , ( y ) } d x d y  
b=r+ 1 c=s+ 1 

i, oo gy  r-I  s-1 

+ / / xy I-[ ~o (x)~-r (x) I I  {~b (y) - F,-~ (~)}£ (y) 
d l  3 1  a = l  b = r + l  

n i, o c l ,  y r 1 s 1 

x H {1-F"c(Y)}dx dy + 1  / xYIIFio(x) Z fi,(x) 
c=s+l  ./1 .11 a= l  j = r + l  

s -1  

× 1-I{F,~(y) - ~ ( x ) } £ ( y )  ~ {~ - F,,.(y)}dx dy 
b=r c=s+ 1 
bCj 
foo  f y  r-I  s-1 

--  j = r + l  

;I 1 × H {Fib(y)-F~b(x)}fs(Y) { 1 - F i c ( y ) } d x d y  . (A.8) 
b=r+ 1 c=s+ 1 
b#j 
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We now add the expressions for #r,s:, in (A.6) and (A.8) and simplify the resulting 
equat ion to get 

v - ,  [i] 
2Pr, s:n = Vi ~lr, s:n -- 2 .~  l~i#r-l, s-l:n-1 " 

i=I 

Relat ion 3.4 is derived simply by rewriting the above equation. 

Appendix B 

PROOF OF RELATION (b). For  2 < r < n - 1 and k = 0, 1 , 2 , . . . ,  we use (1.1) and 
then (5.3) to write 

1 ~ p , ~ L  g r - I  I I  
~:. = x~ I I  ~o (x)A Oc) { 1 - ~.~ (x) } dx 

p(k) (r - 1)!(n - r)! a=l b=r+l 

r 1 

(r-- 1)!(n--r)[  P a=l 

× leI {1-&(x)}dx. 
b=r+ 1 

Integrating now by parts treating X k-1 for  integration gives 

1 [ Q/fU r 1 r-1 
klA(k) ( r - -  1 ) ! (n- -  r)! Vi" xk i~-I  (x)l-Ifia(x){Cira=l - ~'r(X)}" 

aCj 

× {1-F,.o(x)}dx+vir/ xkiI~o(x)A(~) {l-&(x)}d~ 
b=r+l aL a=l b=r+l 

+ vir x x H F , . o ( x ) { Q - F i . ( x ) }  jS,(x)) { 1 -  F~ b (x)} dx . 
a= l j=r+ 1 b=r+ 1 

bCj 

We then split the first term in the above sum into two through {Ci,. - F,. (x)} and 
the third term through {Ci,- Fi~(X)} = {1 = F/,(x)} + {Ci~-  1} to get 
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1 [ fL U r - I  
k#(~>~:" = (r - 1)!(n - r)! ~p - Ci"Yir xk Z £ ( X )  

j= l  
r-1 

× HF,.o(x) 15I { 1 -  F/b(x)} dx. 
a =  1 b = r +  1 a#j 

r U  r-1 r n 

-~ Vir l xk E f i j ( x ) H  Fia(x) H {1-F~(x)}clx 
dL j=l  a=l b=r+l 

a#j 
f U  r-1 I - I  

+ vir xk H F¢ (x)fi,. (x) { 1 - Fib (X) } dx 
a=l b=r+l 

pU r-1 n n 
x HF, 

aL a ~  a j=r+l b=r 
b#j 

~- {Ci r -- 1}vi,. f xkHF,.o(x) fi,(x) {1 - F~e(x)} dx 
a= 1 j=r+ 1 b=r+ 1 

b¢j 

-~- -- ~ _ j  I~iYiJ~r_l:n_l -~- Yi -- I~i)[Ar:n_ 1 . 
i=1 i=l i=1 

Relation (b) is derived simply by rewriting the above equation. 

PROOFOF RELATION (i). From Equation (1.2), let us consider for 2 <_ r < s _< n -  1 
and s - r > 2 

where 

1 
#'":" = (r - 1)!(s - r - l)!(n - s)! ~ 

P 
r U  r U  r-1 s-1 

- -  b = r +  1 

× {1-F c(y)}dy dx 
c = s +  1 

1 f L  U r-1 = p ~  x H F/o (x)J},. (x)II (x) dx , 
( r -  1 ) ! ( s - r -  1)!(n-s)[  a=i (B.1) 

r U  s 1 I I  
I,(x) = / y H {F"h(Y) -- F~ (x) }J}, (y) {1 - F ¢ ( y ) } d y  

ax b=r+l c=s+l 

U s-1 12 I 
=VCfx n {Fib(Y) -- F//b(x)}{C~., - F/,*(Y)} { 1 -  F/c(y)} dy 

b=r+ 1 c=s + 1 
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upon using (5.3). Integrating now by parts yields 

f u  s - 1  s - 1  

- y ~ £C~) H {~(y)--F,.b(X)}{C~,-&(y)} 
I I ( X )  = Vi" Jx  j=r+l b=r+1 

b#j 

× I~I {1-F~(y)}dy 
c=s4- I 

r U  s-1 I - I  
+ / Y H {F/b (Y) -- Fie (x) }J}., (y) { 1 - F/~ (y) } dy 

ax b=r+i c=s+l 
U s - I  +~ y I I  {~+(y)-~+(x)}{c~,-F~,(y)} 

b~-r+ 1 

j=s+ 1 c=s+ 1 
c#j 

which, when substituted in (B. 1), gives 

1 
~r,~:. -- (r-  1)! (s-r-  1)!(n-s)! 

[ Z T x  - . p a=l j=r+l 

s-1 IE I x H {F,.~(y)- F~(x)}{Cis-F~,(y)} {1-Fi~(y)}dy dx 
b=r+ 1 c=s+ 1 

b¢j 

f U I ,  U r-1 

s i 
x H {F/, (y) - F/, (x) }fi., (Y) 1~I { 1 - F,. (y) } dy dx 

b=r+ 1 c~s+ 1 

g U r U  r-1 

s--i 
× H {F,~(y)-&(x)}{c~,-F~,(y)} 

b=r+ 1 

j=s+ 1 c=s+ 1 
cCj 

We then split the third term in the above sum through the term {C/, -F i , (y)}  = 
{1 - F,:,(y)} + {G, - 1} to get 
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1 

/~"*:" = (r - 1) ! (s  - r - 1) ! (n  - s)!  

p U I . U  rail1 s-1 
X E Y i s  -- JL Jx x y  Fia(X)fi,.(X ) ~ f i j ( y )  

p -- j=r+ 1 

s - I  ~ I  
× E {F~,~(y)-F~,,(x)}{C,,- F,.s(y)} {1-F~c(y)}dy dx 

b=r+ l c=s+ 1 
b#j 

I .UI 'U r 1 

+ Jx xY~=lFi'(x)fi"(x) 

s- I  I I  x E {F~,~Cv)-F~,(x)}J},(y) {I-F~c(y)}dydx 
b = r + l  c = s + l  

f U f U  r-1 

+j,J, x,E o<x><,lx> 
s 1 n n 

× I I  {F,~-F,,(~)} ~ £(y)H{~-F~,,(y)}dydx 
b=r+ 1 j=s+ 1 c=s 

c#j 
[ . U f U  r- I  

+{ci.,-1} l [ xyIIF~o(x)f,,.(x) 
JL .Ix a = l  

× I-[ {e,.~(y)-r,.~(x)} £ ( y )  { 1 - ~ , . ( y ) } d y d ~  . 
b=r+ 1 j+s+ 1 c=s+ 1 

c#j 

Alternatively, we may write 

f U f U  r 1 

~ I I ~y IIF~o(x)f, (~) #,,s:. = ( r -  1 ) ! ( s -  . -  1 ) ! ( n -  s)!  J C  J x  a = l  

s - I  

x E {F,.~(,y)--F/h(x)}f,. (y) InI {1-Fic(y)}dxdy 
b = r + l  c = s + l  

(B .2 )  

1 ~ fu  fl - yf~,(y) { 1 - F/c (Y)}I2(y) dy , 
( r -  1 ) ! ( s - r -  1 ) ! ( , - s ) !  . ~ c:s+, 

(B .3 )  

w h e r e  
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rY r-I  s-I 

1202) = JL Xa~_~l Fia(x)fir(x) H {Fib(y)--Fib(X)}d~ 
- -  b = r  + 1 

f L y  r -1  s - I  =Vir IIF~a(x){C/F-F~,(x)} ]-I {&(y)-F~b(x)Idx 
a=l b=r+l 

upon using (5.3). Integrating now by parts yields 

I rY r-1 r-1 s-1 
I2Cv) = v# - /  x Efi](X)IIFl'a(X){Cir-- Fl'r(X)} 1-I {F~b(Y) -F~b(X)}dx 

JL j=I a=l b=r+l 
~#j 

r Y  r-1 s-1 

+/xIIao(X)~(x) H {F~(y)-F,~(x)Id~ 
3/, a=l b=r+l 

I'Y r-1 s 1 "1 

J - -  j = r +  1 

which, when substituted in (B.3), gives 

1 
#r .... = ( r -  1 ) ! ( s - r -  1 ) ! ( n - s ) f  p ~ v i ~  

- xyj~lfij(x= a=l a ( x ) { C i r  - f/r(x)}" 

a#j 

s--1 lff I × I-[ {F~(y)-&(x)}f,s(y) {1-F~c(S)}d~dy 
b-r+ 1 c=s+ 1 

f U  l'y r-1 s - I  

- b = r +  1 

x I ~  { 1 - ~ . ( y ) ) d x d y  
c=s+l 

fL 
UPV r-1 s - I  j/x n + F~o(x){C,r - F#(x)} ~ £(x) 

- -  j = r +  I 

,1 fI 1 x H {F/b ~v) - F,. h (x) } f ;  (y) { 1 - F~, (y) } dx dy . 
b=r+ 1 c=s+ 1 
b#j 

We then split the first term in the above sum through {C/~ -f/r(y)} and the third 
term through {Cir -/~},(x)} = {F# (y) - F/,.(x)} + {C~. r - Fi~(y)} to get 
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1 
v.,s:. = (r - 1)!(s - . -  l)!(n - s)! ~ vi~ 

P 
I 'UI 'y  r-1 r-1 s-1 

x - C i . J  L JL xYi~-ifi'(x)~Fi'(x)- -- b=r+Hl{Fib(Y)" 

--F~b (X) }J}, (y ) IeI {1 -- F~,(y)} dx dy 
c=s+ 1 

f U r y  r 1 r s-1 

-~- JL  JL  x y j ~ . I f i ] ( x ) H F i ' ( x ) -  a=l b=r+IH { F / b ( Y ) -  F/b (x)}J~*(Y) 

a#j 

1-¢[ {1 -  F~,(y)} dx dy 
c=s+ 1 

F U r y  r-1 s-1 

+ [ [ xy H F~o (x)~r (x) H {e,.b (y) - Fib (x)}~, (y) 
dL dL a=l b=r+l 

b#j 

lYI {1 - F~,.(y)} dx dy 
c=s+l 

I. U F y  r 1 

- -  j = r +  1 

s - I  

H {F~b(Y)- Fi~ (x) }J}, (y) 12I {1 -  F/,,(y)}dx dy 
b=r+l c=s+l 
b¢j 

I. U Fy  r 1 s-1 

+ J, [ xYHF~o(x){Gr-F~,(-v)} ~_~f~,(x) 
k dk  a--1 j=r+l  

× I I  {F,b (y) -- F,b (x) } £  (y) { 1 - F , . ( y ) } d x d y  . 
b=r+ 1 c=s+ 1 bCj 

(B.4) 

We now add the expression for #,,s:n in (B.2) and (B.4) and simplify the resulting 
equation to get 

V-,Cv [i] C'v [i] 2#r,s:n = Vi # . . . . .  --  ~ i i#r_ l ,  s l:n-1 -- Z (  1 -- i) it~r,s:n 1 " 
i=1 i=1 

Relation (i) is derived simply by rewriting the above equation. 
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A Semiparametric Bootstrap for Simulating Extreme 
Order Statistics 

Robert L. Strawderman and Daniel Zelterman 

1. Introduction 

The study of extreme order statistics has long been a concern of statisticians. 
Recently, it has become increasingly important with its application to environ- 
mental and public health issues. A high rate of cancer or a major flood are 
headlines that attract public attention, not the average rainfall or typical tumor 
risk. The Dutch government, for example, has legislated that levees and sea dikes 
must have a one in 10,000 chance of failure. This has provoked a series of sta- 
tistical studies about what height is adequate protection (Dekkers and de Haan, 
1989). Unusually high rates of childhood leukemia or birth defects are cause for 
alarm (Lagakos, Wessen, and Zelen, 1986). Other recent examples are the esti- 
mation of the maximum concentration of airborne pollutants in a metropolitan 
area (Smith, 1989) or the maximum exposure to radioactivity released by a nu- 
clear power plant (Davison and Smith, 1990). 

Exact distributions of extreme order statistics are typically difficult to obtain, 
and consequently the associated asymptotic theory has been both extensively 
investigated and employed in practice. David (1981), Serfling (1980), and 
Reiss (1989) are excellent general references on order statistics. Let 
XI, >_ X2n >_ ..- >_ Xnn denote the descending order statistics of a random sample 
of size n from a population with cumulative distribution function (CDF)  F(.). 
Hereafter, we shall suppress the subscript n, its presence throughout being im- 
plied. The CDF F(x), is said to be in the domain of attraction of the distribution 
function G(x) if there exist sequences of real numbers an > 0, bn, n = 1 ,2 , . . .  such 
that for all real x, 

lim F " ( ( x  - b . ) / a n )  = G ( x )  . (1) 
n ~ o o  

The functional form of the limit G(.) (up to location and scale parameters) is 
either degenerate, or a member of the Type I, II, or I l l  Gumbel family of dis- 
tribution functions (Gnedenko, 1943). The Type I Gumbel family is generated 
from the base distribution G(x) = exp{-e-~},  x c IR, and plays an important role 
in this paper; hereafter, we denote this family of distributions by ft. 

441 
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Specification of the functional form of G(.) in (1) places a restriction on the 
extreme tail ofF(.)  only, and thus constitutes a semiparametric restriction on F(.). 
For example, many distributions, such as the normal, lognormal, gamma, Pareto, 
Gompertz, Weibull, Gumbel, and the logistic distributions, are all in the domain 
of attraction of (¢. In addition, if a random variable X has a distribution F(.) in 
the domain of attraction of either the Type I Gumbel or Type lI Gumbel dis- 
tributions, then the distribution function of logX is also a member of (4 (cf. Davis 
and Resnick, 1984). In fact, it can be shown that each of the Gumbel families are 
contained within the richer family of Generalized Extreme Value distributions 
{G~: 7 E IR} (cf. Dekkers and de Haan, 1989), where 

G,(x) exp{ (1 + 7x) -1/~'} = - x E IR ; (2) 

Gy(x) is also known as the Generalized Pareto distribution (GPD; cf. Pickands, 
1975). The GPD Gy(.) is often used to model high level exceedances (e.g., Smith, 
1989), but can also be used to model the behavior of X1; Smith (1989) is a good 
introduction to this distribution. Other models for the extreme tail of a distri- 
bution are given in Hill (1975), Davis and Resnick (1984), Zelterman (1992), and 
Hsing (1993). 

The use of spacings, or differences between adjacent order statistics, has been 
prevalent in the study of order statistics; Pyke (1965) is a seminal reference. 
Weissman (1978) used the sample spacings to motivate an estimator for extreme 
quantiles. Define 

d i = i (X  i -X/+l) ,  i =  1 , . . . , k  (3) 

as the normalized sample spacings between the k largest order statistics from a 
sample of size n. The spacings d = {&, . . . ,  dk} are independent for any n and 
choice of k if and only if {)(1,..., Xk} are the order statistics from an exponential 
distribution (Sukhatme, 1937; Pyke, 1965). For arbitrary distributions in ~, 
Weissman (1978, Theorem 3) proved that {anldl,..., a21dk} are asymptotically 
independent unit exponential random variables for a suitably chosen sequence 
an > 0 and n much larger than k. Weissman (1978, Theorem 2) also showed that 
for some sequence {bn, n > 1}, the random variables 

j =  1,...,k 

converge jointly in distribution to a k-dimensional extremal variate; the associ- 
ated (asymptotic) marginal densities are 

exp{-e -m - jm} (4) 
gj(m) = ( j -  1)! 

for j = 1, . . .  ,k and all real m. For any distribution in ~f, Weissman (1978) pro- 
poses to estimate the 100(1 - c / n )  th percentile of F(.) by 

Oe =/~ - a log c , (5) 
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where c > 0 is much smaller than n, 

{ t=Xk- -Xk+ 1 and {~=hkU(k+2)+Xk+x , (6) 

Xk is the sample mean of the k largest order statistics, and _T(.) is the digamma 
function (cf. Abramowitz and Stegun, 1972). In (6), ~ and b are respectively the 
minimum variance unbiased estimators for a, and b, assuming (~i1,.. ^ • , M k )  to be 
a k-dimensional extremal variate (Weissman, 1978, Theorem 5). This essentially 
corresponds to using 

j = l , . . . , k ,  (7) 

as a stochastic approximation to Xi, where M i has density (4). Boos (1984) 
compared the percentile estimator (5) to those available in S A S  and empirically 
demonstrated that (5) could provide a substantial improvement in the estimation 
of percentiles beyond p = 0.95 when the tails of the parent distribution F(.) 
behave approximately as an exponential distribution. Boos (1984) also discussed 
empirical criteria for determining values of k for which the spacings d behave 
similarly to those from an exponential distribution. His study of "where the tail 
begins" was limited to large sample sizes (e.g., n _> 500), and compared the ap- 
proximation e { ~  > xl~ , b} to the true tail probability P{Xj > x}. This approxi- 
mation may fail for moderate n, and we will consider alternative methods which 
rely less upon these parametric asymptotic approximations. 

The methods to be discussed here are simulation-based and make use of 
bootstrap techniques. The bootstrap, introduced by Efron (1979), is a flexible 
technique that can be applied to a wide variety of problems. Introductions to 
the bootstrap are the monograph by Efron (1982) or Efron and Gong (1983). 
More recent reviews include DiCiccio and Romano (1988), Hinkley (1988), 
Efron and Tibshirani (1993), and Young (1994). The major appeal of the 
nonparametric bootstrap is that approximate samples from the distribution of a 
random variable can be obtained without specifying a parametric form for its 
distribution. The usefulness of this ability cannot be overestimated: the distri- 
bution, significance levels, bias, variance, etc.., can all be approximated in a 
nonparametric framework, However, a drawback is that the bootstrap distri- 
bution of a statistic is a theoretical quantity that usually must be approximated. 
Generally, this is done via Monte Carlo simulation, although there has been 
some recent work on the application of saddlepoint methods (Davison and 
Hinkley, 1988). The primary appeal of the saddlepoint method is that Monte 
Carlo simulation is largely avoided. We will elaborate further on this approach 
in Section 3. 

Recent work on quantile estimation using bootstrap techniques includes 
Davison (1988), Johns (1988), and Do and Hall (1991). None of these references 
give special attention to extreme quantiles, which necessarily involve the extreme 
order statistics of the sample. It is reasonable to expect that the usual nonpara- 
metric bootstrap will fare poorly as a method for estimating extreme quantiles of 
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F(.) since resampling the observed data will result in pseudo-samples with values 
no larger than X1 or smaller than Xn. More specifically, suppose X1*,... ,X£* is a 
bootstrap sample taken with replacement from the (ordered) data X1 _> .-- _> Xn, 
where each ~ has probability n i of appearing in the bootstrap sample. Then, 
under the bootstrap probability measure it follows that 

P{maxXi* = Xl } : l - ( 1 -  n-1) ~ , 

which converges to 1 -  e -l - 0 . 6 3  as n -+  e~. That is to say, even for large 
sample sizes, the naive bootstrap distribution of the largest order statistic will 
have a large point-mass at XI. For additional discussion on problems associated 
with bootstrapping the largest order statistic, see Bickel and Freedman (1981, 
Section 6) and Loh (1984). 

This chapter examines a semiparametric bootstrap approximation to the 
marginal distributions of the k largest order statistics in a sample of size n from 
F(.), where k is much smaller than n. The distribution F(-) is assumed unknown; 
however, it is also assumed that F(-) is a member of if, hence the name semi- 
parametric. The bootstrap approximation, proposed by Zelterman (1993) and 
summarized in Section 2, involves resampling the normalized sample spacings d. 
For a fixed value of k, the bootstrap selects k values from d with replacement, 
"un-normalizes" these bootstrapped values, and then adds their sum to Xk+l to 
simulate the behavior of X1,.. .  ,Xk. The motivation behind this bootstrap method 
is that when properly normalized the sample spacings d behave approximately as 
independent and identically distributed exponential random variables when the 
sample size n is large. Further details on the bootstrap technique are given in 
Section 2, where issues regarding the choice of k are also discussed. In Section 3, 
we propose a saddlepoint approximation to the bootstrap distribution. Tradi- 
tional saddlepoint methods in statistics (e.g., Daniels, 1954) rely on the standard 
normal distribution, and do not really apply here since the limiting distribution of 
the normalized bootstrap statistic is extreme value, not standard normal. Instead, 
we employ the results of Wood et al. (1993) and develop a tail probability ap- 
proximation that is appropriate for random variables having this non-normal 
limit distribution. In Section 4, we show how to implement the approximation 
using S-plus. In Section 5, we investigate the expansion empirically and demon- 
strate that this bootstrap approximation can be an accurate approximation to 
P{X1 <<_ x} for an appropriately chosen value of k. We end in Section 6 with an 
investigation of the British Coal Mining data (Andrews and Herzberg, 1985, 
pp. 51-56). 

2. A semiparametrie bootstrap approximation to Xj 

Zelterman (1993) describes a way to approximate the distribution of Xj via the 
nonparametric bootstrap. In order to understand how this is done, it is useful to 
write the jth largest order statistic ~ as a linear function of the normalized sample 
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spacings d ={dl,..., dk} defined in (3) and the order statistic Xk+l. Specifically, 
note that 

k 

Xj =Xk+l + Z i - l d i  
i=j 

for any k > 1 and y > k + 1. Based on this identity, Zelterman (1993) proposes 

k 

* ~--~i-!d* X ;  = Xk+ 1 ~- L...~ t 
i=j 

as a stochastic approximation to Xj, where {d~,.. . ,d;} is a bootstrap sample 
taken with replacement from {dl~..., dk}. The validity of this bootstrap relies on 
the property that {dl,.. . ,dk} are approximately independent and identically 
distributed. For distributions in (4, the normalized spacings d are approximately 
independent and exponentially distributed when the value of k is appropriately 
small relative to n. 

The moment generating function for the bootstrap variate Xf (conditionally on 
d and Xk+l) is 

k k 

E(exp(tX;) d, Xk+l) =exp( tXk+l )Hk  -l ~ e x p ( t d r / i ) ,  (8) 
i=j r = l  

and is derived in Zelterman (1993). Using (8), 

and 

= E d,Xk+l = ~S~:k +Xk+l (9) 

(aj) 2 = Var(X 7 d,Xk+l) = s 2 ( 1 -  k-1)S~2, (10) 

where s(W)rn:k ~- ~r=mk r w, Sm:k = ~m:~'~(1) • = Xk --Xk+l, and s~ is the sample variance 
of d. It can also be shown that 

O V  , ~ ~ + 1  = a r  , ~ + 1  

that is, the proposed bootstrap approximation reflects the well-known Markovian 
relationship between Xj and Xj, (cf David, 1981, Section 2.7). 

Weissman (1978) uses Xj = g~Mj + [~ as a parametric model for estimating ex- 
treme quantiles ofF(.), where Mj is a random variable with density function given 
by (4) and fi and b are defined in (6). Conditional on the values of the fitted 
parameters ~ and {~, the first two moments of ~- are 

E(Xj ci, t~)= ciSj:~ +Xk+l ,  

and 
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Var(Xj 5,/~) =fi2 Z i - 2 =  52 ~ 2 / 6 _  i 2 . 
i=j 

Since E(~.I5 ,/~) = #~, the parametric model and bo~s t rap  approximation for X j- 
have the same conditional mean. The variance Var(Xj[5, b) is not equal to (o-~)=, 
but the difference becomes negligible as n,k--+ ec since the spacings become 
independent exponential random variables. In addition, if the normalized spac- 
ings are exponentially distributed with mean a = E(5), then the order of the 
difference can be expressed in terms of a and k, and is given by 

Var(XjXk+l) - Var(Xf  Xk+~) =O(a2k-1) . 

Zelterman (1993) proves that the unconditional asymptotic distributions of Xj* 
and Xj (properly normalized) coincide as k, n --* oc. This motivates the use of 
P{Xf _< x[d,Xk+i} and P{Xj _< x]5, D} as approximations for P{Xj _< x} when n is 
large and k << n. We show via simulation in Section 5 that P{Xj* <_ xld,Xk+l } can 
be an excellent approximation to P{Xj _< x} for relatively small n when k is chosen 
appropriately. 

The asymptotic validity of  the bootstrap method relies upon the normalized 
spacings d in (3) being an approximately lid sample from an exponential distri- 
bution. The quality of the bootstrap approximation is therefore sensitive to the 
choice of k. Finding the "optimal" value of k is very difficult since it is equivalent 
to determining where the tail of the distribution begins. We propose four methods 
of choosing k, and compare them in Section 5 using simulated data. The four 
methods are summarized in Table 1. 

Two of the four proposed methods of choosing k use the Gini statistic 

k-1 

Gk = Gk(d)  = [k(k - 1)~/]-i ~ -~  i ( k  - i ) ( d ( i ) k  -- d(i+l)k) 
i=1 

where d(j)k is the jth largest of the k normalized spacings d (Gail and Gastwirth, 
1978). This statistic was proposed as way to test the null hypothesis "the data are 
exponentially distributed", and exploits the fact that the spacings between ex- 
ponentially distributed observations are themselves exponentially distributed (cf. 
Pyke, 1965, Section 2.3). Under the null hypothesis, Gk is approximately dis- 

Table 1 
Methods used to estimate k 

Method Description 

I 
II 
III 
IV 

k = min{m : pm+l < 0.25} 
k = argmaxj{py} 
k = min{m : lY~+ll~/m + 1 > 1.96} 

- ( 1 )  2 k argminj{(Tj - R) ) } 
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tributed as normal with mean ½ and variance [12(k - 1)] -1 when k > 5; the ex- 
ponential model is therefore rejected for large values of Gk. 

Our first proposed method of choosing k is to use this test sequentially, ex- 
amining successive values of k until the test rejects. The second method is to pick 
the value of k which maximizes the significance level 

Pk = 1 --  c l ) { (G k - -  0 . 5 ) [ 1 2 ( k  - 1)] 1/2} , 

where ~(x) is the standard normal cumulative distribution function. 
The Generalized Pareto distribution (GPD) defined in (2) can also be used to 
motivate the choice of k. The limit of 

G,(x) = exp{-(1  + 7x) 1/,} 

as 7 --+ 0, say Go(x), is the Type I Gumbel distribution. Under sufficient regularity 
conditions, any consistent estimator for 7 converges to zero when F(.) is in N. 
Dekkers et al. (1989) propose 

l R 2/ , 

where 

k 
R~ ) = k -1 ~ ( l o g X / -  logXk+l) j . 

i=1 

They prove that (i) 7k is strongly consistent for 7 when k = o(n) and 
k(logn) -~ ~ ~ for some 5 > 0 (Theorem 2.1); and, (ii) ~k 2~ N(0,k -1) when F(.) 
is in f# (Corollary 3.2). Our third proposal for estimating k will be to choose the 
first value of k for which I~k+l I~/~+ 1 > 1.96. This corresponds to choosing the 
largest k for which the exponential model (i.e., 7 = 0) is not rejected by the data. 

Our fourth method for choosing k is based upon the relationship between 7k 
and R21). The statistic R21) has the interpretation of being the empirical mean 
residual life of the log-transformed data. Hill (1975) proposed this estimator as 
part of the tail probability approximation 

~' (X)  = 1 - -  k (X/Xk+I)_I /R2~)  (1 l )  
/7 

for x _> Xk+l. The right-hand side of (11) is derived as the MLE assuming that the 
data follow (2) for x > Xk+l. The estimator in (11) was also motivated by Davis 
and Resnick (1984) from a less parametric point of view, where they prove that 
fi(x) is consistent as n,k = °(n)(~ T)R oc. The results of Davis and Resnick (1984, 
Theorem 5.1) also imply that P 7. Combining these results with those of 
Dekkers et al. (1989), we see that 
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7k - R~ 1) -+p 0 

whenever F ( . ) i s  in ~. This suggests choosing the value of k such that 
(Pk - -  R~I)) 2 is minimized, or equivalently w h e n  R22)/(R2I)) 2 is closest to 2. 

This fourth criteria has another important theoretical justification. It is known 
that the distribution function F(.) of a random variable X is in f# if and only if 

lim E l ( X -  t)21X > t I = 2 (12) 
t-~,o ( E [ ( X  - t)lY > t]) = 

where to = sup{t: g(t)  < 1} (Balkema and de Haan, 1974). The ratio R~2)/(R~)) 2 
is the empirical version of (12) for the log-transformed random variable, and 
converges in probability to 2 for any random variable in the domain of attraction 
of the Type I Gumbel family (Dekkers et al., 1989, p. 1840). This criteria cannot 
be used as a test of whether F( .) is  in f~ since it can be shown that R~2)/(R2I)) 2 • 2 
for distributions in the Type II Gnmbel family as well. However, the fact that we 
are already assuming that F(.) is a member of f# allows us to use it as way to 
choose the value of k "most consistent" with the model corresponding to 7 = 0. 
We investigate these four methods of choosing k further in Section 5. 

3. A saddlepoint approximation to the bootstrap distribution 

In order to approximate P{Xj _< x} via P{XjY < xld,Xk+l}, we must find or ap- 
proximate the distribution of the latter. The bootstrap distribution of a statistic is 
a theoretical quantity based upon an infinitely large number of resamples from 
the original data set. Most practical applications of the bootstrap involve Monte 
Carlo simulation, done occasionally for convenience but almost always because 
of the intractable functional form of the exact distribution function. It is easy to 
let the computer generate the bootstrap distribution, but the final result may be 
unwieldy if functionals of the distribution are required as well. 

In situations where something is known about functionals of the true bootstrap 
distribution, we may take advantage of that information. Suppose that the sta- 
tistic of interest, say T,,, has the general representation 

T n = t ( f )  = t ( F )  Jr-n 1 ~ Z ( ~ . )  ~ (13)  
i 

where F(.) is the empirical distribution function, the form of t(-) doesn't depend 
upon n, and L(.) is a linear function of X1,.. .  ,Am which is not identically zero. 
Statistics satisfying (13) are known as linear statisticalfunctionals and include the 
sample mean, M-estimators,  and any other statistic having the general repre- 
sentation t(G) = fw(x)  dG(x). The corresponding bootstrap version of T,, say T~, 
has the representation t(F*) = t ( F ) +  n -1 ~iL(X,*) .  One of the strengths of the 
bootstrap is that the distribution of Tn - t(F) is often well-approximated by the 
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bootstrap distribution of T2 - t(F). Desirable features of the latter are that the 
probability mechanism generating the data (i.e., F) is known and that the statistic 
T£* - t(/') has the form of a sample mean. Davison and Hinkley (1988) exploit 
these facts to derive a simple method for accurately approximating the true 
bootstrap distribution of T~* - t(F) using the theory of saddlepoint approxima- 
tions developed for sums of i.i.d random variables (Daniels, 1954). 

Daniels (1954) used the method of steepest descent to derive the saddlepoint 
approximation to the density of a samPle mean. Lugannani and Rice (1980) take 
a similar approach in deriving an approximation for the CDF. A more "statis- 
tical" method for deriving such expansions which achieves the same end result is 
the tilted Edgeworth expansion (cf Barndorff-Nielsen and Cox, 1989, Section 4.3). 
In all cases, the derivation of these expansions incorporate an underlying as- 
sumption that the distribution of the statistic in question is asymptotically nor- 
mal. This assumption is implicit in Davison and Hinkley (1988) as well. 
Traditional saddlepoint methods for approximating the distribution of X] are not 
applicable here since the limiting distribution of X)* is extreme value, not normal. 
Wood et al. (1993) consider expansions in which the base distribution is not the 
standard normal distribution function. They do not, however, consider applica- 
tions of their method in the context of the bootstrap. We will apply their results to 
construct an approximation to the conditional CDF of Xj* given d and Xk+l. 

Let Z1,Z2,... denote a sequence of random variables having the limit distri- 
bution T(x),  possibly up to location and scale parameters. Suppose K(t) = K~(t) 
is the cumulant generating function (CGF) of Z~ and let G(-) denote the CGF 
corresponding to T(.). Then, the following expansion, derived by Wood 
et al. (1993), may be used to approximate P{Z~ > x}: 

P { Z  n ~ x} ~ 1 - r ( ~ ) @  D(~){u -1 - wf  1} , (14) 

where v(.) is the density function corresponding to T(.). Although not explicit in 
the notation, it is important to realize that each of/t, w~, and 4 depend upon x; we 
describe below how to determine the value of each for every x. 

The dependence on x of fi, w~, and ~ will be through the saddlepoint tx, which 
we define as the solution to K@x) = x. For any x, ix maximizes K(t) - tx, and 
K(tx) -x tx  <_ 0. Now, for any real 4, let w~ be defined as the unique solution to 
G'(w{) = 4; thus, we_ is a function of 4. Given this functional relationship, let 
solve 

G(w~) - G'(w~)w~ = K(tx) - Xtx . (15) 

The left-hand side, or G(w~) - G'(w~)w~, is the negative of the Legendre-Fenchel 
transformation of G(.) (cf McCullagh, 1987, p. 174), and is consequently a non- 
positive concave function of ~. Since K(ix) -Xtx <_ O, it follows that (15) has at 
least one (~ = G'(0)) and at most two solutions (~ < G'(0) and 4+ > G'(0)). 
More specifically, if 
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x < K ' ( 0 )  then set ~ = ~ _  

x = K ' ( 0 ) = E ( Z n )  then set ~ = G ' ( 0 )  

x > U ( 0 )  then set ~ = 4 +  • 

The value of w~ is then determined by the equation G~(w~) = ~. Given tz, 4, and 
w~, set 

it : tx[K"(tx)] 1/2 [G"(w~)]-1/2 (16) 

in (14). The expansion (14) is valid for x ¢ E(Zn); there is an analogous formula 
for x = E(Zn) (Wood et al., 1993, Eq. 9). If T(x) = ~(x), then (14) reduces to the 
usual Lugannani-Rice tail probability formula. Further details of this inter-re- 
lationship may be found in Wood et al. (1993). 

To approximate the distribution of Xj* using (14), we need the CGF of Xj~. 
From (8), the conditional CGF of X)* given d and Xk+l is 

K(t) = tXk+l + Z log k -1 exp{tdr/i} . (17) 
l=J 

Although not explicit in the notation, it is important to note that K(t) depends 
upon the k largest observations in a sample of size n. The first and second de- 
rivatives of K(t) are respectively 

and 

where 

k h l i ( l )  
K'(t) =Xk+l + ~ . 

t--j 

Kt'(t) = .~.,_j h~i( t)-  \hoi(t)J ] ' 

k / d \ S  

h~i(t)=r~=l l2~)exp{ td~/ ' }  " 

The higher-order derivatives of K(t) have similar representations. The saddle- 
point tx must be found numerically since no closed form solution exists to the 
equation K ' ( t ) = x .  Due to the asymptotic relationship between Xj* and 
Xj = b + fiMj, the relevant base distribution Tj(.) to be used in the expansion (14) 
is the CDF of Xj. Using (4), it can be shown that 
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where v(x) = (x -/~)/a. For j = 1, this integral simplifies considerably. In par- 
ticular, we have 

r l ( x ) = e x p { - e x p ( - ~ ) }  , 

where T1 (x) is the CDF of tiM1 +/~ and M1 has the Type I Gumbel (extreme 
value) distribution. 
The CGF corresponding to Tj(x) is 

Gj(t) = log E(exp{tXj} a ,@ = tb + logE(exp{tgtMj} gi, D) . 

Since 

E(exp{fiMj) ) = F(j - fi) / F(j) 

for j - fi > 0, it follows that 

Gj(t) = tb + log F(j  - at) - log r ( j )  (is) 

for t < f la.  The functions Tj(x) and Gj(t) play the role of T(x) and G(t) in the 
calculation of (14). To compute (14) at any value of x, the only remaining task is 
to determine ~, w~, and/t. These must obtained numerically, and an algorithm for 
doing so is described in Section 4. 

REMARK. The manner in which Xf is constructed forces it to have a distribution 
with finite support. More specifically, P{X* < xld,X~+l} is equal to zero for x less 
than Xmi,, =Xk+l +S(j+l):~dm~n and equal to one for x greater than Xm~ = 
X~+I + S(/+l):~dmax, where dm~, and dm~ are respectively the smallest and largest 
elements of d (Zelterman, 1993). The limits of the saddlepoint approximation are 
defined accordingly. 

4. Numerical implementation 

We concentrate here on describing the algorithm used for approximating 
P{X~ <_ xld,Xk+l} via the saddlepoint method of Section 3. The same algorithm 
applies for approximating the CDF's of other order statistics with obvious 
modifications. Software for computing the saddlepoint approximation described 
in Section 3 has been written using a combination of the statistical software 
language S-plus and FORTRAN 77. Algorithms used for calculating the log- 
gamma function and its first two derivatives are due to Lanczos (1964), Bernardo 
(1976), and Schneider (1978) respectively, and are available from statlib, an 
electronic statistical software archive. Further information can be found in the 
Acknowledgments. 
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Let Pw(x) denote the saddlepoint approximation to P{X{ < xld,Xk+~ }. At #~ 
(the conditional mean of )(1"; see Eq. 9), finding Pw(#~) requires no iteration. 
From Wood et al. (1993, eqn. 9), 

~(~)a"(o) [ a'/'(o) x"(o) 
Pw(#~) = T(~) 6 [[c/,(0)13/2 [ ~ / 2 j  , 

where K(t) and G(t) = G1 (t) are defined in (17) and (18) respectively, 

T ( x ) = T ~ ( x ) = e x p { - e x p ( - ~ - ~ - f i b ) }  , 

and v(x) = ~sT(s) ~=x is the density function corresponding to T(x). 

For x E [Xmi,,Xm~xl and x ¢ / @  the algorithm used for calculating Pw(x) is 
necessarily more complicated, and is described below in an annotated outline 
format: 

Given; k, d,Xk+l, 4, and/~: 

• SOLVE K'(t) = x for ~ 
This is done using the uniroot procedure in S-plus. A starting point for the 
search is determined by the linear Taylor expansion of K~(t) about t = to; 
evaluating the result at to --- 0 yields 

fc'(t) = x~+~ + ~s,:~ + t ~ d; - (~)~ sl~2 

Solving/(-1(t) = x for t yields an initial closed-form approximation to ix. 
• SOLVE G(w~) - G t ( w ~ ) w ~  = K ( t x )  - Xtx AND a t ( w ~ )  = ~ FOR (W~, ~): 

Earlier, we described how to solve this system of equations by first finding ~., 
and then w~. It is often easier to do this in reverse. From (18), we first note that 

G(w) - G'(w)w = log Y(1 - ciw) + w ~ ( 1  - ~iw) . 

As a function of w, this function is negative and concave, undefined for 
w > 4 -1, and reaches a maximum of zero at w = 0. Since K(tx) - x tx  is negative 
for every x ¢ E(X{ [d, Xk+i ), this implies that there will be two solutions to (15) 
as a function of w. Denote these as w- E ( - o c , 0 )  and w + E (0, ci-1). In ad- 
dition, since #~ = K'(O)= G'(O) and K'(t) and G~(w) are both increasing 
functions, it follows that G'(w-~) < g~ and G'(w~_) > / ~ .  The solution (w~, 4) 
may then be determined as: 

if x < # ~  then set w ~ = w -  and ~ = G ' ( w - )  

if x>/z~  then set w ~ = w  + and ~=G~(w +) . 
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For a suitably chosen value of M > 0, we restrict the range of the root-finding 
algorithm to ( - M ,  0) or (0, 4 -1) according to whether x < K'(O) or x > K'(0). 
We then employ uniroot to numerically solve (15) for w~, and consequently set 

= G'(w~) =/~ - figJ(1 - ciw~) . 

• C A L C U L A T E  Pw(x) 
We have calculated fi = Xk -Xk+l ,  b = fi~(k + 2) + Xk+l, t~, w~, and ~. From 
(16), 

) , 

where 7~'(s) is the trigamma function. The resulting approximation to 
P{X{ <_ xld,Xk+l } based on (14) is now 

5. Simulation results 

As in Section 4, we concentrate on approximating the distribution of the largest 
order statistic)21. We want to examine the accuracy of Pw (x) as an approximation 
to the true bootstrap CDF P{X{ _<xld,Xk+l}, and also the accuracy of 
P{X{ <_ xld,Xk+l} (or Pw(x)) as an approximation to P{X1 <_ x} for suitably 
chosen k. 

The bootstrap results throughout this section are based on two randomly 
generated datasets. The first dataset consists of a single random sample of 
n = 1000 observations from a Weibull distribution with scale parameter equal to 
one and shape (or index) parameter equal to four. The second dataset consists of 
a single random sample of n = 75 observations from the standard normal dis- 
tribution. It is well known that the convergence of the tail of the normal distri- 
bution to the Gumbel distribution is slow (Hall, 1979). The small sample size, 
combined with the slow rate of convergence, lead us to expect that the bootstrap 
procedure might not perform very well. All simulations were done in S-plus on a 
SPARCSTATION 20. 

How well does Pw(x) approximate P{X] < xld,Yk+l} ? 

To generate the bootstrap distribution P{X{ <_ xld,Xk+l } for the Weibull dataset, 
we first resampled the spacings d 100,000 times, each time generating a bootstrap 
replicate 

k 

X~ = Xk+l + ~ i-] d * 
i=1 
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The same procedure was done for the normal dataset. The largest 150 observa- 
tions in the Weibull data were arbitrarily chosen to construct the dis. In this 
particular dataset, X151 = 1.19. For  the normal dataset, the tail was chosen (again, 
arbitrarily) to begin at k = 15, with X~6 --- 0.558. 
We then linearly transformed the bootstrap variates so that the empirical mean 
and variance of the 100,000 bootstrap replicates matched the theoretical boot- 
strap mean and variance given in (9) and (10). This was done solely to improve 
the Monte Carlo approximation to the true bootstrap distribution, the latter of 
which Pw(x) aims to approximate. The resampling procedure took approximately 
thirty minutes for each dataset. Finally, the approximation to the CDF was ob- 
tained by calculating the empirical CDF of  the transformed bootstrap variates. 
The approximation Pw(x) is based on the original sample spacings, and was 
calculated exactly as described in Section 3. Generating Pw(x) on a grid of 100 
points took approximately two minutes. The resulting bootstrap CDFs and the 
corresponding saddlepoint approximations are given Figures la and lb. In both 
cases, the saddlepoint approximation is an extremely close approximation to the 
bootstrap CDF. Similar investigations for other arbitrarily chosen value of k 
yielded equally encouraging results. 

The significance levels for the test of exponentiality based on the Gini statistic 
described in Section 2 are 0.089 and 0.796 respectively for the two distributions. 
That is, the tail of  the Weibull data using k = 150 is not very close to being 
exponentially distributed, while such an assumption seems very reasonable for the 
normal data. From the plots, one can tell that the saddlepoint approximation in 
Figure lb (normal data) is somewhat better than in Figure la (Weibull data), 
although the differences are small. 

How well does P{X{ < x[d,Xk+l} approximate P{X1 <_ x}? 

We restrict attention here to the four methods of determining k summarized in 
Table 1. As a rule of thumb, we also required that log(n) 4/5 < k < n 4/5 so that the 
conditions in Section 2 for strong consistency of the extremal index estimators are 
satisfied. 

Table 2 lists the choice of k as determined by each method for the two datasets 
being considered. Estimates of a, and b~ in (1) (i.e., a an d /0  are compared with 
their true values, which are b~ = F - I ( 1 -  1/n) and an = F - I ( 1 - e - 1 / n ) - b ~  
(Gnedenko, 1943). For  these two datasets, it is apparent that the approximation 
based on method IV yields estimates that are closest to their respective true 
values. A small simulation study (not presented here) indicates that method IV 
also minimizes the mean square difference 

E[(a - an) 2 -k (b - bn) 2] 

among the four methods considered here. 
Figures 2a and 2b give the saddlepoint approximation to the bootstrap dis- 

tribution corresponding to the four choices of k as well as the true distribution of 
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Table 2 
Comparison of  parameter estimates for optimal k 

Method Weibull(4), n = 1000 N(0, 1), n = 75 

k bn a. k bn an 

True - 1.6211 0.0557 - 2.2164 0.3661 
I 70 1.7212 0.1023 19 2.5084 0.6752 
II 9 1.6472 0.0811 14 2.4747 0.6403 
III 29 1.6571 0.0803 13 2.3688 0.5778 
IV 24 1.6109 0.0607 10 2.1776 0.4487 

the largest order statistic. Keep in mind that the bootstrap approximations for the 
Weibull and normal data are each based on one random sample only. In both 
cases, it is clear that the choice of k based on method IV produces a superior 
approximation to the other methods. 

The bootstrap approximation which minimized the Cram6r Von Mises dis- 
tance (cf Durbin, 1973) between P{X1 < x} and P{Xi* <_ x l d , X k + l }  , o r  

f e C ( P { X  ~ u} - P{X~ < < , u[d,Xk+ l } ) 2d(P{X1 H}) 
OO 

is also given. This nonnegative discrepancy measure is small when the two dis- 
tributions are close to each other over the support of P{X1 < u}. The optimal 
values of k under this criterion for the Weibull and normal data are respectively 
k = 22 and k = 10. As implemented here, this criterion requires knowledge of 
P{X1 <_ x} and is therefore useless from a practical standpoint. 

We also compared the best bootstrap estimates for the two datasets to their 
corresponding approximations based on (2) using various estimators of 7. The 
estimators of 7 used and corresponding estimated values are summarized in 
Table 3. Two of the three estimators are discussed in Section 2; the third, due to 
Pickands (1975), is given by 

~'k (log 2)-i  1 Xk - -  X2k 
= og X2--k - -  X4~~ 

The estimators used in the approximations based on (2) are based on the same 
value of k as the bootstrap approximation. Plots of the bootstrap distribution and 
GPD-based estimates are given in Figures 3a and 3b. The bootstrap approxi- 
mation outperforms the GPD estimator in each case, especially in the upper tail 

Table 3 
Generalized Pareto Distribution (GPD) parameter estimator 

Author  Estimator Plot Label Weibull data Normal  data 

Davis and Resnick R2 ~) G P D - D R  0.041195 0.303438 
Dekkers et al. ~ G P D - D D H  0.039678 0.211518 
Pickands 7k GPD-P 0.110514 0.073435 
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of the distribution. It is possible that optimizing the choice of k for the GPD- 
based estimators will lead to comparable results; however, this has not been 
investigated. Relevant work on this problem can be found in Dekkers and de 
Haan (1993). 

Not shown on these plots is the estimator for P{X1 <_ x} at 7 = 0, or 

This is the estimator used by Boos (1984). For  the Weibull data, T(x) is essentially 
identical to the best of the 3 GPD estimators; here, "best" is defined as that being 
closest to the truth for these data. For the normal data, T(x) is a definite im- 
provement over the best GPD estimator in the upper tail, and essentially identical 
everywhere else. In both cases the approximation is still inferior to the bootstrap 
approximation. 

6. Example: The British coal mining data 

The British Coal Mining Data (Andrews and Herzberg, 1985, pp. 51-56) consists 
of the number of days between major coal mining disasters in Britain over the 
period 1851-1962. A "major disaster" is defined in terms of the number of miner 
deaths, not the magnitude of the natural event. The data represent inter-accident 
times and hence spacings between events, and have been previously analyzed by 
many authors. While Maguire, Pearson, and Wynn (1952) concluded that the 
exponential model was reasonable, it has since been established that the full data 
set (n = 190) is not consistent with an exponential model (e.g., Simonoff, 1983; 
Zelterman, 1986, 1993). 

Using the Gini statistic Gk defined in Section 2, Zelterman (1993, Figure 2) 
demonstrates that the spacings between the 50 largest inter-accident times appear 
close to being exponentially distributed. The same results indicate that reasonable 
choices of k range somewhere between 20-50. Zelterman (1993) uses k = 36, 
which roughly corresponds to the largest significance level of  the Gini statistic and 
therefore to method III of Section 5. Method IV of Section 5 (see Section 3 and 
also Table 1) suggests using k = 41. Based on the results of Section 5, we expect 
the latter choice to yield a more accurate approximation to P{X~ <<_ x}. 

Relevant parameter estimates based on the k = 41 largest values in the full data 
set are ~ = 327.2, /~ = 1534, R~ I) = 0.551,~ k = 0.538, and ~k = 0.485. Figure 4 
shows the resulting saddlepoint approximation to the bootstrap distribution of 
the largest spacing between disasters for k = 41. Also shown are the GPD-based 
estimator (using ?k for 7) and the asymptotic approximation based on the extreme 
value distribution: 

  x,=exp{ exp{ 
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The agreement between the bootstrap approximation and T(x)  is striking. The 
p-value for the Gini statistic of Section 3 at k = 41 is 0.345, and supports the 
hypothesis that the spacings between the spacings are close to being exponentially 
distributed. The GPD-based estimator, however, is quite discrepant. The theory 
suggests that the bootstrap approximation and T(x)  should be (asymptotically) 
the same only when the data are from ~. Since in finite samples they will not 
always be close to each other even then (see Figures 3a and 3b), this appears to 
lend strong support to the answers provided by the bootstrap. 

Interestingly, a test of 7 = 0 for k = 41 based on the asymptotic distribution of 
v/k(Tx - 7) under H0 : 7 = 0 leads to a highly significant result (p < 0.00001). 
However, it may be difficult to trust the results of this test. The fourth criterion 
used to choose k is similar in spirit to minimizing the mean squared error of 
v~(Tk - 7 ) ;  the results of  Dekkers and de Haan (1993, Theorem 3.6 and subse- 
quent remarks) imply that there is a potentially significant bias in the asymptotic 
mean of v/k(~k- 0) when k is chosen as such. We have not attempted to in- 
vestigate this further here. 
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Approximations to Distributions of Sample Quantiles 

Chunsheng Ma and John Robinson 

I. Introduction and definitions 

Suppose tha t 'F  is a cumulative distribution function (d.f.). Its quantile function 
(q.f.) is defined by 

F-l( t )=inf{x:F(x)  >_t}, t E  (0,1) . 

So F 1 is the usual inverse of F if F is continuous and strictly increasing. For a 
given q E (0, 1), F -1 (q) is called the qth quantile (orfractile) o f F  and alternatively 
denoted by ~q. In particular, 4½ is called the median of F. Clearly, ~q satisfies the 
equation 

F ( ~ q - )  < q < F(~q) . 

A fundamental problem in nonparametric statistical estimation and hypothesis 
testing deals with inferences about a d.f. F and the qth quantile ~q. A natural 
nonparametric estimate of F is the sample d.f. Fn of a random sample X1,. . . ,Xn 
from F, and the sample quantile F# 1 (q) is an appropriate estimate of ~q, while in 
the context of a smooth statistical model, the use of a perturbed (or smoothed) 
sample d.f. and associated quantile may be more natural and appropriate. 

1.1. Sample distribution function and quantile 

Assume that X1, . . . ,X,  is a random sample from d . f . F .  The corresponding 
sample d.f. F,, is constructed by placing at each observation Xj a mass I and so 
represented as 

//  

Fn(x) = - Z I o ( x - X j ) ,  x E R' (1.1) 
?1 j=l  

where I0 is the d.f. of the unit mass at the origin; namely, 

(x)=~0' x<0, I0 1, x > 0  . ( 
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We can interpret (1.1) from the following two aspects. On the one hand, (1.1) is 
a distribution function while we consider it as a function of x for each fixed 
sample. From this view, the sample qth quantile is defined as the qth quantile of the 
sample d.f. F,, that is 

~- l (q)  = inf{x: ~(x)  > q} . 

We will denote it as )(,q. Obviously, 

Fn(J2,q- ) < q <_ F,(X,q) . 

On the other hand, for each fixed value of x, (1.1) is a random variable, considered 
as a function of the sample. Furthermore, nF,(x) is distributed as binomial 
(n,F(x)). 

In a view encompassing both features, the distribution function of)(nq can be 
written exactly as 

j=m 

or equivalently, 

P(Ynq ~ X) ~- r ( n F n ( x  ) ~_ t'lq) ~- m tin-l(1 - d t  (1.2)' 

where 

nq, if nq is an integer, 
m =  [nq]+ 1, otherwise , 

with Ix I denoting the largest integer less than or equal to x c R 1 . If F has a density 
f ,  then the d.f. off~nq has also a density 

1 m-1  
B ( m , n _ m +  l ) F  (x)(1-F(x))"-mf(x)  . (1.3) 

(1.2) or (1.2)' says that the exact distribution of X,q depends only upon F 
through the incomplete Beta function. Because of (1.2), we can employ known 
results for binomial r.v.'s when treating the distribution properties of )(nq. An- 
other standard method is firstly to deal with the sample quantile of i.i.d. (0, l)- 
uniformly distributed r.v.'s, and then use the transformation technique to extend 
the result to the general case. 

Another approach in defining the qth quantile is specified by considering it as a 
special case of M-estimates. The relevant 0 function is ~,(x, 0) = O(x - 0), where 

-1 ,  x < 0, 
0, x = 0, 

O(x)= ~ ,  x > 0 .  
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In this way, ~q is defined as a solution 00 of the equation 

f ~(x, Oo)dF(x) = ; 0 

and similarly, X,q is a solution 0 of the equation 

n 

 (xj, 0) = 0 
j = l  

This view enables us to formulate the sample quantiles as statistical functions and 
to use the techniques for the M-estimates. 

1.2. Perturbed sample distribution function and quantile 

In many statistical models where it is known (or reasonable to assume based on 
physical considerations under which the data are collected, or empirical evidence 
of the past) that the underlying d.f. F is smooth enough, it is more natural to use a 
smoothed version/'n of Fn, rather than the step function F, itself, as the estimate 
of F. Such a F, is often called the perturbed (or smoothed) sample d.f., and the 
corresponding qth quantile is called the perturbed (or smoothed) sample qth 
quantile. 

There are essentially two approaches to construct a perturbed sample quantile 
in common use now. One may first smooth F, by convolution, then define the qth 
quantile as in the classical case. Another method is the so-called quantile esti- 
mation, which is a certain subclass of L-estimates, where the smoothing is directly 
applied to the sample q.f. F~ -1 rather than F~ itself. 

Let {I,} be a sequence of continuous d.f.'s converging weakly to I0. An intu- 
itively appealing and easily understood competitor to F, is the perturbed sample 
d.f. Fn constructed by a convolution of the sample d.f. F, and {I~},/~, = F, • I,; 
more exactly, 

g(x )  = In (x -  t)dF,(t) = I , ( x -  Xj), x E R 1 
oo j = l  

It differs from F~ in that the mass ± is no longer concentrated at Xj, but is 
distributed continuously around Xj, according to I,. Denote the corresponding qth 
quantile by Z,q. Similarly to (1.2), we have 

P(Z,,q < x) = P(n{',,(x) >_ nq) = P n I , ( x - X j )  > q . 

This approach is parallel to that used in density estimation, proposed by 
Parzen (1962) and Rosenblatt (1956), where the density estimate is given 
by 
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f 
oe 1 n 

j ~ (X )=  Wn(X-t) dFn(t)=n~Wn(X-@'), xcR' , 
oo j=I 

with a sequence of  nonnegative weight functions {w,(.)} satisfying that 
f ~  w,(t)dt  = 1 (n >_ l) and that the total mass concentrates in a neighborhood 
of  zero as n --+ +oc, that is, for given any e > O, ftl<~ w~(t) dt ~ 1 as n ~ +ec.  

A typical way of generating sequences {In} is based on the kernel method. 
Usually, take 

In(x) : Z ' 

where K is a d.f. and {an} is a positive sequence with an ~ 0 as n --+ +oc; and call 
K the kernel function, {c~,} the bandwidth or window-width, and/~, the sample 
kernel d.f.. In this case, 

i °° 1 ~  O-X])  R' (1.4) 17n(X) = ooK(t-\ cq/X~dFn(t) =;  _ K ~ - -  , xE 

which is a convolution of F~ and a properly scaled kernel function. For  appro- 
priately chosen kernels and sufficiently smooth Fs,  it has been shown that the 
asymptotic performance of F, is superior to that of Fn in the sense of  relative 
deficiency and the speed of convergence in the bootstrap; see Reiss (1989, Chapter 
8) and the references therein. 

Note that )(nq can be expressed in terms of L-estimates, namely, 

Xnq = Xm:n 

where XI:, < . . .  _<X,:, are order statistics pertaining to the sample X1,. . .  ,Am. 
One might hope that averaging over order statistics close to the sample quantile 
leads to estimates of better performance. This idea results in considering L-esti- 
mates of the form 

^ n 

Z,q = E s]:, (q)X]:~ 
j = l  

with certain choice of the scores {sj:,(q)} involving q. 
A popular subclass of L-estimates related to quantiles is called kernel quantile 

estimators, introduced by Parzen (1979) and Reiss (1982), where the scores 
{sj:.(q)} are chosen by the kernel method. Taking 

f' Oq) Sj:n(q) = , j =  1 , . . . , n  
-u- 

where K is a kernel function and {e~} the bandwidth, it gives a kernel quantile 
estimator 
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Z.q = F~ 1 (t) d K  

The kernel quantile estimators have been studied in the literature; see, for ex- 
ample, Falk (1984, 1985), Sheather and Marron (1990), Yang (1985), Zelterman 
(1990), and also Reiss (1989, Chapter 8). 

The scores of Harrell and Davis (1982) is given by 

1 
[ . t  m~-I (1 - t) "-m° 

sj:,(q) = B(mo, n - mo + 1) j~,  
dt 

where m0 = (n + 1)q. In this particular case, the kernel quantile estimator is ex- 
actly the bootstrap estimator of E(X[m@n+l). 

Kaigh and Lachenbruch (1982) proposed a certain U-statistic with represen- 
tation also an L-estimate, which is the average of qth sample quantiles from all (~) 
subsamples of size r, chosen without replacement from XI, . . . ,X,, ,  where the 
smoothing parameter r is used to regulate the amount of smoothness desired. This 
idea has been generalized to introduce the so-called O-statistics. See Kaigh (1988) 
for a survey. 

1.3. S u m m a r y  

This chapter gives a brief review of the asymptotic distribution theory of the 
(classical and perturbed) sample quantiles. Section 2 presents Smirnov 's  L e m m a .  
Section 3 discusses the normal approximation to distributions of the quantiles. 
The saddlepoint approximation is studied in Section 4. In Section 5 we review the 
bootstrap approximation to the quantiles. 

Throughout this chapter, denote by qS, @ respectively the density and distri- 
bution function of the standard normal distribution N(0, 1), and define 
Oq : [q(1 -q)]~. Unless otherwise specified, limits in all order symbols are taken 
as n --+ +eo. 

2. Smirnov's lemma 

This section presents Smirnov 's  L e m m a ,  which plays a key role in the study of the 
asymptotic theory of the sample quantiles as well as the central order statistics. 

Assume that {an} and {bn} are two sequences of constants with an > 0(n > 1). 
Let 

~ n  - -  If/ n + 1 'ax" = [2.(1 - 2~)] 1 . 

Then[ ~. - q [< ~, and I ~ra,, - aq I = O@. In view of (1.2)' Smirnov (1949, Part 1, 
Lemma 2) showed that 
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s u p P ( f ( n q _ - - b n ) (  + bn) - 2n.) < x - ¢b nx/~ F(anx ---+ O, 
xcRI \ an o',~, (2. l) 

n --+ +oc . 

This result was used by Smirnov (1949) to investigate the types of limit distri- 
butions for the sample quantiles as well as the central order statistics. In fact, (2.1) 
can be improved as the following Berry-Esseen type bound. 

Smirnov's Lemma: For every n _> 1, 

xcRJ[ \ an aq 

where the constant Co depends only upon q and F. 
Clearly, no conditions in (2.2) are imposed on an, bn and the underlying d.f .F.  

As a result, Smirnov's Lemma provides a useful tool to deal with the asymptotic 
normality and bootstrap approximation to the sample quantiles. 

(2.2) is generalized by Puri and Ralescu (1986, Lemma 4.3) to the random 
central order statistics (of limiting rank q). More generally, it follows from the 
Berry-Esseen theorem for the sample quantile of i.i.d. (0, 1)-uniformly distributed 
r.v.'s (See Reiss (1989, Theorem 4.2.1)) that for every positive integer r there exists 
a constant C~ > 0 such that 

s u p P ( f ( n q - b n < x )  - f~(X) ( l +  ~-SLk,n(t))(J(t)dt 
xeall 2 an k:l 

where 
<_ 3k, 

_<Crn ~ 

(2.3) 

un(x) = v ~F(a'x+b')-q, and Lk,n(t) is a polynomial of degree 
k =  l , . . . , r - 1 .  % 

3. Normal approximation 

3.1. Normal approximation to distributions of the quantiles 

It is well-known that Ynq is asymptotically normally distributed under only local 
assumptions on the underlying d.f. F near ~q. As pointed out by Stigler (1973), as 
far back as 1818 Laplace had shown that the sample median A~ is asymptotically 
normal. More than a century later Smirnov (1949) described all possible limit 
distributions for the sample quantiles as well as central order statistics. A more 
comprehensive treatment was given by Balkema and de Haan (1978). For the 
asymptotic joint normality of the vector of sample quantiles 
()(nq~,... ,Xnqr)(0 < ql < ' "  < q~ < 1), we refer to Serfling (1980, Chapter 2). 

By Xnq being asymptotically normally distributed we mean that a suitably 
normalized version of ))nq converges in distribution to N(0, 1); more precisely, 
there exist sequences of constants {an} and {bn} with an > 0(n > 1) such that 
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Xnq - bn 
, N(0, 1) . (3.1) 

an 

As a consequence of (2.1) or its improved form (2.2), we obtain (a special case of 
Smirnov (1949, Theorem 4)) 

THEOREM 1. In order that given sequences {an} and {b,} satisfy (3.1), it is nec- 
essary and sufficient that 

x / ~ F ( a n x  + b,,) - q _ x ~ 0, n ~ +ec . (3.2) 
0"q 

Since @ is continuous, the convergence in (3.2) holds uniformly in x. 

In particular, for some positive constant r, taking an = 3 '  bn = ~q(n > 1) in 
(3.1). Then condition (3.2) is equivalent to 

v/n F(~q + -~nx) - q - x --+ O, n --~ + o c  . (3.3) 
(Tq 

Therefore F must be continuous at ~q. A sufficient condition for (3.3) is that F is 
differentiable a t  ~q and F~(~q) > 0. With the help of Smirnov ' s  L e m m a  it is found 
that this condition is also necessary. 

THEOREM 2. For some r > 0, 
^ s- 

x/n X'q  - gq ~ N(O, 1) 
T 

holds if and only i f F  is differentiable a t  ~q and Ft(~q) > O. 
6q 

In this case, r - F,(~q)' 

Generally, suppose that (3.1) is true. Then, is F differentiable at ~q with 
F ( ~ q )  > 09. A problem of this type was studied by Balkema and de Haan (1978), 
Lahiri (1992), and Smirnov (1949). It was pointed out by Balkema and de Haan 
(1978, p 343) that there exists a d.f. F which satisfies (3.1) but F I =  0 with 
probability 1 on R 1. 

Assume t ha t / 5  is the sample kernel d.f. given by (1.4). The asymptotic nor- 
mality of the perturbed sample quantile Znq has been studied by Mack (1987), 
Nadaraya (1964), Ralescu and Sun (1993), and Seoh and Purl (1994). Based on 
certain regularity conditions on the underlying d.f. F and the kernel K, necessary 
and sufficient conditions for the asymptotic normality o f  Znq are found by Ralescu 
and Sun (1993) for the bandwidth {en}. 

THEOREM 3. (Ralescu and Sun (1993)): Let {qn} be a sequence of constants 
satisfying 

0 < q n < l ,  lim x / ~ ( q n - q ) = c 0 a  
n---+ --OO 
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where a and co > 0 are constants. 

(1) Suppose that F has a bounded second derivative F" on its support with 
F'(~q) > O, and F"  is continuous in a neighborhood of  ~q wi th  Ftt(~q) 7~ O; K has a 
density k and 

f /? tk(t) dt = 0 and t2k(t) dt < +oc . 
~ oo 

Then the condition 

I 
lim n~c~n = 0 

n - - - * + o ~  

is necessary and sufficient for 
^ 

V/n znq" -- ~q" ~ N ( a ,  1) (3.4) 
-c n 

Gq 
where rn F'(~q,)" 

(2) Suppose that F has a bounded density f with f (~q )  > O, and f is con- 
tinuous in a neighborhood of  ~q; K has a density k and 

I t [ k(t) dt < +oc but tk(t) dt ¢ 0 . 

Then (3.4) holds if and only if 

I 
lira n ~ e ~ = 0  . 

n - - - ~ + O O  

Multidimensional asymptotic normality of the kernel quantile estimator was 
established by Falk (1985), where the conditions on F fit completely with the 
standard assumptions (see Serfling (1980, p 80)) which are used to prove the 
asymptotic joint normality of  the vector of sample quantiles (X~fnq l , . . .  ,Yttqr) 
(0 < ql < ""  < qr < 1), and the limiting normal distributions are the same. See 
also Yang (1985). 

3.2. Accuracy of the asymptotic normality 

When dealing with the asymptotic normality of the quantiles, we are often con- 
cerned with its accuracy. The basic tools for this purpose are the Berry-Esseen 
theorem and Smirnov's Lemma. 

Under certain regularity conditions on F, it has been shown that the rate of  
convergence in connection with the asymptotic normality of )~nq is of order 
O(n-'). Assuming that F has a bounded second derivative on R 1 with F'(~q) > 0, 
observing (1.2) and using the Berry-Esseen theorem for independent binomial 
r.v.'s, Reiss (1974) firstly considered a special case, i.e., F is the uniform distri- 
bution on [0, 1], and then made the quantile transformation to derive the general 
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result. A similar result was independently obtained by Serfting (1980) using 
Hoeffding's inequality and the Berry-Esseen theorem, where the smoothing 
conditions of F are assumed in a neighborhood of ~q rather than on the whole 
real line R I. Puri and Ralescu (1986) validated this convergence rate for the 
generalized class of random central order statistics and further pointed out that 
the requirements concerning the second derivative may be dropped. In fact, from 
Smirnov's Lemma the following condition is enough to achieve the Berry-Esseen 
rate O(n-½) 

}F(~q + h) - F(~q) - F'(gq)h I <_ O(h2), h -~ 0 (3.5) 

with U(~q) > O. 
It is natural to ask whether the converse of this assertion is also true. Smirnov's 

Lemma implies that this question can be answered positively. To this end, suppose 
that for some z > 0 

xcR 
holds. Combining it with (2.2), the triangle inequality gives 

x~Rsup ~{~v~f@q" +'~nX)~yq --q) -- ~(X) = O(n-½) , 

By the mean value theorem, we get for all n sufficiently large, 

O-q 

n ---~ +ec  . 

uniformly in x 1<_ C6, where 6 E (0,½), and C6 = ~ - : ( 1  - 6). As a result, uni- 
formly in ½ C6 <_Ix I<_ C6, 

O-q 
which implies that F(~q) ~ q, z -- F'(~q)' and (3.5) holds. 

THEOREM 4. Let r > 0. Then the following statements are equivalent: 

( V/~nq ) ( ) (1) supP --~q <x --~l~(X) =0 n ½ , rl---~-~cxD . 
xeR'] \ 

(2) in a neighborhood of eq, F possesses the property 

-F(~q) -d~-qh  <_O(h2), h- -~e  . F(~q + h) 
1 ,  
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Oq 
In this case, z = F'(~a)' 

Assume that F~,  , i s  the sample kernel d.f. given by (1.4). Ralescu (1992a) ob- 
tained the rate, O{n-½1ogn) ,  of convergence in distribution of the perturbed 
sample quantile Z,q'to the, ,ndrmal law. In fact, as shown in Seoh and Puri (1994), 
the Berry-Esseen rate OIn-½ ) is still available. 

THEOREM 5 (Seoh and Puri (1994)). Let {q,} be a sequence of constants satisfying 

1 
0 < q~ < 1,and ] qn - q  15 ~-~n °-q 

for all sufficiently large/7. 

(1) Suppose that F has a bounded second derivative F"  on its support with 
F'(~q) > 0; K has a density k and 

tk(t) dt = 0 and 
oo - o o  

Then 

tZk(t) dt < +oc . 

( ) sup P v ~  Z"q° - ~q" < x - <__ C1 max{n -s, e,, /71c~2} xcR'l \ 
= ~q and C1 is an absolute constant (depending only on q, F, K). where ~ F,(G), 

The Berry-Esseen rate O(n-}) is obtained by choosing the bandwidth 

o( ') a n =  /7 2 . 

(2) Suppose that F has a bounded density f with f (~q)  > 0, and f satisfies the 
Lipschitz condition of order one in a neighborhood of ~q; K has a density k with 

Then 

f oo It  k(t) dt < +cc . 
o o  

(A ) s u P l P  v~Znq" - {q" < x - q~(x) ]< 
x E R  t ~ a  

I 
C2max{n-½, e,, n:~n} 

where C2 is an absolute constant (depending only on q, F, K). The Berry-Esseen 
rate O(n-½) is obtained by choosing the bandwidth c~, = O(n-1).  

Theorem 3 and Theorem 5 imply that asymptotic normality and the Berry- 
Esseen bound for the perturbed sample quantile Znq depend on the selection of the 
bandwidth {e,,}. Moreover, in order to obtain the Berry-Esseen rate O(n-½), the 
bandwidth need to be smaller than is needed to ensure asymptotic normality. 

A bound, O(n-¼1ogn), for the rate at which the distribution of the kernel 
quantile estimator Znq tends to its limit was presented by Falk (1985). See also 
Reiss (1989, p 264). 
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3.3. Equivalence between normal approximation and Bahadur-representation 

It is known that )(,q as well as central order statistics can be asymptotically 
expressed as sums of i.i.d, random variables via representation as a linear 
transform of the sample d.f. F,, evaluated at ~q. The resulting representation is 
usually called the Bahadur representation. Ghosh (1971) noted that its use in 
deriving the asymptotic moments of Xnq goes back to Karl Pearson. It was 
Bahadur (1966) who first presented the representation in its own right, with a full 
view of its significance. Bahadur's work was subsequently refined by Ghosh 
(1971) and Kiefer (1967), and gave impetus to a number of important additional 
studies in the i.i.d, case as well as subsequent extensions to nonindependent se- 
quences (see Serfling (1980), Shorack and Wellner (1986)). 

Consider the representation 

v ~ S n q  -- ~q __ v / n q  -- Fn(~q ) A w x / ~ R  n 
"E Gq 

where z > 0, and R~ is the remainder term. Note that v~  q-F'(~q) is asymptoti- ~q 
cally normal with the accuracy of order O(n-½). Thus the key of the problem is 
the remainder term R~ as well as its precise behavior. Here, two modes of 
convergence are often involved, that is, with probability 1 and in probability, 
which give respectively a strong and a weak version of the Bahadur represen- 
tation. 

Assume that F is twice differentiable at ~q with U(~q) > 0, Bahadur's original 
result is with probability 1, 

O( ~(1 )'(1 gl ) ')  Rn= n-~ ogn ~ o ogn ~ n ~ + o c  

3 3 

Kiefer (1967) proved that the exact rate of R, is n-~(loglogn)~ and precisely 
obtained with probability 1, 

lim sup ± n ¼ ~ 5 
,-~+~ ]og~og n R. 3¼0-q 

for either choice of sign. 
For many statistical applications, it suffices merely to have 

v~R~ = oA1) ,  n ~ + ~  

This weak version of the Bahadur representation was obtained by Ghosh (1971) 
and requires only that F is once differentiable at Cq with F(~q) > 0. Indeed, this is 
also a necessary condition; see Lahiri (1992) for details, where a simpler proof can 
be given if one utilizes Smirnov's Lemma. 

THEOREM 6 (Lahiri (1992)). Let {qn} be a sequence of constants satisfying 

O < q~ < 1, tim x/n(qn - q) = coa 
n +oc 
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where a and co > 0 are constants. Then the following statements are equivalent: 

(1) F o r  F ( ~ q ) ( 1  - F(~q)) > O, 

X,q,, = ~q + q" - q + q -Fn(~q) q-Rn 
co co 

holds, with 

v Rn = o A 1 ) ,  . 

(2) For some ~ > 0 

^ 

v/~Xnq,, -- ~q,, 9÷ N(a, 1) 
75 

holds. 

(3) F is differentiable at ~q and F'(~q) > 0. 
6rq  

In this case co = Ft(~q), "c F'(~q)" 

Assume that/Sn is the sample kernel d.f. given by (l.4). Under appropriate 
conditions on F and K, proceeding in the same way as Bahadur (1966), Mack 
(1987) established a pointwise Bahadur type representation for the perturbed 

^ 3 3 

sample quantile Znq, where the remainder term is of order O(n-z(logn)~) with 
probability 1. A stronger result is given by Ralescu (1992b) with the same best 
order as obtained by Kiefer (1967) for )(nq. 

Bahadur representations of the kernel quantile estimator Z,,q are established by 
Xiang (1994) and Yang (1985). 

3.4. Edgeworth-Type approximation 

Consider an Edgeworth expansion for the distribution of a standardized version 

of )(,q, say x/~x"q~ -¢q with v > 0. Due to Theorem 2, it is natural to choose 
~Tq 

"E - -  F ' ( ~ _ q ) "  

Reiss (1976) dealt with an Edgeworth-type expansion for the distribution of 
Xnq. The idea is based on Smirnov's Lemma or exactly its extended form (2.3). The 
leading term in such an expansion is the normal distribution, whereas, the higher 
order terms are given by integrals of polynomials with respect to the normal 
distribution. As the sample size n increases, these expansions establish a higher 
order approximation which holds uniformly in x. If F has s + 2 left and right 
derivatives at ~p, the error of the approximation is of the order O(n-(S+l)). For a 
detailed description of Edgeworth-type approximation, we refer to Reiss (1989, 
Chapter 4). 
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However, in most cases of practical interest U(¢q) is unknown, we have to 
consider its estimation, which leads to studentizing a sample quantile. 

A simple estimator of ~ is the Siddiqui-Bloch-Gastwirth estimator, St,,, 
which is based on the differe'n'~e between two order statistics whose indices are 2r 
apart, namely, 

- -  

r 0 as n--+ +oo. In terms of Siddiqui-Bloch- where r = r(n) ~ +oc, and ~ 
Gastwirth estimator, Hall and Sheather (1988) derived the Edgeworth expansion 

/-- 2nq--~ q for the studentized sample quantile x/n ~q&~.. 

Another estimator of U(~q), based on a kernel density estimator f ,  o f f ,  was 
proposed by Falk and Janas (1992). Letting 

O-q 

"r" =fn(¢q-t-b(Xnq-¢q)) 

with b a constant, they established an Edgeworth expansion of length two for the 
,-2,,q-~q 

studentized sample quantile x/n ~,,--. 

4. Saddlepoint approximation 

4.1. On the saddlepoint approach 

Suppose that G is a d.f. and its cumulant generating function ~ ( t ) =  
log fetYdG(y) exists and is finite. The large deviation rate function, which 
plays a crucial role in the development of large deviation theory, is defined 
by 

p(y) : sup[ ty-  ~:(t)] 
t c R  ~ 

where the supremum is usually attained for every value o fy  with 0 < G(y) < 1. In 
fact, we have 

p ( y )  = - 

where ~ = t(y), usually called the saddlepoint, is the solution of the equation 

~c'(t) = y  (4.1) 

Under certain general conditions (see Daniels (1954), Kolassa (1994, Section 
4.3)), (4.1) has a single real root ~, with ~:"(~) > 0. Hereafter denote 

vb 2 -- 2p(y) (4.2) 
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Suppose that I11 , ¥, is a random sample from G and Y = ~ ~ Y. is the 
~ ' ' "  _ _ .  ~ = 1  L 

sample mean. We want to approximate the tail probability G , ( y ) =  P(Y  >_ y); 
and the density or probability function of Y, g, (y). 

In his pioneering paper, Daniels (1954) derived the following saddlepoint ap- 
proximation to g,(y) by using two techniques: the method of steepest descents of 
asymptotic analysis and the idea of the conjugate density or exponential tilting. 

e-np(y) 
gn(y) - ^ , {1 + O(n- ')} (4.3) 

[21rtd' ( t) /n] ~ 

This says that the relative error of the saddlepoint approximation is of order 
O(n l). For a wide class of underlying densities, Daniels (1954) showed that 
the coefficient of the term of order n i doesn't depend on y and thus the 
relative error is of order O(n -1) uniformly. This is the most important property 
of (4.3) and a major advantage with respect to an Edgeworth expansion. 
Therefore the saddlepoint approximation is often more accurate than the 
normal or even the one- or two-term Edgeworth series approximation. Another 
advantage of the saddlepoint approximation is that it is often astonishingly 
accurate for quite small sample sizes even down to n = 1 over the whole range 
of the variable. 

There are essentially three methods of calculating the saddlepoint tail area 
approximation to Gn(y) in common use now; these are the indirect Edgeworth 
expansion (see e.g. Daniels (1987), Robinson, Hoglund, Holst and Quine (1990)), 
the numerically integrated saddlepoint density (see Field and Hampel (1982), 
Field and Ronchetti (1990)), usually renormalized for additional accuracy, and 
the Lugannani-Rice (1980) formula given by 

(4.4) 

where the meaning of fi will be explained below. Daniels (1987) compared the 
Lugannani-Rice formula and the indirect Edgeworth expansion, where the former 
is much simpler and easier to use than the latter, with relative error of order 
O(n 3) in case of the mean, for exponential and inverse normal distributions, 
cases where the saddlepoint approximations to the density of the mean are "ex- 
act", and found that the latter performs slightly better than the former. 

Another form similar to (4.4) was presented by Barndorff-Nielsen (1991), who 
discussed the relation of this kind of tail area approximation to the modified 
signed log likelihood ratio. Jensen (1992) showed that the Barndorff-Nielsen and 
the Lugannani-Rice approximations are equivalent. 

Statistical applications of the saddlepoint approximation have been widely 
developed since the appearance of a discussion paper by Barndorff-Nielsen and 
Cox (1979). For more detailed summaries, we refer to Barndorff-Nielsen and Cox 
(1989), Field and Ronchetti (1990), Kolassa (1994) and Reid (1988). 
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Following the approach of Daniels(1987) and Lugannani and Rice (1980), this 
subsection will show how to derive Daniels' formula (4.3), the Lugannani-Rice 
formula (4.4) and Barndorff-Nielsen's formula in a unified way. 

First of all, we use the Fourier inversion formula. It leads to 

and 

El [c4-icl 
gn(Y) = -~i.le-ic,  en(K(t) ty) dt , 

{ 11__ ['c+icl en(K(t)_ty) d zt 
-Gn (y) = 2~ri dc-icl t ' 

1 u+icl en(~(t)-ty) dt 
2 - ~  Jc-icl 1 - e  - t  

for the continuous case 

for the lattice case 

where c > 0, and cl = n (the lattice case) or +oc (the continuous case). Obviously, 
these formulas can be written in a unified form as below 

1 [ c+ic 1 
Qn(y) = ~i~i Jc_ic~ e4K(t)-tY) l(t) dt (4.5) 

1 where l(t) = n, ~ or 1-e '" 

There are at most two dominant critical points for the integral (4.5). The 
exponent K(t) - ty has a simple saddlepoint at t = ~. Another possible singu- 
larity critical point is the origin; indeed, t = 0 is a pole of l(t) in the case l(t) - 1 - 7 o r  

1 
l - e  - t "  

The basic idea for deriving a saddlepoint expansion of Qn(y) is usually realized 
by two steps. Firstly, introduce in (4.5) a new variable of integration, say w, and 
make a transformation to replace the original exponent K(t) - t y  by a simpler 
exponent, which should be one-to-one over a region containing both t = 0 and 
t = ~ when [ is small. For  given y and •(.), such a transformation with the simplest 
form would be a polynomial in w of degree 2, say 

~w 2 - = K(t) - ty (4.6) ~w 

where we choose ~b so that the minimum of the left side of (4.6) is equal to that of 
the right side of (4.6), and thus lb = w(y)  is given by (4.2). 

It follows from (4.5) and (4.6) that 

~ + i o o  1 [ nr !w2_~  dt  
Q'~(Y) =--2~i a~- i~  [~ e ~2 J l(t) d~w d w  (4.7) 

Here, the possible two dominant critical points for (4.7) are w = 0 (a possible pole 
of l(t) ~w ) and w = ~ (a simple saddlepoint of the exponent). In what follows we 

/(t) 1 will write ==  [ ~1~=~ to indicate the value of l ( t ) ~  w at w =  v~, then 
I U 
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If l(t) = n, then w = 0 is not its pole and thus l(t) ~w is analytic. Expanding dt 

about # and integrating (4.7), we obtain a saddlepoint expansion for the density 
or probability function 9n (Y) of the form 

{b0 + bin + .-.} 
^ I 

where b0 = ~ = [K"(t)] -~. Thus (4.3) follows. 

If l(t) = 1/t or 1/(1 - e t), then the origin is its pole. Our next step, the key 
step of the approach of Daniels(1987) and Lugannani and Rice (1980), is to divide 

(4.7) into two terms. For  a general consideration, let w* = ~ + ;(~__A), where ((~b) is a 

function of v>. Noting that l(t) ~w - (e~-(~)w/w) is analytic in a neighbourhood of 

w = 0, we rearrange (4.7) as 

f 1 _,_~2 1 w*+ioo e n(½w2-w*w) dw + e 2 
Q,(y) = ~ i  jw, i ~ - w  

(4.8) 
dt ×f¢~;i~e~(W-'V)2{l(t)dw e~)w} dw 

The benefit of this division is that the first term of (4.8) is easily evaluated, 
whose value is exactly 1 -~ (x /~w*) ,  and simultaneously the dominant critical 
point for the second integral is reduced to one, namely, the saddlepoint ~. 
In the second term, using an approach similar to the above case, 
l ( t )dt /dw - (e¢(C~)W/w) is expanded about !b and integrated to give an expansion 
of the form 

where co = 1 / h -  (e-~(#)¢/~). Therefore we get a generalized Lugannani-Rice 
formula 

~ - - J n  2 } (4.9) 
_ 1 1 As a result, the In particular, choosing ~ ~ 0 in (4.9), w* = ~ implies co - a g" 

Lugannan-Rice formula (4.4) is obtained. 
More interestingly, (4.9) becomes Barndorff-Nielsen's formula 

Q,(y) = (1 - ~(v/~w*)){1 + O(n 1)} (4.10) 

I ft. if co = 0, that is w* = ~ + ;,Tl°g g, where the error holds uniformly for y in a 
compact set. Furthermore, for any c > 0, the error O(n -1) can be replaced by 
O(n ~) for l Y -  EY I< cn ½. 

4.2. Saddlepoint approximation to the quantiles 

Hampel (1974) introduced a technique, which is an example of what he called 
"small sample asymptotics" where high accuracy is achieved for quite small 
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sample sizes n, even down to single figures, for approximating to the density of M- 
estimates. This technique was developed by Field and Hampel (1982) in detail, 
and its performance compared with that of other approximation methods, such as 
Edgeworth expansions, large deviation theory, et al.. As Hampel pointed out, this 
approach is closely related to the saddlepoint method of Daniels (1954); saddle- 
point approximations for M-estimates are also given in Daniels (1983). In par- 
ticular, he obtained the saddlepoint approximation to the density of )(,q as 

, 

2rt/ ,me ,n------------------7~/ (x)(1-F(x))" '~f(x) (4.11) 

The difference between (1.3) and (4.11) is that the normalizing constant is re- 
placed by its Stirling approximation. 

Applying Barndorff-Nielsen formula's (4.10), Ma and Robinson (1994) get a 
saddlepoint approximation to the binomial tail probability, and observing (1.2) 
they obtain the saddlepoint approximation of the distribution function of X,q 

P(X,q <_ x) = ~(v~w*(F(x))){1 + O(.-1)} 
where 

1Z_ 1'~" u(t) W*(I) = w(t) Jr-nw(t) ~ e ' w ( t ) '  
l ffq-1 

and u(t), w(t) are given by 

u(t) = { 1 - q ~ ½ t - q  
\ q J l - t '  

if t T~ q 
i f t = q  

(4.12) 

w ( t ) : s g n { t - q } { 2 I q . l o g ( q ) + ( 1 - q )  - l o g ( ~ ) ] }  ~ . 

As shown by Ma and Robinson (1994), the asymptotic normal distribution 
theory of the sample quantiles is equivalent to employing a linear approximation 
of w*(F(x)) or w(F(x)) in the saddlepoint approximation. This saddlepoint ap- 
proximation is better than the normal approximation in the sense that there are 
weaker conditions and higher accuracy. 

5. Bootstrap approximation 

Bootstrap methods have earned an important place in the statistician's toolkit 
since their systematic introduction by Efron (1979). Recently Beran and Duch- 
arme (1991) and Hall (1992) give a mathematically sophisticated treatment of the 
bootstrap approach. Efron and Tibshirani (1993) presents an overview of the 
bootstrap and related methods for assessing statistical accuracy. 
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In connection with covering probabilities and confidence intervals one is in- 
terested in the d.f. of the statistic v~(_~q - ~q), 

r.(F,x) = PF( V/n(X,q -- ~q) < X) . ( 5 . 1 )  

Usually, ~q as well as F are unknown. The basic idea of the bootstrap method is 
to replace ~q and F by certain kind of their sample counterpart, and then estimate 
the d.f. T~(F, .) by the corresponding sample counterpart. 

A basic way of validating a particular bootstrap method is by proving that it is 
consistent: conditionally on the observed data the bootstrap distribution has the 
same asymptotic behaviour as the (centered, standardized) sample distribution of 
the original estimator either with probability 1 or in probability. Singh (1981) 
established the consistency of the bootstrap approximation of T,(F, .) and pro- 

1 I 
vided the exact rate, which is O(n-a(log log n) ~) with probability 1, at which the 
discrepancy converges to zero. Babu and Singh (1984) obtained strong repre- 
sentations of the bootstrap quantiles and L-statistics. Falk (1986) proved that the 
accuracy of the bootstrap approximation of the joint distribution of the vector of 
the sample quantiles lies between O(n ¼) and O(n-lcn), where (logn) ½ = o(cn). 
Bootstrapping the sample quantiles is summarized by Falk (1992), see also Babu 
and Rao (1993). 

5.1. The standard bootstrap 

The standard bootstrap technique is to estimate ~q by the sampling method, with 
the samples being drawn not from the underlying d.f. F but from the sample d.f. 
F~. A bootstrap sample XI*,... , X,~, a random sample from Fn, is then generated 
by successively selecting uniformly with replacement from the observed data 
X1,... ,X~. Denote by J(~*q the corresponding sample qth quantile. Replacing ~q 
and F in (5.1) by )(,q and ~ ,  respectively, we estimate T,(F, .) by 

v o ( g . , x )  = v (xL - 2oq)  < x ) .  

Now let's consider the bootstrap error 

Tn(Fn,x) - Tn(F,x) = PF, ( V~(f(*q - X,q) <- x) - P F (  V ~ ( f ( n q  - -  ~q )  < x) . 

It follows from Smirnov's Lemma that 

sup ( F(~q q-~n) - q ) =  O(n-½) V,(F,x) - ~0 x/~ - -  
xER Gq 

( F . , x )  - • V'fi = , 
xcR Gq 
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and thus 

sup]r.(F.,x) - T,,(F,x)I <_ sup v~ 
x~Rt xcRi O'q 

Consequently the accuracy of the bootstrap approximation is closely related to 

q 
x~R O'q O'q 

Hence the key to the problem is to compare 

v/n Fn(~nq+~)-q with V~ F(~q+~n)-q 
O'q Gq 

The following ingenious result, which is similar to Bahadur (1966, Lemma 1), was 
given by Singh (1981, Lemma 3.2) 

sup ( 1 +  ~ q@ X - F , ( 2 , q ) - F  f(,q+ +F(2,q) 
Ixl<logn 

3 I 
= o(n-~( log log n)~) 

Based on this result, Singh (1981) established 

(s.2) 

THEOREM 7 (Singh (1981)).: If F has a bounded second derivative in a neigh- 
borhood of ~q with F(~q) > 0, then with probability 1 

I 1 

lira sup n~ (log log n)-= sup k T, (F,,, x) - 7;,, (F, x) l = Co 
n ~ + o e  x c R  [ 

where the constant Co depends only upon q and F. 

Ma and Robinson (1994) consider the relative error between 
T,,(Fn, .) by using (4.12) and (5.2), and obtain 

Tn(F, ") and 

5.2. The smoothed bootstrap 

As a modification to the standard bootstrap procedure, the essential idea of the 
smoothed bootstrap (Efron (1979)) is to perform the repeated sampling from a 
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smoothed version F,,, of F,, rather than sampling from F, itself. The smoothed 
bootstrap has been studied by Falk and Reiss (1989a, 1989b), Hall, DiCiccio and 
Romano (1989), and Silverman and Young (1987), amongst others. For  a review, 
see Angelis and Young (1992). 

Assume that E~ is a perturbed sample d.f. and Znq is the associated qth quantile. 
Let Z [ , . . . ,  Z~ be a random sample from/?,,  and denote by 22q the corresponding 
sample qth quantile. Taking Znq and/~,, respectively as an estimate of ~.q and F in 
(5.1), we estimate T,(F,  .) by 

Tn(l~n,X) : P~,,, (V/~l(22q - Znq ) ~ x) , 

As above, the key of the problem is to compare 

x + _ ~ )  _ q 

( L q + ~ ) - q  with O'q O'q 

Two versions of the smoothed bootstrap for the sample quantiles were de- 
scribed by Falk and Reiss (1989a, 1989b), where 2,q = 2,q and 2,,q, respectively. 

Falk and Reiss (1989a) took F, as a kernel estimate ofF , ,  given by (1.4). Under 
certain regularity conditions of F and K, they showed that uniformly for 
Ix[ < logn 

v ~ { F n ( Z n q @ - ~ ) - F ( ~ q @ - ~ )  } = (J~n(~q)--f(~q))X@Op((l'l~n)-½) " 

Consequently the accuracy of this smooth bootstrap approximation is roughly 
O(n 3) for an appropriate choice of ~,,. So in this case the smooth bootstrap 
estimate outperforms the nonsmoothed one. 

Falk and Reiss (1989b) adopted another smoothed version of F~, where rather 
than smoothing the sample d.f. F~ directly, they smoothed the sample q.f. Fn I by 
the kernel quantile estimate method. The rate of convergence of this smoothed 
bootstrap estimate is roughly O(n-½). 
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Concomitants of Order Statistics 

H. A.  David  and H.  N. Nagaraja 

1. Introduction and summary 

Let (Xi, Y/), i =  1, . . .  ,n, be a random sample from a bivariate distribution with 
cumulative distribution function (cdf) F(x,y). If the sample is ordered by the 
X~, then the Y-variate associated with the r th order statistic Xr:n will be denoted 
by Y[r:~] and termed the concomitant of the r th order stat&tic (David, 1973, 
1981). 

The most important use of concomitants arises in selection procedures when 
k(< n) individuals are chosen on the basis of their X-values. Then the corre- 
sponding Y-values represent performance on an associated characteristic. For  
example, if the top k out of n rams, as judged by their genetic make-up, are 
selected for breeding, then Y[,-k+l:n],..., Y[,:nl might represent the quality of the 
wool of one of their female offspring. Or X might be the score of a candidate on a 
screening test and Y the score on a later test. There are related problems dealing 
with the estimation of parameters from data in which selection has taken place. 
The study of some aspects of these problems antedates the term concomitant of 
order statistics (e.g., Watterson, 1959). However, the occurrence of concomitants 
in a variety of contexts independently prompted also another term, &duced order 
stat&tics (Bhattacharya, 1974). As pointed out by Sen (1981), linear functions of 
concomitants may also be viewed as mixed rank statistics (Ghosh and Sen, 1971). 
Egorov and Nevzorov (1982) use the term induced order statistics for the 
X-values arranged according to ordered 9(X) values for a prespecified function 9. 

Some generalizations should be noted. Associated with X/ there may be g 
variates Y l i , . . . ,  Yfi, i = 1, . . . ,  n. There is no clear-cut way of ordering the (g + 1)- 
variate measurements (Xi, Yli,. . . ,  Yei). One way of doing so is by the order of the 
X-values (see Barnett, 1976) in which case associated with X~:, will be the vector of 
concomitants (YI[~:,I,..-, Ye[r:,])- This situation is included in a unified treatment 
of distribution theory given in Section 2. One could also contemplate selection 
based on more than a single X. This, however, is awkward and has not been 
pursued, although selection based on a univariate function of such X's would 
present no difficulties. An interesting further generalization is due to Egorov and 
Nevzorov (1984), Reiss (1989, p. 66), and Kaufmann and Reiss (1992). These 
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authors order vectors xi ,  i = 1 , . . . ,  n, by the size of a real-valued function 9(x i ) .  

Kaufmann and Reiss define the 9-ordering 

Xi 5g  Xj if g(xi )  <_ g (x j )  . 

In particular, if g(xi )  = g(xl i ) ,  then the vectors are ordered by the first component 
xli, and the other components become the concomitants. Concomitants can also 
be associated with record values (Houchens, 1984; Ahsanullah, 1994) and with 
generalized order statistics which include order statistics and record values as 
special cases (Kamps, 1995). 

Before outlining the content of the remainder of this article, we mention some 
general issues. Lo and McKinlay (1990) make a rather basic point, namely that in 
some practical situations the effect of previous selection of objects by their 
X-values is ignored and the concomitants for the chosen objects are treated 
simply as random Y's. The authors study the resulting effects on some standard 
tests of significance, with specific reference to financial asset pricing models. 
David and Gunnink (1997) re-examine the paired t-test when 2n individuals are 
paired on the basis of closeness of prior related measurements, i.e., the pairs 
correspond to the measurements  (x2i:2n,X2i_l:2n), i = 1 , . . .  ,n.  The order within 
pairs is randomized before two treatments are applied. When a t-test is performed 
on the signed differences =[:(.F[zi:2n I -Y[2i-l:Zn]), of the experimental measurements, 
the assumptions of the paired t-test no longer hold, but simulation indicates that 
under a bivariate normal model the test continues to be valid. 

In sections 2 and 3 we strive to provide a unified account of the basic finite- 
sample and asymptotic theory of concomitants, together with multivariate gen- 
eralizations. Section 4 deals with estimation and hypothesis testing. It is shown 
how concomitants enter into (a) the estimation of regression and correlation 
coefficients in a variety of situations, (b) the analysis of censored bivariate data, 
(c) ranked-set sampling, and (d) double Sampling. The rank of Y[r:n] among the Y's, 
which plays an important role in certain selection procedures, is studied in sec- 
tion 5. Other selection procedures using concomitants are treated in section 6. The 
asymptotic theory of various functions of concomitants is examined in section 7. 
Applications include (a) inference on the regression function E(YIx ), (b) the 
induced selection differential, (c) bootstrapping, and (d) file-matching procedures. 

A fine earlier review of concomitants is given in Bhattacharya (1984). Previous 
reviews by the first author are superseded by the present account which attempts 
to include a nearly complete set of references for the literature on concomitants. 

2. Finite-sample distribution theory and moments 

2.1. The s imple  linear mode l  

We begin with an important special case for which rather explicit results are 
possible. Suppose that Xi and Y/ (i = 1 , . . . ,  n) have means #x, #Y, variances o.~x, 
o -2, and are linked by the linear regression model ([Pl < 1) 
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Gy 
Yi = l~ y ÷ p -~x ( Xi  - l~ x ) + e i , (2.1) 

where the X~ and the ei are mutually independent. Then from (2.1) it follows that 
Eel = 0, varei = a~(1 - p2), and p = corr(X, Y). In the special case when the X/ 
a n d  (-i are normal, X~ and Y/are bivariate normal. Ordering on the X~ we have for 
r =  1 , 2 , . . . , n  

Yfr:,,J = lar + p ~ ( X r : , ,  - Six) + e[r) , (2.2) 

where e[r] denotes the particular ei associated with Xr:n. In view of the indepen- 
dence of the X/and  the ei we see that the set of X~:~ is independent of the qd, the 
latter being mutually independent, each with the same distribution as ei. 

Setting 

~r:n ~ ' and flrs:n = COV , 
\ a x  \ a x  a x  / 

r ,s  = 1 , 2 , . . . , n ,  we have from (2.2) 

EY[~:,I =/~r  + PCrrC~r:, , 

var Y[~:,] = a2 (p2flrr: . + 1 - pS) , 
(2.3a-d) 

cov(Y[r:n],Y[s:n]) ~- 102{72fl . . . . .  r # s  . 

In the bivariate normal case Eqs. (2.3) were given by Watterson (1959). An in- 
teresting way of expressing (2.3a,b,d) brings out the relations between the mo- 
ments of the Y[~:~] and the Y~:, (Sondhauss, 1994): 

gY[r:n] - # y  = p(EY~:n - / z r )  , 

var Y[r:,]- a~ = p2 (var Y~:, -- a~) , 

cov(Y[r :n] ,  Y[s:n]) = p2CoV(Yr:n,  Ys:n), r ~k s . 

A generalization of (2.1) may be noted here. Let Y,. = gO(/, ei) represent a 
general model for the regression of Y on X, where neither the X~ nor the ei need be 
identically distributed (but are still independent). Then 

Y[r:nl = g(Xr: , ,e[d)  r = 1 , . . . , n  . (2.4) 

From the mutual independence of the Xi and the ei it follows that e[d has the same 
distribution as the ei accompanying Xr:, and that the e[d are mutually independent 
(Kim and David, 1990). 

2.2.  Genera l  resul ts  

Dropping now the structural assumption (2.1), we see that quite generally, for 
1 <_ rl < r2 < " "  < rk < n, the Y[rh:nl (h = 1, . . .  ,k) are conditionally independent 
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given Xr,,:~ = xh (h = 1 ,2 , . . . ,k ) .  The joint conditional pdf may be written as 
[I~=lf(yhlxh ). It follows that 

fr/,-E ,+.-., Yl,-k :,,l (yl,. • • , Yk) 

?i n . . . .  fx,., ....... ~,.k:,,(xl,...,xk) [f(Yhlxh) dxh].  (2.5) 
oc h = l  

Put m ( x ) =  E(YIX  = x) and a2(x)=  var(YIX = x) (Bhattacharya, 1974). It fol- 
lows (Yang, 1977), in generalization of (2.3), that 

E(Y[r:,]) = E[m(Xr:n)] , 

var(Yk:,,]) = var [m(X~:n)] + E[o-2(Xr:n)] , 
(2.6a-d) 

cov(X,.:n, 2is:,,] ) = cov[Xr:n, m(Xs:n)] , 

cov(Y[~:,], Yf,:n]) = cov[m(X~:,), m(Xs:,)], r 7~ s 

For example, (2.6b) and (2.6d) are special cases of the general formula (subject to 
the existence of the quantities involved) for the rv's U, V, W 

coy (U, V) = cov(E(U]W), E(V]W)) + E[cov(U, VIW)] (2.7) 

with U = Y~:~, V = Y~:~, and W = X,.:n in (2.6b) and W = (X~:~,Xs:,) in (2.6d). 
Jha and Hossein (1986) note that (2.6) continues to hold when X is absolutely 

continuous but Y discrete. By straightforward arguments they point out also that 
for any exchangeable variates (Xi, ~), i = 1 , . . . ,n ,  familiar recurrence relations 
for order statistics continue to hold for concomitants. 

Specific results when (X, Y) has Gumbel's bivariate exponential distribution 
are given by Balasubramanian and Beg (1996). 

2.3. Multivariate generalizations 

Next, suppose that associated with each X there are g variates Yj ( j  = 1,. . .  ,g), 
i.e., we have n independent sets of variates (X/, Yl~,..., Yei). Triggered by a 
problem in hydrology, this situation has recently been intensively studied with 
increasing degrees of  generality, especially when the g + 1 variates have a multi- 
variate normal distribution (Song, Buchberger, and Deddens, 1993; Song and 
Deddens, 1993; Balakrishnan, 1993; Song and Balakrishnan, 1994). See also 
David and Galambos (1974, p. 765). 

We begin without assuming multivariate normality. Setting mj(xi) = g(Yjilxi) 
and writing Y:k:nJ for that Yji paired with X~:n, we have 

EYj[~:,] = E [mj(X~:n)] . 

Also, a slightly different application of (2.7) gives, for k = 1 , . . . ,  g, 

cov(Y&,l, Yk(~:,l) = cov(m/(Xr:n), mk(X~:,)) + Eajk(Xr:n) , (2.8) 

where ajk(xi) = cov(Y2i, Ykilxi). 
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In the multivariate normal  case 6 j k ( x i )  does not  depend on xi  and may be 
obtained from standard theory (e.g., Anderson,  1984, p. 35). Let  

E = Z21 222 

where 

and 

Zll = 6~(, Z12 = coy(X, YS)l×e = (axj), say 

Z22 = cov (Yj ,  Y k ) g x g  = ( 6 j k )  • 

Then from the result 

Y~22-1 = 222 -- "~'21 Y'll 1 212 

we have here 

£22.1 ~- Y"22 -- £ 2 1 £ 1 2 / 6 2  

o r  

a j k ( x )  = a jk  - axjaxk/a x • (2.9) 

Also, with & = EYj, 62 = var Yj, and pj = corr(X, Yj), Eq. (2.2) becomes 

~E~:.I = , s  + p j 6 ; ( x r : .  - ~x)16x + qI~l • (2 .1o )  

so that  

e 

j=l  

Thus 

EYj[r:,1 =/~j  + p/r j~:~ . (2.11) 

Also, not ing that  all the q[d are independent  of  (XI: , , . . .  ,Xr,:~) and that  ear ] and 
qls] are independent  unless r = s, we have from (2.10) or (2.8) that  

COV(~Ir : ° I ,X<~:<)  = , j6 jp~f l r~:°  + 6j~(x) 

= a j k  - -  P j P k 6 j a k (  1 - -  f lrr:n) (2.12) 

by (2,9). F r o m  (2.10) it follows at once that  

cov(Yj[,.:<, Yk[,:,]) = & p ~ 6 j a k f i  .... . (2.13) 

An interesting special case occurs when 

g 

j= l  
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Eqs. (2.11)-(2.13) now hold with 

k=l 

Song and Balakrishnan (1994) treat a multiplicative model of the form 
Yji = Xieji, j = 1 , . . . ,  g., i = 1 , . . . ,  n, and use it to generalize results of Song (1993) 
on concomitants of gamma order statistics. See also Ma, Yue, and Balakrishnan 
(1995). Balasubramanian and Balakrishnan (1995) obtain a class of multivariate 
distributions for which the concomitants are members of the class. 

2.4. Dependence structure o f  concomitants 

DEFINITION. The random variables X1,.. .  ,Xn (constituting the vector X) are said 
to be associated if coy ([hi (X), h2(X)]) > 0 for all pairs of increasing functions hi, 
h2 for which the covariance exists. 

Let X/ and ei(i = 1 , . . . , n )  be mutually independent random variables and 
= g(X,., ¢i), leading to (2.4). Then from results on associated random variables 

given in, e.g., Barlow and Proschan (1975), it is easy to show that the concomi- 
tants are associated if g is monotone (Kim and David, 1990). For (Xl:n,... ,X~:,,) 
and (e[l],..., e[nj) are independent sets of associated random variables, so that 
their union is also associated. Since any monotone functions of associated ran- 
dom variables are associated, Y[I:,j,..-, Y[,:,j are associated. 

Note that association implies positive quadrant dependence, so that for any 
..121 ,Y2 

P{Y[[r:n] ~ Y l ,  Y[s:n] ~ Y2 } ~ P { Y[r:nJ ~ yl } e { Y[s:n] ~ Y2 } • 

Kim and David (1990) also show that the concomitants satisfy a stronger form of 
dependence, multivariate total positivity of order two (MTP2) (Karlin and 
Rinott, 1980) if each Z(rl has a Pdlya frequency function of order two (PF2). 

We now note some further interesting facts about the dependence structure of 
order statistics and their concomitants. Bhattacharya (1984) shows that, for a 
fixed n and arbitrary sequence of constants (c,, 1 < i < n), the sequence 

J 

{ Wj, 1 < j _< n} with Wj = ~ ci{ Y[i:< - m(Xi:n) } forms a martingale . 
i=1 

Bhattacharya and Gangopadhyay (1990) and, independently, Goel and Hall 
(1994) observe that &Ix (Y[,:,} IX~:,) are i.i.d standard uniform variates independent 
of the X/ and hence of the X-order statistics. These last results may be seen 
as follows: The I~i:, ] are clearly conditionally independent given X,.:, = 
xi(i  = 1 , . . .  ,n).  Thus the uniform (0, 1) variates Frrx(Y[,:<jxi) are stochastically 
independent and, since their distribution does not depend on the xi, are also 
unconditionally independent and independent of the X,.:,,. 
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3. Asymptotic theory 

3.1. Marg ina l  distributions 

The asymptotic distribution of Y[r:,,] is affected by how r is related to n and by the 
dependence structure of  (X, Y). In order to streamline our discussion, let us 
consider three situations regarding the growth pattern of  r(n): (a) the quantile 
case where r = [np], 0 < p < 1, (b) the extreme case, where either r or n - r is held 
fixed, and (c) the intermediate case, where r(n) ---+ ec, n - r(n) -+ oc in such a way 
that r ( n ) / n  approaches either 0 or 1. (Certainly other possibilities exist, but we 
refrain from treating these nonstandard situations.) In these cases, the limit 
properties of  Xr:n and associated norming constants differ• 

Next is the issue of dependence structure. To see how it affects the limit dis- 
tribution of Y[~:n] and how the norming constants associated with Xr:n play a 
substantial role in the asymptotic distribution, let us look at the simple linear 
regression model given by (2.1). Without loss of  generality we assume that 
#x = #Y = 0, and crx = o-r = 1. In view of the independence of c[r 1 and XI~:n ], from 
(2.2), it is clear that the distribution of Y[~:n] is affected by them in a linear fashion. 

P d 
IfXr:n - an ~ 0 as n -+ oc, then Y[r:~] -- pa~ ---+ e, and hence the limit distribution 

is that of  e. This happens in the quantile case where an may be chosen as Fx 1 (p). 
Further, in the other two cases related to the growth rate of  r, such a situation 
may also arise. For example, for the bivariate normal parent, when n - r = k - 1, 

• P 

corresponding to the upper k th extreme Xr-n - ~ ~ 0, and consequently 
d 2 ' " Yf~:,,j- p ~ ~  V/1 - p  Z, where Z is a standard normal variate. A detailed 

discussion of the consequences is given in David (1994). 
Now suppose Xr-n fails to converge in probability, but instead there exist 

constants an and b~ > 0 such that (X~:n- u an)/bn---+ W as n---+ ec, for a non- 
degenerate random variable W. In this case the scaling constant bn plays an 
important  role in the limit behavior of  Y[~:4 To be precise, in view of (2.2) we may 
write 

Y~r:~] - pan X~:n - an e[r] 
(3.1) 

bn -- p bn bn 

If  b, --~ b, finite and positive, we may conclude from (3.1) that (Y~r:nJ - p a n ) / b ,  
converges in distribution to the convolution of p W  and c. In the upper (lower) 
extreme case, W will be distributed as the k th  lower (upper) record value from one 
of the three relevant extreme value distributions (e.g., Nagaraja  and David, 1994). 
In the intermediate case, when X is bounded above and r ( n ) / n  approaches 1, 
under certain smoothness conditions on the tail of Fx, W is normally distributed. 
Appropriate  choices for the norming constants may be found in Reiss (1988, 
pp. 108-109). 

While the brief discussion above indicates that numerous possibilities exist for 
the limit distribution of Y[r:~] for the model given by (2.1), it also shows the 
interplay between the conditional pdf  f(ylx) and the marginal pdf  f x ( x ) .  Of 
course, this will be true in general. We now state a result due to Galambos  (1978), 
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extended in David  (1994) and Sondhauss  (1994), which gives a representat ion for  
the limit distr ibution of  Y~r:~,l in the extreme case for  an arbi t rary  absolutely 
cont inuous  bivariate  cdf  F(x,y). 

THEOREM 3.1. Let  Fx(x) satisfy one of  the von Mises condit ions and assume that  
the sequences of  constants  an, bn > 0, are such that  as n --+ co, 

{Fx(an + bnx)} n--+ G(x) (3.2) 

for  all x. Fur ther ,  suppose there exist constants  An and B, > 0 such that  

{FF(An + Bnylan + bnx)} ~ H@lx ) (3.3) 

for  all x and y. Then 

/7 P(Y[n-k+l:n] <- An + Bny) ---+ H(ylx ) dG(k)(x) , (3.4) 
0<3 

where G(k) is the cdf  o f  the k th lower record value f rom the extreme value cdf  G. 

i f  (3.2) holds we say that  Fx is in the domain  of  a t t rac t ion o f  G and we write 
Fx C D(G). It  is well known that  G must  be one of  the three extreme value cd f ' s  
which are of  the following types (Gnedenko,  1943): 

0, x < 0 (3.5a) 
G I ( x ; c t ) =  e x p { - x - a } ,  x > 0 ;  ¢¢>0  

G2(x;c~) = ~" e x p { - ( - x ) ~ } '  x < 0; e > 0  (3.Sb) 
[1, x_>O 

G3(x) = e x p { - e x p ( - x ) } ,  - o o  < x < oo . (3.5c) 

The condi t ion (3.3) holds with H(ylx  ) = H(y)  and An = 0, Bn = 1, if  the joint  
distr ibution of  (AT, Y) is such that  as x---+ Fx1(1),Fy(y[x)  --+ H(y) .  In that  situa- 
t ion evidently P(Y[n-k+l:n] <-- Y) --+ H(y)  as is the case with the following example.  

EXAMPLE 3.1. Let  (X, Y) have G u m b e l ' s  bivar ia te  exponent ia l  distr ibution with 
joint  cdf  F(x,y) = (1 - e - X ) ( 1  - e  Y)(1 +ae-~-Y) ,  x,y > 0, ]~l -< 1. Then  
F~,(ylx ) = {1 - ~(2e -x - 1)}(1 - e-U) + ~(2e -x - l)(1 - e-2Y), which converges to 
H(y) = (1 - e-U) (1 - ae-y)  as x ~ ~ .  Since Fx is an exponent ia l  cdf, it satisfies a 
von Mises condi t ion and (3.2) holds with G = G3. Thus,  we m a y  conclude that  
P(Y[n-k+~:nJ -< Y) --+ (1 - e-U)(1 - ~e -y) for  all y > 0. This is in sharp contras t  to 
the asymptot ic  distr ibution of  the extreme order  statistic Yn-k+l:n. Since Fy is also 
s tandard  exponential ,  P(Yn-k+i:n -log n < y) --+ G3(k)(y) whose p d f  is given by 

g3(k) (Y) = e x p ( - k y )  e x p { -  e x p ( - y ) }  
( k -  1)! ' (3.6) 

for  all y (see Arnold  et al., 1992, p. 221). 

In the above  example,  since H(y[x) was free of  x, k did not  influence the 
distr ibution of  Y[n-k+l:,,l. This happens  to be the case for  several c o m m o n  bivariate  
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distributions including the bivariate normal distribution. But this need not be the 
case always. As an example, in the linear model expressed in (3.1), take X to be 
standard exponential and Z to be standard normal. Then, Fx E D(G3) where G3 is 
given by (3.5c) and we can choose an = l o g n ,  and bn = 1. Consequently 
P ( Y  <_ pan + y l X  = an + x)  = ~b(y - px) representing H(YlX).  Hence we obtain 

P(Y[n-k+l:n] <- pan + y)  --+ (P(y - px)93(k)(X) dx  , 
oo 

where g3(k) is given by (3.6). 
See also Coles and Tawn (1994) who, however, are more interested in the 

distribution of Y given that X is large. Ledford and Tawn (1995) investigate the 
influence of the joint survival function P ( X  > x, Y > y)  on the nondegenerate 
limit distribution of Y[n:n]- 

One can state a limit result similar to Theorem 3.1 for Y[r:,l in the quantile case. 
With a different set of conditions that involve the assumption of uniform con- 
vergence, Suresh (1993) proves such a result. 

3.2. Join t  distr ibutions 

The asymptotic distribution of a finite set of concomitants has also been explored. 
Under the assumption that Y - E(YIX) and X are independent, David and Ga- 
lambos (1974) have shown that Y~rt:nl,''-, Y[rkn] are asymptotically independent if 
var(E(Y[r,:<lX~i:,)) approaches 0 as n increases for a l l / =  1, . . .  ,k. In such cases, 
the asymptotic joint distribution can be obtained from the marginal limit distri- 
butions of the Y[r,:4. 

In the quantile case where r i /n  ~ Pi, 0 < Pi < 1, for i = 1 , . . . ,  k, and in the 
extreme case where ri is either i or n - i ÷ 1, interesting results quickly follow 
from the conditional independence exhibited in (2.5). In the latter case, let 
ri = n - i ÷ 1, and assume that conditions of Theorem 3.1 hold. It then follows 
that, as n -+ oo, 

P (Y[n:n] <-- An + B n Y l , . . . ,  Y[n-k+l:,] <- An + BnYk) 

k (3.7) 
I I  H(YilXi) dGk(x l ,  . . . ,Xk ) , 

i >. .->xk i = i  

where G~ is the joint cdf of the first k lower record values from the cdf G. 
In the quantile case asymptotic independence prevails if the pi are distinct. To 

P 1 be precise, if r i /n  ---+ Pi, 0 < Pi < 1, and X~,:n ---+ F x (pi), for i = 1 , . . . ,  k, Yang 
(1977) proved that 

k 

P ( Y[rl:n] <-- Yl  , " " , Y[r,:n] <_ Yk ) ---+ I-[ Fr (y, lFx l (pi ) ) 
i = l  

Suresh (1993) has shown that the central concomitants and extreme concomitants 
are asymptotically independent. 
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4. Estimation and tests of  hypotheses 

4.1. Est imation o f  regression and correlation coefficient 

I f  the regression o f  Y on the non-stochast ic  variable x is linear, viz. 

E ( r [ ) c )  = 

then fl m a y  be est imated by the ratio statistic 

71~:, 1 - YIk:,] 
b' 

--t -- -~k:n ' Xk:n 

where 

(4.1) 

(4.2) 

_~ 1 k 1 k 
Xk:n = ~ Z X n + I  i:n, 2k:n = ~  i ~ l  Xi:n , 

i=1 

and 

_,  1 k _ 1 ~ 

I f X  is stochastic, we may  interpret  (4.1) as condit ional  on X - =  x and have f rom 
(4.2) 

E(b ' l x l , x2 , . . .  , x , )  = fi . (4.3) 

Since (4.3) holds whatever  the xi, it also holds uncondit ionally;  that  is, 

B' -- Yik:,,] - Y[~:,,] (4.4) 
Xtk: n -- Xk:n 

is also an unbiased es t imator  of  ft. Note  that  this result does not  require either 
the Xi or  the Yi to be identically distr ibuted or even to be independent .  Bar ton 
and Casley (1958) show that  f f  has an efficiency of  75-80% when (X,-, Yi), 
i = 1 , . . . ,  n, is a r a n d o m  sample f rom a bivariate  normal ,  provided k is chosen as 
abou t  0.27n. 

Since p = fl(rx/crr, (4.4) suggests 

= B '  (x- 'h : .  - 

( Y i : n ~ ~  = ('Yi:n- "Yk:n)/en,y 

as an es t imator  of  p, where e,,x = E(X~k:, -- X k : , ) / a x ,  etc. I f  X and Y have the 
same marginal  dis tr ibut ional  fo rm (e.g., bo th  normal) ,  fY simplifies to 

t3' - Y'[k:']_, - Y[k:,] (4.5) 
Y~:, - Yk:, 
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This estimator has been suggested by Tsukibayashi (1962) for k = 1 when the 
denominator is just the range of the Y/, and also for a mean range denominator. 
He points out that (4.5) can be calculated even if only the ranks of the X's are 
available. In order to deal with the distribution of/5' (for k = 1) interesting dis- 
tributional results are developed in Tsukibayashi (1996), such as the joint pdf  of 
Y,,:~ and Y[,:,]. See also Watterson (1959) and Barnett et al. (1976). 

An interesting related measure of association, not requiring (4.1) to hold, has 
been proposed and studied by Schechtman and Yitzhaki (1987). They show that if 
(X, Y) has a continuous joint cdf with marginals Fx(x), Fy(y), then 

2 ( 2 i -  1 - n)lJi:,,] 

is a consistent estimator of 

cov(r, Fx(Y)) 
r ( r , x )  = 

coy (r ,  Fy(Y)) 

The authors call F(Y,X) (and F(X, Y)) the Gini correlation, since cov(Y, Fy(Y) ) is 
one-fourth of Gini's mean difference (Stuart, 1954). If (X, Y) is bivariate normal 
(/Ix,/~y, ax, ~r, P), then F(Y,X) = F(X, Y) = p, In general, F(Y,X) ¢ F(X, Y) 
and G(Y,X) ¢ G(X, Y). This makes explicit a result also applying to (4.5), where 
the Y's may be replaced by X's if measurements for the latter are available. 
Likewise, G(Y,X) can be calculated even if only the ranks of the X's are known. 

Motivated by confidentiality considerations, Spruill and Gastwirth (1982) have 
used concomitants to estimate the correlation coeffÉcient between two sensitive 
rv's X and Y, data on which is kept by separate agencies A and B, respectively. In 
their method, agency A is asked to divide the N = mn individuals into n groups of 
size m by ordering on x, and to provide the group identification of each individual 
as well as the group means and variances, i.e., for group k, k = 1 , . . . ,  n, 

= 

where the sums extend over i = ( k - 1 ) m +  1,...,kin. Given only the group 
identifications, agency B simply provides 

= ZY[i:NI/m, 4,k = Z(Y[i:NI--Yk)2/m " 

The least-squares estimate of p can now be obtained from t3 = ~#x/dY as 

n - -  N X 

/3= 

where ~ and ~ are grand means. Note that only the overall sample variances of X 
and Y occur in ~; the s~, k and s~, k are needed for assessing the efficiency, E, of t5. In 



4 9 8  H. A. David and H. N. Nagaraja 

the bivariate normal case the authors find f5 to be nearly unbiased and E to exceed 
0.8 for n = 10 in the cases studied (N = 100, 1000; p = .25, .50, .75, .9). 

Guilbaud (1985) considers related questions of inference in a slightly more 
general setting. Let F(x,y) be the cdf of (X,Y)  and let 0 = 2 0 <  
21 < ' . ' < 2 k - 1  < 2 k = l .  Also let ~ j = F x l ( 2 j ) ,  j = l , . . . , k - 1 ,  ~ 0 = = - o c ,  
~k = oe, where Fx(x) has positive derivatives in the neighborhoods of 2 i , . . . ,  2k_~. 

Given a random sample (xi,yi) i =  1 , . . . ,  n, from FIx,y ), natural estimates of 
the class means are 

= Z Yj =  Yli:.l/nj, ; = 1 ,  
i i 

where the SUlllS now extend over the nj observations with x-values in (~j-1, ~j). 
With/~xj  = E(Xj), #Yi = E(Yj), Guilbaud gives the 2k-variate asymptotic nor- 
mal distribution of nf72[(Xj- #x,j), ( Y j -  #gj)], with the help of which large- 
sample tests and confidence intervals can be constructed. He also treats stratified 
random sampling. 

4.2. Estimation for censored bivariate data 

Concomitants of  order statistics arise very naturally when multivariate data sets 
are subject to some form of Type II censoring. In the bivariate case, with data 
( x i , Y i ) ,  i = 1 , . . . ,  n, three kinds of such censoring may usefully be distinguished 
(Watterson, 1959): (a) censoring of certain xi:n and of the corresponding YIi:nJ; (b) 
censoring of certain yi:n only; and (c) censoring of certain xi:n only. For example, 
(b) occurs when the xi:~(i= 1 , . . . ,n)  are entrance scores and the 
Y[i:nl (i = k + 1 , . . . ,  n) later scores of the successful candidates. On the other hand, 
(c) applies in a life test terminated after n -  k failures when measurements on 
some associated variable are available for all n items. 

The bivariate normal case has been considered by Watterson (1959). Some of 
his findings may be illustrated on case (a) above. Obviously, #x and ~x may be 
estimated as in the univariate case. The mean and variance of a linear function of 
the concomitants can be found from (2.3). Since 

g~r:n ~- #X AV GXO~r:n 

it follows from (2.3a) that any coefficients ai making EaiX~:n unbiased for Px also 
make 2aiY[i:n I unbiased for #y, for any p, where Z ranges over the available 
observations. However, var(ZaiY[i:,i) depends on p, so that there is no optimal 
choice of the a~ for the estimation of #r- Two possible choices are to take a~ as in 
the best linear estimator of Px or in Gupta 's  (1952) simplified linear estimator of 
/~x- In cases examined numerically in Watterson (1959) it turns out that the latter 
choice is the more efficient except when p is very close to 1. 

Case (a) with censoring on the right has been studied in detail by Harrell and 
Sen (1979), who use a maximum likelihood approach, modified by replacing the 
MLE's o f #  x and ~x by Gupta 's  estimates. Such a replacement is made because of 
the considerable biases in the MLE's, especially under heavy censoring. The 
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authors also propose a test for the independence of X and Y based on the cor- 
relation coefficient between the order statistics and their concomitants. Gill, Tiku 
and Vaughan (1990) use Tiku's simplified MLE's to deal with two-sided censoring 
in the same situation, but allowing for possibly more than one set of concomitants. 

Gomes (1981, 1984) has employed the idea of concomitants in her study of 
estimators based on multivariate samples of order statistics of largest values. 
Suppose only the top k extreme values in each of n independent large samples are 
available. For simplicity take k = 2 and label the largest sample value as X, and 
the second largest as Y. Then the data can be modeled as a random sample of size 
n from the joint p d f f ( x , y )  = ~!x!9(y), y < x, where G is one of the extreme value 

• o ~ x )  

cdf's m (3.5) but for an unknown change of location and scale. Gomes compares 
their linear estimators based on the order statistics of the X-values with and 
without the information on the concomitants. 

4.3. Ranked-set sampling 

An ingenious method called ranked-set sampling was introduced by McIntyre 
(1952) for situations where the primary variable of interest, Y, is difficult or 
expensive to measure, but where ranking in small subsets is easy. For example, 
suppose we require an estimate of the mean height #y of a population of trees• 
Choose a sample of size n = k 2 (or a multiple of k2). Randomly subdivide the 
sample into subsamples of k. In each subsample rank the trees visually by height 
and in the ith (i = 1 , . . . ,  k) subsample measure only the tree of rank i. 

Concomitants of order statistics enter when the ranking is subject to error, a 
situation first studied by Dell and Clutter (1972) who speak of judgment ordering• 
Such an ordering may be regarded as based on an auxiliary X-variate representing 
an actual or hypothetical measurement (David and Levine, 1972; Stokes, 1977). 
Then the Y-value in the ith subsample may be denoted by L,.~E!!!q" The L,.~Y~!!!] a r e  
• , (i) • independent rv s, Y~i.kJ having the same marginal distribution as Y[i.k]. Then the 
ranked-set sample ~stimator of #v is 

and 

1 ~ y(i) (4.5) ~Y = ~ ti:*l ' 

1 ~ E ( y ( 0 "  ~ 1 ~  

But the Y[/:,] are a permutation of i.i.d variates Y/having mean/~r, so that 

1 * 
E ( & )  = = . 

i" 1 " ~  

Thus /~r is an unbiased estimator of/~r without any distributional assumption 
other than the existence of/~r. 
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We have also 

k 

k 4  = E?~2(r i -  #y) 2 
i=1 

k 

= E ~ ( Y [ i : k J -  # y ) 2  

i=1 

k k 

= ~ var(r~i:~j) + Z(E~,:~I - #y)2 
i= l  i=1 

But (4.5), by the independence of the g(i) gives Ii:k]' 
k 

k2var(/~Y) = Z var(g[i:k]) , 
i=1 

so that 

] 
This may be compared with vary  = ~2/k, the efficiency, RE, of/~y relative to Y 
being 

varY 1 
R E - - -  

var(fiy) 1 - -  k [i:k] 

where ~):kl = (EI~i:k] - #y)/O-r. 
Although errors in ranking reduce the efficiency of ranked-set sampling, sub- 

stantial gains in efficiency may remain i fp is not too small (Dell and Clutter, 1972; 
Ridout and Cobby, 1987). 

These methods have been extended to the estimation of variance (Stokes, 
1980a), the correlation coefficient (Stokes, 1980b), and to situations with size 
biased selection of the X's (Muttlak and McDonald, 1990a,b). There are many 
other aspects of ranked-set sampling not involving concomitants. See the com- 
prehensive review paper by Patil et al. (1994) and the article in the companion 
volume by Bimal K. Sinha and Nora Ni Chuiv. 

4.4. Double sampling 

In this method (O'Connell and David, 1976), which has a similar purpose to 
ranked-set sampling, X1,...,Xn represent inexpensive measurements. Based 
on their ordering k(< n) expensive measurements Y[rj:n] are made (j = 1 , . . . ,k ;  
rl < . . .  < r~). Then a simple estimator of #r is their average, YIr:~J say, which 
under the linear model (2.2) is given by 

13" 7 __  
YEr',,] = #y + P~xx (Xr:~ - #x) +~[d , (4.6) 
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m 

where X~:n and ~[d are the means of X~j:n and e[rj], j = 1 , . . . ,  k. Evidently, Y[r:,] is 
unbiased for #r  i fX has a symmetric distribution and the ranks are symmetrically 
chosen, i.e., 

r +l_j = n + 1 - r j ,  j : 1 , . . . ,  [½(k + 1)] 

From (4.6) we have 

var(Y[r:,]/ar) = p2var(X~:n) + (1 - p2)/k . 

Thus the ranks rj minimizing var(X~:n) also minimize var(Ylr:, ]), whatever the 
value of p. The simple form of  optimal spacing involved in minimizing var(X,.:,) 
was studied already by Mosteller (1946). The (asymptotically) optimal ranks may 
be taken as the integral parts of n2j + 1, 0 < 21 < --. < 2k < 1, where the 2j have 
been tabulated in the normal case for k _< 10; roughly, 2j = ( j -  1)/k. The fol- 
lowing table illustrates that Y[r:,] is more efficient than fir under bivariate nor- 
mality, increasingly so as p approaches 1. Although n and k have been chosen to 
allow a direct comparison, the experimental situations are, of course, different 
and Pr is more robust, remaining unbiased even when the distribution of X is not 
symmetrical. 

5. The rank of Y[r:.] 

Suppose we have independent measurements (X/, Y/), i = 1 , . . . ,  n, with common 
cdf F(x,y), on individuals or objects A1,. . . ,A~ and that Ai ranks r th o n  the 
x-measurements. In this section we study the following two questions: (a) What is 
the probability that Ai will rank s th on the y-measurement. (b) What is A/s ex- 
pected rank on the y-measurement? 

Let Rr:n denote the rank of Y[r:n] among the n Y/, i.e., 

/ /  

Rr,. = r i ) ,  (5.1) 
i=l 

Table 1 
var/~r/varY[,-:~] 

p n = 9 ,  k = 3  n = 4 9 ,  k = 7  p n = 9 ,  k = 3  n = 4 9 ,  k = 7  

0 1 1 0.6 1.173 1.068 
0. l 1.003 1.001 0.7 1.278 1.110 
0.2 1.014 1.005 0.8 1.457 1.185 
0.3 1.033 1.013 0.9 1.816 1.343 
0.4 1.063 1.024 0.95 2.171 1.512 
0.5 1.107 1.042 1 2.864 1.884 
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where 

I ( x ) = l  i f  x _ > O ,  

= 0  if x < O .  

For (a) we require ~rs = P{Rr,n = s}.  Consider first ~n.. We have 

= = x . : . ,  = 

i=1 

=nP[Xn=X, :n ,  Yn=Yn:n} 
= nP{X1 < X , , . . .  ,X,_~ < X,; Y1 < Yn,..., I1,, 1 < Y,} 

= n [ P { x  < x ,  Y < y } J  de(x,y) 
OO OO 

upon conditioning on .12,, Y~. It is not difficult to extend this argument to finding 
~ .  Table 2 is an extract from a table in David et al. (1977) for the case when X 
and Y are bivariate normal. 

EXAMPLE 5.1. Suppose that the scores of  candidates taking two tests are bivariate 
normal with p = 0.8. Out of  9 candidates taking the first (screening) test the top k 
are selected and given the second test. What is the smallest value of  k ensuring 
with probability at least 0.9 that the best o f  the 9 candidates, as judged by the 
second test, is included among the k selected? 

We require the smallest k such that 

g99 @ 7~89 -~- ' ' "  -~- 7~10-k,9 ~> 0.9 

i .e. ,  

7c99 -[- 7c98 Jr- . - -  -~ 799,10_k > 0.9 . 

Table 2 
nr, = P{Rr,, = s} as a function of p for n = 9 

r s p 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 

9 9 0.1407 0.1746 0.2133 0.2576 0.3087 0.3686 0.4404 0.5306 0.6564 0.7510 
8 0.1285 0.1459 0.1631 0.1797 0.1952 0.2087 0.2185 0.2207 0.2033 0.1725 
7 0.1211 0.1296 0.1363 0.1408 0.1424 0.1401 0.1321 0.1152 0.0817 0.0523 
6 0.1152 0.1173 0.1171 0.1143 0.1085 0.0989 0.0846 0.0640 0.0350 0.0169 
5 0.1100 0.1069 0.1015 0.0938 0.0836 0.0706 0.0546 0.0357 0.0149 0.0053 
4 0.1051 0.0973 0.0877 0.0765 0.0638 0.0497 0.0345 0.0192 0.0059 0.0015 
3 0.0999 0.0877 0.0747 0.0611 0.0472 0.0334 0.0205 0.0095 0.0021 0.0004 
2 0.0939 0.0773 0.0612 
1 0.0856 0.0635 0.0451 

0.0462 0.0324 0.0204 0.0107 0.0040 0.0006 0.0001 
0.0300 0.0183 0.0097 0.0041 0.0011 0.0001 0.0000 
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Since, f rom the column for p = 0.8, we have 

0.5306 + 0.2207 + 0.1152 + 0.0640 = 0.9305 

the required value is k = 4. 
The expected value of  Rr,. may  be obtained directly by the following charac- 

teristic order  statistics argument.  Let  Xr:._1 and X~:. denote  the r th order  statistic 
for  X1,X2, . . . ,X,-1 and X1 ,X2, . . . ,X,-1 ,X, ,  respectively. 
Then  clearly 

Xr: n = Xr_l:n_ 1 if X n < Xr_l: n 1 

= Xr:n-1 if X, > X~:, ~ (5.2) 

= X ,  if)(, ,  l:n 1 < X n  <Xr:n-1 

From  (5.1) we have 

E(Rr,,) =nP{Y[r:4 > Y,} , (5.3) 

where corresponding to (5.2) 

P{Y[r:,] >-- Y,} = P { X ,  < X r _ l : n _ l , Y  n < Y[r l:n-1]} 
1 

+ P { X n  >Xr :n - l ,Yn  < Y[r:n 1]} ÷ -  • 
n 

On noting that  the joint  pd f  fx,-,:.,-,,Yr t:, I(x'Y) may be writ ten as 
f~-l:,  l (x) .  f ( y l x ) ,  we now obtain 

F/5 E ( R ~ )  = l + n  f ( y l x ) [ P { X < x , Y < y } f r - I : , - , ( X )  
OO 0(3 

+ P { X  > x, Y < y}f~:~ 1 (x)] dy dx . 

In the bivariate normal  case some further simplification is possible. It turns out  
(David et al., 1977) that,  for  r / (n  + 1) ---+ 2(0 < 2 < 1) as n -~ oc, E[Rr~/(n + 1)] 
is quite well approximated  even for n as small as 9, by its asymptot ic  value 

l i m  \ n + l j = q )  2 ' 

where ~ denotes the s tandard normal  cdf. It can also be shown (David and 
Galambos,  1974; David et al., 1977) that  for  0 < u < 1 

limo oP{R~,. <_ nu) = ~b \ (1 - p2)1/2 j " 

For  the general bivariate case Yang (1977) obtains correspondingly the intu- 
itively appealing result 

li_m P{Rr,. <_ nu} = P { Y  <_ F~-I(u)]X = Fff '  (2)} . 
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Probabilities related to those in Table 2 are studied by Spruill and Gastwirth 
(1996) in connection with employment problems of a professional couple. Led- 
ford and Tawn (1998) investigate the limiting behaviour ofP(Rn,, = n) for a range 
of extremal dependence forms. 

6. Selection through an associated variable 

Yeo and David (l 984) consider the problem of choosing the best k objects out of n 
when, instead of measurements Y~ of primary interest, only associated measure- 
ments X,. (i = 1 , . . . ,  n) are available or feasible. For  example, Y/could represent 
future performance of  an individual, with current score X~, or Y~ might be an 
expensive measurement on the ith object, perhaps destructive, and X/ an inex- 
pensive measurement. It is assumed that the n pairs (X/, Y/) are a random sample 
from a continuous population. The actual values of the Xi are not required, only 
their ranks. A general expression is developed for the probability rc that the s 
objects with the largest X-values include the k objects (k < s) with the largest 
Y-values. When X and Y are bivariate normal with correlation coefficient p, a 
table of 7r = nrcs:k(p), for selected values of the parameters, gives the smallest s for 
which rc > P* is preassigned. 

EXAMPLE 6.1. From 10 objects it is desired to select a subset of size s that will 
contain the k best objects (k = 1,2, 3) with probability at least 0.9. We give a table 
of s for p = 0.7, 0.8, 0.9. 

p k 1 2 3 

0.7 5 7 na 
0.8 4 6 7 
0.9 3 5 6 

Thus if we want to be at least 90% certain that the object with the highest Y-value 
is in the chosen subset for p = 0.8, we need to select the four objects with the 
highest X-value. The full table gives the actual inclusion probability 10rc4:1 (0.8) as 
0.9183 and also shows that the object with the highest X-value has probability 
0.5176 of having the highest Y-value. Another table tells us that for the object 
with the highest X-value to have probability _> 0.90 of having the highest Y-value, 
would require p > 0.993! For a 50:50 chance p -- 0.783. 

With the help of a computer program it is also possible to base the selection of 
the best object on the actual values of the Xi rather than on their ranks (Yeo and 
David, 1984). 

Suppose now that the cost of each Y-measurement is c. Originally unaware of 
the preceding approach, Feinberg and Huber (1996) have pursued the same aim 
of using the ordering of the X/ to  reduce the number, nc, of objects for which 
ne e ds to  be measured. They choose nc to maximize the difference in expected 
"utility" and expected cost: 
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E[max(Y[ ...... +I:,1,---, Y[,,:~])] - cnc . (6.1) 

Both the finite-sample and asymptotic theory of 

V~,n = max(Y[n_k+l:<,...,Y[n:~]) k =  1 , . . . , n  

is treated by Nagaraja and David (1994). Note that V<n is nondecreasing in k and 
that V~, = Yn:n. Thus the closeness of V<, to its maximum, a measure of the 
effectiveness of the auxiliary variable X, may be gauged by E(V<n)/E(Yn,). A 
compact expression for the cdf Fk,n (y) of Vk,n is 

S Fk,,,(y) = [F~(ylx)]kfx,, k:, (x) dx , (6.2) 
(30 

where 

F~(y[x) = P(Y _< y lX  > x) . 

Choice of nc according to (6.1) is difficult to perform analytically, but has been 
accomplished by Feinberg and Huber (1996) in the bivariate normal case through 
extensive simulation. These authors report close agreement between the simulated 
means of 14,n and values of E(14,,) obtained by numerical integration based on (6.2). 

Using the expression in (6.2), Nagaraja and David (1994) have derived the 
limit distribution of V~,n in the extreme and the quantile cases. When k is held 
fixed, if the assumptions made in Theorem 3.1 hold (except that Fg in Eq. (3.3) is 
replaced by F2*), as n increases, 

S F<n(An + Bny) --+ {H(ylx)}~ dG(k+~)(x) . 
O 0  

As to be anticipated from (6.2), in the quantile case, where k = [np], 0 < p < I, 
under mild conditions, the limit distribution of Vk:n coincides with the limit dis- 
tribution of the sample maximum from the cdf F2* (ylFf~ (1 - p ) ) .  If this cdf is tail 
equivalent to Fy (in the right tail), the norming constants associated with V<, are 
closely related to those associated with Yk:~. See Nagaraja and David (1994) who 
also discuss the simple linear regression model (2.1) in detail. Let us now present 
the limit distribution of Vk,n in the important case of the bivariate normal pop- 
ulation. 

EXAMPLE 6.2. Let (X, Y) be bivariate normal with zero means, unit variances and 
correlation coefficients p(Ipl < 1). When k is held fixed, 

d V/1 p2Zk:~ (6.3) V<n - pv/2 log n --+ - , 

where Zk:k is the maximum in a random sample of size k from the standard normal 
population. While the role of p is explicit in (6.3), it works behind the scenes in the 
quantile case. To be precise, if p > 0, 

e(v<n <_ an + bny)---+ a3(y) (6.4) 
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for all real y, where the norming constants can be chosen as for the sample 
maximum from a standard normal population. In other words, we can choose 

l log(47zlog n) and b~ = 1 / ~  n (6.5) 
an = V/21°g n -  2 ~ i ~ n  

in (6.4). 
When p = 0, while (6.3) holds one has to replace an and b,, by ak and bk, 

respectively, in (6.4). 
For p < 0, from Joshi and Nagaraja (1995) it follows that, when k is held fixed, 

(6.3) holds on replacing p by IPl. But in the quantile case, the norming constants 
are substantially different. With k = [npl , 0 < p < 1, 

p (  Vk,n -- cn } e- p exp(v) 
~---0~, < v_ ~ 

where 0 = v/1 - p2, b~ is given by (6.5), and 

{ log(erclog n) } 
c,  = p~- ' (p )  + 0 V/21og n ~ n - -  

--0 ((~ 1(/)))2/2) +log(plpl/O) 
v/2 log n 

Thus, in the quantile case, the norming constants do not depend on p explicitly as 
long as p > 0. 

Joshi and Nagaraja (1995) explore the joint distribution of Vk,, and V[n, where 
V~*, = max(Y3:n],... , Y[,-k:~l). This can be used to study the joint distribution of 
V<, and Yn:, since Y,:, = max (Vk:n, V~n ). It can be used to choose k such that 
Vk,,/Y,:, is close to 1. 

7. Functions of concomitants 

The maximum of selected concomitants considered above in section 6 is one of 
several functions of Y[i.n] studied in the literature. The earliest one was the partial 
sum Sn( t )= ~I~21 Y[i:~]', for 0 < t <  1, discussed extensively by Bhattacharya 
(1974, 1976). He used its asymptotic properties to carry out inference on the 
regression function re(x) = E(Y]x) and the integrated regression function. Moti- 
vated by genetic selection problems, Nagaraja (1982) introduced and studied the 
properties of the induced selection differential, a linear function of the upper 
partial sum. Yang (1981a, b) and Sandstr6m (1987) studied the asymptotic 
properties of smooth linear functions of the Y[i:~]. Stute (1993) and Veraverbeke 
(1992) have established the asymptotic normality of U-statistic-type functions of 
concomitants. Guilbaud (1985), Do and Hall (1992), and Goel and Hall (1994) 
discuss the asymptotic theory for some special functions of concomitants. In this 
section we briefly discuss the distribution theory (mostly asymptotic) and 
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elaborate on some interesting applications to selection problems, inference on 
m(x), bootstrapping, and the assessment of the quality of file-matching proce- 
dures. 

7.1. Partial sum process and some generalizations 

Bhattacharya (1974, 1976) has investigated the weak convergence of the process 
{S,(t), 0 < t < 1} and the closely related process 

{ il~:~ <Fc' (t) } 

The idea behind his approach is a decomposition that uses conditional expecta- 
tions. For example, for the S~(t) process we may write 

[,t] [,t] 
S,(t) : Z ( Y [ i : . ] -  m(X/:.)) + Zm(X~-:.) , 

i=1 i=1 

=- Sly(t) + S2~(t), say . 

On appropriate normalization, Sln(t)  converges to a functional of a Brownian 
motion process and the asymptotic behavior of Szn(t) is associated with an in- 
dependent Brownian bridge process. From this, the asymptotic properties of Sn (t) 
(and of S*(t)) follow. For instance, under some regularity conditions, for a fixed t 
in (0.1), 

(Sn(t) - S(t) ) /~/n d N(O, ~(t) + var { a£otB(s) dh(s) } ) (7.1) 

where h(t) = m(Fx 1 (t)), S(t) = f~ h(s) ds, O(t) = f~ var(YIX = Fx 1 (s)) ds, and 
B(-) is a Brownian bridge. The limiting result in (7.1) and other structural 
properties of the limiting processes are used to suggest tests on m(x) and a con- 
fidence interval for S(t). For further details see-the excellent discussion in 
Bhattacharya (1984, sec. 9) which also elaborates o n t h e  work of Sen (1976) 
establishing some invariance principles for concomitants. Egorov and Nevzorov 
(1981: Russian version date; 1984: English version date) consider the multidi- 
mensional concomitant model (see section 2.3) and show that the vector of partial 
sum processes of the concomitants converges to a multivariate normal distribu- 
tion. The rate of this convergence is shown to be of order 1/v/~. 

Let us now consider a genetic selection problem where X and Y represent the 
measurement of a certain characteristic associated with the parent and offspring 
populations, respectively. Suppose k parents, ranked highest on X, are selected 

- - !  
and the average Y[k:n] (introduced in (4.2)) of the Y-values associated with the 
offspring of the selected parents is recorded. A measure of improvement in the 
offspring group due to the selection is the induced selection differential 
D[k:~] = (Yik:n]- #Y)/~Y, also known as the response to selection in the genetics 
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literature. Nagaraja (1982) has investigated the finite-sample and asymptotic 
properties of D[k:~j. In the extreme case, its limit distribution can be obtained from 
the limiting joint cdf given in (3.7). In the quantile case, (7.1) can be used to 
establish the asymptotic normality of Dik:~ ]. Nagaraja has also established the 
asymptotic bivariate normality of appropriately normalized D[k:nj and 

- - !  

Dk:,, = (X~:, - tix)/ax. While the data here can be viewed as a Type II censored 
bivariate sample, Guilbaud's (1985) work discussed in section 4 refers to a certain 
kind of Type ! censored sample. 

For  the linear regression model (2.1), asymptotic properties of D[k:,] have been 
thoroughly investigated. Let /~x(P) and a2x(p) be the conditional mean and 
variance of the distribution of X given X > Fx 1 (q), where k = [np], 0 < p < 1, 
and q = 1 - p .  For  simplicity, let us take #x = 0 and 0-x = 1. Then as n --+ ec, 

0-2 

7.2. Smooth functions of  Xi:n and Y[i:n] 

Yang (1981a) has considered general linear functions of the form 

Lln=-n~-'~J~n) Y [ i : n ] i = l  a n d  L2n=-i~lJn .= r/(X/:., Y[i:.]) , (7.2) 

where J is a bounded smooth function which may depend on n, and q is a real- 
valued function. Using the idea of Hfijek's projection lemma, he has established 
the asymptotic normality of these statistics. These results are used to construct 
consistent estimators of quantities associated with the conditional distribution of 
Y given X = x. For  example, suppose our interest is in the regression function 
m(x). Yang presents an estimator of the form of LI~ where the weight function 
J depends on x and on an auxiliary density function f0. He shows that the 
estimator 

L3 . (x)=  _ 6 ~ f 0  - 3 ~  .j 

is a mean square consistent estimator of re(x), where F~(x) is the empirical cdf of 
the X sample, and 6(n) ~ 0 as n --+ oc. Johnston (1982) has derived the asymp- 
totic distribution of the maximal deviation suplL3n(x ) - m(x)l and has obtained a 
large- sample uniform confidence interval for the regression function. 

Yang (1981b) considers the limiting properties of functions of the form 
L4, = ~n_ 1J(tni)Y[i:n] with t~i being close to i/n. Such statistics are used to test 
univariate and bivariate normality and to test independence of the X and Y 
samples. Mehra and Upadrasta (1992) establish the asymptotic normality of a 
class of linear functions of concomitants with random weights. They take the 
weight associated with Y[i:,] to be J(i/n,Ri,n), where Ri,n is the rank of Y[i:,I (see 
(5.1)) and J is a smooth bivariate bounded score function. 
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The statistic L2, in (7.2) may also be written as 

f/? T(F,) =- J(Fn(x) )H(x,y) dF,(x,y) . 
O~ O(3 

Sandstr6m (1987) has proved the asymptotic normality of x /n(T(F, ) -  T(F)) 
using a stochastic differential while Yang's (1981a) result had used E(T(F,)) in 
place of T(F) as the location-shift parameter. See also Chanda and Ruymgaart  
(1992). Sandstr6m also establishes, under certain assumptions, the asymptotic 
normality of v/~(T(F,) - T(FN)), where FN is the cdf of a finite population of 
size N. 

7.3. Other functions 

Stute (1993, preprint 1989) has generalized Bhattacharya's limit result on S, (t) to 
U-statistic type functions of degree 2. More precisely, for a symmetric function 
~(x,y), consider the process {S3,(t), 0 < t < 1} with 

S3n(t) = Z tl(Y[i:n] ' YV:n]) " 
i<j<_[nt] 

Using Hfijek's projection l e m m a -  a classical tool in the asymptotic theory of 
U-statistics - Stute proves weak convergence results for the process S3n(t). Such 
functions arise in the inference for quantities related to the conditional distri- 
bution of  Y given X <x .  For  instance, with r/(yl,y2 ) = (Yl-Y2)2/2, S3n(t)/t2 
provides a consistent asymptotically normal estimator of var(YIY _< Fxl(t)).  
Veraverbeke (1992) expands the study to U-functions of higher orders by con- 
sidering trimmed versions of U-functions of the form 

S4n(S,t) -- Q~)  Zt~(Y[il:n],'",Y[im:n]) 

where the summation is over Ins] < ia < . . .  <im < r l  - -  [nt] with 0 _< s < t _< 1. 
To estimate the percentiles of the bootstrap distribution of a statistic of inte- 

rest, Efron (1990) suggested a method that represents the statistic as the sum of 
two random variables one of which has a known distribution. Do and Hall (1992) 
relate it to concomitants of order statistics. To elaborate, let Y = X + e, where Fx 
is completely known and Fy(y) is to be estimated. We observe (X/:n,e[i:,]), 
1 < i < n ,  where c[i:~ 1 = I~i:n ] -Xi:~. Do and Hall compare the asymptotic prop- 
erties of the empirical cdf F,,y(y) with the concomitant based estimator 

F;*, r(y) = - Z I - F x '  .+ e[i:,] < y , 
n i=1 \ 

where I(-) represents the indicator function. If the e's are sufficiently small, they 
show that F*y outperforms the classical estimator F,,r. 



510 H. A. David and H. N. Nagarqia 

C o n c o m i t a n t s  a p p e a r  na tu ra l l y  in the  s tudy  o f  f i l e -ma tch ing  t echn iques .  

S u p p o s e  the  l inkage  b e t w e e n  the  X - v a l u e s  a n d  Y-values  is u n a v a i l a b l e  a n d  the  

goa l  is to m a t c h  the  X va lue  wi th  its c o n c o m i t a n t  Y. I f  X a n d  Y are  pos i t ive ly  

co r r e l a t ed ,  one  m i g h t  use Y~-n. as the  predictorn o f  Y[i:n]. T h e  to t a l  cos t  o f  mis-  

m a t c h e s  can  be expressed  as the  s u m  Ssn = ~ i = 1  r/(Y/:~ - Y[i:,]) whe re  r / r ep r e sen t s  

a pena l t y  func t ion .  A s s u m i n g  r/ is s m o o t h ,  G o e l  and  H a l l  (1994) es tabl i sh  the  

s t r o n g  c o n v e r g e n c e  o f  $5, and  s h o w  tha t  it is a s y m p t o t i c a l l y  n o r m a l .  T h e i r  ap-  

p r o a c h  uses the  in t e re s t ing  fact  (Sec t ion  2.4) t ha t  F Y I x ( Y I X  ) is s t a n d a r d  u n i f o r m  

a n d  is i n d e p e n d e n t  o f  X.  
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A Record of Records 

Valery B. Nevzorov and N. Balakrishnan 

1. Introduction 

In his pioneering paper, Chandler (1952) defined records and laid the groundwork 
for a mathematical study of records. Since then, around 350 papers have been 
published on records. Elaborate review articles by Glick (1978), Nevzorov (1987a) 
and Nagaraja (1988a) have highlighted many of these advances. The books by 
Galambos (1978, 1987), Arnold and Balakrishnan (1989), and Arnold, Ba- 
lakrishnan, and Nagaraja (1992) also contain some limited discussions on the 
theory of records in the framework of order statistics. Books by Ahsanullah 
(1995) and Arnold, Balakrishnan and Nagaraja (1998) provide an elaborate 
treatment to records. Though only ten years have passed since the publication of 
the review articles by Nevzorov (1987a) and Nagaraja (1988a), numerous results 
have been obtained on different issues concerning records during this period. This 
increased activity in the area of records is clearly evident from the fact that our list 
of all articles dealing with records has around 230 in number (of which more than 
210 are listed in this article) while Nevzorov's (1987a) review article lists 166 
references and Nagaraja's (1988a) article contains 75 references. It naturally 
prompted us to prepare this updated review of the theory and applications of 
records; furthermore, the above mentioned review articles by Nevzorov (1987a) 
and Nagaraja (1988a) also allow us to concentrate more on the developments 
during the last decade and peripherally on the earlier work. The first part of our 
review is devoted to the classical records (based on sequences of independent and 
identically distributed variables), while the second part deals with non-classical 
record models and schemes and some new generalizations of records. 

2. Classical records 

The work records is bound to bring a smile or two in any one as one constantly 
hears of new records being created in natural events such as rainfall, temperature, 
flood-level, snowfall, etc. or in different sports events. It may even bring a picture 
of Wayne Gretzky or Sergey Bubka in his/her mind should that individual be an 
avid sports fan (like both of us). Interestingly enough, a similar reaction may be 
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observed even among the statistical community as Records has not become a 
mainstream area of Statistics and some may even question the usefulness of the 
study of records. While it is true that modelling the occurrence of records in 
sports events by means of a simple stochastic model may often be very difficult (if 
not impossible), the theory of records nonetheless provides a basis for some very 
interesting, intriguing and neat theoretical results. 

in many respects, the theory of records is very closely connected with that of 
order statistics and in particular with extreme order statistics. The phenomenal 
progress in the theory of order statistics is one more reason for the increased 
activity in the study of records. We shall consider the period 1952-1979 first 
during which time the classical theory of records was initiated as well as con- 
solidated considerably. Of the various works that appeared in this period, we 
want to mention specifically the following: 

• Chandler (1952) - presented the basic definitions and the first theoretical 
results on records 

• Foster and Stuart (1954), Foster and Teichroew (1955), and Stuart (1954, 
1956) - discussed the use of records in statistical procedures 

• R6nyi (1962) -presen ted  many remarkable results including representations 
of distributions of record times in terms of distributions of independent random 
variables 

• Tata (1969) - gave representations similar to those of R~nyi for record 
values. It needs to mentioned here that the representations presented by R6nyi 
and Tata enabled the application of the well-developed theory of sums of in- 
dependent random variables to the study of records 

• Neuts (1967) and Holmes and Strawderman (1969) -discussed inter-record 
times 

• Dwass (1964, 1966), Lamperti (1964) and Tiago de Oliveira (1968) - in- 
vestigated extremal processes which are very closely related to records 

• Shorrock (1972a,b, 1973, 1974, 1975)-made elaborate discussions on extremal 
processes, record values and record times, and also included a nice representation of 
record values from discrete distributions as a sum of independent terms 

• Resnick (1973a,b,c, 1974, 1975) and Resnick and Rubinovitch (1973) - 
discussed relationships between maxima, record values and extremal processes, 
and also presented the set of all possible asymptotic distributions for record 
values and the associated normalizing constants 

• Vervaat (1973) - presented limit theorems for records from discrete popu- 
lations and also discussed weak records 

• Williams (1973) - gave another interesting representation for record times 
• Dziubdziela and Kopocinsky (1976) and Dziubdziela (1977) introduced the 

generalizations of record values and record times through k th record values and 
k th record times 

• Ahsanullah (1978, 1979), Nagaraja (1977) and Srivastava (1978, 1979) - 
presented some characterizations of distributions, like exponential and geometric, 
using different properties of record values 
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• Biondini and Siddiqui (1975) and Guthrie and Holmes (1975) investigated 
records arising from sequences of  dependent random variables. 

Of  the 70 or so papers that appeared in the period 1952-1977, we have men- 
tioned here only about  half o f  them. Most  of  these papers deal with the classical 
records model and these developments have been ably reviewed by Glick (1979), 
Nevzorov (1987a) and Nagaraja  (1988a). We will, therefore, focus our attention 
more on the "nonclassical" records models than the "classical" records model. 

3. Definitions 

Let X1,X2,... be a sequence of random variables, Xl:n _<...  _< Xn:n (n = 1 ,2 , . . . )  
be the corresponding order statistics, M(n)=X,:,  = max{X1,X2, . . . ,X,},  and 
m(n) =Xl:n =min{X1,X2,...,Xn}. For  any k = 1 ,2 , . . . ,  we define k th record 
times L(n, k) and k th record values X(n, k) as follows: 

L(O, k) = O, L(1, k) = k, L(n + 1, k) = min{j  > L(n, k) :  Xj > Xj k,j-1 } 

(3.1) 

and 

X(n,k) = Xc(n,k)-k+l:r(n,k) • (3.2) 

The more simple notation L(n) = L(n, 1) and X(n) = X(n, 1) will be used for 
the most  important  case k = 1. In this case, we can also define the upper record 
times L(n) and the upper record values X(n) in the following way: 

L(0) = 0, L(1) = 1, L(n + 1) = m i n { j : X j  > M(L(n))} (3.3) 

and 

X(n) =M(L(n)), n = 1 ,2 , . . .  (3.4) 

I f  we replace > and M(L(n)) by < and m(L(n)) in (3.3) and (3.4), we get the 
definitions of the lower record times and the lower record values. In an analogous 
way, we can define the k th lower record times and the k th lower record values. We 
will consider only the upper records because the theories of  lower and upper 
records practically coincide in all their details. In fact, we can obtain the lower 
records from the upper records by changing the sequence X1,X2,... to 
- X 1 , - X 2 , . . . ,  or (in the case then X's  are positive) to the new sequence 
l/X1, l/X2,.... Note that for discrete distributions we can introduce the so-called 
weak records. For it, we have to use the sign >_ in (3.3) instead of >. In this case, 
any repetition of a record value is also a record. 

We will use N(n,k)(N(n)=N(n,  1)) and A ( n , k ) = L ( n , k ) - L ( n - l , k )  
(A(n) = L(n, 1) - L ( n -  1, 1)), n = 1 ,2 , . . . ,  to denote the numbers of  k th records 
in a sequence Xl,)(2,. •. and k th inter-record times correspondingly. 
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Finally, let ~(x) denote the cumulative distribution function of  the standard 
normal distribution and E(a,a) denote the exponential distribution with the 
density function 

f ( x )  = (1/a) e x p { - ( x -  a)/a},  x > a , 

where a is the location (or threshold) parameter  and a is the scale parameter. 

4. Representations of  record times and record values using sums 
of  independent terms 

In many respects, the intensive development of  the theory of records was due to 
results of Dwass, R6nyi, Tata  and Shorrock, which have allowed to the excess 
record statistics in terms of sums of independent random variables. The first result 
in this series was established independently by Dwass in 1960 and R~nyi (1962). 

THEOREM 4.1. Let )(1 ,X2, •.. be a sequence of independent random variables with 
a common continuous distribution function, and let indicators 41,42,.. .  be de- 
fined as follows: 4,, = 1 if Xn is a record value and ~, = 0 otherwise. Then, the 
random variables ~1,42,-.. are independent and P{4, = 1 } = 
1 - P{~ ,  = 0} = 1 / n ,  n = 1 , 2 , . . . .  

Note that ~, = I{X,,>M(, 1)}, n = 2 , 3 , . . . ,  and P{41 = 1} = 1. 
Theorem 4.1 is a corollary of  the following result for sequential ranks R,. 

LEMMA 4.1. [R6nyi (1962), Barndorff-Nielsen (1963)] Let )(1, X2, . . .  be a sequence 
of independent random variables with a common continuous distribution func- 
tion and Rn, n = 1 ,2 , . . . ,  be a rank of Xn in a sequence XI ,X2 , . . . ,X , ,  that is 
R~ = ~ = 1  l{x,,>x~}. Then, the random variables Ri ,R2, . . .  are independent and 
P { R ~ = r } =  1/n, 1 < r < n .  

As a matter  of  fact, another form of Lemma 4.1 was given by Wilks (1959). 
Theorem 4.1 presents a very important  representation for the random vari- 

ables N(n) and L(n). 

REPRESENTATION 4.1. I f  X1,X2,. . .  are independent random variables with a 
continuous distribution function, then 

N ( n )  - ~1 + 42 + " "  + 4n, n = 1 , 2 , . . .  , 

and 

P{L(m) > n} = P{N(n) < m) = P{~1 + 42 + ' "  + ~n -< m) . 

COROLLARY 4.1. I f  X1,X2,. . .  are independent and have a common continuous 
distribution function F, then the distributions of  N(n) and L(n) do not depend 
on F. 
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Lemma 4.1 helps us to obtain more general results than Theorem 4.1 [see, for 
example, Nevzorov's (1986a) paper on k,-records]. The following results are valid 
for the k th records. 

THEOREM 4.2. Let X1,X2, • •. be a sequence of independent random variables with 
a common continuous distribution function, and let indicators ~k), n _> k, be 
defined as follows: ~(k) = 1 ifXn is a k th record value and ~k) = 0 otherwise. Then, 
for any fixed k = 1,~, . . . ,  the random variables ~k)~2~1,. . .  ar e independent and 

_- l }  = n _> k .  

REPRESENTATION 4.2. Under the conditions of Theorem 4.2, the following 
equalities hold for any k = 1,2, . .  • 

~(k) + . . . + ~ k ) ,  n = k , k + l , .  N(n,k) = ~2k) + ~k+l "" , 

and 

_ = _ = . 7 ( k )  . .  ~ k )  m }  P{L(m,k) > n} P{N(n,k) < m} p{~k) + ~k+l @" -}- ~ ' 

A number of  such representations were obtained for record values X(n) and 
the k th record values X(n, k). 

THEOaEM 4.3. [Tata (1969)] Let X1,X2,... be a sequence of independent E(0, 1) 
random variables. Then, the record spacings X(1 ) ,X (Z ) -X (1 ) , . . . ,X (n )  
- X ( n -  1) , . . .  are independently distributed as E(0, 1). 

This theorem implies the following interesting representation for the record 
values from the E(0, 1) distribution. 

REPRESENTATION 4.3. For  the E(0, 1) distribution, 

X(n) ~=XI + X z + . . . + X n ,  n = l , 2 , . . . .  

The results of  Dziubdziela and Kopocinsky (1976) and Deheuvels (1984a) give 
the following generalization of the last representation. 

REPRESENTATION 4.4. When X1,X2,... is a sequence of independent E(0, 1) ran- 
dom variables, then for any k = 1 ,2 , . . . ,  

OO z • ' " X ,  o o  
{ k y ( n , k ) } n = l  d { X  1 n t_y  2 _1_ ~_ n}n= 1 . 

Now taking into account Representation 4.4 and using Smirnov's transfor- 
mation, one can obtain the following result. 

REPRESENTATION 4.5. Let XI,X2,. . .  be a sequence of independent random vari- 
ables with a common continuous distribution function F. Then, for any 
k = 1 ,2 , . . .  and n =- 1 ,2 , . . . ,  
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{y(n,k)}nC~=i d { H ( ( ( o  1 _}_ 602 @ . . .  qt_ Ogn))/k}°~=l , 

where H(x) = G(1 - e -x) with G being the inverse funct ion o f F ,  and the r a n d o m  
variables COl, co2,.. ,  are independent ly distr ibuted as E(0, I). 

A very impor tan t  and interesting p roper ty  of  records f rom discrete sequences 
was established by Shorrock  (1972a). Wi thou t  loss of  generality, let us consider 
non-negat ive  integer values for X ' s  and suppose that  P{X = n} > 0 for  any 
n = 0, 1 ,2 , . . . .  

THEOREM 4.4. Let X, X1,X2,... be a sequence of  independent  r a n d o m  variables 
taking values 0, 1 , 2 , . . . ,  and let indicators ~/0, q l , - . ,  be defined as follows: qn = 1 
i fn  is a record value in the sequence XI ,X2 , . . . ;  that  is, X(m) = n for  some m, and 
qn = 0 otherwise. Then,  the r a n d o m  variables */0, q l , . . ,  are independent  and 
P{r/,, = 1} : 1 - P{t/, = 0} = P{X = n}/P{X > n}, n = 0, 1 ,2 , . . . .  

This theorem allows us to obta in  distr ibutions o f  record values X(n) in the 
discrete case using the following representat ion.  

REPRESENTATION 4.6. Under  the condit ions of  Theorem 4.4, 

P{X(n) > m} = P{t/0 +/11 Jr-.-.  q- tim < r/}, // > 1, m _> 0 . 

Nevzo rov  (1986a, 1987b) generalized Theo rem 4.4 for the case o f  the k th records 
using the indicators t/(~ k) defined as follows: t/~ k) = 1 if n is a k th record value in the 
sequence X1 ,X2, . . . ,  and r/! k) = 0 otherwise. 

THEOREM 4.5. Under  the condit ions of  Theo rem 4.4, for  any k = 1 , 2 , . . . ,  the 
indicators (~) (k) q0 ,t/1 , --- are independent  and 

P{r/! k) = 1 } =  ( P { X  = n}'~ a, 
\P{X 7 n}J 

n = 0 , 1 , 2 , . . . .  

REPRESENTATION 4.7. Under  the condit ions of  Theo rem 4.4, for  any k = 1 , 2 , . . . ,  

P{X(n ,k)  > m } = P { t / ~  k ) + - - - + q ~ )  < n } ,  m_>0,  n_> 1 . 

5. Distributions and probability structure of record times 

The main  results on distr ibutions of  record times were given in the early papers  of  
Chandler  (1952) and Foster  and Stuar t  (1954). All their results were rediscovered 
later by R6nyi (1962) with the help of  Representa t ion 4.1. He  also obta ined a lot 
o f  new formulae  for records. We list below some of  the mos t  impor tan t  results 
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connected with distr ibutions of  record times in the case when a parent  distribu- 
t ion funct ion F is cont inuous.  

Recall first o f  all (see Corol la ry  4.1) that  distr ibutions of  r a n d o m  variables 
N ( n )  and L(n)  in this s i tuat ion do not  depend on the popula t ion  distr ibution F.  

THEOREM 5.1. [Chandler  (1952), R6nyi (1962)] The  joint  and margina l  distribu- 
tions of  record times are as follows: 

(a) if 1 < g2 < ' < g,, then 

P{L(2) = g2, . . . ,  L(n)  = g,} = 

(b) for  any  n _> 2 and g_> n, 

1 

en(en -- 1)(fn-1 -- 1 ) ' "  (g2 -- 1) ' 

1 
P{L(n) = g) = Z e,zce - 1 ) - . .  (g2 - 1) 

l<g2<-"<gn i<g  \ n 

and, in part icular ,  P{L(2) = g} 1 , = ~  g_>2. 

To  connect  the distr ibutions of  L(n)  and N ( n ) ,  we have to use the equalities 

P{L(n) > m} = P{N(rn) <_ n} 

and 

P{L(n) = m} = P { N ( m -  1) = n -  1, ~m = 1} 

= P { N ( m - 1 ) = n -  1 } / m  . 

These relat ionships between L(n)  and N ( n )  were used to prove  the second par t  
o f  the following theorem.  

THEOREM 5.2. [R~nyi (1962), Shor rock  (1972a), Westcot t  (1977a)] Let  S~ denote 
the Stirling n u m b e r  of  the first kind, defined by 

oo 

x ( x - 1 ) . . . ( x - n + l ) = Z S ~ x  k . 
k=0 

Then: 

(a) P{N(n)  = m} = J~.,[ and P{N(n) -- m} 
(logn) m I 

as n -+ oc; 

(b) P{L(n) = m} = 'l~', I and P{L(n) = m} 
(logm) " 2  

- -  ~ ~ as m ---~ oc. 

R6nyi has discovered the generat ing functions of  L(n) .  

THEOREM 5.3. [R6nyi (1962)] Fo r  any n = 1 ,2 , . . . ,  
funct ion of  L(n)  is given by 

n--1 

Es L(') = 1 + (s - 1) Z ( - l o g ( 1  - s)) t /g!  . 
g=0 

the probabi l i ty  generat ing 
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Note that the above expression of the probability generating function of L(n) 
can be rewritten as 

1_ fO l°g(l-S) xn le-Xdx 
(n I)! 

The statements of Theorem 5.1 imply the Markov structure of record times 
L(n). 

THEOREM 5.4. The sequence L(1),L(2), . . .  is a Markov chain, where 

m 
P{L(n) = k l L ( n -  l) = m} k ( k -  1)' i rk  > m > n -  I 

and 

m 
P(L(n) > k l L ( n - 1 ) = m } = ~  i fk_>m . 

One can also prove Theorem 5.4 through Representation 4.1. For example, it 
follows from the independence of indicators ~i, ~2,-.. that 

P{L(n) = klL(n - 1) = m} 

= P { ~ l ÷ ~ Z ÷ ' " ÷ ~ k  1 = n - l ,  ~ k =  l l ~ 1 ÷ ~ 2 ÷ ' ' ' ÷ ~ m - 1  

= n - 2 ,  {m= 1) 

= P{{~+l + " "  + {k 1 = O, ~k = 1} 

= P{~-m+l = 0 } - - " P { ~ k - 1  = 0}P{~.k = 1} 
m k - 2 1  m 

m + l  k - 1  k k ( k - 1 )  

The probability structure of the record times L(n) can be also seen from the 
following result. 

THEOREM 5.5. [Williams (1973)] Let COl,O)2,... be independent E(0, 1) random 
variables and Ix] denote the integer part of x. Then, L ( n +  1) 
[L(n) exp{con}] + 1, n = 1,2, . . . .  

Note that the Markov property of the sequence L(n) is seen easily from The- 
orem 5.5. 

One more interesting result which we give below describes the probability 
structure of the quotients L(n + 1)/L(n). 

THEOREM 5.6. [Galambos and Seneta (1975)] Let integer-valued random variables 
T(1), T(2), . . .  be defined by the following inequalities: 

L(, + l) 
V(n) - 1 < - -  <_ T(n), n = 1,2, . . .  
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Then, T(1), T(2), . . .  are independent and identically distributed random variables 
and 

P{r(n)  = j }  - - -  
j ( / ' -  1)' 

j = 2 , 3 , . . . ,  n =  1 , 2 , . . . .  

The following result can be considered as a corollary of Theorem 5.4 or 
Theorem 5.6. 

COROLLARY 5.1. [Tata (1969), Galambos (1978, 1987)] 

(a) For  any m = 1,2, and n = 1,2, pfL(n+l) } 1. . . . . . .  , [ L(n) > m  = m '  
pJ'L(n+l) } 1 (b) For  any x _> l, lim I. L(n) > x  = x a S n - + ° ° '  

All the results given in this section are valid for any continuous parent dis- 
tribution. Unfortunately, in the discrete case the distributions of record times 
depend on the distribution of X's. It is possible in this situation to write the 
necessary formulae for distributions of random variables L(n), but the corre- 
sponding expressions are rather complicated. For  example, if X's take on values 
0, 1 ,2 , . . . ,  then 

oo 

P { L ( 2 ) = m } = Z P { X = n } ( P { X < _ n } )  m 2 P { X > n } ,  m = 2 , 3 , . . .  , 
n=0  

and, in particular, 

P { L ( 2 ) = 2 } = P { X z > X 1 } =  1 -  ( P { X = n } )  2 2 . 
n=0  

It is known that any record time L(n) exists with probability one for con- 
tinuous distributions. In the discrete case, X's have to satisfy the following 
condition, which guarantees the existence of any record time: if f i =  
sup{x: Y(x) < 1}, then either/~ = cx: or/~ < oo and P{X =/~} = 0. 

In the discrete case, there are many more interesting results for record values 
(we will discuss them below) than for record times.-One can find some in- 
formation about random variables L(n) for discrete sequences in Vervaat (1973). 

6. Moments  of  records times and numbers of  records 

Representation 4.1 allows us to calculate the moments of the random variable 
N(n). It is not difficult to see that 

1 1 1 
E N ( n ) = A ( n ) =  l + ~ + g + . . . + - n  

and 
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Var(N(n)) = B(n) = A(n) - " 1 n = 1,2, 

Note also that A(,) --~ 1 and B(n) ---+ 1 as n ~ oo. 
Jog n 

Now consider record times L(n). We know that P{L(2) = k) 1 --k(k ~) ,k> 1. It 

means that EL(2) = oo, and hence EL(n) = ~ for any n > 1. This fact, may be, 
was the main reason why classical records have not been very popular amongst 
statisticians. Note that k th record times L(n, k), beginning from k = 2, have finite 
expectations. Meanwhile, some moments (factorial moments of the negative order 
and logarithmic moments) of record times L(n) have been derived which have a 
rather simple form. 

In the following section, it will be shown that random variables 

is asymptotically normally distributed. Hence, it is important to have formfilae 
for the logarithmic moments of the random variable L(n). Pfeifer (1984a) used 
Williams' representation (Theorem 5.5) to prove that 

ElogL(n) =n - C + 0(n2/2"), 
Var(L(n)) = n  - 7r2/6 + 0(n3/2 ") as n ---+ cxD , 

where C = 0.5772.. .  is Euler's constant. 
More precise results were obtained by employing the martingale approach to 

finding the moments of record times [see Nevzorov (1986d, 1987c, 1989) and 
Nevzorov and Stepanov (1988).] It was shown, in particular, that 

E l o g L ( n ) - - n - C - 2  (,+1) 5 3 - ,  
1 

- - ~ 4  " - A 5  " , 

where 0 < A < 49/96, and 

Var(L(n)) = n - 7r2/6 + n/2 ("+1) + O(2-") as n ---+ oo . 

Let us now consider the factorial moments of random variable ~ of negative 
order in the following way: mr(4) = E{(4 + 1)(4 + 2)-- .  ( 4 -  r)} -1, r = -1 ,  
- 2 , . . . .  Among other results, Nevzorov (1986d, 1990b) has proved that 

1 
z mr(L(n)) ( 1 - r ) ! ( 1 - r ) "  1, r - 1 , - 2 , . . .  , 

~ (  ' ) ( ' ) - - - -3~ /2 ,  o - - - - ' 2 , . . . .  and in particular, ~ = 2-", E (L(,)+1)~C(,)+2) 

We should also mention the following useful result due to Nevzorov and 
Stepanov (1988): for any ~ > 0, 

E(L(n))'-~--F[c~ ) + ~  ~ + O ( ( ~ + 2 ) - " )  

a s  n ~ O 0  

and, in particular, 
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E L/n  lJ2 /2J3 4 +O( )n 
E(1)=2n 3 

L - ~  + ~ + O(4-") ' 

E + ~- + O ( 5  " ) a s  F/  - - +  O O  . 

7. Limit theorems for record times 

Representations of record times and numbers of records via sums of independent 
indicators presented earlier in Section 4 are convenient and simple tools for ob- 
taining different limit theorems for random variables N(n) and L(n). Most of the 
classical limit theorems for records were obtained by R~nyi (1962). It was shown 
that ~ asymptotically has the standard normal distribution The laws of 
large ~ b e r s  and the law of the iterated logarithm were also obtained for N(n). 
These theorems, with the use of the relation of equality P{L(m) _> n} = P{N(n) _< 
m}, have been transformed to obtain the corresponding asymptotic results for the 
record times L(n). In particular, the following results were established by R6nyi 
(1962). 

THEOREM 7.1. As n ~ oc, 

---~1 = 1  , 

p ~ l o g L ( n ) - n  } 

{ l°gL(n)-n =1}  
P limsup (2nloglogn)l/2 

= P liminf(2nloglogn)l/2 = -1 = 1 . 

Another interesting result is due to Shorrock (1972a) which is as follows. 

L(n+l) L(n+r) THEOREM 7.2. For  any fixed r > 1, the ratios L(~) , • • •, L(n+r 1) are asymptotically 
independent as n -+ oo. 

A survey on strong limit theorems and various techniques for record times as 
well as for record values has been made by Pfeifer and Zhang (1989). 

8. Inter-Record times 

Although inter-record times A(n) = L(n) - L ( n -  1), n = 1 ,2 , . . . ,  are expressed 
very simply in terms of record times, there are many interesting results for these 
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random variables and there also exist some special methods to investigate them. 
Below we give some useful formulae for these inter-record times, zX(n). 

Distributions of inter-record times for sequences of independent random 
variables X1 ,X2, . . . ,  having a common continuous distribution function F, do not 
depend on F. These distributions are determined by the following, as given by 
Neuts (1967): 

/0 P { A ( n )  = r} = (1 - e-X) r 1 x" 2e-2~ ~-~7~).w dx, r = l , 2 , . . . ,  

foo °c x" 2e-X f o l v r - - ( l o g ( 1 - - V ) ) ~ - 2  dv P{a(n) > r} = (1 - e x)~ (n - 2)~---~ dx = (n - 2)! 

= ~ - ~ ( m r ) ( - 1 ) m ( l + m )  1 ", r = 0 , 1 , . . . ,  n = 2 , 3 , . . .  , 
m=0 

from which it follows immediately that EA(n) = oc for any n = 2, 3, . . . .  
The logarithmic moments of inter-record times were given by Nevzorov and 

Stepanov (1988). For example, they have shown that 

n - l + 0 1  n - l + 0 2  
E l o g A ( n ) = n -  l - C - +  2,+1 + 23"  , n = 2 , 3 , . . .  , 

where C is Euler's constant, 0 _< 01 _< 2/3 and 0 < 02 _< 6. 
Some limit theorems for inter-record times were proved by Neuts (1967), 

Holmes and Strawderman (1969), and Strawderman and Holmes (1970), among 
others. Some of these results are as follows: as n --+ oc, 

p{logA(n,  1} 
÷ = 1 , 

p~log A(n) - n } 
t < x , 
{ logA( )-  } 

P lim suP (2n log log n) l/2 = 1 

{ logA(n) - n } 
= P l i m i n f ( 2 n l o g l o g n ) l / 2  = - 1  = 1 . 

The joint asymptotic distribution of two successive inter-record times were 
obtained by Tata (1969) as 

lim P{logA(n) - n > xv/n, logA(n - 1) - n < yv~} 

=max{0,  ~b(y) - ~b(x)} as n --+ c~ . 

Strong limit theorems for the joint distribution of L(n) and A(n) were obtained by 
Galambos and Seneta (1975) and Pfeifer (1987). 
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9. Distributions and probability structure of record values in sequences 
of continuous random variables 

Tata's result (Representation 4.3) is a tool to obtain the distribution function for 
record values X ( n )  if independent random variables X1,X2,... are distributed as 
E(0, 1). In this case, X ( n )  can be represented as a sum ofn independent terms with 
the same E(0, 1) distribution, and hence 

1 fo x P { X ( n ) < x } - ( n  -1)! v ' - l e - V d v ,  x > O  . 

Note also that in this case the joint distribution density function f .  of random 
variables X(1) ,X(2) , . . .  , X ( n )  has the following form: 

f , ( x , l , X 2 , . . . , x , )  = e  -x" i f0  <x l  <x2 < . . .  < x ,  

= 0 otherwise (9.5) 

One can now apply Representation 4.5 (with k = 1) to obtain an analogous 
formula for record values in the general case, when i.i.d, random variables 
X1,X2,... have any continuous distribution function F. In this situation, 

1 __ f log(l F(x)) 
- v n - l e - v  dv P { X ( n ) < x } - ( n  1)!J0 

It is of interest to compare this expression with the following one: 

P{X(n) < x} = E{ (F(x)) L(")} . 

If X/s have a common density function f ,  then 

f , ( x l  ,x2,  . . . , x , )  = r(xl  )r(x2) . . . r (xn)(1  - F ( x , )  ), 

forxl  <x2 < - - '  < x n  , 

where r(x)  - f(x---k-) is the hazard function, and the density function of X ( n )  has 
- -  1-F(x) 

the form 

f~(x) = { -  log(1 - F(x))}" l f ( x ) / ( n  - 1)! . 

Representation 4.5 also implies the Markov structure of record values. 
Moreover, Shorrock (1972b) proved that the equalities 

P{X(n + 1) _> x I X ( 1 ) , X ( 2 ) , . . . , X ( n )  = v} =P{X(n + 1) _> x l X ( n )  = v}  

P{X > x} 
- P { X > v } '  x > v  , (9.6) 

are valid not only for continuous distribution function F. The only restriction to 
provide this result is the existence with probability one of any record value X ( n ) .  
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For continuous distributions, the following relationship between order statis- 
tics and record values exists. Deheuvels (1984b) and Gupta (1984) showed that for 
a n y n >  1 a n d r e >  1, 

P{X(n) > ylX(n - 1) = x} = P{Xm:m > ylx,.-~:m = x} a.s. 

10. Limit theorems for record values from continuous distributions 

We know that X(n) = M(L(n)) ,  where M(n) = max{Xl,X2,. . .  ,Am}. Hence, ex- 
istence of some relationships between the asymptotic behavior of record values 
and maximal order statistics can not be surprising to us. It is well-known that 
there are three types of nondegenerate asymptotic distributions for centered and 
normalized maxima M(n).  The corresponding limit distribution functions may be 
written as exp{ -exp ( -g (x ) )} ,  where g(x) is one of the following functions [see 
Galambos (1978, 1985)]: 

(i) 9(x) = x, - o c  < x < oc; 
(ii) 9(x) = ~logx, c~ > 0, x > 0, and 9(x) = -o c ,  x < 0; 
(iii) 9(x) = oc, x > 0 and 9(x) = - e  log(-x) ,  x < 0, ~ > 0. 

Tata (1969) and Resnick (1973b) posed and solved the problem of describing the 
set of all possible asymptotic distributions of record values X(n)  under suitable 
normalization. It appears that these limit distribution functions have the form 
cb(g(x)), where 9(x) is any of the functions given above. Resnick (1973b) also gave 
a description of the domains of attraction of the corresponding limit laws along 
with a form of appropriate centering and normalizing constants. 

Some other limit theorems (laws of large numbers, law of  the iterated loga- 
rithm, etc.) for record values and their differences and quotients were obtained by 
Resnick (1973a,b), de Haan and Resnick (1973), Goldie (1982), and Freudenberg 
and Szynal (1976). 

11. Record values from discrete distributions 

In this section, without loss of generality, we confine ourselves to i.i.d, random 
variables X,  X1,)22,.. .  taking on values 0, 1 ,2 , . . .  and such that P{X < n} < 1 for 
any integer n. The simplest way to investigate record values X(n)  in this situation 
is to apply Theorem 4.4 and Representation 4.6. 

The joint distribution of record values is given as follows: 

P{X(1) =j1 ,X(2)  = j2 , . . .  ,X(n)  = j,,} 

l l ~ p ~ x . . . ; l  l ,  O < _ j l < ' " < j n  • 
r = I  \ L ~ JPJ. /  
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It follows from the latter formula that the sequence X(1) ,X(2) , . . .  forms a 
Markov chain and 

P{X(n + 1) =j lX(n )  = i} P{X = j }  - P { X > i } '  j > i > n - 1  . 

For the case of the geometric distribution, results for record values can be 
simplified considerably. For  example, if we take the geometric distribution with 
probability mass function P{X = n} = (1 - p ) p "  1, 0 < p  < 1, n = 1 ,2 , . . . ,  then 
the record spacings X ( 1 ) , X ( 2 ) - X ( 1 ) , X ( 3 ) - X ( 2 ) , . . .  are all independent and 
X(n)  has the same distribution as the sum )(1 + . . .  + Xn. 

Some limit theorems for X(n) in this case were also obtained by Vervaat 
(1973). 

12. Weak records 

Sometimes, a repetition of a record value can be counted as a new record. Vervaat 
(1973) and Stepanov (1992) considered the corresponding record model. Essen- 
tially, this model is new only in the case when two random variables can coincide 
with a positive probability. That  is the reason why weak records are connected 
with sequences of discrete distributions. Definitions of weak record times LW(n) 
and weak record values XW(n) are given as follows: 

LW(1) = 1, LW(n + 1) = min{j > LW(n):Xj > max(X1,X2,. . . ,Xj_l)} , 

x~(n)  =&,,(n/, n _> 1 

Note that all weak records, unlike classical ("strong") records, exist with prob- 
ability one. The joint distribution of weak records is given by the equality 

p{XW(1) = jl,XW(2) =j2,--- ,XW(n) = jn} 

,-1 (P{X = jr}'~ 
= e{x  = s,} I-[ \ e 7 2  > j r}j ,  0 < j l _ < . . . _ < j , .  

This formula implies the Markov property of weak record values. 

THEOREM 12.1. [Vervaat (1973)] The sequence XW(1),XW(2), . . .  forms a Markov 
chain with probabilities 

p{XW(n + 1) =j]XW(n) = i} P{X = j }  
= P { X ~ / } '  j>_i  . 

One more useful result is based on the formula for the joint distribution of 
weak records which was given above. If X has a geometric distribution with 
probability mass function P{X = n} = (1 - p ) p " ,  n = 0, 1 ,2 , . . . ,  then the record 
spacings XW(1),XW(2) - XW(1),XW(3) - XW(2),... are all independent and have 
the same geometric distribution as X. 
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There are specific representations for weak records. The next result is presented 
in the form as given by Stepanov (1992), eventhough it was already present in an 
implicit form in Vervaat (1973). Now, let us introduce new random variables 
#0, #1, #2, . - - ,  where #, is a number of records in the sequence XW(1),XW(2),... 
taking value n, that is, #~ coincides with a number of repetitions of a record 
value n. 

THEOREM 12.2. Random variables #0,#1,#2, . . .  are all independent 

P{#0 = m} = (1 - pn)p m, n : 1,2,. m = 0, 1,2, where p, P{x=,} 
" "  " ' "  = P{x>n}" 

Theorem 12.2 implies the following relationships. 

and 

REPRESENTATION 12.1. For  any n = 1 ,2 , . . .  and m = 0, 1, . . . ,  

p{XW(n) > m} = P{#0 + #1 + " "  + #m < n) 

and 

p{XW(n) = m} = P { # o  + #1 + ' "  + ~m-1 < n ,  #o  -}- #1 -}- ' " " -]- #m -~ n )  . 

Vervaat (1973) and Stepanov (1992) used this result to express the distributions 
of weak record values as sums of independent random variables, and applied 
them in turn to establish limit theorems for XW(n). 

13. Bounds and approximations for moments of record values 

Along the lines of the derivations of bounds and approximations for moments of 
order statistics, some bounds and approximations have also been developed for 
the moments of record values. For  example, by employing Cauchy-Schwarz in- 
equality, Nagaraja (1978) has shown that the mean of the n th upper record value, 
E{X(n)}, for any arbitrary continuous distribution (with mean 0 and variance 1), 
satisfies the inequality 

E{X(n)} < { ( 2 n -  2~ - \ n - l j - l )  1/2 

and that this bound is sharp; it is achieved for the population with its inverse 
cumulative distribution function as 

F-~(u) = 1 [ ~ { -  log(1 - u)}n-l-1 l 
{ (2;-2) _ 1}~/2 

f o r 0 < u <  1 . 

Nagaraja (1978) has also derived an improved bound for the case when the 
population distribution is symmetric. Bounds and approximations can also be 
developed for the moments of record values using an orthogonal inverse expan- 
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sion; for details, one may refer to Nagaraja (1978) and Arnold, Balakrishnan and 
Nagaraja (1998). 

Upon noting that these bounds (like the one presented above) become very 
large very quickly even though they are universally sharp, Arnold, Balakrishnan 
and Nagaraja (1998) have developed some "extrapolation-type bounds", along 
the lines of Balakrishnan (1990) in the order statistics context, which give good 
improvements over the bounds as they are distribution-based. Nagaraja (1978) 
also followed the work of van Zwet (1964) in order to derive some bounds for the 
moments of record values based on c- and s-comparisons. 

Generalizing the work of Nagaraja (1978), Grudzien and Szynal (1983) derived 
the Cauchy-Schwarz bounds for the moments of the k th record values, X ( n , k ) .  
Though these bounds are simple and taken on a similar form (to the one given 
above), unfortunately these bounds are not sharp. In fact, they are sharp only for 
the case when k = 1 (in which case it coincides with the result presented above for 
the usual record values). For  this purpose, following the lines of Moriguti (1953) 
and Balakrishnan (1993), Raqab and Balakrishnan (1997) used the greatest 
convex minorant principle in order to derive sharp bounds for the moments of the 
k th record values. 

14. Recurrence relations for moments of record values 

Numerous recurrence relations and identities exist in the literature for the mo- 
ments of order statistics; see, for example, David (1981), Arnold and Ba- 
lakrishnan (1989), and Arnold, Balakrishnan and Nagaraja (1992). Along the 
same lines, recurrence relations may be established for the single and product 
moments of record values as well. 

For  example, in the case of the standard exponential distribution, upon 
making use of the differential equation f ( x )  = 1 - F(x) ,  Balakrishnan and Ah- 
sanullah (1995) established the following recurrence relations for the moments of 
upper record values: 

E { X ( n ) }  a+' = E { X ( n -  1)} a+l + ( a +  1)E{X(n)} a for n > 1,a >_ 0 , 

E { X a ( m ) X  b+l (m + 1)} = E{X a+b+l (m)} + (b + 1)E{X~(m)Xb(m + 1)} 

form>_ 1,a,b >_ O , 

E { X a ( m ) X  b+l (n)} = E { X a ( m ) X  h+' (n - 1)} + (b + 1)E{Xa(m)Xb(n)  } 

for 1 < m < n ,a ,b  >_ O . 

Balakrishnan and Ahsanullah (1995) have also presented more general results for 
the higher order product moments of record values, as well as some recurrence 
relations for the moments of record values from the non-identical exponential 
model. 
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Proceeding along the same lines and exploiting the underlying differential 
equation of the population distribution assumed, recurrence relations for single 
and product moments of record values have been established for a number of 
different distributions including Rayleigh, Weibull, Gumbel, generalized extreme 
value, Lomax, generalized Pareto, normal and logistic distributions. Interested 
readers may refer to the papers by Balakrishnan and Chan (1994, 1995), Ba- 
lakrishnan, Ahsanullah and Chan (1992, 1995), Balakrishnan, Chan and Ahsa- 
nullah (1993), and Balakrishnan and Ahsanullah (1994a,b). Reference also be 
made to Chapter 3 of Arnold, Balakrishnan and Nagaraja (1998) for a review of 
all these results. 

15. Joint distributions of record times and record values 

Earlier, it was pointed out that 

x} = E{(F(x)) L(n)} . P{X(n) < 

This formula connects the record values and their corresponding record times. 
The easiest way of establishing this relationship between X(n) and L(n) is through 
the following result which was proved by Ballerini and Resnick (1987b) in a more 
general situation. 

THEOREM 15.1. Let )(1,X2,...,Xn be independent random variables with a com- 
mon distribution function. Then for any n, the indicators of records 41,32,.. •, ~ 
(as defined in Representation 4.1) do not depend on M(n) = max{X1 ,X2,.. .  ,Xn}. 

From Theorem 15.1, one can write 

P{X(n) < x} = P{M(L(n)) < x} 

= ~ P { M ( L ( n ) )  < xlL(n ) = m}P{L(n) = m} 
m = n  

o o  

= ~ P{M(m) < x[L(n) = m}P{L(n) = m} 
m ~ n  

o o  

= ~ P{M(m) < x}P{L(n) = m} 
m ~ n  

o o  

~--~{F( )}mp{L( ) } = X ?/ = m 

m = n  

= E{(F(x)) L(n)} . 

Note that in the above proof, we have used the fact that the event {L(n) = m} 
for any m _> n coincides with the event {~l + "'" + ~ m  1 = /1/ - -  1, ~m = 1} and, 
therefore, it does not depend on M(m). 
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The joint  distr ibution of  record times and record values has been discussed by 
R6nyi (1962). Let  X1,X2, . . .  be i.i.d, r a n d o m  variables having a c o m m o n  con- 
t inuous dis tr ibut ion funct ion F. Then,  for any 1 < k(2) < . . .  < k(n), 

P{L(1) = 1,L(2) = k ( Z ) , . . . , L ( n )  

= k(n ) ,X(1 )  < x l , X ( 2 )  < y2 , . . .  ,X(n)  < Xn} 

where the integrals are taken over  the set A of  points  u = (ul, u 2 , . . . ,  un) given by 

A = {u:  - o c  < Ul < ' "  < u,, F(uj)  < xj, j = 1 , . . . , n }  . 

It  is more  convenient  to consider the joint  behavior  of  record values X(n)  and 
inter-record times A(n). Shor rock  (1972b) showed that  the sequence of  two-di- 
mensional  vectors  (X(n),  A(n)), n = 1 , 2 , . . . ,  forms a M a r k o v  chain with prob-  
abilities 

P{X(n) > x, A(n) = mIA(1 ) ,X(1 ) , . . .  , A(n - 2 ) ,X(n  - 2), 

A ( n -  1 ) , X ( n -  1) = y }  

= { F ( y ) } m - l { 1  - / ; ' ( x ) } ,  x > y  . 

It  was also p roved  [see S t rawdermau  and Holmes  (1970) and Shor rock  (1972b)] 
that  the inter-record times A(n), n = 1 , 2 , . . .  are condit ional ly independent  under  
fixed values of  r a n d o m  variables X ( 1 ) , Y ( 2 ) , . . . ,  and 

P{A(n) = m ] X ( 1 ) , X ( 2 ) , . . . }  = {1 - F ( X ( n ) ) } { F ( X ( n ) ) }  m l 

m = 1 , 2 , . . .  

There  also exists some results on the rates of  closeness of  the r a n d o m  variables 
A(n), L(n) and re = - l o g { 1  - F ( X ( n ) ) } .  For  example,  Shor rock  (1972b) showed 
that,  a lmost  surely as n ---+ ec, 

lim sup ] logA(n + 1) - ~n] 1 
log n 

and 

I l °gL(n)  - ~1 
lim sup log n = 1 . 

No te  that  an analogous  result is also valid for  r a n d o m  variables I logA(,+l)-logL(,)l log n 
as shown by G a l a m b o s  and  Seneta (1975). On these lines, the following result of  
Nevzo rov  (1995) is wor th  ment ioning  here. 

THEOREM 15.2. Let  H(x) = e e--'. Then  for  any q, 0 < q < 1, the following in- 
equality is valid: 
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where 

IP{rn - logL(n) < x} - H(x)[ _< r~(x) , 

e n) > xn 
2 

r . ( x )  = H ( x )  e -2x 2 2 n q_ 1 -- q 4x3i i fx  
/ 

q2 n233-n'~ i fx  = e x p { - ( 3 q n / 2 ) l / 2 }  l + 3 q n 2 1 - n q  2 (1 - - -~  J <x~ , 

1 3nq with xn = - ~ log (-T-)" 
Siddiqui and Biondini (1975) investigated the asymptotic behavior of random 

variables A(n + 1)e -~o and A(n)e -*°. The first sequence has asymptotically a 
standard exponential distribution while the limiting distribution function for the 
second sequence is 1 - f ~  z-2e zx dz, x > O. 

16. Generalizations of the classical record model 

Until now, we have discussed only the classical records arising from sequences of 
i.i.d, random variables. Nearly twenty years after the mathematical foundation of 
records was made by Chandler, only in the mid-seventies were the first attempts 
made in order to generalize the record scheme of Chandler. Three different di- 
rections of generalizations of records were considered during this time. One of 
them [see Yang (1975)] was based on relaxing the assumption of identicaly dis- 
tributed part of the initial random variables. The record times and record values 
from Markov sequences were then studied. Another direction taken by Dziubd- 
ziela and Kopocinsky (1976) and Dziubdziela (1977) kept the i.i.d, structure of 
the initial X's but they, unlike their predecessors, chose to investigate a more 
general random variable than the classical records - the so-called k th records. 
Hence, we begin our review here of the non-classical record models starting with 
k th record times and k th record values. 

17. k th record times 

Classical records simply a particular case of the k th records (when k = 1). It was 
precisely the reason why we gave in the very beginning of this chapter the defi- 
nitions of k th record times (3.1) and k th record values (3.2) and some general 
results (Theorems 4.2 and 4.5 and Representations 4.2, 4.4, 4.5 and 4.7). One can 
see that the theory of k th records relates to the theory of  classical records in the 
same way as the theory of the k th extremes relates to the theory of maxima. We 
will explain in this section what new properties and advantages were obtained due 
to this generalization. 

We may note first of all that there is another definition of the k th record times, 
which in the case of  continuous distributions coincides with (3.l). Let Rn, 
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n =  1 , 2 , . . . ,  (as in L e m m a  4.1) be sequential  ranks  of  r a n d o m  variables 
X 1 , X 2 , . . . .  Then,  the k th record times for any fixed k = 1 , 2 , . . .  can be defined as 
follows: 

L ( O , k )  = 0, L(1,k)  = k and L(n  + 1,k) 

= m i n ~ / > L ( n , k ) : R j > _ j - k + l } ,  n >  1 . (17.7) 

As was already ment ioned  in Section 2, Definitions (3.1) and (3.2) and some first 
results on the k th records were obta ined by Dziubdziela  and Kopoc insky  (1976). 

THEOREM 17.1. For  any k = 1 ,2 , . . .  and k < 12 < . - .  < In, 

P{L(1,k)  = k, L(2,k)  = 1 2 , . . . ,  L ( n , k )  = In} 

= k!(ln - k ) ] k n - l / { l n ! ( 1 2  - k ) . . .  (ln - k)} . 

THEOREM 17.2. F o r  any k = 1 , 2 , . . . ,  r a n d o m  variables L(1, k), L(2, k ) , . . ,  fo rm a 
M a r k o v  chain and P { L ( n , k )  > j l L ( n  - 1,k) ---- i} = (j - k ) ! i ! / { ( i  - k ) ! j ! } .  

The following proper t ies  of  the k th record times were established by Nevzo rov  
(1990a,b). 

THEOREM 17.3. (Compare  with Theo rem 5.3). Fo r  any k = l, 2 , . . . ,  

, = 1 , 2 , . .  

k ° FXun 1 e-k~(1 _ e-(X u))k-ldu" where H ( x )  = (~-1)! Jo 

THEOREM 17.4. Fo r  any k = 2 , 3 , . . .  and n = 1 , 2 , . . . ,  E { L ( n , k ) }  -= k n / ( k -  1) n-1. 
The latter result, if compa red  with equality E{L(n, 1)} = ec, n = 2, 3 , . . .  for 

the classical records,  " rehabi l i ta tes"  records in statisticians'  opinion. Note  that  
this new proper ty  of  the k th record times for  k >_ 2 agree with the results o f  Wilks 
(1959) and Gumbe l  (1961), who studied the momen t s  of  the n u m b e r  of  addi t ional  
observat ions  that  are needed to surpass the k th largest of  n existing elements of  a 
sample.  

THEOREM 17.5. Fo r  any k = 1 , 2 , . . .  and c~ > 0, as n ~ oc, 

E { L ( n ' k ) } k  ~ -  ~F(-~ { ( c ~ - k ) ( ~ - k + l )  k '~ 

k " 
+ 

Now,  let mr(~) = E { ~ ( ~ -  1 ) . . . ( 4 - r +  1)} for r =  1 , 2 , . . . , m 0 ( ~ )  = 1 and  
mr(~) = E[1/{(~ + 1)(3 + 2 ) . . - ( 4 -  r)}] for r = - 1 , - 2 , . . . ,  be the factorial  
momen t s  of  a r a n d o m  variable  4, o f  bo th  positive and negative orders.  
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THEOREM 17.6. For  any k = 1 ,2 , . . .  and r = k - 1,k - 2 , . . . ,  1,0, -1 ,  - 2 , . . . ,  

m r ( i ( n , k ) ) - ~ k n - l k [ / { ( k - F )  n I(k--F)!} for n _ > l .  

Of course, Theorem 17.4 is a corollary of Theorem 17.6. Amongst other cor- 
ollaries of Theorem 17.6, there are the following equalities: 

E { L ( n , k ) ( L ( n , k ) - l ) } = k ' ( k - 1 ) / ( k - 2 )  "-I, k > 2  , 

E{1/(L(n,k) + 1)} z k n - 1 / ( k  + 1)" , 

E [ 1 / { ( L ( n , k ) + l ) ( L ( n , k ) + 2 ) } ] = k n - l / { ( k + 2 ) n ( k + l ) } ,  n_> 1 . 

Theorems 17.5 and 17.6 are based on the next result [see Nevzorov (1990a,b)] 
in which J-(n, k) denotes the ~r-algebra of events generated by random variables 
L(1,k) ,L(Z,k) , . . . ,  L(n,k). 

THEOREM 17.7. For  any fixed k = 1 ,2 , . . .  and 7 < k, the sequence T,(7) is a 
martingale with respect to a-algebras J ( n ,  k), and 

E{T,(7)} = ( k -  7 ) r ( k +  1 ) / { k F ( k -  7 + 1)} . 

There are also some results for logarithmic moments of the k th record times 
[see Nevzorov and Stepanov (1988)]. For  example, it has been shown by these 
authors that for any k = 1 ,2 , . . . ,  

E{logL(n,k)} = 1 + 1 / 2 + . . .  + 1 / ( n -  1) + n / k  

- C - k ' - l / { 2 ( k +  1)'} - 5/d'-l/{lZ(k + 1 ) ( k + 2 ) ' }  

- 3k'-1/{4(k + 1)(k + 2)(k + 3)'} 

- A t d - 1 / { ( k + l ) ( k + Z ) ( k + 3 ) ( k + 4 ) " } ,  n>_l , 

where 0 < A < 49/4 and C = 0.5772.. .  is Euler's constant, and 

n 7~ 2 k l nkn_2 
~- ~ ( 1 / e  2) -~ l)n+l Var(L(n, k)) - k2 6 e=l (k + 

+ O ( ( k / ( k  + 1)) n+l, n --+ oo . 

Representation 4.2 can be used to obtain a central limit theorem as well as 
some other asymptotic results for random variables L(n, k) and N(n, k) [see De- 
heuvels (1981, 1982a, 1983a, 1984a,c,d)]. For  example, it has been proved that for 
any k = 1 ,2 , . . . ,  almost surely as n ~ ec, 

lim N(n'k) - 1, lim kl°gL(n~k) - 1 , 
klogn n 

and 

klogL(n, k) - n 
lim sup (2n log log log n) 1/2 

= 1  . 
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klogL(n,k)  n Note also that n~/2 asymptotically has a standard normal distribution. 
Deheuvels also obtained some strong approximation results for the k th record 
times by Wiener and Poisson processes. 

Sometimes [see, for example, Resnick (1987) or Deheuvels (1988)] the notion 
" k  th record times" is used for random variable L(~)(n), which are defined as 
follows: 

L (k) (0) = k - 1 a n d  L (k) (n) 

= m i n { j > L ( k ) ( n - 1 ) : R j = j - k + l } ,  n >  1 . (17.8) 

This definition almost coincides with the definition of the classical record times. 
As a matter of fact, the corresponding indicators of records, say 41 (k), ~2(k), • •., 
in this case are also independent, ~(k)  = 0, ~2(k) = 0 , . . . ,  ~k l(k) = 0 and ~,,(k) 
for any n _> k, has the same distribution as indicators ~n from Theorem 4.1 and 
Representation 4.1. Then, {N(~)(m)}~,__k =u {N(m) - N ( k -  1)}m~k, where 
N(k)(m) = ~l(k) + ~2(k) + . . .  + ~m(k), and it means (since 1 <_ N(k  - 1) <_ k - 1) 
that limiting distributions o f N  (k) (m) and N(m) as well as asymptotic properties of 
L(k)(n) and L(n) coincide. 

18. k th inter-record t imes  

A lot of properties for k th inter-record times A(n, k) = L(n, k) - L(n - 1, k) come 
out as corollaries of theorems for k th record times. We list here some results for 
these k th inter-record times A(n, k). Distributions and moments of these random 
variables have been discussed by Nevzorov (1987a,c), Nevzorov and Stepanov 
(1988), and Stepanov (1987). In particular, it has been shown that 

fo ~ 1 k~-lx~-2e x(k+l)(1- e x)m-ldx, P{k(n,k)  = m} = ( n -  2)! 

k > l ,  n_>2 ; 

fo ~ 1 kn ixn_2e xk(1 _ e_x)rd x P{A(n,k) > r} = ( n -  2)! 

r ) ( ) (  k ) l  n = Z ( _  1 m m 1 +  , r > 0 ,  n_>2 ; 
r m--0 

and 

E{A(n, k)} = E{L(n, k)} - E{L(n - 1, k)} - 

k n -  1 

( k -  1) ~-1' 
k > 2 ;  

kn k n - 1 

( k - l ) "  2 
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E { l ° g A ( n ' k ) } - n -  C 4 n - l + 0 1 ( k @ l ) " 2 k  

-~ n - l + 0 2 ( k @ 2 )  n 2 k  

where 1011 < ( k +  1)/3, 0 _< 02 _< 2(k + 2). 
Several limit theorems for k th inter-record times have been established by 

Deheuvels (1983b, 1984a,c); see also Nevzorov (1987a). Amongst many other 
results, it has been proved that as n --~ cx~, 

P{k(log A(n, k) /n  < x v ~ )  ~ ~(x) and P{(k/n) log A(n, k) --+ 1 } = 1 . 

The closeness of L(n, k) and A(n, k) is emphasized by the following two theorems 
of Deheuvels. 

THEOREM 18.1. For any k = 1,2, . . . ,  

1/k <_ lira sup(I log A(n + 1, k) - log L(n, k) l < 1 . 
/ 7 4 0 0  

THEOREM 18.2. For  any k = 1 ,2 , . . .  it is possible to define a standard Wiener 
process W (k) (t), t >_ O, such that at the same time almost surely, as n ~ ec, 

and 

I logL(n, k) - n /k  - W(kl/kl : O(log n) 

[ logA(n + 1,k) - n/k  - W(~)(n)/kl = O(logn) . 

Note that there is a possibility of obtaining a new type of result (as compared 
to the classical records) for the k th records. One can investigate the asymptotic 
behavior of L(n, k), A(n, k) and X(n,  k) in the scheme of series as k ~ oc. In this 
connection, we mention the paper of Gajek (1985) wherein it has been shown that 
the distributions of random variables kA(n,k) ,  under some general conditions, 
converge to the exponential distribution E(0, a) as k ---, oc. 

19. k th record values for the continuous case 

Some interesting results for the k th record values in the continuous case have been 
obtained by Deheuvels (1984d, 1988). It follows from Representation 4.5 that 
distributions of the k th record values X(n,  k) can be expressed via distributions of 
the classical record values. Let)(1 ,X2, • •. be independent random variables having 
a continuous distribution function F, and I11 = min{X1,...  ,Xk}, Y2 = min{Xk+i, 
• .. ,X2k},... and so on. Further, let X(n,  k) be the k th record values based on X's 
and Y(n) be the classical record values based on Y's. 
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THEOREM 19.1. For  any k = 1,2, . .  ., {X(n, k)},= z~  =d {g(n)}n=l.o~ 

This result, together with theorems for the classical record values, helps us to 
make several statements for the k th record values. For  example, it can be im- 
mediately obtained [see Dziubdziela (1977)] that 

1 l -kl°g{1-f(x)} 
_ _  b / n  l e - ,du  . P{X(n,k) < x }  =P{X(n , k )  < x }  - (n 1)!a0 

Note also that X(1, k),X(2, k ) , . . ,  forms a Markov  chain and 

P { X ( n + l , k )  >xlX(n ,k  ) = y } = { ( l - F ( x ) ) / ( 1 - F ( y ) ) }  k, x > y  . 

The last equality can be rewritten in another form, giving a curious relation 
between the k th record values and order statistics. 

THEOREM 19.2. F o r a n y k  = 1 ,2 , . . . ,  n = 2 ,3 , . . .  andre  = k +  1 , k + 2 , . . . ,  almost 
surely, 

P{X(n, k) > xlX(n - 1, k) = y} =P{Xm-k+l:m > xIX~n k:m = y} 

for x > y . 

Random variables 111, Y2,... in Theorem 19.1 have the joint distribution 
function G(x) = 1 - {1 - F(x)} k. Accordingly, F(x) = 1 - {1 - G(x)} ~/~, and it 
means that F and G are distribution functions simultaneously. Therefore, it fol- 
lows from Theorem 19.1 that the set of possible limit distribution functions for 
suitably normalized random variables X(n, k) is the same as for X(n); hence, it 
consists of three types of functions H(x) = e x p { -  exp(-g(x))} ,  where g(x) is one 
of the following functions: 

(i) g(x) = x, - e c  < x < oe; 
(ii) 9(x) = c~logx for c~ > 0, x > 0, and g(x) = - o c  for x < 0; 
(iii) g(x) = - e l o g ( - x )  for x < 0, ~ > 0, and g(x) = ec for x > 0. 

This and some related problems have been solved by Dziubdziela and Kopo-  
cinsky (1976), Dziubdziela (1977), Grudzien (1979), and Nevzorov (1988). Nev- 
zorov (1986a) also showed that even for a more general set of random variable 
XL(n,k)_g+l:L(n,k)  , where g is fixed or increases with increasing values of  n, as well as 
for random variables XL(n,k), all possible limit distribution functions include only 
three types of  functions H, as presented above. 

The following alternate definition of the k th record values X (k)(n) corresponds 
to the definition of the k th record times L (k) (n) given in (17.8): 

X (k)(n) = XL~k/(n), n = 1 , 2 , . . . .  

It  means that we select from the initial sequences X1,X2,. . .  only those Xm such 
m that m =L(k)(1), L(k)(2), . . . ,  that is, ~i=1 l{x,>xm} = k. There are some results 

available for X(g)(n). For  example, Deheuvels (1988) has obtained several limit 
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theorems for these random variables. It appears that the most curious result on 
these record values X (k) (n) is the so-called Ignatov's theorem. In order to state this 
result, we introduce for any k =  1 ,2 , . . .  a counting process N(k)(x)= 
~oon=l l{x/~(n)_<x}- It appears that N (k), k = 1,2,. .., are i.i.d, point processes. This 
statement is due to Ignatov (1981), but the proof  of this theorem was given only in 
Ignatov (1986). Goldie (1982) and Stare (1982, 1985) independently suggested 
their own proofs of Ignatov's assertion. Meanwhile, Deheuvels (1983a), knowing 
nothing of the papers of Ignatov, Goldie and Stam, also discovered this result. 
Mention should also be made here to the papers of Goldie and Rogers (1984), 
Deheuvels (1988), Engelen, Tommassen and Vervaat (1988), Rogers (1989) and 
the book of Resnick (1987), where Ignatov's theorem and related problems have 
been discussed in great detail. 

20. k th record values for the discrete case 

Without loss of generality, we consider here i.i.d.random variables X, X1,222,..., 
taking on values 0, 1 ,2 , . . .  such that P{X < n} < 1 for any n. In this case, all k th 
record values X(n, k) exist with probability one. From Theorem 4.5, one can then 
express the distribution functions of random variables X(n, k) via distributions of 
independent indicators as follows: 

P{X(n, k) _< rn} = P{r/~ k) + - . .  + ~/~) _> n} , (20.9) 

where p{q~k) 1} - 1 - P{t/! k) = 0} = {P{X=n}~k = \ ~ j  , n = 0, 1,2, . . . .  

As in Theorem 19.1, let us once again consider two sequences of independent 
random variables, X1 ,X2, • •. with distribution function F, and 111, I12,.. • such that 
Y1 = min{X1,...  ,Xk}, Y2 = min{Xk+l,... ,X2k}, and so on. Let X(n,k) be the k th 
record values based on X1,X2,... and Y(n) be the classical record values con- 
structed using the sequence I11, I12,.... Then, comparing (20.9) with the analogous 
result for record values Y(n), we observe that the result in Theorem 19.1 is also 
valid in the discrete case. Moreover, by combining the statements of Theorem 
19.1 for continuous and discrete distributions and the fact that the number of 
records taking values in any interval (a, b] depends only on values F(x), a < x < b, 
leads to the validity of Theorem 19.1 for any distribution function F. The only 
restriction on F is the existence of record values with probability one. Therefore, 
the statement of Theorem 19.1 is true if P { X = f l } = 0 ,  where f l =  
sup{x:F(x)  < 1}. 

21. Weak  k th record values 

Stepanov (1992) introduced weak k th record times LW(n,k) and weak k th record 
values XW(n, k) in the following manner: 



A record of records 541 

LW(1,k) =k,  LW(n + 1,k) = min{j  > LW(n,k) :Xj > X j _ k , j _ l }  , 

X~(n,k)  =XLw(n,k)_k+l:Lw(n,k), n >_ 1 . 

For continuous distributions, the weak k th records coincide with the strong k th 
records. Therefore, they need to be considered only in the case of discrete dis- 
tributions. Note that weak k th records exist with probability one in all situations. 

Let us consider a sequence of i.i.d, random variables X,X~,X2, . . . ,  taking on 
values 0, 1 ,2 . . . ,  and let P{X < n} < 1 for any n. Define random variables/~i(k), 
i = 0, 1 , . . . ,  as follows: # i ( k ) =  m, m = 0, 1 , . . .  if in the sequence X1,X2,. . .  we 
have exactly m weak k th records taking a value i. Then, the following results due 
to Stepanov (1992), are generalizations of Theorem 12.2 and Representation 12.1. 

THEOREM 21.1. For any k = 1 ,2 , . . . ,  the random variables #0(k),/11(k),... are 
independent and have negative binomial distributions with probabilities 

( k - 1  ) ( l _ q i ) k q ~  i = 0 , 1 ,  . m = 0 , 1 ,  , P { # i ( k ) : m } :  k + m - I  ' '" ' "'" 

where qi = P{X = i } /P{X  >_ i}. 

REPRESENTATION 21.1. For  any k = 1 ,2 , . . . ,  m = 0, 1 , . . . ,  and n = 1 ,2 , . . . ,  

p{XW(n,k) > m} = P{/~0(k) + #l(k) At-.,. +]Am(k ) < n} . 

Comparing Representations 21.1 and 12.1, one can construct examples which 
will reveal that Theorem 19.1 is not true for weak records. 

Stepanov (1992) also applied Representation 21.1 to establish some limit 
theorems for weak k th record values. 

22. k.-records 

The definition of k th record times given in (17.7) allows us to introduce further 
generalizations of  records. Nevzorov (1986a) considered the so-called k,-record 
times and k,-record values. Sometimes, they are called K-record times and K- 
record values. This section is based on results of Nevzorov (1986a) and Deheuvels 
and Nevzorov (1994a). 

Let X1,X2,. . .  be i.i.d, random variables with a continuous distribution func- 
tion F. As in Lemma 4.1, we consider sequential ranks RI~ R2,.. • ofXl , X 2 ,  • • . .  Let 
K = {k,, n _> 1 } denote a sequence of integers such that 0 <_ k, _< n. Then k,- 

record times Lk(n) and k,-record values X~(n) are defined in the following manner: 

Lk(O) = O, Lk(n) = inf{m > Lk(n - 1  : Rm >_ m - km + l } 

and 

Xk(n) = Xc~(,)-k.+l:L~(,), n = 1,2, . .  
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Note  that  the case when kn = 0 for n = 1 , . . . , k -  l, and k, = k for n > k -  I, 
corresponds to the k th records. 

In this section, we define indicators ~(1) ,~(2) , . . .  as follows: ~ ( n ) =  1 if 
R~ _> n - k, + 1, and ~(n) = 0 otherwise. The following results then look rather 
natural  when compared  with Theorem 4.2 and Representat ion 4.2. 

THEOREM 22.1. Indicators  ~(1), ~(2) , . . .  are independent  and P{~(n) = 1} = kn/n,  
n = 1 , 2 ,  . . . .  

REPRESENTATION 22.1. For  any n = l, 2 , . . .  and m > n, 

P{L~(n) > m} = P { { ( 1 )  + 3(2) + ' . .  + {(m) < n} , 

P{Lt(n) = m} = P { ¢ ( 1 )  + 3(2) + . . .  + ¢(m - 1) = n -  1, ~(m) = 1} . 

These equalities help us to write the joint  distributions o f  k,-record times. Note  
that  if kn = n or kn = 0, then the corresponding indicator has a degenerate dis- 
tribution. Therefore,  we only consider the case when 0 < k, < n. Then for any 
r = 1 ,2 , . . .  and 1 < re(l) < m(2) < .- .  < re(r), 

P{Lk(1) = m ( 1 ) , L k ( 2 )  = m(2) , . . .Lk( r )  = m(r)} 

t=l - ls_il [ m ( s )  -- kin(,)J " 

THEOREM 22.2. The sequence Lk(n), n = 1 ,2 , . . . ,  forms a Markov  chain and 

P{Lk(n  + 1) = r l L k ( 1 ) , L k ( 2 ) , . . .  ,Lk(n  -- 1) ,Lk(n)  = s} 

F 
j s+ l  

Let Nk(n)  = 3(1) + 3(2) + ' "  + {(n) be the number  o f  records in the sequence 
X1,Xz, . . . ,Xn.  Denote  A(n)  = E{Nk£n)} = )--~_, ~ and B(n)  = Var(Xk(n)) = 
A(n)  - D(n) ,  where D(n)  = ~2=1  (~)~" Also, let-~-:k(n) be a a-algebra o f  events 
generated by r andom variables Lx(m) ,  m = 1 , 2 , . . . ,  n. It was shown in Deheuvels 
and Nevzorov  (1994a) that  the sequences V(n) = A ( L k ( n ) ) - n  and 
W(n)  = {A(Lk(n) )  - n}2 + D(Lk(n) )  - n, n = 1 , 2 , . . . ,  are martingales with re- 
spect to the sequence o f  a-algebras Yk(n) ,  n = 1 ,2 , . . . .  These results imply that  
for any n = 1 ,2 , . . . ,  

E { A ( L k ( n ) ) }  = n 

and 

V a r ( A ( L k ( n ) ) )  = n - 

I f  D(oo) = ~m~__, (_~)2< oo, then the latter equality can be rewritten as 
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Var(A(Lk(n))) = n - D(oc) + o(1) as n -+ oc . 

Some limit theorems were obtained for Lk(n). For  example, it was shown that if 
lira sup(k, /n)  < 1, then as n --~ oc 

IP{A(Lk(n) ) -- n < x( C(n) ) 1/2} - ~(x)[ ---- O(n -1/2) , 

A(Lk(n) ) /n-+ 1 , 

and 

A(Lk(n)) - n 
lira sup 4- = 1 , 

(2C(n) log log C(n)) 1/2 

where C(n) = B(A ~-- (n)) and A +-- (n) : inf{m : A(m) >_ n}. 
It needs to be mentioned here that Berred (1994a) has used some statistics 

based on k,-records to estimate the shape parameter  y of  the generalized extreme 
value distribution with cdf GT(x) = exp{- (1  + 7x)1/~}. 

23. Records in sequences of  dependent random variables 

As we have already seen, the classical record model requires independence of the 
original X's.  There are only a few papers in which records in sequences of  de- 
pendent random variables X1,X2,.. .  have been investigated. 

The simplest case in this direction is connected with sequences of  exchangeable 
random variables. It is evident [see R6nyi (1962), for example] that Theorem 4.1 
and Lemma 4.1 are valid for exchangeable X's.  Of  course, Representations 4.1 
and 4.2, Theorem 4.2 and Corollary 4.1 are also true if we consider sequences of  
exchangeable random variables X1,X2,... .  In this situation, all the results for 
record times as well as those for k th and k,-record times which are based on the 
property of  independence of indicators of records remain unchanged if one 
considers exchangeable random variables instead of independent random vari- 
ables. Of  course, de Finetti 's representation of exchangeable random variables as 
a mixture of  independent random variables is a tool to investigate the record 
values in this case. An example that showed how the distributions of record 
values X(n)  can be found for some stationary Gaussian sequences X1,X2,.. .  was 
given by Nevzorov (1987a). Haiman (1987a) and Haiman and Puri (1993) used 
another method to study records from more general stationary Gaussian se- 
quences. They obtained the following very curious result. Let X,, - o c  < n < oo, 
be a stationary Gaussian sequence with zero means and covariance function 
F(n) = E(X/Xi+n) and Yn, n = 1 ,2 , . . .  be a sequence of independent random 
variables each having the standard normal distribution. Further, let L(n, k) and 
X(n,  k) denote the k th record values and the k th record times as defined in (3.1) and 
(3.2) with the following exception: Haiman and Puri defined L(n, 1) as the first n, 
n _> k, such that X,-k+l:, > £2, where f2 is a fixed real number. They defined the 
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same way the k th record times S(n, k) and the k th record values R(n, k) based on ~2 
and a sequence Yn, n = 1,2, . . . .  It appears that under some conditions, for ex- 
ample, if ~ - - 1  Ir(n)l < 1/2, then for some ~2, there exist almost surely an no and 
a q such that for all n > no, S(n, k) = L(n - q, k) and R(n, k) = X(n - q, k). The 
main point of this almost sure invariance principle is the fact that under weak 
dependence conditions the distributions of some functionals in the case of de- 
pendent random variables behave almost the same way as in the case of  in- 
dependent random variables. Haiman (1987b, 1992) proved an analogous result 
(but only for k = 1) for m-dependent sequences of random variables. He con- 
sidered a stationary m-dependent sequence of random variables )(,i, n = 1 ,2 , . . . ,  
which satisfy the following condition: 

( P{X1 
limsup { sup 

u ~ ~,,<~<~<~ { -  log P(Xl 

>~,~<xk <~} } 
> .)}2+fl P(v < X1 < z) 

< o c ,  2 < k < m  , (23.10) 

where co = sup{x : P(X1 < x) < 1} and fi is some positive constant. 

THEOREM 23.1. Let a stationary m-dependent sequence X,, n = 1 ,2 , . . . ,  satisfy 
condition (23.10). Then, there exists a probability space which carries, in addition 
to {Xn}, an i.i.d, sequence {Yn, n _> 1} having the same marginal distribution and 
such that almost surely there exist an no and a q such that for all n > no, 
S(n) = L(n - q) and R(n) = X(n - q), where record times L(n), S(n) and record 
values X(n), R(n) are defined respectively on the sequences {X,} and {Yn}, as in 
(3.3) and (3.4). 

Biondini and Siddiqui (1975) [see also Pfeifer (1984b)] investigated Markov 
sequences X1,X2,. . . .  They proved that record values X(1) ,X(2) , . . .  inherit the 
Markov property of original random variables X1,X2,. . . .  Moreover, for sta- 
tionary Markov sequences, they demonstrated the process of obtaining the 
transition density h(x,y) of the sequence X(1 ) ,X(2 ) , . . . ,  knowing a transition 
density p(x,y) of X's. It has been shown that 

Y h(x,y) =p(x,y) + k(x, t)p(t,y)dt if x < y 
O0 

= 0  i f x _ > y  , (23.11) 

where k(x,y) can be found from the equation 

? k(x,y) =p(x,y)  + k(x, t)p(t,y)dt if y _< x 
CO 

= 0  i f y  > x  . (23.12) 

Note that ifX1,X2,. . ,  are independent and have a joint density function f ,  then 
p(x,y) = f (y )  and it follows from (23.12) that k(x,y) = f (y)(1 + fx k(x, t)dt) for 
y <x .  Evidently, k (x , y )=  9(x)f(y), where 9(x)= 1 / { 1 - F ( x ) } .  Now, (23.11) 
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corresponds to the result for the classical records. Biondini and Siddiqui (1975) 
also considered discrete Markov sequences. Investigations of records in Markov 
sequences under more mild restrictions were continued by Adke (1993). It has 
been shown by him that { (X(n), L(n)), n _> 1 } generated by the Markov sequence 
X1,X2,... is itself a bivariate Markov sequence, and that {X(n), n > 1} is also a 
Markov sequence. As for {L(n), n > 1}, in general, it is not a Markov chain. 
Some properties of record times were obtained for the Markov sequences Y~ and 
Z,,, n >_ 1, defined as follows: 

Y1 :Z1  = X l ,  Yn+l =kmax(Y~,Xn+l), 0 < k <  1 , 

Z~+~ : max(Z~,X,+l) - c ,  c > 0, n = 1 , 2 , . . . .  

Andel (1990) investigated the probabilities P{~.n = 1} that a record occurs at 
time n for autoregressive processes with an exponentially distributed white noise. 
In his scheme X1 has an exponential E(0, a/(1 - b ) )  distribution, 
Xn+1 = bX~ + Y,+I, n = 1 ,2 , . . . ,  and 112, I13,... are independent exponential 
E(0, a) random variables, where a > 0 and 0 _< b < 1 are arbitrary constants. 

24. Random record models 

A large number of papers starting with Pickands (1971) dealt with the so-called 
[following Gaver (1976)] random record models. Let P be a point process (usually, 
a homogeneous or nonhomogeneous Poisson process, renewal process, or birth 
process) with arrival times 0 = r0 < rl < ~2 < . . . .  Further, let Xo,X1,X2,... (as a 
rule, they are i.i.d, random variables, but sometimes one may consider dependent 
or nonstationary sequences) be associated with points ~0, ~1, ~2, . . . ,  respectively. 
Then, the record times L(n) based on the sequence of X's generate a new point 
process P* (t) with arrival times %* = ~L(n). Now let A* (n) = ~; - ~,~_l be the inter- 
record times for the process P* (t). Distributions of random variables ~; and A* (n) 
as well as several characteristics of the process P*(t) and some related problems 
have been discussed by Pickands (1971), Gaver (1976), Westcott (1977b, 1979), 
Gaver and Jacobs (1978), Embrechts and Omey (1983), Yakymiv (1986), Bruss 
(1988), Bruss and Rogers (1991), and Bunge and Nagaraja (1991, 1992a,b). 

25. Nonstationary record models 

In this section, we consider sequences of independent X's, which can have dif- 
ferent distributions. Yang (1975) was the first one to consider records in a non- 
stationary scheme. We present here a review of some nonstationary record 
models, beginning with some models which can be regarded as a certain mixture 
of stationary and nonstationary schemes. 
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25.1. Pfeifer's model 

Pfeifer (1982, 1984c) considered records in a scheme of series of i.i.d, random 
variables XnI,X,2,. . . ,  n = 0, 1 ,2 , . . . .  Let E, be the distribution function of ran- 
dom variables Xnl,Xn2,.... The sequence A(n), n = 0, 1 ,2 , . . . ,  of  inter-record 
times is recursively defined as follows: 

A(0) = 0 and A(n) = min{j  : X,j > X,-I:A(, 1)}, n = l ,  2 , . . . .  

Then, following Pfeifer, L(n) = 1 + A(1) + A(2) + . - -  + A(n) and X(n) = X~,A(, ), 
n = 0, 1 ,2 , . . . ,  form sequences of  record times and record values. It has been 
shown that under some additional restrictions, (A(n),X(n)),  n = 0, 1 , . . .  is a 
Markov chain. Pfeifer has also showed that if Fn(x)= 1 -  exp(-2nx),  x > 0, 
where 2~ > 0, n = 1 ,2 , . . .  then the random variables X ( n -  1) and 
6(n) = X ( n ) - X ( n -  1) are independent, and the distribution function of 6(n) 
coincides with F,. Pfeifer (1984c) proved in addition some limit theorems for 
log A(n). 

The record model described above reflects situations where conditions of  an 
experiment change after the occurrence of a new record value. For  example, after 
the destruction of an old component,  a modified one has to be used. Pfeifer's 
model was further discussed by Deheuvels (1984b) and Gupta  (1984). Reliability 
properties of  record values in Pfeifer's scheme have been studied by Kamps  
(1994). Kamps  (1995, Section 1.7) has also considered k,-records in Pfeifer's 
record model. 

25.2. Balabekyan-Nevzorov's record model 

The next scheme [see, for example, Balabekyan and Nevzorov (1986) and Rannen 
(1991)] to be described in this subsection combines elements of  the i.i.d, model 
and a nonstationary scheme. It can be well illustrated by the following example. 
Let m athletes have in succession n starts each. Then, the distribution functions 
which correspond to their results XI , . . . ,Xm, . . . ,X~m form a sequence Fa, . . . ,  Fn,, 
such that F~m+k=F~, 1 < k < m ,  0 < r < n - 1 ,  that is, we have m different 
(nonstationarity!) distribution functions F1,. • •, Fm, and this group of distribution 
functions is repeated (an element of  stationarity!) n times. A value m can be fixed 
or m = re(n) may be permitted to increase to a certain degree with n, like 
m(n) = o((logn)l/2). It turns out that the number of  records N(nm) among ran- 
dom variables X1, . . .  ,X,m has the same asymptotic distribution as in the i.i.d. 
scheme. It has been shown that 

tP{N(nm) - l o g n  < x(logn) U2} - (b(x)l _< C9(mZ/ logn) , 

where C is an absolute constant, 9(x) = x 1/4 (Balabekyan and Nevzorov), and 
9(x) = max{x l/z, x 1/2 log(1/x) } (the recent improvement due to Rannen). It fol- 
lows from this estimate that the random variable ( l o g L ( n ) - n ) / n  I/2 also 
asymptotically has a standard normal distribution. The main idea of the method 
is to compare the original sequence of X's  and the sequence Y~ = 
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max{X(r_l)m+l, . . . ,Xrm},  r =  1 ,2 , . . . , n .  Evidently, Y I , . . . , Y ,  are independent 
m F~ random variables with the joint distribution function G = 1~-:1 k; consequently, 

we have the asymptotical normality of N1 (n), where N1 (n) is the number of re- 
cords in the sequence Y1,..., Yn. The second step involves estimating the differ- 
ence N2(n) = N(nm)  - N1 (n). Balabekyan and Nevzorov (1986) have proved that 
0 <E{N2(n)} _< 2 ( m - 1 ) .  Rannen (1991) managed to show that for any 
m = 2 , 3 , . . . , n =  1 ,2 , . . . ,  a n d k =  1 ,2 , . . . ,  

E{Nz(n)} k _< ( m -  1)kk ~+1 

This implies that the second term in the sum N(nm)  = Nl (n) + Nz(m) is negligible 
with respect to N1 (n). Therefore, the asymptotic behavior of  N(nm)  is determined 
by N1 (n). 

25.3. Records in sequences with trend 

Sports competitions give a remarkable material to illustrate the theory ot  records 
and to introduce new record models. We have a lot of data covering sometimes a 
century or two or even more longer periods in some instances. For example, 
Smith (1988) discussed athletic records for mile races beginning from 1860. No 
doubt, the assumptions of the classical record model can not be applied to the 
results of different athletes over such a long period of time. Changes in compe- 
tition rules, a great progress in athletic equipments, new methods of training, and 
some other reasons force us to find more suitable schemes. Investigation of 
models with different trends seems to be very natural in this context. Note that the 
first results for records in sequences with a trend were given by Foster and Stuart 
(1954) and Foster and Teichroew (1955), where such models were introduced as 
an alternative to a null hypothesis considering the i.i.d, case. Recent results of this 
kind are due to Ballerini and Resnick (1985, 1987a), Smith and Miller (1986), de 
Haan and Verkade (1987), and Smith (1988); see also Ballerini (1987) and Nev- 
zorov (1987a). 

Smith (1988) considered a best result Yn in the n th year, n = 1 ,2 , . . . ,  where 
Y~ = Xn + cn with X1,X2,... being an i.i.d, sequence, and c, being a nonrandom 
trend. Note that only the latest record in each year is presented in the sequence 
{Y~}. Three types of distributions of X's (normal, Gumbel and generalized ex- 
treme value distributions) as well as three types of trends (linear, quadratic and 
exponential) were considered by Smith. He applied the maximum likelihood 
method to estimate parameters of the distribution of X's and also the unknown 
coefficients in the trend term. Smith used this method to analyze the record results 
for mile (1860-1985) and marathon (1909 1985) races and to determine the 
corresponding predictions of the future records in these two events. 

The analogous model Y~ = X~ + c~, n = 1 ,2 , . . . ,  but only with the linear trend 
c~ = cn, c > 0, was the subject of investigation of Ballerini and Resnick (1985). 
They gave a formula which will help one to compute explicitly or approximately 
the asymptotic record rate p, which is defined as lim P{Yn is a record} as n ---+ oc. 
For example, for the standard normal distribution and c - -  1, p-= 0.72506 .. . .  
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The strong law of large numbers and central limit theorems were proved for N(n) 
and L(n). Ballerini and Resnick (1987a) considered next the model with a linear 
trend after relaxing the assumption of independence of X's. They took {X~} to be 
a doubly infinite, strictly stationary sequence. They then proved that, almost 
surely and in Lp for p > 0, N(n)/n --+ p as n ~ ec. One more result of Ballerini 
and Resnick is the following theorem. 

T~EOR~M 25.1. Let {X,} be strictly stationary, strong mixing sequence with 
mixing coefficients {c~n}, E{X n } < oc and o~ < oc. Then, as n ~ oc, ~ n = l  0~n 

sup P{nV2(N(n)/n - p) < x} --+ oh(x) . 
X 

The standard technique based on the equality P{L(n) > m} = P{N(m) _< n} 
will allow one to prove the corresponding limit theorems for the random variables 
L(n) under this model. 

25.4. F ~-scheme 

25.4.1. Yang's model 
One more nonstationary record model was initiated by Yang (1975) who rea- 
sonably supposed that the breaking of sports records (for example, records in 
Olympic games) was due in some degree to the increase in the population of the 
world. Therefore, he considered a sequence of independent random variables X, 
with distribution functions Fn = F m(n), n = 1,2, . . . .  Here, F, corresponds to the 
random variable max{Y1,Y2,...,Ym(n)}, where Y's are independent random 
variables with a joint continuous distribution function F. The form of the coef- 
ficients m(1) ,m(2) , . . ,  is due to the assumption that the population increases 
geometrically and we have m (n) = 2~-1m, where m = m (1) is the initial population 
size. Yang got the exact formula for P{A(n) > j} and proved that as n --+ oc, 
limP{A(n) = j }  = ( 2 - 1 ) / 2  j, j =  1,2, . . . .  These results were then applied to 
analyze records of nine consecutive Olympic games. Of course, it has been shown 
that the increasing population is not the main reason for the rapid breaking of 
Olympic records. Alpuim (1985) showed that A(n) asymptotically has the geo- 
metric distribution for more general sequences of coefficients m(n) and even, 
under certain conditions, when these coefficients themselves are random variables. 
Meanwhile, Nevzorov (1981, 1984, 1985, 1986b,c) observed that indicators of 
records ~ ,  42,.. .  stay independent in Yang's model. Moreover, these indicators 
are independent for any sequence of positive coefficients m(1),m(2), . . . .  This 
independence property of record indicators led to an intensive study of a new 
model. 

25.4.2. Definition of  F~-scheme 
We say that a sequence of independent random variables X1,X2,. . .  with dis- 
tribution functions F1, F2, •.. obeys the F ~-scheme if Fn = F ~°, n = 1 ,2 , . . . ,  where 
F is a continuous distribution function and el,C~2,-., are arbitrary positive 
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numbers. Note that equal values of c~'s lead to the classical record model. In 
addition to the above mentioned papers of  Nevzorov, a number of other results 
connected with the F~-scheme were given by Pfeifer (1989, 1991), Deheuvels and 
Nevzorov, (1993), and Nevzorov (1990a, 1993, 1995). Further generalizations of 
the F~-seheme were considered by Ballerini and Resnick (1987b), Pfeifer (1989) 
(the same marginal distributions as in the F~-scheme, but a certain dependence 
structure of  X's), and Deheuvels and Nevzorov (1994b) (mixtures of  F~-schemes). 

25.4.3. Indicators of records 
Let indicators of  records 41, {2, ' '" be as defined in Theorem 1. Nevzorov (1981, 
1985) proved the independence of the indicators for any sequence of positive 
el, e2 , . . ,  and showed that p ,  = P{{n = 1} = e~/(C~l + . . .  + c~n). It seems that this 
independence of indicators in a certain sense characterizes the F~-scheme. 

THEOREM 25.2. [Nevzorov (1986b, 1993).] Let X1,X2,. . . ,X~ be independent 
random variables with continuous distribution functions F1,F2,. . . ,E,  and 
0 < F , . ( a ) < F ~ ( b ) < l ( l < i < n - 1 ) f o r s o m e a a n d b , - o o < a < b < o c .  I f t h e  
indicator {, and the vector (~1 , . - . ,4 ,  1) are independent for any distribution 
function F,, then there exist positive constants ~2, . . . ,  en-1 such that F,. = F,. ~', 
1 < i < n -  1, and {1 , . - - ,{ , -1  are also independent. 

F rom a result of  Ballerini and Resnick (1987b) dealing with a more general 
situation, it follows that the vector (41, . - . ,  ~n) and M(n) = max{X1, . . .  ,X,} are 
independent for the F~-scheme. This property also characterizes the F~-scheme. 

THEOREM 25.3. [Nevzorov (1990b, 1993).] Let the distribution functions of  in- 
dependent random variables X1, X2, . . . ,  Xn be continuous and 
0 < F/(a) < F/(b) < 1 (1 < i < n) for some a and b, - c o  < a < b < oc. I f  
m(n) = max{X1, . . .  ,Xn} and the vector ({1 , . . . ,  4n) are independent, then there 
exist positive constants e2,. .  •, c~, such that F, = F~ i, 2 < i < n, and the random 
indicators 41 , . . . ,  {n are also independent. 

Since N(n) = ~1 4 - . . .  ÷ ~n, we have 

n n ~X k 

A(n) = E{N(n)} = Z p ~  = ~ --- 
k=l  = ~X1 ÷ ÷ cgk 

(25.13) 

and 

B(n) = Var(N(n)) = A(n) - o~k 
1+ +c~ 

(25.14) 

In the following, we take S(n) = ~1 ÷ " ' "  ÷ O~n - - +  O0 and n --+ oc. It follows 
from Dini 's test that only when A(n) ~ oc, P{N(n) < co} = 1. It  means that in 
this case any record time L(n) exists with probability one. Without loss of gen- 
erality, we can take ~l = 1. 
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25.4.4. Distributions of  records times 
Note  that  distributions o f  N(n) and L(n) in the F~-scheme as well as in the 
classical model  do not  depend on the cont inuous distribution function F.  The 
independence o f  indicators 41, ~2,--- leads us to the following equalities [Nev- 
zorov (1985)]: 

P{L(1) = l ,L(2)  = m2 , . . . ,L (n )  = mn} 

I - I  m r  " " " " r=2S(m~-- 1) S(m,) for 1 < m2 < < mn , 

and 

P{L(n) =jIL(1) ,L(2) , . . .  ,L(n - 2),L(n - 1) = i} 

= S ( i )  S( j  1) a n d j > i > _ n - I  . 

One can now see that the sequence L(n), n = 1 , 2 , . . . ,  forms a Markov  chain, and 

e { L ( n ) = j l L ( n - 1 ) = i } = S ( i ) - S ( j  1 ) S O )  

and 

P{L(n) > jlL(n - 1) = i} = S(i) /S( j)  for j > i 

25.4.5. Relationship between F ~- and other record schemes 
Shorrock (1972a) showed that  distributions o f  record times {L(n + 1), n _> 1} in 
the i.i.d, model  coincide with distributions o f  record values {Y(n), n _> 1} in a 
sequence o f  independent  integer-valued r andom variables Y1,112,... such that  
P{Yk > n} = 1/n for k = 1 ,2 , . . .  and n = 1 ,2 , . . . .  Nevzorov  (1985) proved that 
the distributions o f  Y(n) for all sequences o f  i.i.d, r andom variables 111,112,... 
taking values 2 , 3 , . . .  with positive probabilities can be embedded in the F ~- 
scheme with suitably chosen coefficients cq, ~2, . . .  As a matter  o f  fact, if cq = 1, 
c~r = (1/P{Y1 > r}) - (1/P{Y1 > r -  1}), r = 2 , 3 , . . . ,  and 1 = L ( 1 )  < L(2) < . . .  
are the corresponding record times for this F~-scheme, then for any n = 1 ,2 , , . . ,  

{L(1 ) ,L (2 ) , . . . ,L (n )}  ~ {Y(0), Y(1 ) , . . . ,  Y(n ~ 1)} , 

where 1 = Y(0) < Y(1) < .- .  are the record values based on 111,112,.... Deheuvels 
and Nevzorov  (1993) gave an analogous result for the k th record values f rom 
discrete sequences. In this case, one has to take el = 1 and 
~r = (P{Y1 > r}) k _ (P{Y1 > r -  1}) -t`, r = 2 , 3 , . . . ,  to obtain the result 

{L(1 ) ,L (2 ) , . . . ,L (n )}  ~ {Y(0, k), Y(1 ,k ) , . . .  Y ( n -  1,k)} , 

where 1 = Y(0,k) < Y(1,k) < . . .  are the k th record values based on the sequence 
Y~,Y2,.... 
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O f  course,  the classical record  t imes co r re sponds  to the case o f  F~-scheme 
with equal  coefficients. As  for  the k th record  t imes L(n, k), Deheuvels  and  Nev-  
zorov  p roved  tha t  

{ L ( 1 , k ) , . . . , L ( n , k ) }  a = { L ( 1 ) + k _ a , . . . , L ( n ) + k _ l } ,  n =  1 , 2 , . . .  , 

where 1 = L(1) <,__,L(2) < . . -  are the record  t imes for  the F~-scheme with the 
coefficients c~, = (k+k~l_2), n = 1,2, . . . .  They also showed tha t  the k~-record t imes 
Lk(n), under  the~ondi t ion ' -  ~ kl = 1, 0 < k, < n, n = 2 , 3 , . . . ,  have the same dis- 
t r ibu t ion  as the record  t imes L(n) in the F~-scheme with the coefficients 0~ 1 = 1 

and c~n = k,(n - 1 ) [ / ~ I ~ = 2 ( i -  hi). 

25.4.6. Martingale properties of record times 
There  are three k n o w n  classical sequences o f  mar t inga le  sequences genera ted  by 
sums S,, = Xl + . . .  +X~,  n = 0, 1 , 2 , . . .  o f  independen t  r a n d o m  variables .  They 
are: T~ (n) = S, - E{&},  T2(n) = (& - E{&})  2 - Var(Sn) and  T3(n) = 
2S"/E{2S"}, n = 1 , 2 , . . . .  Subs t i tu t ion  of  sequences o f  M a r k o v  times zl < 172 % " ' "  

usual ly  leads to new mar t inga le  sequences V/(n) = T/(zn), n = 1 , 2 , . . . ,  i = 1,2, 3. 
One m a y  take  N(n) = 41 + " "  + ~n and L(n) as S, and  %, respectively,  guess the 
fo rm of  new mar t inga le  sequence, and  then prove  the mar t inga le  p r o p e r t y  o f  the 
ob ta ined  sequences.  To s implify the fo rm of  these sequences,  we can use the 
ident i ty  N(L(n))= n. This,  in fact, was uti l ized by Deheuvels  and  N e v z o r o v  
(1993) to ob ta in  the fol lowing results.  Let  A(n), B(n) and  p ,  be defined as in 
(25.13) and (25.14), and  Y-n be a a - a lgeb ra  of  events genera ted  by  r a n d o m  
var iables  L ( 1 ) , L ( 2 ) , . . .  ,L(n),  n _> 1. 

THEOREM 25.4. Let  S(n) = ~1 + " "  + en --+ oc as n ---+ co. Then,  the sequences o f  
r a n d o m  var iables  

V, (n) = A ( L ( n ) )  - n , 

V2(n) = { A(L(n) ) - n} 2-B(L(n) ) , 
L(n) 

V 3 ( n ) = s " / H ( 1 - p j + p j s ) ,  n =  1 , 2 , . . .  , 
j=l 

fo rm mar t inga les  with respect  to a -a lgebras  Yn,  n = 1 , 2 , . . . ,  and  E{Vk(n)} = 0 
for any  k = 1,2,3,  and  n _> 1. 

No te  that ,  in the above  defini t ion o f  V3 (n), the p a r a m e t e r  s can no t  be equal  to 
1 - 1/pj. F o r  example ,  we can suppose  tha t  s > 0. 

25.4.7. Moments of record times 
A n u m b e r  o f  m o m e n t  p roper t i e s  o f  record  t imes L(n) can be ob ta ined  as cor-  
ol lar ies  o f  Theo rem 25.4. 

COROLLARY 25.1. F o r  any n = 1 , 2 , . . . ,  
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(i) E { A ( L ( n ) ) }  = n; 
(ii) Var (A(L(n ) ) )  = n - E { D ( L ( n ) ) } ,  where D(n)  = A(n)  - B(n)  = 

~ k ~ l  , and if D = D(oc)  < ec, then D ( A ( L ( n ) ) )  = n - D + o(1) as 

n ---~ (X3, 

(iii) e x p ( - c n )  _< E { e x p ( - c A ( L ( n ) ) ) }  <_ e x p ( - n l o g ( 1  + c)) if  c > 0; 
(iv) E { ( S ( L ( n ) ) )  -C} <_ 7i-c(1 + c) -" ,  e > 0. 

Nevzorov  (1985) obta ined  some other  inequalities for record times L(n)  and 
inter-record times A(n) = L(n)  - L ( n -  1). Let  us now choose any cont inuous  
strictly increasing funct ion S(x), x > l, and introduce coefficients ~1, ~2, . . .  as 
o~, = S(n)  - S(n  - l) for  n = l, 2 , . . . .  Wi thout  loss of  generality, we suppose that  
S(1) = cq = 1 and S(x)  ---+ oo as x ---+ oc. Then, the following inequalities are valid: 

,g~7~r~ dx < E{A(2)} = E{L(2)} - 1 = _< dx + 1 , 

and 

where 

e l ( c i  -}- 1) n-2 ~ E { A ( n ) }  _< (c2 q- 1) n-1 

(cl q- 1) n 1 < E{L(n)} < {(c 2 Jr- 1) n -- 1}/c2, n = 3 , 4 , . . .  , 

f ~ 1 S ( x )  foo  1 _ 
cl = i n f  S(x) s ~ d t  and c 2 = s u p - - t  - - a t  . 

x>l x x>_l x Jx s ( t )  

In part icular ,  el = c 2 = 1 / ( 7 - 1 )  if S ( x ) = x  7, ~ >  1. It  is easy to see that  
E{L(n)} < ~ and E{A(n)} < ~ for  any n _> 2 if, for  example,  S(x)  is a regularly 
varying funct ion with index 7 > 1. 

25.4.8. L imi t  theorems f o r  record times 
Some asympto t ic  results for  record times were given by Nevzo rov  (1985, 1986c, 
1995). 

S(x) THEOREM 25.5. Let S(x)  --+ oc and ~ -+ 1 as x -+ c~. Then, for  any k > 1, as 
n ~ ec, the r a n d o m  variables 

_ S(L(n)) ...,R~(n) =S(L(n+~- 1)) 

are asymptot ica l ly  independent  and 

limP~'[. ( ( ) )S(L(n)!  } 
_ S . L _ n + l . . < x  = x  for  0 < x < l  . 
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THEOREM 25.6. Let S(x) be a regularly varying function with positive index 7. 
(L(n+m I)'~ 7 

Then, for any fixed k > 1, the random variables k ~ }  , m = 1 ,2 , . . . ,  k, are 

asymptotically independent and hmP ~ < x  t/7 = x  for 0 < x <  1, as 
/ 7 - - + 0 0 .  

COROLLARY 25.2. Under the assumptions of Theorem 25.6, as n ---+ oo, 

limPIL~n(~-)l) > x }  = ( l + x )  -)', x > 0  , 

l i m P { L ~ A ( n ) > x } = ( 1 - x ) - Y ,  0 < x <  1 , 

{ (~(~) } ~ xyy 1 d x>O l imp A 1) > x =HT(x ) = 7x ~ 1 + y  y' ' 

where, in particular, Hi(x) -- Iog(l+x) and H2(x) - z 21og(1+x) 
X X 2 X 

Central limit theorems for random variables N(n),A(L(n)) and logS(L(n)) 
have been obtained by Nevzorov (1986c, 1995). 

25.4.9. Limit theorems for record values 
The independence of M(n) and the indicators {1, . . . ,{~ implies that 
P{X(n) < x} = E{(F(x))L(n)}. Since we know the asymptotic properties of L(n), 
this result can be used to obtain limit theorems for record values [see Nevzorov 
(1995)]. The main result obtained there is that the set of all possible asymptotic 
distributions of suitably normalized record values X(n), under some conditions 
on sequences of the coefficients ~1, e2,. • •, in the F~-scheme coincides with the 
corresponding asymptotic distributions in the stationary scheme. 

25.4.10. Applications of the F~-scheme 
We mentioned earlier that the record models with a trend were applied for 
forecasting records in sports events. Quite often, in this situation one takes an 
extreme value distribution as the distribution of initial X's. Note that if X1 ,X2,. . .  
have a common distribution function F(x) = e x p { - e x p { - ( x  - a)/b}}, then the 
distribution functions Fj(x) of random variables Yj = Xj + c j, c > 0, j = 1 ,2 , . . . ,  
have the form Fj.(x) = (F(x)) ~j, where c 9 = exp{cj/b}. In this case, the results for 
the F~-scheme can be used to simplify arguments [see also Nevzorov (1987a), 
Examples 9.2 and 9.3]. If we have the i.i.d, scheme, all n! permutations of ranks 
(1 ,2 , . . .  ,n) of random variables X1,X2,... ,Xn as well as all orderings of these 
random variables have equal probabilities. It means that max{X1, X2, . . . ,  Xn} has 
equal probabilities 1In to coincide with the first sample element, with the second 
element,.., and with the last of X's. Note also that this maximum has to be the last 
record value in a sequence Xl ,X2,. . .  ,Am. This is the reason why we can apply the 
results on the classical record model to solve the so-called secretary problem. 
Pfeifer (1989, 1991) considered some situations with non-equiprobable orderings 
o r  ranks. In his case, P{max(Xl , X 2 , . . .  ,Xn) = Yj} = ¢{j/(gj -}-... Jr- Cgn) , 
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j = 1,2, . . .  ,n. Pfeifer showed that one can get this case with the help of the F ~- 
scheme. He used the independence of record indicators and some other results for 
the F~-scheme to solve non-homogeneous "secretary problem" and to analyze the 
probabilistic behavior of some searching algorithms (the linear search for the 
maximum of n elements by comparisons) in models with non-equiprobable or- 
derings of elements. 

25.4.11. Mixture of F~-schemes 
We mentioned earlier that the independence of record indicators characterizes in 
some sense F~-schemes and one can not expect this property to be true for 
sequences XI,X2, .. • with arbitrary distribution functions F1, F2,... .  It seems that 
we can, however, combine sequences FI,F2,. . . .  The first results in this direction 
were obtained by Nevzorov (1987a) and Deheuvels and Nevzorov (1994b). 

For any continuous distribution function F, we consider a set Y ( F )  of dis- 
tribution functions defined as follows: G E Y(F)  if there exists a distribution 
function H (H(0) = 0) such that 

/7 G(x) = (F(x)) ~H{de}, - o o  < x < co . 

One can present G(x) as E{(F(x))"}, where a random variable, v, has the dis- 
tribution function H. In the following, we will suppose that P{v > 0} = 1. Then, 
we say that a sequence of independent random variables X1,X2,... with dis- 
tribution functions F1,F2,... belongs to a set ff(F, Vl,V2,...), where positive 
random variables Vl, v2,.., have distribution functions Hi, H2,. •., respectively, if 

/o Fk(x)= (F(x))~Hk{dc~}, k= 1 , 2 , . . . .  (25.15) 

We will now discuss records from sequences of random variables XI,X2,. . .  
having distribution functions of the form (25.15). Smirnov's transformation im- 
plies that the distributions of record times are preserved if we consider a set 
Y(F0, 1~1,1~2,...) instead of any set J- (F,  Vl, V 2 , . . . ) ,  where F0(x) = x, 0 < x < 1. 

Let us consider a sequence of X's with distribution functions Fk(x), 
k = 1 ,2 , . . . ,  as defined in (25.15). Conditionally, if vl = cq, v2 = c~2,..., we have 
the F~-scheme with coefficients cq, ~2,... and N(n) can be represented as a sum 
of independent indicators ~1 (0{1) -~- ' " " q- ~n(O~n) " Therefore, 

/0 /0 P{N(n) < x }  . . . .  P{¢l(~l) + ' ' "  + {,(~,) < x }  

H1 {dcq } . . .  H,{d~,} . 

The normal approximation of P{{1 (0~1) - } - " ' ' - } -  ~n(~n) < X} leads to the fact that 
asymptotic distributions of N(n) in this model are expressible as mixtures of 
normal distributions. Deheuvels and Nevzorov then obtained a number of  esti- 
mates of the difference 
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= P{N(n)  < x} - E<:b [ x  - +.=(, . lag,- (+ + ..[_v,,)/Vl]_lq-)'~ c5,, 
\ ( log( (v ,  + . - - ~  v,)/v,)) 1/2) 

For  example,  they showed that  if the sequence X1,X2, . . .  belongs to a set 
Y-(F, vt, v2 , . . . ) ,  then 

c~, < c E  1 -}- ( vl @ . . .  ~- Vk I) 2 log vl ~- "''V1 1/2 , 

where c is an absolute  constant .  Denote  now e, = E{v,,} and d,, = Var(v,,), 
n = l , 2 , . . . .  As n - -+oo ,  let e l + e 2 + - . . + e , , ~  and ( d l + . . . + d , , ) /  
(el + -- .  + e,,) 2 --~ 0. Also let 0 < vk _< A < oo for k = 1 ,2 , . . . .  Then,  

(.+-log(,,+..:_+,,,>) 
A,., = P{N(n)  < x} - * \  7og~el  ~- [['en))l/2 ] + 0 

as n -~ oc, and,  moreover ,  there exists a constant  c(A), depending on n only, such 
that  

A. _< c(A){( log(e ,  + . . .  + e,,)) -'/2 + (dr + ' "  + dn)/(el + ' "  + e , ) ' }  . 

The  latter result implies the asympto t ic  normal i ty  of  the r a n d o m  variables 
{loge(L(n)) - n}/n 1/2, where e(n) = et + e2 + . . .  + e,. It  needs to be ment ioned  
that  this me thod  also works  in the case of  dependent  X's .  

25.5. Records in Archimedean copula processes 

Recently,  Ballerini (1994), Nevzorova ,  Nevzo rov  and Balakr ishnan (1997), and 
Bagdonavicius,  Ma lov  and Nikul in (1997) all discussed some propert ies  of  re- 
cords f rom Archimedean copula processes (AC processes). In this model ,  initial 
r a n d o m  variables X I , X 2 , . . .  are dependent  in general and can have different 
distributions.  A sequence Xl ,X2, • • • with margina l  distr ibution functions F1, F2,. • • 
is said to be an ACprocess if for  any n = 1 , 2 , . . . ,  one has 

P{X1 < t l , . . .  ,X,  < t,} = B A(Fi(ti , (25.17) 

where B is a dependence funct ion such that  B ( 0 ) =  1 and B is complete ly  
mono tone ,  and A is the inverse of  the funct ion B. Ballerini (1994) studied in detail 
the special case o f  A C  process with B(s) = exp{- s l / ?} ,  7 > 1, and Fi(x) = (F(x))% 
i = 1 , 2 , . . . ,  where F(x) is a cont inuous  distr ibution funct ion and al,  ~2 , . . .  are 
positive constants .  In this case, 
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P{X1 < t l , . . .  ,X, < tn} = exp - - log(F(ti))'} '~ , (25.18) 

and if 2 = 1 the distributions in (25.18) coincide with the ones in the F ~-scheme. 
For 7 > 1, the marginal distributions of  XI,X2,... are the same as in the F ~- 
scheme while these random variables are dependent. Ballerini incidentally called 
his model as a dependent F ~-scheme. Under this model, he proved that record 
indicators ~l, 42 , . . . ,  ~ and maximal value M(n) = max{Xi,X2, . . .  ,X~} are in- 
dependent for any n = 1,2, . . . .  

Nevzorova, Nevzorov and Balakrishnan (1997) considered more general AC 
processes. In their construction, B(s) is any complete monotone function such 
that B(0) = 1. It means that B(s) coincides with a Laplace transform of some 
proper distribution. Marginal distribution functions F1,F2,. . .  are taken to be 

F,(x) = B(c,A(F(x))), n = 1, 2 , . . .  , (25.19) 

where F(x) is any continuous distribution function and Cl,C2,... are positive 
constants. Then 

P{X1 < t l , . . . ,Am < t,} = H ( t l , . . . , t , )  = B A(Fi(ti 

=B(~_l CiR(ti)) (25.20) 

where R(t) = A(F(t)). 
It is easy to see that this construction includes the case considered by Ballerini 

(B(s) = exp{-sl/~}, 7 -> 1) and gives some new families of marginal distributions 
as well. For  example, if we take B(s) = ~ which is the Laplace transform of the 
standard exponential distribution, then 

F,(x) = F(x) 
c n + ( 1 - c ~ ) F ( x ) '  n =  1 , 2 , . . . .  (25.21) 

THEOREM25.7. Let X1,X2,... be an AC process with joint distributions 
H(tl,. . . ,  tn) as given in (25.20). Then for any n = 1 ,2 , . . . ,  the record indicators 
41,42, . . . ,  ~n and the maxima M(n) are independent. 

Under some natural restrictions on the marginal distribution functions 
F1,F2,. . .  (as in Theorem 27.2), Nevzorova,  Nevzorov and Balakrishnan (1997) 
proved that if 

,,) H(tl, . . . , t ,)  =B A(Fk(tk , n =  1 ,2 , . . .  , 
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and r andom variables ~ l ,~2 , ' ' ' , ~n  and M(n) are independent  for any 
n = 1 , 2 , . . . ,  then the multivariate distributions I-I(tl , . . . ,  tn) are o f  the form 

H( t l , . . . ,  t,) = B ckR(tk (25.22) 

Thus,  this independence proper ty  provides a characterizat ion for the class of  
dependent  distributions in (25.22). 

25.6. BR-scheme 

We discuss here a model  which was suggested by Ballerini and Resnick (1987b). 
This BR (Ballerini-Resnick)-scheme is a generalization o f  the F~-scheme for 
sequences of  dependent  r andom variables X1 ,X2,.... 

Let Y(t), 0 < t < oc, be an extremal-F process with finite dimensional dis- 
t r ibution functions 

Ft~,.. ,t,, ( x l , . . . ,  x~) = F t. (min(x~, . . . ,  x , ) )F  (t2-tt) (min(x2 , . . . ,  x,)) 

• " . F  (t°-t" ')(Xn),O < tl < t2 < "'" < t~ . 

Consider  a sequence o f  r andom variables X~,X2,.. .  for which the sequence o f  
successive maxima M(n) = max{X1, . . .  ,X,}, n = 1 , 2 , . . . ,  can be embedded in 
some extremal-F process Y(t), where F is continuous.  It means that  there exists an 
increasing sequence o f  numbers  0 = a0 < al < .. • (we will suppose that  an ---, oc 
as n - ~  oc) such that  ~ d {M(n)}~= 1 = {Y(a,)}~_ 1. Note  that  if X1,X2, . . .  are in- 
dependent,  then their distribution functions F1,F2,... have the form F, = F ~,,, 
n = 1 , 2 , . . . ,  where c~, = a n -  an-1. It means that  the successive maxima M(n), 
n = 1 , 2 , . . . ,  for initial X ' s  has the same distributions as the corresponding 
maxima for the F~-scheme with coefficients c¢~ = a,  - an 1, n _> 1. Therefore,  the 
distributions of  record times and record values (which undoubtedly  are de- 
termined by sequences o f  maxima)  for both  sequences coincide and so one can 
have for the BR-scheme all the results which are proved for the F~-scheme. 
Ballerini and Resnick showed that  for any n = 2, 3 , . . . ,  the record indicators 
~1, ~2, ' '  ", ~n and M(n) are independent  in the BR-scheme. They also proved some 
tradit ional limit theorems for r andom variables N(n) and L(n). It has also been 
shown that if the maxima M(n) suitably normalized have a limit law, then the 
vectors {M(n), N(n), L(n)} have a joint  limit law. The following natural  result was 
given for the record values: as n -~ oc, if P{M(n) - b(n) < xa(n)} --+ G(x) where 
G is one o f  the three extreme value distributions, then P { X ( n ) -  
b(L(n)) < xa(L(n))} ---+ G(x). It should be ment ioned that  limit theorems for re- 
cord values X(n) under  n o n r a n d o m  normal izat ion obtained by Nevzorov  (1995) 
as well as other results for the records in the F~-scheme are valid for the BR- 
scheme. 
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26. Multivariate records 

The definition of  records is clearly closely connected with the ordering of random 
variables. Therefore, it will be natural that multidimensional generalizations of 
records require the existence of some order in the corresponding set. Goldie and 
Resnick (1989, 1994) [see also Kinoshita and'Resnick (1989)] introduced multi- 
variate records in a partially ordered set. They obtained some results for general 
partial orders, but the most interesting theorems are formulated for independent 
identically distributed R2-valued random vectors Xn = (X(~),X(~2)), n = 1,2, . . . ,  
with a common joint distribution function F. Several definitions of records in R 2 
have been suggested. For  example, Xn is a record if simultaneously 
~.(1) . . . .  (1) ~.(1) X-n(2) > max(X(2),. (2) .,~, > max~.41 , . . .  ,.4, 1) and .. ,X~' l), or X, is a record if it 
falls outside the convex hull of X1, . . . ,  X,_I. Let us consider the first of these two 
definitions of records. If vectors X, have independent coordinates and marginal 
distributions of components X (1) and X (2) are continuous, then 
P{Xn is a record} = 1/n 2 and the total number N of records in a sequence 
Xl, X2, . . .  is almost surely finite. The following result is a rather curious one. 

THEOREM 26.1. Let F be continuous and in the domain of attraction of the bi- 
variate extreme-value distribution G. Then P(N < oc) = 1 or P(N = oe) = 1 ac- 
cording as G is or is not a product measure. 

It follows from this theorem that P(N < ec) = 1 for the bivariate normal 
distribution with correlation p < 1. An analogous property for the number of 
records N(A) in some rectangle A is governed by the hazard measure H defined as 
follows: H(dx) = P(X1 E dx)P({Xi < x}C). I t  turns out that P(N(A) < oc) = 1 or 
P(N(A) = oc) = 1 according as H(A) < oe or H(A) = oc. 

Since it is typical that the total number of records in a sequence X1, X2, . . .  is 
finite, Goldie and Resnick (1994) suggested studying the behavior of the records 
in a fixed rectangle A conditional on the fact there exists a large number of records 
N(A) in the rectangle. They have proved some limit theorems connected with this 
situation. 

27. Relations between records and other probabilistic and statistical problems 

We have already mentioned that records are used for tests of  some statistical 
hypotheses (the hypothesis of absence of a trend, constancy of a variance against 
natural alternatives, and the hypothesis of  randomness against normal regression) 
- see, for example, Foster and Stuart (1954), Foster and Teichroew (1955), Stuart 
(1956, 1957), and Barton and Mallows (1961). Estimation of some parameters of 
distributions using records was the subject of discussion by Samaniego and 
Whitaker (1986, 1988), Ahsanullah (1989, 1990a), Berred (1991, 1992, 1994a,b), 
Balakrishnan and Chan (1993, 1998), Balakrishnan, Ahsanullah and Chan 
(1995), Chan (1998), and Sultan and Balakrishnan (1997a,b,c). There are a lot of  
papers dealing with the estimation of some characteristics of distributions or 
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parameters of record models based on the observed values of existing records, and 
also with the prediction of future records. Nonparametric inference has also been 
discussed in the context of record values by Samaniego and Whitaker (1988) and 
Gulati and Padgett (1992, 1994a,b,c,d). Several record models for analyzing 
sports records and their prediction have been suggested by Yang (1975), Ahsa- 
nullah (1980, 1992), Dunsmore (1983), Nagaraja (1984), Tryfos and Blackmore 
(1985), Ballerini and Resnick (1985, 1987a,b), Smith and Miller (1986), Smith 
(1988), Basak and Bagchi (1990), and Sibuya and Nishimura (1997). 

Teugels (1984) showed some applications of record statistics in insurance 
mathematics. Pfeifer (1985, 1991) used the theory of records to investigate several 
properties of searching algorithms. The so-called secretary problem in connection 
with records has been considered by Bruss (1988) and Pfeifer (1989). The relation 
between inter-record times and sequences of cycles lengths for the symmetric 
group of permutations of a set { 1,2, . . . ,  n} has been discussed by De Laurentis 
and Pittel (1985) and Goldie (1989). Devroye (1988) applied the theory of records 
to study random trees. There exists a curious connection between lower record 
values and the speeds of groups of vehicles that are formed in a long single-lane 
traffic; see, for example, Haghighi-Taleb and Wright (1973) and Shorrock (1973). 

28. Nonclassical  characterizations based on records 

Characterizations of exponential and geometric distributions by properties of 
record values were very popular in the seventies and eighties. A number of re- 
ferences on this topic can be found in Nevzorov (1987a), Nagaraja (1988a), and 
Rao and Shanbhag (1994). Some characterization theorems have been obtained 
recently by Lin and Huang (1987), Nagaraja (1988b), Nagaraja, Sen and Sri- 
vastava (1989), Stepanov (1989), Too and Lin (1989), Ahsanullah (1990b, 1991), 
Witte (1988, 1990), Ahsanullah and Kirmani (1991), Nevzorov (1992), and Huang 
and Li (1993). It has been shown that there is a close connection between char- 
acterizations associated with record values X(n) and those related to order sta- 
tistics Xm:n. As we know, for any n > 1 and m > 1, 

P{X(n) > ylX(n - 1) = x} = P{Xm:m > y I Xm-l:m = X} a.s . .  

This equality accounts for the similarity between several characterization 
theorems for record values and for order statistics. There are some parallel 
characterizations of the uniform distribution (based on certain properties of order 
statistics) and of the exponential distribution (based on the analogous properties 
of record values). For example, Nagaraja (1988b) proved that the underlying 
distribution is uniform iff E(Xm l:mlXm:n) is linear for some m < n, and it is ex- 
ponential iff E ( X ( n -  1)]X(n)) is linear. Then, Szekely and Mori (1985) showed 
that for any 1 < i < j < n, the correlation coefficient p(Xi:,,Xj:,) 
<_ {i(n + 1 - j ) / j ( n  + 1 - tT)} 17i where the equality is attained only for the uni- 
form distribution. Nevzorov (1992) established that p(X(m),X(n))  <_ (m/n) 1/2, 
m < n, and its maximal value is attained for the exponential distribution (see also 
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Nevzorov (1997)). Huang and Su (1994) investigated this duality by comparing 
the sample processes and nonhomogeneous Poisson processes which are processes 
with the order statistics property, and generalized several existing characteriza- 
tions. The characterization theorem for order statistics and for records do not 
always coincide, however. For example, it is evident that the conditional dis- 
tributions of Xk, given Xm:n are the same for any 1 < k < n. This symmetry fails 
for record values and a new (as compared to order statistics) type of character- 
ization is suggested by Nagaraja and Nevzorov (1997). They have solved the 
problem of finding the underlying distribution function F0 such that 
E(X1 Ix(2) = x) = E(X2]X(2) = x) for all x > x0 _> -ec.  

Theorems 25.2 and 25.3 presented above can also be regarded as nonclassical 
characterizations of certain sequences of random variables. The analogous results 
for discrete distribution were proved by Nevzorov and Rannen (1992) wherein a 
certain sequence of distributions were characterized by the property of in- 
dependence of record indicators. Characterizations of distributions in several 
nonclassical record models were also given by Pfeifer (1982) and Nevzorov (1986b). 

29. Processes associated with records 

Record values are closely related to extreme order statistics. Therefore the theory 
of extremal, extremal-F and related processes [see, for example, Dwass (1964, 
1966, 1974), Lamperti (1964) and Resnick (1987)] can be applied to study records. 
The corresponding results in this direction are given in Tiago de Oliveira (1968), 
Pickands (1971), Resnick (1973c, 1974, 1975), Resnick and Rubinovitch (1973), 
Deheuvels (1973, 1974, 1981, 1982a,b, 1983b), Shorrock (1974, 1975), de Haan 
(1984), and Pfeifer (1986). There are many relations between records and Wiener, 
homogeneous and nonhomogeneous Poisson processes. Various approximations 
of record times and record values using these processes and related results were 
obtained by Vervaat (1973), Deheuvels (1983a, 1984a,b, 1988), Pfeifer (1986), and 
Gupta and Kirmani (1988). See also the papers mentioned above that are con- 
nected with Ignatov's theorem. Counting processes associated with record times 
were studied by Gut (1990). Zahle (1989) investigated the structure of the set of 
points where a random process with continuous time takes its record values. 

30. Diverse results 

Mentioned here are some other work dealing with record values and record times. 
Katzenbeisser (1990) obtained the joint distribution of the numbers of inversions, 
upper and lower records. Haas (1992) applied some properties of record times to 
obtain the joint asymptotic distribution of the sample mean and the maximum 
value of a random number of i.i.d, random variables. Nayak and Wali (1992) 
investigated the number of occurrence of events X(n)  > rl (n) and X(n)  < r2(n) 
for some classes of sequences rl (n) and r2(n). 
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Gupta and Kirmani (1988) and Kochar (1990) compared distribution func- 
tions of successive record values X ( n )  and X ( n  + 1). Amongst other results, it has 
been proved that if X(n)  has an increasing failure rate (IFR) distribution then 
X ( n  + 1) also has an IFR distribution. I fX(n  + 1) has a decreasing failure rate 
(DFR) distribution, then X(n)  also has a D F R  distribution. 

Haiman and Nevzorov (1995) investigated a stochastic ordering of the num- 
bers of records among random variables Xko),X~(2),.. . ,Xk(,,), where 
(k(1), k (2) , . . . ,  k(n))  covers all n! permutations of 1 ,2 , . . . ,  n. They have supposed 
that the original random variables XI,X2,. . .  ,X,, are stochastically ordered and 
four types of stochastic ordering of X's  are considered. 

A 6-exceedance record model, in which a value will be considered a new record 
if it exceeds the previous record by at least 6 (a pre-fixed quantity), has been 
discussed by Balakrishnan, Balasubramanian and Panchapakesan (1996) with 
special emphasis on exponential and extreme value distributions. 

Nagaraja and Nevzorov (1996) proved that for a continuous parent distribu- 
tion, while the correlation between functions of successive record values X(n)  and 
X ( n  + 1) is always nonnegative, it can be negative for nonconsecutive records. As 
for discrete parent distributions, one can construct for any n > m >_ 1 a function 9 
such that the covariance between 9(X(m))  and 9(X(n)) is negative. 

Mention should also be made here to the papers by Cheng (1987), Blom (1988), 
Bruss, Mahiat and Pierard (1988), Blom, Thorburn and Vessey (1990), and 
Dziubdziela (1990), which are all of a survey character. 
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Weighted Sequential Empirical Type Processes 
with Applications to Change-Point Problems 

Barbara Szyszkowicz  

1. Introduction 

Let X1,X2,... be independent random variables with the same continuous dis- 
tribution function F. We consider the two-time parameter, frequently called se- 
quential, empirical processes 

[nt] 
~n(X~ t) = rt -1 /2  

i=1 

~n(s,t) = n 1/2 
i=1 
I~t] 

7.(s, t) = n -1/2 Z 
i= 1 

(l{Xi _< x} - F(x)), 

( 1 { ~ i  ~ S} -- , 

where Rln , . . . ,  Rnn denote the normalized ranks 

n 

i i n = n  l ~ - ~ l { X k ~ X / ) ,  i = l , . . . , n ,  
k=l 

and ~i , . . . ,  ~, are the normalized sequential ranks 

i 

~i = i-I ~ l{Xk < Xi), 
k=l 

i =  l , . . . , n  , 

x E I R ,  0 < t <  1 , (1.1) 

0 < s , t < _  1 , (1.2) 

0 < s , t ~  1 , (1.3) 

of the first n of the chronologically ordered random variables XI ,X2,.. . .  Thus, the 
rank of X~, in our notation nRin, is the integer among the numbers 1 , . . . ,  n, which 
corresponds to the position of X/ in the order statistics Xln _< -.- _< X,~ of a 
random sample of size n _> 1, while the sequential rank of X,., here i~i, is the 
position of Xi in the first i - 1  ordered observations Xo,i-1 <<_."<<_Xi-l,i-1, 
1 < i < n, of a random sample of size n _> 1, where X0,0 ~ 0 by convention, and 
~l = 0 by definition. We note that )~n(s) := [nsl/n, 0 < s < 1, and )~i(S) :~- [is]/i, 
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0 < s < 1, 1 < i < n, are the distribution functions of the normalized ranks Rin 
and the normalized sequential ranks ~i, respectively, under the assumption that 
X1,.. .  ,Xn are independent, identically distributed random variables (i.i.d.r.v.'s) 
with the same continuous distribution function F. 

The asymptotic behaviour of the empirical process in (1.1), which is of prac- 
tical interest, may be concluded from that of its uniform version e~(s, t), where 

In4 
c ~ , ( s , t ) = n - U 2 Z ( l { F ( X i )  < _ s } - s ) ,  O < s , t <  1 , 

i=I  

due to the fact that with a continuous distribution function F, we have 

{ ; . (F- l ( s ) , t ) ;  O<_s,t<_ 1, n>_ 1} = {c~(s,t); O<_s , t<  1, n>_ 1} , 

i.e., these two empirical processes are identical. Hence all results proved for 
c~,(s,t) will hold automatically also for (n(x,t). Indeed, for every m e g ] ,  
c~,(F(x),t) = (~(x,t), x E IR 1, 0 < t < 1, n > 1. 

The limiting distributions of all these processes are well known. Here we 
present their asymptotics in D[O, 1] 2 in weighted supremum and Lp-metrics for the 
optimal classes of weights q, which are functions of the time variable t c IO, 1]. 

We note that the process ~(s,  t) is a two-time parameter version of the usual 
(uniform) empirical process 

n 

O~n(S ) ~ -  r l  1/2 ~ ( l ( U i  _< s} - s), 0 < s < 1 , 
i=l  

where U~,. . . ,  U, are uniform-(0,1) random variables. Starting with Anderson 
and Darling (1952), R6nyi (1953), Chibisov (1964) and O'Reilly (1974), there has 
been considerable interest in the asymptotic behaviour of weighted uniform 
empirical and quantile processes. For an insightful treatise of this subject we 
refer to Cs6rg6, Cs6rg6, Horvfith and Mason ([CsCsHM]) (1986), Shorack and 
Wellner (1986), and to Cs6rg6 and Horvfith (1993), as well as to the references in 
these works. Due to CsCsHM (1986) and Cs6rg6, Horvfith and Shao (1993), 
there are now complete characterizations available for describing the asymptotic 
behaviour of the weighted uniform empirical and quantile processes in supre- 
mum and Lp-metrics. For a treatize on recent advances on weighted approxi- 
mations in probability and statistics in general, we refer to CsSrg6 and Horvfith 
(1993). 

In this paper we are interested in asymptotics of weighted two-time parameter 
(sequential) uniform empirical process, namely ~(s , t ) /q ( t ) ,  0 <_ s , t  < 1, with 
weights in the time parameter t c (0, 1] instead of the "space" parameter 
s c (0, 1), where q(t) is a nonnegative function on (0, 11. In a similar way we 
consider two-time parameter (sequential) empirical processes of ranks and se- 
quential ranks. 

In particular, for the process c~,(., .) we have (cf Theorem 2. l(a)) that with q(t) 
which is a positive function on (0, I] and nondecreasing near zero, as n ~ oc, 
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sup sup ] ~ . ( s , t ) - n  l/2K(s, nt)l/q(t) = op(1) (1.4) 
0<t<l 0<s<l 

if and only if I(q, c) < oo for all c > 0, where 

f0  
I(q,c) = t l e x p ( _ c t  lq2(t)) dt, c > 0  , 

and {K(s,t); 0 < s  < 1, t >_ 0} is a Kiefer process, i.e., a two-time parameter  
separable Gaussian process with mean zero and covariance function 

E/ (s ,tl)X(s2, t2) = (sl A s 2 -  sl 2)(t  a t2) . 

Obviously, via (1.4) we conclude convergence in distribution of  any cont inuous in 
sup-norm functional  of  c~,,(s, t)/q(t) to the corresponding functional  o fK(s ,  t)/q(t) 
with weight funct ion q(t) as above, and with {K(s, t); 0 _< s, t _< 1} being a Kiefer 
process. 

Moreover ,  when considering the supremum functional  on its own we have (cf 
Theorem 2.1 (c)) that  the class of  admissible weight functions q(t) for  the con- 
vergence in distribution of  sup0<t< 1 suP0<_s_< 1 Icon(s, t)l/q(t ) is bigger than for the 
weak convergence of  the whole process c~,(s, t)/q(t) in supremum norm. Similar 
results hold also for the processes/?~(s, t) and ~/~ (s, t). Such a phenomenon  was 
first noted and proved by CsCsHM (1986) for  the empirical and quantile pro- 
cesses with weight functions in the space parameter  s c (0, 1). Fo r  instance, in 
case of  the t c (0, 1) variable, we have 

sup sup I~,(s, t) l /( t loglog((1/t)  V 3)) 1/2 
0<t<l 0<s<l 

sup sup [K(s,t) l /( t loglog((1/t  ) V 3)) U2 , (1.5) 
0<t<l 0<s<l 

where K(., .) is a Kiefer process, though weak convergence in supremum norm with 
the weight function q(t) = (tloglog((a/t)  V 3)) 1/2 is impossible. 

Since lira supt;0 suP0<s<l IK(s, t)l/t 1/2 = oc a.s., it is clear that the statement as 
in (1.5) is impossible with q( t )=  t 1/2. Such a weight function is, however,  an 
immediate candidate  for  a weighted Lp-functional of  c~n(s, t) to converge, due to 
the almost sure finiteness of  the integral f l  o f~ IK(s,t)]/t 1/2 ds dt or, in general, 
that  of  f~ f~ IK(s, t)IP/t p/2 ds dt, 0 < p < ~ (cf Lemma 2.B). Indeed, the class of  
admissible weight functions when considering Lp-norms is bigger than that  in the 
case of  supremum norms. For  example, it will follow from Theorem 2.2 that, as 
n ---+ oo, 

/0Y0 /0:/0 Ic~(s't)l/t ds dt ~ 1 l lK(s , t ) l / t d sd t  ' (1.6) 

where {K(s, t); 0 _< s, t _< 1} is a Kiefer process. Moreover ,  in (1.6) we can even 
have t v instead of  t with any v < 3/2. 
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The empirical processes defined in (1.1)-(1.3) play an important role in the so- 
called change-point problem. In particular, Cs6rg6 and Horvfith (1987a) propose 
nonparametric procedures for the change-point problem based on the fin(s,t) 
process. Leipus (1988, 1989) studies the processes an(s, t) and fin(s, t), as well as 
some functionals of fln(s,t), in a similar vein. The process ~n(s,t) was used by 
Cs6rg6 and Horv/tth (1987b) to construct a sequential procedure for detecting a 
possible change-point in a random sequence. The three processes (1.1) (1.3) were 
studied by Pardzhanadze and Khmaladze (1986) under a class of contiguous 
alternatives which accommodate the possible occurrence of a changepoint in a 
series of measurements. Szyszkowicz (1991b, 1994) studied these processes, as 
well as the "bridge type" (tied down at t = 1) versions of an(s, t) and 7n(s, t), in 
weighted supremum metrics under the null assumption of no change and also 
under a sequence of contiguous alternatives as parametrized by Pardzhanadze 
and Khmaladze (1986). In the same vein Correa (1995) studies weighted se- 
quential empirical processes, where the parameters of  the underlying distribution 
function are estimated. 

As illustrated in Cs6rg6 and Horv/tth (1988a) and argued in Brodsky and 
Darkhovsky (1993), a large number of nonparametric as well as parametric 
modelling of change-point problems result in the same test statistic, namely in (cf 
also references in the just mentioned works) 

max ~f [Sk - kSn/n[/(k(1 - k / n ) )  1/2 } , 
1 <_k<n I. 

where Sk =X~ + . - .  +X~, k = 1, . . .  ,n and X1,. . .  ,X~ are independent observa- 
tions. This is the standardized difference between the mean of  the first k obser- 
vations (before the change), Sk/k, 1 <_ k < n, and the overall mean, Sn/n, or, 
equivalently, the standardized difference between the mean of the first k obser- 
vations (before the change) and the mean of the remaining (n - k) observations 
(after the change), k = 1 ,2 , . . .  ,n - 1, where maxl_<~<~ accounts for the fact that 
the time of change is actually unknown. Namely, we arrive at considering the 
sequence (in n) of stochastic processes in k 

- n s k  - sn  / k ( n -  k ) ,  

and consequently, hoping for the convergence in distribution, as n --+ ec, of the 
statistics 

n 1/2 max Sk S~ -- Sk rt l/2 [Sk -- kSn/n[ 
l_<k<, k n ~  ~- = max (1.7) 

so that we should be able to reject the null assumption of having no change in the 
mean if the latter were too large. Unfortunately, these statistics, and even the 
statistics resulting from replacing the weight function k / n ( 1 -  k/n) in (1.7) by 
(k/n(1 - k/n)) 1/2, converge in probability to ec, as n ~ oe, even if the null as- 
sumption of having no change in the mean were true. This, in turn, leads to 
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studying the problem of weighted asymptotics of partial sum processes tied down 
at t = 1 (cf Cs6rg6 and Horv/tth (1988a) for sup-norm results for i.i.d.r.v.'s under 
the assumption of EIXII v < oo for some v > 2, and Szyszkowicz (1991c, 1992, 
1993a, 1996a, 1997) for weighted asymptotics in supremum and Lp-norms for 
i.i.d.r.v.'s, as well as for weighted weak convergence under contiguous measures, 
when only two moments for )(1 are assumed to be finite). 

The general idea of studying change in distribution of a random sequence of 
chronologically ordered observations via comparing the mean of the first k of 
them to that of the remaining ( n -  k) of them appears to be even more appro- 
priate when expressed in terms of comparing the empirical distribution function 
of the first k observations to that of the last (n - k) observations. Consequently, 
we are interested in studying the asymptotic distribution of the sequence of 
processes 

1 ~ n < x }  nl/2 ~ i~l l{Xi < x} 1 _~k+ 
- -  n - k i 1 1{.12/ - 

k n / 
= ~l{Xi<-X}-ni~=l / n l / 2 ( ! ( l - ! ) ) '  (1.8, 

xCIR, l <_k<n, n =  1 ,2 , . . .  

Considering their supl<k<, supxc~ functionals we note that the resulting se- 
quence of random variables, and even the one where k-( I n  --k)n is replaced by 
(~ (1 - ~))1/2 namely 

sup sup ~ l{Xi 
l<_k<nxEN i=1 

< x} -- n .i.~l l {Xi  < x} n 1/2 1 - , 

(1.9) 

converges to oc in probability, as n -~ oo, even if the null assumption of no 
change in distribution were true. Consequently, just like in case of partial sum 
processes, in order to have non-degenerate limits as n --, oo, in supremum norm 
we are led to considering weight functions q(k/n)= ((k/n)(1- k/n))l/Zh(k/n), 
where the function h(k/n) neccessarily goes to oc as k/n ---+ 0 or kin ---+ 1 (cf 
Picard (1985), Deshayes and Picard (1986), and Szyszkowicz (1991b, 1994)). 

Just like tests based on the classical Kolmogorov Smirnov statistic, the ones 
based on 

sup s u p -  1 - n 1/2 I{X/<  x} - I{X/<  x} 
l<-k<nxEN-n / ] i=1 --  YI k t =  1 

k k " (1.10) 
= sup supn 1/2 ~ l { X i  _< x} - n ~ l { X /  _< x} 

l<k<n xE~. i=1 '= 7-7 

should be more powerful for detecting changes that occur in the middle, namely 
near n/Z, where ~(1 - ~ )  has its maximum, than for noticing the ones occurring 
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near the endpoints 0 and n. Thus, a weighted version of (1.10) should emphasize 
changes which may have occurred near the endpoints, while retaining sensitivity 
to possible changes in the middle as well. To see what kind of weight functions are 
possible for statistics based on the processes in (1.8), we will study the asymptotic 
behavior of the processes 

(e . ( s ,  t) - 1) ) / q ( t )  

for a wide class of functions q. For example, as a result of Theorem 3.1 (c) we 
arrive at the following modification of (1.9) and (1.10) 

E f : l  l{Y/ < x} - k n ~ X} - ; ~ i = 1  I{X/  
sup sup 1/z ' 

which has a nondegenerate limiting distribution, namely that of (cf (3.5)) 

0<t<lsup 0_<s_<isup f K ( s , t ) - t f ( s ,  1 ) l / ( t ( 1 - t ) l o g l o g t ( l l _  t) )1/2 , (1.11) 

where {K(s, t); 0 _< s, t < 1} is a Kiefer process. 
On the other hand, if we were to study the problem of the asymptotic be- 

haviour of the processes in (1.8) in L I say, then, for having a non-degenerate limit, 
there is no need to replace the naturally arrived at weight function 
((k/n)(1 - k/n)) in there by any other function that would be milder on the tails. 
For example, as a result of Theorem 3.2, we obtain that the very Ll-functional of 
our process as in (1.8) converges in distribution to the corresponding functional 
of { K ( s , t ) - t K ( s ,  1); 0 s, t  < 1} process, namely to fo fo IK( s , t ) - t K ( s ,  1)1 / 
(t(1 - t)) ds dt (cf (3.3), (3.6) and (3.7)) where {K(s,t); 0 <_ s,t  < 1} is a Kiefer 
process. Thus, the latter Ll-functional, which does not require any modification of 
the naturally arrived at weights for convergence, results in a natural asymptotic 
solution to the change-point problem as posed in (1.8). 

After studying, in Section 2, approximations of en(s, t)/q(t) in probability in 
supremum and Lp-metrics for the optimal classes of weight functions, we use these 
results to obtain the same kind of approximations for the weighted tied down 
processes (en(s, t) - ten(s, 1))/q(t) in Section 3. In Section 4 we consider the two- 
time parameter empirical process of normalized ranks as defined by (1.2). Noting 
first that we have 

fin(s, t) = en( Un(s), t) - [nt] en( U,(s), 1) , 
?l 

where Un(.) is the empirical quantile function of (4.1), which already shows that 
/3, (s, t) has, as it is, a two-time parameter bridge type structure, though random in 
s, we then prove approximations for the ~n(s, t)/q(t) process which are like those 
of the (en(s, t) - ten(s, 1))/q(t) process. 
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The two-time parameter empirical process 7,(s, t) of  sequential ranks defined 
by (1.3) is ready-made for analyzing chronological observations. In Section 5 we 
study approximations of the weighted versions 7~(s, t)/q(t) with continuous F, 
and those of their tied down at t = 1 forms (7,(s, t) - 7n(s, 1))/q(t) in Section 6, 
for the sake of constructing tools, statistics for sequential studies of chronologi- 
cally ordered finite samples of size n, as n ~ oe. In the light of the representations 
~k ~ [kU~]/k, k = 1 ,2 , . . . ,  of  sequential ranks in terms of independent uniform- 
(0,1) random variables U1, U2,... ,  (cf (5.1)) it is reasonable that we get the same 
Gaussian weighted approximations like in case of the processes in (1.1) and their 
tied down at t = 1 versions, respectively. 

All in all, our considerations and results in Sections 2-6 amount to a unified 
treatment, under the assumption that 321,... ,Xn are i.i.d.r.v.'s, of  the two-time 
parameter empirical processes of these observations, their ranks and sequential 
ranks, respectively, in weighted supremum and Lp-metrics. The same can be said 
about our study of these processes under contiguous alternatives in Section 7, 
where we succeed in transforming our i.i.d, based asymptotics into contiguous 
asymptotics with their respective optimal classes of weight functions. 

In Section 8 we summarize similarly optimal weighted asymptotics of multi- 
time parameter empirical processes of arbitrary distributions in IR d, d > 1, in 
supremum and Lp-metrics. As a consequence of these results we should note, of 
course, that all the results of Sections 2 and 3 can be restated in terms of the 
~(x, t)  process of (1.1) with an arbitrary distribution function F on IR _= IR 1. 
Indeed, the assumption of continuity o f F  in Sections 2-7 is only for the sake of a 
unified treatment of the three sequential empirical processes of (1:1), (1.2) and 
(1.3), respectively. 

2. Weighted empirical processes based on observations 

Let XI,X2,. . .  be i.i.d.r.v.'s with distribution function F and define the empirical 
distribution function of the sample X1, .. • ,X, by 

n 

i=1 

An equivalent definition of the empirical distribution function F, can be given in 
terms of the order statistics XI,, <_ Xa,~ <_... <_ X,,n of the random sample 
X 1 , . . . , X ,  as follows: 

0, Xa,n > x 
F.(x) = ~, Xk,~ < X < Yk+l,n, 

1, X.,. <_x 
k =  1 , 2 , . . . , n - I ,  
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Clearly, for every fixed x, F, (x) is the relative frequency of successes in a Bernoulli 
sequence of trials with EFn(x) = F(x) and Var Fn(x) = ¼F(x)(1 - F(x)). Conse- 
quently, by the classical strong law of large numbers, 

a.S. 
G(x) ~ F ( x ) ,  for x fixed . 

Hence, using the language of statistics, G (x) is an unbiased and strongly con- 
sistent estimator of F(x) for each fixed x. Viewing {G(x) ; -oc  < x < oo} as a 
stochastic process, its sample functions are distribution functions, and it is of 
great importance that F(x) can be uniformly estimated by this process with 
probability one, as proved by Cantelli (1933) and Glivenko (1933). Namely, for 
any F, we have 

a.s,  
sup tFn(x)-F(x)l  -~ 0 , (2.1) 

- - o c < x < o o  

which tells us that, sampling ad infinitum, F(x) can be uniquely determined with 
probability one. 

From a practical point of view it is also of interest to study the rate of con- 
vergence in (2.1). Towards this end we define the empirical process 

(n(x) = nl/2(F,~(x) - F(x)), - co  < x < co . 

For each fixed x, one has immediately the central limit theorem: 

E N(O,F(x)(1 - F(x))) 

As to the rate of convergence in (2.1), we have the following result of 
Kolmogorov (1933) and Smirnov (1939). 

THEOREM 2.A. If F(x) is a continuous distribution function, then 

P{ sup I~,(x)l _<y} --+ K(y) , 
o c < x < o o  

where 

and 

where 

k ( -1)  ke-2k2y2 Y > 0 
K(y)= 

O, otherwise 

P~v oo<x<oosup ¢,,(x)_<y} -~ S(y) , 

S(y) = l l - e  :y2, y > O 

t O, otherwise 
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Let Ui =F(X/) ,  i =  1 ,2 , . . . .  Then Ui are uniform-(0,1) random variables, 
provided that F(.) is continuous. Let now E,(s) be the empirical distribution 
function of the sample U1,.. •, Un, and denote the resulting empirical process in 
this case by 

e ~ ( s ) = v / n ( E n ( s ) - s ) ,  0 < s <  1 , 

that is to say 

n 

c t . ( s )=n  l / 2 ~ ( l { U , < s } _ s ) ,  0 < s <  1 . 
i=1 

Then Ec~(s) = 0, and the covariance function of the process {.n(s); 0 < s < 1} is 

p(S l ,  S2) = Eo~n(Sl)O~n(s2) = sl  A s2 - s ls2  , 

which coincides with that of a Brownian bridge {B(s); 0 < s < 1}. The weak 
convergence of c~n(.) to a Brownian bridge was proved by Donsker (1952). The 
first strong approximation of the empirical process by a sequence of Brownian 
bridges is due to Brillinger (1969). The following theorem, which gives the optimal 
rate of approximation, is due to Koml6s, Major and Tusnfidy (1975), and then to 
Bretagnolle and Massart (1989) with the herewith given constants. 

THEOREM 2.B. Given independent uniform-(0, 1) random variables U1, U 2 , . . . ,  
there exists a sequence of Brownian bridges {B, (s); 0 < s < 1 } such that for all n 
and x we have 

P~n -1/2 sup ]c~(s)-B,(s)]  > x +  121ogn~ _< 2 ex p ( -x /6 )  . 
( 0_<s<l ) 

Consequently 

sup c~,(s) - B~(s) a.s. O ( r t _ l / 2 1 O g n )  . 
0<s<l  

R6nyi (1953) studied the asymptotic distributions of statistics like 

sup 7,(s)/s, 0 < a < b <  1, and sup c ~ ( s ) / ( 1 - s ) ,  0 _ < a < b <  1 , 
a<_s<_b a<_s<_b 

as well as those of their two-sided versions. His idea of introducing these modi- 
fications of the classical Kolmogorov-Smirnov statistics was to make them more 
sensitive on the tails from a hypothesized continuous distribution function 
s = F ( x ) .  In the classical Kolmogorov-Smirnov formulation the difference 
I E , ( F ( x ) ) - F ( x ) l  = IF~(x)-F(x) l ,  where En(F(x) )=  F,(x) is the empirical dis- 
tribution function of a random sample X1,. • •, X, with distribution function F, is 
considered without taking into account the value of F(x) at x. For  example, the 
difference IF~(x) - F ( x ) l  = 0.01 at some point x where F(x) = 0.5 (a difference 
that is only 2% of the value of F(x)) is considered just as significant as the same 
difference at the point x where F(x) = 0.01, though the difference now is 100% of 
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the value of F(x). R6nyi (1953) therefore proposed that, instead of the absolute 
deviations ]Fn(x)- F(x)[, the relative values [F~(x) -F(x) l /F(x  ) should be con- 
sidered. In the same spirit, Anderson and Darling (1952) studied the asymptotics 
of statistics like 

sup c~(s)/(s(1 - s))  1/2, 0 < a < b < 1 , 
a<s<b 

and their two-sided versions, measuring distances in terms of their standard de- 
viation. 

Considerations like these weighted statistics have led to posing the problem of 
weak convergence of  the empirical processes c~, in D[0, 1] in the so-called ]l •/qll- 
metrics (weighted supremum metrics) to a Brownian bridge process B. Namely, if 
we let 2" denote the class of positive functions on (0, 1) that are bounded away 
from zero on (6, 1 - 6) for all 0 < 6 < 1/2, nondecreasing in a neighbourhood of 
0 and nonincreasing in a neighbourhood of 1, then one would want to charac- 
terize those functions q E 2" for which we have 

~,,(s)/q(s) ~-~ B(s)/q(s), 0 < s < 1 . (2.2) 

Assuming that q E 2" and is continuous, such a class of functions was first 
characterized by Chibisov (1964) for q(s) resp. q(1 - s )  regularly varying at 0 of 
order 0 < e _< 1/2, and then by O'Reilly (1974), assuming only the continuity of 
q E 2*. From their theorem one can conclude that we have (2.2) if and only if for 
a standard Wiener process W we have 

lim sup IW(s)l/q(s) = lira sup IW(s)l/q(1 - s) = 0 a.s. (2.3) 
s;O sT1 

This characterization of the weighted weak convergence in (2.2) is somewhat 
surprising at the first sight, and there have been unsuccessful attempts in the 
literature to reprove this Chibisov-O'Reilly theorem. For comments on these, we 
refer to Section 2 in Cs6rg6, Cs6rg6 and Horvfith (1986). 

CsCsHM (1986) obtained a weighted approximation of the uniform empirical 
and quantile processes by a sequence of Brownian bridges in supremum norm, for 
the optimal class of weight functions. Weighted approximations in Lp-metrics, 
0 < p < ec for such processes were proven by Cs6rg6, Horvfith and Shao (1993). 
For further discussions on this subject we refer to CsCsHM (1986), Shorack and 
Wellner (1986), and to Cs6rg6 and Horvfith (1993), as Well as to the references in 
these works. The proof  of the following theorem can be found in CsCsHM (1986). 

Let ~* be the class of positive functions on (0,1), i.e., such that 
inf~<s_<l-~ q(s) > 0 for all ~ E (0, 1/2), which are nondecreasing near zero and 
nonincreasing near one. We define also the integrals 

E* (q, C) = (s(1 -- S ) ) - 3 / 2 q ( s )  exp(-c(s(1 - s))-lq2(s)) ds 

and 
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/o 1 I*(q, c) = (s(1 - s)) -1 exp(-cq2(s)/(s(1 - s))) ds, c > 0  . 
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THEOREM 2.C. Let Ul, U2, . . .  be independent  uniform-(0,  1) r a n d o m  variables 
and q E Y .  

(a) We can define a sequence of  Brownian  bridges {Bn(s); 0 < s < 1} such 
that,  as n ~ oc, 

sup ]e,(s) - B,(s)l/q(s) = op(1) 
0<s<l  

if and only ifI*(q,c) < oc for  all c > 0. 

(b) With  {B(s); 0 < s < 1} being a Brownian  bridge, as n ---, ec, we have 

sup I~.(s)l/q(s) ~ sup IB(s)l/q(s) 
0<s<l  0<s<l  

if and only ifI*(q,c) < oc for  some c > 0. 

We note  that,  according to Theorems  3.3 and 3.4 of  C s C s H M  (1986), Theo-  
rem 2.C can be stated equivalently in terms of  the integral E*(q, c) as well. 

The  following descript ion for the Lp-functionals o f  weighted empirical  pro-  
cesses is due to Cs6rg6,  Horvfi th  and Shao (1993). 

THEOREM 2.D. We assume that  0 < p < ec and q is a positive funct ion on (0, 1). 
Then the following s ta tements  are equivalent.  

(i) We have 

f0 ~ ( s ( 1  - < ~ s))p/2/q(s) ds 

(ii) There  is a sequence of  Brownian  bridges {Bn(s); 0 < s < 1 } such that,  as 
g/ ----~ (X~, 

fo I E~n(s) - B~(s)[P/q(s) = o p ( 1 )  . ds 

(iii) We have, as n ~ cx~, 

/0' /0 ]~(s)lP/q(s) ds ~ ' ]B(s)LP/q(s) ds 

where {B(s); 0 < s < 1} is a Brownian  bridge. 

Similar results hold true for  un i fo rm quantile processes (cf C s C s H M  (1986) 
and Cs6rg6,  Horvf i th  and  Shao (1993), and for  immedia te  reference we refer to 
Theo rems  3.A and 3.B in Cs6rg6 and Szyszkowicz (1998) in this volume).  
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Kiefer (1970) was the first one to call attention to the fact that the empirical 
process should be viewed as a twortime parameter process and that it should be 
approximated almost surely by an appropriate two-time parameter Gaussian 
process. He also gave a solution to this problem and proved the first two-time 
parameter strong approximation theorem for an(s), (cf Kiefer (1972)) in terms of 
a two-time parameter Gaussian process. 

THEOREM 2.E. Given independent uniform-(0, 1) random variables U1, U2,..., 
there exists a two-time parameter Gaussian process {K(s, t); 0 _< s < 1, t _> 0} 
with mean zero and covariance function 

E K ( s 1 ,  t l )K(s2 ,  ¢2) = (Sl /~ 8 2 -  s1s2)(tl  A t2) (2 .4)  

such that 

sup Inl/2ogn(s) -- K(S ,  n)l a~. O ( n i / 3 ( l o g n ) 2 / 3 )  . 
O<s<l 

Let XI,X2, . . .  be independent identically distributed random variables with 
distribution function F. We consider the two-time parameter empirical process 

[~tj 
~n(x , t )=n - 1 / 2 ~ ( l { X / _ < x } - F ( x ) ) ,  x E I R ,  O < t <  1 . 

i=1 

We assume throughout that F is continuous and write, without loss of generality, 
in the statements and proofs of our theorems 

~n(F-'(s),t) = n - V Z ~ ( l { f ( X i )  <_s}-s)=:c~n(s, t ) ,  O<_s,t < 1 . 
i=1 

The limiting distribution of the process c~n (s, t), as n --+ oc, is that of a Kiefer 
process K(.,-), i.e., a separable two-time parameter Gaussian process 
{K(s, t); 0 < s < 1, t _> 0} with mean zero and covariance function as in (2.4). 
For  weak convergence of c~n(s, t), we refer to Bickel and Wichura (1971) and 
Mfiller (1970). The best available strong approximation of e~(s,t) is due to 
Komlds, Major, and Tusnfidy [KMT] (1975), and then to Bonvalot and Castelle 
(1991) with the herewith given constants. 

THEOREM 2.F. Given independent uniform-(0, 1) random variables Ul, U2,... ,  
there exists a Kiefer process {K(s, t); 0 < s < 1, t _> 0} such that 

P~ sup sup Ikl/2o~(s) - K(s,k)l > (x + 76LOGn)LOGn;  
l<k<n 0<s<l J 

_< 2.028 exp( -x /41)  

with LOGn = max(log n, log 4). Consequently 

sup Inl/Z~n(s) - K(s,n)l a.s. O(1ogZ n) . 
0<s<l 
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Picard (1985), Deshayes and Picard (1986), and Szyszkowicz (1991b,1994) 
study the problem under what conditions does weak convergence continue to 
hold for the weighted two-time parameter  empirical processes c~n(s, t)/q(t), where 
q(t) is a nonnegative function on (0, 1] approaching zero as t --~ 0. 

Here we present the optimal conditions for weighted asymptotics of  the pro- 
cesses an(s, t) in supremum and Lp-metrics. 

We will assume throughout,  without loss of  generality, that all random vari- 
ables and stochastic processes introduced so far and later on, are defined on the 
same probability space (cf Lemma 4.4.4 of  Cs6rg6 and R6v~sz (1981) and Sec- 
tion A.2 in Cs6rg6 and Horv/tth (1993)). 

Let ~ be the class of  positive functions q on (0,1], i.e., such that 
infa<j<l q(t) > 0 for all 0 < ~ < 1, which are non-decreasing in a neighborhood of 
zero, and let 

£0 
I(q,c) = t - l e x p ( - c t  ~q2(t)) dt, c > 0 . 

THEOREM 2.1. Let q E 9. Then one can construct 
{K(s, t); 0 < s < 1, t > 0} such that, as n --+ oc, we have 

(a) sup sup ITn(s,t) - n -1 /2K(s ,  n t ) l / q ( t )  = op(1) 
0<t<l 0<s<l 

a Kiefer process 

(2.5) 

if and only if I(q, c) 

(b) sup sup 
0<t<l 0<s<l 

< oc for all c > 0,  

IO~n(S, t) -- n - 1 / 2 g ( s ,  ~lt)I /q(t)  =- Oe(1) (2.6) 

if and only if I(q, c) < oc for some c > 0, 

(c) sup sup [c~,(s,t)[/q(t) ~ sup sup [K(s,t)[/q(t) (2.7) 
0<t<l 0<s<l 0<t<l 0<s<l 

if and only i fI(q,c) < oo for some c > 0, where {K(s,t); 0 << s,t < 1} is a Kiefer 
process. 

COROLLARY 2.1. Let q E 9 and {K(s,t); 0 <_ s,t <_ 1} be a Kiefer process. Then, 
as n --+ co, we have 

e,(s,t)/q(t) ~--~ K(s,t)/q(t) in D[0, 1] a (2.8) 

if and only if I(q, c) < oo for all c > 0. 

REMARK 2.1. Throughout  this paper weak convergence statements on Skorohod 
spaces are stated as corollaries to approximations in probability. Naturally, when 
talking about  weighted weak convergence on such spaces, we will always assume 
that the weights are c.d.l.g, functions. 
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REMARK 2.2. Obviously, Corollary 2.1 implies convergence in distribution of any 
continuous in sup-norm functional of c~n (s, t)/q(t) to the corresponding functional 
ofK(s, t)/q(t) with q E 9 and such that I(q, c) < ec for all c > 0. However, for the 
sup-functional itself, by Theorem 2.1 (c), the class of admissible weight functions 
q(t) for the convergence in distribution of sup0<t_< 1 sup0<s<l [~n (S, t) l/q(t) is bigger 
than that for the weak convergence of the whole process ~ (s, t)/q(t) in supremum 
norm. For example, as n -+ oc, we have 

sup sup ]c~,(s,t)]/(tloglog((1/t) V 3)) 1/2 
0<t< l  0<s<l  

----+ sup sup ]K(s, t) l / ( t loglog((1/t  ) V 3)) 1/2 , 
0<t< l  0<s<l  

though weak convergence in supremum norm with this weight function is im- 
possible, 

Theorem 2.1 and Corollary 2.1 were proved by Szyszkowicz (1994) under 
stronger conditions. Namely, (2.5) and (2.8) were obtained for weight functions q 
which are positive on (0, 1] and such that 

lim (t log log 1 It)1/2/q(t) = 0 (2.A) 
t;0 

while (2.6) and (2.7) were proved for positive weight functions q and such that 

lim (tloglog 1/t)l/2/q(t) < ec. (2.B) 
t$0 

As mentioned in Szyszkowicz (1994), using upper-lower class results (tests for 
upper and lower functions) for suprema of Kiefer processes, we could also state 
(2.5), (2.6) and (2.7) of Theorem 2.1 under seemingly different conditions. 
Namely, assuming that q E C(0, 1] and q(t)/ t  1/2 is nonincreasing near zero, by 
Theorem 5.2 of Adler and Brown (1986) (cf also Chung (1949) and Kiefer (1961)), 
we can obtain (2.5) under the condition 

j ( q , c ) < o c  for all c > 0  , (2.C) 

while (2.6) and (2.7) may be obtained under the condition 

j ( q , c ) < e c  for some c > 0  , (2.D) 

where 

f0 
1 

J ( q , c )  = t-2q2(t) exp(-ct- lqa(t))  dt, c > 0 . 

It follows, however, from Lemma 2.1 and Theorem 2.2 of Cs6rg6, Horvfith 
and Szyszkowicz (1994) that, assuming the above mentioned monotonicity of 
q(t)/ t  1/2, (2.A) is equivalent to (2.C), and (2.B) is equivalent to (2.D) (cf the lines 
right after Theorem 2.2 of the just mentioned paper). 
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Theorem 2.1 here is an improvement  of Theorem 2.1 in Szyszkowicz (1994) in 
that we obtain (2.5), (2.6) and (2.7) for their largest possible respective classes of 
weight functions. This improvement  is due to the following integral test for 
suprema of Kiefer processes which follows from Theorem 2.1 of  Cs6rg6, Horvfith 
and Szyszkowicz (1994), where the additional conditions of  continuity of  q and 
monotonicity of  q(t)/t 1/2 near zero, inherited from the Adler and Brown (1986) 
test for upper and lower functions for suprema of Kiefer processes, are dropped. 

LEMMA 2.A. Let q E 2 and {K(s, t); 0 < s < 1, t _> 0} be a Kiefer process. Then 
we have 

(a) l imsup sup IK(s,t)l/q(t) < oc a.s. 
t ;0  0 < s < l  

if and only if I(q, c) < ec for some c > 0, 

(b) lim sup ]K(s,t)]/q(t) = 0 a.s. 
t J,0 0 < s <  1 

if and only if I(q, c) < ec for all c > 0. 

REMARK 2.3. We note that requiring that q E ~ be such that q(t)/t 1/2 is non- 
increasing near zero is a considerable restriction on the class of  possible weight 
functions q E 9 for which we have I(q, c) < oc for all c > 0. For  examples and 
further discussion along these lines we refer to Cs6rg6, Cs6rg6 and Horv/Lth 
(1986) (cf also Proposition 4.1.1 and Examples 4.1.1 and 4.1.2 in Cs6rg6 and 
Horvfith (1993)). We note also that assuming q to be nondecreasing near zero, i.e., 
that q E ~, is not a restriction at all, since if q is decreasing near zero, then 

lim sup IK(s,t)[/q(t) = 0 a.s. 
t.~0 0 < s < l  

Consequently, by assuming that q E ~, we consider the non-trivial cases of  weight 
functions when a test for the latter statement to be true is indeed required. 

For  a review of the integral I(q, c) being used for characterizing the local (near 
zero) behaviour of  a standard Wiener process, we refer to CsCsHM (1986), 
Cs6rg6, Shao and Szyszkowicz (1991) and Cs6rg6 and Horv/tth (1993). We wish 
to emphasize that the classes of weight functions characterizing the local be- 
haviour of  a standard Wiener process and the suprema of Kiefer processes are 
found to be the same. Namely, on account of  Lemma 2.A and Theorems 3.3 and 
3.4 of CsCsHM (1986), the following results hold true. 

COROLLARY2.A. Let {W(t); t_>0} be a standard Wiener process and 
{K(s,t); 0 < s < 1, t _> 0} be a Kiefer process. Then, with q C & the following 
three statements are equivalent. 

(a) I(q, c) < oc for some c > 0, 
(b) lira supt;0 [W(t)l/q(t) < oc a.s., 
(c) lim supt;0 sup0<s< 1 ]K(s, t)l/q(t ) < oc a.s. 
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COROLLARY2.B. Let  {W(t); t_>0} be a s tandard Wiener process and 
{K(s,t); 0 < s < 1, t >_ 0} be a Kiefer process. Then, with q c ~, the following 
three statements are equivalent. 

(a) I(q, c) < ec for all c > 0, 

(b) limtl0 IW(t)[/q(t) -: 0 a.s., 

(c) limtl0 suP0_<s_<l IK(s, t)l/q(t) = 0 a.s. 

PROOF OF THEOREM 2.1. Using K M T  (1975) and arguing as in the p roo f  of  
Theorem 2.1 of  Szyszkowicz (1994), one can construct  a Kiefer process K(-, .) 
such that with a positive function q on (0, 1] and such that  limt+0 tU2/q(t) = 0, we 
have, as n ~ oc (cf (2.15) in the just ment ioned paper),  

[,t] 
sup sup ' ~ ( I { F ( X / )  < s } - s ) - K ( s ,  nt) /nU2q(t)aSo(1) , (2.9) 

0<t< l  0<s<l  

where 

K ( s , , t ) = ~ K ( s ~ ' t )  for  t~[1/n ,  1], 
[ o  elsewhere 

Since I(q, c) < oc for some c > 0 with q E ~ implies limt;0 tl/2/q(t) = 0 (cf The- 
orem 3.3 of  CsCsHM (1986)), and we have for each n _> 1, 

sup sup ]K(s, nt)l/nU2q(t) ~: sup sup IK(s,t)]/q(t) , 
O<t<l/n 0_<s_<l O<t<I/n 0_<s<l 

it is clear that the class of  weight functions for obtaining (2.5) or (2.6) is deter- 
mined by the local (near zero) behaviour  of  the supremum (in s) of  a Kiefer 
process {K(s, t), 0 _< s, t < 1). Using now Lemma 2.A, we get 

op(1) if and only i fI(q,c)<oc 
for  all c > 0, 

sup sup IK(s, nt)l/nURq(t) = OR(l) if and only i fI(q,c)<oe 
O<t<l /n 0_<s_<l 

for s o m e c > 0  , 

which together with (2.9) gives the " i f "  parts of  (a) and (b) respectively. 
The converse parts of  (a) and (b) follow from Lemma 2.A, since 

sup sup I~ , ( s , t ) -n  '/2K(s, nt)l/q(t) 
0<t<I  0<s<l  

_> sup sup In-U2K(s, nt)l/q(t) . 
O<t<l/n 0_<s<l 

The p roo f  of  the " i f "  part  of  (c) is similar to the p roo f  of  Theorem 2.1 (c) in 
Szyszkowicz (1994). For  the converse part  we assume that with q ¢ ~ we have 

sup sup ]ct,(s,t)l/q(t ) ~ sup sup ]K(s,t)[/q(t) , 
0<t<l  0<s<l  0<t<I  0<s<l  
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where K(.,-) is a Kiefer process. Hence the limiting random variable is a.s. finite. 
Consequently Lemma 2.A implies I(q, c) < oc for some c > 0. [] 

PROOF OF COROLLARY 2.1. Obviously, with q E ~ and I(q, c) < oc for all ¢ > 0, by 
Theorem 2.1(a) we have (2.8). Assuming now (2.8) to hold with q E 2, by 
Skorohod-Dudley-Wichura theorem (cf Shorack and Wellner (1986), p. 47) there 
exists %*, n > 1, and K* such that 

and 

Hence 

-------, n > l ,  
q \ q /  q 

sup _c~_ ( t ) -  = o ( 1 )  a.s. 
0<t<ll \ q / 

O<t<l/n 

which, by Lemma 2.A, implies I(q, c) < oc for all c > 0. [] 

Considering Lp-functionals, we obtain that the class of admissible weight 
functions is even bigger than for supremum functionals, via the following best 
possible asymptotic result. 

THEOREM 2.2. Let 0 < p < ec and q be a positive function on (0, 11. Then the 
following three statements are equivalent. 

(a) We have 

f0 1 < oo . (2.10) tp/2 / q( t) dt 

(b) One can construct a Kiefer process {K(s, t); 0 < s < 1, t > 0} such that, as 
rt --+ OO, we have 

~0 '1 ./01 I~(s, t ) -  n-l/2K(s, nt)lP/q(t) ds dt = op(1) . (2.11) 

(c) We have, as n --+ oc, 

f01,~01 f01 f01 I~(s,t)lP/q(t) as dt ~ tf(s,t)lP/q(t) ds dt , (2.12) 

where {K(s, t); 0 < s, t < 1} is a Kiefer process. 

The proof  of Theorem 2.2 is based on K M T  (1975) approximation and the test 
for the integrals of Gaussian processes of Cs6rg6, Horv/tth and Shao (1993). 
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Namely, with q being a positive function on (0, 1] and such that (2.10) holds, 
using K M T  (1975) approximation, a Kiefer process K(.,-) can be so constructed 
that we obtain, as n --+ oc, 

f l  f01 Ic~,( s, t) - n-U2K(s, nt)lP/q(t) ds dt = Op(1) . 
/n 

Since en(s, t) -= 0 for 0 < t < l /n ,  it remains to show that 

j/o'l/n[ ln'/2K(s, nt)[P/q(t) ds a t :  op(1) , 
d 0  

which holds true by the following result, which is a consequence of Theorem 2.1 
of Cs6rg6, Horvfith and Shao (1993). 

LEMMA 2.B. Let {K(s, t); 0 < s, t < 1} be a Kiefer process and q be a positive 
function on (0, 1]. We assume that 0 < p < oc. Then the statements 

and 

fo tp/2/q(t)dt < oc 

" IK(s,t)lP/q(t) < oc a.s. ds dt 

are equivalent. 

For  detailed proofs of  Theorem 2.2 and Lemma 2.B we refer to Szyszkowicz 
(1993) and Cs6rg6 and Szyszkowicz (1994). 

3. "Bridge-type" two-time parameter empirical processes 

Let X1,X2,... be i.i.d.r.v.'s with a continuous distribution function F. In this 
section we study two-time parameter empirical process tied down at t = 1. We 
define 

/ [(.+l)t] 
n-l/2~ ~ I{F(Xi )<  s } - - -  

~ ( s , t )  

0, 

i=1 

O < s <  1, 0 _ < t <  1 

0 < s <  1, t = l  . 

The approximating process of c~n (s, t) is, in terms of the Kiefer process K(s, nt), 
given by 
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{nl/2(K(s, nt) - tK(s,n)); 0 ~ s, t <_ 1} 

~= {K(s , t ) - tK ( s ,  1); O<_s, t_< l}  fo reach  n > l  

~ {r(s,t); o<s, t< 1}  , 

that is to say {F(s, t); 0 _< s, t _< 1} is a mean zero separable Gaussian process 
with covariance function 

EF(Sl, h)F(s2, t2) = (sl A s2 - sls2)(h A t 2 -- t i t 2 )  , (3.1) 

which Parzen (1992) calls a pinned Brownian sheet (two-time parameter 
Brownian bridge). This limiting Gaussian process F also appeared in Hoeffding 
(1948) and Blum, Kiefer and Rosenblatt (1961) in the context of testing for 
independence, as well as in Cs6rg6 and Horvfith (1987a), proposing nonpara- 
metric procedures for changepoint problems based on the empirical process of full 
sample ranks. 

Let ~* be the class of functions q:(0, 1 ) ~  (0, oc) which are positive, non- 
decreasing in a neighborhood of zero and non-increasing in a neighborhood of 
one, and let 

f0 
1 

I*(q,c) = (t(1 - t)) -1 exp(-c( t(1 - t))-lq2(t))dt,  c > 0 . 

THEOREM3.1. Let q E~*.  One can construct a Kiefer process {K(s,t); 
0 < s < 1, t > 0} such that with the sequence of stochastic processes Fn(-, .), 

{Fn(S,t); 0 ~_ S,t ~_ l }  = {f/ 1/2(K(s, ftt) -- tK(s,n)); 0 ~_ s,t ~_ l }  

~ { F ( s , t ) ;  0 < s , t < _ l }  fo reach  n_> l  , 

as n ~ co, we have 

(a) sup sup I~n(S,t) - rn(s , t ) l /q( t  ) = oe(1) 
0< t< l  0_<s<_l 

if and only i f I*(q,c)  < cc for all c > 0, 

(b) sup sup I~n(s,t) - C,(s , t ) l /q(t)  = Oe(1) 
0< t< l  0<s<l  

if and only if I* (q, c) < oc for some c > 0, 

(c) sup sup I~ , ( s , t ) l / q ( t )~  sup sup Ir(s,t)[/q(t)  
0< t< l  0<s<l  0< t< l  0_<s<_l 

if and only if I * ( q , c ) < o o  for some c > 0 ,  where {r(s,t); 0 <_ s , t<_ l}  is 
Gaussian process as defined in (3.1). 
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COROLLARY 3.1. Let q C ~* and {F(s,t); 0 <_ s,t < 1} be a Gaussian process as 
in (3.1). Then, as n --+ oo, we have 

~n(s,t)/q(t) ~--~ F(s,t)/q(t) in D[0, 1] 2 

if and only if I* (q, c) < ec for all c > 0. 

REMARK 3.1, Remarks 2.1 and 2.2 are also valid here. 

We note that Theorem 3.1 does not follow directly from Theorem 2.1 since 
now we consider also weight functions q such that limtT1 q(t) = 0. The proof  of 
Theorem 3.1 can be done similarly to that of Theorem 2.2 in Szyszkowicz (1994) 
when using Theorem 2.1 here instead of Theorem 2.1 of Szyszkowicz (1994), and 
the following integral test of Cs6rg6, Horvfith and Szyszkowicz (1994). 

LEMMA 3.A. Let q E ~* and {F(s,t); 0 <_ s,t <_ 1} be a Gaussian process as in 
(3.1). Then we have 

limsup sup f ( s , t ) l / q ( t  ) < oo a .s .  
t$0 0<s<l  

(a) 

and 

lim sup l l \ l l  l k 
s u p  iFis, t)llqtt; < oo 

tT l 0<s_< 1 

if and only ifI*(q,c) < oo for some c > 0, 

(b) lim sup [F(s,t)l/q(t) = 0 a.s. 
t+0 0_<s_<l 

and 

a . s .  

lira sup [F(s,t)l/q(t ) -- 0 a.s. 
tT1 0<s<l  

if and only if I* (q, c) < oc for all c > 0. 

Theorem 3.1 was proved by Szyszkowicz (1994) under stronger conditions. 
Namely, part (a) was obtained for weight functions q which are positive on (0,1) 
and such that 

i \ 1 / 2  / 
limt~o(t(1-t) l o g l o g ~ )  /q ( t )=O 

and (3.A*) 

lira m ( t ( 1 - - t ) l o g l o g t ( l @ ) ) ' / 2 / q ( t ) = O  , 

while parts (b) and (c) were proved for positive functions q such that 

, ,1 /2  ; 
limt;o(t(1-t)loglog4@_t)) / q ( t )<oc  

and ,1/2 , (3.B*) 

lim m (t(1-t)loglogt(@_t) ) /q(t) < oc 
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Equivalent conditions resulting from upper-lower class results (tests for upper 
and lower functions) for suprema of Kiefer processes as given in Theorem 5.2 of 
Adler and Brown (1986) (cf Chung (1949) and Kiefer (1961)) were also discussed 
there (cf also the lines of discussion following Remark 2.2 here, concerning 
conditions on weight functions). Deshayes and Picard (1986) concluded the 
convergence in distribution of the test statistic 

sup sup O(t) I sup sup 0(t) 77--t:,kt j 
0<t<l 0<s<l -- 0<t<l 0<s_<l 

with ~, a non-negative, piecewise continuous function on the interval (0, 1), under 

the condition f° 1 ((_~)) 2 d t <  oc. Theorem 3.1 here gives the largest possible 

classes of weight functions for asymptotics of &n(s,t) in weighted supremum 
metrics. In particular, it follows from Theorem 3.1(c) that 

/ (  t @ 7 ' )  1/2 sup sup td:,(s,t)l t ( 1 - t ) l o g l o g  ( _ ) 
0<t<l 0<s_<l 

0<t<ISUp 0<_s<lSUp IF(s,g)l/(t(1-t)loglogT(ll_ '))1/2 (3.2) 

Next we present Lp-approximation and the convergence of kp-functionals for 
the optimal class of weight functions, which is bigger than that in the case of sup- 
norm asymptotics. 

THEOREM 3.2. Let 0 < p < oc and q be a positive function on (0, 1), Then the 
following three statements are equivalent. 

(a) We have 

f0' (t(1 - < 
t))p/2/q(t) dt 

(b) There exists a Kiefer process {K(s, t); 0 < s < 1, t > 0} such that with the 
sequence of stochastic processes F,(. ,-)  

{v , ( , , t ) ;o  <_ , , t  <_ 1 } =  (nU2(K(a, nt) - tK(a,n));O ~ s,t ~ 1) 

~{F(s,t);O<_s,t<_ 1} foreach  n_> 1 , 

as n --+ oc, we have 

(c) We have, as n ---+ oc, 

f0~0 1 (2 ~0~01 lao(,,t)lP/q(t) as at -+ Ir(s,t)lP/q(t) ds dt , 
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where {F(s,t); 0 <_ s,t <_ 1} is a Gaussian process as defined in (3.1). 

The p roo f  o f  Theorem 3.2 is based on Theorem 2.2 and the following lemma 
which is a consequence of  Theorem 2.1 of  Cs6rg6, Horvfith and Shao (1993). For  
details we refer to Szyszkowicz (1993b) and Cs6rg6 and Szyszkowicz (1994). 

LEMMA 3.B. Let  {F(s, t); 0 < s, t < l} be a stochastic process as in (3.1) and q be a 
positive function on (0, 1). We assume that  0 < p < oe. Then the statements 

f0 1 (t(1 - t))p/2/q(t) dt < oc 

and 

/070 ' 
are equivalent. 

Ir(~,t)lP/q(t)  ds dt < ec a.s. 

We note  that  the class of  admissible weight functions for the convergence in 
distribution o f  Lp-functionals of  the processes 8,(s, t)/q(t) is considerably bigger 
than that  for  the convergence in distribution of  supremum functionals of  this 
process. For  example, considering Ll-functionals  it follows from Theorem 3.2 
that, as n ~ ec, 

0~0  j [ ~ ( s ,  t ) [ /  (t(1 - t) ) ds dt 

folfo ' IK(s, t )-  tK(s, 1)l/(t(1 - t)) ds a t ,  

(3.3) 

where {K(s, t); 0 _< s, t ___ 1 } is a Kiefer process (cf (2.4)). Moreover ,  according to 
Theorem 3.2, in (3.3) we can even have (t(1 - t)) v with any v < 3 /2  instead of  
t(1 - t). 

We note  that  I~,, (s, t) l/t (1 - t) is essentially the sequence of  stochastic processes 
of  (1.8), rewritten a bit for  the sake of  theorem proving. 

In order  to better relate the result in (3.3) to the change-point  problem as 
summarized by the sequence of  stochastic processes in (1.8), we put  s = F(x) and 
consider ~ (F(x), t). Consequently,  we obtain the sequence of  stochastic processes 

{~n(F(x),t); x c IR ,  0 < t <  1} 

= { ~ ( x , t ) ; x C I R ,  O < t  < l}  

, (n+l)t [(n+l)t] ~ ,  I{X/_< x}  x C IR, 0 _< t < 1 := n-1/2~ ~ l { X i < x }  n ~ ) ,  , 

0, x c I R ,  t =  1, n =  1 ,2 , . . .  , 
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which, unlike ~n(x, t) (cf (1.1)), does not depend on the possibly unknown dis- 
tribution function F. Indeed, the definition of tin(s, t) is for the convenience of 
theorem proving only; all the weighted supremum norm results presented here 
(and those of Szyszkowicz (1991, 1994)) remain true of course under the trans- 
formation s ~ F(x). In particular, based on the processes in (1.8), in terms of 
~n(F(x), t) = ~,(x, t), as n --+ oc, we have, for example (cf (3.2)), 

0<t<l xc~. - loglog t(l - t) 

sup sup IK(s , t ) - tK(s ,  1 ) l / ( t ( 1 - t ) l o g l o g t ( l l  ),/2 
0 < t < l  0 < s < l  - -  t )  

(3.5) 

i.e., a sequence of statistics (computable) converges in distribution to a distri- 
bution free (not a function of F) random variable. 

On the other hand, (3.3) via s --+ F(x) translates into 

[ l  fo~ I~,(x , t )[ / ( , (1-  t))dF(x) dt 
J O J -  oo (3.6) 

-"Jo Jo' [K(s,t) - tK(s, 1 )1/(t(1 - t ) )  ds d t ,  Z 

i.e., now we have a sequence of "statistics" (incomputable, unless F is specified) 
converging to a distribution free (of F) random variable. Hence, in order to make 
our optimal asymptotic results on ~, in weighted Lp-norms more relevant to 
change-point analysis, it is desirable to replace the dF measure of integration in 
the empirical parts of the theorems, like, for example, on the left hand side of 
(3.6), by the empirical dF,. This would make the appropriate empirical left hand 
side Lp-functionals computable statistics, while keeping the right hand side 
Gaussian ones distribution free (of F). This program of replacing dF by dF,, 
when desirable for computational purposes, can be carried out by combining 
appropriate parts of our proofs with that of Corollary 5.6.4 of Cs6rg6 and R6v+sz 
(1981, pp. 186-188). 

Another way to deal with ~n(F(x), t) = ~n (x, t) in weighted Lp-norms is to re- 
place the measure of integration dF on the left hand side of (3.6) by dx, which will 
result in having (cf Corollary 3.2 below) 

~o l f ~ °  l~,(x, t)l/ (t( l - t) dx dt 
(3.7) 

 /0Y --+ IK(F(x), t) - tK(F(x), 1)[/(t(1 - t)) dx at , 
ON3 

on assuming a bit more than two moments for F. That is to say, we now have a 
sequence of statistics (computable) converging to a non distribution free (a 
function of F) Gaussian random variable whose distribution can be simulated for 
each unknown F via repeated large samples, or by bootstrapping a given one. 
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In order  to obtain convergence o f  statistics like those in (3.7), first we need to 
formulate  results for the c~n (F(x), t) process. 

Let ~n(x,t) be as in (l.1), i.e., 

{~,(x,t);xE1R, 0 < t <  1}={~n(F(x),t); xEIR, 0 < t <  1} , 

where F is a cont inuous distribution function. We note that {K(F(x), t); x c IR, 
0 < t < 1} is a Kiefer process, i.e., a two-time parameter  separable Gaussian 
process with mean zero and covariance function 

EK(F(xl), tl)K(F(x2), t2) = (F(xl) A F(x2) - F(x~)F(x2))(h A t2) • 

The analog of  Theorem 2.2 for ~n(., .) process can be formulated as follows. 

THEOREM 3.3. Let q be a positive function on (0, 1] and F be a cont inuous dis- 
tr ibution function. Then, with 0 < p < 0% the following three conditions are 
equivalent. 

(a) We have 

f0' tp/2/q(t) dt < oc and (F(x)(1 - F(x))) p/2 dx < oo . 
OO 

(b) One can construct  a Kiefer process {K(F(x), t); x E 1R, t _> 0} such that, as 
n --+ oc, we have 

. / 0 • _  °° [~.(x, t) -n-U2K(F(x),nt)JP/q(t) dx dt = op(1) .  
OO 

(c) We have, as n --~ co, 

folf°c](n(x,t)lP/q(t)dxdt ~ J o i l  °° IK(F(x), t) lP/q(t) dx at , 
(30 O0 

where {K(F(x),t);x E IR, 0 < t < 1} is a Kiefer process. 

The p r o o f  o f  Theorem 3.3 is like that  o f  Theorem 2.2, where instead o f  Lemma 
2.B we use the following result. 

LEMMA 3.1. Let {K(F(x),t); x C IR, 0 < t < 1} be a Kiefer process and q be a 
positive function on (0, 1]. We assume that 0 < p < co and F is a cont inuous  
distribution function. Then the statements 

f01 tP/2/q(t) (F(x)(1 - F ( x ) ) )  p/2 dx dt < oo 
O0 

and 
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f'f  [K(F(x), t) lP/q(t)  dx dt < oc a.s. 
clOd- (X3 

are equivalent. 

PROOF. Arguing similarily as in the proof  of  Lemma 2.B (cf Szyszkowicz (1993b) 
or Cs6rg6 and Szyszkowicz (1994)), we have 

(/oc )2 (.~oo )2 
E IK(F(x) ,  t)l dx = tPEIN(O, 1)I 2p (F(x)(1  - F ( x ) ) )  p/2 dx 

O0 O0 )2 
= (E [K(F(x),t)[ p dx 

\ 
OO 

and, consequently, the condition of  Theorem 2.1 of  Cs6rg6, Horvfith and Shao 
(1993) is satisfied with r = 2. Hence 

flf~ ]K(F(x), t) lP/q(t)  dx at < oc a.s. J0~ OO 

if and only if 

f ' / ' ~  EIN(O, 1) IP( tF(x) (1-  f (x) ) )P/2/q( t )  dx dt < oo , 
d o ~  O0 

i.e., if and only if 

f '  f (tF(x)(1- F(x)))P/Z/q(t) dx dt < oo . [] 
J o ~  O(3 

Considering the sequence of stochastic processes as in (3.4), we have the following 
result. 

Let F(., .) be a Gaussian process as in (3.1) and F(.) be a continuous distri- 
bution function. We note that {F(F(x) , t ) ;  x EIR, O < t <  1} is a separable 
Gaussian process with mean zero and covariance function 

g r ( F ( x l ) ,  tl ) r ( F ( x 2 ) ,  t2) = (F(xl  ) /X F(x2)  - F(x l  )F(x2) )(tl /~ t2 - tit2) • 

(3.8) 

THEOREM 3.4. Let q be a positive function on (0, 1) and F be a continuous dis- 
tribution function. Then, with 0 < p < oc, the following three conditions are 
equivalent. 

(a) We have 

/0 F l(t(1 - t))P/2/q(t) dt < oc and (F(x)(1 - F(x)) )  p/2 dx < cx~ . 
OO 

(b) One can construct a Kiefer process {K(F(x ) , t ) ; x  E IR, t >_ 0} such that 
with the sequence of stochastic processes Fn(., .) 
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{F,(F(x),t);x E IR,0 < t < 1} 

= {n-1/2(K(F(x),t) - tK(F(x), 1));x E IR,0 < t < 1} 

~= {r(F(x),t);x ~ 1R,0 < t < 1} for each n > 1 , 

as n --+ oc, we have 

i V  ~ I~ . (x , t ) -  r.(F(x),t)fP/q(t) dx at = oe(1) . 
JOJ  - oo  

(c) We have, as n ~ oc, 

So7 Io7; I~.(x, t)lPlq(t) dx dt ~ Ir(F(x), t)lPlq(t) dx dt , 
CO O0 

where {F(F(x),t); x E lit, 0 < t < 1} is a Gaussian process as in (3.8). 

In order  to obtain Theorem 3.4 the following result is needed. 

LEMMA 3.2. Let {F(F(x),t); x E IR, 0 < t < 1} be a separable Gaussian process 
with mean zero and covariance function as in (3.8), where F is a cont inuous  
distribution function. We assume that  0 < p < oc and q is a positive funct ion on 
(0, 1). Then the statements 

/0' F (t(1 - t))p/2/q(t) (F(x)(1 - F(x))) p/2 dx dt < oo 
o o  

and 

i l i ° °  [F(F(x),t)[P/q(t) dx at  < ec a.s. 
JOJ -  oo  

are equivalent. 

PROOF. Similar to that  o f  Lemma 3.1. [ ]  

PROOF OF THEOREM 3.4. Similar to that  o f  Theorem 3.2 when using Theorem 3.3 
and Lemma 3.2 in lieu o f  Theorem 2.2 and Lemma 3.B, respectively. [ ]  

When considering Ll-functionals we note that the condit ion f °~(F(x)  
(1 - F(x))) V2 dx < ec is slightly stronger than the existence o f  the 2 nd momen t  (cf 
Appendix  o f  Hoeffding (1973), and Cs6rg6, Cs6rg6 and Horvfith (1986, p. 34)). 
Consequently,  we have the following result. 

COROLLARY 3.2. Let q be a positive funct ion on (0, 1) and F be a cont inuous 
distribution function such that  

f ~x2(log(1 +x ) ) l+~dF(x )  < oc, with any ~ > 0 . 
o o  
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Then the following three statements are equivalent. 

(a) We have 

f0 1(t(1 -- < oo . t))l/2/q(t) dt 

(b) With the sequence of stochastic processes F,(.,.) as in Theorem 3.4, as 
n ---) oo, we have 

f ~ I~.(x, t) - V.(F(x), t)l/q(t ) dx dt = o f ( l )  , 
OG 

(c) We have, as n ~ oo, 

I~(x, t)l/q(t) dx dt ~ [r(F(x),  t)l/q(t ) dx dt , 
CX3 

where {F(F(x), t); x E IR, 0 < t < 1} is a Gaussian process as in (3.8). 

For  example, under the conditions of  Corollary 3.2 we have (3.7). Conse- 
quently, in this weighted Ll-Convergence in distribution, we obtain a most natural 
statistic (computable) for the change-point problem as formulated in (1.8) (cf also 
the discussion of this problem in the Introduction). 

Similar applicable statistics-type results can be formulated also in terms of the 
other stochastic processes considered in this paper. 

4. Weighted empirical processes based on ranks 

Let )(1,X2,.. .  be independent identically distributed random variables with an 
unknown continuous distribution function F. For each n _> 1, let Rln,-. . ,Rnn 
denote the normalized ranks 

n 

R i n = n - l Z l { X k < _ X , ' } ,  i = l , . . . , n  , 
k=l 

of the first n of  the random variables X1,X2, . . . .  Thus, the rank of X~, in our 
notation nRi,, is the integer among the numbers 1 , . . . ,  n which corresponds to the 
position of Xi in the order statistics X1, _< • • • _< X,, of a random sample of  size 
n > 1. In this section we consider the asymptotic behaviour of  the empirical 
process based on ranks with weight functions q, namely fl,(s, t)/q(t), where 

fln(s,t) =n- ' /2  i~_l l l{Ri ,  <s  } -  , O <_s,t <_ l . 

As in Section 3, let {F(s, t); 0 < s, t < 1} be a stochastic process as defined in 
(3.1), and let B(s) be a Brownian bridge. The following test statistics for the 
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change-point problem were proposed by Cs6rg6 and Horvfith (1987a), where they 
derive their limiting distributions under the assumption of X~, . . . ,Xn  being 
i.i.d.r.v.'s. Namely, as n --+ 

sup sup Ifin(s,t)] --+ sup sup IF(s,t)] , 
0<t<l 0<s<l 0<t<l 0<s<l 

1 

fiZ(s, t) as at ~-~ r2(s, t) ds dt , 

(so(1-so))  '1/2 sup Ifi.(so, t)l ~ sup IB(t)l , 
0_<s< 1 0_<t_< 1 

(t0(1--t0)) -1/2 sup lfi,(S, to)l ?~ sup IB(s)] , 
0<_s<_l 0<s<l  

1 

12 fin(s,t) ds dt ~ N(O, 1) , 

fin(so, t) dt A N(O, 1) , 
s 0 ( 1 - s 0  a0 

/o' (48) 1/2 (-fin( l, t)) dt -~ N(0, 1) , 

t0(1--t0)-J Jo fi,(s, to)ds ~ N(0,1) , 

where 0 < so, to < 1, and N(0, 1) stands for the standard normal random variable. 
Theorems 4.1 and 4.2 below give the asymptotics of weighted versions of such 

functionals for the optimal classes of weight functions. In order to present our 
results we define 

/ fin(S, t) = n-l~2 [( i=l)t] 

( 0 ,  O < s < l ,  t = l  

THEOREM 4.1. Let q C 2*. One can construct a Kiefer process 
{K(s,t); 0 < s < 1, t > 0} such that with the sequence of stochastic processes 
r , ( . ,  .), 
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{rn(s,t); o<_s,t< 1}= {n o<_,,t<_ 1} 
2={F(s,t); O<_s,t<_l} f o r e a c h  n _ > l  , 

as n ~ ~ ,  we have 

(a) sup sup Ifln(s,t) - Fn(s,t)l/q(t ) = op(1) 
O<t<! O<s<! 

if and only if F (q, c) < ~ for all c > O, 

(b) sup sup [~n(s, t) - Fn(s, t)l/q(t) = Op(1) 
0<t<l 0_<s<l 

if and only if I* (q, c) < oc for some c > 0, 

(c) sup sup [fi,(s,t)l/q(t ) ~ sup sup IF(s,t)[/q(t) 
0<t<l 0_<s_<l 0<t<l 0<s<l 

if and only if I*(q,c)< oo for some c > 0, where {F(s,t); 0 <_s,t<_ 1} is a 
Gaussian process as in (3.1). 

COROLLARY 4.1. Let q C ~* and {F(s, t); 0 <_ s, t _< 1} be a Gaussian process as in 
(3.1). Then, as n -~ oc, we have 

~,(s,t)/q(t) ~ r(s,t)/q(t) in D[0, 1] 2 

if and only if I* (q, c) < cc for all c > 0. 

We note that  f rom Theorem 4.1 (c) (but not  as a consequence o f  Corol lary  4.1) 
we have, for example, as n ---+ oc, 

sup sup ]fi,(s,t t ( 1 - t ) l o g l o g  
0<t<l 0_<'s< 1 

) } / (  l ( ~ / ) )  1/2 
sup sup IF(s,t t ( 1 - t ) l o g l o g  

0<t<l 0<s<l 

As an immediate consequence o f  Theorem 4.2 below we obtain, for  example, as 
n --+ O(), 

/o7o' /0/0 L~(s,t)l/(t(1 - t ) )  ds dt ~--~ 1 ~]F(s,t)l/(t( 1 - t ) )  ds dt . 

TUEOREM 4.2. Let 0 < p  < cc and q be a positive function on (0, 1). Then the 
following three statements are equivalent. 

(a) We have 

f0 (t(1 -- < ~ . 
t))P/2/q(t) dt 
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(b) With the sequence o f  stochastic processes F,(-,  .) as in Theorem 4.1 we 
have, as n --+ oo, 

f0~01 I/~(s, t ) -  F~(s,t)lP/q(t)ds dt = op(1) . 

(c) We have, as n ~ oc, 

/o70' /0J0' ]fl,(s,t)[P/q(t) ds dt ~ It(s, t)lP/q(t) ds dt , 

where {F(s, t); 0 _< s, t _< 1} is a Gaussian process as in (3.1). 

Proofs  of  Theorems 4.1 and 4.2 are based on the following observation.  

OBSERVATION 4.1. We note that 

fln(S,t)=n I /2E( l {Rin  <S } -  
i=1 \ 

= n - 1 / 2 Z ( I { F ( ~  ) < Un(s)}- 
i=1 

where Un(s) is defined by 

0 for s E [0, 1/n) 
U , ( s ) =  Uk:,=F(Xk:~) for  sE[k /n , (k+l ) /n ) ,  k - - 1 , . . . , n - 1  

U~:, for  s =  1 , 

(4.1) 

and XI:, < . .-  < Xn:n denote the order  statistics o f X ~ , . . .  ,X,. We note also that 
the process fin(s, t) already has a "br idge"  type structure as it is, namely we have 

Bn(s,t) [nt] = 1 ) .  
n 

Theorem 4.1 was proved by Szyszkowicz (1994) under  stronger conditions, 
namely (3.A*) and (3.B*) in lieu ofI*(q,c) < oc for all c > 0 and I*(q,c) < eo for 
some c > 0, respectively (cf also discussion after Corol lary 3.1 here). 

PROOF OF ThEOReM 4.1. Arguing as in the p roo f  of  Lemma 3.1 of  Szyszkowicz 
(1994) and using Lemma 2.A, with any q E 2, we have 

sup sup [K(Un(s),nt) - K(s, nt)l/(nl/Zq(t)) 
0<t<l  0<s<i  

= { o e ( 1 )  i f I ( q , c ) < o o f o r a l l c > O  (4.2) 

Op(1) i f I (q ,c )<oc forsome c > 0  , 

where K(., .) is a Kiefer process and U,(s) is defined as in (4.1). Consequently,  the 
p roo f  of  Theorem 3.1 can be repeated here, since Theorem 2.1 and (4.2) imply 
that  there exists a Kiefer process K(-, .) such that, as n -+ oo, 
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sup sup [e(Un(s),nt) - n - l / 2 K ( s ,  n t ) l / q ( t  ) 
0< t< l  0<s< l  

=_ ~ Op(1) if I(q,c) < ec for  all c > 0 

1. OR(l) if I(q, c) < ec for  somec > 0 [ ]  

PROOF OF COROLLARY 4.1. Similar to tha t  o f  Corol lary  2.1. [ ]  

In  order  to obta in  T h e o r e m  4.2 we will need the following result. 

LEMMA 4.1. Let  q be a positive funct ion on (0, 1] and such that  

f0 1 < oc . (4.3) tp/2 /q(t) dt 

Then,  as n ~ oc, we have 

/0 Y01 d,-- o,/1/, 
where {K(s, t); 0 < s < 1, t _> 0} is a Kiefer  process and U,(s) is defined as in (4.1). 

PROOF OF LEMMA 4.1. By L e m m a  4.5.1 of  Cs6rg6 and R6v6sz (1981), we have 

sup IK(en (s), nt) - K(s, nt)] a.s. 0 ((nt)1/4(log log nt)1/4 (log nt) 1/2) , 
1/n<s<_l 

as nt --+ oo. Hence for  any ,~ > 1 

/ ,  l r 1 

..J~/, __J[1/n In-V2(K(U"(s)' nt) - K(s, nt) )l p/q(t)  ds dt 

1( sup ) ~ < [ In-1/2(K(U,(s),nt) -K(s ,  nt)) I /q(t)dt 
J;. /, \l/n<ssl 

a.s. 0 nt)l/4(loglognt)l/4(lognt)l/2/(nt) 1/2 P (tP/Z/q(t)) dt 

_<O( sup ((nt)1/4(lognt)3/4)P f 6  ,P/2/q(t)dt 
\2/n<_t<6 \ /n 

~-6<<_t<_lSUp ((nt)-l/4(lognt)3/e)Y~ l tp/2/q(t) dt) 

---- O(O(1)o(1) + o(1)O(1)) 

a~. o(1) , 

as n --~ oo, and taking ~ > 0 arbi trar i ly small, for any funct ion q which is positive 
on (0, 1] and such tha t  (4.3) holds. Also, if (4.3) holds, we have 
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2/'[ 1 In 1/2(K(U,(s), nt) - K(s, nt))[P/q(t) dsdt 
.) 1/n 

_< 2 p+I In-V2K(s, nt)lP/q(t) ds dt 
JO Jo  

= o p ( 1 )  

as n --~ oc, by L e m m a  2.B. Hence,  by the last two results, for  any function q which 
is positive on (0, 1] and such that  (4.3) holds, as n --+ oc, we have 

[111  In-l/2(K(U,(s), nt) _ K(s, nt))lP/q(l) dsdt : op(1) . 
./031 /,, 

Also, on account  of  U,,(s) = 0 for s E [0, 1/n) and using again L e m m a  2.B, as 
n -+ oe, we have 

fo 1[1/'ln 1/2(K(g~(s),nt) - K(s, nt))lP/q(t)dsdt 
Jo  

----_ [ 1 / . 1 / ,  In-l/2K(s, nt)lP/q(t) dsdt 
dOJO 

]K(s, t)IP/q(t) ds dt 

as. o(1) 

for any  funct ion q which is positive on (0, 1] and such that  (4.3) holds. This 
concludes the p r o o f  of  L e m m a  4.1. [ ]  

As to the p r o o f  of  Theorem 4.2, we can simply say that  the p r o o f  of  Theorem 
3.2 can be repeated here since Theorem 2.2 and L e m m a  4.1 imply that  there exists 
a Kiefer  process {K(s, t); 0 < s < 1, t _> 0} such that,  as n -~ oc, 

[ 1 / ' 1  I~n(U~(s),t) - n-1/2K(s, nt)IP/q(t)dsdt = op(1) 
3oJo 

if  

fo I tp/2/q(t)dt < ec . 

5. Weighted empirical processes based on sequential ranks 

Let X~,X2,...  be independent  r a n d o m  variables with a cont inuous  distr ibution 
funct ion F.  Fo r  each n > 1, let ~1,-- •, ~, denote  the normal ized sequential  ranks  

i 

~ i = i - l Z l { X k  <Xi}, i=  1 , . . . ,n  , 
k=l 
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of the first n of the random variables X1,X2,.... Thus the sequential rank of X/, 
here i~i, is the position of Xi in the first i - 1  ordered observations 
X0,i-1 _< ..- _< X/-l,i 1, 1 < i < n of a random sample of size n _> 1, whereX0,0 =- 0 
by convention, and 31 = 0 by definition. 

When observations are available sequentially and to be kept in their chrono- 
logical order, then, for computing nRi,, one has to recompute the ranks of all the 
available observations at each stage. This is often quite tedious as well as time 
consuming. However, computing only the rank of the last observation at each 
stage gives the sequential ranks i~ i immediately. Hence, it is, comparatively, also 
easy to calculate statistics of sequential ranks. In particular, one can calculate 
these statistics successively as the sequential ranks are calculated, in contrast to 
statistics based on ranks that require the entire sequence Rln,... ,Rn, to be cal- 
culated. Moreover, sequential ranks have the important property that, under the 
null hypothesis of all the independent X/'s being also identically distributed, they 
themselves are independent (in contrast to ranks). The following result is due to 
Barndorff-Nielsen (1963). 

THEOREM 5.A. If the random variables X1,.. • ,X, are independent and identically 
continuously distributed, then the sequential ranks ~1,..., ~, are independent and 

P { ~ i = ~ } = ~ ,  k = 0 , . . . , i - 1 ;  i = l , . . . , n  . 

Statistical tests based on sequential ranks are frequently used because of these 
convenient properties. Sequential ranks are ready made, of course, for sequential 
procedures. However, they are also very convenient to use for sequential studies 
of chronologically ordered observations of finite size samples. 

For related works on statistics based on sequential ranks we refer to Parent 
(1965), Reynolds (1975), Mason (1981), Lombard and Mason (1985). Bhatta- 
charya and Frierson (1981) propose a control chart based on partial sums of 
sequential ranks for detecting small changes in the distribution of a given random 
sample. They consider maxl<k<, ~ik=l ~i/l'l 1/2 type statistics while Gombay (1995) 
studies their sequentially weighted versions maxl<k<_, ~i~=1 ~i/k 1/2 instead, via a 
theorem of Darling and Erdgs (1956). Using different type of weight functions 
Szyszkowicz (1996b) obtains weighted asymptotics of partial sums of functionals 
of sequential ranks in supremum and Lp-norms. Cs6rg6 and Horvfith (1987b) 
propose a sequential procedure based on empirical process of sequential ranks for 
detecting a possible changepoint in a random sequence. Asymptotic properties of 
CUSUM versions of these procedures are studied by Huse (1989). Test statistics 
based on sequential ranks under contiguous alternatives and in connection with 
changepoint problems are considered by Lombard (1981, 1983). 

Here, we consider the two-time parameter empirical process 

~ . ( s , t ) = n - ' / 2 ~ l  ~i<_s}- , 0 < ~ , t < l ,  
i=1 
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of  the normalized sequential ranks ~i, i = 1 , . . . ,  n, and prove the optimal as- 
ymptot ic  characterizat ion o f  7n (s, t) in weighted supremum and Lp-metrics. 

THEOREM 5.1. Let q E 2. There exists a sequence o f  Kiefer processes 
{Kn(s, t); 0 < s, t _< 1} such that, as n ~ (xD, we have 

(a) sup sup 17n(s,t)-Kn(s,t)l /q(t)=oe(1) 
0<t<l 0<s<I 

if and only if I(q, c) < eo for all c > 0, 

(b) sup sup 17~(s,t) -K~(s, t) l /q(t  ) = OR(l) 
0<t<l 0<s<l 

if and only if I(q, c) < oc for some c > 0, 

(c) sup sup 17,(s,t)l/q(t ) ~ sup sup IK(s,t)l/q(t) 
0<t<l 0<s<l 0<t<l 0<s<l 

if and only ifI(q,c) < oc for some c > 0, where {K(s,t); 0 < s,t <_ 1} is a Kiefer 
process. 

COROLLARY 5.1. Let q E ~ and {K(s, t); 0 _< s, t _< 1} be a Kiefer process. Then, 
as n ~ ec, we have 

7n(s, t)/q(t) ~ K(s, t)/q(t) in D[0, 1] 2 

if and only if I(q, c) < oo for all c > 0. 

Considering Lp-functionals, we obtain here the following result. 

THEOREM 5.2. Let 0 < p < oo and q be a positive function on (0, 1]. Then the 
following three statements are equivalent. 

(a) We have 

f0 1 < oc . tP/2/q(t) dt 

(b) There exists a sequence of  Kiefer processes {K, (s, t) ;0 < s, t _< 1 } such that, 
as n --+ oo, we have 

fol f l  lTn(S,t) - Kn(s,t)lP/q(t) dsdt -~ op(l) • 

(c) We have, as n ---+ oc, 

f 0 l f 0  ' f 0 l f0  I 17, (s, t)IP/q(t) ds dt ~--~ IK(s, t)IP/q(t) ds dt , 

where {K(s, t); 0 _< s, t _< l} is a Kiefer process. 
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In order to prove our results, we will represent the normalized sequential ranks 
~i in terms of uniformly distributed random variables. By Theorem 5.A, se- 
quential ranks generated by i.i.d, observations, i.e., i~i in our terminology, are 
independent, the ith being uniformly distributed on {0 , . . . ,  i -  1}. Hence, with 
independent random variables Ui, uniformly distributed on [0, 1], we have 

~,2[iU,]  i =  1 2 , . . . .  (5.1) 
i ' 

Such a representation of sequential ranks was used by Cs6rg6 and Horv/tth 
(1987b). 

PROOF OF THEOREM 5.1. Let Ui = F(X/), and 

~ , ( s , t ) = n - 1 / 2 ~  1 <_s - s  , O < s , ¢ <  1 . 
i=1 

By Cs6rg6 and Horvfith (1987b), one can construct a Kiefer process K(-,-) such 
that 

sup Inl/2~, (s, t) - g ( s ,  nt)] = O(lo82 nt) , (5.2) 
0<s_<l 

as nt --+ ec. Hence, imitating the proof  of Theorem 2.1, we get with q E 

sup sup ]~,(s,t) - n-1/ZK(s,  n t ) l /q( t )  
0 < t < l  0 < s < l  

Sop( l )  if I(q, c) < oc for all c > 0  
/ Op(1) i f I ( q , c ) < o c f o r s o m e  c > 0  , 

and 

sup sup I~n(s , t ) l /q( t  ) ~ sup sup ]K(s , t )[ /q( t )  
0 < t < l  0 < s < l  0 < t < l  0 < s < l  

if I (q ,  c) < oc for some c > 0. The rest of the proof  concerning the "if"  parts of 
(a), (b) and (c) is exactly the same as the corresponding part of the proof  of 
Theorem 4.1 of Szyszkowicz (1994), where the results of Theorem 5.1 were proved 
under stronger conditions resulting from the law of the iterated logarithm or from 
tests for upper and lower functions for the suprema of Kiefer processes (cf our 
discussion after Remark 2.2 here). The converse parts of (a), (b) and (c) follow the 
same way as the corresponding parts in the proof  of Theorem 2.1 here. [] 

PROOF OF COROLLARY 5.1. Similar to that of Corollary 2.1. [] 

PROOF OF THEOREM 5.2. First we show that (a) implies (b). Assume that q is a 
positive function on (0, 11 such that (2.10) holds, i.e., (a) is satisfied. Let 
Ui = F(X/), and ~n(s, t) be defined as in the proof  of Theorem 5.1. Recall that, by 
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Cs6rg6 and Horvfith (1987b), one can construct  a Kiefer process 
{K(s, t); 0<s_< 1, t _> 0} such that  (5.2) holds. Hence,  with a sequence of  Kiefer 
processes ~',,(s, t), namely .K,(s, t) = n-1/2K(s, nt), similarly as when proving 
Theorem 2.2, we obtain 

Jo~o ' IP,(s, t) - L , ( s ,  t)lP l q( t) ds dt = o s ~ ( 1 )  . 

Since, by (5.1), 

where 

(5.3) 

{~. (s , t ) ;  O<_s,t<_ 1} £ {~.(s , t ) ;  O<_s,t< l} , (5.4) 

[nt] 

~,,(*,0 = n  ' / ~ ( I { ¢ , _ < , } - , ) ,  o _ < , , t _ < i  , 
i=I 

we can use Lemma 3.1.2 in Cs6rg6 (1983) to conclude (5.3) with 7n (s, t) instead of  
~, (s, t) and a possibly different sequence of  Kiefer processes K~ (s, t). Since, for  
n t  ~ o(3, w e  h a v e  

[nt} . ~  
Z = O(lognt) for any s C [0, 1] , (5.5) 
i=1 

consequently,  we obtain 

Lifo 117n(s,t)- 7n(s,t)[P/q(t)dsdt=o(1) 

for  any positive q such that  f~ tp/2/q(t) dt < ec, which implies par t  (b). 
Next  we assume that  (b) holds true. Then we have 

IK. (s, t)IP/q(t) ds dt ~ IK(s, t)IP/q(t) ds dt = op(1) , 
JO ,10 dO JO 

as n --~ oc, where {K(s, t); 0 < s, t _< 1} is a Kiefer process. Now (a) follows f rom 
Lemma 2.B in the same way as in the p roo f  of  Theorem 2.2. 

Finally we show that (a) and (c) are equivalent. Assume that  (a) holds. Using 
(5.2), (5.4), Lemma 3.1.2 in Cs6rg6 (1983) and (5.5), we conclude that there exists 
a sequence of  Kiefer processes {K, (s, t); 0 _< s, t _< 1 } such that, as n ---+ ec, 

sup sup Iw.(s, t) - X . ( s ,  t)l = op(1) . 
0<t<l 0<s<l 

Consequently,  due to the positivity of  q, as n --+ oo, 

7o' f 7o' Iv.(~, t)lP/q(t) dsdt ~ IK(s, t)lP/q(t) dsdt 



Weighted sequential empirical type processes 609  

for any 6 E (0, 11, where {K(s , t ) ;O < s , t  <_ 1} is a Kiefer process. By Lemma 2.B 
we have 

1 

lim IK(s, t)[P/q(t) ds dt = 0 
640 

a.s. , 

which, combined with the previous statement, implies (c). Assuming now that (c) 
holds, we have 

f o ~  1 IK(s , t ) lP/q( t )dsdt  < oo a.s. , 

which yields (a) by Lemma 2.B. Details of this proof  are similar to those of the 
corresponding parts of the proof  of Theorem 2.2 and can be found in Szyszkowicz 
(1993b). [] 

6. "Bridge-type" empirical processes of sequential ranks 

As in Section 5, let)(1 ,X2,. . .  be i.i.d.r.v.'s with a continuous distribution function 
F and let 41,42,..- be their normalized sequential ranks. With (1.8) and (3.4) in 
mind, we study the asymptotic behaviour of the "bridge" type processes 

(G(s, t) - tG(s,  1) ) /q(t)  . 

We introduce 

~n(S, t) = n i=1 - -  

0 < s < l ,  0 _ < t < l ,  
0, 0 < s < l ,  t = l .  

Again, let {F(s,  t); 0 _< s, t _< 1} be a stochastic process as defined in (3.1). 
Here we establish the optimal asymptotics for the processes ~n (s, t) in weighted 

supremum and Lp-metrics. 

THEOREM 6.1. Let q E 2*. There exists a sequence of stochastic processes Fn(., .), 
n_>l ,  

{G(s,t);  O <_s,t <_ 1} ~= {r(s,t); O <_s,t < l} 

such that, as n ~ oc, we have 

(a) sup sup I~n(s, t) - e , ( s ,  t)l /q(t) = op(1) 
0 < t < l  0<_s<l 

if and only if I* (q, c) < oc for all e > 0, 
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(b) sup sup 17.(s, t) - V.(s, t)]/q(t) = Oe(1) 
O<t<l O<s_<l 

if and only if I* (q, c) < oo for some c > O, 

(c) sup sup I~,(s,t)l/q(t) ~ sup sup [V(s,t)l/q(t) 
0<t<l 0_<s_<l 0<t<l 0_<s<l 

if and only if I*(q,c) < oc for some c > 0, where {F(s,t); 0 <s,t<_ 1} is a 
Gaussian process as in (3.1). 

COROLLARY 6.1. Let  q E ~* and {F(s,t); 0 <_ s,t < 1} be a Gaussian process as in 
(3.1). Then, as n --+ oc, we have 

~n(s,t)/q(t) ~ F(s,t)/q(t) in D[0, 1] 2 

if and only ifI*(q,c) < e~ for all c > 0. 

THEOREM 6.2. Let 0 < p  < oc and q be a positive function on (0, 1). Let 
{F(s,t); 0 < s,t <_ 1} denote a Gaussian process as in (3.1). Then the following 
three statements are equivalent. 

(a) We have 

f  (t(1 - < t))p/2/q(t) dt 

(b) There exists a sequence of  stochastic processes F,( . ,  .), n _> 1, 

{F,(s,t); O<s,t<_ 1} £ {r(s,t); O < s , t <  1} 

such that, as n ---+ cx~, we have 

~01~01 I ~ . ( S ,  t )  - -  F=(s,t)[P/q(t)dsdt:op(1) . 

(c) We have, as n -+ ~ ,  

/0', /0701 p,(s,t)lP/q(t)dsdt ~ ]F(s,t)[P/q(t)dsdt, 

where {F(s,t); 0 <_ s,t <_ 1} is a Gaussian process as in (3.1). 

Theorem 6.1 (and Corol lary 6.1) is an improvement  of  Theorem 4.2 (and 
Corol lary 4.2) of  Szyszkowicz (1994), where stronger conditions on weight 
functions were used. Namely,  par t  (a) and Corol lary 6.1 were obtained for weight 
functions q which are positive on (0, l) and such that  (3.A*) holds, while parts (b) 
and (c) were proved for positive functions q such that  (3.B*) holds (cf also dis- 
cussion following Remark  3.1 here). The p roo f  of  Theorem 6.1 can be done along 
the lines of  the p roo f  of  Theorem 4.2 in Szyszkowicz (1994), now making use of  
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Lemma 2.B in order to get the optimal conditions on the weight functions. On 
account of Lemma 2.B, Corollary 6.1 follows from Theorem 6.1 in the very same 
way as Corollary 2.1 follows from Theorem 2.1. 

P R O O F  OF THEOREM 6.2. Let 

i=1 i --  

We introduce also 

Then 

[(n+i~lt]({[iUi] } ) ~(1) (S. ~ | < S -- S 0 < t < 1/2, 0 < S < 1 [(n+l)tlk ] = __ , , 

~(2) [ S  ~ _ , 1/2 < t < 1, 0 <_ s <_ 1 . [(n+l)t]k ] = 1 < s - s 
i=[(n+l)t]+l k, I, t 

{ Sl(')l),](s), 0 < t _ < 1 / 2 ,  0 < s <  1 

S[(n÷l)tI(s)  = ~(1) ~(2) / \ ~(2) 
o[~] ( s )+  i.@]ls)- [(.+l)tl(S), 1 / 2 _ < t <  1, 0 < s <  1 

Using the representation of sequential ranks {i ~= [iUi]/i (cf (5.1)) and the ap- 
proximation of (5.2), one can construct two independent Kiefer processes K 0) (.,.) 
a n d  K(2) (  ., .) such that 

.1 n _ l / 2 / ~ ( 1  ) --  K (1) (n -t- ./0 \ [(n+~)t](s) (s, 1)t)) P / q ( t ) d s d t = o e ( 1 )  

if 

and 

.~01/2 tP/2 /q(t) dt < cxD , 

if 

(6,1) 

1/2[1  n l /2{3(2 )  / " 
,10 k [(n+l)t] ~ s ) - K ( a ) ( s ' ( n +  1 ) t ) )  P / q ( 1 - t ) d s d t = o f ( 1 )  

(6.2) 

f0 /2 tp/2/q(1 - t) dt < oc . 



612 B. Szyszkowicz 

In order to get (6.2), we note that, along the lines of the proof  of Theorem 2.1 in 
Cs6rg6 and Horv~ith (1987b), we get, as nt ~ oc, 

sup ~ )  { } F(~+~)t] [( d [(n - i +  1) U . _ i + l ]  " 

o_<,<~ -~ -- i T ] -  - ~=1 

= O(lognt) . 

By this and (5.2), we have, as nt -+ oc, 

sup [(~+i~1'] {[(n-i+l)U~-i+1] } 1 < ~ -x(2) (~ ,  (n + 1)0 
O<s<l[  .= n ---- i ~ - ] -  - -  

= O(log 2nt) a.s. 

Hence, with function q positive on (0, 1), we have 

! 1 
f/2~O l't 1/2Sl~2+i)tj(s ) --l'l 1/2K(2)(s,(n+ l ) ( l - t ) )  P/q(t) dsdt 

- 1 / 2  ,.1 

: JO JO n-1/2S(?2+l)t](s)- n-l/2K(2)(s'(l'l ~- 1) ' )p /q( l  - t ) d s d t  

= op(1) 

if 

f l  (1 -- t)P/2 /q(t) < oc . dt 
/2 

Let }n be a version of the process ~n when replacing ~i by [iUi]/i (cf (5.1)). Using 
(6.1) and (6.2), as well as the method of proof  of Theorem 3.2 (for details of the 
proof  of Theorem 3.2 we refer to Szyszkowicz (1993b) or Cs6rg5 and Szyszkowicz 
(1994)), with the Kiefer process 

{K(s, nt), O < t <  1, O < s <  1} 

KO)(s, nt), 
x(~) (~, ~) + X(~) (~, ~) - X(~l (~, ~ - ~t), 

we have 

0 < t <  1/2, 0 < s < l  

1 / 2 < t _ <  1, 0 < s < l  , 

fl/2 ~1 
]o 7"(s't)-n-1/2(K(s'(n+ 1) t ) - tK(s ,n+ 1))P/q(t)dsdt 

= r / - 1 / 2  S[(n+l)t](s) - Sn(s) 
dO dO n 

- ,<~/2(K(~,  (n + 1)0 - tK(~, ~ + 1)) P / q ( t )  ds dt 

= o~(1) 
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if 

if 

Also 

fO (t(l  -- t))P/2/q(t) de < oe . 

1 1 

f/2fo ~ n ( s ' t ) - n - l / 2 ( K ( s ' ( n + l ) t ) - t K ( s ' n + l ) ) P / q ( t ) d s d t  

= f l l i2 foln-1/2(S[(n+l) t](S)  [(n~l)t]'sn(s)) 

P 
- n-V2(K(s, (n + 1)t) - tK(s, n + 1)) /q( t )  dsdt 

= o (1) 

f0 1(t(1 - dt < cx~ . t))P/2/q(t) 

Consequently, assuming (a), with the sequence of stochastic processes Fn, n _> 1, 

o< ,t < {n-'/2/X/.,nt)- O<.,t < 1} 

we have,  as F/--+ 0(3 

- Fn(s,t) / q ( t )d sd t  =- op(1) 

We note again that for each n >_ 1 

{Fn(s,t); 0 < s,t < 1} ~ {F(s,t); 0 < s,t < 1} . 

Since by (5.1) 

we can use Lemma 3.1.2 in Cs6rg6 (1983) to conclude that, with a possibly 
different sequence of stochastic processes/~n(', '), but still such that 

{/~,(s,t); O < s , t < l } ~ { F ( s , t ) ;  O<_s , t<  1}, n>_l  , 

we have, as n ~ oc, 

This concludes the proof  that (a) implies (b). The proof  that (a) follows from 
(b) and the proof  of the equivalence of (a) and (c) can be done along the lines of 
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the proof  of Theorem 3.2 (for details of the proof  of Theorem 3.2 we refer to 
Szyszkowicz (1993b) or Cs6rg6 and Szyszkowicz (1994)). [] 

7. Contiguous alternatives 

Let XI,X2,... be independent random variables. We wish to test the null hy- 
pothesis 

H0 : Xi, 1 < i < n, have the same distribution F , 

versus the alternative hypothesis 

H1 : Xi, 1 < i < n, have the respective distribution functions F/n , 

where we assume that all F/n are absolutely continuous with respect to the dis- 
tribution function F and 

[dF/~ , 1 ] 1 /2  1 1 

--rift- (F-  (u))J = 1 +2~5~hn(t,F- (u)), 
1 i - 1  i 

=-- l+2~2g~(t,u), --n <t<-n- ' (7.1) 

where F l(u) = inf{x : F(x) _> u}, 0 < u < 1, F - l (0 )  = F - l ( 0 + ) .  We assume 
also that there exists a function g E L2[0, 1] 2 such that 

fo g(t, u) = t C [0, 1] (7.2) du 0 for almost all 

and 

fo fo g,(t ,u)-g ,u dudt--~0,  n--+oc (7.3) 

It is known that the sequence of direct products Fin × . . .  × F,,,  n = 1 ,2 , . . .  is 
contiguous (for the notion of contiguity see, e.g., Le Cam (1960, 1986), Green- 
wood and Shiryayev (1985), Hfijek and Sidak (1967), Roussas (1972)) to the 
sequence F x . . .  × F (cf Oosterhoff and van Zwet (1975), Szyszkowicz (1991a)). 
In particular, for the so-called change-point problem we assume that there exists 
2 E (0, 1) such that 

g(t, u) = l{t  _> 2} g(u) (7.4) 

for some square integrable function g. 
This description of alternatives was used by Khmaladze and Parjanadze (1986) 

in the context of studying changepoint problems using linear statistics of se- 
quential ranks. Statistics based on functionals of the empirical process based on 
sequential ranks are considered by Pardzhanadze and Khmaladze (1986), where 
they also discuss some merits of the use of statistics of sequential ranks. 
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In this section we present asymptotic distributions (weak convergence) of the 
weighted empirical processes en(S, t)/q(t), fin(S, t)/q(t) and 7,(s, t)/q(t), as well as 
of the "bridge type" processes ~,(s, t)/q(t) and ~,(s, t)/q(t) under the sequence of 
contiguous alternatives of Hi. We show that the weak convergence of the just 
mentioned processes, which we have established under the null hypothesis of  no 
change for the optimal classes of weight functions q(t) (cf Corollaries 2.1, 3.1, 4.1, 
5.1 and 6.1), continues to hold for the same classes of weight functions under a 
sequence of contiguous alternatives as in (7.1)-(7.3), which accommodates, for 
example, the occurrence of  a change-point in a series of chronologically ordered 
data (cf (7.4)). 

and 

Let 

f0tf0 s c(s, t) = g(~, u) du d~ 

j0 t r(s, t) = -- c(s,y) dy + c(s, t) , 
Y 

where g(.,-) is the function defined by (7.1)-(7.3). 

(7.5) 

(7.6) 

THEOREM 7.1. We assume that under H0, )(1 . . . .  ,X., n _> 1, are i.i.d.r.v.'s with a 
continuous distribution function F. Let q C ~ and I(q, c) < oc for all c > 0. Then, 
under the altnerative H1, as n ~ ec, we have 

c~,(s, t) / q( t) ~ (K(s, t) + c(s, t) ) /q( t) 

and 

7n(s, t)/q(t) ~ (K(s, t) + r(s, t))/q(t) 

in D[0, 1] 2, where {K(s,t); 0 <_ s,t <_ 1} is a Kiefer process. 

(7.7) 

(7.8) 

COROLLARY 7.1. We assume that under H0, X1,. . .  ,Xn, n >_ 1, are i.i.d.r.v.'s with a 
continuous distribution function F. Let q E ~ and I(q, c) < oc for all c > 0. Then, 
under the change-point alternatives of (7.4), as n --~ oc, we have 

and 

( /o )/ a,(s,t)/q(t) ~ K(s,t) + ( t -  2)l{t _> 2) g(u) du q(t) 

7.(s,t)/q(t) ~ (K(s , t )+21og( t /2) l{ t>_2)  foSg(u)du) /q( t )  

in DI0 , 1] 2, where {K(s,t); 0 < s, t <_ 1} is a Kiefer process. 

(7.9) 

(7.1o) 
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Let 

d(s, t) : c(s, t) - tc(s, 1) ; 

where c(s, t) is defined by (7.5), i.e., 

/oYo s /oYo s d(s,t) = g ( z , u ) d u d z - t  9 (z ,u )dudz  , 

and let 

e(~, t) = r(~, 0 - tr(~, 1) , 

where r(s, t) is defined by (7.6), i.e., 

[ c(s~ y)  
fo ~ 4~,y) e(s, t) = - _ t  dy + t dy + c(s, t) - tc(s, 1) 

Jo Y Y 

(7.11) 

(7.12) 

THEOREM 7.2. We assume that  under /40,  X1, . . .  ,Am, n _> 1, are i.i.d.r.v.'s with a 
cont inuous distribution funct ion F. Let q ¢ 2"  and I*(q,c) < oc for all c > 0. 
Then, under  the a l ternat ive/ /1 ,  as n ~ oc, we have 

(~n(s, t) / q(t) ~ ( F(s, t) + d(s, t) ) /q(t) , (7.13) 

fin(s, t)/q(t) ~ (r(s, t) + d(s, t))/q(t) , (7.14) 

~,(s, t)/q(t) ~ (F(s, t) + e(s, t))/q(t) , (7.15) 

in D[0, 112, where {F(s,t); 0 <_ s,t <_ 1} is a Gaussian process as in (3.1). 

COROLLARY 7.2. We assume that under H0, X I , . . .  ,iV,,, n _> 1, are i.i.d.r.v.'s with 
the continuous distribution function F. Let  q E ~* and I* (q, c) < oc for all c > 0. 
Then, under  the change-point  alternatives of  (7.4), as n --+ oc, we have 

~.(s , t )  ~ F(s , t )  - t(1 - 2) Jog(U) d u l { t  < 2 }  - (1 - t)2fog(U ) dul{ t  _> 2}  

q(t) q(t) ' 
(7.16) 

fi,(s,t) ~ F(s,t) - t(1 - 2) fog(U) dul{ t  < 2} - (1 - t)2fog(U )du l { t  > 2} 
q ( 0  q(t)  ' 

(7.17) 

~,(s, t) ~ F(s, t) + (t21og)ol{t < 2} + (2log(t~2) + t21og)o)l{t > 2}) f l  g(u) du - - - - +  
q(0 q(0 

(7.18) 

in D[0, 1] 2, where {F(s,t); 0 <_ s,t  <_ 1} is a Gaussian process as in (3.1). 

Theorems 7.1 and 7.2 (and Corollaries 7.1 and 7.2) are improvements  o f  the 
corresponding results of  Szyszkowicz (1994) in that  the weak convergence 
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statements of (7.7)-(7.10) and (7.13)-(7.18) are obtained here for larger classes of 
weight functions. 

The proofs of Theorems 7.1 and 7.2 are exactly the same as those of Theorems 
5.1 and 5.2 of Szyszkowicz (1994) when using Corollaries 2.1, 3.1, 4.1, 5.1 and 6.1 
instead of the corresponding statements in the just mentioned paper. 

In order to outline the proofs of our results, we assume without loss of gen- 
erality that under H0 the X/are of the form F - I ( u i ) ,  where  the Ui are indepen- 
dent, identically distributed uniform-(0, 1) random variables, and so 
Xi ~= F-l(Ui) ,  i =  1 , 2 , . . . .  

Define the centered log-likelihood ratio process L,(-) by 

[ . t ] r  " ~  " l  ~ - , .  cl/% dF/~ 1 
= log - -  L,(t) /_~1/ dF ( F - I ( U i ) ) - E l o g ~ - ( F  (Ui)) , (7.19) 

and let L(t) be a Gaussian process with mean zero and covariance function 
QL(tl /k t2), where 

/o7o 1 QL(t) = g2(s, u) duds . (7.20) 

Then, by (7.1)-(7.3), Theorem 2 of Oosterhoff and van Zwet (1975), under/4o, 
yields (cf, e.g., Szyszkowicz (1991a)) 

L , ( t ) ~ L ( t )  in DE0 ,11 . 

Let 

/0 ' a(u) E L2(0, 1), where a(u) du = 0 

(7.21) 

and f0 a2(u) z 1 . du 

(7.22) 

Then, under Ho, a(F(Xi)) are i.i.d.r.v.'s with mean 0 and variance 1, and 

("  ) :v  E n-1/2i~_la(F(Xi)) Ln(z) ,ao ao g(r,u)a(u)dudz . (7.23) 

Let (W,L) be a two-dimensional Gaussian process, where W is a standard 
Wiener process, L is as in (7.20), and the covariance function of the process (W, L) 
is 

Em(t)L(z) [tAz[1 = g(z,u)a(u) dudz 
JO dO 

Using Donsker's Theorem, (7.21) and (7.23), under/4o as n --~ oc, we obtain 

) n 1/2 a(F(Xi)),Ln(z) ~ (W(t),L(z)) . (7.24) 
i=1 
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In part icular ,  the function a(u) can be taken as 

a(u) = as(u) = ( l{u _< s} - s)/(s(1 - s)) V2 , 

for  any fixed 0 < s < 1, and we note that  for  any fixed 0 < s < 1 

W(t) = K(s, t) 
(s(1 - s)) 1/2' t > 0 

is a Wiener  process. Consequent ly,  we have 

and 

tAz/.s 
Ec~,(s,t)L,(z) ---+ g(,c,u)dud,c 

JO JO 

E K ( s ' t ) L ( z ) = ( s ( 1 - s ) ) l / 2 E  (s(-I'f(s'-ts)) 1/iL(z) 

f " 7 '  <_ - , i  = (s(1 - s))il2ao J0 g(,c,u) ~ i  2~)T/}-  dud,c 

i " ' i  s f,,,z[, ----J0 ./0 g ( z , u ) d u & - S j o  do g(z,u)dud,c 

= g('c, u) du d,c , 
JO JO 

(7.26) 

where c(s, t) is defined by (7.5), 
(ii) (K*(s, t), L(z)), where K*(s, t) is again a Kiefer  process, but the covar iance 

funct ion of  the process (K*,L) is 

QK,L(S, t, z) = EK(s, t)L(z) = c(s, t A z) , 

due to (7.2). Hence, we conclude that  all f inite-dimensional distr ibutions of  the 
process (~,(s, t), L,(z)) converge to those of  the process (K(s, t), L(z)) with co- 
variance funct ion 

tAz L s  
EK(s, t)L(z) = g(,c, u) du d,c . 

JO 

Tightness of  (c~,(s, t), L,(z)) follows f rom the weak convergence of  e,(s,  t) (cf, 
e.g., Theo rem 2.1 (a), or Corol lary  2.1 with q -  1) and that  of  L,(z) (cf (7.21)). 
Consequent ly ,  under  H0 as n ---+ oo, we obta in  

(c~,(s,t),L,(z)) ~ (K(s,t) ,L(z)) in D[0, 1] 2 x D[0, 1] . (7.25) 

We introduce the following Gauss ian  processes: 

(i) (K(s, t), L(z)), where K(s, t) is a Kiefer  process, i.e., the process defined by 
(2.1), and the covariance function of  the process (K, L) is 
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QK*L(S,t,z) = EK*(s,t)L(z) = - f tc(s'y-Az) dy+c(s ,  tAz)  . (7.27) 
Jo Y 

LEMMA 7.1. We assume that H0 holds. Then, as n ~ oo, we have 

(a) (o¢n,L~) ~ (K,L), 

(b) (Tn,L~) ~ (K*,L), 

in D[0, 1] 2 × D[0, 1]. 

PROOF. Part (a) is just the statement (7.25). Considering now the processes 
7n(s,t), we note that although the limiting Gaussian process of the sequence 
7, (s, t) is again a Kiefer process, the joint weak convergence of 7, and L, results in 
a different limiting process than in the case of en and Ln. Khmaladze and Par- 
janadze (1986) consider the asymptotic behaviour of the sequence of the partial 
sum processes 

[nt] 
V~( t )=n- ' / 2Za (~ i )  , 0 < t <  1 , 

i=l 

with a(u) as in (7.22), under H0, as well as under the class of contiguous alter- 
natives of HI. Using their Theorem 3, again with the function 
a(u) = as(u) = (l{u _< s} - s)/(s(1 - s)) U2, and Theorem 4.1 (a), or Corollary 4.1 
with q - 1, the proof  is similar to that of part (a). [] 

PROOF OV THEOREM 7.1. Since (en, Ln) converges weakly to (K, L) when we assume 
/7o to hold, Le Cain's third lemma implies that, under contiguous alternatives HI, 

c~,(s,t) ~ K ( s , t ) + c ( s , t )  in DI0,1] 2 . (7.28) 

In order to conclude a similar statement under H1 for the processes e,,(s, t)/q(t), 
first we need to verify the joint weak convergence of (en/q,L,) under H0 to the 
appropriate Gaussian process. The joint weak convergence of (e,/q, Ln) under H0 
follows, via the Cram6r-Wold device, from Corollary 2.1, (7.21) and the fact that 

~ c ( s ,  E L, (z) = - ~  Ec~, (s, t)L, (z) ---+ t A z) 

That is to say, under H0, as n --+ oc 

t)/q(t), L°(z)) t)/q(t), L(z)) in D[0, 1] 2 × D[0, II , 

(7.29) 

provided the covariance function c(s, t/x z)/q(t) of the mean zero Gaussian pro- 
cess (cf (7.26)) 
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( K ( s , t ) / q ( t ) , L ( z ) ) ,  0 <_ s , t , z  <_ 1 

is finite uniformly in t ¢ (0, 1]. This, in turn, is true since g E L2[0, 1] 2, and hence 
we have 

foo~o' guam ([,/.. /"1/2 
{c(s, t)l = a(v, u) < sl/2t 1/2 g2('c, u) du d-c) 

\JOJO 
(7.30) 

L,(z), we note that 

So t C(s,Y) dy  <_ [ t  c (s ,y )  dy  , 

Y Jo l  Y I 

and, since due to (7.30) 

we get 

Crl r  ' 
<_ sl/2y 1/2 g2(z, u) du dz , 

\JO ,/0 

L ' 4 ,y) dy <_ 2W2t'/2(L   d'c) '/2 
Y 

(7.31) 

Since q is positive on (0, 1] and limt~0)/2/q(t) = 0, using (7.30) and (7.31), we 
obtain 

sup Ir(s , t )[ /q( t)  < oo , 
0<t_<l 

where r(s, t) is defined by (7.6). [] 

In order to prove Theorem 7.2, we need to introduce the following Gaussian 
processes: 

(i) (F(s,t), L(z)), where F(s , t )  is a Gaussian process with mean zero and 
covariance function as in (3.1), and the covariance function of the process (F, L) is 

Qr,L(S, t, z) = E r ( s ,  t )L(z)  = c(s, t A z) - tc(s, z) , 

which implies 
t s )1/2 

suP0<t<l Ic(s,t)l /q(t) < s  1/2 sup (, [ [ , ,  g2(z,u)d ud'c 
- - -  O < t _ <  1 \JOJO 

x suP0<t_< 1 t l /2 /q( t )  < oo , 

due to the fact that q is positive on (0, 1] and limt;0 tU2/q( t )  = 0. Hence we have 
(7.29), and Le Cam's third lemma implies (7.7). 

The proof  of (7.8) is similar, when using part (b) of Lemma 7.1 and Corollary 
5.1. In order to prove the finiteness of the covariance function of 7, (s, t ) /q ( t )  and 
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where c(s, t) is defined by (7.5). 
(ii) (F*(s, t), L(z)), where F*(s, t) is again a Gaussian process with mean zero 

and covariance funct ion as in (3.1), and the covariance function of  the process 
( r * , L )  is  

Qr*,L(s, t, z) = Er*(s, t)L(z) 

f fo 1 c(,,yAz) : -  'c(s,yAz) dy+c(s, tAz)+t , , 

y Y 

where c(s, t) is defined by (7.5). 

LEMMA 7.2. We assume that  H0 holds. Then,  as n ~ oc, we have 

(~ ,  L~) ---* (F,L) , (7.32) 

(~ ,  Ln) ~ (F,L) , (7.33) 

(~)~, L,) ~ (F*,L) (7.34) 

in D{0, 112 x D[0, 1]. 

PROOF. The weak convergence statements of  (7.32) and (7.34) follow from 
Lemma 7.1. As to (7.33), we note that  (cf Observat ion 4.1 and Lemma 4.1 with 
q = l )  

sup sup I/~,(s,t) - &,(s,t)l 
0<t<l  0<s<l  

= sup sup I&n(en (S), t) -- &n (S, t) l 
0<t<l  0<s<l  

= op(1). [ ]  

PROOF OF THEOREM 7.2. Arguing similarly as in the p roo f  of  Theorem 7.1, in 
order  to prove (7.13), (7.14) and (7.15), we use Lemma 7.2 and Corollaries 3.1, 
4.1 and 6.1, respectively. The finiteness of  the limiting covariance functions is 
shown similarly to that  in the p roo f  of  Theorem 7.1. [ ]  

8. Weighted multi-time parameter empirical processes 

Let X = (X(1), . . .  ,X(d)), X / =  (X/(1), . . . . . .  ,X/(d)), i = 1,2, , be independent  ran- 
dom vectors in IR d, d > 1, with a distribution funct ion F. Define the (d + 1)-time 
parameter  empirical process ( , (x ,  t) by 

[nt] 
~,(x, t) = n -1/2 Z ( I { X /  _< x} - F(x) ) ,  x C IR d, 

i=1 

0 < t < l  . 
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A Kiefer  process KF(X, t) on IR d x [0, e~) associated with a distr ibution func- 
t ion F on IR d, d _> 1, is a separable  (d + 1)-parameter  real-valued Gauss ian  
process with KF(X, 0) = 0, EKF(X, t) = 0 and covar iance funct ion 

EKF(X, s)KF(y, t) = (F(x  A y) - F(x)F(y))(s A t) 

for  all x, y E IR d and s , t  _> 0, where, and throughout ,  the symbol  A means  
min imum,  component -wise  in higher dimensions.  

Let F be an arbi t rary  distr ibution funct ion on IR d, d > 1, and let {KF(X, t); 
x E IRd, t _> 0} be a Kiefer  process associated with F. 

Cs6rg6 and Horvfi th (1988b) proved  the following s t rong approx ima t ion  re- 
sult. 

THEOREM 8.A. Assume that  X1,X2,... are independent  r a n d o m  vectors  with an 
arb i t ra ry  distr ibution function F on IRd. Then there exists a Kiefer  process 
{KF(X, t); x E IR d, t > 0}, associated with F on IRd, such that  

s u p  s u p  [ r /1 /2(n(X , t) - -  K F ( X ,  r/t)[ a.s. O ( r / l / 2 _ l / ( 4 d ) ( l o g n ) 3 / 2 )  . 
0_<t_<l xE~.d 

Here  we give character izat ions of  the asymptot ics  of  weighted mult i - t ime pa-  
rameter  empirical  processes and their t ied-down at t = 1 versions, in s u p r e m u m  
and Lp-metrics. Our  weighted asymptot ics  in s u p r e m u m  metrics are based on 
Theo rem 8.A and the following integral test which follows immediate ly  f rom 
Theo rem 2.1 of  Cs6rg6,  Horvf i th  and Szyszkowicz (1994). 

LEMMA 8.A. Let q E ~ and {KF(X, t); x E 1R d, t _> 0} be a Kiefer  process. Then 
we have 

(a) l imsup  sup [K(x,t)l/q(t) < oc a.s. 
t;O xCN d 

if and only if I(q, c) < oc for  some c > O, 

(b) lim sup IX(x, t ) l /q( t )  = 0 a.s. 
tl0 xE~d 

if and only if I(q, c) < c~ for  all c > O. 

THEOREM 8.1. Assume that  XI,X2,... are independent  r a n d o m  vectors with an 
arbi t rary  distr ibution funct ion F on IR a and let q c ~. Then,  there exists a Kiefer 
process {KF(X, t); x E IR a, t > 0} associated with F such that,  as n ~ oc, we have 

(a) sup sup [(.(x, t) - n -U2KF(X,  n t ) [ /q ( t )  = op(1) (8.1) 
0<t<l  xCN a 

if and only if I(q, c) < oc for  all c > 0, 

(b) sup sup I~n(x, t) - n- l /ZKF(X,  n t ) ] / q ( t )  = Op(1) (8.2) 
0<t< 1 xC~  d 

i f  and only if !(q, c) < oc for  some c > 0, 
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(c) sup sup ](~(x,t)l/q(t ) ~ sup sup [KF(X,t)l/q(t ) , (8.3) 
O<t<_l xcIR d O<t<l xCF. d 

if and only i fI(q,c) < oe for some c > 0, where {KF(X,t); x E IR d, 0 < t < 1} is 
a Kiefer process associated with F on IR d. 

Theorem 8.1 was proved by Cs6rg6 and Szyszkowicz (1994) under stronger 
conditions. Namely, (8.1) was obtained for weight functions q which are positive 
on (0, 1] and such that (2.A) holds or, equivalently, on assuming that 

q E C(0, 1], q(t)/t 1/2 is nonincreasing near zero , (8.4) 

and such that for a given integer d _> 1 and all c > 0 

e) < , (8 .5 )  

where 

I q2d t 
Is(q,c) := f0 ~ e x p ( - c ~ )  d t .  

Statements as in (8.2) and (8.3) were proved for positive weight functions q and 
such that (2.B) holds, or equivalently, on assuming (8.4) and that for a given 
d > 1 and some c > 0 we have (8.5). Conditions (2.A) and (2.B) resulted from the 
law of the iterated logarithm for the suprema of Kiefer processes, while those 
which involved the integral Id(q, c) were arrived at as a result of the Adler and 
Brown (1986) test for upper and lower functions for suprema of Kiefer processes 
(cf also the lines of discussion following Remark 2.2 in our Section 2). The proof  
of Theorem 8.1 is similar to that of Theorem 3.1 in Cs6rg6 and Szyszkowicz 
(1994), when using Lemma 8.A in lieu of the just discussed conditions on weight 
functions. When d = 1, Theorem 8.1 reduces to restating Theorem 2.1 with an 
arbitrary distribution function F on IR 1 . 

When testing for the possibility of having a change in distribution of a se- 
quence of chronologically ordered d-dimensional observations X / =  
(Xi0),... ,xi(d)), i = 1 , . . .  ,n, d _> 1, at an unknown time 1 _< k < n, it is natural to 
compare the empirical distributions "before" to those "after"  (for d = 1, see (1.8) 
as well as our discussion in the Introduction and Section 3). 

Thus, similarly, as in the case of d = 1, we are led to considering "tied down" 
multi-time parameter empirical processes with weights which would continue 
emphasizing the possibility of having a change in distribution on the tails, but in a 
non-degenerate way (cf Cs6rg6 and Szyszkowicz (1994) and Cs6rg6, Horv/tth and 
Szyszkowicz (1994)). 

We define the "tied down in t = 1" multi-time-parameter empirical bridge 
process {~n(x,t);x C lRa, 0 < t < 1}, n > 1, by 
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n_l/2 [( )t] l{Yi < x} [(n+l)t] n 

~ , ( x , t ) =  x E I R  a, 0 _ < t <  1, i=1 

0,  x E I R  a , t = l  . 

Let {Kg(x,t);x E IRa, t >_ 0} be a Kiefer  process associated with an arbit-  
rary  distr ibution function F on IRd. Define the Gauss ian  process 
{Fg(x,t);x E IRa,0 < t < 1} by 

FF(X, t) = KF(X,  t) -- tKF(X , 1), X E IRa, 0 < t < 1 . (8.6) 

Consequent ly,  FF(', ") is a separable Gauss ian  process with mean  zero and the 
covariance function 

EFF(Xl, tl)FF(X2,/'2) = (F(Xl A x2) - F(x~)F(x2))(tl A t2 - tlt2) • 

Along the lines of  Theo rem 8.1, we have the following result. 

(8.7) 

THEOREM 8.2. Assume that  XI,X2, . . .  are independent  r a n d o m  vectors  with an 
arbi t rary  distr ibution function F on IRd and let q c 2*. Then there exists a Kiefer  
process {KF(X, t); x E IRd, t _> 0}, associated with F on IRd, such that  with 

{FF,n(x,t);x C IRd, 0 < t < 1,n _> 1} 

:~- {n  1/2(KF(X, nt)- - tKF(X,n));  X C ]Rd, O < t  < 1,1"/ > 1} (8 .8 )  

~= {FF(X,t);x C IRd, 0 < t < 1} , 

a s  n --4 o o ,  w e  h a v e  

( a )  sup sup I£.(x, t) - r ~ , n ( x ,  t)l/q(t) = o p ( 1 )  
0<t<l xE]R a 

if  and only if I* (q, c) < ~ for  all c > 0, 

(b) sup sup ]~,(x, t) - Fy,,(x, t)l/q(t) = Op(1) 
0<t<l  xclR d 

if and only ifI*(q,c) < c~ for some c > 0, 

(c) sup sup I~,,(x,t)l/q(t) ~ -+ sup sup tFF(x,t)]/q(t) 
O<t<l xCN_ d O<t<l x c ~  d 

if and only ifl*(q,c) < oc for  some c > 0, where {FF(X,t); x E IR a., 0 < t < 1} is 
a separable  Gauss ian  process as in (8.7), associated with F.  

Theorem 8.2 was proved by Cs6rg6 and Szyszkowicz (1994) under  s t ronger  
condit ions that  are parallel to those summar ized  after Theo rem 8.1 here (cf also 
our  discussion after R e m a r k  3.1). Again,  the p r o o f  of  Theo rem 8.2 under  the 
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present opt imal  condit ions on weight functions is similar to the p r o o f  of  Theo-  
rem 3.2 in Cs6rg6 and Szyszkowicz (1994) when mak ing  use now of  the following 
integral test of  Cs6rg6,  Horvf i th  and Szyszkowicz (1994). 

LEMMA 8.B. Let q ~ ,~* and {FF(X , t); x C IRd, 0 < t < 1} be a Gauss ian  process 
as in (8.7). Then we have 

(a) l imsup  sup IFF(X,t)l/q(t) < oo a.s. 
tLO xclR d 

and 

limsup sup IrF(X,t)l /q(t)  < 
t"l  xE~, d 

if and only if I* (q, c) < oc for some c > 0, 

(b) lim sup [ r F ( x , t ) l / q ( t  ) = 0 a.s. 
t~0 xCpa 

and 

lim sup IFF(X,t)[/q(t)=0 
tT1 xC~j  

a . s .  

if and only if I* (q, c) < ec for  all c > 0. 

a . s .  

Part  (c) o f  Theo rem 8.2 was proven  by Cs6rg6,  Horv~ith and Szyszkowicz 
(1994). When  d = 1, Theo rem 8.2 reduces to restat ing Theo rem 3.1 with an ar- 
b i t rary  distr ibution funct ion F on IR 1 . 

While it is true that  appropr ia te  weighted Lp-approximat ions  for  ~n(x, t) and 
~n(x,t) follow f rom (a) of  Theo rem 8.1 and (a) o f  Theo rem 8.2 respectively, 
nevertheless, such approx imat ions  for a larger class of  weight functions are of  
interest on their own. Indeed,  the weighted Lp-approximat ions  of  empirical  pro-  
cesses we state here are best possible in that  they hold true for the opt imal  class of  
weight functions as characterized by (8.9). 

THEOREM 8.3. Assume that  X1,X2,... are independent  r a n d o m  vectors with an 
arbi t rary  distr ibution funct ion F on IRd, d >_ 1. Assume also that  q is a positive 
weight funct ion on (0, 11 and let 0 < p < oc. Then  the following s ta tements  are 
equivalent: 

(a) We have 

f0 1 < oc . (8.9) tp/2 /q(t) dt 

(b) There  exists a Kiefer  process {KF(X, t); x C IR a, t > 0}, associated with F, 
such that,  as n ~ oc, we have 
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fo JR~a I ~ n ( X , t )  - -  F/ dF(x)  = op(1) . 

/ .  
1/2KF(X, nt) lP/q(t ) dt 

(c) We have, as n --+ cc 

fo 1 £d,~n(x,t)lP/q(t)dF(x) dt ~ fo I ~elKF(X,t)lP/q(t)dF(x)dt 

where {KF(X, t); x E IRd, 0 < t < 1} is a Kiefer process associated with F on IRd. 

The Lp-version of Theorem 8.2 is also best possible. Namely we have the 
following optimal results. 

THEOREM 8.4. Assume that X1,X2,... are independent random vectors with an 
arbitrary distribution function F on IRd. Assume also that q is a positive weight 
function on (0, 1) and let 0 < p < ~ .  Then the following statements are equiv- 
alent: 

(a) We have 

f0 1 ( t ( 1  - < . t))p/2/q(t) dt 

(b) There exists a Kiefer process {KF(X, t); x E IRd t > 0}, associated with F, 
such that for the Gaussian process {FF,.(x, t); x E IR a, 0 < t < 1, n > 1} as in 
(8.8), as n ~ oe, we have 

f0' £ Xg.(x,t)-- FF,n(X,t)lP/q(t)dF(x)dt=op(1) . 

(c) We have, as n ~ oc, 

/0'/2 I~(x, t)]P/q(t)dF(x) at ~ IFF(X, t)lP/q(t)dF(x) dt , d d 
(8.10) 

where {FF(X, t); x E IRd; 0 < t < 1} is a Gaussian process as in (8.7), associated 
with F. 

It is of interest to note here that a first step towards the applicability of (8.10) 
in statistics is to replace dF(x) by dF,(x) on the left hand side of (8.10) for the 
sake of computability, and then prove that the same convergence in distribution 
remains true. This would also open the door for tackling the problem of tabu- 
lating critical values by bootstrap methods. 

The proof of Theorem 8.3 is based on Theorem 8.A and the following result 
which is a consequence of Theorem 2.1 of Cs6rg6, Horv/tth and Shao (1993). 
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LEMMA 8.C. Let {KF(X, t); x E IR a, 0 < t < 1} be a Kiefer process associated with 
an arbitrary distribution function F on IRa, and let q be a positive function on 
(0, 1]. Then, with 0 < p < oo, we have 

[ ' [  IKF(X,t)]P/q(t) dF(x) dt < ec a.s. 
Jo JiR d 

if and only if 

f0 ~ < o~ 
tp/2 / q( t) dt 

The proof  of  Theorem 8.4 is based on Theorem 8.3 and the following analogue of 
Lemma 8.C. 

LEMMA 8.D. Let {FF(x,t);x E IRa,0 < t < 1} be a separable Gaussian process 
with mean zero and covariance function as in (8.7) and q be a positive function on 
(0, 1). We assume that 0 < p < oo. Then the statements 

and 

f0 1 (t(1 - t))p/2/q(t) dt < ec 

fo l~a IFF(X, t)lP/q(t) dF(x) < ~c dt 

are equivalent. 

a .s .  

For detailed proofs of  Theorems 8.3 and 8.4 and those of Lemmas 8.C and 8.D 
respectively, we refer to Cs6rg6 and Szyszkowicz (1994). When d = 1, Theorems 
8.3 and 8.4 reduce to restating Theorems 2.2, 3.3, and 3.2, 3.4, respectively, with 
an arbitrary distribution function F on IR ~ . 

REMARK 8.1. We note that, due to Theorem 8.1(a), we of course have also weak 
convergence of ~n(x, t)/q(t) to KF(X, t)/q(t) in D(IR d x [0, 1]) for q E ~ and such 
that I(q, c) < oo for all c > 0. Consequently, for Such a class of  weight functions 
(arguing similarly as in Section 7), we obtain Theorem 7.1 of  Cs6rg6 and 
Szyszkowicz (1994) which gives weak convergence of ~n(x,t)/q(t) under a se- 
quence of contiguous measures. Also, weak convergence of ~n(x,t)/q(t) to 
FF(x,t)/q(t) in D(IR d x [0, 1]) with q E ~* and such that I*(q,c) < oe for all 
c > 0, which follows from Theorem 8.2(a), allows one to improve Theorem 7.2 of  
Cs6rg6 and Szyszkowicz (1994) in the very same way. 
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Sequential Quantile and Bahadur-Kiefer Processes 

Mik l6s  Csdrg6 and Barbara S zy s zkowic z  

1. Introduction: Basic notions, definitions and some preliminary results 

Our initial aim in writing this exposition was to develop a more or less complete 
theory of weighted asymptotics for sequential quantile processes along the lines of 
sequential empirical processes as in Szyszkowicz (1998) in this volume. We soon 
realized the inevitability, as well as the desirability, of having to deal simulta- 
neously also with the Bahadur (1966) and Kiefer (1967, 1970) theory of quantiles 
and that of their extensions, as initiated by Cs6rg6 and R6v~sz (1975, 1978), in the 
same sequential spirit. Though this made our work more enjoyable, it became 
also harder and slower as well. One of the.outcomes of this effort is that, while in 
addition to Bahadur-Kiefer elements throughout, there are three full sections of 
this work that are entirely devoted to the "explanation" of the Bahadur-Kiefer 
theory of quantiles (cf Sections 4, 5 and 6), there is only one section; Section 3, 
that is on weighted asymptotics for sequential quantiles. The latter, of course, is 
not the "complete" theory we have hoped for initially. In our present Section 3 we 
state only a few immediate results of our forthcoming paper, Cs6rg6 and 
Szyszkowicz (1995/96), on weighted sequential quantile and Bahadur-Kiefer 
processes and their applications, along lines that are similar to those of Szysko- 
wicz (1998) in this volume on sequential empirical processes. 

Our global approach to the Bahadur-Kiefer theory of quantiles and quantile 
processes is based on one unifying invariance principle, namely only on the notion, 
first expressed by Cs6rg6 and R~v6sz (1981, Theorem 4.5.3 and Lemma 4.5.1), 
that the uniform Bahadur-Kiefer process is, essentially, a process of random in- 
crements of a Kiefer process that is iterated on the very empirical uniform 
quantiles (cf (1.13), (1.14), (1.18) and (1.19), as well as (1.26), (1.27) and (1.30) in 
this exposition) which, as well as their extensions to more general quantiles, we 
want to study via the better understood empirical distribution function as first 
proposed by Bahadur (1966). This approach evolves as our major guideline 
throughout, first mainly for uniform quantiles (cf. Sections 1 and 4) and then, 
when combined with the Cs6rg6 and R6v6sz (1978) study of deviations between 
the general and uniform quantile processes (cf. Sections 2 and 3), it leads also to 
an appropriate extension of the Bahadur-Kiefer approach to studying quantiles 
via empiricals (cf. Sections 5 and 6). 
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The theory and practice of quantiles, and quantile and Bahadur-Kiefer pro- 
cesses are dispersed in a vast literature all over the world. This exposition is not 
concerned with the impossible task of reviewing this literature. We are guided 
mainly, if not only, by the above described unifying notion and the tools of strong 
approximations (invariance principles) in probability and statistics, as summar- 
ized, for example, in the books by Cs6rg6 and R~v~sz (1981), Cs6rg6 (1983), 
Shorack and Wellner (1986), Cs6rg6 and Horvfith (1993), and in their references, 
as well as by similar advances since. The choice of material for inclusion and 
further development in this exposition reflects only our own predilections. 

1.1. Sequent&l uniform empirical and quantile processes 

Let U1, U2,... be independent identically distributed random variables i.i.d.r.v.'s) 
that are uniformly distributed on [0, 11. Given a chronologically ordered random 
sample U1, U2, . . . ,  U,, n > 1, their sequential uniform empirical distribution func- 
tion is defined by 

0, 0 < _ t <  l /n ,  
Er.tj(v)= 0 < y < l ,  1 / n < t < l  [nt] i= 1 - -  - -  ' 

(1.1) 

where I{A} is the indicator function of the set A, and Ix] denotes the integer part 
of the number x. In terms of the sequential uniform order statistics 
Ul,[,t] < U2,[C <-"'" <- U[,,tl,[~t], 1/n < t < 1, of the random sample U1, U2, . . . ,  U,,, 
E[nt] reads as follows: 

f 0, 
EEntl (Y) = ~ k/fnt], 

(1, 

if O <_ y < Ui,[nt], 0 < t < l ,  
if gk,[nt] ~ y  < gk+l,[nt]  , 1 < k < [n t ] - l ,0  < t < 1, 
if U[~t],[,t] <_ y <_ 1, O < t < 1 , 

(1.2) 

with Ul,[~t] = U),],[nt] =- 0 for 0 _< t < 1/n. Now the sequential uniform empirical 
process is defined by 

[ntJ 

~n(Y' t) = n-l/2 Z (l{Ui ~ y} -- y) 
i=1 

n-1/2[nt](E[nt] J, ,~. -- y],, 0 < y <_ 1, 0 < t < 1 l 

(1.3) 

This is the so-called two-time parameter empirical process in Szyszkowicz (1998) 
in this volume. 

Next we define the sequential uniform empirical quantile function 

{ U~,[nt], if y = 0 ,  0 < t <  1, 
U[ntJ(Y) = Uk,fnt], if ( k - 1 ) / [ n t ] < y < _ k / [ n t ] ,  l < k < [ n t ] ,  (1.4) 

0 < t < l  , 
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with 0in d (y) = 0 for 0 < t < 1/n, that is to say, we have 

td[,t] (y) = inf{s :/:[,,](s) >_ y}, 0 _< y _< 1, 
(1.5) 

8int 1(o) = G , l ( ° + ) ,  o < t < 1 . 

The sequential uniform quantile process is defined by 

un(y,t) = n  1/2[nt](y- 0"[,t](y)), 0_<y < 1, 0 < t <  1 (1.6) 

which, in the vein of Szyszkowicz (1998) in this volume, could be called the two- 
time parameter uniform quantile process. 

We note that, by definition, c~, (y, t) = u, (y, t) = 0 for 0 < t < 1/n. 
A Kiefer process {K(y,x); 0 <_y < 1, 0 _<x < oc} is a separable 2-time pa- 

rameter real-valued Gaussian process with K(V, 0) = 0, EK(y,x) = 0 and 

EK(yl ,x l )K(y2,x2)  = (Xl AXl)(yl Ay2--YlY2) (1.7) 

for all (Yz,&)~ [0,1] x [0, oo), i =  1,2, where, and throughout, the symbol A 
means minimum and, for later use, V means maximum. For the existence and 
properties of a Kiefer process we refer to Cs6rg6 and Rhv4sz (1981, Section 1.15). 

Koml6s, Major and Tusn~tdy (1975) proved the following important embed- 
ding inequality for the sequential empirical process ~, (y, t). 

THEOREM 1.A. 
such that we have 

P~ sup sup Inl/ao~n(y,t)-g(~,nt)l> (C l logn+x)  logn} 
1. O<j<l O<y_<l 

_< C2 exp ( - CBx) 

for all x > 0, where C1, C2 and C3 are positive constants. 

There exists a Kiefer process {K(y,x), 0 <_ y <_ 1, 0 <_x < ec} 

(1.8) 

Bonvalot and Castelle (1991) gave a more detailed proof of this theorem than 
that of Koml6s, Major and Tusnfidy (1975), and established this result with 
C1 = 76, C2 = 2.028 and C3 = 1/41. This and the Borel-Cantelli lemma give that, 
on the probability space of Theorem 1.A, we have with any e > 0 

nl/2 
l i m s u p ~  sup sup I~n(y, t ) -n- ' /ZK(y,  nt)l < 117 + e  a.s. 

n oo (logn) o<t<l 0<y<l 

(1.9) 

Extending the Skorohod embedding scheme to multivariate random variables, 
Kiefer (1972) obtained the first similar strong approximation of n l/2~ (-, .) at the 
rate of (9(nl/3(logn)2/3). 

The very same Kiefer process that was constructed for approximating ~ (y, t) in 
Theorem 1.A can be used also to approximate the sequential uniform quantile 
process un (y, t) on the same probability space. Namely we have 
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THEOREM 1.B. On the probabil i ty space of  Theorem 1.A, with the Kiefer process 
{K(y,x),  0 < y < 1, 0 < x < co} of  (1.8) and an absolute positive constant  C, we 
have 

nl/4 

limn~oosup (log n) I/2 (log log n) 1/4 (1.10) 

x sup sup lu=(y,t)-n-l/2K(y, nt)]<_C a.s. 
0_<t_<l 0_<y<l 

Theorem 1.B. is an immediate corollary to Theorem 3 o f  Cs6rg6 and R6v6sz 
(1975) (cf Theorem 4.5.3 of  Cs6rg6 and R6v6sz (1981)) where (1.10) is established 
with t = 1. Our  outline of  the p roo f  o f  Theorem 1.B first concludes the latter 
theorem (cf (1.20)) and then (1.10) follows as a consequence. 

AN OUTLINE OF THE PROOF OF THEOREM 1.B. The two sequential processes 
an(y, t) and u=(y, t) live on the same probabil i ty space. Hence, both  of  them can be 
viewed as living on that  o f  Theorem 1.A as well, on which an(y, t) lives almost 
surely as near to K(y, nt) as given in (1.9). The essence o f  this outline is to show 
that u= (y, t) can, at best, live only as near to the same Kiefer process as given in 
(1.10). In order  to see this, we write [[. [I for  sup0_<y<l I • [, and consider 

Ilun(y, I) - an(y, 1)[ I - II~=(y, 1) - n-1/2K(y, n)ll 

<_ IlunCv, 1) - n-1/2K(y, n)[ I (1.11) 

_< Ilu=(y, 1) - c¢=Cv , 1)[ I + I[~=(y, 1) - n-UNg(y,n)ll . 

By (1.9) we have 

II~=(y, 1) - n-1/ZK(y,n)[[ = (9(n-1/2(logn) 2) a.s. , (1.12) 

and, on account  o f  e=(Uk,=, 1) = u,(~, 1), we have 

Ilun(y, 1) - c~=(y, 1)ll = II~= (0=(y), 1) - ~nCV, 1)ll + (3(n -1 /2 )  • (1.13) 

Applying (1.9) again, estimating the right hand side of  (1.13) we obtain 

]l~= (fQ=Cv), 1) - ~ ( y ,  1)11 
(1.14) 

n-1/21lK(~fn(y),n ) - K ( y , n ) l l  + (9~n-l/2(logn) ' a.s. 

Consequently,  we now need to know only the size of  the indicated random in- 
crements of  a Kiefer process. Let  an be a sequence of  positive numbers  for  which 
we have 

lim log 1~an 
- -  - o o  . ( 1 . 1 5 )  

.~o~ log log n 

Then (cf Theorem 1.15.2 in Cs6rg6 and R+v6sz (1981)) 
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lira sup sup 7 ( n ) l K ( y + s , n ) - K ( y , n ) l  = 1 a.s. , (1.16) 
n--+oo O<y<_l-a~ O<s<a~, 

where y(n) --- (2nan log 1~an) -U2. The latter combined with the law of  the iterated 
logari thm 

limsupllu?/(y, 1)]]/(loglogn) 1/2 = 2 1/2 a.s. (1.17) 
?/--*GO 

yields (cf Lemma 4.5.1 of  Cs6rg6 and R6vbsz (1981) and (3.1.10) of  Cs6rg6 
(1983)) 

lim sup n 1/4(logn)-l/2(loglogn) -1/4 
,~oo (1.18) 

× ][g(y-u~(y ,  1 ) /n l /Z ,n ) -K(y ,n ) l ]_<2 1/4 a.s. 

Hence by (1.13), (1.14) and (1.18) we arrive at 

l imsupnl/4(logn)-l /2(loglogn)-l /4llun(y , 1) - an(y, 1)1 [ _< 2 -1/4 
?/---roo 

a . s .  

(1.19) 

Consequently,  by (1.19) via (1.11) and (1.12), we have as well 

limsupnl/4(logn)-l/2(loglogn)-l/4[lu?/(y, 1) - n 1/2g(y,n)ll 
? / ~  (1.20) 

_< 2 -1/4 a.s. 

The  latter, in turn, implies that, with t E (0, 1] and (nt) --+ oc as n ~ oc, for  n 
large we have 

Ilnl/2u?/(y, t) - K(y, nt)ll (1.21) 

_< (2 1/4 + o(1))(nt)l/4(log(nt))U2(loglog(nt))l/4 a,s. , 

and hence, on dividing both  sides by nl/4(logn)l/2(loglogn) 1/4 and then taking 
suP0<t< 1 on both  sides, we obtain (1.10) as well, as n ---, ec. [ ]  

COROLLARY 1.A. Let  {K(y, t), 0 _< y <_ 1, 0 < t < l} be a Kiefer process. As 
n ~ ec, we have 

(a) e?/ (y , t )~K(y , t )  in DI0 , 1] 2. 
2 

(b) un(y, t ) ~ K ( y ,  t) in D[0, 1] 2. 

PROOF. The statement (a) follows f rom (1.9) and (b) is a consequence of  (1.10), 
both  on account  of  having 

{n-'/2KCv, nt/, 0-<y_< 1, 0 < , <  1}S{K(y,,); 0-<y-< 1, 0 < , < 1 }  

for  each n _> 1, which in turn implies that,  as n --+ ec, 



636 M. CsO)'gg and B. Szyszkowicz 

n-1/2K(y, nt) ~ ~K(y , t )  in D[0, 1j 2 

REMARK 1.1. Mfiller (1970) was first to prove (a) of Corollary 1.A. The covari- 
ance function of the Gaussian process {K(y, 1), 0 _< y < 1} (cf (1.7)) is equal to 
that of a Brownian bridge {B(y), 0 < y < 1}, a Gaussian process with EB(y) = 0 
and EB(yl)B(y2) = Yl A y2 -Y~Y2. Hence, (a) and (b) of Corollary 1.A in this case 
reduce to 

(a) c~,,(y, 1) ~B(y) in D[0, 1], 

(b) un(y, 1) ~B(y)  in D[0, 1], 

respectively, as n ~ oc. The latter (a) statement is one of the famous theorems of 
Donsker (cf Donsker (1952)). For some historical notes we refer to Cs6rg6 
(1987). 

1.2. The classical uniform Bahadur-Kiefer process and its strong approximation 

Consider 

{K(y,x)/(2xloglogx) 1/2, 0 <_ y<_ 1, x > 3} , (1.22) 

a net of functions in x, taking values in C[0, 1]. This net of functions is relatively 
compact in C[0, 1] with probability one, and the set of its limit points (as x ~ oc) 
is Y,  where ~- c C[0, l] is the set of absolutely continuous functions f for which 

/0 ' f (0)  = f ( 1 )  = 0 and (f'(t))2dt_< 1 (1.23) 

(cf Theorem 1.15.1 of Cs6rg6 and R6v6sz (1981)). This, on account of (1.20), 
implies that the sequence of functions 

{u~(y, 1)/(21oglogn) V2, 0 < y < 1,n > 3} (1.24) 

must be also relatively compact with probability one and the set of its limit points 
must be ~- as well. Consequently, following Shorack (1982), as in proving 
Theorem 3.3.1 in Cs6rg6 and Horvfith (1993) for example, we obtain that, on the 
probability space of Theorem 1.A we have 

limsupn-1/4(logn) V2(loglogn)-VallK((Yn(y), n) - K(y, n)]] 
n ~ O 0  

> 2 -1/4 a.s. 
(1.25) 

Now a combination of (1.18) and (1.25) yields 

PROPOSITION 1.A. On the probability space of Theorem I.A we have 
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lira sup n-l/4(log n) V2(log log n) -1/4 
n ---~ 0(3 

x sup [K(O,(y),n)-g(y,n)l  = 2  1/4 a.s. 
0_<y< 1 

This, in turn, by (1.13) and (1.14), leads to (cf Kiefer (1970)) 

(1.26) 

PROPOSITION 1.B. We have 

lim sup n- 1/4 (log n)- 1/2 (log log n)- V4 
n ~ O O  

x sup ]n'/2c~,(y, 1) - nl/2un(y, 1)l = 2 1/4 a.s. (1.27) 
0<y_<l 

This result is Kiefer's celebrated exact rate uniform distance version of the 
Bahadur (1966) representation of quantiles in the uniform-[0, 1] case, which ini- 
tiated the study of uniform distance, asymptotically exact rate Bahadur-Kiefer 
representations of general quantiles (cf Kiefer (1970), Cs6rg6 and R~v6sz (1978)). 
Now (1.27), in turn, via (1.11) and (1.12) yields 

PROPOSITION 1.C. On the probability space of Theorem 1.A we have 

lira sup n 1/4 (log n) -1/2 (log log n)-1/4 
n - - -~oo  

x sup [u,(y, 1 ) -n - ' /2K(y ,n ) l=2  1/4 a.s. 
0<y_< 1 

(1.28) 

Kiefer (1970) used a direct method of proof  for proving the result of (1.27). 
Whichever way, it implies that the best possible rate for the joint approximation 
of un(y, t) and en(y, t) by the same Kiefer process is that given in (1.10) of The- 
orem 1.B. The exact rate and notion of (1.27) is frequently called the Bahadur- 
Kiefer principle. For summaries and further results along these lines we refer to 
Cs6rg6 and R+v6sz (1981), Cs6rg6 (1983), Shorack and Wellner (1986), and 
Cs6rg6 and Horvfith (1993). 

REMARK 1.2. Due to the so-called Erd6s-R~nyi (1970) law of large numbers, the 
almost sure (9 ((log n)2/n 1/2) rate of convergence in (1.9)is at most C(log n) away 
from the best possible C((log n)/n 1/2) r a t e  of convergence, i.e., it cannot be im- 
proved beyond the latter rate (cf Komlds, Major and Tusnfidy (1975), and/or 
Theorem 4.4.2 in Cs6rg6 and R~v6sz (1981)). Via constructing a different Kiefer 
process than that of (1.9) for approximating the sequential uniform quantile 
process directly, the rate of convergence of such an approximation is much im- 
provable as compared to that of (1.10). Indeed, in principle, up to being as good 
as (9((logn)/na/2), again the best possible rate of convergence for such a con- 
struction. This has been an open problem since posed in Cs6rg6 and R6v6sz 
(1975), where the first version of (1.20) was proved. Should one succeed in car- 
rying out this new construction of a Kiefer process directly for approximating 
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u,(y, t), it is clear from the above proof  of the Bahadur-Kiefer principle of (1.27) 
or, equivalently, from that of (1.26) that, as a consequence, one would have also 
an exact analogue of (1.28) for c~(y, 1) in terms of this Kiefer process, a mani- 
festation, again, of  the Bahadur-Kiefer principle. 

The stochastic process 

{R*(y, 1), 0 < y <  1, n =  1,2, . . .}  

:= {nl/2(c~,(y, 1 ) - u , ( y ,  1)), 0 < y <  1, n =  1 ,2 , . . . }  
(1.29) 

is called the uniform Bahadur-Kiefer process. A direct application of (1.12) and 
(1.13) leads to (cf Remark 6.2.3 of Cs6rg6 (1983)) 

COROLLARY 1.B. On the probability space of Theorem 1.A, with the Kiefer 
process {K(y,x), 0 _< y _< 1, 0 < x < oo} of  (1.8), we have, as n --+ ~ ,  

sup n-1 /RIR; (y  , 1) - (KQy, FI) - K(~fn(y ) ,  n))  I 
0_<y< 1 

= sup ](c~,(y, 1) -un(y ,  1)) -n-V2(K(y ,n)  -K((J , (y) ,n))  I (l.30) 
0_<y<l 

= (9((logn)2/n '/2) a.s. 

Corollary 1.B shows the equivalence of  (1.26) and (1.27). The statement of 
(1.30) is a strong &variance principle for the Bahadur-Kiefer process R*(y, 1). 
Namely from (1.30) we conclude again that via (1.26) we have (1.27) as well. That 
is to say, the sup-distance of c~,(y, 1) from un(y, 1) is exactly the same as that of 
n-1/2K(y,n) from n-1/2K((/~(y), n), which is now seen to be just another way of 
putting again the Bahadur-Kiefer principle. For further discussions along these 
lines we refer to Cs6rg6 and R6v6sz (1978, 1981), Cs6rg6 (1983, Chapter 6), 
Deheuvels and Mason (1990), and Cs6rg6 and Horvfith (1993, Section 3.3). 

1.3. The sequential uniform Bahadur-Kiefer process and its strong approximation 

It is now natural to define the sequential uniform Bahadur-Kiefer process R*~ (y, t) 
(cf (1.29)) by 

{R*n(y,t), 0 < y <  1, O < n t < n ,  n = l , 2 , . . . }  

:= {nl/Z(~n(y,t) - un(y,t)), O < y < 1, O < nt < n, n =  1 ,2 , . . . }  . 

(1.31) 

Due to (1.26) we have, as (nt) --+ oc, 

sup IK((Y[~tl(Y),nt) - K(y, nt)l 
o_<y<l (1.32) 

1/4 1/2 _< (2 -1/4 +o(1))(nt) (log(nt)) (loglog(nt)) I/4 a.s. , 
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and hence, on dividing both sides by n I/4(log n):/:(log log n)1/4 and then taking 
suPo_<t<l on both sides, with an absolute positive constant C we obtain 

lim sup n-1/4 (log n) 1/2 (log log n)-1/4 

" ~  (1.33) 
× sup sup IK((J[,t](y),nt) -K(y ,  nt)l <_ C a.s. 

0<t_<l 0_<y<l 

k t By definition, c~,(Uk,[,tl,t)= u,([,t], ) and 

sup sup sup Un(y , t ) - -Un(rk~ l , t  ") = ( 9 ( n - 1 / 2 ) .  (1.34) 

/ % 

O<t<l l<k<_[nt] (k 1)lint <y<k/ nt ',,inl] / 

Consequently, we have 

sup sup  lu.(y,t) - ~ . (y , t ) l  
0<_t<l 0<_y<l 

= sup sup [~(lQ[,,](y),t) -=.(y,t)l +(~(n 1/2) , (1.35) 
0<t<l 0_<y_<l 

and now, an application of (1.9) and (1.35) yields 

PROPOSITION 1.1. On the probability space of Theorem 1.A, with the Kiefer 
process {K(y,x), 0 _< y _< 1, 0 _< x < oc} of (1.8) we have, as n --~ oc, 

sup sup  . l / 2 [ R . * ( y , t ) -  (X(y, nt)-K(l_J[,tl(y),nt)) ] 
0<t<l 0_<y_<l 

= sup sup I(~,(y, t) - u,(y, t)) - n 1/2(K(y, nt) - K(gJ[nt](y), nt)) I 
0__t_<l 0<y_<l 

= (9((logn)2/n :/2) a.s. (1.36) 

Proposition 1.1 is a strong invariance principle for the sequential uniform 
Bahadur-Kiefer process R*,(y, nt) of (1.31). Namely, on account of (1.33) and 
(1.36) we conclude the following sequential uniform Bahadur-Kiefer principle. 

PROPOSITION 1.2. With an absolute positive constant C we have 

limsup n-1/4(logn) 1/2(loglogn) 1/4 sup sup IR*(y,t)l 
n~oo 0<t%l 0<y<_l 

= lim sup n-l/4 (log n)-l/2 (log log n) -1/4 
Y/---+O0 

× sup sup Inl/2c~,(y,t)-nl/2u,(y,t)l 
0<t<l 0<y_<l 

< C  a.s. 

(1.37) 

1.4. Definitions of sequential general empirical and quantile processes 

Now we are to study sequential processes in terms of more general distributions 
than the uniform one. Let X1,X2,... be i.i.d.r.v.'s with distribution function F 
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that is defined to be right continuous. Given a chronologically ordered random 
sample XI ,X2, . . . ,  X~, n _> 1, their sequential empirical distribution function is de- 
fined by 

&(x) : / o; < x}, 
1, [nt] Z..ai=l 

0<_t< l/n, 
- ~ x ~ < x < e %  1 / n < t < l  , 

(1.38) 

which in terms of the sequential order statistics Xl,[~t] <_ X2&t] _< -'" _< X[nt],[nt], 
1/n < t < 1, of the random sample X1,X2,. . .  ,Xn, reads as follows: 

i !  i f - o c < X < X l , [ n t ] ,  0 < t <  1 , 
~nt] (x) = [nt], if Xk,[nt] _< x < Xk+l,[ntj, 1 < k < {nt] - 1, 0 < t < 1, 

if X[ntJ,[nt ] ~ x < oo, 0 < t < 1 , 

(1.39) 

with Xl,[nt] = X[nt],[nt] -- 0 for 0 _< t < 1In. The sequential empirical process is de- 
fined by 

[nt] 
fin(x, t) = n 1/2 Z ( I { X / <  x} - F(x)) 

i=1 (1.40) 

= n ~ / 2 [ n t ] ( ~ < ( x )  - F ( x ) ) ,  - ~  < x  < ~ ,  0 < t <  1 

Let Q be the quantile function of F, defined by 

Q(y) = F- l (y )  = inf{x:F(x)  >y} ,  0 < y  _< 1, Q(0) = Q(0+) , 

(1.41) 

i.e., Q is defined to be the left continuous inverse of the right continuously defined 
distribution function F. Thus, for any right continuous distribution function G on 
the real line we have for any 0 < y < 1 

G(x) >_ y if and only if G-l(y)  <_x , (1.42) 

and 

G(x) < y  if and only if G-l(y) > x . (1.43) 

Consequently, a random variable X with distribution function F has the same dis- 
tribution as the random variable Q(U), i.e. 

X~=Q(U) , (1.44) 

where U is a uniform-[0,1] random variable, since by (1.42) we have 
P{Q(U) < x} = P{U <_ F(x)} = F(x). 

la (1.5), the sequential empirical quan tile function Q[,tl of ~nt] is defined by 
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Q[nt](Y) = fi[;tl (Y)= inf{x : fi[n4(x) _>y}, 0 < y_< 1, 

Oi,,tl(0) = 0 i , , t l (0+) ,  0 < t < 1 , 

i.e., we have 

OE<(y) = 

641 

(1.45) 

(Xl,[,t] if y = 0 ,  0 < t <  1, 
= ~ X~,[nt] if (k - 1)/[nt] < y <_ k/[nt], (1.46) 

[ 1 <_ k<_ [nt], 0 < t <  1 , 

with Q[nt](y) = 0 for 0 < t < 1/n. Imitating (1.40), and the definition of the se- 
quential uniform quantile process (cf (1.6)), it seems that a reasonable definition 
of the sequential general quantile process should be 

(1.47) 

By the Dvoretzky, Kiefer and Wolfowitz (1956) inequality there is a constant C 
such that 

PIsuplfl"(x'l)[t, xcR > z} _< C exp(-Zz 2) (1.48) 

for all z > 0. Massart (1990) obtained the optimal choice of C = 2. In passing, for 
a short history of (1.48) we refer to Proof of Lemma 3.1.4 on p. 119 of Cs6rg6 
and Horv/tth (1993). By (1,48) we have 

P{  sup sup l fi~ (x, t) l > 6t'tl/2~ ~ 2nexp(--Zc2n) (1.49) 
k0_<t_<l x~N. J 

for all c > 0 and n > 1 and, on account of 

sup sup Ifl,(Q(y),t)] = sup sup Ic~,,(y,t)l = sup sup lu~(y,t)] 
O_<t<l O_<y<l O_<t<_l O_<y_<l O_<t<l O<y_<l 

(1.50) 

if F is continuous, the same inequality holds true also for the sequential uniform 
quantile process un(y,t). Hence, by the Borel-Cantelli Lemma, as n -~  oc, we 
have also the Glivenko-Cantelli theorems 

sup sup [ntl y-F(Q[.t](y))  -+0 a.s. (1.51) 
0<t<i 0<y<l gt \ / 

if F is continuous, and 

sup sup [ntl [~,,t](x) - n (x ) [  ~ 0 a.s. , (1.52) 
0_<t<l x¢~- n 

with any F. While (1.51) "justifies" the definition of the sequential uniform 
quantile process (cf (1.6)), we note that, in contrast to (1.51), we have 
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P{lirnsuP0<t_<l 0<y_<lsup[ntlQ(Y)-Q[nt](Y)n = o o } = 1 ,  (1.53) 

unless F has finite support. Also, only if Q is continuous at y = y0, do we have 
that 

limooQ,(y0) = Q(y0) a.s. (1.54) 

Otherwise this statement cannot be true. For further results along these lines we 
refer to Parzen (1980). These remarks already show that, at best, the process 
7~(Y, t) can be well behaved only at its points of  continuity. 

From now on we assume that F is a continuous distribution function. Then Q 
satisfies 

Q ( y ) = i n f { x : F ( x ) = y } ,  F ( Q ( y ) ) = y ,  0_<y_< 1 . (1.55) 

Consequently, i f X  is a random variable with a continuous distribution function 
F, then, on account of P{F(X)  >_ y} = P{X  > Q(y)} = 1 - F(Q(y)) = 1 - y, we 
have that 

F(X)  ~= U , (1.56) 

where U is a uniform-[0, 1] random variable. Hence, in this case, U1 = F(X1), 
U2 = F(X2),. . .  are independent uniform-[0, 1] random variables, and the se- 
quential order statistics X~,[~t] _< X2,[~t] _< ""  _< X[ntl,[,t], 1/n < t < 1, of the random 
sample X1,X2, . . . ,X~ induce the sequential uniform order statistics UI,[@ = 
F(Xl,[ntj) ~ U2,[nt] = F(U2,[nt]) <_ ' '" <_ U[ntJ,Int] = F(X[~t]@t]) of the induced uniform- 
[0, 1] random sample U1 = F(X1), U2 = F(X2) , . . . ,  Un = F(X~), with U~,[nt] = 
U[,tI,[,t] - 0 for 0 _< t < 1/n. Then, the thus induced sequential uniform empirical 
distribution function ~;[~t] of this uniform random sample is given by 

0, 

eE.t j (y)  = k / I n t ] ,  

1, 

= 

or, equivalently, by 

if 0 < y < F(Xl,[nt]), 0 < t < 1, 

if F(Xk,[,t]) <_ y < F(Xk+l@t]), 

1 5  k_< [nt]-l ,  0 < t < l ,  

if g(x[,t],[nt]) <_ y <_ 1 

0 _ < y < l ,  0 < t < l  

(1.57) 

0, 

k)[,t](y) = (1/[nt]) ~In]l I{F(X/) _< y}, 

=~nt](Q(y)), 0 < y <  1, 0 < t <  1 . (1.58) 

The similarly induced sequential uniform empirical quantile function is given by 

if 0 < t <  1/n, 

if 0 _ < y <  1, 1/n<_t<_l ,  
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{ F(x~,i,,,l), 
0[ntl (Y) = F(Xk,[nt]), (1.59) 

= F(Q[ml (Y)), 

Thus, in terms of Ui = F(Xi), i = 1 , . . . ,  n, we have for any continuous distribu- 
tion function F 

if y =  O, O < t < l ,  

if (k - 1)/Int ] < y <_ k/[nt], 

1<_ k<_ [nt], 0 < t < l ,  

0 < _ y <  1, 0 < t <  1 . 

f i , ( Q ( y ) , t ) = ~ , ( y , t ) ,  0 < y _ <  1, 0 < t <  1 , (1.60) 

where c~n(y, t) is now the F induced version o f  the sequential uniform empirical 
process, defined in (1.3). Hence, all theorems proved for ~,(y, t) will hold auto- 
matically for fin(x, t) as well, simply by letting y --- F(x) in (1.60). In particular, 
Theorem 1.A and (1.9) hold true automatically for ft,(x, t) = ~,(F(x), t) with any 
continuous distribution function F. We note in passing that, implicitly, we al- 
ready used (1.60) in stating (1.50) and, similarly, the notion of (1.59) in turn was 
already utilized in (1.51). 

Unfortunately, there is no such immediate simple route as that of (1.60) for 
transforming 7,(y,t) of (1.47) into its own corresponding sequential uniform 
quantile process 

u,,(y, t) = n-1/2[nt] (y - (J[m](Y) ) (1.61) 

=n-l /2[nt] (y-F(QInt](y) ) ) ,  O < y <  1, 0 < t <  1 . 

The transformation y --+ F(x) does not work directly for tying up un (y, t) with 
7n(Y, t). Using, however, the mean value theorem, we can write 

7n (Y, t) = n 1/2 [nt] (Q(y) - O[nt] (Y)) 

= n 1/2[nt](Q(y) - Q(F(O[,t](y)))) 

= . - I / 2 { n t ]  (y -- g (o[ . t l ( y ) ) ) / f (Q(O. (y  , t))) 

=un(y , t ) / f (Q(O. (y , t ) ) ) ,  O < y <  1, O < t < l  , 

(1.62) 

where U'(m](Y) Ay < On(y,t) < UInt](Y) Vy, y E (0, 1), t E [0, 1], n = 1 ,2 , . . . ,  pro- 
vided of course that we have Q'(y) = 1 / f (Q(y) )  < ~ for y E (0, 1), i.e., provided 
that F is an absolutely continuous distribution function (with respect to Lebesgue 
measure) with a strictly positive density function f = U on the real line. The 
f unc t ion f (Q(y ) )  is called the density-quantilefunction, and Q'(y) = 1/ f (Q(y) )  the 
quantile density function by Parzen (1979a,b). 

The relationship (1.62) shows that, for the sake of comparing 7,(y,t) with 
u,(y, t), one should first of all multiply the former by f (Q(y) ) .  Hence we assume 
that f = F t exists on the real line, and define the general sequential quantile 
process p,(y,  t) by 
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pn(y, t) = f(Q(y))v~(y,  t) 

= n-1/Z[nt]f(Q(y))(Q(y) - 0[~t](y)), 0 _<y_< 1, 0 < t < 1 . 

(1.63) 

We wish to emphasize that the introduction of the density quantile function 
f (Q(y) )  into the definition of the general sequential quantile process {p~(y, t), 
0 _<y _< 1, 0 < t < 1, n = 1,2, . . .} is for the sake of making it 'look like' the 
process {u,(y, t) ,  0_<y_<l ,  0 < t < l ,  n = l , 2 , . . . }  of (1.61), or like 
{en(y,t) = fin(Q(y),t), 0 _<y_< 1, 0 < t < 1, n = 1,2, . . .},  asymptotically. In the 
rest of this section we will see that the idea of studying p,,(y, t) via its own uniform 
version u,,(y, t) of (1.61) is a fruitful one that will also lead to conveniently 
comparing p~(y, t) with ~n(Y, t) of (1.60) as well. On the other hand, owing to the 
presence of the density-quantile function in its definition, the form of p~ does not 
lend itself easily to constructing confidence bands for the quantile function Q(y) 
(cf Cs6rg6 and R6v&z (1984), and Chapter 4 of Cs6rg6 (1983)). Indeed, having 
confidence bands for Q in mind, it is better to start with the weak convergence of 
c~n(y, 1) of (1.60) to a Brownian bridge {B(y), 0 < y _< 1} (cf (a) of Remark 1.1). 
Assuming only that F is continuous, via c~,,(y, 1) of (1.60) one can easily arrive, for 
example, at (cf Cs6rg6 and Horvfith (1989)) 

=P/I,  °<-y-<lsup IB(y)l _< c(00} = 1 - c ~ ,  (1.64) 

where B(-) is a Brownian bridge, c(a) is a positive real number for which we have 
the latter equality holding true for a given ~ c (0, 1), and {en, n _> 1} is any 
sequence of positive real numbers such that c, --~ 0 and n i / 2 ¢  n ~ c~ as n - - - +  oo. 

1.5. Comparing the general sequential quantile process to its uniform version." 
Preliminary notions 

Returning now to the problem of comparing the general sequential quantile 
process Pn(Y, t) of (1.63) to its uniform version of (1.61), with On(y, t) as in (1.62), 
we have 

Pn(Y,t) = un(y, t ) ( f (Q(y)) / f (Q(On(y, t ) ) ) ) ,  0 < y < 1, 0 < t < 1 . 

(1.65) 

Hence one would expect p,,(y, t) to have an asymptotic theory like that of u,(y, t), 
provided only that we could 'regulate' the ratio f (Q(y) ) / f (O(On(y ,  t))) uniformly 
in y and t over the unit interval. The following lemma and its conditions con- 
stitute a sufficient background for achieving this goal. 

LEMMA 1.A. Let F be a continuous distribution function F and assume 
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(i) F is twice differentiable on (a, b), where 

a = s u p { x : F ( x ) = O } ,  b = i n f { x : F ( x ) =  1}, 

(ii) U(x)  = f (x )  > O, x E (a, b), 
(iii) for some 7 > 0 we have 

- o e < _ a < b < _ e c  , 

(1.66) 

sup y(1-y)lf'(Q(y))l/fZ(Q(y)) < ;, . 

0<y<l 

Then we have 

f (Q(yl ) ) 
f (Q(y2))  

Yl Vy2 1 -- (Yl Ay2)'  7 

- - <  O , , v y g J  

for every pair yl,Y2 E (0, 1). 

(1.67) 

This is Lemma 1 of Cs6rg6 and R6v6sz (1978). Proof can be also found in 
Cs6rg6 and R@~sz (1981, Lemma 4.5.2), Cs6rg6 (1983, Lemma 1.4.1), and 
Cs6rg6 and Horvfith (1993, Lemma 6.1.1). 

In the literature on non-parametric statistics, it is customary to define the so- 
called score function (el for example, H/tjek and Sidfik (1967, p. 19)): 

J(y) = - ~ f (Q(y) ) =- - f '  (Q(y) ) / f  (Q(y) ) . (1.68) 

Thus, our condition (1.66) (iii) can be written as 

sup y (1 -y ) l J (y ) l / f (Q(y ) )  <_ 7 • 
0<y< 1 

For example, 

J(y) = -1 ,  

J(y) = 1, 

and 

if F ( x ) =  1 - e x p ( - x ) ,  x_>O , 

if F ( x ) =  1-exp(x) ,  x < O  , 

/ (Q(y ) )  = 1 - y ,  if F(x) = 1 - exp(-x), x > 0 

f ( Q ( y ) ) = y ,  i f F ( x ) =  1 -exp(x) ,  x<_0 . 

(1.69) 

Hence, in these two cases of exponential distributions, 7 of (1.66) (iii) is equal to 1. 
For further examples, and a discussion of tail monotonicity assumptions of ex- 
treme value theory as related to (1.69), we refer to Parzen (1979a, 1980). 

We note in passing that the score function J of (1.68) plays an important role 
in non-parametric and robust statistical analysis (cf, for example, Hfijek and 
Sidfik (1967) and Huber (1981)). Owing to its importance, and because of our lack 
of knowledge o f f  in most practical situations, it is desirable to estimate J,  given a 
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random sample X1,...  ,Xn on F. For results on estimating J,  and for further 
discussions along these lines, we refer to Hfijek and Sidfik (1967, p. 259), Parzen 
(1979a), Cs6rg6 (1983, Chapter 10), Cs6rg6 and R6v~sz (1986) and Burke and 
Horvfith (1989), as well as to references in these works. 

Back to the problem of the general sequential quantile process Pn (Y, t) versus its 
uniform version u, (y, t), by (a) of Remark 1.1 we have 

~,(y, 1) ~ N ( 0 , y ( a  - y ) )  for every fixed y E (0, 1) , (l.70) 

and one has also (cf, e.g., R6nyi (1970, p. 490)) 

7,(Y, 1) ~ --+N(0,y(1 _y)/f2(Q(y))), y fixed in (0, 1) , (1.71) 

provided that F is absolutely continuous in an interval around Q(y) and f(Q(y)) 
is positive and continuous at y. (Continuity of the latter at y can be dropped). 

1.6. Preliminary notions on the weak convergence 
of the general sequential quantile process 

Given the conditions of (1.71), an equivalent way of putting it is to write 

Pn(Y, 1) =f(Q(y))7,(y, 1)~X(0 ,y (1  -y) ) ,  y fixed in (0, 1) . 

(1.72) 

The latter (1.72)-version of (1.71) underlines again the rationale behind defining 
the general sequential quantile process p~(y, t) the way we did in (1.63). In the 
light of (1.72) and (b) of Corollary 1.A, it is only natural to ask for a similar result 
for p~ (y, t). The next result (cf Theorem 1.5.1 of Cs6rg6 (1983)) will illustrate the 
immediate usefulness of Lemma 1.A in this direction. 

THEOREM 1.C. 
0 < c <  1 and a l l n >  1 

P {  sup f(Q(Y)) 1 > e} 
c<_y%l-c f(Q(O,(y, 1))) 

_< 4([7] + 1){ exp ( -  nch((1 + ~) (l/2)([7]+l))) 

+ exp ( -  nch(1/(1 + e)(1/2)(['1+1))) } 

= : / / . ( ~ , ,  c, h, ~) , 

Given the conditions of Lemma 1.A on F, we have for all e > 0, 

(1.73) 

where 0n(y, 1) is as in (1.62), 7 > 0  is 
x+ log(1 /x )  - 1, x_> 1. 

As a consequence of (1.73), we have also 

as in Lemrna 1.A, and h(x) 
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P{ sup sup f(Q(y)) } 
O<t<l c<y<l c f ( ~ t ) ) )  1 > c 

< nHn(y,c,h,e) 
(1.74) 

for all e > 0, 0 < c < 1 and all n > 1, where 0n(y, t) is as in (1.62). 

COROLLARY 1.1. With h(.) as in Theorem 1.C, let 

Cn := 2 ( 1 O g n ) / ( n ( h ( ( e  + e) ('/2)([7]+l)) Ah( (1  + e)-('/2)([7]+')))) . 

(1.75) 

Assume that F satisfies the conditions of Lemma 1.A on F. Then, as n -+ oc, we 
have 

sup sup Ip,(y,t)-un(y,t)l=oe(1) , (1.76) 
O_<t<l c.<y<l-cn 

where Pn(', ") and un(., .) are as in(1.63) and (1.61) respectively. 

PROOF. By (1.65) we have 

sup sup [P,0', t) - un(y, t) l 
O<t<l c.,<y<l-cn 

[ f(Q(Y)) 1 (1.77) < sup sup [un(y,t)[ sup sup - -  
--  O_<t_<l O<y<l O<t_<l c.<_y<_l-c. If(Q(On(y, t))) 

= o p ( 1 ) o p ( 1 )  , 

where Op(1) is on account of (b) of Corollary 1.A, and op(1) is via (1.74) on 
noting that h(.) and h(1/-) are positive. [] 

Combining Theorem 1.B with Corollary 1.1, we conclude also 

COROLLARY 1.2. Assume that F satisfies the conditions of Lemma 1.A on F. Let 
cn be as in (1.75). Then, on the probability space of Theorem 1.A we have, as 
/'/ ----+ OQ, 

sup sup Ipn(y,t)-n a/2K(y, nt)l=op(1) , (1.78) 
0_<t<l cn<_y<l-cn 

where {K(y,x), 0 < y _< 1, 0 < x < oc} is the Kiefer process of Theorem 1.A. 
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PROOF. We have 

sup sup [p~(y,t)-n-1/ZK(y, nt)[ 
0<t<l cn<y<l c,, 

_< sup sup Ip~(y,t)-u,(y,t)[ 
O<t<l c. <y<_l-c~, 

+ sup sup lu~(y,t)-n-I/2K(y, nt)l 
0<t_<l c. <y<_l-cn 

= op(1) + oe(1), as n --+ oc , 

by (1.76) and (1.10) respectively. 

(1.79) 

[] 

Let {K(y, t), 0 _< y _< 1,0 < t < 1} be a Kiefer process. Then 

{n-1/ZK(y, nt), 0 < y <  1, 0 < t <  1}~={K(y,t),O<y<_ 1 , 0 < t <  1} 

(1.80) 

for each n > 1. Also, on account of almost sure continuity of a Kiefer process 
K(., .) (cf, e.g., Theorem 1.13.1 in Cs6rg6 and R6v~sz (1981)), as n ~ oc we have 

sup sup IK(y,t)l----+ sup sup IK(y,t)l a.s. (1.81) 
0_<t_<l c,,<y<_l Cn 0_<t<l 0_<y_<l 

Consequently, by combining (1.78), (1.80) and (1.81), we obtain that, under the 
conditions of Lemma 1.A on F, as n --+ oc 

sup sup Ip,(y,t)[~ sup sup IK(y,t)l. (1.82) 
0<t<l c,,<y<l-c,, 0<t<l 0<y<l 

Convergence in distribution of some other functionals of interest of the truncated 
sequential quantile process {p~(y,t)l{c, _<y _< 1 - c ~ } ,  0 < t < 1} can be simi- 
larly established. Our eventual aim, however, is to study the weak convergence of 
Pn(', ') of  (1.63) in D[0, II 2. Hence, we are to extend the respective results of (1.76) 
and (1.78) with such a goal in mind. We note in passing that, under the conditions 
of Lemma 1.A, Cs6rg6 (1983, Chapter 2) proved that, as n ~ oe, 

sup IP,(Y, 1) - u,(y, 1)l = op(1) (1.83) 
l /(n+ 1) <_y<_n/(n+ i) 

and that, with an appropriately constructed sequence of Brownian bridges 
{Bn (y), 0 _< y _< 1 }, we have as well 

sup IPn(Y, 1) - Bn(y)[ = op(1) , (1.84) 
1/(~+1)<y_<~/(~+1) 

where p~(y, 1) and u~(y, 1) are as in (1.63) and (1.61) respectively. 
Indeed, (1.83) is an immediate consequence of Theorem 1.C (cf Chapter 2 of 

Cs6rg6 (1983)), and then there we can have (1.84) as well, via the triangular 
inequality and (1.10) of Theorem 1.B. While (1.84) just about takes care of the 
weak convergence of the general quantile process p~ (y, 1) to a Brownian bridge in 
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D[0, 1], it is not strong enough for what one has to do for establishing the weak 
convergence of On(Y, t) to a Kiefer process K(y, t) in D[0, 112. 

2. Deviations between the general and uniform quantile processes 
and their sequential versions 

In this section we quote, and outline the proofs of, some known results on the 
deviations between the general and uniform quantile processes (cf Cs6rg6 and 
R6v6sz (1978)) that have led to an extension of the Bahadur (1966) and Kiefer 
(1970) theory of deviations between sample quantiles and the empirical distri- 
bution function (cf Cs6rg6 and R6v6sz (1978; 1981, Sections 5.2 and 5.3) and 
Cs6rg6 (1983, Chapter 6), as well as Sections 4 and 5 of this exposition). The 
results to be quoted here will also play a fundamental role in what we intend to 
say about the sup-norm distance of p,,(y, t) and its uniform version un(y, t) (cf 
(1.63), (1.61) respectively and Propositions 2.1, 2.2 below), about the approxi- 
mations of the general sequential quantile process by a Kiefer process (cf Sec- 
tion 3 below), and about the corresponding sequential versions of the Bahadur~ 
Kiefer deviations of Section 6. 

CsSrg6 and R6v6sz (1975, 1978) initiated the study of the general quantile 
process Pn(Y, 1) via its own uniform quantile process un(y, 1). It has turned out (cf 
e.g., Cs6rg6 and R~v6sz (1981), Cs6rg6 (1983), Cs6rg6 and Horvfith (1993), and 
the related references in these works) that the assumptions (1.66) (i), (ii) and (iii) 
of Lemma 1.A are frequently convenient in dealing with problems that are in- 
herently based on joint distributions of empirical quantiles (cf, e.g., Rao and 
Zhao (1995)). In particular, Lemma 1.A plays a crucial role, in combination with 
a Cs/~ki-type law of the iterated logarithm for the uniform quantile process, in 
comparing the two processes Pn(Y, 1) and un(y, 1). 

Csfiki (1977) investigated the almost sure behaviour of the upper limits of the 
sequence 

sup (y(1 - y)loglogn)-l/2lc~n(y ,1)l 
~<y_< 1 e,, 

for a wide class of sequences {en}, e, + 0. One special case of his many results 
reads as follows: 

THEOREM 2.A. With en = d n  1 loglog n and d > 0.236 .. . .  we have 

limsup sup ( y ( 1 -  y) log log n) 1/21~n(y, 1 ) l = 2  a.s. (2.1) 
n-*c~ ~n<y<l-~n 

For further details on this theorem we refer to Theorem 5.1.6 and Re- 
mark 5.1.1 in Cs6rg6 and R6v6sz (1981). In the theory of quantiles we use an 
analogue of this theorem for u,(y, 1) (cf CsSrg6 and R6v6sz (1978, Theorem 2) 
and/or (1981, Theorem 4.5.5)). 
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THEOREM 2.B. With an = 25n 1 loglogn we have 

limsup sup (y(1 -y ) log logn) - l /Z lu , (y ,  1)l_<4 a.s. (2.2) 
n-+oo 6,,<_y_< 1-~n 

The basic results of  Theorems 2.C and 2.D below on the distance between 
p,(y, 1) (cf (1.63)) and u,(y, 1) (el (1.61)) are essentially due to Cs6rg6 and R6v6sz 
(1978, Theorem 3). M. Cs6rg6, S. Cs6rg6, Horvfith and Rbv6sz (1985), and 
Cs6rg6 and Horv/tth (1993, Chapter 6) contain the present, somewhat modified 
versions, as well as the details of  their proofs. 

THEOREM 2.C. Given the conditions (1.66)(i), (ii) and (iii) on F, as n --* oo, we 
have 

sup  [p, Cv, 1) - u=Cv, 1)1 
1/(n+l)<y<n/(n+l) 

a.s.{ (~(" '/2(1oglogH)l+Y) 

~(n_i/2(loglogH)Y(logn)(l+Q(y 1)) 

if 7 <  1, 

i f T > l  , 
(2.3) 

for all e > 0. 

AN OUTLINE OF THE PROOF OF THEOREM 2.C. First, with 6n as in Theorem 2.B, 
one shows that 

sup [pn(y, 1) - un(y, 1)J = (9(n-1/Zloglogn) a.s. (2.4) 
~Sn <y_< 1 ,5, 

This is accomplished along the following lines. A two-term Taylor expansion 
gives 

n-l~ 2 f ' (Q(~))  
u 2 (2.5) p,(y, 1) = u,(y, 1) ~ -  ,,(y, 1 ) ~ f ( Q ( y ) )  , 

where ~ = ((y,n) and [y - ~] -< n 1/2]u,(y, 1)[. By Theorem 2.B 

2 (2.6) sup [u,(y, 1)[/(y(1 -Y))I  = (9(loglogn) a.s. , 
6. _<y_< 1 - 6. 

by (1.66) (iii) we have 

sup ~(1 - 4)]f'(Q(~))] < y , (2.7) 
0<y<1 f2(Q(~)) - 

and by Lemma 1.A we obtain 

(2.8) 
- k l  (y v 
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Now calculations over the interval fin _< y _< 1 - 6n for estimating the right hand 
side of (2.8) combined with (2.5)-(2.7) yield (2.4). 

Next, using again Theorem 2.B, one shows that, as n ~ oc, we have 

sup lu,(y, 1)1 = C(n 1/21og log n) a.s. (2.9) 
O<_y<_6n 

as well as 

sup ]u,(y, 1)1 = (9(n-1/21oglogn) a.s. (2.10) 
1 6 n<_y<_l 

Somewhat  more difficult calculations yield also that, as n --+ oc, 

sup IP~(Y, 1)l 
1/(n÷l)<y<a. 

i 2 sl+y 
a_~s. (9( n- / (1oglogn) ) ,  

C(n-l/2(loglogn) ' (log n)( '+ ' )( ' - ' ) ) ,  

i f T <  1, 

i f T > l  , 
(2.11) 

supl-a,<_y<l [Pn(Y, 1)1 can be estimated exactly the same way. as well as that  
Consequently,  Theorem 2.C follows by (2.4), (2.9), (2.10), (2.11) and what we 
have just said right after, concerning the estimation of  supl_a,,<y< 1 ]Pn(Y, 1)1. [] 

In the light of  Theorem 2.C it is natural  to wonder what happens to (2.3) when 
taking sup over [0, 1] instead of  [1/(n + 1), 1 - 1/(n + 1)]. Somewhat  surprisingly, 
still as in Cs6rg6 and R~v~sz (1978), we need extra conditions for comparing 
Pn(Y, 1) and un(y, 1) on the whole unit interval. Namely we have 

THEOREM 2.D. Assume that  (1.66)(i)-(iii) hold true and that  we have also 

(i) A = limy;of(Q(y)) < oc, B = limyllf(Q(y)) < oo (2.12) 

and 
(ii) A A B > 0, 

o r  

(iii) if limy;of(Q(y)) = O, then f is non-decreasing in a r ight-neighbourhood of  
Q(0) = Q(0+), and if l imyTlf(Q(y))= 0, then f is non-increasing in a left- 
neighbourhood of  Q(1). 

Then, as n --+ oc, we have 

sup IP,,(Y, 1) - u,(y, 1)1 
0<t_<l 

O(n 1/21og log n) i f7  < 1, (2.13) 

as. {fl(n-l/2(loglogrt) 2) if T =  1, 

(9(n-1/a(loglogn)Y(logn) (l+e)(~'-l)'] if  ~, > 1 
\ ] 



652 M. Cs6rg6 and B. Szyszkowicz 

for  all e > 0. 

AN OUTLINE OF THE PROOF OF THEOREM 2.D. Under  the conditions (1.66) (i)-(iii) 
we have (2.4). Assuming now (2.12) (i) and (ii), the one term Taylor  series ex- 
pansion of  (1.65) combined with (2.9) and (2.10) respectively, yields 

and 

sup IP~(Y; 1) - u~(y, 1){ = (9(n-U21oglogn) a.s. (2.14) 
O_<y<~ 

sup IPn(Y, 1) - un(y, 1) I = (9(n ' /21oglogn)  a.s. (2.15) 
1 - 6 .  _<y< 1 

Consequently,  under  the conditions (1.66) (i) (iii), and (2.12) (i), (ii) we have 

s u p  Ipn0 ' ,  1) - un(y ,  1)l = (9(n-U21oglogn) a.s. (2 .16)  
0<y_<I 

Next  we assume (2.12) (i) and (iii), the latter with limy+of(Q(y)) = 0 and f ( . )  
non-decreasing on the right of  Q(0) = Q(0+).  Restricting at tention to the region 
0 < y < 6n and considering first the case of  0n(y) > y, condit ion (2.12) (iii) gives 
the trivial estimate 

[ OoCv) 
]pn(y, 1)l = n an U(Q(Y) ) ds < -un(y, 1) . 

~ y  f ( Q ( s ) )  - 

Hence, applying (2.9), we obtain 

(2.17) 

sup IPn(Y, 1)l{O~(y) ->Y}I = (9(n '/21og log n) a.s. (2.18) 
0~y_<~. 

Still in the region 0 < y _< 6n, but  assuming now that  O,(y) < y, calculations yield 
(cf Cs6rg6 and R6v~sz (1978, P roo f  of  Theorem 3, or t981, P roo f  of  Theo-  
rem 4.5.6)) 

sup IPn(Y, 1)l{0n(y)  < y}] 
0_<y_<6. 

(9(n-72 loglog n) 

as. (9(n U2(loglogn) 2) 

@(n_l/2( loglogn)  , (logn)(l+e)(~, 1)) 

if 7 <  1, 

if 7 =  l, 

i f T > l  , 

(2.19) 

for  all c > 0 .  Combining now (2.9), (2.18) and (2.19) we obtain that 
sup0<y_<6, IPn(Y, 1) - un(y, 1)] is estimated at the almost sure rate of  (2.19). This 
combined with (2.4) yields that we now have the desired bounds for estimating 
sup0<y<I-6,, IPn(Y, 1) - un(y, 1)l. Namely,  as n ---, oc, we have 
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sup IP~(Y, 1) - u,(y, 1)l 
0<y_<l-6,, 

(9(n V21oglogn) if y < 1, (2.20) 

as. (9(n 1/2(log log n) z) if 7 = 1, 

(9(n_l/2(loglogn),(logn)(l+~)(? 1)) if 7 >  1 ,  

for all e > 0. 
Assuming now (2.12) (i) and (iii) with limytl f (Q(y) )  = 0 and non-increasing f 

on the left of  Q(1), by (2.10) and calculations over the region 1 - 6~ _< y _< 1 that  
are similar to those yielding (2.18) and (2.19), we arrive at estimating 
SUpl 6,,_<y<! [Pn(Y, 1) -- un(y, 1)[ at the almost sure rate of (2.20) as well. Hence we 
conclude also (2.13). [] 

As an immediate consequence of Theorem 2.C, we get its sequential version 
which reads as follows. 

PROPOSITION 2.1. Given the conditions (1.66) (i), (ii) and (iii) on F, as n --~ ec, we 
have 

sup sup [p,(y, t) - u~(y, t)l 
0<_t<_l 1/(n+l)<_y<n/(n+l) 

" 1 2 " \1+7 as ) 
( ~ ( n - l / 2 ( 1 o g l o g n )  y(1Ogn) (l+e)(y-1)) 

for all c > 0. 

if 7_< 1, 

i f T > l  , 

(2.21) 

PROOF. With t E (0, 1] and (nt) -+ oc as n --~ o% by (2.3) for n large we have 

sup In ' /2p , (y , t ) -n l /2u , (y , t ) l  <_ (C+o(1))rn( t ,y ,e)  
1/(n+l)<y<_n/(n+l) 

a . s .  

(2.22) 

where C is an absolute constant,  and 

{ ( i  °g l°g(nt))l+~ ) i f T < - l '  (2.23) 
rn(t, 7, c) = (loglog(nt))~(log(nt))(l+~)(~_l) if 7 > 1 . 

Dividing both sides of (2.22) by rn(l, 7, e) and then taking sup0_<t< 1 on both sides, 
we obtain (2.21) as n ~ oc. [] 

In a similar fashion, we also get the following sequential version of Theo- 
rem 2.D. 

PROPOSITION 2.2. Assume (1.66) (i)-(iii), (2.12) (i) and (2.12) (ii) or (iii). Then, as 
n ---+ oc, we have 
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sup sup [p,(y,t) - u,(y,t)l 
o_<t_<l O_<y_<I 

O(n 1/2 loglogn) 

a._s. (9(n-i/2(loglogn)2) 

C(n_V2(loglogn), (logn)(,+,)(, 1)) 

for all e > O. 

i f 7 < l ,  

if 7 = 1 ,  

i f 7 > l  , 

(2.24) 

3. Weighted sequential quantile processes in supremum and Lp-metrics 

3.1. Some weighted asymptotics for sequential uniform quantile processes 

We note and recall that the sequential uniform quantile process u~(y, t) is a se- 
quential version of the usually considered uniform quantile process 

un(y) := u,(y, 1) = n l /2 (y -  (7,(y)), O < y < 1 . 

Starting with R~nyi (1953), Chibisov (1964) and O'Reilly (1974), there has been 
considerable interest in the asymptotic behaviour of weighted uniform empirical 
and quantile processes. For an insightful treatize of this subject we refer to 
Cs6rg6, Cs6rg6, Horvfith and Mason (1986), Shorack and Wellner (1986) and to 
Cs6rg6 and Horvfith (1993), as well as to the references in these works. There are 
now complete characterizations available for describing the asymptotic behaviour 
of the weighted uniform empirical and quantile processes in supremum and 
Lp-metrics. 

Let 2" be the class of positive functions q on (0, 1), i.e., such that 
inf6<_y<l_6 q(y) > 0 for all 0 < 6 < i, which are nondecreasing near zero and 
nonincreasing near one. Let 

fo 1 1 I*(q,c)= y ( l _ y ) e X p ( - c q Z ( y ) / ( y ( l - y ) ) ) d y ,  c > O  . 

Let U~,n <_ U2,n <_.." <_ Un,, denote the order statistics of a uniform-[O, 1] 
random sample and define the modified uniform quantile function Un(Y) by 

U,(y)=Uk. ,  k / ( n + 2 ) < y < _ ( k + l ) / ( n + 2 ) ,  k = 0 , . . . , n + l  , 

where U0,, = 0 and U,+I,~ = 1, and the modified uniform quantile process ft,(y) 
by 

~ , ( y ) = n l / 2 ( y - ~ , ( y ) ) ,  0 < y < l .  

For the proof of the following theorem we refer to Cs6rg6, Cs6rg6, Horvfith 
and Mason (1986). 
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THEOREM 3.A. Let q E -~*. 

(i) We can define a sequence of Brownian bridges {B,(y), 0 _< y < 1} such 
that, as n ---+ oc 

sup Ifin(y) - B,(y)l/q(y ) = op(1) 
0<y<l 

if and only if I* (q, c) < oc for all c > 0. 
(ii) As n ~ oc we have 

sup I~n(y)l/q(y) ~ sup IB(Y)l/q(y) , 
0<y<l 0<y<l 

where {B(y), 0 < y  <_ l} is a Brownian bridge, if and only if I*(q,c)< e~ for 
some c > 0. 

Concerning the problem of various possible modifications of the uniform 
quantile process u, (y) : u, (y, 1) for the sake of a weighted approximation as in 
Theorem 3.A (i), and hence also for its weighted weak convergence in D[0, 1] with 
appropriate c.d.l.g, weight functions q(y), we refer to O'Reilly (1974), Cs6rg6, 
CsOrg6, Horvfith and Mason (1986), and CsOrg6 and Horvfith (1993, Chapters 4 
and 5). 

It is of interest to note that (i) of Theorem 3.A does not imply its statement (ii) 
for all possible weight functions q(y) of interest. For  example, choosing 

( 1 
q(Y)= Y ( 1 - y ) l o g l ° g y ( l _ y ) j  , 

we have (ii), but not (i), of  Theorem 3.A. Thus, as n -+ ec, convergence in dis- 
tribution of sup0<y<l I~t~(y)l/q(y) to sup0<y<~ IB(y)l/qCv) holds for a larger sub- 
class of functions q E ~* than for having ~( . ) /q ( . )~B( . ) /q ( . )  in D[0, 1]. 
Moreover, the class of functions q for the convergence of Lp-functionals of 
~t,(.)/q(.) is even larger than in the latter case, as demonstrated by the next 
trichotomy theorem of Cs6rg6, Horvfith and Shao (1993). 

THEOREM 3.B. Let q be a positive function on (0, 1), and assume that 0 < p < c~. 
Then the following statements are equivalent: 

(i) We have 

f0 1 (y(1 - dy < ec , y))p/2/q(y) 

(ii) There is a sequence of Brownian bridges {B, (y), 0 <_ y _< 1 } such that 

fo Igtn(y) - B~(y)lP /q(y) dy =- op(1) , 
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(iii) As n ~ co, we have 

fo ~ I?zn(y)lP/q(y)dy ~--~ fo' IB(Y)IP/q(Y)dy 

where {B(y), 0 _< y _< 1} is a Brownian bridge. 

We note in passing that, naturally, Theorems 3.A and 3.B hold true also for 
the uniform empirical process ~, (y) := c~, (y, 1). We quoted these two versions, for 
here we are concentrating mainly on quantile processes. 

In this subsection of  Section 3 we are interested in studying asymptotics of 
weighted sequential uniform quantile process, namely u, Cv, t)/q(t), 0 <_ y, t <_ 1 
with weights in the time parameter t E (0, 1), instead of the "space" parameter 
y ¢ [0, 1], where q(t) is a nonnegative function on (0, 1]. For  the complete and 
optimal characterization of sequential empirical processes of observations, their 
ranks and sequential ranks in weighted supremum and Lp-metrics we refer to 
Szyszkowicz (1996) in this volume. 

Let ,~ be the class of  positive functions q on (0,1 l, i.e., such that 
inf6<t_<~ q(t) > 0 for all 0 < ~5 < 1, which are nondecreasing near zero. Let also 

/01 I (q ,c )= t - l e x p ( - c t - l q 2 ( t ) ) d t ,  c > O  . 

THEOREM 3.1. Let q ~ 2. Then, on the probability space of Theorem 1.A, with 
the Kiefer process {K(y,x), 0 _< y < 1, 0 < x < oc} of (1.8), as n --+ oc, we have 

lUn(y, t) -- n - l / 2 K ( y ,  nt) l/q(t) = o p ( 1 )  (a) sup sup 
O<t_<l O<y<l 

if and only if l(q, 

(b) sup sup 
0<t_<l 0_<y<l 

if and only if I(q, 

(c) sup sup 
0<t_<l 0<y_<l 

c ) < o c f o r a l l c > 0 ,  

lu.(y, t) - n - v 2 K ( y ,  n t )J /q (  t) = o p ( 1 )  

c) < oc for some c > 0, and 

lun(y,t)l/q(t ) ~ sup sup IK(y,t)l/q(t) 
0<t<l 0<v_<l 

if and only i l l (q ,  c) < oc for some c > 0, where {K(y, t), 0 _< y _< 1, 0 < t < 1} is 
a Kiefer process. 

The proof  of Theorem 3.1 is similar to that of Theorem 2.1 of Szyszkowicz 
(1998) in this volume (cf also Szyszkowicz (1994)), and it is based on Theorem 1.B 
of this paper and on the integral test of Cs6rg6, Horvfith and Szyszkowicz (1994) 
for suprema of Kiefer processes, spelled out as Lemma 2.A in Szyszkowicz 
(1998). The results of Theorem 3.1 themselves are exact analogues of those of 
Theorem 2.1 of Szyszkowicz (1998) for the sequential uniform empirical process 
c~n(y,t). Clearly, Theorem 3.1 is also parallel to Theorem 3.A, only here the 
weight function q(t) relates to the question of finiteness of 
lim supt~0sup0<y_< 1 [K(y, t)l/q(t), while in Theorem 3.A. q(y) relates to those of 
lim SUpy~0 IB(y)I/q(y) and lim SUpyT1 ]B(y)l/q(y ). 
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On account of Theorem 3.1 (a) we obtain 

COROLLARY 3.1. Let q C ~. Then as n ~ oc, we have 

u,(y,t)/q(t) ~K(y, t ) /q( t )  in D[0, 1] 2 

if and only ifl(q,c) < c~ for all c > 0, where {K(y,t), 0 < y  < 1, 0 < t < 1} is a 
Kiefer process. 

REMARK 3.1. Throughout  this paper weak convergence statements on Skorohod 
spaces are stated as corollaries to approximations in probability. Naturally, when 
talking about  weighted weak convergence on such spaces, we will always assume 
that the weights are c.d.l.g, functions. 

REMARK 3.2. Obviously Corollary 3.1 implies convergence in distribution of  any 
continuous in sup-norm functional of un(y,t)/q(t) to the corresponding func- 
tional ofK(y ,  t)/q(t) with q E ~ and such that I(q, c) < oc for all c > 0. However, 
for the sup-functional itself, by Theorem 3.1 (c), the class of possible weight 
functions is bigger. For  example, as n --, oc, we have 

sup sup lun(y,t)l/(tloglog((1/t) V 3)) U2 
0<t<l 0<_y<l 

---+ sup sup IK(y,t)l/(tloglog((1/t) V 3)) '/2 , 
0<t<l 0<y_<l 

while the weak convergence of the process {u,(y,t)/(tloglog((1/t)V 3)) '/2, 
0 < y, t <_ 1 } is impossible. 

Such a phenomenon was first noted and proved by Cs6rg6, Cs6rg6, Horv/tth 
and Mason (1986) for the uniform empirical and quantile processes (cf Theo- 
rem 3.A (ii) and our discussion that follows after, there with the example of 
q(y) = (y(1 - y ) l o g  l o g ~ ) l / z .  We note also that statement (b) of  Theorem 3.1 
does not imply its statement (c). 

Considering convergence of Lp-functionals, we obtain here that the optimal 
class of weight functions is even bigger than for convergence of supremum 
functionals. 

THEOREM 3.2. Let 0 < p < oc and q be a positive function on (0, 11. Then the 
following three statements are equivalent: 

(a) We have 

f0  ~ < oo . 
tP/Z /q(t)  dt 

(b) On the probability space of Theorem 1.A, with the Kiefer process 
{K(y,x), 0 _< y <_ 1, 0 _< x < oc} of (1.8), as n ---+ cxD, we have 



658  M. CsO'rg6 and B. Szyszkowicz 

~1 fO 1 lUn(y, t) -- n-1/2K(y, nt)lP/q(t) dydt = oe(1) . 

(c) We have, as n ---+ oe, 

fo l ~o.l lun(y,t)lP/q(t)dy dt ~ f l  fo 1 ]K(y,t)[P/q(t)dy dt , 

where {K(y, t), 0 _< y _< 1, 0 < t < 1} is a Kiefer process. 

The proof  of Theorem 3.2 is similar to that of Theorem 2.2 of Szyszkowicz 
(1998) in this volume, and it is based on Theorem 1.B of  this paper and on the 
integral test of Cs6rg6, Horvfith and Shao (1993) for weighted Lp-functionals of a 
Kiefer process, spelled out as Lemma 2.B in Szyszkowicz (1998). The results of 
Theorem 3.2, which parallel those of Theorem 3.B for the modified uniform 
quantile process ~(y) ,  are exact analogues of those of Theorem 2.2 of Szyszko- 
wicz (1998) for the sequential uniform empirical process c~,(y, t). 

3.2. Approximations of the sequential general quantile process by a Kiefer process 

A combination of Theorem I.B with Proposition 2.1 yields the following result 
immediately. 

PROPOSITION 3.1. Assume the conditions (1.66) (i)-(iii) on F. Then, on the 
probability space of  Theorem 1.A, with the Kiefer process {K(y,x), 0 _< y _< 1, 
0 < x < oc} of (1.8), as n ~ co, we have 

sup sup IPn(Y, t) - n-1/2X(y, nt)l 
0<t_<l l/(n+l)<_y<n/(n+l) 

= C(n-'/4(logn)l/2(loglogn)l/4) a.s. 
(3.1) 

PROOF. We have 

sup sup IpnCF, t ) - n  l/2K(y, nt)l 
O < t < l  l/(n+l)<y<n/(n+I) 

< sup sup ]p~(y,t)-u~(y,t)] 
o_<t<l 1/(,,+l)<y_<n/(,,+l) 

+ sup sup l u ~ ( y , t )  - n 1 / 2 K ( y ,  n t ) l  . 
0 < t < l  1/(n+l)<y<_n/(n+l) 

Now (3.1) follows by (2.21) and (1.10) combined. 

Let 

~n(y, t) = pn(y, t) l{1/(n + 1) _< y _< n/(n + 1)}, 0 < t < 1 . 

[] 

(3.2) 
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We note that  t?, is based on all the observations of  a r andom sample of  size n. 
Hence the following weak convergence of  t5 n (y, t) as a two-time parameter  process 
is of  interest. 

COROLLARY 3.1. Assume the condit ions (1.66) (i) (iii) on F. Then,  as n ~ ec, we 
have 

D.(y,t)---*K(y,t) in D[0,1] 2 

where {K(y,t), 0 < y  _< 17 0 < t < 1} is a Kiefer process. 

(3.3) 

PROOF. On account  of  (3.1) and the almost sure continuity of  a Kiefer process (cf 
e.g., Theorem 1.13.1 in Cs6rg6 and R6v6sz (1981) combined with their definition 
o f a  Kiefer process in their Section 1.15; cf  also (4.28) below), as n -~ oc, we have 

sup sup [/Sn(y,t ) - n-l/2K(y, nt)[ = Op(1) , (3.4) 
0_<t_<l 0_<y<l 

which in turn implies (3.3) as n ~ ec via having (cf (1.80)) 

n-l/ZK(y, nt) ~ K ( y ,  t) in D[0, 1] 2 . (3.5) 
[ ]  

Corol lary 3.1 practically takes care of  the problem of  weak convergence of  the 
general sequential quantile process p,(y,  t) via that  of  ft,(y, t). Nevertheless, the 
next two results are also of  interest. 

PROPOSITION 3.2. Assume the condit ions (1.66) (i)-(iii), (2.12) (i) and (2.12) (ii) or 
(iii) on F. Then,  on the probabil i ty space of  Theorem 1.A, with the Kiefer process 
{K(y,x), 0 <_ y _< 1, 0 _< x < oc} of  (1.8), as n ---, ec, we have 

sup sup Ip,(y,t) - n-1/ZK(y, nt)l 
O<t<l 0<y<_l (3.6) 

= (9(n-1/4(logn)l/2(loglogn) 1/4) a.s. 

PROOF. Similarly to the p roo f  of  Proposi t ion 3.1, (3.6) follows by (2.24) and 
(1.10) combined.  [ ]  

COROLLARY 3.2. Assume the condit ions (1.66) (i) (iii), (2.12) (i) and (2.12) (ii) or 
(iii). Then,  as n -+ ec, we have 

p,(y,t)---~K(y,t) in D[0, 1] 2 (3.7) 

where {K(y, t), 0 _< y < 1, 0 < t < 1} is a Kiefer process. 

PROOV. Immediate  by (3.6). [ ]  
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3.3. Weighted general sequential quantile processes in supremum and Lp-metrics 

There are many results available along the global lines of Theorems 3.A and 3.B 
also for the general quantile process p,(y) := Pn(Y, 1), and for its appropriate 
modifications, under various conditions on the underlying distribution function 
F. For  information on these - weighted in the "space" parameter y E (0, 1) via 
q(y) - type studies, we refer to Cs6rg6 (1986), Cs6rg6 and Horvfith (1990a,b), and 
Cs6rg6 and Horvfith (1993, Chapter 6), and to the references in these works. 

In this subsection of Section 3, we spell out some results along the lines of 
Theorems 3.1 and 3.2, which can be immediately based on Propositions 3.1 and 
3.2, and on the already hinted at methods of proof  of Theorems 3.1 and 3.2 
respectively. 

THEOREM 3.3. Assume the conditions (1.66) (i) (iii) on F. Let q E 9. Then, on the 
probability space of Theorem 1.A, with the Kiefer process {K(y,x), 0 < y < 1, 
0 < x < oc} of (1.8), as n -+ oc, we have 

(a) sup sup IG,(y,t) - n-1/2K(y, nt)l/q(t) = op(1) 
0<t_<l 1/(n+l)<y<_n/(n+l) 

if and only if I(q, c) < oo for all c > O, 

(b) sup sup ]Pn(Y, t) - n-1/2K(y, nt)[/q(t) = Oe(1) 
O<t_<I 1/(n+l)<_y<n/(n+l) 

if and only if I(q, c) < ec for some c > O, 

(c) sup sup ]p~(y , t ) l /q ( t )~  sup sup ] K ( y , t ) l / q ( t )  
0<t<l l/(n+l)<y<n/(n+l) 0<t_<l 0_<y_<l 

if and only ifI(q, c) < oc for some c > O, where {K(y, t), 0 _< y < 1, 0 < t < 1} is 
Kiefer process. 

THEOREM 3.4. Assume the conditions (1.66) (i)-(iii) on F. Let 0 < p < oc, and q 
be a positive function on (0, 1]. Then the following three statements are equiva- 
lent: 

(a) We have 

~ l t p / 2 / q ( t )  < oo  , dt 

(b) On the probability space of Theorem 1.A, with the Kiefer 
{K(y,x) ,  0 < y  < 1, 0 < x < c~} of (1.8), as n ~ ~ we have 

fo l f~/(.+l)IP~(Y, t) - nt)[P/q(t) dy = op(l) , n-I/2KCv~ dt 
al/(,+l) 

process 

(c) We have, as n --~ oo, 
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jolf  IP,(Y, t)lP/q(t) d y d t ~  IK(y, t)lP/q(t) dydt , 
al/(~+1) 

where {K(y, t), 0 _< y _< 1, 0 < t < 1 } is a Kiefer process. 

TI4EOREM 3.5. Assume the condit ions (1.66) (i)-(iii), (2.12) (i) and (2.12) (ii) or 
(iii) on F. Let  q E 2. Then,  on the probabil i ty space of  Theorem 1.A, with the 
Kiefer process {K(y,x), 0 _< y < 1, 0 < x < oo} of  (1.8), as n --+ oc, we have 

(a) sup sup IP~V, t) - n - l / 2 g ( y ,  Fl l ) l /q( t  ) ~- op(1) 
0<t<l 0<y_<l 

only if I(q, c) < oc for all c > 0, 

IP~(Y, t) - n-1/2K(y, nt)[/q(t) =- Op(1) 

if and 

(b) sup sup 
0<t<l 0_<y_<l 

if and only if I(q, 
(c) sup sup 

0<t<l 0<y<l 

c) < oo for some c > 0, 

Ipn(y,t)l/q(t) ~ sup sup Ig(y,t)l/q(t) 
0<t<l 0_<y<l 

if and only ifI(q,c) < oc for some c > 0, where {K(y,t), 0 _< y < 1, 0 < t < 1} is 
Kiefer process. 

THEOREM 3.6. Assume the condit ions (1.66) (i)-(iii), (2.12) (i) and (2.12) (ii) or 
(iii) on F. Let  0 < p < oQ, and q be a positive funct ion on (0, 1]. Then  the fol- 
lowing three statements are equivalent: 

(a) We have 

f l < o c  , tp/2 /q(t) dt 

(b) On the probabil i ty space of  Theorem 1.A, with the Kiefer process 
{K(y,x), 0 <_ y_< 1, 0 < x < oo} of  (1.8), as n -+ oc, we have 

f l  fo 1 ]Pn(Y, t) _ n-1/2K(y, nt)lP/q(t)dy at= o p ( l )  , 

(c) We have, as n + oc, 

foo I ~oo' lPn(y,t)[P/q(t)dydt~ foo I fo e IK(y,t)lP/q(t)dydt , 

where {K(y,t), 0 <_y <_ l, 0 < t < 1} is a Kiefer process. 

We conclude this section by saying that  Theorem 1.B, Proposi t ions 2.1 and 
2.2, as well as the results of  this Section 3 consti tute only the initial steps of  our  
projected study of  sequential quantile and B a h a d u ~ K i e f e r  processes in weighted 
metrics in Cs6rg6 and Szyszkowicz (1995/96), along the lines of  Szyszkowicz 
(1998) in this volume. 
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4. A summary of the classical Bahadur-Kiefer process theory 
via strong invariance principles 

The modern theory of sample quantiles was initiated by Bahadur (1966), who, in 
terms of our notations, studied the following representation of the yth sample 
quantile Q,(y) (ef (1.45)) in terms of the empirical distribution function/~,(.) (cf 
(1.38)): 

{),(y) = Q(y) + (1 -/~n(Q(y)) - (1 - y ) ) / f ( Q ( y ) )  + R , ( y )  (4.1) 

for y E (0, 1)fixed and for the whole sequence in n, i.e., for the stochastic process 
{Qn(y), n = 1,2, . . .}  in n f o r f i x e d y  E (0, 1). Using again our notations, we have 
(el (1.40), (1.47), (1.60) and (1.63)) 

R,(y) = (?,(Q(y)) - y ) / f (Q(y ) )  + Qn(Y) - Q(y) 

fln(Q(Y), 1) 7n(Y, 1) 
-- nl /2f(Q(y))  hi~2 (4.2) 

c~,(y, 1) pn(y, 1) 
- ni /Zf(Q(y))  nl /Zf(Q(y))  

Bahadur (1966) proved 

THEOREM 4.A. For any distribution function F on the real line which, for 
y E (0, 1) fixed and x such that y = F(x),  has the property that it is twice differ- 
entiable in a neighbourhood of our fixed y, and that F"(x) = f ' ( x )  =- f ' (Q(y))  is 
bounded in that neighbourhood and F'(x) = f ( x )  = f (Q(y ) )  > 0, we have, as 
H ----~ OO 

Rn(y) = (9(n-3/4(logn)I/2(loglogn) 1/4), a.s. (4.3) 

Consequently, via (4.2) and (4.3), under the conditions of Theorem 4.A, for 
y C (0, 1) f i xed  the quantile process in n 

{7,(y,t), n = 1,2, . . .}  = {p,(y, 1)/ f (Q(y)) ,  n = 1,2, . . .}  (4.4) 

behaves like the uniform empirical process 

{fl,(Q(y), 1) / f (Q(y)) ,  n = 1,2, . . .}  = {c~,(y, 1)/ f (Q(y)) ,  n = 1 ,2 , . . . , }  

(4.5) 

at least at the a.s. rate of  convergence of (4.3). This amounts to saying that 
Bahadur's result of (4.3) is a pointwise (in y E (0, I)), strong (almost sure) ap- 
proximation (invariance principle) for Pn(Y, 1) in terms of the pointwise (in 
y E (0, 1)) much better known binomial process ~,(y, 1). Indeed, Bahadur (1966) 
notes that the above representation of sample quantiles in (4.1) gives new insight 
into the well known result that, for y E (0, 1) fixed, 7n(Y, 1) of (1.62) is asymp- 
totically normally distributed with mean zero and variance y(1 - y ) / f 2 ( Q ( y ) )  (cf 
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(1.71)) and that it gives easy access, via the multivariate central limit theorem for 
zero-one variables, to the asymptotic joint distribution of several quantiles in the 
same vein. Moreover, he mentions also that his representation shows that the 
following law of the iterated logarithm (LIL) holds for f ixed sample quantiles 

lira sup 17,(Y, t)l/(21oglogn) 1/2 = (y(1 _y)) l /2 / f (Q(y))  a.s. , (4.6) 
n ~ o G  

due to the same LIL for the binomial random variables {n/~(Q(y)), n = 1,2, . . .}.  
He also raised the question of finding the exact order of R, (y), which was, in turn, 
established by Kiefer (1967) as follows. 

THEOREM 4.B. 
have 

25/4 ,,1/2 
lim sup n3/41f(Q(y ))R. (y)I/(log log n) 3/4 a.s. 33/4 ~Y 

n ~ o o  

where O-y = (y(1 -y))I /2 .  

Under the conditions of Theorem 4.A on F for y c (0, 1) fixed, we 

, (4.7) 

Kiefer's proof of this particularly difficult result of (4.7) is based on showing 
that, under the conditions of Theorem 4.A on F for fixed y E (0, 1), we have (cf 
(1.9) of Kiefer (1967)) 

IR.(y, 1) - R*(y, 1)1 a~. o@/1/4 ) , (4.8) 

where R*~(y, 1) is as defined in (1.29), and 

{R~(y, 1), 0 _< y_< 1, n = 1,2, . . .  } (4.9) 
:= {nf(Q(y))R,(y), 0 _<y< 1, n = 1,2, . . .} . 

We note that in the case of the uniform-(0,1) distribution, i.e., F(y) = y, we have 
(cf (4.2)) 

R,(y, 1) ----- R*~(y, 1) = nl/2(c~,(y, 1) - u,(y, 1)) . (4.10) 

In this case the conditions of Theorem 4.A on F for fixed y E (0, 1) are, of course, 
satisfied and (4.7) then reads as follows 

limn~o~sup [R~(y,* l)l/(nl/4(loglogn)3/4) as~" 3 ~  o'y 25/4 1/2 (4.11) 

Consequently, (4.8) is a strong invariance principle (an almost sure approximation) 
for the now exact order Bahadur result of (4.7), i.e., (4.11) implies (4.7) by (4.8), 
provided of  course that one can establish (4.11). Indeed, Kiefer (1967, Lemma 1) 
observed the same and proved the exact a.s. rate of (4.7) via finding it first for 
R~*(y, 1), as it is stated in (4.11). Kiefer's direct proof of the latter result is an 
example of true virtuosity. 
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Using the approach of  Cs6rg6 and R6v~sz (1975, 1978, 1981, Section 4.5)), and 
Cs6rg6 (1983, Chapter 6) to studying quantile processes, a further insight can be 
obtained into these theorems. By (4.2) and (4.9) we have 

R.Cv, 1) = nf(Q(y))Rn(y) 

= nI/20~n(y, 1) -- n l / 2 p n ( y  , 1) (4 .12)  

= nl/2(c~.(y, 1) - u.(y, 1)) - nl/2(p.(y, 1) - u.(y, 1)) , 

where u. (y, 1) is as defined in (1.61). Hence, using the notations of (1.29) and (4.9) 
respectively, we can write 

R,(y, 1) -R*,(y, 1) = -nl /2(p,(y,  1) - u,(y, 1)) (4.13) 

and, consequently, the Bahadur-Kiefer deviations can be studied via those of  the 
general quantile process and its corresponding uniform version. Indeed, on as- 
suming the conditions of Theorem 4.A on F for fixed y E (0, 1), and expanding as 
in (2.5), from (4.13) we obtain 

1 2 1 ~ ft(Q(~)) . . . . . .  k,~(y, 1) - R;(y, l) = ~u,,(y, ) ~ J i U ( Y ) )  , (4.14) 

where ~ = ~(y,n) and ] y -  ~] _< n-l/2Ju,(y, 1)]. Thus, 
Theorem 4.A on F f o r f i x e d y  c (0, 1), we obtain 

IR, (y, 1) -R,*(y, 1)] (4.15) 
as. C(loglogn) , 

where the latter a.s. (9(log log n) rate is due to applying a pointwise version of  the 
law of the iterated logarithm for u,(y, 1) (cf (1.17)). Thus (4.15) is a stronger 
version of  (4.8) and, indeed, essentially this is also the very way Kiefer (1967) 
obtained the latter result. 

The proof  o f  (4.11) is more difficult. Kiefer (1967) obtained it by establishing 
direct upper and lower class estimates for R*,(y, 1). A bit of  insight into what is 
going on can be gained by looking at (1.30) again. Naturally the latter obtains for 
each f ixed y E (0, 1), namely, as n ~ oc, we have 

n 1/21R~(y , 1) - (K(y,n) -K(U, (y ) ,n ) ) [~ (9 ( ( logn)2 /n  '/2) . (4.16) 

Hence, on account of (4.11), we have also 

as 25/4 1/2 (4.17)  linmsu p IK((), (y), n) - K(y, n)l / (n 1/4 (log log n)3/4) "'~" 3 ~  O'y . 

This, of course, invites the question of  proving (4.17) directly, and then deducing 
Kiefel:'s result o f  (4.11) via the strong invariance principle of  (4.16). 

In order to establish (4.17), we study now the stochastic process 

under the conditions o f  
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{K((Jn(y),n) - K(y,n),  n >_ 1} 

= { K ( y -  u,(y, 1)In 1/2, n) - K(y,n) ,n  > 1} 
(4.18) 

for y c (0, 1)fixed, via first proving a strong invariance principle for the randomly 
perturbed Kiefer process {K(On(y),n), n > 1}. 

PROPOSITION 4.1. The probabil i ty space of  Theorem 1.A can be extended in such 
a way that, in addit ion to the original sequence of  independent  un i fo rm@,  1] 
r andom variables and the Kiefer process {K(y,x), 0 _< y < 1, 0 < x < ec} as in 
(1.8), for any given y E (0, 1) there lives also a Wiener process {W(x), 0 < x < ec} 
on it which is independent  of  {K(y,x), 0 < y _< 1, 0 _< x < oc} and, as n --+ oc, 
we have 

IX(0n(y) ,  n) - KCu - (7(1 - , ) ) ~ / 2 n - '  W(n) ,  n)l 

as. (9(nl/S(log n)3/4(log log n) '/8) . 
(4.19) 

PROOV. With any fixed value of  7 E (0, 1) we have (cf (1.3)) 

n 

n-~/20~n(y, 1) = (y(1 - Y))t/2n-I Z ( I { U i  _< y} - y) / (y( t  - y))1/2 
i=1 

:= (y(1 - y))' /2n-'S(n) , (4.20) 

where, by definition now, {S(n), n > 1 } is the partial  sum process of  independent  
standardized, i.e., mean  0 and variance 1 binomial r andom variables. Hence,  by 
Komlds ,  Major  and Tusnfidy (1975, 1976) (cf Theorems 2.6.1 and 2.6.2 in Cs6rg6 
and R6v6sz (1981)), we can define the original sequence {Un, n > 1} of  i.i.d. 
uniform-(0,1) r.v.'s on a probabil i ty space together  with a Wiener  process 
{W(x), x > 0} such that, almost surely, as n + 

IS(n) - W(n)l = (9(logn) . (4.21) 

Consequently,  on extending the probabil i ty space of  Theorem 1.A accordingly, 
we can define the original sequence {(7,, n _> 1}, the Kiefer process of  (1.8) and 
the Wiener process of  (4.21) such that  (1.8) and (4.21) hold true simultaneously, 
while the two approximat ing Gaussian processes are constructed independently 
f rom each other. On this probabil i ty space for y ¢ (0, 1) f ixed we have 

K(~n(7) ,  n) = K( 7  - n-1/2u,,(7, 1), n) 

= K(y + n-X/2(~n(y, 1) - un(7, 1)) - n-'/zc~n(y, 1), n) 

= K ( y  Jr- n l/2(0~n(y , 1) - Un(y , 1)) q- (y(1 - - y ) )  1/2 

x - - - (y(1 __7))1/2 , n  (4.22) 
n n n 
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where S(.) is defined in (4.20) and W(.) is as in (4.21). 
Hence 

where 

K( (J,(y), n) - K ( y  - (y(1 - y))l/ :  W(n) , n) 
gl 

= K ( y -  (y(1 _y))1/:  W(n)+  A,(y),n) 
n 

- K ( y -  (y(1 -y))1/2 W(n),n) , 
n 

(4.23) 

(4.24) 

By (1.27) and (4.21) combined, for y ¢ (0, 1) fixed and with some positive con- 
stant C, we have 

JAn(y)J _< (2 -1/4 + o(1))n-3/4(logn)l/2(loglogn) 1/4 + (C+ o(1))n -1 logn 

< (2 -1 /4+O(1) )n -3 /4 ( lOgn) l /2 ( lOglOgn)  1/4 a.s. (4.25) 

if n is large. Consequently, if n is large and y ~ (0, 1) is fixed, by (1.16) and (4.25) 
combined via (4.23), we obtain 

]K(O n(y), f/) -- KCy - ~ ( l  - y))l/2p/-i  m(/'/), n)] 

< (1 + o(l))(2n(2 -'/4 + o(1))n-3/4(logn)l/2(loglogn)'/4 

x (logn)(3/4 + o(1))) 1/2 

_< (1 + o(1))(2-5/43 + o(1))l/2nl/S(logn)3/4(loglogn) 1/8 a . s .  

(4.26) 

[] This also concludes the proof of Proposition 4.1. 

Since we study the stochastic process of (4.18) for the sake of proving (4.17), 
we now restate (4.19) accordingly. 

COROLLARY 4.1. In the context of Proposition 4. l we have, as n ---+ oc, 

[ (K(  OnQy), n) - K(y ,  n) ) - (K(y  - (y(1 - y))1/2F/-1 m(Tg), n) - K(~, n))[ 

= ](K(y - un(y, 1)/nl/2,n) - K(y,n))  

- (K(y - (y(1 - y))1/2n-1W(n), n) - K(y, n)) I (4.27) 

~" (9(nl/S(logn)3/4(loglogn) 1/s) . 
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By definition o f a  Kiefer process {K(y,x), 0 <_y <_ 1, 0 _<x < oc} we have 

K(y, n) = w(y ,  - y W ( l ,  
n n 

= ~(W(y , i )  - W(y , i -  1)) - y ~ ( W ( 1 , i )  - W(1, i -  1)) 
i=1 i=1 

B n 

:= ~ W / ( y )  - y ~ W / ( 1 )  , (4.28) 
i=1 i=1 

where {W(y,x), 0 < y < oc, 0 _< x < ec} is a two-parameter Wiener process, i.e., 
W(y,x) is a Gaussian process with EW(y,x)= 0 and EW(yl,xl)W(y2,x2)= 
(Yl/~ Y2)(Xl A x2), and, consequently, the stochastic processes { W~(y), 0 _< y _< 1 }, 
i = 1 ,2 , . . . ,  form a sequence of independent standard Wiener processes. 

Conversely, let {r,} be the sequence of positive dyadic rational numbers and let 
{W~.(y), 0 _<y < oc} be independent standard Wiener processes. Then, using 
these standard Wiener processes, we can construct a two-parameter Wiener 
process {W(y,x), 0 < y  < ec, 0 <_x < oo} as in Section 1.11 of Cs6rg6 and 
R6v6sz (1981). Let {~o(u),  0 _< u < oc} be another sequence of independent 
standard Wiener processes indexed by the sequence of positive dyadic rational 
numbers {r,} that is also independent of {W~. (y), 0 < y < oc}. Then, in the above 
construction of W(., .), each of the Wiener processes {W,. (y ) ,  0 _< y < oc} can be 
extended to the real line IR = ( - e c ,  oc) by letting W~. (y) = W~. ( -y )  for y < 0 for 
each r, of the sequence {r,}. Doing this yields a construction of a two-parameter 
Wiener process {W(y,x), - e c  < y < oc, 0 _< x < eo} on IR x IR+ Conse- 
quently, given any Kiefer process {K(y,x), 0 _< y _< 1, 0 _< x < oc}, we can ex- 
tend its definition and write (cf (4.28)), without loss of generality, 

X ( y , n )  = 

= W~(y) - y Z ~ ( 1 )  , (4.29) 
i=1 i=1 

where {W(y,x), - o c  < y < oc, 0 _< x < ec} is an extended two-parameter Wie- 
ner process (Wiener sheet extended to IR x IR+), and the thus resulting 
{W/(y), - e o  < y  < oc} = {W(y,i) - W(y , i -  1), - o c  < y  < ec}, i =  1 ,2 , . . . ,  are 
independent Wiener processes that are now extended to the real line 
lp. = ( - o c ,  

PROPOSITION 4.2. Let {W(y,x), - e c  < y  < ec,0 < x  < oc} be an extended two 
parameter Wiener process and let {W(x), 0 <_ x < ec} be a standard Wiener 
process that is independent of the given extended Wiener sheet. Then, almost 
surely as x --~ ec, the limit set of 

VI(x),V2(x)) =~- (- m(x llm(x)l,x ) Jm(x)I ~ (4.30) 
\(21W(x)l log logx)1/2' (2x log logx)1/2] 

is the semicircle 
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D(u, v) = { (u ,  v ) :  //2 _L /22 ~ 1, /) ~" 0}  . 

Here and throughout, we will use the convention 0/0 = 1. 

(4.31) 

AN OUTLINE OF THE PROOF OF PROPOSITION 3.2. The set of limit points of V~ (x) is 
the interval [-1, 1J a.s. The set of limit points of  V2(x) is the interval [0, 1J a.s. The 
set of the limit points of (V1 (x), V2(x)) is the semicircle D(u, v). 

REMARK 4.1. The details of the proof  of Proposition 4.2 are somewhat lengthy. 
They can be constructed along the lines of Csfiki, Cs6rg6, F61des and R6v6sz 
(1989, 1994), and/or those of Deheuvels and Mason (1992). 

PROPOSITION 4.3. Let Vl(x) and V2(x) be as in Proposition 4.2. Then, almost 
surely as x --+ oo, the set of limit points of 

VI(x)(V2(x))I/2 = W(x-I]W(x)I 'x) (4.32) 
23/4xl/4(log logx)3/4 

is the interval [0, 21/23-3/41 and, consequently, we have 

limsup W(x ~[W(x)l,x)a~.25/43 3/4 
x--*oo xl/4(loglogx) 3/4 

as well as 

W(x -1 W (x),x) a~. 25/43_ 3/4 . 
limx_~o~sup xI/4 (log logx)3/4 

(4.33) 

(4.34) 

PROOF. In the light of Proposition 4.2 we are to maximize the function: 
(u, v) --+ uv 1/2, subject to the constraint u 2 + v 2 - 1 = 0, v > 0. Using, for exam- 
ple, the method of Lagrange multipliers, we obtain 

sup tA/) 1 /2  = 21/23 -3/4 , (4.35) 
(u:)~D(,,~) 

and hence also (4.33). 
For  the sake of proving now (4.34), let 

W(y,x) if y_>0,  
W +(y,x)= 0 if y < 0 . ,  (4.36) 

{w0v, x) if y < 0, 
W - ( y , x ) =  0 if y > 0  , 

on recalling that W(.,-) is a Wiener sheet on IR x IR+. Then, clearly, 

(4.37) 
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w(w(x),x) = w+(w(x),x) + w-(w(x),x) 
S W+(W(x)'x) if W(x) > O, 
I W-(W(x),x) if W(x) <_ 0 , 

(4.38) 

~v(Iw(x)l,x) = w+(W(x),x) + w+(-W(x),x) 
f W+(W(x),x) if W(x) >_ O, 
I W+(-W(x),x) if W(x) <_ 0 , 

where 0 _< x < oc. By (4.33) and (4.39) we have 

W(x llw(x)l,x ) 
25/43_3/4 a.s. limx~oosup xl/4 (log 1ogx)3/4 

a.S.  max 
1 W+(x-IW(x)'x) W+(-x-lW(x)~x)-'~ 
im sup - - - - ,  lim sup 

~ Xx~ xl/4(loglogx) 3/4 x~<~ xl/4(loglogx) 3/4j 

(4.39) 

where 

A := {x:x > O, W(x) > 0}, 

Since, due to symmetry ,  we have 

W+(x 1W(x),x) 
lim sup 

x ~  xl/4(1og 1ogx) 3/4 

(4.40) 

B:= {x:x >_ 0, W(x) < 0 } .  

= lim sup W+(-x-1 W(X),X) 
x ~  Xl/4(loglogx) 3/4 

w (x-IW(x),x) 
= lim sup 

x ~  xl/4(loglogx) 3/4 ' 

(4.41) 

on combin ing  (4.38)-(4.41), we obtain  (4.34) as well. [ ]  

PROPOSITION 4.4. Let  {K(y,x), 0 < y _< 1, 0 _< x < co} be a Kiefer  process de- 
fined in terms of  an extended two-pa rame te r  Wiener  process {W(y,x), 
- o o  < y < oo, 0 < x < oo}. Let  {W(x), 0 < x < oc} be a s tandard  Wiener  pro-  
cess tha t  is independent  o f  the given Kiefer  process K(,,  .). Then,  for each fixed 
0 _< y _< 1, a lmost  surely as x -+ oc, the limit set of  

(Ky(x), V2(x)) := (K(y + x-~lw(x)l,x) - X(y,x) Iv/(x)l 
-~-(x)-~g~ogx) T~/2 ' (2xloglogx) 1/2) 

(4.42) 

is the semicircle D(u, v) of  (4.31). 

PROOF. By definition of  a Kiefer  process K( . , . ) ,  now in terms of  an extended 
Wiener  sheet W(., .) on IR x IR+, we have 
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K(y ,x )  = W(y,x)  - yW(1 ,n )  . (4.43) 

Hence, and because of the independence of W(.) and W(., .), we obtain 

X ( y  + x -I  W(x ) , x )  - X ( y , x )  

= W(y + x -1W(x) ,x )  - (y + x - '  W(x ) )W(1 ,x )  - (W(y ,x )  - yW(1 ,x ) )  

= W(x-1 W(x), x) - x -1W(x)  W(1, x) . (4.44) 

Consequently, for each f i xed  0 < y < 1, 

] g ( y + x - l l W ( x ) l , x ) -  W(x-~lW(x)l,x)l < Iv/(1,x)l 

(21W(x)l log log x)l/2 - xa/2 (2x log log x) j/z 

(~(1/X 1/2) = a.s. , (4.45) 

by the law of the iterated logarithm, as x ~ ec. Hence, by Proposition 4.2 and 
(4.45) we conclude Proposition 4.4. [] 

As a consequence of Proposition 4.4, along the lines of Proposition 4.3, the 
next corollary is immediate. 

COROLLARY 4.2. Let Ky(x) and V2(x) be as in Proposition 4.4. Then, for each fixed 
0 _< y _< 1, almost surely as x ---+ o% the set of limit points of 

Ky(x)( V2(x) ) l/2 = K(y  + x - l  l W(x)l ,x)  - K(y ,x )  (4.46) 
23/4xl/4 (log log x) 3/4 

is the interval [0, 21/23 -3/4] and, consequently, we have also 

lim sup K(y  + x 11W(x)l, x) - K(y,  x) ,.=s. 25/43_3/4 , (4.47) 
x--+oo X 1/4 (log logx) 3/4 

as well as 

lim sup 
X----~ OO 

K(y  + x -1W(x) ,x )  - K(y ,x )  ~.  25/43_3/4 
x 1/4 (log log x) 3/4 

(4.48) 

REMARK 4.2. Let {K(y,x) ,  0 _<y _< 1, 0 _<x < oo} be the Kiefer process of 
Theorem 1.A. We write, without loss of generality, 

K(y,x)  = W(y ,x)  - yW(1 ,x )  , (4.49) 

where {W(y ,x ) ,  0 _< y < oc, 0 _< x < oo} is a Wiener sheet. Let 
{ffZ(u,x), 0 _< u < ~ ,  0 _< x < oc} be another Wiener sheet that is independent 
of W(-, .), and extend the latter to IR × IR+ by letting W(y,x)  = ~g( -y ,x )  for 
y < 0. Thus, the probability space of Theorem 1.A is also extended accordingly, 
and (1.8) remains true, of course. Also, given the latter Kiefer process 
{K(y, lv), 0 < y < 1, 0 _< x < co}, we can and, indeed, do write whenever needed 
from now on, without loss of generality, 
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X ( y , x )  = w ( y , x )  - y W ( 1 , x )  (4.50) 

where {W(y,x), - c o  < y < co, 0 < x < oc} is the Wiener sheet of (4.49) extended 
to IR x IR+. 

We are now ready to establish (4.17) that will now be concluded in Corol- 
lary 4.4 below. First we are to revisit Corollary 4.1 in the context of Remark 4.2 
(cf Proposition 4.6 below) via Proposition 4.5 as follows. 

PROPOSITION 4.5. Let {K(y,x), 0 <_y <_ 1,0 < x  < co} be the Kiefer process of 
Theorem 1.A, and Net {W(x), 0 _<x < co} be the Wiener process defined in 
Proposition 4.1 that is independent of K(., .). Then, for each fixed 0 < y < 1, as 
n --+ oc we have 

where 
(4.50). 

I (K(y  - ( y ( t  - y))~/Zn ~W(n),  n) - K fy ,  n)) 

- -  ( y ( 1  - -  y)) l /4W(-n-1W(n) ,  I"l)1 

_< 0'(1 - Y))l/a(n-llW(n)l)l W(1, n)l 

_< (y(1 - y))1/2(2 + o(1))(loglogn) 

~ C(log log n) , 

a . s ,  

(4.51) 

{W(y,x), - o o  < y  < 0%0 _<x < co} is the extended Wiener sheet of 

PROOF. Via (4.50), and because of the independence of W(-) and W(., .), we have 
for each fixed 0 < y < 1 

g ( y  - ( y ( 1  - y) ) l/2n-l W(n), n) - g (y ,n)  

= w ( - ( y ( 1  - y ) ) l / 2 _ l  w ( . ) , . )  + 0,(1 - y))I/2.-~ w ( . ) w ( 1 , . )  

= (y(1 - y ) ) ' / 4 w ( - . - I  w ( . ) ,  ,,) + (y(1 - y))~/~.  ~ w ( . )  w ( 1 ,  . )  , 

(4.52) 

which, in turn, implies (4.51). [] 

COROLLARY 4.3. Let {K(y,x), 0 <_ y < 1, 0 _< x < ec} be the Kiefer process of 
Theorem 1.A, and let {W(x), 0 _<x < co} be the Wiener process defined in 
Proposition 4.1 that is independent of K(., .). Then, for each fixed 0 < y < 1, we 
have 

lim sup K(y - (y(1 - y))1/2 n_ 1 W(n), n) - K(y, n) 
n ~  ( y ( 1  --y))l/4nl/4(loglogn)3/4 

(4.53) 
~ limsup W(-n-1 W(n), n) a.~. 25/43_3/4 

nl/4(loglogn) 3/4 
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PROOF. The first almost sure equality follows by (4.51), while the second one is 
implied by (4.34), due to symmetry of W(.). [] 

In the light of Proposition 4.5, Proposition 4.1 d la Corollary 4.1 can be 
rewritten as follows. 

PROPOSITION 4.6. The probability space of Theorem 1.A can be extended in such 
a way that, in addition to the original sequence of independent uniform@, 1] 
random variables and the Kiefer process {KCv, x),0 _<y _< 1,0 _< x < oc} as in 
(1.8) and written as in (4.50) in terms of a Wiener sheet extended to IR × IR+, for 
each fixed 0 < y < 1 there lives also a Wiener process {W(x), 0 < x < ec} on it 
which is independent of {K(y , x ) ,  0 < y  _< 1, 0 _<x < oc}, and hence also from 
the extended Wiener sheet { W ( y , x ) ,  - o c  < y  < 0% 0 _<x < oc} of (4.50), and, 
as n --+ ec, we have 

I (K(0 . (y) ,  n) - xCv, n)) - Cv(1 - y))1/4 W(_n_ l  w(~),  ")l 

~ I ( X ( y -  u.(y, 1)/,,~/2,~) - I':O,,n)) 

- (K(y - (y(1 - y))i/2n-1W(n), n) - K(y, n))] + O(loglog n) 

a~. (9 (n 1/8 (log n ) 3 / 4  (log log n) 1/8) . (4.54) 

PROOF. A combination of (4.51) with (4.57) yields (4.54). [] 

COROLLARY 4.4. On the probability space of Theorem 1.A extended as in 
Proposition 4.6, we have for each fixed 0 < y < 1 

^ 

lim sup K(Un (y)' n) - K(y ,  n) a.s. 25/43_3/4@( 1 _ y))1/4 (4.55) 
n~vo n l / 4 ( l og logn )  3/4 

PROOF. A combination of (4.53) with (4.54) gives (4.55). [] 

REMARK 4.3. Corollary 4.4 amounts to saying that (4.17) is now proven directly. 
Hence Kiefer's original result of (4.11) now follows also from (4.16), which, in 
turn, via (4.15) and (4.9), implies Theorem 4.B as well. For related details on, and 
the first explanation of, (4.11) along somewhat similar lines, we refer to Deheuvels 
and Mason (1992) and their references. The aim and essence of our approach here 
to proving (1.27) and (4.11) in a unified way amount to saying that we have 
demonstrated that both these results follow from the same invariance principle (cf 
(1.30) and (4.16)) for the uniform Bahadur-Kiefer process (cf (1.29)) in terms of 
the randomly perturbed increments { K ( ( Y , ( y ) , n ) - K ( y , n ) ,  n > 1}, of a Kiefer 
process, via establishing (1.26) and (4.55), respectively, for the latter randomly 
stopped approximating Gaussian process. 
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Kiefer also studied the asymptotic distribution of R~ (y, 1) for y ¢ (0, 1) fixed (cf 
Kiefer (1967)), as well as that of sup0<y< 1 [R;(y, 1)[ (cf Kiefer (1970)). We sum- 
marize these results of Kiefer in the following theorem (cf Kiefer (1967, 1970)). 

THEOREM 3.C. For every fixed 0 < y < 1 we have 

lirn P{R*~(y, 1)/n 1/4 <_ x} = 2 ~b(x/v 1/2) d~,q~(v/Cry) , (4.56) 

Jim P{IR;,(y, 1)l/n 1/~ _< ~} = 2 (2e(~/~ 1/2) - 1) dv~(~/o,) , (4.57) 

where qb is the standard normal distribution function, ay = (y(1 -y))1/2, and, as 
n --~ OO, 

r/-1/4(1ogn) -1/2 sup IR*,(y,I)I~ snp I~(Y)I , (4.58) 
0~y_<l \ 0~y<l 

where {B(y), 0 <_ y _< 1} is a Brownian bridge. 

We are to show now that (4.56) and (4.57) follow via (4.16), while (4.58) can be 
established via (1.30), that is to say we show that, just like (1.27) and (4.11), these 
results also follow from the same invariance principle. 

OBSERVATION 4.1. Let {W(y,x), - o c  < y < 0% 0 _< x < oc} be an extended 
Wiener sheet, and let {W(x), 0 _< x < ec} be a standard Wiener process that is 
independent of the given Wiener sheet. Then, for each x E (0, ~ ) ,  we have 

m ( - x  1W(x) ,x) /x  1/4 @NI(IN21)l/2 , (4.59) 

where N1 and N2 are independent standard normal random variables. 

PROOF. We have (cf (4.36)-(4.38)) 

w(-x - lw(x ) , x )  = w + ( - x  lw(x ) ,x )+  w ( -x  lw(~),x) 

w +( -~  ~ ~v(~),~) 
= (x(_m(x) ) /x ) l /2  ( - m ( x ) ) l / 2 l ( m ( x )  ~ 0} 

w- (-x -~ W(x), ~) 
+ (xW(x)/x)l/2 (W(x))l/21{W(x) >_ 0} (4.60) 

£ W+(1, 1)(-W(x))Vzl{w(x)  < 0} 

+ W (-1 ,  1)(W(x))l/zl{W(x) > 0} 

~N~ (tW(~)l) ~/2 , 

where N1 is a standard normal random variable that is independent of W(.). 
Hence we have also (4.59). [] 
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As a consequence of  this observat ion,  we have 

PROPOSmON 4.7. Let  {K(y,x), 0 _<y _< 1, 0 < x  < oc} be the Kiefer  process of  
Theo rem 1.A, {W(y,x), - o c  < y < ec, 0 < x < ec} be the extended Wiener sheet 
o f  (4.50) and let {W(x), 0 _< x < oo} be the Wiener  process defined in Propos i t ion  
4.1 that  is independent  o f  K(.,  .). Then, for  each fixed 0 < y  < 1 and n _> 1, we 
have 

(K(y -- (y(1 -- y) ) l/2n-I W(n) ,  n) - K(y, n) ) /n 1/4 
(4.6l) 

~ ( y ( 1  -- y))l/4N 1 (IN21) 1/2 + (y(1 - y))l/2N1N2/nl/4 , 

where N1 and N2 are independent  s tandard  normal  r a n d o m  variables.  

PROOF. A combina t ion  of  (4.52) with (4.59) yields (4.61). [] 

PROOF OF (4.56) AND (4.57). Due  to (4.61), as n ~ oo, we have for  each fixed 
0 < y < l  

(g(y - (y(1 - y))1/2/7 1W(/7), F/) - g(y~/,/))//71/4 
(4.62) 

--+ (y(1 - y))l/4Nl (INzl)l/2 

Consequent ly,  by (4.27), as n ~ ~ we have also 

(K(Un(y), n) - g(y,/7))/n I/4 & @(1 - y))I/4N1 (IN21) 1/2 (4.63) 

for  every fixed 0 < y < 1. Now,  as/7 ---, oc, (4.16) yields 

R;(y, l)/n 1/4 ~ (y(1 -- y))1/4N 1 (IN2I) 1/2 (4.64) 

for  each fixed 0 < y < 1, which coincides with (4.56). On repeat ing the same p r o o f  
for  absolute values, we arrive at 

IR;(y, 1)]/n 1/4 ~ (y(1 - y))l/41N11(]N2I) 1/2 

i.e., (4.57) is p roved  as well. 

(4.65) 

[ ]  

COROLLARY 4.5. Under  the condit ions of  Theo rem 4.A on F for  y C (0, 1) fixed, 
as n ---, oo we have 

and 

~'n (y, 1)In 1/4 Z ( y ( 1  - y))l/4N, (IN21) 1/2 

IRn(y, 1)[//'/1/4 ~ ( y ( 1  - y))l/a[Nl [(IN2[) 1/2 , 

where N1 and N2 are independent  s tandard  normal  r a n d o m  variables.  

(4.66) 

(4.67) 
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PROOF. On account of (4.15), we have (4.66) and (4.67) via (4.64) and (4.65) 
respectively. [] 

We note in passing that Kiefer (1967) proved (4.66) and (4.67) via (4.8), by 
establishing (4.56) and (4.57) directly. 

REMARK 4.4. The distribution function appearing in (4.56) is the same as that in 
Dobrushin's theorem (1955). In Csfiki, Cs6rg6, F61des and R4v6sz (1992, p. 681) 
it appears as the asymptotic distribution of certain additive functionals. The 
connection of these additive functionals and the distribution of the random 
variable N1 (IN21) 1/2 is explained in the same paper. For further connections along 
these lines we refer to Csfiki, Cs6rg6, F61des and R6v6sz (1989), where Brownian 
local time is studied as a two-time parameter stochastic process via approximating 
it almost surely by a randomly perturbed Wiener sheet. When viewed via strong 
invariance principles, the very nature of the Kiefer theorems we have studied so 
far in this section, as well as that o f  the ones coming up, is very much like that of 
the results concluded in 4. Applications of the latter paper. 

Kiefer (1970) deduces the uniform version (4.58) of (4.57) from proving di- 
rectly the following convergence in probability, as n ~ oc: 

) 1/2 
n-1/4(logn) -1/2 sup [R*n(y , 1)l / sup [O~n(y, 1)1 L 1 . 

O<y<l \ O<y<l 
(4.68) 

Kiefer (1970) noted also that (4.68) was actually true with probability one, and 
hence also that not only (4.58), but (1.27) as well followed at once from it and the 
law of the iterated logarithm for sup0<~_< 1 ]e,(y, 1)]. Namely, Kiefer (1970) an- 
nounced 

THEOREM 4.D. We have 

( )[) 1/2 
lim n-1/4(logn) -1/2 sup IR*,(y, 1)1/ sup I~n(Y, 1 a's'l . (4.69) 
n-~oc 0_<y_< 1 k, 0<y< 1 

He, however, proved (4.68) and (1.27) directly and did not publish his proof of 
(4.69) due to its length and tediousness at that time. Deheuvels and Mason (1990) 
gave the first published proof of (4.69). Here we prove Theorem 4.D via 
streamlining the proof of Theorem 3.3.3 for (4.69) in Cs6rg6 and Horvfith (1993), 
The proof is based on the strong invariance principle of (1.30) and on the fol- 
lowing randomized version of (1.16) (cf (A. 1.11) of Cs6rg6 and Horvfith (1993)). 

THEOREM 4.E. Let {K(y ,x) ,  0 _< y _< 1, 0 < x < oc} be a Kiefer process written 
as in (4.50) in terms of a Wiener sheet extended to IR x IR+. Then 
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lim (logn) - ' /2 sup [K(y - n 1K(y,n),n) 
n-+oo 0<y< 1 

- g ( y , n ) l  sup IK(y,n)l a'~'l . 
0 _<y< 1 

(4.70) 

Thinking via Theorem 4.E instead of (1.16), the original approach of Cs6rg6 
and R6v~sz (1975, 1978, 1981) to quantile and Bahadur-Kiefer processes as for- 
mulated in Proposition 1.1 can now be reformulated as follows. 

THEOREM 4.1. Let {K(y,x), 0 _ < y <  1, 0 _ < x < o o }  be the Kiefer process of 
Theorem I.A as in (1.8), written as in (4.50) in terms of a Wiener sheet extended 
to IR x IR+, and let {R*~(y, l), 0 _< y _< 1, n = l, 2 , . . .}  be the uniform Bahadur-  
Kiefer process as in (1.29). Then, as n --+ oc, we have 

sup I R ~ ( y ,  1) - (K(y,n) - K ( y - n  1K(y,n),n))] 
o<.y< 1 

a.s. 0 (n 1/8 ( log  n) 3/4 ( log  l o g  n) 1/8) . 
(4.71) 

PROOF. On the probability space of Theorem 1.A, we have (1.10) of Theorem 1.B 
as well. Hence, along the lines of the proof  of Proposition 4.1, by (1.10) and (l. 16) 
combined, as n --+ oc, we obtain 

sup  [(K((-fn(y), n) - K(y ,  n)) - (K(y  - n - l K ( y ,  n), n) - K@,  n)) I 
0<y<l 

= sup I(K(y - n-l(n'/2u~(y, 1)),n) - K ( y , n ) )  
0<v<l 

- ( K ( y  - n - ' I e ( y ,  n ) ,  n)  - XCu,  n))r  

a.s. (9(ni/S(log)3/4(loglogn)i/8 n . 

(4.72) 

As a consequence of (1.30) and (4.72), we conclude (4.71). [] 

PROOF OF THEOREM 4.D. We assume, without loss of generality, that we are on 
the probability space of Theorem 1.A, as described in Theorem 4.1. Mogul'skil 
(1980) (cf Theorem 5.1.7 in Cs6rg6 and R~v6sz (1981)) proved 

l iminf (loglogn) 1/2 sup Ic~nCv, 1)l as. 7~/81/2 , (4.73) 
n~oo 0_<y< 1 

the so-called other law of the iterated logarithm for the uniform empirical process 
{e, Cv, 1), 0 _<y < 1, n = 1 ,2 , . . .}  (cf Chung (1948) for the first such law, and 
Chapter 3 of Cs6rg6 and R6v&z (1981) for some further related material). 
Naturally, via (1.12), the scaled Kiefer process {n-1/2K(y,n), 0 < y <  1, n = 
1,2, . . .}  inherits the same law. Namely we have 
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lira inf (log log n)1/2 sup IK(y, n)l/n 1/2 a~. g /81/2  , (4.74) 
n-+oo O<y<l 

on account  of  

# ( l i r n ~ f  ( loglogn)  ~/2 sup I~n(y, 1)[ 
O<_y< 1 

- l i m i n f  ( loglogn) 1/2 sup ]K(y,n)l/n 1/2) 
n--+oo O<_y<l 

_< l imsup ( loglogn)l /2~( sup [c~n(y, 1 ) ] -  sup tK(y,n)]/n 1/2) 
n -~ vo \ O<y< 1 O<_y<_ 1 

_< lim sup sup ltd.(y, 1) - K(y, n)/nl/2l(loglogn) 1/2 
n--+oo O<y 51  

a2" lim sup (9(n -1/2 (log n) 2) (log log n)1/2 = 0 , (4.75) 
n-+oo 

where 4/: = + or - ,  and in the last line we utilized (1.12). 
Combining now (4.73) with (4.71), we obtain 

lira n-1/4(log/./)-1/2 sup0<_.v_<I IN; (y, 1) -(KQF, r t ) -  K(y  - rt-l K(y, n), ?t) ) I 
~o~ (suP0~_< 1 [O~n(y, 1)1) 1/2 

lira supn+o o suP0_<y<_l IR*n(y, 1) - (K(y, n) - K(y - n-lK(y, n), n))] < ( )1j2 
liminfn+o~ ( loglogn)  '/2 sup I~.(Y; 1)1 

0_<y<_ 1 

(log log n)1/4 
-- 0 a.s. (4.76) 

× n l /4 ( log  n) 1/2 

and, note in passing that, using (4.74) instead of  (4.73), we obtain similarly that 
we have 

sup 
limoon 1/4(logn)1/20<y_<l 

[R~(y, 1) - (K(y, n) - K(y - n-lK(y, n), n)[ 

) 1/2 

n-' /2 sup IK(y,n)l 
0~y_<l 

a.s.=0 (4 .77) 

as well. On account  of  (1.26) combined with (4.72), we have also 

lim sup n 1/4(log n)-l /2(log log/,/)-1/4 
n--~oo 

x sup ]K(y,n) - f ( y  - n 1K(y,n),n)l  a2~'2-1/4 , (4.78) 
0_<y<l 

yet another  manifestat ion of  Kiefer's result in (1.27). Hence 
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lim n-l/4(logn) 1/2 sup IK(y,n) - K ( y -  n-iK(y,n),n)l 
n~oo 0_<y-<l 

1 1 

n-l~ 2 sup IK(y,n) sup Ic~(y,l)ll 
0_<251 \O<v_< 1 

\O<y_<,(sup'K(y'n)-K(y-n-~K(y'n)'n)')kO<_y_<, ( ) - sup Icon(y, 1) - n  l/2K(y,n)l 
< lim -- n+~ (an)I/2(bn)l/2 ((an)i~ 2 + (bn)l/2) 

1 
X 

r/I/4 (log n) ~/2 

limsup(sup ,K(y ,n) -K(y-n- 'K(y ,n) ,n) l ) (sup  ]c~,(y, 1)-nq/2K(y,n)[) 
\O<_y-< 1 . ~  \osy_<l < 

- lim inf ((log log n)1/2a,)1/2 ( ( l o g  log n)'/Zb,)l/2 (((log log n)1/2a,~)1/2 _}_ ((log log n)I/2bn)1/2) 
n+oo 

(log log n) 3/4 
X 

nl/4(logn) 1/2 

= 0 a.s. , (4.79) 

where a, := n -1/2 sup0<y<l ]K(y, n)], b, := sup0<y_q le,(y, 1)1 and, in deducing the 
latter conclusion, in addition to (4.78), we also made use of (1.12), (4.73) and 
(4.74). Now Theorem 4.E combined with (4.79) yields 

( <y< )1/2 

lira n-1/4(logn) -1/2 sup IK(y - n - l K ( y , n ) , n )  - K ( y , n ) f / k o S u p  1 I~.(y, 1)t a'~'l 
n--+e~ 0<y_<l _ _ 

(4.80) 

which, in turn via (4.76), also completes the proof of Theorem 4.D. [] 

REMARK 4.5. In the light of (4.70) and (4.77) we have also 

/,/( /,) , a.s. lim(logn)-l/2n 1/4 sup IR,(y, 1 n -1/2 sup IK(y,n = 1 . 
n--~oe 0<y<_l \ 0<_y<l 

Since, for each n > 1 and elementary outcome co E ~q, we have 

sup Icon(y, 1)[ = sup lu,(y, 1)l , 
0 < y < l  0<y_<l 

(4.81) 

(4.82) 

by (4.73) we conclude 

lim inf (log log n)l/2 sup lu,, (y,  I)1 a.s. 7z/81/2 , 
n---+oe 0_<y_< 1 

(4.83) 
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as well as 

) l / (  )l)  1/2 
lim n-l/4(logn) -1/2 sup tR*~(y, 1 sup lun(y, 1 a's'l 

n--~oo 0<y<_ 1 t \0<y_< 1 
• (4.84) 

COROLLARY 4.A. We have, as n ~ oc, 

n - 1 / 4 ( l o g n )  -1/2 s u p  IR:(y, 1)[~ sup IB(y)l , (4.85) 
0_<y_< 1 \0_<y~ 1 

where {B(y), 0 <_ y _< 1 } is a Brownian bridge, as well as 

l imsupn i/4(logn) 1 / 2 ( 1 o g l o g n ) - l / 4  s u p  IR~(y, 1)la-~2 -1/4 , (4.86) 
n--+cx~ 0<y_<l 

and 

liminf n-1/4(logn) 1/2(loglogn)l/4 s u p  IR*(y, 1)l a~. 8_1/4~1/2 
n---+oo 0_<y< 1 

(4.87) 

PROOF. (4.85) is a restatement of (4.58) of Theorem 4.C whose proof now follows 
from any one of the respective statements of (4.69), (4.81) and (4.84). 

As to (4.86), it is a restatement of (1.27), which we have already proved via 
(1.26), (1.13) and (1.14). This time around we can deduce it again from (4.78) via 
(4.71), or from any one of the respective statements of (4.69), (4.81) and (4.84), 
each combined with the corresponding law of the iterated logarithm for 
sup0<y_< 1 [an(y, 1)1, n -1/2 suP0_<y_< 1 [K(y,n)l and sup0<v_< 1 lu,(y, 1)l, respectively. 

Concerning (4.87), it follows from any one of the respective statements of 
(4.69), (4.81) and (4.84), each combined with the corresponding other law of the 
iterated logarithm for suP0_<y_< l I~n(y, 1)l, n-1/2suPo<y<l [K(y,n)[ and sup0<y_< 1 
lu.(y, 1)1 as in (4.73), (4.74) and (4.83), respectively. This also completes the proof 
of Corollary 4.A. [] 

For further results along these lines we refer to Section 3.3 of Cs6rg6 and 
Horv~th (1993) and references therein. 

Another route to take to having (4.87) is via 

COROLLARY 4.6. Let {K(y,x), 0 < y < 1, 0 < x < c~} be a Kiefer process writ- 
ten as in (4.50) in terms of a Wiener sheet extended to IR x IR+. Then 

l iminf n-1/4(logn)-U2(loglogn)l/4 sup IK(y - n-lK(y,n),n) - K(y,n)] 
n-~oo O<y_<l 

= 8-1/47Z 1/2 a.s.  (4.88) 
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PROOF. A combination of Theorem 4.E with (4.74) yields the result. [] 

REMARK 4.6. An alternative proof of(4.87) now follows from (4.88) via (4.71) on 
the probability space of Theorem 1.A. 

5. An extension of the classical Bahadnr-Kiefer process theory 
via strong invariance principles 

Kiefer (1970), in addition to proving (1.27) directly, as well as (4.58) via (4.68), 
actually carried out his ingenious calculations in terms of a random sample with a 
common, twice differentiable distribution function F, having finite support on IR, 
and assuming that inf0<y_<l f (Q(y))  > 0 and sup0<y_< I ]f'(Q(y))[ < ec. Naturally, 
he noted also the desirability of extending his results for F not necessarily sa- 
tisfying the just mentioned assumptions. A glance at the relationship of (4.13) 
clearly indicates that the results we have summarized and proved in Section 2 can 
be immediately restated as strong invariance principles for the general Bahadur- 
Kiefer process (ef (4.2) and (4.9)) 

{R,(y, 1), 0 _ < y <  1, n =  1,2, . . .} := {nU2(c~,,(y, 1) 

- p , ( y ,  1)), 0 _ < y <  1, n =  1,2. . .}  
(5.1) 

in terms of the uniform Bahadur -Kiefer process (cf (1.29)) 

{R~*(y, 1), 0 < y <  1, n =  1,2, . . .} :={nl/2(~(y,  1) 

-un@, l ) ) ,  0 < y <  1, n =  1 ,2 . . . }  
(5.2) 

where ct~(y, 1) = fln(Q(Y), 1) and un(y, 1) = nl/2(y - F(O~,(y)) ) (cf(1.60) and (1.61) 
respectively). As a consequence of doing this, we obtain an extension of  Kiefer's 
theory of  un(form deviations for R~(., .) under the milder conditions on F of Cs6rg6 
and R6v6sz (1978) as spelled out and summarized also in Section 2 above. For 
related details of these extensions we refer to Cs6rg6 and R6v6sz (1978; 1981, 
Sections 5.2 and 5.3), Cs6rg6 (1983, Chapter 6), and Cs6rg6 and Horvfith (1993, 
Section 6.5). For immediate use in stating some of the consequent extensions of 
the results of Kiefer (1970) here, we restate (4.13): for each elementary outcome 
co c (2, we have (cf (5.1) and (5.2)) 

{Rn(y, 1 ) -R*(y ,  1), O < y <  1, n =  1,2, . . .} 

= {--nl/2(p~(y, 1)--u~(y, 1)), O < y < l ,  n = 1 , 2 , . . . }  , 
(5.3) 

where un(y, 1) = nl/2(y - F(Qn(y))). 

THEOREM 5.1. Given the conditions (1.66) (i), (ii) and (iii) on F, we have 
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lim n-Ua(logn) I/2 sup [~',(y, 1)1 sup Ic¢~(y, 1)[ a's'l . 
n~c~ 1/(n+l)<_y~_n/(n+t) " \0<y_<l 

(5.4) 

PROOF. The result follows immediately via (5.3) by Theorem 2.C, (4.73) and 
Theorem 4.D. [] 

COROLLARY 5.A. Given the conditions (1.66) (i), (ii) and (iii) on F, as n --+ oe, we 
have 

) 1/2 

n-1/4(logn) -1/2 sup [R~Cv, 1)1 ~ sup IB(y)l , (5.5) 
1/(n+l)<_y<_n/(n+l) \ 0 < y < l  

where {B(y), 0 _< y _< 1} is a Brownian bridge, as well as 

l imsupn-1 /4( logn) - l /2 ( log logn)  -U4 sup 
, , ~  1/(,~+ 1 ) ~ < n / ( , , +  ~ ) 

and 

l imin fn-U4( logn)  U2(loglogn)l/4 sup 
1/(,,+ l )<y<n/(,,+ l ) 

I*n(y, 1)1 a.=s. 2_1/4 , 

(5.6) 

I~', (y, 1)1 a.~. 8_1/4Tcl/2 

(5.7) 

PROOF. (5.5) follows immediately fi'om (5.4). So does also (5.6), if we combine 
(5.4) with the law of  the iterated logarithm for sup0~_< I Ic~,~(y, 1)1. We note also 
that  (5.6) also follows via (5.3) from Theorem 2.C and (4.86). As to (5.7), it 
follows from (5.4) and (4.73), as well as via (5.3) from Theorem 2.C and (4.87). 

A more direct approach to studying the general Bahadur-Kiefer process Rn(y, 1) 
is in terms of  the iterated Kiefer process increments of  Theorem 4.E. 

THEOREM 5.2. Let {K(y,x) ,  0 _ < y <  1, 0 ~ x <  c~} be the Kiefer process of 
Theorem 1.A as in (1.8), written as in (4.50) in terms of  a Wiener sheet extended 
to IR x IR+, and let {Rn(y, 1), 0 _< y <_ 1, n = 1 ,2 , . . .}  be the general Bahadur -  
Kiefer process as in (5.1). Given the conditions (1.66) (i), (ii) and (iii) on F, as 
n ---+ oc, we have 

sup IR~(y, 1)l{1/(n + 1) <_y <_ n/ (n  + 1)} - (K(y,n) 
0<y< 1 

- K(y  - n-~K(y, u), n))[ a.~. (~(nUS(logn)3/4(loglogn)i/8) . 
(5.s) 
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PROOF. We have 

sup IR,(y, 1)l{1/(n + 1) << y <_ n/(n + 1)} 
O_<y_< 1 

- (K(y, n) - K(y  - n- lK(y ,  n), n)) I 

< sup I(R,,(y, 1) - R*(y, 1))l{1/(n + 1) < y < n/(n + 1)} I 
0<y<l 

+ sup IR~(y, 1) - (K(y,n) - K ( y  - n - lK(y ,n ) ,n ) ) l  (5.9) 
0<y<l 

a.s. sup In'/2(p,(y, 1) - u,,CV, 1))1 
1/(n+l)<y<_n/(n+l) 

_~_ (fl (//1/8 (log//)3/4 (log log n)1/8) 

as (9 (n I/8 (log n)3/4 (log log n) I/8) , 

where, just before the last line of  (5.9), we utilized (5.3) and (4.71), and then 
applied Theorem 2.C as well. [] 

ANOTHER PROOF OF THEOREM 5.1 AND COROLLARY 5.A. Clearly, T h e o r e m  5.1 
and Corollary 5.A are corollaries of Theorem 5.1. Indeed, (5.4) is implied by 
(5.8), (4.80) and (4.73). Also, (5.6) and (5.7) follow from (5.8) combined with 
(4.78) and (4.88) respectively. [] 

Our next result is along the lines of  Theorem 5.2. 

THEOREM 5.3. Let {K(y,x) ,  0 _<y_< 1, 0 _<x < oc} be the Kiefer process of  
Theorem 1.A as in (1.8), written as in (4.50) in terms of  a Wiener sheet extended 
to IR x IR+, and let {Rn(y, 1), 0 _<y < 1, n = 1 ,2 , . . .}  be the general Bahadur -  
Kiefer process as in (5.1). Given the conditions (1.66) (i), (ii) and (iii), as well as 
(2.12) (i) and (ii) or (2.12) (iii) on F, as n ---+ ec, we have 

sup [RnCv, 1) - (K(y,n) - K(y  - n 1K(y,n),n))[ 
O<y< (5.10) 

a.s. (~ (//1/8 (log n)3/4 (log log n)'/8) z 

PROOF. We follow the lines of  the proof  of Theorem 5.1, only now use Theo- 
rem 2.D instead of  Theorem 2.C. [] 

COROLLARY 5.B. Given the conditions (1.66) (i),(ii) and (iii), as well as (2.12) (i) 
and (ii) or (2.12) (iii) on F, we have 

/ 
n-1/4(logn)- l /2  lira sup I.~n(y, 1 ) l / [  sup Ic¢,,(y, 1)[l 

n-+oo 0<y< 1 \0<y_< 1 /; 

i/2 
a . s .  
= 1 , (5.11) 
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n-1/4(logn)-l /2 0<y_<SUp 11R,(y, 1)l~(\o_<y_<sup 1 IB(y)I)1/2, 

where {B(y), 0 <_ y _< 1} is a Brownian bridge, 

l imsupn  1/4(logn)-~/2(loglogn) 1/4 sup 
n ~ o e  0 < y <  1 

and 

683 

(n , (5.12) 

IRnCv, 1)l a~ 2 -1/4 (5.13) 

l iminfn l /4( logn)- l /2( loglogn)  1/4 sup IRn(y, 1)1 a'=s'8 1/47zl/2 • 

n ~ o o  0 < y < l  
(5.14) 

PROOF. (5.11) is implied by (5.10), (4.80) and (4.73). Now (5.12) follows from 
(5.11), while (5.13) and (5.14) follow from (5.10) combined with (4.78) and (4.88), 
respectively. 

In concluding this section we underline again that Corollaries 5.A and 5.B 
essentially come from Cs6rg6 and R6v6sz (1975, 1978) as augmented somewhat in 
Cs6rg6 and R6v6sz (1981, Section 5.2), Cs6rg6 (1983, Chapter 6), Cs6rg6 and 
Horvfith (1993, Section 6.5), and as stated herewith. Theorems 5.1, 5.2 and 5.3 
constitute new convenient formulations o f  these extensions o f  the Bahadu~Kiefer  
process theory o f  quantiles. 

6. An outline of a sequential version of the extended Bahadur-Kiefer 
process theory via strong invariance principles 

This section is built on many of our results so far. In the light of (1.31) and (5.1), it 
is natural to define the sequential general Bahadur-Kiefer process Rn(Y, t) by 

{R,(y,t), 0 < y <  1, O<_nt<_n, n =  1 ,2 , . . . }  

:= {nl/2(en(y,t) - p , (y , t ) ) ,  0 <_ y <_ 1, 0 <_ nt < n, n = 1 ,2 , . . .  } 

= {nUZ(fln(Q(y),t) - p ,(y , t ) ) ,  0 <_ y <_ 1, 0 <_ nt _< n, n = 1 ,2 , . . .  } . 

(6.1) 

Consequently, the sequential version of (5.3) is 

{R,(y , t )  - R*~(y,t), O <_ y < 1, O <_ nt <_ n, n =  1 ,2 , . . . }  

= { - n l / 2 ( p , ( y , t ) - u n ( y , t ) ) ,  0_<y_< 1, O<_nt<_n, n =  1 ,2 , . . . }  

= { -  nl/2(p,(y,  t) - n 1/2[nt] (y - F(Q[m]Cv)))) , 

O<_y<_ 1, O < n t < _ n ,  n =  1 ,2 , . . . }  . (6.2) 
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As an immediate consequence of  (6.2) and Proposi t ion 2.1, we have 

PROPOSITION 6.1. 
have 

sup 
0<t_<l 

for all e > 0. 

Given the conditions (1.66) (i), (ii) and (iii) on F, as n ~ oo, we 

sup IRn (y, t) - R n (y, t)[ 
l / (n+ l )<_y<n/ (n+ l ) 

a.s.{= (9(( l°gl°gn)  1+'~) 

(9 ((log log n)' (log n)(l+e)(7-1)) 

if 7_<1, 
(6.3) 

i f T > l ,  

Similarly, (6.2) and Proposi t ion 2.2 yield 

PROPOSITION 6.2. Assume (1.66) (i)-(iii), (2.12) (i) and (2.12) (ii) or (iii). Then, as 
n --+ ~ ,  we have 

sup sup 1~'~ (y, t) - R,; (y, t) l 
0<t_<l 0<_y<l 

C(loglogn)  if 7 < 1 (6.4) 

a.s. (9((loglogn)2) if 7 = 1, 

(9(( loglogn) ' ( logn)  (1+~)(7-1)) if 7 > 1 , 

for all e > 0. 

Combining now Proposi t ion 1.2 with Proposi t ion 6.1, we obtain 

PROPOSITION 6.3. Given the condit ions (1.66) (i), (ii) and (iii) on F,  with an 
absolute positive constant  C we have 

l imsup n-V4(logn) i /2(loglogn) 1/4 
n ~ o o  

× sup sup ]R.(y,t)l _< C a.s. 
0<t<l 1/(nWl)<_y<_n/(n+l) 

(6.5) 

Similarly, Proposi t ion 1.2 combined with Proposi t ion 6.2 implies 

PROPOSITION 6.4. Assume (1.66) (i)-(iii), (2.12) (i) and (2.12) (ii) or (iii). Then, 
with an absolute positive constant  C we have 

l imsup n-1/4(logn) 1/2(loglogn)-l/4 sup sup IRn(y,t)l < C a.s. 
n-~oo 0<t<l 0<y<l 

(6.6) 

Proposi t ion 1.1 itself can be reformulated along the lines of  Theorem 4.1. First 
we prove 
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THEOREM 6.1. Let {K(y ,x ) ,  0 _<y _< 1, 0 <_ x < oc} be the Kiefer process of 
Theorem 1.A as in (1.8), written as in (4.50) in terms of a Wiener sheet extended 
to IR x IR+. Then, as n ---+ oc, we have 

sup sup I(K((#i~t](y),nt) - K(y ,  nt)) 
1/n<t<l 0<y<l 

- (K(y - [nt l - 'K(y , nt), nt) - K(y ,  nt))] 

= sup sup ] ( K ( y - [ n t l - l ( n l / 2 u n ( y , t ) ) , n t ) - K ( y ,  nt)) 
l/n<_t<l O<y<l 

--  ( X ( y  - [nt] 1 K ( y ,  nt) ,  nt)  -- K ( y ,  nt)) I 
a._s, (~ (;v/l/8 (log n) 3/4 (log log n)1/8) . 

(6.7) 

PROOF. We first recall that, by definition, u,,(y,t) = 0 for 0 _< t < 1/n (cf (1.6)). 
On the probability space of Theorem 1.A, we have (1.10) of Theorem 1.B as well. 
With t E ( l /n ,  1] and (nt) ~ oo as n -+ oc, by (4.72) with some positive constant 
C > 0 and for n large we have that the left hand side of (6.7) is almost surely 
bounded above by 

( C Jr- o(1) )( (nt) l /8 (log(nt) )3/4 (log log(nt) ) 1/8) . (6.8) 

Hence, on dividing the left hand side of (6.7), as well as the expression in (6.8), by 
nl/8(log n)3/4(log log n) 1/8 and then taking supl/,<t< 1 of both expressions, we ar- 
rive at (6.7). [] 

Now the promised reformulation of Proposition 1.1 d la Theorem 4.1 reads as 
.follows. 

THEOREM 6.2. Let {K(y ,x ) ,  0 <y_<  1, 0 _<x < re} be the Kiefer process of 
Theorem 1.A as in (1.8), written as in (4.50) in terms of a Wiener sheet extended 
to IR x IR+, and let {R*(y, t) ,  0_<y<_ l ,  O < _ n t < n ,  n =  1,2 , . . .}  be the se- 
quential uniform Bahadur-Kiefer process as in (1.31). Then, as n --+ oo, we have 

sup sup [R*(y,t) - (X(y,  nt) - K ( y -  [nt] lK(y,  nt),nt))l  
l/n<t<l 0<y_<l 

a~. 0(nl/8 (log n) 3/4 (log log n)l/s) . 
(6.9) 

PROOF. The left hand side of (6.9) is bounded above by 

sup sup ]R;(y,t) - (K(y, nt) - K((_f[ntl(y),nt))l 
l/n<_t<l 0<y<l 

+ sup sup ]K(y - [n t ]  l f ( y ,  n t ) , n t ) - K ( ( J [ < ( y ) , n t ) l  
l/n<_t<_l 0<y_<l 

a.s. (#(nl/8(log)3/4(loglogn)l/8 ) n (6.10) 
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where the latter almost sure upper bound results follow from (1.36) and (6.7) 
combined. [] 

If at this stage we had an exact analogue of (4.70) of Theorem 4.E for the 
stochastic process 

{K(y, nt) - K ( y -  [nt]-lK(y, nt),nt),  0 <_ y <_ 1, 
(6.11) 

l<_nt<_n,  n =  1 ,2 , . . . )  , 

then Theorem 6.2 would, of course, imply the same for R*~(y,t) that would 
amount to an appropriate version of (4.69), which should read as follows: 

lim n-1/g(logn) 1/2 sup sup I&*~v,t)l__ / sup sup 
n---,ec 1/n<_t<_l 0_<y_<l \l/n<_t<l 0_<y_<l 

a._s.__ 1 , (6.12) 

an analogue of Theorem 4.D. As a consequence of such a result we would also 
have appropriate analogues of  (4.85), (4.86) and (4.87) as well. Naturally,(6.12) 
along with the just mentioned analogues for R,~ (y, t) would be inherited by R, (y, t) 
via the strong invariance principles of Proposition 6.1 and Proposition 6.2, re- 
spectively. The thus inherited results by R, (y, t) would, of course, also include the 
exact versions of Propositions 6.3 and 6.4, respectively. For  now we can say that 
we have here Propositions 6.1 and 6.2, as well as Theorem 6.2, for future con- 
siderations. (cf our discussion at the end of Section 3.) We note also that, using 
Proposition 6.1 (respectively, Proposition 6.2) in combination with Theorem 6.2, 
one can also formulate a sequential analogue of Theorem 5.2 (respectively that of 
Theorem 5.3) for similar future considerations. 

As to the exact analogue of (4.70) of Theorem 4.E we seek for the stochastic 
process of (6.12), it can be obtained via using Theorem S.l.15.1 in Cs6rg6 and 
R6v~sz (1981) in combination with an argument like that of Proposition 1 of 
Deheuvels and Mason (1990). 
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