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PREFACE TO T H E SECOND EDITION 

The principal change from the first edition is the addition of 
a new chapter on linear programming. While linear program
ming is one of the most widely used and successful applications 
of linear algebra, it rarely appears in a text such as this. In 
the new Chapter Ten the theoretical basis of the simplex algo
rithm is carefully explained and its geometrical interpretation 
is stressed. 

Some further applications of linear algebra have been 
added, for example the use of Jordan normal form to solve 
systems of linear differential equations and a discussion of ex
tremal values of quadratic forms. 

On the theoretical side, the concepts of coset and quotient 
space are thoroughly explained in Chapter 5. Cosets have 
useful interpretations as solutions sets of systems of linear 
equations. In addition the Isomorphisms Theorems for vector 
spaces are developed in Chapter Six: these shed light on the 
relationship between subspaces and quotient spaces. 

The opportunity has also been taken to add further exer
cises, revise the exposition in several places and correct a few 
errors. Hopefully these improvements will increase the use
fulness of the book to anyone who needs to have a thorough 
knowledge of linear algebra and its applications. 

I am grateful to Ms. Tan Rok Ting of World Scientific 
for assistance with the production of this new edition and for 
patience in the face of missed deadlines. I thank my family 
for their support during the preparation of the manuscript. 

Derek Robinson 
Urbana, Illinois 

May 2006 
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PREFACE TO THE FIRST EDITION 

A rough and ready definition of linear algebra might be: that 
part of algebra which is concerned with quantities of the first 
degree. Thus, at the very simplest level, it involves the so
lution of systems of linear equations, and in a real sense this 
elementary problem underlies the whole subject. Of all the 
branches of algebra, linear algebra is the one which has found 
the widest range of applications. Indeed there are few areas 
of the mathematical, physical and social sciences which have 
not benefitted from its power and precision. For anyone work
ing in these fields a thorough knowledge of linear algebra has 
become an indispensable tool. A recent feature is the greater 
mathematical sophistication of users of the subject, due in 
part to the increasing use of algebra in the information sci
ences. At any rate it is no longer enough simply to be able to 
perform Gaussian elimination and deal with real vector spaces 
of dimensions two and three. 

The aim of this book is to give a comprehensive intro
duction to the core areas of linear algebra, while at the same 
time providing a selection of applications. We have taken the 
point of view that it is better to consider a few quality applica
tions in depth, rather than attempt the almost impossible task 
of covering all conceivable applications that potential readers 
might have in mind. 

The reader is not assumed to have any previous knowl
edge of linear algebra - though in practice many will - but 
is expected to have at least the mathematical maturity of a 
student who has completed the calculus sequence. In North 
America such a student will probably be in the second or third 
year of study. 

The book begins with a thorough discussion of matrix 
operations. It is perhaps unfashionable to precede systems 
of linear equations by matrices, but I feel that the central 

ix 



X Preface 

position of matrices in the entire theory makes this a logical 
and reasonable course. However the motivation for the in
troduction of matrices, by means of linear equations, is still 
provided informally. The second chapter forms a basis for 
the whole subject with a full account of the theory of linear 
equations. This is followed by a chapter on determinants, a 
topic that has been unfairly neglected recently. In practice it 
is hard to give a satisfactory definition of the general n x n 
determinant without using permutations, so a brief account 
of these is given. 

Chapters Five and Six introduce the student to vector 
spaces. The concept of an abstract vector space is probably 
the most challenging one in the entire subject for the non-
mathematician, but it is a concept which is well worth the 
effort of mastering. Our approach proceeds in gentle stages, 
through a series of examples that exhibit the essential fea
tures of a vector space; only then are the details of the def
inition written down. However I feel that nothing is gained 
by ducking the issue and omitting the definition entirely, as is 
sometimes done. 

Linear tranformations are the subject of Chapter Six. 
After a brief introduction to functional notation, and numer
ous examples of linear transformations, a thorough account 
of the relation between linear transformations and matrices is 
given. In addition both kernel and image are introduced and 
are related to the null and column spaces of a matrix. 

Orthogonality, perhaps the heart of the subject, receives 
an extended treatment in Chapter Seven. After a gentle in
troduction by way of scalar products in three dimensions — 
which will be familiar to the student from calculus — inner 
product spaces are denned and the Gram-Schmidt procedure 
is described. The chapter concludes with a detailed account 
of The Method of Least Squares, including the problem of 
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finding optimal solutions, which texts at this level often fail 
to cover. 

Chapter Eight introduces the reader to the theory of 
eigenvectors and eigenvalues, still one of the most powerful 
tools in linear algebra. Included is a detailed account of ap
plications to systems of linear differential equations and linear 
recurrences, and also to Markov processes. Here we have not 
shied away from the more difficult case where the eigenvalues 
of the coefficient matrix are not all different. 

The final chapter contains a selection of more advanced 
topics in linear algebra, including the crucial Spectral Theo
rem on the diagonalizability of real symmetric matrices. The 
usual applications of this result to quadratic forms, conies 
and quadrics, and maxima and minima of functions of several 
variables follow. 

Also included in Chapter Nine are treatments of bilinear 
forms and Jordan Normal Form, topics that are often not con
sidered in texts at this level, but which should be more widely 
known. In particular, canonical forms for both symmetric and 
skew-symmetric bilinear forms are obtained. Finally, Jordan 
Normal Form is presented by an accessible approach that re
quires only an elementary knowledge of vector spaces. 

Chapters One to Eight, together with Sections 9.1 and 
9.2, correspond approximately to a one semester course taught 
by the author over a period of many years. As time allows, 
other topics from Chapter Nine may be included. In practice 
some of the contents of Chapters One and Two will already be 
familiar to many readers and can be treated as review. Full 
proofs are almost always included: no doubt some instructors 
may not wish to cover all of them, but it is stressed that for 
maximum understanding of the material as many proofs as 
possible should be read. A good supply of problems appears 
at the end of each section. As always in mathematics, it is an 
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indispensible part of learning the subject to attempt as many 
problems as possible. 

This book was originally begun at the suggestion of 
Harriet McQuarrie. I thank Ms. Ho Hwei Moon of World 
Scientific Publishing Company for her advice and for help with 
editorial work. I am grateful to my family for their patience, 
and to my wife Judith for her encouragement, and for assis
tance with the proof-reading. 

Derek Robinson 
Singapore 

March 1991 



CONTENTS 

Preface to the Second Edition vii 

Preface to the First Edition ix 

Chapter One Matrix Algebra 

1.1 Matrices 1 
1.2 Operations with Matrices 6 
1.3 Matrices over Rings and Fields 24 

Chapter Two Systems of Linear Equations 

2.1 Gaussian Elimination 30 
2.2 Elementary Row Operations 41 
2.3 Elementary Matrices 47 

Chapter Three Determinants 

3.1 Permutations and the Definition of a 
Determinant 57 

3.2 Basic Properties of Determinants 70 
3.3 Determinants and Inverses of Matrices 78 

xm 



xiv Contents 

Chapter Four Introduction to Vector Spaces 

4.1 Examples of Vector Spaces 87 
4.2 Vector Spaces and Subspaces 95 
4.3 Linear Independence in Vector Spaces 104 

Chapter Five Basis and Dimension 

5.1 The Existence of a Basis 112 
5.2 The Row and Column Spaces of a Matrix 126 
5.3 Operations with Subspaces 133 

Chapter Six Linear Transformations 

6.1 Functions Defined on Sets 152 
6.2 Linear Transformations and Matrices 158 
6.3 Kernel, Image and Isomorphism 178 

Chapter Seven Orthogonality in Vector Spaces 

7.1 Scalar Products in Euclidean Space 193 
7.2 Inner Product Spaces 209 
7.3 Orthonormal Sets and the Gram-Schmidt 

Process 226 
7.4 The Method of Least Squares 241 

Chapter Eight Eigenvectors and Eigenvalues 

8.1 Basic Theory of Eigenvectors and Eigenvalues 257 
8.2 Applications to Systems of Linear Recurrences 276 
8.3 Applications to Systems of Linear Differential 

Equations 288 



Contents XV 

Chapter Nine More Advanced Topics 

9.1 Eigenvalues and Eigenvectors of Symmetric and 
Hermitian Matrices 303 

9.2 Quadratic Forms 313 
9.3 Bilinear Forms 332 
9.4 Minimum Polynomials and Jordan Normal 

Form 347 

Chapter Ten Linear Programming 

10.1 Introduction to Linear Programming 370 
10.2 The Geometry of Linear Programming 380 
10.3 Basic Solutions and Extreme Points 391 
10.4 The Simplex Algorithm 399 

Appendix Mathematical Induction 415 

Answers to the Exercises 418 

Bibliography 430 

Index 432 



C h a p t e r One 

MATRIX ALGEBRA 

In this first chapter we shall introduce one of the prin
cipal objects of study in linear algebra, a matrix or rectan
gular array of numbers, together with the standard matrix 
operations. Matrices are encountered frequently in many ar
eas of mathematics, engineering, and the physical and social 
sciences, typically when data is given in tabular form. But 
perhaps the most familiar situation in which matrices arise is 
in the solution of systems of linear equations. 

1.1 Matrices 

An m x n matrix A is a rectangular array of numbers, 
real or complex, with m rows and n columns. We shall write 
dij for the number that appears in the ith row and the jth 
column of A; this is called the (i,j) entry of A. We can either 
write A in the extended form 

/ an 

«21 

V&rol 

or in the more compact form 

Thus in the compact form a formula for the (i,j) entry of A 
is given inside the round brackets, while the subscripts m and 
n tell us the respective numbers of rows and columns of A. 

1 

&12 • • • CL\n \ 

« 2 2 - - ' &2n 

Q"m2 ' ' ' Q"mn ' 
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Explicit examples of matrices are 

/ 4 3 \ , / 0 2.4 6 \ 
[l 2) a n d {^=2 3/5 - l j -

Example 1.1.1 

Write down the extended form of the matrix ( ( - l )* j + 1)3,2 • 

The (i,j) entry of the matrix is (—l)lj + i where i — 1, 
2, 3, and j — 1, 2. So the matrix is 

(1 "0-
It is necessary to decide when two matrices A and B are 

to be regarded as equal; in symbols A = B. Let us agree this 
will mean that the matrices A and B have the same numbers 
of rows and columns, and that, for all i and j , the (i,j) entry 
of A equals the (i,j) entry of B. In short, two matrices are 
equal if they look exactly alike. 

As has already been mentioned, matrices arise when one 
has to deal with linear equations. We shall now explain how 
this comes about. Suppose we have a set of m linear equations 
in n unknowns xi, X2, •••, xn. These may be written in the 
form 

{
anxi + CL12X2 + • • • + a\nxn = bi 

CL21X1 + a22X2 + • • • + a2nXn = £>2 

omiXi + am2x2 + • • • + a 

Here the a^ and bi are to be regarded as given numbers. The 
problem is to solve the system, that is, to find all n-tuples 
of numbers xi, x2, ..., xn that satisfy every equation of the 
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system, or to show that no such numbers exist. Solving a set 
of linear equations is in many ways the most basic problem of 
linear algebra. 

The reader will probably have noticed that there is a ma
trix involved in the above linear system, namely the coefficient 
matrix 

•"• = = y&ij )m,n-

In fact there is a second matrix present; it is obtained by using 
the numbers bi, b2, ••., bmto add a new column, the (n + l)th, 
to the coefficient matrix A. This results in an m x (n + 1) 
matrix called the augmented matrix of the linear system. The 
problem of solving linear systems will be taken up in earnest 
in Chapter Two, where it will emerge that the coefficient and 
augmented matrices play a critical role. At this point we 
merely wish to point out that here is a natural problem in 
which matrices are involved in an essential way. 

Example 1.1.2 

The coefficient and augmented matrices of the pair of linear 
equations 

2xi —3x2 +5a;3 = 1 
^ -xx + x2 - x3 = 4 

are respectively 

2 - 3 5\ , f 2 -3 5 1 
and 

- 1 1 - 1 7 V - 1 1 - 1 4 

Some special matrices 

Certain special types of matrices that occur frequently 
will now be recorded. 
(i) A 1 x n matrix, or n — row vector, A has a single row 

A = (an a12 ... aln). 
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(ii) An m x 1 matrix, or m-column vector, B has just one 
column 

b2i 
B = 

\bml/ 

(iii) A matrix with the same number of rows and columns is 
said to be square. 

(iv) A zero matrix is a matrix all of whose entries are zero. 
The zero m x n matrix is denoted by 

0mn or simply 0. 

Sometimes 0nn is written 0n . For example, O23 is the matrix 

0 0 0 
0 0 0 

(v) The identity nxn matrix has l's on the principal diagonal, 
that is, from top left to bottom right, and zeros elsewhere; thus 
it has the form 

(\ 0 ••• 1 ^ 
0 1 ••• 0 

This matrix is written 

\ 0 0 ••• 1 / 

In or simply I. 

The identity matrix plays the role of the number 1 in matrix 
multiplication. 

(vi) A square matrix is called upper triangular if it has only 
zero entries below the principal diagonal. Similarly a matrix 
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is lower triangular if all entries above the principal diagonal 
are zero. For example, the matrices 

are upper triangular and lower triangular respectively. 

(vii) A square matrix in which all the non-zero elements lie 
on the principal diagonal is called a diagonal matrix. A scalar 
matrix is a diagonal matrix in which the elements on the prin
cipal diagonal are all equal. For example, the matrices 

a 0 0 \ 
0 6 0 
0 0 c / 

and 
fa 0 0 

0 a 0 
\ 0 0 a 

are respectively diagonal and scalar. Diagonal matrices have 
much simpler algebraic properties than general square matri
ces. 

Exercises 1.1 

1. Write out in extended form the matrix ((—\)l~^(i + j))2,4-

2. Find a formula for the (i,j) entry of each of the following 
matrices: 

- 1 
1 

- 1 

1 
- 1 

1 

- 1 
1 

- 1 
(a) 1 - 1 1 , (b) 

/ I 
5 
9 

\ 1 3 

2 
6 
10 
14 

3 
7 
11 
15 

4 
8 
12 
16 
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3. Using the fact that matrices have a rectangular shape, say 
how many different zero matrices can be formed using a total 
of 12 zeros. 

4. For every integer n > 1 there are always at least two zero 
matrices that can be formed using a total of n zeros. For 
which n are there exactly two such zero matrices? 

5. Which matrices are both upper and lower triangular? 

1.2 Operations with Matrices 

We shall now introduce a number of standard operations 
that can be performed on matrices, among them addition, 
scalar multiplication and multiplication. We shall then de
scribe the principal properties of these operations. Our object 
in so doing is to develop a systematic means of performing cal
culations with matrices. 

(i) Addition and subtraction 

Let A and B be two mxn matrices; as usual write a^ and bij 
for their respective (i,j) entries. Define the sum A + B to be 
the mxn matrix whose (i,j) entry is a^ + b^; thus to form 
the matrix A + B we simply add corresponding entries of A 
and B. Similarly, the difference A — B is the mxn matrix 
whose (i,j) entry is a -̂ — b^. However A + B and A — B 
are not defined if A and B do not have the same numbers of 
rows and columns. 

(ii) Scalar multiplication 

By a scalar we shall mean a number, as opposed to a matrix 
or array of numbers. Let c be a scalar and A an mxn matrix. 
The scalar multiple cA is the mxn matrix whose (i, j) entry 
is caij. Thus to form cA we multiply every entry of A by the 
scalar c. The matrix ( - l ) A is usually written -A; it is called 
the negative of A since it has the property that A + (-A) = 0. 
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Example 1.2.1 
If 

, / 1 2 0 \ , „ (I 1 1 
A={-1 0 l) ™dB={0 - 3 1 

then 

2A + 3 5 = [ X A " I and 2A - 3 5 

(iii) Matrix multiplication 

It is less obvious what the "natural" definition of the 
product of two matrices should be. Let us start with the 
simplest interesting case, and consider a pair of 2 x 2 matrices 

a n a12\ , , D ( blx bX2 A= ( lL ^ and B - , , . 
\ G 2 1 0122/ \ 0 2 1 022 

In order to motivate the definition of the matrix product AB 
we consider two sets of linear equations 

a\iVi + a.i2V2 = xi a n d f &nzx + bX2z2 = y± 
o.2iV\ + a22y2 = x2 \ b21zi + b22z2 = y2 

Observe that the coefficient matrices of these linear systems 
are A and B respectively. We shall think of these equations 
as representing changes of variables from j/i, y2 to xi, x2, and 
from z\, z2 to y\, y2 respectively. 

Suppose that we replace y\ and y2 in the first set of equa
tions by the values specified in the second set. After simplifi
cation we obtain a new set of equations 

(aii&n + ai2b2i)zi + (aU0 1 2 + ai2b22)z2 = %i 
(a21bn + a22b2i)zi + (a2ib12 + a22b22)z2 = x2 
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This has coefficient matrix 

a i i & n + ai2&2i 011612 + 012622^ 

«21&11 + C122&21 ^21^12 + ^22^22 / 

and represents a change of variables from zi, z2 to xi, x2 which 
may be thought of as the composite of the original changes of 
variables. 

At first sight this new matrix looks formidable. However 
it is in fact obtained from A and B in quite a simple fashion, 
namely by the row-times-column rule. For example, the (1,2) 
entry arises from multiplying corresponding entries of row 1 of 
A and column 2 of B, and then adding the resulting numbers; 
thus 

( a n a12) 
&12 

^22 
Qll^l2 + Oi2^22-

Other entries arise in a similar fashion from a row of A and a 
column of B. 

Having made this observation, we are now ready to define 
the product AB where A is an m x n matrix and B i s a n n x p 
matrix. The rule is that the (i,j) entry of AB is obtained by 
multiplying corresponding entries of row i of A and column j 
of B, and then adding up the resulting products. This is the 
row-times-column rule. Now row i of A and column j of B are 

/ bij \ 

an a%2 ain) and 
->2j 

\ bnj / 

Hence the (i,j) entry of AB is 

Uilblj + CLi202j + • - • + O-inbnj, 
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which can be written more concisely using the summation 
notation as 

n 

fc=l 

Notice that the rule only makes sense if the number of 
columns of A equals the number of rows of B. Also the product 
of an m x n matrix and a n n x p matrix is an m x p matrix. 

Example 1.2.2 

Let 

A = { 1 I 2 1 and B 

Since A is 2 x 3 and B is 3 x 3, we see that AB is defined 
and is a 2 x 3 matrix. However BA is not defined. Using the 
row-times-column rule, we quickly find that 

AB = 
0 0 2 
2 16 - 2 

Example 1.2.3 

Let 
A = ( O i)and B=(I i 

In this case both AB and BA are defined, but these matrices 
are different: 

AB=rQ ° ) = 0 2 2 M 1 d B A = ( ° l 
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Thus already we recognise some interesting features of 
matrix multiplication. The matrix product is not commuta
tive, that is, AB and BA may be different when both are de
fined; also the product of two non-zero matrices can be zero, 
a phenomenon which indicates that any theory of division by 
matrices will face considerable difficulties. 

Next we show how matrix mutiplication provides a way of 
representing a set of linear equations by a single matrix equa
tion. Let A = (aij)mtn and let X and B be the column vectors 
with entries x±, X2, ..., xn and 61, b2, ..., bm respectively. Then 
the matrix equation 

AX = B 

is equivalent to the linear system 

{
aiixx + ai2x2 + • • • + a\nxn = bx 

CL21X1 + CI22X2 + • • • + CL2nXn = h 

o-mixi + am2X2 + • • • + a 

For if we form the product AX and equate its entries to the 
corresponding entries of B, we recover the equations of the 
linear system. Here is further evidence that we have got 
the definition of the matrix product right. 

Example 1.2.4 

The matrix form of the pair of linear equations 

J 2xi — 3x2 + 5^3 = 1 
\ -xi + x2 - X3 = 4 

is 
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(iv) Powers of a matrix 

Once matrix products have been defined, it is clear how to 
define a non-negative power of a square matrix. Let A be an 
n x n matrix; then the mth power of A, where m is a non-
negative integer, is defined by the equations 

A0 = In and Am+1 = AmA. 

This is an example of a recursive definition: the first equation 
specifies A0, while the second shows how to define Am+1, un
der the assumption that Am has already been defined. Thus 
A1 = A, A2 = AA, A3 = A2A etc. We do not attempt to 
define negative powers at this juncture. 

Example 1.2.5 
Let 

Then 

The reader can verify that higher powers of A do not lead 
to new matrices in this example. Therefore A has just four 
distinct powers, A0 = I2, A1 = A, A2 and A3. 

(v) The transpose of a matrix 

If A is an m x n matrix, the transpose of A, 

is the n x m matrix whose (i,j) entry equals the (j,i) entry 
of A. Thus the columns of A become the rows of AT. For 
example, if 

/a b\ 
A = c d , 

V fJ 
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then the transpose of A is 

A matrix which equals its transpose is called symmetric. On 
the other hand, if AT equals —A, then A is said to be skew-
symmetric. For example, the matrices 

are symmetric and skew-symmetric respectively. Clearly sym
metric matrices and skew-symmetric matrices must be square. 
We shall see in Chapter Nine that symmetric matrices can in 
a real sense be reduced to diagonal matrices. 
The laws of matrix algebra 

We shall now list a number of properties which are sat
isfied by the various matrix operations defined above. These 
properties will allow us to manipulate matrices in a system
atic manner. Most of them are familiar from arithmetic; note 
however the absence of the commutative law for multiplica
tion. 

In the following theorem A, B, C are matrices and c, d are 
scalars; it is understood that the numbers of rows and columns 
of the matrices are such that the various matrix products and 
sums mentioned make sense. 

Theorem 1.2.1 

(a) A + B = B + A, {commutative law of addition)] 
(b) (A + B) + C = A + (B + C), (associative law of 
addition); 
(c) A + 0 = A; 
(d) (AB)C = A(BC), ( associative law of multiplication)] 
(e) AI = A = I A; 
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(f) A(B + C) = AB + AC, {distributive law); 
(g) (A + B)C = AC + BC, (distributive law); 
(h) A-B = A + (-l)B; 
(i) (cd)A = c(dA); 
(i)c(AB) = (cA)B = A(cB); 
(k) c(A + B) = cA + cB; 
(1) (c + d)A = cA + dA; 
(m) (A + B)T = AT + BT; 
(n) (AB)T = BTAT. 

Each of these laws is a logical consequence of the defini
tions of the various matrix operations. To give formal proofs 
of them all is a lengthy, but routine, task; an example of such a 
proof will be given shortly. It must be stressed that familiarity 
with these laws is essential if matrices are to be manipulated 
correctly. 

We remark that it is unambiguous to use the expression 
A + B + C for both (A + B) + C and A+(B + C). For by 
the associative law of addition these matrices are equal. The 
same comment applies to sums like A + B + C + D , and also 
to matrix products such as (AB)C and A(BC), both of which 
are written as ABC. 

In order to illustrate the use of matrix operations, we 
shall now work out three problems. 

Example 1.2.6 

Prove the associative law for matrix multiplication, (AB)C = 
A(BC) where A, B, C are mxn, nxp, pxq matrices re
spectively. 

In the first place observe that all the products mentioned 
exist, and that both (AB)C and A(BC) are m x q matrices. 
To show that they are equal, we need to verify that their (i, j) 
entries are the same for all i and j . 
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Let dik be the (i, k) entry of AB ; then dik = YH=I o-uhk-
Thus the (i,j) entry of (AB)C is YX=i dikCkj, that is 

p n 

J~](yiaubik)ckj. 
fc=i 1=1 

After a change in the order of summation, this becomes 

n p 

/^ilj/^lkCkj). 

1=1 fc = l 

Here it is permissible to change the order of the two summa
tions since this just corresponds to adding up the numbers 
aubikCkj in a different order. Finally, by the same procedure 
we recognise the last sum as the (i,j) entry of the matrix 
A(BC). 

The next two examples illustrate the use of matrices in 
real-life situations. 

Example 1.2.7 

A certain company manufactures three products P, Q, R in 
four different plants W, X, Y, Z. The various costs (in whole 
dollars) involved in producing a single item of a product are 
given in the table 

material 
labor 
overheads 

P 
1 
3 
2 

Q 
2 
2 
1 

R 
1 
2 
2 

The numbers of items produced in one month at the four 
locations are as follows: 
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p 

Q 

w 
2000 

1000 

2000 

X 
3000 

500 
2000 

Y 
1500 

500 
2500 

Z 
4000 

1000 

2500 

The problem is to find the total monthly costs of material, 
labor and overheads at each factory. 

Let C be the "cost" matrix formed by the first set of 
data and let N be the matrix formed by the second set of 
data. Thus 

/ l 2 1 \ /2000 3000 1500 4000 \ 
C = 3 2 2 andJV= 1000 500 500 1000 . 

\ 2 1 2 / \2000 2000 2500 2500/ 

The total costs per month at factory W are clearly 

material : 1 x 2000 + 2 x 1000 + 1 x 2000 = 6000 
labor : 3 x 2000 + 2 x 1000 + 2 x 2000 = 12000 

overheads : 2 x 2000 + 1 x 1000 + 2 x 2000 = 9000 

Now these amounts arise by multiplying rows 1, 2 and 3 of 
matrix C times column 1 of matrix JV, that is, as the (1, 1), 
(2, 1), and (3, 1) entries of matrix product CN. Similarly the 
costs at the other locations are given by entries in the other 
columns of the matrix CN. Thus the complete answer can be 
read off from the matrix product 

/ 6000 6000 5000 8500 \ 
CN = I 12000 14000 10500 19000 I . 

\ 9000 10500 8500 14000/ 

Here of course the rows of CN correspond to material, la
bor and overheads, while the columns correspond to the four 
plants W, X, Y, Z. 

file:///2000
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Example 1.2.8 

In a certain city there are 10,000 people of employable age. 
At present 7000 are employed and the rest are out of work. 
Each year 10% of those employed become unemployed, while 
60% of the unemployed find work. Assuming that the total 
pool of people remains the same, what will the employment 
picture be in three years time? 

Let en and un denote the numbers of employed and un
employed persons respectively after n years. The information 
given translates into the equations 

e n + i = .9en + .6un 

un+i = . le n + Aun 

These linear equations are converted into a single matrix equa
tion by introducing matrices 

X„ = ( 6n \ and A ( , 9 -6 

"n u„. I V .1 .4 

The equivalent matrix equation is 

Xn+i = AXn. 

Taking n to be 0, 1, 2 successively, we see that X\ = AXo, 
X2 = AXi = A2X0, X3 = AX2 = A3XQ. In general 

Xn = AUXQ. 

Now we were told that e0 = 7000 and UQ = 3000, so 

Y - f700(A 
x°- ^3oooy • 

Thus to find X3 all that we need to do is to compute the power 
A3. This turns out to be 
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.861 .834 \ 

.139 .166y 

Hence 

*-**,-(•£) 
so that 8529 of the 10,000 will be in work after three years. 

At this point an interesting question arises: what will 
the numbers of employed and unemployed be in the long run? 
This problem is an example of a Markov process; these pro
cesses will be studied in Chapter Eight as an application of 
the theory of eigenvalues. 

The inverse of a square matrix 

An n x n matrix A is said to be invertible if there is an 
n x n matrix B such that 

AB = In = BA. 

Then B is called an inverse of A. A matrix which is not invert
ible is sometimes called singular, while an invertible matrix is 
said to be non-singular. 

Example 1.2.9 

Show that the matrix 

1 3 
3 9 

is not invertible. 

If f , ) were an inverse of the matrix, then we should 

have 
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1 3 \ fa b\ _ (1 0 
3 9 \c d ~ [ 0 1 

which leads to a set of linear equations with no solutions, 

a + 3c = 1 
b + 3d = 0 

3a + 9c = 0 
3b + 9d = 1 

Indeed the first and third equations clearly contradict each 
other. Hence the matrix is not invertible. 

Example 1.2.10 

Show that the matrix 

A- r ~2 

is invertible and find an inverse for it. 

Suppose that B = I , I is an inverse of A. Write out 

the product AB and set it equal to I2, just as in the previous 
example. This time we get a set of linear equations that has 
a solution, 

Indeed there is a unique solution a = 1, b = 2, c = 0, d = 1. 
Thus the matrix 
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is a candidate. To be sure that B is really an inverse of A, we 
need to verify that BA is also equal to I2', this is in fact true, 
as the reader should check. 

At this point the natural question is: how can we tell if 
a square matrix is invertible, and if it is, how can we find an 
inverse? From the examples we have seen enough to realise 
that the question is intimately connected with the problem of 
solving systems of linear systems, so it is not surprising that 
we must defer the answer until Chapter Two. 

We now present some important facts about inverses of 
matrices. 

Theo rem 1.2.2 

A square matrix has at most one inverse. 

Proof 
Suppose that a square matrix A has two inverses B\ and B<i-
Then 

ABX = AB2 = 1 = BXA = B2A. 

The idea of the proof is to consider the product (BiA)B2\ 
since B\A = I, this equals IB2 = B2. On the other hand, 
by the associative law it also equals Bi(AB2), which equals 
BJ = Bx. Therefore Bx = B2. 

From now on we shall write 

A-1 

for the unique inverse of an invertible matrix A. 
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Theorem 1.2.3 

(a) If A is an inveriible matrix, then A - 1 is invertible 
and {A'1)-1 =A. 
(b) If A and B are invertible matrices of the same size, 
then AB is invertible and (AB)~l = B~1A~1. 

Proof 
(a) Certainly we have AA~1 = I — A~XA, equations which 
can be viewed as saying that A is an inverse of A~x. Therefore, 
since A~x cannot have more than one inverse, its inverse must 
be A. 
(b) To prove the assertions we have only to check that B~1A~1 

is an inverse of AB. This is easily done: (AB)(B~1A~l) = 
A(BB~1)A~1, by two applications of the associative law; 
the latter matrix equals AIA~l — AA~l — I. Similarity 
(B~1A~1)(AB) = I. Since inverses are unique, (AB)"1 = 
B~lA-\ 

Partitioned matrices 

A matrix is said to be partitioned if it is subdivided into 
a rectangular array of submatrices by a series of horizontal or 
vertical lines. For example, if A is the matrix (aij)^^, then 

/ an ai2 | ai3 \ 

021 0.22 I CI23 

\ a3i a32 | a33 / 

is a partitioning of A. Another example of a partitioned matrix 
is the augmented matrix of the linear system whose matrix 
form is AX — B ; here the partitioning is [-A|S]. 

There are occasions when it is helpful to think of a matrix 
as being partitioned in some particular manner. A common 
one is when an m x n matrix A is partitioned into its columns 
A±, A2, • • •, An, 
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A=(A1\A2\ ... \An). 

Because of this it is important to observe the following fact. 

Theorem 1.2.4 

Partitioned matrices can be added and multiplied according to 
the usual rules of matrix algebra. 

Thus to add two partitioned matrices, we add correspond
ing entries, although these are now matrices rather than 
scalars. To multiply two partitioned matrices use the row-
times-column rule. Notice however that the partitions of the 
matrices must be compatible if these operations are to make 
sense. 

Example 1.2.11 

Let A = (0^)4,4 be partitioned into four 2 x 2 matrices 

A = 
An A12 

A2\ A22 

where 

An = ( a n G l 2 ) , A12=l ° 1 3 a i 4 

«21 &22 ) \ 023 «24 

•421 = ( a 3 1 a 3 2 ) , A 2 2 = 
V a4i a42 J 

Let B = (fry)4,4 be similarly partitioned into submatrices B n , 
B\2, B21, B22 

Bn B\2 

B2\ B22 
B 

T h e n 

A + B An + Bn A12 + B12 

A21 + B21 A22 + B22 
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by the rule of addition for matrices. 

Example 1.2.12 

Let A be an TO X n matrix and B an n x p matrix; write Bi, 
B2, ..., Bp for the columns of B. Then, using the partition of 
B into columns B = [.B^i^l ••• \BP], we have 

AB = (AB1\AB2\ ... \ABP). 

This follows at once from the row-times-column rule of matrix 
multiplication. 

Exercises 1.2 

1. Define matrices 

/l 2 3\ /2 1\ /3 0 4\ 
A= 0 1 -1 , B= 1 2 , C= 0 1 0 . 

\2 1 0/ \1 1/ \2 -1 3/ 

(a) Compute 3A - 2C. 
(b) Verify that (A + C)B = AB + CB. 
(c) Compute A2 and A3 . (d) Verify that (AB)T = 

BTAT. 

2. Establish the laws of exponents: AmAn = Am+n and 
(Am)n = Amn where A is any square matrix and TO and n are 
non-negative integers. [Use induction on n : see Appendix.] 

3. If the matrix products AB and BA both exist, what can 
you conclude about the sizes of A and Bl 

4. If A = ( 1, what is the first positive power of A 

that equals I-p. 

5. Show that no positive power of the matrix I J equals 

h • 
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6. Prove the distributive law A(B + C) = AB + AC where A 
is m x n, and B and C are n x p. 

7. Prove that (Ai?) r = BTAT where A is m x n and £? is 
n x p . 

8. Establish the rules c{AB) = (cA)B = A(cB) and (cA)T = 
cAT. 

9. If A is an n x n matrix some power of which equals In, 
then A is invertible. Prove or disprove. 

10. Show that any two n x n diagonal matrices commute. 

11. Prove that a scalar matrix commutes with every square 
matrix of the same size. 

12. A certain library owns 10,000 books. Each month 20% 
of the books in the library are lent out and 80% of the books 
lent out are returned, while 10% remain lent out and 10% 
are reported lost. Finally, 25% of the books listed as lost the 
previous month are found and returned to the library. At 
present 9000 books are in the library, 1000 are lent out, and 
none are lost. How many books will be in the library, lent 
out, and lost after two months ? 

13. Let A be any square matrix. Prove that \{A + AT) is 
symmetric, while the matrix \{A — AT) is skew-symmetric. 

14. Use the last exercise to show that every square matrix 
can be written as the sum of a symmetric matrix and a skew-
symmetric matrix. Illustrate this fact by writing the matrix 

(• J -i) 
as the sum of a symmetric and a skew-symmetric matrix. 

15. Prove that the sum referred to in Exercise 14 is always 
unique. 
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16. Show that a n n x n matrix A which commutes with every 
other n x n matrix must be scalar. [Hint: A commutes with 
the matrix whose (i,j) entry is 1 and whose other entries are 
all 0.] 

17. (Negative powers of matrices) Let A be an invertible ma
trix. If n > 0, define the power A~n to be (A~l)n. Prove that 
A-n = (A*)'1. 

18. For each of the following matrices find the inverse or show 
that the matrix is not invertible: 

«G9= <21)-
19. Generalize the laws of exponents to negative powers of an 
invertible matrix [see Exercise 2.] 

20. Let A be an invertible matrix. Prove that AT is invertible 
and (AT)~l = {A-1)T. 

21. Give an example of a 3 x 3 matrix A such that A3 = 0, 
but A2 ^ 0. 

1.3 Matrices over Rings and Fields 

Up to this point we have assumed that all our matrices 
have as their entries real or complex numbers. Now there are 
circumstances under which this assumption is too restrictive; 
for example, one might wish to deal only with matrices whose 
entries are integers. So it is desirable to develop a theory 
of matrices whose entries belong to certain abstract algebraic 
systems. If we review all the definitions given so far, it be
comes clear that what we really require of the entries of a 
matrix is that they belong to a "system" in which we can add 
and multiply, subject of course to reasonable rules. By this we 
mean rules of such a nature that the laws of matrix algebra 
listed in Theorem 1.2.1 will hold true. 
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The type of abstract algebraic system for which this can 
be done is called a ring with identity. By this is meant a set 
R, with a rule of addition and a rule of multiplication; thus 
if ri and r2 are elements of the set R, then there is a unique 
sum r\ + r2 and a unique product r i r 2 in R- In addition the 
following laws are required to hold: 

(a) 7*1 + r2 = r2 + r i , (commutative law of addition): 
(b) (7*1 + r2) + r3 = ri + (r2 + r3) , (associative law of 
addition): 
(c) R contains a zero element OR with the property 
r + OR = r : 
(d) each element r of R has a negative, that is, an 
element —r of R with the property r + (—r) = 0.R : 
(e) (rir2)r3 = ri(r2r^), (associative law of 
multiplication): 
(f) R contains an identity element 1R, different from 0^, 
such that r\R — r = l # r : 
(g) ( ri + ^2)^3 = f]T3 + ^2^3, (distributive law): 
(h) r i ( r 2 + 7-3) = r i r 2 + 7*17-3, (distributive law). 

These laws are to hold for all elements 7*1, r2, r3, r of the 
ring .R . The list of rules ought to seem reasonable since all of 
them are familiar laws of arithmetic. 

If two further rules hold, then the ring is called a field: 

(i) rxr2 = r 2 r i , (commutative law of multiplication): 
(j) each element r in R other than the zero element OK 
has an inverse, that is, an element r"1 in R such that 
rr x = If? = r 1r. 

So the additional rules require that multiplication be a 
commutative operation, and that each non-zero element of R 
have an inverse. Thus a field is essentially an abstract system 
in which one can add, multiply and divide, subject to the usual 
laws of arithmetic. 

Of course the most familiar examples of fields are 
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C and R, 

the fields of complex numbers and real numbers respectively, 
where the addition and multiplication used are those of arith
metic. These are the examples that motivated the definition 
of a field in the first place. Another example is the field of 
rational numbers 

Q 

(Recall that a rational number is a number of the form a/b 
where a and b are integers). On the other hand, the set of all 
integers Z, (with the usual sum and product), is a ring with 
identity, but it is not a field since 2 has no inverse in this ring. 

All the examples given so far are infinite fields. But there 
are also finite fields, the most familiar being the field of two 
elements. This field has the two elements 0 and 1, sums and 
products being calculated according to the tables 

+ 
0 
1 

0 1 
0 1 
1 0 

and 

X 

0 
1 

0 1 
0 0 
0 1 

respectively. For example, we read off from the tables that 
1 + 1 = 0 and 1 x 1 = 1. In recent years finite fields have be
come of importance in computer science and in coding theory. 
Thus the significance of fields extends beyond the domain of 
pure mathematics. 

Suppose now that R is an arbitrary ring with identity. 
An m x n matrix over R is a rectangular m x n array of 
elements belonging to the ring R. It is possible to form sums 
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and products of matrices over R, and the scalar multiple of 
a matrix over R by an element of R, by using exactly the 
same definitions as in the case of matrices with numerical 
entries. That the laws of matrix algebra listed in Theorem 
1.2.1 are still valid is guaranteed by the ring axioms. Thus in 
the general theory the only change is that the scalars which 
appear as entries of a matrix are allowed to be elements of an 
arbitrary ring with identity. 

Some readers may feel uncomfortable with the notion of a 
matrix over an abstract ring. However, if they wish, they may 
safely assume in the sequel that the field of scalars is either 
R or C. Indeed there are places where we will definitely want 
to assume this. Nevertheless we wish to make the point that 
much of linear algebra can be done in far greater generality 
than over R and C. 

Example 1.3.1 

Let A = I 1 and B = I n J be matrices over the 

field of two elements. Using the tables above and the rules of 
matrix addition and multiplication, we find that 

Algebraic structures in linear algebra 
There is another reason for introducing the concept of a 

ring at this stage. For rings, one of the fundamental structures 
of algebra, occur naturally at various points in linear algebra. 
To illustrate this, let us write 

Mn(R) 

for the set of all n x n matrices over a fixed ring with identity 
R. If the standard matrix operations of addition and multipli
cation are used, this set becomes a ring, the ring of all n x n 
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matrices over R. The validity of the ring axioms follows from 
Theorem 1.2.1. An obviously important example of a ring is 
M n ( R ) . Later we shall discover other places in linear algebra 
where rings occur naturally. 

Finally, we mention another important algebraic struc
ture tha t appears naturally in linear algebra, a group. Con
sider the set of all invertible n x n matrices over a ring with 
identity R; denote this by 

GLn(R). 

This is a set equipped with a rule of multiplication; for if A 
and B are two invertible n x n matrices over R, then AB 
is also invertible and so belongs to GLn(R), as the proof of 
Theorem 1.2.3 shows. In addition, each element of this set 
has an inverse which is also in the set. Of course the identity 
nxn matrix belongs to GLn{R), and multiplication obeys the 
associative law. 

All of this means that GLn(R) is a group. The formal 
definition is as follows. A group is a set G with a rule of 
multiplication; thus if g\ and gi are elements of G, there is 
a unique product gig2 in G. The following axioms must be 
satisfied: 

(a) (0102)03 = (0102)03, {associative law): 
(b) there is an identity element 1Q with the property 

1 G 0 = 0 = 0 1 G : 
(c) each element g of G has an inverse element 0 _ 1 in G 
such that gg~l = 1Q = 9'1g-

These statements must hold for all elements g, gi, 02, 03 of G. 
Thus the set GLn (R) of all invertible matrices over R, a 

ring with identity, is a group; this important group is known 
as the general linear group of degree n over R. Groups oc
cur in many areas of science, particularly in situations where 
symmetry is important. 
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Exercises 1.3 

1. Show that the following sets of numbers are fields if the 
usual addition and multiplication of arithmetic are used: 

(a) the set of all rational numbers; 
(b) the set of all numbers of the form a + by/2 where a 
and b are rational numbers; 
(c) the set of all numbers of the form a + by/^l where 
where a and b are rational numbers. 

2. Explain why the ring Mn(C) is not a field if n > 1. 

3. How many n x n matrices are there over the field of two 
elements? How many of these are symmetric ? [You will need 
the formula l + 2 + 3 + '-- + n = n(n + l ) /2; for this see 
Example A.l in the Appendix ]. 

4. Let 

/ l 1 1 \ / O i l 
A = 0 1 1 and B = 1 1 1 

\ 0 1 0 / \ 1 1 0 

be matrices over the field of two elements. Compute A + B, 
A2 and AB. 

5. Show that the set of all n x n scalar matrices over R with 
the usual matrix operations is a field. 

6. Show that the set of all non-zero nxn scalar matrices over 
R is a group with respect to matrix multiplication. 

7. Explain why the set of all non-zero integers with the usual 
multiplication is not a group. 
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SYSTEMS OF LINEAR EQUATIONS 

In this chapter we address what has already been de
scribed as one of the fundamental problems of linear algebra: 
to determine if a system of linear equations - or linear system 
- has a solution, and, if so, to find all its solutions. Almost 
all the ensuing chapters depend, directly or indirectly, on the 
results that are described here. 

2.1 Gaussian Elimination 

We begin by considering in detail three examples of linear 
systems which will serve to show what kind of phenomena are 
to be expected; they will also give some idea of the techniques 
that are available for solving linear systems. 

Example 2.1.1 

xi - x2 + x3 + x4 = 2 
%i + X2 + x3 - x4 = 3 
Xi + 3X2 + £3 — 3^4 = 1 

To determine if the system has a solution, we apply 
certain operations to the equations of the system which are 
designed to eliminate unknowns from as many equations as 
possible. The important point about these operations is that, 
although they change the linear system, they do not change 
its solutions. 

We begin by subtracting equation 1 from equations 2 and 
3 in order to eliminate x\ from the last two equations. These 
operations can be conveniently denoted by (2) — (1) and (3) — 
(1) respectively. The effect is to produce a new linear system 

30 
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X i - x2 

2x2 
4x2 

+a:3 + x4 = 2 

- 2x4 = 1 

- 4x4 = -1 

Next multiply equation 2 of this new system by \, an opera
tion which is denoted by \ (2), to get 

xi - x2 +x 3 + x4 = 2 
1. 
2 

-1 

Finally, eliminate x2 from equation 3 by performing the op
eration (3) — 4(2), that is, subtract 4 times equation 2 from 
equation 3; this yields the linear system 

- x2 

X2 

4x2 

+£3 + x4 
— X4 

- 4x4 

= 

= 

= 

Xi - x2 

X2 

+ x3 + x4 
— X4 

0 

= 2 
1 

— 2 
= -3 

Of course the third equation is false, so the original linear 
system has no solutions, that is, it is inconsistent. 

Example 2.1.2 

X\ 

2xi 
+ 4x2 
- 8x2 

X2 

+ 2X3 
+ 3x3 

+ x3 

= -2 
= 32 

= 1 

Add two times equation 1 to equation 2, that is, perform the 
operation (2) + 2(1), to get 

xi + 4x2 + 2x3 = - 2 
7x3 = 28 

x2 + x3 — 1 
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At this point we should have liked X2 to appear in the second 
equation: however this is not the case. To remedy the situ
ation we interchange equations 2 and 3, in symbols (2)«->(3). 
The linear system now takes the form 

xi + 4x2 + 2x3 = - 2 
X2 + X 3 = 1 

7x3 = 28 

Finally, multiply equation 3 by | , that is, apply | (3) , to get 

xi + 4x2 + 2x3 = - 2 
x2 + x3 = 1 

x3 = 4 

This system can be solved quickly by a process called back 
substitution. By the last equation X3 = 4, so we can substi
tute X3 = 4 in the second equation to get x2 = —3. Finally, 
substitute X3 = 4 and x2 = — 3 in the first equation to get 
x\ = 2. Hence the linear system has a unique solution. 

Example 2.1.3 

( Xi 

< 2X! 

1 -xi 

+ 3x2 
+ 6x2 
- 3x2 

+ 3x3 
+ 9x3 
+ 3x3 

+ 2x4 
+ 5X4 

= 1 
= 5 
= 5 

Apply operations (2) - 2(1) and (3) + (1) successively to 
the linear system to get 

Xi + 3x2 3x3 
3x3 
6x3 

+ 2x4 
+ x4 
+ 2x4 

= 1 
= 3 
= 6 

Since X2 has disappeared completely from the second and third 
equations, we move on to the next unknown x3; applying | (2) , 
we obtain 
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xi + 3x2 + 3x3 + 2^4 = 1 
^3 + §^4 = 1 

6^3 + 2x4 = 6 

Finally, operation (3) - 6(2) gives 

Xi + 3x2 + 3^3 + 2X4 = 1 
1 
3 £3 + kx4 = ! 

0 = 0 

Here the third equation tells us nothing and can be ignored. 
Now observe that we can assign arbitrary values c and d to 
the unknowns X4 and x2 respectively, and then use back sub
stitution to find x3 and x\. Hence the most general solution 
of the linear system is 

x± = — 2 — c — 3d, x2 — d, X3 = 1 — - , £4 = c. 

Since c and d can be given arbitrary values, the linear system 
has infinitely many solutions. 

What has been learned from these three examples? In 
the first place, the number of solutions of a linear system can 
be 0, 1 or infinity. More importantly, we have seen that there 
is a systematic method of eliminating some of the unknowns 
from all equations of the system beyond a certain point, with 
the result that a linear system is reached which is of such a 
simple form that it is possible either to conclude that no solu
tions exist or else to find all solutions by the process of back 
substitution. This systematic procedure is called Gaussian 
elimination; it is now time to give a general account of the 
way in which it works. 
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The general theory of linear systems 

Consider a set of m linear equations in n unknowns xi,x2, 
. . . , xn: 

{
alxxi + ai2x2 + ••• + alnxn = b\ 

a2\Xi + a22x2 + • • • + a2nxn = b2 

&mixi + am2x2 + • • • + amnxn = bm 

By a solution of the linear system we shall mean an n-column 
vector 

fXl\ 
x2 

\xnJ 
such that the scalars x\, x2, ..., xn satisfy all the equations 
of the system. The set of all solutions is called the general 
solution of the linear system; this is normally given in the form 
of a single column vector containing a number of arbitrary 
quantities. A linear system with no solutions is said to be 
inconsistent. 

Two linear systems which have the same sets of solutions 
are termed equivalent. Now in the examples discussed above 
three types of operation were applied to the linear systems: 

(a) interchange of two equations; 
(b) addition of a multiple of one equation to another 

equation; 
(c) multiplication of one equation by a non-zero scalar. 

Notice that each of these operations is invertible. The critical 
property of such operations is that, when they are applied 
to a linear system, the resulting system is equivalent to the 
original one. This fact was exploited in the three examples 
above. Indeed, by the very nature of these operations, any 
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solution of the original system is bound to be a solution of the 
new system, and conversely, by invertibility of the operations, 
any solution of the new system is also a solution of the original 
system. Thus we can state the fundamental theorem: 

Theorem 2.1.1 

When an operation of one of the three types (a), (b), (c) is 
applied to a linear system, the resulting linear system is equiv
alent to the original one. 

We shall now exploit this result and describe the proce
dure known as Gaussian elimination. In this a sequence of 
operations of types (a), (b), (c) is applied to a linear system 
in such a way as to produce an equivalent linear system whose 
form is so simple that we can quickly determine its solutions. 

Suppose that a linear system of m equations in n un
knowns xi, X2, ..., xn is given. In Gaussian elimination the 
following steps are to be carried out. 

(i) Find an equation in which x\ appears and, if necessary, 
interchange this equation with the first equation. Thus we can 
assume that x\ appears in equation 1. 

(ii) Multiply equation 1 by a suitable non-zero scalar in 
such a way as to make the coefficient of x\ equal to 1. 

(iii) Subtract suitable multiples of equation 1 from equa
tions 2 through m in order to eliminate x\ from these equa
tions. 

(iv) Inspect equations 2 through m and find the first equa
tion which involves one of the the unknowns a?2, •••, xn , say 
Xi2. By interchanging equations once again, we can suppose 
that Xi2 occurs in equation 2. 

(v) Multiply equation 2 by a suitable non-zero scalar to 
make the coefficient of Xi2 equal to 1. 

(vi) Subtract multiples of equation 2 from equations 3 
through m to eliminate Xi2 from these equations. 
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(vii) Examine equations 3 through m and find the first 
one that involves an unknown other than x\ and Xi2, say xi3. 
By interchanging equations we may assumethat Xi3 actually 
occurs in equation 3. 

The next step is to make the coefficient of xi3 equal to 1, 
and then to eliminate Xi3 from equations 4 through m, and so 
on. 

The elimination procedure continues in this manner, pro
ducing the so-called pivotal unknowns xi = xix, xi2, ..., Xir, 
until we reach a linear system in which no further unknowns 
occur in the equations beyond the rth. A linear system of this 
sort is said to be in echelon form; it will have the following 
shape. 

Xi1 -f- # Xi2 

Xi2 

< 

K 0 = * 

Here the asterisks represent certain scalars and the ij are in
tegers which satisfy 1 = i\ < %2 < ••• < ir < n- The unknowns 
Xi. for j = 1 to r are the pivots. 

Once echelon form has been reached, the behavior of the 
linear system can be completely described and the solutions 
- if any - obtained by back substitution, as in the preceding 
examples. Consequently we have the following fundamental 
result which describes the possible behavior of a linear system. 

Theorem 2.1.2 
(i) A linear system is consistent if and only if all the entries on 
the right hand sides of those equations in echelon form which 
contain no unknowns are zero. 

+ • • • + * xn = * 
+ • • • + * xn = * 

•Eir i ' ' ' "T * Xn — * 

0 = * 
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(ii) If the system is consistent, the non-pivotal unknowns can 
be given arbitrary values; the general solution is then obtained 
by using back substitution to solve for the pivotal unknowns. 
(iii) The system has a unique solution if and only if all the 
unknowns are pivotal. 

An important feature of Gaussian elimination is that it 
constitutes a practical algorithm for solving linear systems 
which can easily be implemented in one of the standard pro
gramming languages. 

Gauss-Jordan elimination 

Let us return to the echelon form of the linear system 
described above. We can further simplify the system by sub
tracting a multiple of equation 2 from equation 1 to eliminate 
xi2 from that equation. Now xi2 occurs only in the second 
equation. Similarly we can eliminate x;3 from equations 1 
and 2 by subtracting multiples of equation 3 from these equa
tions. And so on. Ultimately a linear system is reached which 
is in reduced echelon form. 

Here each pivotal unknown appears in precisely one equa
tion; the non-pivotal unknowns may be given arbitrary values 
and the pivotal unknowns are then determined directly from 
the equations without back substitution. 

The procedure for reaching reduced echelon form is called 
Gauss-Jordan elimination: while it results in a simpler type of 
linear system, this is accomplished at the cost of using more 
operations. 

Example 2.1.4 

In Example 2.1.3 above we obtained a linear system in echelon 
form 

' X\ + 3^2 + 3^3 + 2^4 = 1 
< x3 + | x 4 = 1 
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Here the pivots are x\ and X3. One further operation must 
be applied to put the system in reduced row echelon form, 
namely (1) - 3(2); this gives 

x\ + 3x2 + X4 — — 2 
£3 + \x± = 1 

To obtain the general solution give the non-pivotal unknowns 
x2 and X4 the arbitrary values d and c respectively, and then 
read off directly the values xi = — 2 — c — 3d and x3 = 1 — c/3. 

Homogeneous linear systems 

A very important type of linear system occurs when all 
the scalars on the right hand sides of the equations equal zero. 

' a n x i + CJ12X2 + 

a2\Xi + a22x2 + 

, amlx1 + am2x2 + 

Such a system is called homogeneous. It will always have the 
trivial solution x\ = 0, x2 = 0, ..., xn = 0; thus a homogeneous 
linear system is always consistent. The interesting question 
about a homogeneous linear system is whether it has any non-
trivial solutions. The answer is easily read off from the echelon 
form. 

Theorem 2.1.3 

A homogeneous linear system has a non-trivial solution if and 
only if the number of pivots in echelon form is less than the 
number of unknowns. 

For if the number of unkowns is n and the number of 
pivots is r, the n — r non-pivotal unknowns can be given arbi
trary values, so there will be a non-trivial solution whenever 

+ «2n^n = 0 

1 Q>mn%n = U 
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n — r > 0. On the other hand, if n = r, none of the unknowns 
can be given arbitrary values, and there is only one solution, 
namely the trivial one, as we see from reduced echelon form. 

Corollary 2.1.4 

A homogeneous linear system of m equations in n unknowns 
always has a non-trivial solution if m <n. 

For if r is the number of pivots, then r <m < n. 

Example 2.1.5 

For which values of the parameter t does the following homo
geneous linear system have non-trivial solutions? 

6a?i - x2 + x3 = 0 
tX\ + X3 = 0 

x2 + tx3 = 0 

It suffices to find the number of pivotal unknowns. We 
proceed to put the linear system in echelon form by applying 
to it successively the operations | (1) , (2) — £(1), (2) «->• (3) 
and ( 3 ) - | ( 2 ) : 

{ Xl - \x2 + | ^ 3 = 0 

x2 + tx3 = 0 
U - S - T ) * 3 =0 

The number of pivots will be less than 3, the number of un
knowns, precisely when 1 — t/6 — t2/6 equals zero, that is, 
when i = 2 or i = - 3 . These are the only values of t for 
which the linear system has non-trivial solutions. 

The reader will have noticed that we deviated slightly 
from the procedure of Gaussian elimination; this was to avoid 
dividing by t/6, which would have necessitated a separate dis
cussion of the case t = 0. 
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Exerc i ses 2.1 

In the first three problems find the general solution or else 
show that the linear system is inconsistent. 

x\ + 2x2 — 3x3 + x4 = 7 
-xi + x2 - x 3 + X4 = 4 

2. 

3. 

+ x 2 — £ 3 — X4 = 0 

+ x3 - x4 = - 1 
+ 2x2 + %3 — 3^4 = 2 

xx + x2 + 2x3 = 4 
Xi - X2 — £ 3 = - 1 

2xi — 4x2 — 5x3 = 1 

Solve the following homogeneous linear systems 

xi + x2 + x 3 + x4 = 0 
(a) { 2xi + 2x2 + £3 + £4 = 0 

xi + x2 - x 3 + x4 = 0 

2xi — X2 + 3x3 = 0 
(b) { 4xi + 2x2 + 2 x 3 = 0 

-2xi + 5x2 — 4x3 = 0 

5. For which values of t does the following homogeneous linear 
system have non-trivial solutions? 

12xi 
tXi 

- x2 

X2 

+ X3 

+ X3 

+ tx3 

= 0 
= 0 
= 0 
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6. For which values of t is the following linear system consis
tent? 

7. How many operations of types (a), (b), (c) are needed in 
general to put a system of n linear equations in n unknowns 
in echelon form? 

2.2 Elementary Row Operations 

If we examine more closely the process of Gaussian elim
ination described in 2.1, it is apparent that much time and 
trouble could be saved by working directly with the augmented 
matrix of the linear system and applying certain operations 
to its rows. In this way we avoid having to write out the 
unknowns repeatedly. 

The row operations referred to correspond to the three 
types of operation that may be applied to a linear system dur
ing Gaussian elimination. These are the so-called elementary 
row operations and they can be applied to any matrix. The 
row operations together with their symbolic representations 
are as follows: 

(a) interchange rows i and j , (i?j <-»• Rj); 
(b) add c times row j to row i where c is any scalar, 

(Ri + cRj); 
(c) multiply row i by a non-zero scalar c, (cRi). 

From the matrix point of view the essential content of The
orem 2.1.2 is that any matrix can be put in what is called 
row echelon form by application of a suitable finite sequence 
of elementary row operations. A matrix in row echelon form 
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has the typical "descending staircase" form 

0 
0 

0 
0 

0 

ll 
0 

0 
0 

0 

* • 

0 • 

0 • 
0 • 

0 • 

* 

• 0 

• 0 
• 0 

• 0 

* 

1 

0 
0 

0 

* • • 
* • • 

0 •• 
0 •• 

0 •• 

* * • 
* * • 

ll * • 
0 0 • 

0 0 • 

* * \ 
* * 

* * 
• 0 * 

• 0 * / 

0 

0 
0 

Vo 
Here the asterisks denote certain scalars. 

Example 2.2.1 

Put the following matrix in row echelon form by applying 
suitable elementary row operations: 

1 3 3 2 1 
2 6 9 5 5 

- 1 - 3 3 0 5 

Applying the row operations R2 — 2R\ and -R3 + R\, we 
obtain 

1 3 3 2 l \ 
0 0 3 1 3 . 
0 0 6 2 6 / 

Then, after applying the operations |i?2 and R3 — 6R2, we 
get 

1 3 3 2 1 
0 0 1 1 / 3 1 
0 0 0 0 0 

which is in row echelon form. 

Suppose now that we wish to solve the linear system with 
matrix form AX = B, using elementary row operations. The 
first step is to identify the augmented matrix M = [A \ B]. 
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Then we put M in row echelon form, using row operations. 
From this we can determine if the original linear system is 
consistent; for this to be true, in the row echelon form of M 
the scalars in the last column which lie below the final pivot 
must all be zero. To find the general solution of a consistent 
system we convert the row echelon matrix back to a linear 
system and use back substitution to solve it. 

Example 2.2.2 

Consider once again the linear system of Example 2.1.3; 

Xl 

2xi 
-Xi 

+ 3x2 
+ 6x2 
- 3x2 

+ 3x3 
+ 9x3 
+ 3x3 

+ 2x4 
+ 5X4 

= 1 
= 5 
= 5 

The augmented matrix here is 

1 3 3 2 1 1 
2 6 9 5 1 5 
1 — 3 3 0 1 5 

Now we have just seen in Example 2.2.1 that this matrix has 
row echelon form 

1 3 3 2 
0 0 11/3 
0 0 0 0 

1 1 
| 1 
1 0 

Because the lower right hand entry is 0, the linear system is 
consistent. The linear system corresponding to the last matrix 
is 

Xi + 3X2 + 3X3 + 2X4 = 1 

£3 + - x 4 = 1 

0 = 0 
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Hence the general solution given by back substitution is x\ = 
—2 — c — 3d, X2 = d, £3 = 1 — c/3, £4 = c, where c and d are 
arbitrary scalars. 

The matrix formulation enables us to put our conclusions 
about linear systems in a succinct form. 

Theorem 2.2.1 

Let AX = B be a linear system of equations in n unknowns 
with augmented matrix M = [A \ B]. 

(i) The linear system is consistent if and only if the matri
ces A and M have the same numbers of pivots in row echelon 
form. 

(ii) If the linear system is consistent and r denotes the 
number of pivots of A in row echelon form, then the n — r 
unknowns that correspond to columns of A not containing a 
pivot can be given arbitrary values. Thus the system has a 
unique solution if and only if r = n. 

Proof 

For the linear system to be consistent, the row echelon form 
of M must have only zero entries in the last column below the 
final pivot; but this is just the condition for A and M to have 
the same numbers of pivots. 

Finally, if the linear system is consistent, the unknowns 
corresponding to columns that do not contain pivots may be 
given arbitrary values and the remaining unknowns found by 
back substitution. 

Reduced row echelon form 

A matrix is said to be in reduced row echelon form if it is 
in row echelon form and if in each column containing a pivot 
all entries other than the pivot itself are zero. 
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Example 2.2.3 

Put the matrix 
1 1 2 2 
4 4 9 10 
3 3 6 7 

in reduced row echelon form. 

By applying suitable row operations we find the row ech
elon form to be 

' 1 1 2 2' 
0 0 1 2 
0 0 0 1 

Notice that columns 1, 3 and 4 contain pivots. To pass to 
reduced row echelon form, apply the row operations Ri — 2R2, 
R\ + 2i?3 and R2 — 2R3: the answer is 

1 1 0 0' 
0 0 1 0 
0 0 0 1 

As this example illustrates, one can pass from row echelon 
form to reduced row echelon form by applying further row op
erations; notice that this will not change the number of pivots. 
Thus an arbitrary matrix can be put in reduced row echelon 
form by applying a finite sequence of elementary row opera
tions. The reader should observe that this is just the matrix 
formulation of the Gauss-Jordan elimination procedure. 

Exercises 2.2 

1. Put each of the following matrices in row echelon form: 

, (b) 
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/ l 2 - 3 1 \ 
(c) 3 1 2 2 . 

\ 8 1 9 1 / 

2. Put each of the matrices in Exercise 2.2.1 in reduced row 
echelon form. 

3. Prove that the row operation of type (a) which interchanges 
rows i and j can be obtained by a combination of row opera
tions of the other two types, that is, types (b) and (c). 

4. Do Exercises 2.1.1 to 2.1.4 by applying row operations to 
the augmented matrices. 

5. How many row operations are needed in general to put an 
n x n matrix in row echelon form? 

6. How many row operations are needed in general to put an 
n x n matrix in reduced row echelon form? 

7. Give an example to show that a matrix can have more than 
one row echelon form. 

8. If A is an invertible n x n matrix, prove that the linear 
system AX = B has a unique solution. What does this tell 
you about the number of pivots of A? 

9. Show that each elementary row operation has an inverse 
which is also an elementary row operation. 
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2.3 Elementary Matr ices 

An nxn matrix is called elementary if it is obtained from 
the identity matrix In in one of three ways: 

(a) interchange rows i and j where i ^ j ; 
(b) insert a scalar c as the (i,j) entry where % ^ j ; 
(c) put a non-zero scalar c in the (i, i) position. 

Example 2.3.1 

Write down all the possible types of elementary 2x2 matrices. 
These are the elementary matrices that arise from the matrix 

12 = ( o i ) ' t h e y are 

Ei=[ I l ) , E 2 = ( l
0 [ ) , * * = ( I I 

and 

* - « s : ) • * - ( * °e 

Here c is a scalar which must be non-zero in the case of E4 
and E5. 

The significance of elementary matrices from our point of 
view lies in the fact that when we premultiply a matrix by an 
elementary matrix, the effect is to perform an elementary row 
operation on the matrix. For example, with the matrix 

A _ 1 i n ^12 

«21 «22 

and elementary matrices listed in Example 2.3.1, we have 

EA=(a21 a22\ EA=(ail + Ca21 a i2 + c«22N 

U i i a i 2 / ' 2 V a 2i a22 
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and 

E5A = ( au ° 1 2 ") . 
\ca2i ca22J 

Thus premultiplication by E\ interchanges rows 1 and 2; pre-
multiplication by E2 adds c times row 2 to row 1; premultipli
cation by £5 multiplies row 2 by c . What then is the general 
rule? 

Theorem 2.3.1 
Let A be an m x n matrix and let E be an elementary m xm 
matrix. 

(i) / / E is of type (a), then EA is the matrix obtained 
from A by interchanging rows i and j of A; 

(ii) if E is type (b), then EA is the matrix obtained from 
A by adding c times row j to row i; 

(iii) if E is of type (c), then EA arises from A by multi
plying row i by c. 

Now recall from 2.2 that every matrix can be put in re
duced row echelon form by applying elementary row opera
tions. Combining this observation with 2.3.1, we obtain 

Theorem 2.3.2 
Let A be any mxn matrix. Then there exist elementary mxm 
matrices E\, E2, • ••, Ek such that the matrix EkE^-i • • • E\A 
is in reduced row echelon form. 

Example 2.3.2 
Consider the matrix 

A= [2 1 oj-
We easily put this in reduced row echelon form B by applying 
successively the row operations R\ <-> R2, ^R\, R\ — ̂ R2 • 

. (2 1 0 \ (I 1/2 0 \ (I 0 - 1 \ _ 
^ ^ 0 1 2)^\Q 1 2 ; ~ ^ 0 1 2J~ 
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Hence E^E2E\A = B where 

* - ( ! i ) . * - (Y: ) ' * - ( i _ 1 / ?) 
Column operations 

Just as for rows, there are three types of elementary col
umn operation, namely: 

(a) interchange columns i and j , ( C{ «-> Cj); 
(b) add c times column j to column i where c is a scalar, 
(Ci + cCj); 
(c) multiply column i by a non-zero scalar c, ( cCi). 

(The reader is warned, however, that column operations can
not in general be applied to the augmented matrix of a linear 
system without changing the solutions of the system.) 

The effect of applying an elementary column operation 
to a matrix is simulated by right multiplication by a suitable 
elementary matrix. But there is one important difference from 
the row case. In order to perform the operation Ci + cCj to a 
matrix A one multiplies on the right by the elementary matrix 
whose (j, i) element is c. For example, let 

E=(l *) and A=(an °12V 
\c 1J \a2i a22J 

Then 
AE _ / i n + c a i 2 a12 

\a2i + ca22 a22 

Thus E performs the column operation C\ + 2C2 and not 
C2 + 2C\. By multiplying a matrix on the right by suitable 
sequences of elementary matrices, a matrix can be put in col
umn echelon form or in reduced column echelon form; these 
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are just the transposes of row echelon form and reduced row 
echelon form respectively. 

Example 2.3.3 
/ 3 6 2 \ 

Put the matrix A = I J in reduced column echelon 

form. 
Apply the column operations \C\, C2 — 6Ci, C3 — 2Ci, 

C2 <-> C3, ^ C 2 , and Cx - \C2 : 

A 
1 6 2 \ / 1 0 0 

1/3 2 7J ^ \l/3 0 19/3 

1 0 0 \ / 1 0 0 
1/3 19/3 0y ~* ^ 1/3 1 0 

1 0 0 
0 1 0 

We leave the reader to write down the elementary matrices 
that produce these column operations. 

Now suppose we are allowed to apply both row and column 
operations to a matrix. Then we can obtain first row echelon 
form; subsequently column operations may be applied to give 
a matrix of the very simple type 

'Ir 0 
0 0 

where r is the number of pivots. This is called the normal 
form of the matrix; we shall see in 5.2 that every matrix has 
a unique normal form. These conclusions are summed up in 
the following result. 
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Theorem 2.3.3 
Let A be anmxn matrix. Then there exist elementary mxm 
matrices E\,..., Ek and elementary nxn matrices F\,..., Fi 
such that 

Ek---ElAF1---Fl=N, 

the normal form of A. 

Proof 
By applying suitable row operations to A we can find elemen
tary matrices Ei, ..., Ek such that B = Ek • • • E\A is in row 
echelon form. Then column operations are applied to reduce 
B to normal form; this procedure yields elementary matrices 
F i , ..., Fi such that N = BF1 • • • F = Ek • • • E1AF1 • • • Ft is 
the normal form of A. 

Corollary 2.3.4 
For any matrix A there are invertible matrices X and Y such 
that N = XAY, or equivalently A = X~1NY~1, where N is 
the normal form of A. 

For it is easy to see that every elementary matrix is in
vertible; indeed the inverse matrix represents the inverse of the 
corresponding elementary row (or column) operation. Since 
by 1.2.3 any product of invertible matrices is invertible, the 
corollary follows from 2.3.3. 

Example 2.3.4 

(1 2 2 \ 
Let A = „ „ , . Find the normal form N of A and write 

\2 3 4 J 
N as the product of A and elementary matrices as specified 
in 2.3.3. 

All we need do is to put A in normal form, while keeping 
track of the elementary matrices that perform the necessary 
row and column operations. Thus 
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A^l1 2 2 \ A 2 2 \ / I 0 2~ 
0 - 1 Oj \0 1 Oj \0 1 0 

1 0 0 
0 1 0 

which is the normal form of A. Here three row operations and 
one column operation were used to reduce A to its normal 
form. Therefore 

E3E2E1AF1 = N 

where 

* = | J ? ) . * = f j ? ) , * 3 = ' 1 ^ -2 \) ' ^ V0 - 1 ) ' •* I 0 1 

and 

Inverses of matrices 

Inverses of matrices were defined in 1.2, but we deferred 
the important problem of computing inverses until more was 
known about linear systems. It is now time to address this 
problem. Some initial information is given by 

Theorem 2.3.5 

Let A be annxn matrix. Then the following statements about 
A are equivalent, that is, each one implies all of the others. 

(a) A is invertible; 
(b) the linear system AX = 0 has only the trivial solution; 
(c) the reduced row echelon form of A is In; 
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(d) A is a product of elementary matrices. 

Proof 
We shall establish the logical implications (a) —> (b), (b) —• 
(c), (c) —> (d), and (d) —> (a). This will serve to establish the 
equivalence of the four statements. 

If (a) holds, then A~l exists; thus if we multiply both 
sides of the equation AX = 0 on the left by A"1, we get 
A'1 AX = A^10, so that X = A - 1 0 = 0 and the only solution 
of the linear system is the trivial one. Thus (b) holds. 

If (b) holds, then we know from 2.1.3 that the number of 
pivots of A in reduced row echelon form is n. Since A is n x n, 
this must mean that In is the reduced row echelon form of A, 
so that (c) holds. 

If (c) holds, then 2.3.2 shows that there are elementary 
matrices E±, ...,Ek such that Ek • • • E±A = In. Since elemen
tary matrices are invertible, Ek- • -E\ is invertible, and thus 
A=(Ek--- E i ) " 1 = E^1 • • • E^1, so that (d) is true. 

Finally, (d) implies (a) since a product of elementary ma
trices is always invertible. 

A procedure for finding the inverse of a matrix 

As an application of the ideas in this section, we shall 
describe an efficient method of computing the inverse of an 
invertible matrix. 

Suppose that A is an invertible n x n matrix. Then 
there exist elementary n x n matrices E\, E^, • • •, Ek such that 
Ek--- E2EXA = In, by 2.3.2 and 2.3.5. Therefore 

A-1 = InA~l = (£*••• E2ElA)A~1 = (Ek--- E2E1)In. 

This means that the row operations which reduce A to its 
reduced row echelon form In will automatically transform In 

to A - 1 . It is this crucial observation which enables us to 
compute A~x. 
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The procedure for computing A x starts with the parti
tioned matrix 

[A | In] 

and then puts it in reduced row echelon form. If A is invertible, 
the reduced row echelon form will be 

[In I A-1], 

as the discussion just given shows. On the other hand, if the 
procedure is applied to a matrix that is not invertible, it will 
be impossible to reach a reduced row echelon form of the above 
type, that is, one with In on the left. Thus the procedure will 
also detect non-invertibility of a matrix. 

Example 2.3.5 

Find the inverse of the matrix 

A = 

Put the matrix [A | J3] in reduced row echelon form, using 
elementary row operations as described above: 

1/2 0 0' 
1/2 1 0 
0 0 1 
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-1/2 0 | 
1 -2/3 I 

-1 2 I 

1 0 -1/3 | 2/3 1/3 0' 
0 1 -2/3 J 1/3 2/3 0 
0 0 4/3 | 1/3 2/3 1 

1/3 | 2/3 1/3 0 
2/3 I 1/3 2/3 0 

1 j 1/4 1/2 3/4 

| 3/4 1/2 1/4 \ 

I V 2 1 V 2 , 
I 1/4 1/2 3 / 4 / 

which is the reduced row echelon form. Therefore A is invert-
ible and 

/ 3 / 4 1/2 1/4' 
A'1 = 1 / 2 1 1/2 

\ l / 4 1/2 3/4 

This answer can be verified by checking that A A"1 = 1$ = 
A~lA. 

As this example illustrates, the procedure for finding the 
inverse of a n x n matrix is an efficient one; in fact at most 
n2 row operations are required to complete it (see Exercise 
2.3.10). 

Exercises 2.3 

1. Express each of the following matrices as a product of 
elementary matrices and its reduced row echelon form: 
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2. Express the second matrix in Exercise 1 as a product of 
elementary matrices and its reduced column echelon form. 

3. Find the normal form of each matrix in Exercise 1. 

4. Find the inverses of the three types of elementary matrix, 
and observe that each is elementary and corresponds to the 
inverse row operation. 

5. What is the maximum number of column operations needed 
in general to put an n x n matrix in column echelon form and 
in reduced column echelon form? 

6. Compute the inverses of the following matrices if they exist: 

2 
1 
0 

- 3 
0 

- 1 

1 \ 
2 

- 3 / 

/ 
; (c) 

\ 

2 1 7 
- 1 4 10 

3 2 12 

7. For which values of t does the matrix 

6 
t 
0 

- 1 
0 
1 

1 
1 
t 

not have an inverse? 

8. Give necessary and sufficient conditions for an upper tri
angular matrix to be invertible. 

9. Show by an example that if an elementary column opera
tion is applied to the augmented matrix of a linear system, the 
resulting linear system need not be equivalent to the original 
one. 

10. Prove that the number of elementary row operations 
needed to find the inverse of an n x n matrix is at most n2. 
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DETERMINANTS 

Associated with every square matrix is a scalar called the 
determinant. Perhaps the most striking property of the de
terminant of a matrix is the fact that it tells us if the matrix 
is invertible. On the other hand, there is obviously a limit 
to the amount of information about a matrix which can be 
carried by a single scalar, and this is probably why determi
nants are considered less important today than, say, a hundred 
years ago. Nevertheless, associated with an arbitrary square 
matrix is an important polynomial, the characteristic poly
nomial, which is a determinant. As we shall see in Chapter 
Eight, this polynomial carries a vast amount of information 
about the matrix. 

3.1 Permutations and the Definition of a Determinant 

Let A = (aij) be an n x n matrix over some field of scalars 
(which the reader should feel free to assume is either R or C). 
Our first task is to show how to define the determinant of A, 
which will be written either 

det(A) 

or else in the extended form 

an 
Q21 

a i2 
«22 &2n 

O-nl an2 

For n = l and 2 the definition is simple enough: 

ki l l = a n and a u a i 2 

« 2 i a-ii 
^ 1 1 ^ 2 2 — ^ 1 2 0 2 1 -

57 
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For example, |6| = 6 and 

Where does the expression a\\a22 — a,\2a2\ come from? 
The motivation is provided by linear systems. Suppose that 
we want to solve the linear system 

a n x i +012X2 = 61 
a2ixi + a22x2 = h 

for unknowns x\ and x2. Eliminate x2 by subtracting a\2 

times equation 2 from a22 times equation 1; in this way we 
obtain 

(ana22 - ai2a2i)xi = 61022 - aX2b2. 

This equation expresses xi as the quotient of a pair of 2 x 2 
determinants: 

bx aX2 

b2 a22 

an aw 
a2i a22 

provided, of course, that the denominator does not vanish. 
There is a similar expression for x2. 

The preceding calculation indicates that 2 x 2 determi
nants are likely to be of significance for linear systems. And 
this is confirmed if we try the same computation for a lin
ear system of three equations in three unknowns. While the 
resulting solutions are complicated, they do suggest the fol
lowing definition for det(^4) where A = (0,^)3,3; 

a n a 2 2 0 3 3 + <2l2<223a31 + Q l 3 « 2 i a 3 2 

—ai2a2id33 — ai3a22a,3i — ana23a32 

2 - 3 
4 1 14. 
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What are we to make of this expression? In the first place it 
contains six terms, each of which is a product of three entries 
of A. The second subscripts in each term correspond to the 
six ways of ordering the integers 1, 2, 3, namely 

1,2,3 2,3,1 3,1,2 2,1,3 3,2,1 1,3,2. 

Also each term is a product of three entries of A, while three 
of the terms have positive signs and three have negative signs. 

There is something of a pattern here, but how can one 
tell which terms are to get a plus sign and which are get a 
minus sign? The answer is given by permutations. 

Permutations 
Let n be a fixed positive integer. By a permutation of 

the integers 1, 2 , . . . , n we shall mean an arrangement of these 
integers in some definite order. For example, as has been 
observed, there are six permutations of the integers 1, 2, 3. 

In general, a permutation of 1, 2 , . . . , n can be written in 
the form 

k , 12, ••• , in 

where ii, i2,. • •, in are the integers 1, 2 , . . . , n in some order. 
Thus to construct a permutation we have only to choose dis
tinct integers ii, i2, •.., in from the set {1, 2 , . . . , n). Clearly 
there are n choices for i\\ once i\ has been chosen, it cannot 
be chosen again, so there are just n — 1 choices for i2\ since 
i\ and i2 cannot be chosen again, there are n — 2 choices for 
^3, and so on. There will be only one possible choice for in 

since n — 1 integers have already been selected. The number 
of ways of constructing a permutation is therefore equal to the 
product of these numbers 

n(n - l)(n - 2) •• - 2 - 1 , 
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which is written 

n! 

and referred to as "n factorial". Thus we can state the follow
ing basic result. 

Theorem 3.1.1 

The number of permutations of the integers 1,2,... ,n equals 
n! = n ( n - l ) - - - 2 - 1. 

Even and odd permutations 

A permutation of the integers 1,2, ...,n is called even 
or odd according to whether the number of inversions of the 
natural order 1,2,... ,n that are present in the permutation 
is even or odd respectively. For example, the permutation 1, 
3, 2 involves a single inversion, for 3 comes before 2; so this 
is an odd permutation. For permutations of longer sequences 
of integers it is advantageous to count inversions by means of 
what is called a crossover diagram. This is best explained by 
an example. 

Example 3.1.1 

Is the permutation 8, 3, 2, 6, 5, 1, 4, 7 even or odd? 

The procedure is to write the integers 1 through 8 in the 
natural order in a horizontal line, and then to write down the 
entries of the permutation in the line below. Join each integer 
i in the top line to the same integer i where it appears in the 
bottom line, taking care to avoid multiple intersections. The 
number of intersections or crossovers will be the number of 
inversions present in the permutation: 



3.1: The Definition of a Determinant 61 

1 2 3 4 5 6 7 8 

8 3 2 6 5 1 4 7 

Since there are 15 crossovers in the diagram, this permutation 
is odd. 

A transposition is a permutation that is obtained from 
1, 2 , . . . , n by interchanging just two integers. Thus 
2,1, 3 ,4 , . . . , n is an example of a transposition. An important 
fact about transpositions is that they are always odd. 

Theorem 3.1.2 

Transpositions are odd permutations. 

Proof 

Consider the transposition which interchanges i and j , with 
i < j say. The crossover diagram for this transposition is 

1 2 . . . / / + 1 . . . j - 1 j j + 1 . . . n 

1 2 . . . j i + 1 . . . j - 1 / j + 1 . . . n 

Each of the j — i — 1 integers i + 1, i + 2,..., j — 1 gives rise 
to 2 crossovers, while i and j add one more. Hence the total 
number of crossovers in the diagram equals 2(j — i — 1) + 1, 
which is odd. 

It is important to determine the numbers of even and odd 
permutations. 
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Theorem 3.1.3 

If n > 1, there are \{n\) even permutations of 1,2,... ,n and 
the same number of odd permutations. 

Proof 
If the first two integers are interchanged in a permutation, 
it is clear from the crossover diagram that an inversion is 
either added or removed. Thus the operation changes an even 
permutation to an odd permutation and an odd permutation 
to an even one. This makes it clear that the numbers of even 
and odd permutations must be equal. Since the total number 
of permutations is n\, the result follows. 

Example 3.1.2 

The even permutations of 1, 2, 3 are 

1,2,3 2,3,1 3,1,2, 

while the odd permutations are 

2,1,3 3,2,1 1,3,2. 

Next we define the sign of a permutation i\, i2,. •., in 

sign(ii, i 2 , . . . , in) 

to be +1 if the permutation is even and —1 if the permutation 
is odd. For example, sign(3, 2, 1) = —1 since 3, 2, 1 is an odd 
permutation. 

Permutation matrices 

Before proceeding to the formal definition of a determi
nant, we pause to show how permutations can be represented 
by matrices. An nxn matrix is called a permutation matrix if 
it can be obtained from the identity matrix In by rearranging 
the rows or columns. For example, the permutation matrix 
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is obtained from I3 by cyclically permuting the columns, C\ —> 
C2 —» C3 —> C\. Permutation matrices are easy to recognize 
since each row and each column contains a single 1, while all 
other entries are zero. 

Consider a permutation i\, 22, . . . , in of 1,2,.. . , n, and let 
P be the permutation matrix which has (j,ij) entry equal to 
1 for j = 1,2,... , n, and all other entries zero. This means 
that P is obtained from In by rearranging the columns in 
the manner specified by the permutation i\,. . . ,in , that is, 

Cj Ci,. Then, as matrix multiplication shows, 

(X\ (ix\ 
2 i2 

\nj \inJ 

Thus the effect of a permutation on the order 1,2,... ,n is 
reproduced by left multiplication by the corresponding per
mutation matrix. 

Example 3.1.3 

The permutation matrix which corresponds to the permuta
tion 4, 2, 1, 3 is obtained from I4 by the column replacements 
Ci —• C4, C2 —> C2, C3 —» Ci, C4 —> C3. It is 

P = 

/ 0 0 0 1 \ 
0 1 0 0 
1 0 0 0 

Vo 0 1 0/ 
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and indeed 

P 
2 
3 w 

Definition of a determinant in general 

We are now in a position to define the general n x n 
determinant. Let A = (ay)n,n be an n x n matrix over some 
field of scalars. Then the determinant of A is the scalar defined 
by the equation 

det(A) = Y^ sign(i1,i2,...,in)aUla2i2 

where the sum is taken over all permutations ii,%2, • • • ,in of 
1,2, . . . ,n. 

Thus det(.A) is a sum of n\ terms each of which involves 
a product of n elements of A, one from each row and one 
from each column. A term has a positive or negative sign 
according to whether the corresponding permutation is even or 
odd respectively. One determinant which can be immediately 
evaluated from the definition is that of In: 

det(In) = 1. 

This is because only the permutation 1,2,... ,n contributes a 
non-zero term to the sum that defines det(Jn). 

If we specialise the above definition to the cases n = 
1,2,3, we obtain the expressions for det(^4) given at the be
ginning of the section. For example, let n — 3; the even and 
odd permutations are listed above in Example 3.1.2. If we 
write down the terms of the determinant in the same order, 
we obtain 
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ana220-33 + a 1 2 a 2 3 a 3 1 + ai3G21<332 

— 012021033 — 013022^31 — ^ I i a 2 3 t l 3 2 

We could in a similar fashion write down the general 4 x 4 de
terminant as a sum of 4! = 2 4 terms, 12 with a positive sign 
and 12 with a negative sign. Of course, it is clear that the 
definition does not provide a convenient means of comput
ing determinants with large numbers of rows and columns; 
we shall shortly see that much more efficient procedures are 
available. 

Example 3.1.4 

What term in the expansion of the 8x8 determinant det((ajj)) 
corresponds to the permutation 8, 3, 2, 6, 5, 1, 4, 7 ? 

We saw in Example 3.1.1 that this permutation is odd, 
so its sign is —1; hence the term sought is 

~ C t l8a23 a 32«46a55«6l074^87-

Minors and cofactors 
In the theory of determinants certain subdeterminants 

called minors prove to be a useful tool. Let A = (a^) be an 
n x n matrix. The (i, j) minor Mi;- of A is defined to be the 
determinant of the submatrix of A that remains when row i 
and column j of A are deleted. 

The (i, j) cofactor Aij of A is simply the minor with an 
appropriate sign: 

Ay = ( - l r ^ M y . 

For example, if 

( a n «12 a13\ 
a2\ a22 a23 J , 
«31 «32 G 3 3 / 
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then 

and 

M23 = a n a i 2 
«31 ^32 

a l l a 3 2 — ^12031 

I23 = ( -1) 2 + 3 M 2 3 = ai2a3 i - ana 3 2 . 

One reason for the introduction of cofactors is that they 
provide us with methods of calculating determinants called 
row expansion and column expansion. These are a great im
provement on the defining sum as a means of computing de
terminants. The next result tells us how they operate. 

Theorem 3.1.4 

Let A = (dij) be an n x n matrix. Then 

(i) det(A) = X]fc=i aikMk , (expansion by row i); 

(ii) det(A) = Efc = i akjAkj, (expansion by column j). 

Thus to expand by row i, we multiply each element in 
row i by its cofactor and add up the resulting products. 

Proof of Theorem 3.1.4 
We shall give the proof of (i); the proof of (ii) is similar. It 
is sufficient to show that the coefficient of a^ in the defining 
expansion of det(.A) equals A^. Consider first the simplest 
case, where i = 1 = k. The terms in the defining expansion of 
det(.A) that involve a n are those that appear in the sum 

Y^ sign(1> *2, ••• , in)ana2i2 •••anin. 

Here the sum is taken over all permutations of 1,2,... ,n which 
have the form 1, z 2 , i 3 , . . . , zn. This sum is clearly the same as 

au(%2 sign(i2, i3, ... , in)a2i2
a3i3 
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where the summation is now over all permutations 12, • • •, in 

of the integers 2 , . . . , n. But the coefficient of a n in this last 
expression is just Mu = An. Hence the coefficient of a n is 
the same on both sides of the equation in (i). 

We can deduce the corresponding statement for general i 
and k by means of the following device. The idea is to move 
dik to the (1, 1) position of the matrix in such a way that it 
will still have the same minor M^. To do this we interchange 
row % of A successively with rows i — l,i — 2,...,l, after which 
dik will be in the (1, k) position. Then we interchange column 
k with the columns k — l,k — 2,...,l successively, until a^ is in 
the (1,1) position. If we keep track of the determinants that 
arise during this process, we find that in the final determinant 
the minor of aik is still M^. So by the result of the first 
paragraph, the coefficient of a^ in the new determinant is 
Mik. 

However each row and column interchange changes the 
sign of the determinant. For the effect of such an interchange 
is to switch two entries in every permutation, and, as was 
pointed out during the proof of 3.1.3, this changes a permu
tation from even to odd, or from odd to even. Thus the sign 
of each permutation is changed by —1. The total number of 
interchanges that have been applied is (i — 1) + (k — 1) = 
i + k — 2. The sign of the determinant is therefore changed by 
( - l ) i + f c ~ 2 = ( - l ) i + f c . It follows that the coefficient of a^ in 
det(A) is (—l)l+kMik, which is just the definition of An-. 

(It is a good idea for the reader to write out explicitly 
the row and column interchanges in the case n — 3 and i = 2, 
k = 3, and to verify the statement about the minor M23). 

The theorem provides a practical method of computing 
3 x 3 determinants; for determinants of larger size there are 
more efficient methods, as we shall see. 
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Example 3.1.5 
Compute the determinant 

1 2 0 
4 2 - 1 . 
6 2 2 

For example, we may expand by row 1, obtaining 

2 - 1 
2 2 

+ 2 ( - l ) 3 4 - 1 
6 2 

+ 0 ( - l ) 4 4 2 
6 2 

= 6 - 28 + 0 = -22. 

Alternatively, we could expand by column 2: 

4 - 1 
6 2 

+ 2 ( - l ) 4 1 0 
6 2 

+ 2 ( - l ) 5 1 0 
4 - 1 

= -28 + 4 + 2 = -22 . 

However there is an obvious advantage in expanding by a row 
or column which contains as many zeros as possible. 

The determinant of a triangular matrix can be written 
down at once, an observation which is used frequently in cal
culating determinants. 

Theorem 3.1.5 
The determinant of an upper or lower triangular matrix equals 
the product of the entries on the principal diagonal of the ma
trix. 

Proof 
Suppose that A = (oij)n)Tl is, say, upper triangular, and ex
pand det(i4) by column 1. The result is the product of a n 
and an (n — 1) x (n — 1) determinant which is also upper tri
angular. Repeat the operation until a 1 x 1 determinant is 
obtained (or use mathematical induction). 
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Exercises 3.1 

1. Is the permutation 1, 3, 8, 5, 2, 6, 4, 7 even or odd? What 
is the corresponding term in the expansion of d e t ^ a ^ ^ s ) ? 

2. The same questions for the permutation 8, 5, 3, 2, 1, 7, 6, 
9,4. 

3. Use the definition of a determinant to compute 

1 - 3 0 
2 1 4 

-1 0 1 

4. How many additions, subtractions and multiplications are 
needed to compute a n n x n determinant by using the defini
tion? 
5. For the matrix 

2 
4 

-1 

3 
3 
2 

find the minors Mi3 , M23 and M33, and the corresponding 
cofactors Ai3, A23 and A33. 

6. Use the cofactors found in Exercise 5 to compute the de
terminant of the matrix in that problem. 

7. Use row or column expansion to compute the following 
determinants: 

(a) 
- 2 2 3 

2 2 1 
0 0 5 

(c) 

1 
0 
0 
0 

, (b) 

1 
2 
1 

0 
- 2 3 

4 2 
0 - 3 
0 0 

- 2 
0 
0 

1 
4 
1 
1 
3 

3 4 
1 3 

- 1 2 

1 3 
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8. If A is the n x n matrix 

/ 0 0 • • • 0 ax \ 
0 0 ••• a2 0 

\ a n 0 ••• 0 0 / 

show that det(A) = ( - l ) n ( n - 1 ) / 2 a ia 2 • • • an. 

9. Write down the permutation matrix that represents the 
permutation 3, 1, 4, 5, 2. 

10. Let ii,..., in be a permutation of 1 , . . . , n , and let P be 
the corresponding permutation matrix. Show that for any n x 
n matrix A the matrix AP is obtained from A by rearranging 
the columns according to the scheme Cj —> Cj.. 

11. Prove that the sign of a permutation equals the determi
nant of the corresponding permutation matrix. 

12. Prove that every permutation matrix is expressible as a 
product of elementary matrices of the type that represent row 
or column interchanges. 

13. If P is any permutation matrix, show that P"1 = PT. 
[Hint: apply Exercise 10]. 

3.2 Basic Properties of Determinants 

We now proceed to develop the theory of determinants, 
establishing a number of properties which will allow us to 
compute determinants more efficiently. 

Theorem 3.2.1 
If A is an n x n matrix, then 

&et(AT) =det(A). 
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Proof 
The proof is by mathematical induction. The statement is 
certainly true if n = 1 since then AT = A. Let n > 1 and 
assume that the theorem is true for all matrices with n — 1 
rows and columns. Expansion by row 1 gives 

n 

3 = 1 

Let B denote the matrix AT. Then a^ = bji. By induction on 
n, the determinant A±j equals its transpose. But this is just 
the (j, 1) cofactor Bji of B. Hence A\j = Bji and the above 
equation becomes 

n 

det(A) = ^2bjiBji. 

However the right hand side of this equation is simply the 
expansion of det(B) by column 1; thus det(A) = det(B). 

A useful feature of this result is that it sometimes enables 
us to deduce that a property known to hold for the rows of a 
determinant also holds for the columns. 

Theorem 3.2.2 
A determinant with two equal rows (or two equal columns) is 
zero. 

Proof 
Suppose that the n x n matrix A has its j th and kth rows 
equal. We have to show that det(A) = 0. Let ii,i^, • •., in be 
a permutation of 1, 2 , . . . , n; the corresponding term in the ex
pansion of det(i4) is sign(ii, i-2, . . . , «n)aii102i2 • • -ctnin- Now 
if we switch ij and i^ in this product, the sign of the permuta
tion is changed, but the product of the a's remains the same 
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since ajifc = a,kik and a^ = a^. This means that the term 
under consideration occurs a second time in the denning sum 
for det(.A), but with the opposite sign. Therefore all terms in 
the sum cancel and det(^4) equals zero. 

Notice that we do not need to prove the statement for 
columns because of the remark following 3.2.1. 

The next three results describe the effect on a determi
nant of applying a row or column operation to the associated 
matrix. 

Theorem 3.2.3 
(i) If a single row (or column) of a matrix A is multiplied 
by a scalar c, the resulting matrix has determinant equal 
to c(det(A)). 
(ii) If two rows (or columns) of a matrix A are 
interchanged, the effect is to change the sign of the 
determinant. 
(iii) The determinant of a matrix A is not changed if a 
multiple of one row (or column) is added to another row 
(or column). 

Proof 
(i) The effect of the operation is to multiply every term in 
the sum defining det(A) by c. Therefore the determinant is 
multiplied by c. 
(ii) Here the effect of the operation is to switch two entries 
in each permutation of 1, 2 , . . . , n; we have already seen that 
this changes the sign of a permutation, so it multiplies the 
determinant by —1. 
(iii) Suppose that we add c times row j to row k of the matrix: 
here we shall assume that j < k. If C is the resulting matrix, 
then det(C) equals 

^2 s ign(i i , . . . , in)aiii • • • %•*,- • • • (akik + cajik ) • • • anin, 
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which is turn equals the sum of 

^2 s i gna l , . . . , in)oii1 •• 

and 

c ^ s i g n ( i 1 , . . . , i n ) a i i l • 

"3h ' akik ' ' ' anin 

• a 31 j a 3lk 
1 ar 

Now the first of these sums is simply det(^4), while the second 
sum is the determinant of a matrix in which rows j and k are 
identical, so it is zero by 3.2.2. Hence det(C) = det(A). 

Now let us see how use of these properties can lighten the 
task of evaluating a determinant. Let A be an n x n matrix 
whose determinant is to be computed. Then elementary row 
operations can be used as in Gaussian elimination to reduce A 
to row echelon form B. But B is an upper triangular matrix, 
say 

(bn bi2 ••• & l n \ 

0 b22 • • • b2n B = 

\ 0 0 "nn / 

so by 3.1.5 we obtain det(B) = 611622 • • -bun- Thus all that 
has to be done is to keep track, using 3.2.3, of the changes in 
det(.A) produced by the row operations. 

Example 3.2.1 
Compute the determinant 

D = 

0 
1 

- 2 
1 

1 
1 

- 2 
- 2 

2 
1 
3 

- 2 

3 
1 
3 

- 3 

Apply row operations Ri <-» R2 and then R3 + 2R\, R4 — 
i?i successively to D to get: 
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D = 

1 1 
0 1 

- 2 - 2 
1 - 2 

1 1 
2 3 
3 3 

-2 - 3 

1 1 
0 1 
0 0 
0 - 3 

1 1 
2 3 
5 5 

-3 - 4 

Next apply successively i?4 + 3i?2 and l/5i?3 to get 

D 

1 1 
0 1 
0 0 
0 0 

1 
2 
5 
3 

= - 5 

1 
2 

0 0 1 1 
0 0 3 5 

Finally, use of R4 — 3i?3 yields 

1 1 1 
n 

D = -5 0 1 2 
0 0 1 
0 0 0 

= -10. 

Example 3.2.2 
Use row operations to show that the following determinant is 
identically equal to zero. 

a + 2 b + 2 c + 2 
x + 1 y + 1 z + 1 

2x — a 2y — b 2z — c 

Apply row operations R% + Ri and 2R2. The resulting 
determinant is zero since rows 2 and 3 are identical. 

Example 3.2.3 
Prove that the value of the n x n determinant 

2 
1 

0 
0 

1 
2 

0 
0 

0 • 
1 • 

0 • 
0 • 

• 0 
• 0 

• 1 
• 0 

0 
0 

2 
1 

0 
0 

1 
2 
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is n + 1. 
First note the obvious equalities D\ — 2 and D2 

n > 3; then, expanding by row 1, we obtain 
3. Let 

Dn — 2Dn-\ — 

1 
0 
0 

0 
0 

1 
2 
1 

0 
0 

0 
1 
2 

0 
0 

0 • 

0 • 
1 • 

0 • 
0 • 

• 0 
• 0 
• 0 

• 1 
• 0 

0 
0 
0 

2 
1 

0 
0 
0 

1 
2 

Expanding the determinant on the right by column 1, we find 
it to be Dn_2- Thus 

Dn = 2D n _! — Dn-2-

This is a recurrence relation which can be used to solve for 
successive values of Dn. Thus D3 = 4 , D4 = 5, D5 = 6 , etc. 
In general Dn = n + 1. (A systematic method for solving 
recurrence relations of this sort will be given in 8.2.) 

The next example is concerned with an important type 
of determinant called a Vandermonde determinant; these de
terminants occur frequently in applications. 

Example 3.2.4 
Establish the identity 

1 
Xi 

X 
n - 1 

1 
X2 
Xn 

JUn 

X„ 

X n - 1 

n 
1,3 

, Xj, Xj), 

where the expression on the right is the product of all the 
factors Xi — Xj with i < j and i,j = l,2,...,n. 
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Let D be the value of the determinant. Clearly it is a 
polynomial in xi, x2,..., xn. If we apply the column operation 
Ci—Cj , with i < j , to the determinant, its value is unchanged. 
On the other hand, after this operation each entry in column i 
will be divisible by xj — Xj. Hence D is divisible by •X>£ Jb n for 
alH, j; = 1, 2 , . . . , n and i < j . Thus we have located a total of 
n(n— l ) /2 distinct linear polynomials which are factors of D, 
this being the number of pairs of distinct positive integers i,j 
such that 1 < i < j < n. But the degree of the polynomial D 
is equal to 

, „N n(n — 1) 
l + 2 + --- + ( n - l ) = 2 • 

for each term in the denning sum has this degree. Hence D 
must be the product of these n(n —1)/2 factors and a constant 
c, there being no room for further factors. Thus 

D = cY[{xi-Xj), 

with i < j = 1, 2 , . . . , n. In fact c is equal to 1, as can be seen 
by looking at the coefficient of the term lx2x^ • • • x^~l in the 
defining sum for the determinant D; this corresponds to the 
permutation 1,2,... ,n, and so its coefficient is +1 . On the 
other hand, in the product of the x^ — Xj the coefficient of the 
term is 1. Hence c = 1. 

The critical property of the Vandermonde determinant D 
is that D = 0 if and only if at least two of xi, x2,..., xn are 
equal. 

Exercises 3.2 

1. By using elementary row operations compute the following 
determinants: 

1 0 3 2 
3 4 - 1 2 
0 3 1 2 ' 
1 5 2 3 

1 4 2 
- 2 4 7 

6 1 2 
, (b) 

3 
0 
2 

1 
4 

- 3 

- 2 
4 
6 

, (c) 
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2. If one row (or column) of a determinant is a scalar multiple 
of another row (or column), show that the determinant is zero. 

3. If A is an n x n matrix and c is a scalar, prove that 
det(cA) = cndet(A). 

4. Use row operations to show that the determinant 
,2 b2 „2 

1 + b 
2b2 - b -

a 
l + a 

2a2 -a-1 

c 
l + c 

1 2cz -c-1 

is identically equal to zero. 
5. Let A be an n x n matrix in row echelon form. Show that 
det(A) equals zero if and only if the number of pivots is less 
than n. 

6. Use row and column operations to show that 

= (a + b + c)(-a2 -b2 - c2 +ab + bc + ca). 

a 
b 
c 

b 
c 
a 

c 
a 
b 

Without expanding the determinant, prove that 

1 1 1 
x - y)(y - z)(z - x)(x + y + z). x 

3 X 

y 
y3 

z 
^3 

[Hint: show that the determinant has factors x — y , y — z , 
z — x , and that the remaining factor must be of degree 1 and 
symmetric in x,y,z ]. 
8. Let Dn denote the "bordered" n x n determinant 

0 
b 
0 

0 
0 

a 
0 
b 

0 
0 

0 • 
a • 

0 • 

0 • 
0 • 

• 0 
• 0 
• 0 

• 0 
• b 

0 
0 
0 

a 
0 
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Prove that Z^n-i = 0 and D2n — (—ab)n. 

9. Let Dn be the nxn determinant whose (i,j) entry is i + j . 
Show that Dn = 0 if n > 2. [Hint: use row operations]. 

10. Let un denote the number of additions, subtractions and 
multiplications needed in general to evaluate an n x n deter
minant by row expansion. Prove that un = nu n_i + 2n — 1. 
Use this formula to calculate un for n = 2,3,4. 

3.3 Determinants and Inverses of Matrices 

An important property of the determinant of a square 
matrix is that it tells us whether the matrix is invertible. 

Theorem 3.3.1 
An nxn matrix A is invertible if and only if det( A) ^ 0. 

Proof 
By 2.3.2 there are elementary matrices E\,E2, • • • ,Ek such 
that the matrix R = E^Ek-i • • • E^E\A is in reduced row 
echelon form. Now observe that if E is any elementary nxn 
matrix, then det(EA) = cdet(^4) for some non-zero scalar c; 
this is because left multiplication by E performs an elementary 
row operation on A and we know from 3.2.3 that such an 
operation will, at worst, multiply the value of the determinant 
by a non-zero scalar. Applying this fact repeatedly, we obtain 
det(-R) = det(Ek • • • E2E1A) = ddet(A) for some non-zero 
scalar d. Consequently det(-A) 7̂  0 if and only if det(i?) ^ 0. 

Now we saw in 2.3.5 that A is invertible precisely when 
R = In . But, remembering the form of the matrix R, we 
recognise that the only way that det(-R) can be non-zero is if 
R = In. Hence the result follows. 

Example 3.3.1 
The Vandermonde matrix of Example 3.2.4 is invertible if and 
only if all different. 
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Corollary 3.3.2 
A linear system AX = 0 with n equations in n unknowns has 
a non-trivial solution if and only if det(A) = 0. 

This very useful result follows directly from 2.3.5 and 
3.3.1. Theorem 3.3.1 can be used to establish a basic formula 
for the determinant of the product of two matrices. 

Theorem 3.3.3 
If A and B are any n x n matrices, then 

det(AB) = det (A) det(J5). 

Proof 
Consider first the case where B is not invertible, which by 
3.3.1 means that det(B) = 0. According to 2.3.5 there is a 
non-zero vector X such that BX = 0. This clearly implies 
that (AB)X = 0, and so, by 2.3.5 and 3.3.1, det(AJ3) must 
also be zero. Thus the formula certainly holds in this case. 

Suppose now that B is invertible. Then B is a product 
of elementary matrices, say B = E\E% • • • Ek', this is by 2.3.5. 
Now the effect of right multiplication of A by an elementary 
matrix E is to apply an elementary column operation to A. 
What is more, we can tell from 3.2.3 just what the value of 
det(AE) is; indeed 

{ -det(A) 

det (A) , 

c det (A) 

according to whether E represents a column operation of the 
types 

O i 4—^ O j 

Ci + cCj 

cCi 
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Now we can see from the form of the elementary matrix E 
that det(E) equals — 1, 1 or c, respectively, in the three cases; 
hence the formula det(AE ) = det(A) det(E) is valid. In short 
our formula is true when B is an elementary matrix. Applying 
this fact repeatedly, we find that &et(AB) equals 

det(AEfc • • • E2EX) = det(A) det(Ek) • • • det(£2) det(Ei), 

which shows that 

det(AB) = det(A) det{Ek • • • Ex) = det(A) det(5). 

Corollary 3.3.4 
Let A and B be n x n matrices. If AB = In , then BA = In, 
and thus B = A"1. 

Proof 
For 1 = det(AB) = det(A) det(S), so det(A) ^ 0 and A is in-
vertible, by 3.3.1. Therefore BA = A~l{AB)A = A~lInA = 
In-

Corollary 3.3.5 
If A is an invertible matrix, then det(^4-1) = l /det(A). 

Proof 
Clearly 1 = det(7) = det{AA~l) = det(A)det(A'1), from 
which the statement follows. 

The adjoint matrix 
Let A = (a,ij) be an n x n matrix. Then the adjoint 

matrix 
adj (A) 

of A is defined to be the nxn matrix whose (i,j) element is the 
(j,i) cofactor Aji of A. Thus adj(yl) is the transposed matrix 
of cofactors of A. For example, the adjoint of the matrix 

( 6 - 1 3 ] 
\ 2 -3 4 / 
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is 
/ 5 - 1 1 7 
( —18 2 3 

' \ - 1 6 7 - 1 3 

The significance of the adjoint matrix is made clear by 
the next two results. 

Theorem 3.3.6 
/ / A is any n x n matrix, then 

A adj(A) = (det(A))In = adj(A)A. 

Proof 
The (i,j) entry of the matrix product A adj(i4) is 

n n 

^2aik(adj(A))kj = ^2aikAjk. 
k=i fc=i 

If i = j , this is just the expansion of det(A) by rov/ i; on the 
other hand, if i ^ j , the sum is also a row expansion of a 
determinant, but one in which rows i and j are identical. By 
3.2.2 the sum will vanish in this case. This means that the 
off-diagonal entries of the matrix product A a,d](A) are zero, 
while the entries on the diagonal all equal det(^4). Therefore 
A adj(^4) is the scalar matrix (det(A))In, as claimed. The 
second statement can be proved in a similar fashion. 

Theorem 3.3.5 leads to an attractive formula for the in
verse of an invertible matrix. 

Theorem 3.3.7 
If A is an invertible matrix, then A"1 = (l/det(A))adj(A). 
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Proof 
In the first place, remember that A~l exists if and only if 
det(A) ^ 0, by 3.3.1. Prom A adj(A) = {det(A))In we obtain 

A(l/det(A))adj(A)) = l/det(A)(A adj(A)) = In, 

by 3.3.6. The result follows in view of 3.3.4. 

Example 3.3.2 
Let A be the matrix 

The adjoint of A is 
/ 3 2 1 \ 

2 4 2 . 

\ 1 2 3 / 

Expanding det(i4) by row 1, we find that it equals 4. Thus 

/ 3 / 4 1/2 1/4 \ 
A'1 = 1/2 1 1/2 . 

\ l / 4 1/2 3 / 4 / 

Despite the neat formula provided by 3.3.7, for matrices with 
four or more rows it is usually faster to use elementary row 
operations to compute the inverse, as described in 2.3: for 
to find the adjoint of an n x n matrix one must compute n 
determinants each with n — 1 rows and columns. 

Next we give an application of determinants to geometry. 

Example 3.3.3 

Let Pi(xi , yi, zx), P2(x2, y2, z2) and P3(^3, 2/3, z3) be three 
non-collinear points in three dimensional space. The points 
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therefore determine a unique plane. Find the equation of the 
plane by using determinants. 

We know from analytical geometry that the equation of 
the plane must be of the form ax + by + cz + d = 0. Here 
the constants a, b, c, d cannot all be zero. Let P(x,y,z) be 
an arbitrary point in the plane. Then the coordinates of the 
points P, Pi, P2, P3 must satisfy the equation of the plane. 
Therefore the following equations hold: 

ax + by + cz + d = 0 
ax\ + byi + cz\ + d = 0 
ax2 + bx2 + cz2 + d = 0 
ax3 + by3 + cz3 + d = 0 

Now this is a homogeneous linear system in the unknowns 
a, b, c, d; by 3.3.2 the condition for there to be a non-trivial 
solution is that 

x y z 1 
xi yx z\ 1 
x2 2/2 z2 1 

£ 3 2/3 z3 1 

This is the condition for the point P to lie in the plane, so it 
is the equation of the plane. That it is of the form ax + by + 
cz + d = 0 may be seen by expanding the determinant by row 
1. 

For example, the equation of the plane which is deter
mined by the three points (0, 1, 1), (1, 0, 1) and (1, 1, 0) 
is 

x y z 1 
0 1 1 1 
1 0 1 1 ' 
1 1 0 1 

which becomes on expansion x + y + z — 2 = 0. 
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Cramer's Rule 

For a second illustration of the uses of determinants, we 
return to the study of linear systems. Consider a linear system 
of n equations in n unknowns x\, X2,..., xn 

AX = B, 

where the coefficient matrix A has non-zero determinant. The 
system has a unique solution, namely X = A~1B. There is a 
simple expression for this solution in terms of determinants. 

Using 3.3.7 we obtain 

X = A~lB = l/det(A) (adj(A) B). 

From the matrix product adj(^4)JB we can read off the ith. 
unknown as 

n n 

Xi = (5>dj(A))^)/det(A) = C^bjAjJ/detiA). 

Now the second sum is a determinant; in fact it is det(Mj) 
where Mi is the matrix obtained from A when column i is 
replaced by B. Hence the solution of the linear system can be 
expressed in the form Xi = det(Mj)/det(^4), i = 1,2, ...,n. 
Thus we have obtained the following result. 

Theorem 3.3.8 (Cramer's Rule) 
If AX — B is a linear system of n equations in n unknowns 
and det (A) is not zero, then the unique solution of the linear 
system can be written in the form 

Xi = det(Mi)/det(j4), i = l, ... , n, 

where Mi is the matrix obtained from A when column i is 
replaced by B. 
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The reader should note that Cramer's Rule can only be 
used when the linear system has the special form indicated. 

Example 3.3.4 
Solve the following linear system using Cramer's Rule. 

Here 

A = 

X\ - X2 

Xi + 2x2 

2x± 

1 - 1 
1 2 
2 0 : ! ) 

- x3 = 4 
-x3 = 2 

= 1 

and B = 
'4 

Thus det(A) = 9, and Cramer's Rule gives the solution 

xx = 1/9 

x2 = 1/9 

x3 = 1/9 

4 
2 
1 

1 
1 
2 

1 
1 
2 

- 1 
2 
0 

4 
2 
1 

- 1 
2 
0 

-1 
- 1 

1 

- 1 
- 1 

1 

4 
2 
1 

= 13/9, 

= - 2 / 3 , 

= -17/9 . 

Exercises 3.3 

1. For the matrices 

A = and B = 
2 5 
4 7 
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verify the identity det(AB) = det(A) det(B). 
2. By finding the relevant adjoints, compute the inverses of 
the following matrices: 

(a) 
4 

-2 (b) (c) 

3. If A is a square matrix and n is a positive integer, prove 
that det(An) = (det(A))n. 

4. Use Cramer's Rule to solve the following linear systems: 

(a) 
2xx 

Xi 

2xi 

Xi 

2xi 
Xi 

- 3x2 
+ 3x2 
+ x2 
+ x2 
- x2 

+ 2x2 

+ £3 
+ x3 
+ x3 

+ x3 
- x3 

- 3x3 

= -1 
= 6 
= 11 

= -1 
= 4 
= 7 

(b) 

5. Let A be an n x n matrix. Prove that A is invertible if and 
only if adj(A) is invertible. 

6. Let A be any n x n matrix where n > 1. Prove that 
det(adj(yl)) = (det(A))n _ 1 . [Hint: first deal with the case 
where det(A) ^ 0, by applying det to each side of the identity 
of 3.3.6. Then argue that the result must still be true when 
de t (A)=0] . 
7. Find the equation of the plane which contains the points 
(1 ,1 , -2) , (1 , -2 , 7) and (0 ,1 , -4) . 

8. Consider the four points in three dimensional space 
Pi(xi,yi,Zi), i = 1, 2, 3, 4. Prove that a necessary and suffi
cient condition for the four points to lie in a plane is 

xi y\ zi 1 
X2 V2 Z2 1 

X3 J/3 Z3 1 

x4 y4 zA 1 

= 0. 



Chapter Four 

INTRODUCTION TO VECTOR SPACES 

The aim of this chapter is to introduce the reader to the 
notion of an abstract vector space. Roughly speaking, a vec
tor space is a set of objects called vectors which it is possible 
to add and multiply by scalars, subject to reasonable rules. 
Vector spaces occur in numerous branches of mathematics, as 
well as in many applications; they are therefore of great im
portance and utility. Rather than immediately confront the 
reader with an abstract definition, we prefer first to discuss 
some vector spaces which are familiar objects. Then we pro
ceed to extract the common features of these examples, and 
use them to frame the definition of a general vector space. 

4.1 Examples of Vector Spaces 

The first example of a vector space has a geometrical 
background. 

Euclidean space 

Choose and fix a positive integer n, and define 

to be the set of all n-column vectors 

f X l \ 
x = XJ 

\XnJ 

87 
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where the entries Xi are real numbers. Of course these are 
special types of matrices, so rules of addition and scalar mul
tiplication are at hand, namely 

fXl\ 

\xnJ 
+ 

/Vi 
V2 

V Vr> 

X2 + V2 

and 
fxx\ 

X2 

( CXi \_ 

cx2 

Thus the set R n is "closed" with respect to the operation 
of adding pairs of its elements, in the sense that one cannot 
escape from R n by adding two of its elements; similarly R n is 
closed with respect to multiplication of its elements by scalars. 
Notice also that R n contains the zero column vector. 

Another point to observe is that the rules of matrix alge
bra listed in 1.2.1 which are relevant to column vectors apply 
to the elements of R n . The set R n , together with the op
erations of addition and scalar multiplication, forms a vector 
space which is known as n- dimensional Euclidean space. 

Line segments and R 3 

When n is 3 or less, the vector space R n has a good 
geometrical interpretation. Consider the case of R3 . Atypical 
element of R 3 is a 3-column 

Assume that a cartesian coordinate system has been chosen 
with assigned x, y and z -axes. We plan to represent the col
umn vector A by a directed line segment in three-dimensional 
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space. To achieve this, choose an arbitrary point I with co
ordinates (u\, «2> U3) as the initial point of the line segment. 
The end point of the segment is the point E with coordinates 
(ui+ai, U2 + a2, U3 + 0,3). The direction of the line segment 
IE is indicated by an arrow: 

E(u1 + a1 ,u2 +
 a2. w3 + a3) 

\{U:,U2,U3) 

The length of IE equals 

I — J a\ + 02 + 03 

and its direction is specified by the direction cosines 

cii/l, a2/l, a3/l. 

Here the significant feature is that none of these quantities 
depends on the initial point I. Thus A is represented by in
finitely many line segments all of which have the same length 
and the same direction. So all the line segments which repre
sent A are parallel and have equal length. However the zero 
vector is represented by a line segment of length 0 and it is 
not assigned a direction. 

Having connected elements of R 3 with line segments, let 
us see what the rule of addition in R 3 implies about line seg
ments. Consider two vectors in R 3 

A = a2 and B 
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and their sum 

A + B = a2 + b2 . 
\ a3 + b3 J 

Represent the vectors A, B and A + B by line segments IU, 
IV, and I W in three dimensional space with a common initial 
point I (ui, u2, u3), say. The line segments determine a figure 
I U W V as shown: 

where U, W and V are the points 

(ui+ai, u2+a2, u3+a3), (ui+ai+bi, u2+a2+b2, u3+a3+b3) 

and 
(ui +h, u2 +b2, u3 + b3), 

respectively. 
In fact I U W V is a parallelogram. To prove this, we need 

to find the lengths and directions of the four sides. Simple 
analytic geometry shows that IU'= VW = \/a\ + a | + a§ = /, 
and that IV = UW = ^Jb\ + b\ + bj = m, say. Also the 
direction cosines of IU and V W are ai/l, a2/l, a3/l, while 
those of IV and U W are bi/m, b2/m, b3/m. It follows that 
opposite sides of I U W V are parallel and of equal length, so 
it is indeed a parallelogram. 

These considerations show that the rule of addition for 
vectors in R 3 is equivalent to the parallelogram rule for addi
tion of forces, which is familiar from mechanics. To add line 
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segments IU and IV representing the vectors A and B, com
plete the parallelogram formed by the lines IU and IV; the 
the diagonal I W will represent the vector A + B. 

An equivalent formulation of this is the triangle rule, 
which is encapsulated in the diagram which follows: 

I A 

Note that this diagram is obtained from the parallelogram by 
deleting the upper triangle. Since IV and U W are parallel 
line segments of equal length, they represent the same vector 
B. 

There is also a geometrical interpretation of the rule of 
scalar multiplication in R3 . As before let A in R 3 be repre
sented by the line segment joining I(tii, U2, u^) to U(tti + ai, 
U2 + Q2) ^3 + 03). Let c be any scalar. Then cA is represented 
by the line segment from (u\, U2, U3) to (u\ + cax, U2 + ca2, 
U3 + CGS3). This line segment has length equal to \c\ times the 
length of IU, while its direction is the same as that of IU if 
c > 0, and opposite to that of IU if c < 0. 

Of course, there are similar geometrical representations 
of vectors in R 2 by line segments drawn in the plane, and in 
R 1 by line segments drawn along a fixed line. So our first 
examples of vector spaces are familiar objects if n < 3. 

Further examples of vector spaces are obtained when the 
field of real numbers is replaced by the field of complex num
bers C: in this case we obtain 

C n , 
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the vector space of all n-column vectors with entries in C. 
More generally it is to carry out the same construction with 
an arbitrary field of scalars F, in the sense of 1.3; this yields 
the vector space 

of all n-column vectors with entries in F, with the usual rules 

of matrix addition and scalar multiplication. 

Vector spaces of matrices 

One obvious way to extend the previous examples is by 
allowing matrices of arbitrary size. Let 

Mm ? n(R) 

denote the set of all m x n matrices with real entries. This 
set is closed with respect to matrix addition and scalar mul
tiplication, and it includes the zero matrix 0m>n. The rules of 
matrix algebra guarantee that MmiTl(R) is a vector space. Of 
course, if n = 1, we recover the Euclidean space R m , while if 
m = 1, we obtain the vector space 

of all real n-row vectors. It is consistent with notation estab
lished in 1.3 if we write 

M n(R) 

for the vector space of all real n x n matrices, instead of 
Mn n (R) . Once again R can be replaced by any field of scalars 
F in these examples, to produce the vector spaces 

M m , n (F) , Mn(F) and Fn. 
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Vector spaces of functions 
Let a and b be fixed real numbers with a < b, and let 

C[a, b] denote the set of all real-valued functions of x that are 
continuous at each point of the closed interval [o, b]. If / and 
g are two such functions, we define their sum f + g by the rule 

f + g(x) = f(x)+g(x). 

It is a well-known result from calculus that / + g is also con
tinuous in [a, b], so that f + g belongs to C[a, b]. Next, if c is 
any real number, the function cf defined by 

cf(x) = c(f(x)) 

is continuous in [a, b] and thus belongs to C[a,b]. The zero 
function, which is identically equal to zero in [a, b], is also 
included in C[a,b]. 

Thus once again we have a set that is closed with respect 
to natural operations of addition and scalar multiplication; 
C[a, b] is the vector space of all continuous functions on the 
interval [a, b]. In a similar way one can form the smaller vector 
space D[a, b] consisting of all differentiable functions on [a, b], 
with the same rules of addition and scalar multiplication. A 
still smaller vector space is £>oo[a,6], the vector space of all 
functions that are infinitely differentiable in [a, b] 

Vector spaces of polynomials 

A (real) polynomial in an indeterminate x is an expression 
of the form 

f(x) = aQ + aix H \- anx
n 

where the coefficients â  are real numbers. If an ^ 0, the 
polynomial is said to have degree n. Define 

Pn(R) 
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to be the set of all real polynomials in x of degree less than n. 
Here we mean to include the zero polynomial, which has all 
its coefficients equal to zero. There are natural rules of addi
tion and scalar multiplication in P n (R) , namely the familiar 
ones of elementary algebra: to add two polynomials add cor
responding coefficients; to multiply a polynomial by a scalar 
c, multiply each coefficient by c. Using these operations, we 
obtain the vector space of all real polynomials of degree less 
than n. 

This example could be varied by allowing polynomial of 
arbitrary degree, thus yielding the vector space of all real poly
nomials 

P(R) . 

As usual R may be replaced by any field of scalars here. 

Common features of vector spaces 

The time has come to identify the common features in 
the above examples: they are: 

(i) a non-empty set of objects called vectors, including a 
"zero" vector; 
(ii) a way of adding two vectors to give another vector; 
(iii) a way of multiplying a vector by a scalar to give a 
vector; 
(iv) a reasonable list of rules that the operations 
mentioned(ii) and (iii) are required to satisfy. 

We are being deliberately vague in (iv), but the rules should 
correspond to properties of matrices that are known to hold 
in R n andM m > n (R) . 
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Exercises 4.1 

1. Give details of the geometrical interpretations of R 1 and 
R2 . 

2. Which of the following might qualify as vector spaces in 
the sense of the examples of this section? 

(a) the set of all real 3-column vectors that correspond to 
line segments of length 1; 
(b) the set of all real polynomials of degree at least 2; 
(c) the set of all line segments in R 3 that are parallel to 
a given plane; 
(d) the set of all continuous functions of x defined in the 
interval [0, 1] that vanish at x — 1/2. 

4.2 Vector Spaces and Subspaces 

It is now time to give a precise formulation of the defini
tion of a vector space. 

Definition of a vector space 

A vector space V over R consists of a set of objects called 
vectors, a rule for combining vectors called addition, and a 
rule for multiplying a vector by a real number to give another 
vector called scalar multiplication. If u and v are vectors, the 
result of adding these vectors is written u + v, the sum of u 
and v; also, if c is a real number, the result of multiplying v 
by c, is written cv, the scalar multiple of v by c. 

It is understood that the following conditions must be 
satisfied for all vectors u, v, w and all real scalars c, d : 

(i) u + v = v + u, (commutative law); 
(ii) (u + v) + w = u + (v + w), (associative law); 
(iii) there is a vector 0, called the zero vector, such that 
v + 0 = v; 
(iv) each vector v has a negative, that is, a vector —v 
such that v + (—v) = 0; 



96 Chapter Four: Introduction to Vector Spaces 

(v) cd(v) = c(dv); 
(vi) c(u + v) = cu + cv : (distributive law); 
(vii) (c + d)v — cv + dv; (distributive law); 
(viii) lv = v. 

For economy of notation it is customary to use V to denote 
the set of vectors, as well as the vector space. Since the vector 
space axioms just listed hold for matrices, they are valid in 
R n ; they also hold in the other examples of vector spaces 
described in 4.1. 

More generally, we can define a vector space over an ar
bitrary field of scalars F by simply replacing R by F in the 
above axioms. 

Certain simple properties of vector spaces follow easily 
from the axioms. Since these are used constantly, it is as well 
to establish them at this early stage. 

Lemma 4.2.1 
If u and v are vectors in a vector space, the following state
ments are true: 

(a) Ov = 0 and c 0 = 0 where c is a scalar; 
(b) if u + v = 0, then u = —v; 
(c) ( - l ) v = - v . 

Proof 
(a) In property (vii) above put c = 0 = d, to get Ov = Ov + 
Ov. Add — (Ov) to both sides of this equation and use the 
associative law (ii) to deduce that 

0 = -(Ov) + Ov = (-(Ov) + Ov) + Ov, 

which leads to 0 = Ov. Proceed similarly in the second part. 
(b) Add —v to both sides of u + v = 0 and use the associative 
law. 
(c) Using (vii) and (viii), and also (a), we obtain 

v + ( - l ) v = lv + ( - l ) v = (1 + ( - l ) ) v = Ov = 0. 
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Hence ( - l ) v = —v by (b). 

Subspaces 

Roughly speaking, a subspace is a vector space contained 
within a larger vector space; for example, the vector space 
p2(R) is a subspace of Ps(R). More precisely, a subset S of 
a vector space V is called a subspace of V if the following 
statements are true: 

(i) S contains the zero vector 0; 
(ii) if v belongs to S, then so does cv for every scalar c, 
that is, S is closed under scalar multiplication; 
(iii) if u and v belong to S, then so does u + v that is, S 
is closed under addition. 

Thus a subspace of V is a subset S which is itself a vector 
space with respect to the same rules of addition and scalar 
multiplication as V. Of course, the vector space axioms hold 
in S since they are already valid in V. 

Examples of subspaces 

If V is any vector space, then V itself is a subspace, for 
trivial reasons. It is often called the improper subspace. At 
the other extreme is the zero subspace, written 0 or Oy, which 
contains only the zero vector 0. This is the smallest subspace 
of V. (In general a vector space that contains only the zero 
vector is called a zero space). The zero subspace and the 
improper subspace are present in every vector space. We move 
on now to some more interesting examples of subspaces. 

Example 4.2.1 

Let S be the subset of R2 consisting of all columns of the form 

(-30 
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where t is an arbitrary real number. Since 

2 M + ( 2tA = ( 2(*i+<2) 

and 

—3t J \ —3ct 

S is closed under addition and scalar multiplication; also S 

contains the zero vector I 1, as may be seen by taking t to 

be to 0. Hence S is a subspace of R2 . 
In fact this subspace has geometrical significance. For 

/ 2 A 
an arbitrary vector I 1 of S may be represented by a line 

segment in the plane with initial point the origin and end point 
(2t,—3t). But the latter is a general point on the line with 
equation 3x + 2y = 0. Therefore the subspace S corresponds 
to the set of line segments drawn from the origin along the 
line 3x + 2y = 0. 

Example 4.2.2 

This example is an important one. Consider the homogeneous 
linear system 

AX = 0 

in n unknowns over some field of scalars F and let S denote 
the set of all solutions of the linear system, that is, all the 
n-column vectors X over F that satisfy AX — 0. Then S is a 
subset of Fn and it certainly contains the zero vector. Now if 
X and Y are solutions of the linear system and c is any scalar, 
then 

A(X + Y) = AX + AY = 0 and A(cX) = c(AX) = 0. 

Thus X + Y and cX belong to S and it follows that S is a 
subspace of the vector space R n . This subspace is called the 
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solution space of the homogeneous linear system AX = 0; it is 
also known as the null space of the matrix A. (Question: why 
is it necessary to have a homogeneous linear system here?) 

Example 4.2.3 
Let S denote the set of all real solutions y = y(x) of the 
homogeneous linear differential equation 

y" + by' + 6y = 0 

defined in some interval [a, b]. Thus S is a subset of the vector 
space C[a, &] of continuous functions on [a, b]. It is easy to 
verify that S contains the zero function and that S is closed 
with respect to addition and scalar multiplication; in other 
words S is a subspace of C[a, b}. 

The subspace S in this example is called the solution space 
of the differential equation. More generally, one can define the 
solution space of an arbitrary homogeneous linear differential 
equation, or even of a system of such differential equations. 
Systems of homogeneous linear differential equations are stud
ied in Chapter Eight. 

Linear combinations of vectors 
Let vi , V2, . . . , v/; be vectors in a vector space V. If c\, 

C2, . . . , Cfc are any scalars, the vector 

civi + c2v2 H V cfcvfc 

is called a linear combination of v i , v 2 , . . . , v^. 
For example, consider two vectors in R 2 

The most general linear combination of X\ and X2 is 
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In general let X be any non-empty subset of a vector 
space V and denote by 

<X > 

the set of all linear combinations of vectors in X. Thus a typical 
element of < X > is a vector of the form 

cixi + c2x2 H h CfcXfc 

where x i , x 2 , . . . , x& are vectors belonging to X and c\, c 2 , . . . , 
Ck are scalars. From this formula it is clear that the sum of 
any two elements of < X > is still in < X > and that a scalar 
multiple of an element of < X > is in < X >. Thus we have 
the following important result. 

Theorem 4.2.2 
If X is a non-empty subset of a vector space V, then < X >, 
the set of all linear combinations of elements of X, is a sub-
space of V. 

We refer to < X > as the subspace of V generated (or 
spanned) by X. A good way to think of < X > is as the small- -
est subspace of V that contains X. For any subspace of V that 
contains X will necessarily contain all linear combinations of 
vectors in X and so must contain < X > as a subset. In par
ticular, a subset X is a subspace if and only if X — < X >. 
In the case of a finite set X = {x!, x 2 , . . . , x /J , we shall write 

< X i , X 2 , . . . , Xfc > 

for < X >. 

Example 4.2.4 
For the three vectors of R 3 given below, determine whether 
C belongs to the subspace generated by A and B: 

x-(i) , j ,-(1) , c-(~i)-
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We have to decide if there are real numbers c and d such 
that cA + dB — C. To see what this entails, equate cor
responding vector entries on both sides of the equation to 
obtain 

c - d = - 1 
c + 2d = 5 

4c + d = 6 

Thus C belongs to < A, B > if and only if this linear system 
is consistent. It is quickly seen that the linear system has the 
(unique) solution c = 1, d = 2. Hence C = A + 2B, so that C 
does belong to the subspace < A, B >. 

What is the geometrical meaning of this conclusion? Re
call that A, B and C can be represented by line segments in 
3-dimensional space with a common initial point I, say IP , 
IQ and IR. A typical vector in < A, B > can be expressed in 
the form sA + tB with real numbers s and t . Now sA and 
tB are representable by line segments parallel to I P and IQ 
respectively. We obtain a line segment that represents sA+tB 
by applying the parallelogram law; clearly the resulting line 
segment will lie in the plane determined by I P and IQ. Con
versely, it is not difficult to see that any line segment lying in 
this plane represents a vector of the form sA + tB. Therefore 
the vectors in the subspace < A, B > are those that can be 
represented by line segments drawn from I lying in the plane 
determined by I P and IQ. What we have shown is that I R 
lies in this plane. 

Finitely generated vector spaces 
A vector space V is said to be finitely generated if there 

is a finite subset {vi, V2, . . . , v&} of V such that 

V =< v i , v 2 , . . . , v f c >, 

that is to say, every vector in V is a linear combination of the 
vectors v i , V2,. • •, v^, and so has the form 

CiVi + C2V2 -\ h CkVk 
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for some scalars c$. If, on the other hand, no finite subset 
generates V, then V is said to be infinitely generated. 

Example 4.2.5 

Show that the Euclidean space R n is finitely generated. 

Let X\, X2, • •., Xn be the columns of the identity matrix 
In- If 

fa±\ 
A= ^ 

\anJ 
is any vector in R n , then A = a\X\ + 0,2X2 + • • • + anXn; 
therefore X±,X2,.. • ,Xn generate R n and consequently this 
vector space is finitely generated. 

On the other hand, one does not have to look far to find 
infinitely generated vector spaces. 

Example 4.2.6 
Show that the vector space P(R) of all real polynomials in x 
is infinitely generated. 

To prove this we adopt the method of proof by contradic
tion. Assume that P(R) is finitely generated, say by polyno
mials Pi,P2, • • • iPki a n d look for a contradiction. Clearly we 
may assume that all of these polynomials are non-zero; let m 
be the largest of their degrees. Then the degree of any linear 
combination of Pi,p2 • • • ,Pk certainly cannot exceed m. But 
this means that xm+1, for example, is not such a linear com
bination. Consequently Pi,P2:---iPk do not generate P(R) , 
and we have reached a contradiction. This establishes the 
truth of the claim. 
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Exercises 4.2 

1. Which of the following are vector spaces? The operations 
of addition and scalar multiplication are the natural ones: 

(a) the set of all 2 x 2 real matrices with determinant 
equal to zero; 
(b) the set of all solutions X of a linear system AX = B 
where B ^ 0; 
(c) the set of all functions y = y(x) that are solutions of 
the homogeneous linear differential equation 

an(x)y{n) + an^{x)y^-l) + ••• + ai{x)y' + a0(x)y = 0. 

2. In the following examples say whether S is a subspace of 
the vector space V : 

(a) V = R2 and S is the subset of all matrices of the form 

1 where a is an arbitrary real number; 

(b) V = C[0,1] and S is the set of all infinitely 
differentiable functions in V. 
(c) V = -P(R) and S is the set of all polynomials p 
such that p(l) = 0. 

3. Does the polynomial 1 — 2x + x2 belong to the subspace of 
P3(R) generated by the polynomials 1 + X » X X and 3 — 2a:? 

4. Determine if the matrix I 1 is in the subspace of 

M2(R) generated by the following matrices: 

3 4 \ / 0 2 \ / 0 2 
1 2 J ' 1-1/3 4 J ' I 6 1 

5. Prove that the vector spaces Mm)Tl(F) and Pn(F) are 
finitely generated where F is an arbitrary field. 
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6. Prove that the vector spaces C[0, 1] and P(F) are infinitely 
generated, where F is any field. 

7. Let A and B be vectors in R2 . Show that A and B generate 
R 2 if and only if neither is a scalar multiple of the other. 
Interpret this result geometrically. 

4.3 Linear Independence in Vector Spaces 

We begin with the crucial definition. Let V be a vector 
space and let X be a non-empty subset of V. Then X is said to 
be linearly dependent if there are distinct vectors Vi, v 2 , . . . , v^ 
in X, and scalars c±, c 2 , . . . , Ck, not all of them zero, such that 

civi + c2v2 H h c/jVfc = 0. 

This amounts to saying that at least one of the vectors v$ can 
be expressed as a linear combination of the others. Indeed, if 
say Ci / 0, then we can solve the equation for v$, obtaining 

n 

For example, a one-element set {v} is linearly dependent if and 
only if v = 0. A set with two elements is linearly dependent 
if and only if one of the elements is a scalar multiple of the 
other. 

A subset which is not linearly dependent is said to be 
linearly independent. Thus a set of distinct vectors {vi, . . . , 
Vfc} is linearly independent if and only if an equation of the 
form civi -I hCfcVfc = 0 always implies that c\ = c2 = • • • = 
ck = 0 . 

We shall often say that vectors v i , . . . , v& are linearly de
pendent or independent, meaning that the subset { v i , . . . , v / J 
has this property. 
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Linear dependence in R3 

Consider three vectors A, B,C in Euclidean space R3 , 
and represent them by line segments in 3-dimensional space 
with a common initial point. If these vectors form a linearly 
dependent set, then one of them, say A, can be expressed as 
a linear combination of the other two, A = uB + vC; this 
equation says that the line segment representing A lies in the 
same plane as the line segments that represent B and C. Thus, 
if the three vectors form a linearly dependent set, their line 
segments must be coplanar. 

Conversely, assume that A,B,C are vectors in R 3 which 
are represented by line segments drawn from the origin, all of 
which lie in a plane. We claim that the vectors will then be 
linearly dependent. To see this, let the equation of the plane 
be ux + vy + wz = 0; keep in mind that the plane passes 
through the origin. Let the entries of A be written ai , 02, 03, 
with a similar notation for B and C. Then the respective 
end points of the line segments have coordinates (01,02,03), 
(61,62,63), (ci, 02,03). Since these points lie on the plane, we 
have the equations 

ua\ + vci2 + waz = 0 
ub\ + v 62 + 1063 = 0 
UO\ + VC2 + WC3 = 0 

This homogeneous linear system has a non-trivial solution for 
u, v, w, so the determinant of its coefficient matrix is zero by 
3.3.2. Now the coefficient matrix of the linear system 

' ua\ + vb\ + wci = 0 
< ua2 + vb2 + WC2 = 0 

k ̂ 03 + 1*63 + wc3 = 0 

is the transpose of the previous one, so by 3.2.1 it has the same 
determinant. It follows that the second linear system also has 
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a non-trivial solution u, v, w. But then uA + vB + wC = 0, 
which shows that the vectors A, B, C are linearly independent. 

Thus there is a natural geometrical interpretation of lin
ear dependence in the Euclidean space R3 : three vectors are 
linearly dependent if and only if they are represented by line 
segments lying in the same plane. There is a corresponding in
terpretation of linear dependence in R2 (see Exercise 4.3.11). 

Example 4.3.1 

Are the polynomials x + 1, x + 2, x2 — 1 linearly dependent in 
the vector space P3(R)? 

To answer this, suppose that c\,C2,c^ are scalars satisfy
ing 

cx{x + 1) + c2(x + 2)+ c3(x
2 - 1) = 0. 

Equating to zero the coefficients of 1, x , x2, we obtain the 
homogeneous linear system 

Ci + 2 c 2 - C3 = 0 

ci + c2 = 0 
C3 = 0 

This has only the trivial solution c\ = c2 = c3 = 0; hence the 
polynomials are linearly independent. 

Example 4.3.2 

Show that the vectors 

( - : ) • ( ! ) • ( - : ) 

are linearly dependent in R2 . 

Proceeding as in the last example, we let c\, c2, cz be 
scalars such that 

*(-J)+*GM-3-C0-
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This is equivalent to the homogeneous linear system 

f - c i + c2 + 2c3 = 0 
\ 2ci + 2c2 - 4c3 = 0 

Since the number of unknowns is greater than the number 
of equations, this system has a non-trivial solution by 2.1.4. 
Hence the vectors are linearly dependent. 

These examples suggest that the question of deciding 
whether a set of vectors is linearly dependent is equivalent to 
asking if a certain homogeneous linear system has non-trivial 
solutions. Further evidence for this is provided by the proof 
of the next result. 

Theorem 4.3.1 
Let Ai,A2,... ,Am be vectors in the vector space Fn where 
F is some field. Put A — [A\\A2\... \Am], an n x m matrix. 
Then Ai, A2,..., Am are linearly dependent if and only if the 
number of pivots of A in row echelon form is less than m. 

Proof 
Consider the equation C\A\ + c2A2 + • • • + cmAm = 0 where 
c\, c2, . . . , cm are scalars. Equating entries of the vector on 
the left side of the equation to zero, we find that this equation 
is equivalent to the homogeneous linear system 

/ c i \ 

A . = 0 . 

\cmJ 

By 2.1.3 the condition for this linear system to have a non-
trivial solution ci, c2,..., cm is that the number of pivots be 
less than m . Hence this is the condition for the set of column 
vectors to be linearly dependent. 
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In 5.1 we shall learn how to tell if a set of vectors in an 
arbitrary finitely generated vector space is linearly dependent. 

An application to differential equations 

In the theory of linear differential equations it is an im
portant problem to decide if a given set of functions in the 
vector space C[a, b] is linearly dependent. These functions 
will normally be solutions of a homogeneous linear differential 
equation. There is a useful way to test such a set of func
tions for linear independence using a determinant called the 
Wronskian. 

Suppose that / i , /2, • • •, /«, are functions whose first n—\ 
derivatives exist at all points of the interval [a, b\. In particular 
this means that the functions will be continuous throughout 
the interval, so they belong to C[a, b]. Assume that ci, C2,. . . , 
cn are real numbers such that Ci/i +C2/2 + • • • + cnfn = 0, the 
zero function on [a ,b]. Now differentiate this equation n — 1 
times, keeping in mind that the Cj are constants. This results 
in a set of n equations for c\, c^,..., cn 

{
c i / i + C2/2 + • • • 

cif{ + c2ti + • • • 

ci /1
("-1 ) + c 2 / 2

( n - 1 } + • • • 

This linear system can be written in matrix form: 

/ h h ••• fn \ 
l / l J 2 ' ' ' in 

y An-l) An-1) _ _ _ f̂ n_1) ) 

By 3.3.2, if the determinant of the coefficient matrix of the 
linear system is not identically equal to zero in [a, b], the 

+ cnfn = 0 
+ cnfn = 0 

+ cnfn
n-1) = 0 

/ c i \ 

C2 

Vcn/ 

0. 
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linear system has only the trivial solution and the functions 
/i) /25 • • •, fn

 w m De linearly independent. Define 

W(f1,f2,...,fn) = 

h 
fi 

, ( n - l ) 
/ : 

h 

( n - l ) 

In 
f 
J n 

/ ( n - l ) Jn 

This determinant is called the Wronskian of the functions 
/ i ? /2, • • •, fn • Then our discussion shows that the following is 
true. 

Theorem 4.3.2 Suppose that fi, f2, • • •, fn are functions 
whose first n — 1 derivatives exist in the interval [a,b\. If 
W(fi, / 2 , . . . , fn) is not identically equal to zero in this inter
val, then / i , f 2 , . . . , fn are linearly independent in [a, b}. 

The converse of 4.3.2 is false. In general one cannot 
conclude that if / i , f2, • • •, fn are linearly independent, then 
W(fi,f2, • • •, fn) is not the zero function. However, it turns 
out that if the functions fi,f2,---,fn

 a r e solutions of a ho
mogeneous linear differential equation of order n, then the 
Wronskian can never vanish. Hence a necessary and sufficient 
condition for a set of solutions of a homogeneous linear differ
ential equation to be linearly independent is that their Wron
skian should not be the zero function. For a detailed account 
of this topic the reader should consult a book on differential 
equations such as [16]. 

Example 4.3.3 

Show that the functions x,ex,e~2x are linearly indepen
dent in the vector space C[0, 1]. 
The Wronskian is 

W(x,ex, e~lx) = 

e-2x 

-2e-2x 

4 e - 2 * 
3(2x-l)e" 
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which is not identically equal to zero in [0, 1]. 

Exercises 4.3 

1. In each of the following cases determine if the subset S of 
the vector space V is linearly dependent or linearly indepen
dent: 

(a) V = C and S consists of the column vectors 

U)'KH'U4r); 
(b) V = P(R) and S = {x - 1, x2 + 1, x3 - x2 - x + 3}; 
(c) V = M(2, R) and S consists of the matrices 

(2 - 3 \ / 3 1\ [12 -7\ 
\6 4J> 1,-1/2 - 3 / ' Vl7 6J' 

2. A subset of a vector space that contains the zero vector is 
linearly dependent: true or false? 

3. If X is a linearly independent subset of a vector space, every 
non-empty subset of X is also linearly independent: true or 
false? 

4. If X is a linearly dependent subset of a vector space, every 
non-empty subset of X is also linearly dependent: true or 
false? 

5. Prove that any three vectors in R 2 are linearly dependent. 
Generalize this result to R n . 

6. Find a set of n linearly independent vectors in R n . 

7. Find a set of ran linearly independent vectors in the vector 
space Mm > n(R). 

8. Show that the functions x, ex sin x, ex cos x form a lin
early independent subset of the vector space C[0, n]. 
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9. The union of two linearly independent subsets of a vector 
space is linearly independent: true or false? 

10. If {u, v}, {v, w}and{w,u} are linearly independent sub
sets of a vector space, is the subset {u, v, w} necessarily lin
early independent? 

11. Show that two non-zero vectors in R 2 are linearly de
pendent precisely when they are represented by parallel line 
segments in the plane. 
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BASIS AND DIMENSION 

We now specialize our study of vector spaces to finitely 
generated vector spaces, that is, to those that can be generated 
by finite subsets. The essential fact to be established is that 
in any non-zero vector space there is a basis, that is to say, a 
set of vectors in terms of which every vector of the space can 
be written in a unique manner. This allows the representation 
of vectors in abstract vector spaces by column vectors. 

5.1 The Existence of a Basis 

The following theorem on linear dependence is fundamen
tal for everything in this chapter. 

Theorem 5.1.1 
Let Vi, V2, . . . , v m be vectors in a vector space V and let S = 
< vi> v 2 , • • •, vm >> the subspace generated by these vectors. 
Then any subset of S containing m + 1 or more elements is 
linearly dependent. 

Proof 

To prove the theorem it suffices to show that if u i , u 2 , . . . , 
u m + i are any m+1 vectors of the subspace S, then these vec
tors are linearly dependent. This amounts to finding scalars 
ci, c 2 , . . . , cm, not all of them zero, such that 

ciui + c2u2 H h c m + i u m + 1 = 0. 

Now, because u; belongs to S, there is an expression 

Uj = di jVi + d 2 ; v 2 H h dmivm 

112 



5.1: Existence of a Basis 113 

where the dji are certain scalars. On substituting for the u^, 
we obtain 

m+l m 

ciui + c2u2 H h c m + i u m + i =Y^Ci (^2 djiVj) 
i=l j=l 

m m + l 

j=l i=l 

Here we have interchanged the summations over i and j . This 
is permissible since it corresponds to adding up the vectors 
CidjiVj in a different order, which is possible in a vector space 
because of the commutative law for addition. 

We deduce from the last equation that the vector ciUi + 
C2U2 + • • • + c m + i u m + i will equal 0 provided that all the ex
pressions ^djiCi equal zero, that is to say, ci,C2,.. . ,Cm+i 
form a non-trivial solution of the homogeneous linear system 
DC — 0 where D is the m x (m + 1) matrix whose (j, i) en
try is dji and C is the column consisting of ci, C2, • •., Cm+i-
But this linear system has m + l unknowns and m equations; 
therefore, by 2.1.4, there is a non-trivial solution C. In conse
quence there are indeed scalars c\, C2,.. . , Cm+i, not all zero, 
which make the vector ciUi + C2U2 + • • • + cm_|_ium+i zero. 

Corollary 5.1.2 
If V is a vector space which can be generated by m elements, 
then every subset of V with m + l or more vectors is linearly 
dependent. 

Thus the number of elements in a linearly independent 
subset of a finitely generated vector space cannot exceed the 
number of generators. On the other hand, if a subset is to 
generate a vector space, it surely cannot be too small. We 
unite these two contrasting requirements in the definition of 
a basis. 
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Bases 
Let X be a non-empty subset of a vector space V. Then 

X is called a basis of V if both of the following are true: 
(i) X is linearly independent; 
(ii) X generates V. 

Example 5.1.1 

As a first example of a basis, consider the columns of the 
identity n x n matrix In: 

Ex = 
O 
w 

, E2 

(\\ 

W 
. . . , En = 

0 

W 

From the equation 

ciEi + c2E2 H h cnEn = 

f c x \ 

\cn/ 

it follows that E\, E2,.. •, En generate R n . But these vectors 
are also linearly independent; for the equation also shows that 
c\E\ + c2E2 + • • • + cnEn cannot equal zero unless all the Cj 
are zero. Therefore the vectors Ei, E2,..., En form a basis of 
the Euclidean space R n . This is called the standard basis of 
R n . 

An important property of bases is uniqueness of express-
ibility of vectors. 
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Theorem 5.1.3 
If{ v l j v 2 > • • • j v n 

} is a basis of a vector space V, then each 
vector v in V has a unique expression of the form 

v = civi + c2v2 H h c nv n 

/or certain scalars Ci. 

Proof 
If there are two such expressions for v, say civi + • • • + c nv n 

and diVi + • • • + dnvn, then, by equating these, we arrive at 
the equation 

(ci - di)vi H h (cn - dn)vn — 0. 

By linear independence of the Vi this can only mean that c^ = 
di for all i, so the expression is unique as claimed. 

Naturally the question arises: does every vector space 
have a basis? The answer is negative in general. Since a zero 
space has 0 as its only vector, it has no linearly independent 
subsets at all; thus a zero space cannot have a basis. However, 
apart from this uninteresting case, every finitely generated 
vector space has a basis, a fundamental result that will now 
be proved. Notice that such a basis must be finite by 5.1.2. 

Theorem 5.1.4 
Let V be a finitely generated vector space and suppose that XQ 
is a linearly independent subset of V. Then XQ is contained in 
some basis XofV. 

Proof 
Suppose that V is generated by m elements. Then by 5.1.2 
no linearly independent subset of V can contain more than m 
elements. From this it follows that there exists a subset X 
of V containing X0 which is as large as possible subject to 
being linearly independent. For if this were false, it would be 
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possible to find arbitrarily large linearly independent subsets 
of V. 

We will prove the theorem by showing that the subset 
X is a basis of V. Write X = {vi, V2, • . . , v n } . Suppose that 
u is a vector in V which does not belong to X. Then the 
subset {vi, V2, . . . , v n , u} must be linearly dependent since it 
properly contains X. Hence there is a linear relation of the 
form 

C1V1 + c2v2 H h c nv n + du = 0 

where not all of the scalars c±, C2,.. . , cn, d are zero. Now if 
the scalar d were zero, it would follow that c\V\ + C2V2 + 
• • • + c nv n = 0, which, in view of the linear independence of 
vi , V2, . . . , v n , could only mean that c\ = c2 = • • • = cn = 0. 
But now all the scalars are zero, which is not true. Therefore 
d 7̂  0. Consequently we can solve the above equation for u to 
obtain 

u = (-o?_1c1)vi + (-d~1c2)\
r2 H 1- (-rf_ 1cn)vn . 

Hence u belongs to < v i , . . . , v n > . Prom this it follows that 
the vectors v i , . . . , v n generate V; since these are also linearly 
independent, they form a basis of V. 

Corollary 5.1.5 
Every non-zero finitely generated vector space V has a basis. 

Indeed by hypothesis V contains a non-zero vector, say v. 
Then {v} is linearly independent and by 5.1.4 it is contained 
in a basis of V. 

Usually a vector space will have many bases. For exam
ple, the vector space R 2 has the basis 
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as well as the standard basis 

© • ( ! ) • 

And one can easily think of other examples. It is therefore 
a very significant fact that all bases of a finitely generated 
vector space have the same number of elements. 

Theorem 5.1.6 
Let V be a non-zero finitely generated vector space. Then any 
two bases of V have equal numbers of elements. 

Proof 
Let {ui ,U2, . . . , u m } and {vi ,V2, . . . , v n } be two bases of V. 
Then 

V = < u 1 , u 2 , . , u m > 

and it follows from 5.1.2 that no linearly independent subset 
of V can have more than m elements; hence n < m . In the 
same fashion we argue that m < n. Therefore m = n. 

Dimension 

Let V be a finitely generated vector space. If V is non
zero, define the dimension of V to be the number of elements 
in a basis of V; this definition makes sense because 5.1.6 guar
antees that all bases of V have the same number of elements. 
Of course, a zero space does not have a basis; however it is 
convenient to define the dimension of a zero space to be 0, 
so that every finitely generated vector space has a dimension. 
The dimension of a finitely generated vector space V is de
noted by 

dim(V). 

In fact infinitely generated vector spaces also have bases, 
and it is even possible to assign a dimension to such a space, 
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namely a cardinal number, which is a sort of infinite analog 
of a positive integer. However this goes well beyond our brief, 
so we shall say no more about it. 

Example 5.1.2 

The dimension of R n is n; indeed it has already been shown 
in Example 5.1.1 that the columns of the identity matrix In 

form a basis of Rn . 

Example 5.1.3 

The dimension of P n (R) is n. In this case the polynomials 
l,x,x2,... ,xn~1 form a basis (called the standard basis) of 
Pn(R). 

Example 5.1.4 
Find a basis for the null space of the matrix 

A = 

Recall that the null space of A is the subspace of R 4 

consisting of all solutions X of the linear system AX = 0. To 
solve this system, put A in reduced row echelon form using 
row operations: 

1 0 4/3 4 /3 ' 
0 1 1/3 - 2 / 3 
0 0 0 0 

From this we read off the general solution in the usual way: 

( -Ac/3 - 4d/3 • 

X = 
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Now X can be written in the form 

X = c 

/ - 4 / 3 \ 
- 1 / 3 

\ J/ 
+ d 

/ - 4 / 3 N 
2/3 

0 

V i / 
where c and d are arbitrary scalars. Hence the null space of 
A is generated by the vectors 

X, = Xo 

( 

\ 

-4/3 \ 
2/3 

0 
1 / 

Notice that these vectors are obtained from the general solu
tion X by putting c = 1, d = 0, and then c = 0, d = 1. Now 
Xi and Xi are linearly independent. Indeed, if we assume 
that some linear combination of them is zero, then, because 
of the configuration of 0's and l's, the scalars are forced to be 
be zero. It follows that X\ and X2 form a basis of the null 
space of A, which therefore has dimension equal to 2. 

It should be clear to the reader that this example de
scribes a general method for finding a basis, and hence the di
mension, of the null space of an arbitrary mxn matrix A. The 
procedure goes as follows. Using elementary row operations, 
put A in reduced row echelon form, with say r pivots. Then 
the general solution of the linear system AX = 0 will con
tain n — r arbitrary scalars, say ci, C2,.. . , c n_ r . The method 
of solving linear systems by elementary row operations shows 
that the general solution can be written in the form 

X = c\Xx + C2X2 + • • • + cn-rXn—r 

where Xi,..., Xn-r are particular solutions. In fact the solu
tion Xi arises from X when we put c; = 1 and all other Cj's 
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equal to 0. The vectors Xi,X2, • • • ,Xn~r are linearly inde
pendent, just as in the example, because of the arrangement 
of O's and l's among their entries. It follows that a basis of 
the null space of A is {Xi,X2, • • ., Xn-r}. We can therefore 
state: 

Theorem 5.1.7 
Let A be a matrix with n columns and suppose that the number 
of pivots in the reduced row echelon form of A is r. Then the 
null space of A has dimension n — r. 

Coordinate column vectors 
Let V be a vector space with an ordered basis 

{ v i , . . . , v n } ; this means that the basis vectors are to be writ
ten in the prescribed order. We have seen in 5.1.3 that each 
vector v of V has a unique expression in terms of the basis, 

V = CiVi -i h CnVn 

say. Thus v is completely determined by the scalars cx,..., cn. 
We call the column 

/ C ! \ 

\cnJ 
the coordinate vector of v with respect to the ordered basis 
{ v i , . . . , v n } . Thus each vector in the abstract vector space V 
is represented by an n-column vector. This provides us with 
a concrete way of representing abstract vectors. 

Example 5.1.5 

Find the coordinate vector of ( j with respect to the ordered 

basis of R 2 consisting of the vectors 

( ! ) • ( ! ) • 
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First notice that these two vectors are linearly indepen
dent and generate R2 , so that they form a basis. We need to 
find scalars c and d such that 

1)-«(!)-(! 
This amounts to solving the linear system 

c + 3d = 2 
c + Ad = 3 

The unique solution i s c = — 1, d = 1, and hence the coordi-
-1 

nate vector is , 

Coordinate vectors provide us with a method of testing a 
subset of an arbitrary finitely generated vector space for linear 
dependence. 

Theo rem 5.1.8 
Let { v i , . . . , v n } be an ordered basis of a vector space V. Let 
U i , . . . , u m be a set of vectors in V whose coordinate vectors 
with respect to the given ordered basis are Xi,..., Xm respec
tively. Then {u±,... , u m } is linearly dependent if and only 
if the number of pivots of the matrix A = [X1IX2I... \Xm] is 
less than m. 

Proof 
Write Uj = ^ " = 1 ajiVj\ then the entries of Xi are an,..., ani, 
so the (j,i) entry of A is a^. If c i , . . . , c m are any scalars, 
then 

m n n m 

cxui H h cmum = ^T Ci (^2 ajiVj) = ^2(^2 aji°i)vj-
i=l j = l j=l i = l 
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Since v i , . . . , v n are linearly independent, the only way that 
C1U1 + • • • + cmurn can be zero is if the sums Y^lLi ajici vanish 
for j — 1 , . . . ,n. This amounts to requiring that AC = 0 
where C is the column consisting of c i , . . . , c m . We know 
from 2.1.3 that there is such a C different from 0 precisely 
when the number of pivots of A is less than m. So this is the 
condition for u i , . . . , u m to be linearly dependent. 

Example 5.1.6 
Are the polynomials l — x + 2x2 — x3, x + xs, 2 + x + 4x2+x3 

linearly independent in Pt(R)? 

Use the standard ordered basis {1 > X • OC < X 3} of P4(R). 
Then the coordinate columns of the given polynomials are the 
columns of the matrix 

/ 1 0 2 
- 1 1 1 

2 0 4 
V-i i i 

Using row operations, we see that the number of pivots of 
the matrix is 2, which is less than the number of vectors. 
Therefore the given polynomials are linearly dependent. 

The next theorem lessens the work needed to show that 
a particular set is a basis. 

Theorem 5.1.9 
Let V be a finitely generated vector space with positive dimen
sion n. Then 

(i) any set of n linearly independent vectors of V is a 
basis; 
(ii) any set of n vectors that generates V is a basis. 

Proof 
Assume first that the vectors v i , v 2 ) . . . , v n are linearly inde
pendent. Then by 5.1.4 the set {vi, v 2 , . . . , v n } is contained 
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in a basis of V. But the latter must have n elements by 5.1.6, 
and so it coincides with the set of Vj's. 

Now assume that the vectors v i , v 2 , . . . , v n generate V. 
If these vectors are linearly dependent, then one of them, say 
Vj, can be expressed as a linear combination of the others. 
But this means that we can dispense with Vj completely and 
generate V using only the v^'s for j ^ i, of which there are 
n—1. Therefore dim(V) < n—1 by 5.1.2. By this contradiction 
vi , V2, . . . , v n are linearly independent, so they form a basis 
of V. 

Example 5.1.7 

The vectors 

( - : ) • ( : ) • ( ! ) 

are linearly independent since the matrix which they form has 
three pivots; therefore these vectors constitute a basis of R3 . 

We conclude with an application of the ideas of this sec
tion to accounting systems. 

Example 5.1.8 (Transactions on an accounting system) 

Consider an accounting system with n accounts, say 
cti, CK2,..., oin- At any instant each account has a balance 
which can be a credit (positive), a debit (negative), or zero. 
Since the accounting system must at all times be in balance, 
the sum of the balances of all the accounts will always be zero. 
Now suppose that a transaction is applied to the system. By 
this we mean that there is a flow of funds between accounts of 
the system. If as a result of the transaction the balance of ac
count Q.i changes by an amount £$, then the transaction can be 
represented by an n-column vector with entries t\,t2, • • •, tn. 
Since the accounting system must still be in balance after the 
transaction has been applied, the sum of the ti will be zero. 
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Hence the transactions correspond to column vectors 

h 

such that ti-\ \-tn = 0. Now vectors of this form are easily 
seen to constitute a subspace T of the vector space R n ; this 
is called the transaction space. Evidently T is just the null 
space of the matrix 

A = 

(\ 1 1 ••• 1 
0 0 0 ••• 0 

\ 0 0 0 0, 

Now A is already in reduced row echelon form, so we can read 
off at once the general solution of the linear system AX = 0 : 

/ - c 2 - c3 

X = 

\ 

c2 
C3 

Cn\ 

J 

with arbitrary real scalars c2, C3, . . . , cn. Now we can find a 
basis of the null space in the usual way. For i = 2 , . . . , n define 
Ti to be the n-column vector with first entry —1, zth entry 1, 
and all other entries zero. Then 

X = c2T2 + C3T3 + • • • + cnTn 

and {T2, T 3 , . . . , Tn} is a basis of the transaction space T. Thus 
dim(T) = n - 1. Observe that Ti corresponds to a simple 
transaction, in which there is a flow of funds amounting to 
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one unit from account a.\ to account an and which does not 
affect other accounts. 

Exercises 5.1 

1. Show that the following sets of vectors form bases of R3 , 
and then express the vectors Ei, E2, E3 of the standard basis 
in terms of these: 

2 3 1 
3 1 4 
1 2 1 

1 
- 7 

0 

(b) Yt = 1 , Y2 = 1 , Y3 = 

2. Find a basis for the null space of each of the following 
matrices: 

1 - 5 
(a) | - 4 2 - 6 J ; (b) 

3 1 

3. What is the dimension of the vector space MmjTl(F) where 
F is an arbitrary field of scalars? 

4. Let V be a vector space containing vectors v i , V2, . . . , v n 

and suppose that each vector of V has a unique expression 
as a linear combination of v i , V2, . . . , v n . Prove that the Vj's 
form a basis of V. 

5. If S is a subspace of a finitely generated vector space V, 
establish the inequality dim(S') < dim(V). 
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6. If in the last problem dim(5r) = dim(V), show that S = V. 

7. If V is a vector space of dimension n, show that for each 
integer i satisfying 0 < i < n there is a subspace of V which 
has dimension i. 

( 6 \ 
8. Write the transaction I —4 as a linear combination of 

v-v 
simple transactions. 
9. Prove that vectors A, B, C generate R 3 if and only if 
none of these vectors belongs to the subspace generated by 
the other two. Interpret this result geometrically. 
10. If V is a vector space with dimension n over the field of 
two elements, prove that V contains exactly 2n vectors. 

5.2 The Row and Column Spaces of a Matrix 

Let A be an m x n matrix over some field of scalars F. 
Then the columns of A are m-column vectors, so they belong 
to the vector space Fm, while the rows of A are n-row vectors 
and belong to the vector space Fn. Thus there are two natural 
subspaces associated with A, the row space, which is generated 
by the rows of A and is a subspace of Fn, and the column space, 
generated by the columns of A, which is a subspace of Fm. 

We begin the study of these important subspaces by in
vestigating the effect upon them of applying row and column 
operations to the matrix. 

Theorem 5.2.1 
Let A be any matrix. 

(i) The row space is unchanged when an elementary row 
operation is applied to A. 
(ii) The column space is unchanged when an elementary 
column operation is applied to A. 
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Proof 
Let B arise from A when an elementary row operation is ap
plied. Then by 2.3.1 there is an elementary matrix E such 
that B = EA. The row-times-column rule of matrix multi
plication shows that each row of B is a linear combination of 
the rows of A. Hence the row space of B is contained in the 
row space of A. But A = E~1B, since elementary matrices are 
invertible, so the same argument shows that the row space of 
A is contained in the row space of B. Therefore the row spaces 
of A and B are identical. Of course, the argument for column 
spaces is analogous. 

There are simple procedures available for finding bases 
for the row and column spaces of a matrix. 

(I) To find a basis of the row space of a matrix A, use 
elementary row operations to put A in reduced row echelon 
form. Discard any zero rows; then the remaining rows will 
form a basis of the row space of A. 

(II) To find a basis of the column space of a matrix A, 
use elementary column operations to put A in reduced column 
echelon form. Discard any zero columns; then the remaining 
columns will form a basis of the column space of A. 

Why do these procedures work? By 5.2.1 the row space 
of A equals the row space of R, its reduced row echelon form, 
and this is certainly generated by the non-zero rows of R. Also 
the non-zero rows of R are linearly independent because of the 
arrangement of O's and l's in R ; therefore these rows form a 
basis of the row space of A. Again the argument for columns 
is similar. This discussion makes the following result obvious. 

Corollary 5.2.2 
For any matrix the dimension of the row space equals the num
ber of pivots in reduced row echelon form, with a like statement 
for columns. 
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Example 5.2.1 
Consider the matrix 

( 2 1 1 3 2 \ 
- 1 2 1 1 3 

o o i o i • 
0 1 0 1 1 / 

The reduced row echelon form of A is found to be 

/ l 0 0 1 0 \ 
0 1 0 1 1 
o o i o i • 

VO 0 0 0 0 / 

Hence the row vectors [1 0 0 1 0], [0 1 0 1 1], [0 0 1 0 1] form 
a basis of the row space of A and the dimension of this space 
is 3. 

In general elementary row operations change the column 
space of a matrix, and column operations change the row 
space. However it is an important fact that such operations 
do not change the dimension. 

Theorem 5.2.3 
For any matrix, elementary row operations do not change the 
dimension of the column space and elementary column opera
tions do not change the dimension of the row space. 

Proof 
Take the case of row operations first. Let A be a matrix 
with n columns and suppose that B = EA where E is an 
elementary matrix. We have to show that the column spaces 
of A and B have the same dimension. Denote the columns 
of A by Ai, A2,. . ., An. If some of these columns are linearly 
dependent, then there are integers i± < i2 < • • • < ir and 
non-zero scalars c^, Cj 2 , . . . , cir such that 

c^A^ +ci2Ai2-\ h cir Air = 0. 
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Consequently there is a non-trivial solution C of the linear 
system AC = 0 such that Cj =fi 0 for j = i%,..., ir. Using the 
equation B = EA, we find that BC = EAC = EO = 0. This 
means that columns i i , . . . , ir of B are also linearly dependent. 
Therefore, if columns j i , . . . , ja of B are linearly independent, 
then so are columns ji, • • • ,j3 of A. Hence the dimension of 
the column space of B does not exceed the dimension of the 
column space of A. 

Since A = E~lB, this argument can be applied equally 
well to show that the dimension of the column space of A does 
not exceed that of B. Therefore these dimensions are equal. 

The truth of the corresponding statement for row spaces 
can be quickly deduced from what has just been proved. Let 
B = AE where E is an elementary matrix. Then BT = 
(AE)T — ETAT. Now ET is also an elementary matrix, so 
by the last paragraph the column spaces of AT and BT have 
the same dimension. But obviously the column space of AT 

and the row space of A have the same dimension, and there is 
a similar statement for B: the required result follows at once. 

We are now in a position to connect row and column 
spaces with normal form and at the same time to clarify a 
point left open in Chapter Two. 

Theorem 5.2.4 
If A is any matrix, then the following integers are equal: 

(i) the dimension of the row space of A; 
(ii) the dimension of the column space of A; 
(iii) the number of 1's in a normal form of A. 

Proof 
By applying elementary row and column operations to A, we 
can reduce it to normal form, say 
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Now by 5.2.1 and 5.2.3 the row spaces of A and N have the 
same dimension, with a like statement for column spaces. But 
it is clear from the form of N that the dimensions of its row 
and column spaces are both equal to r, so the result follows. 

It is a consequence of 5.2.4 that every matrix has a unique 
normal form; for the normal form is completely determined 
by the number of l's on the diagonal. 

The rank of a matrix 

The rank of a matrix is defined to be the dimension of the 
row or column space. With this definition we can reformulate 
the condition for a linear system to be consistent. 

Theorem 5.2.5 
A linear system is consistent if and only if the ranks of the 
coefficient matrix and the augmented matrix are equal. 

This is an immediate consequence of 2.2.1, and 5.2.2. 

Finding a basis for a subspace 

Suppose that X\, X2, • • •, -Xfc are vectors in Fn where F 
is a field. In effect we already know how to find a basis for 
the subspace generated by these vectors; for this subspace is 
simply the column space of the matrix [Xi|X2 | . . . \X^]. But 
what about subspaces of vector spaces other than Fn? It turns 
out that use of coordinate vectors allows us to reduce the 
problem to the case of Fn. 

Let V be a vector space over F with a given ordered 
basis v i , v 2 , . . . , v n , and suppose that S is the subspace of 
V generated by some given set of vectors w 1 ) W2, . . . ,w m . 
The problem is to find a basis of S. Recall that each vec
tor in V has a unique expression as a linear combination of 
the basis vectors v i , . . . , vn and hence has a unique coordi
nate column vector, as described in 5.1. Let w, have co
ordinate column vector Xi with respect to the given basis. 
Then the coordinate column vector of the linear combination 
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ciwi + c2w2 -I 1- cfcwfc is surely cxXx + c2X2 H h CkXk. 
Hence the set of all coordinate column vectors of elements of S 
equals the subspace T of Fn which is generated by Xx,..., Xk • 
Moreover wi , W2,. • •, w/. will be linearly independent if and 
only if Xi, X 2 , . . . , Xk are. In short wi , w 2 , . . . , w*; form a 
basis of S if and only if X\, X2, •. •, Xk form a basis of T; thus 
our problem is solved. 

Example 5.2.2 
Find a basis for the subspace of Pt(R) generated by the poly
nomials 1 — x — 2x3, 1 + x3, 1 + x + 4x3, x2. 

Of course we will use the standard ordered basis for P^TV) 
consisting of l,x,x2,x3. The first step is to write down the 
coordinate vectors of the given polynomials with respect to the 
standard basis and arrange them as the columns of a matrix 
A; thus 

/ 1 1 1 0 \ 
- 1 0 1 0 

0 0 0 1 ' 
V-2 1 4 0/ 

To find a basis for the column space of A, use column opera
tions to put it in reduced column echelon form: 

/ l 0 0 0 \ 
0 1 0 0 
0 0 1 0 ' 

\ 1 3 0 0 / 

The first three columns form a basis for the column space 
of A. Therefore we get a basis for the subspace of P4(R) gen
erated by the given polynomials by simply writing down the 
polynomials that have these columns as their coordinate col
umn vectors; in this way we arrive at the basis 

l + x3, x + 3x3, x2. 
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Hence the subspace generated by the given polynomials has 
dimension 3. 

Exercises 5.2 

1. Find bases for the row and column spaces of the following 
matrices: 

<-» C2 =S i ) - o » ("J J | J ) -
2. Find bases for the subspaces generated by the given vectors 
in the vector spaces indicated: 

(a) l - 2 z - : r 3 , 3x-x2, l + x + x2+x3, 4 + 7x + x2 + 2x3 

in P4(R); 

3. Let A be a matrix and let N, R and C be the null space, 
row space and column space of A respectively. Prove that 

dim(JR) + dim(iV) = dim(C) + dim(iV) = n 

where n is the number of columns of A. 

4. If A is any matrix, show that A and AT have the same 
rank. 

5. Suppose that A is an m x n matrix with rank r. What is 
the dimension of the null space of AT7 

6. Let A and B be m x n and n x p matrices respectively. 
Prove that the row space of AB is contained in the row space 
of B, and the column space of AB is contained in the the 
column space of A. What can one conclude about the ranks 
of AB and BA ? 

7. The rank of a matrix can be defined as the maximum num
ber of rows in an invertible submatrix: justify this statement. 
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5.3 Operations with Subspaces 

If U and W are subspaces of a vector space V, there 
are two natural ways of combining U and W to form new 
subspaces of V. The first of these subspaces is the intersection 

unw, 

which is the set of all vectors that belong to both U and V. 
The second subspace that can be formed from U and W 

is not, as one might perhaps expect, their union U UW; for 
this is not in general closed under addition, so it may not be 
a subspace. The subspace we are looking for is the sum 

U + W, 

which is denned to be the set of all vectors of the form u + w 
where u belongs to U and w to W. 

The first point to note is that these are indeed subspaces. 

Theorem 5.3.1 
If U and W are subspaces of a vector space V, then U C\W 
and U + W are subspaces of V. 

Proof 
Certainly U D W contains the zero vector and it is closed with 
respect to addition and scalar multiplication since both U and 
W are; therefore U fl W is a subspace. 

The same method applies to U + W. Clearly this contains 
0 + 0 = 0. Also, if Ui, U2 and wi, w2 are vectors in U and 
W respectively, and c is a scalar, then 

(ui + wi) + (u2 + w2) = (ui + u2) + (wi + w2) 

and 
c(ui + w i ) = cui + cwi, 
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both of which belong to U + W. Thus U + W is closed with 
respect to addition and scalar multiplication and so it is a 
subspace. 

Example 5.3.1 

Consider the subspaces U and W of R 4 consisting of all vectors 
of the forms 

(a\ f°\ 
b d 

and 
c e 

Vo/ \fJ 
respectively, where a, b, c, d, e are arbitrary scalars. Then 
U n W consists of all vectors of the form 

ft) 
c ' 

w 
while U + W equals R 4 since every vector in R 4 can be ex
pressed as the sum of a vector in U and a vector in W. 

For subspaces of a finitely generated vector space there is 
an important formula connecting the dimensions of their sum 
and intersection. 

Theorem 5.3.2 
Let U and W be subspaces of a finitely generated vector space 
V. Then 

dim(U + W)+ dim(U n W) = dim(U) + dim(W). 

Proof 
If U = 0, then obviously U + W = W and U n W = 0; in this 
case the formula is certainly true, as it is when W = 0. 
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Assume therefore that [ 7 ^ 0 and W ^ 0, and put 
m = dim(U) and n = dim(W). Consider first the case where 
U D W = 0. Let { u i , u 2 , . . . , u m } and {wi,w2 , • •., w n } be 
bases of U and W respectively. Then the vectors u i , . . . , um 

and w i , . . . , w n surely generate U + W. In fact these vectors 
are also linearly independent: for if there is a linear relation 
between them, say 

CiUi H h c m u m + diwi H h d n w n = 0, 

then 

ciUi H h cmum = ( -d i )wi H h (-dn)w n , 

a vector which belongs to both U and W, and so to U HW, 
which is the zero subspace. Consequently this vector must be 
the zero vector. Therefore all the Cj and dj must be zero since 
the Ui are linearly independent, as are the Wj. Consequently 
the vectors u i , . . . , u m , w i , . . . , w n form a basis of U + W, so 
that dim([7 + W) = m + n = dim(J7) + dim(W), the correct 
formula since U n W = 0 in the case under consideration. 

Now we tackle the more difficult case where U D W ^ 0. 
First choose a basis for UT\W, say { z i , . . . , z r } . By 5.1.4 this 
may be extended to bases of U and of W, say 

{ z i , . . . , z r , u,-_|_i,..., u m | 

and 
{zi, . . . , z r , w r + i , . . . ,w n } 

respectively. Now the vectors 

Zi . . . , Z r , U r + i , . . . , U m , W r + 1 , . . . , W n 

generate U + W: for we can express any vector of U or W in 
terms of them. What still needs to be proved is that they are 
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linearly independent. Suppose that in fact there is a linear 
relation 

r m n 

]PeiZ;+ ^ C3Uj+ 5Z dk™k = 0 

i= l j=r+l fc=r+l 

where the e ,̂ Cj, dk are scalars. Then 

n r m 

Y^ dkwk = ̂ 2(-ei)zi+ X (-CJ)UJ, 
fc=r+l i= l j = r + l 

which belongs to both U and VF and so to U f) W. The 
vector ^ dfcWfc is therefore expressible as a linear combination 
of the Zi since these vectors are known to form a basis of 
the subspace U D W. However Z i , . . . , z r , w r + i , . . . , w n are 
definitely linearly independent. Therefore all the dj are zero 
and our linear relation becomes 

r m 

J2eiZi+ ^ CjUj = 0. 

But z i , . . . , z r , u r + i , , u m are linearly independent, so it fol
lows that the Cj and the ê  are also zero, which establishes 
linear independence. 

We conclude that the vectors z i , . . . , z r , u r + i , . . . , u m , 
w r + i , . . . , w n form a basis of U + W. A count of the basis 
vectors reveals that dim(C7 + W) equals 

r + (m — r) + (n — r) = m + n — r 
= dim(U) + dim(W) - dim(U D W). 

Example 5.3.2 
Suppose that U and W are subspaces of R1 0 with dimensions 
6 and 8 respectively. Find the smallest possible dimension for 

unw. 
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Of course dim(R10) = 10 and, since U + W is a subspace of 
R1 0 , its dimension cannot exceed 10. Therefore by 5.3.2 

dim(C/ fl W) = dim(C7) + dim(W) - dim(U + W) 
> 6 + 8 - 1 0 = 4. 

So the dimension of the intersection is at least 4. The reader 
is challenged to think of an example which shows that the 
intersection really can have dimension 4. 

Direct sums of subspaces 

Let U and W be two subspaces of a vector space V. Then 
V is said to be the direct sum of U and W if 

V = U + W and UnW = 0. 

The notation for the direct sum is 

v = u®w. 

Notice the consequence of the definition: each vector v of V 
has a unique expression of the form v = u + w where u belongs 
to U and w to W. Indeed, if there are two such expressions 
v = ui + wi = U2 + W2 with Uj in U and Wj in W, then 
ui — u2 = w2 — wi, which belongs to U D W = 0; hence 
ui = u2 and wi = W2. 

Example 5.3.3 

Let U denote the subset of R 3 consisting of all vectors of the 
form 

(i) 
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and let W be the subset of all vectors of the form 

( ! ) 

where a, b, c are arbitrary scalars. Then U and W are sub-
spaces of R3 . In addition U + W = R 3 and UC\W = 0. Hence 
R3 = u 8 W. 

Theorem 5.3.3 
If V is a finitely generated vector space and U and W are 
subspaces of V such that V = U ® W, then 

dim(V) = dim(C7) + dim(W). 

This follows at once from 5.3.2 since dim(U DW) = 0 . 

Direct sums of more than two subspaces 

The concept of a direct sum can be extended to any finite 
set of subspaces. Let U\, U2, • • •, £4 be subspaces of a vector 
space V. First of all define the sum of these subspaces 

t/i + • • • + Uk 

to be the set of all vectors of the form Ui + • • • + u& where 
Uj belongs to Ui. This is clearly a subspace of V. The vector 
space V is said to be the direct sum of the subspaces U\,... Uk, 
in symbols 

v = u1@u2®---®uk, 
if the following hold: 

(i)V = U1 + --- + Uk; 
(ii) for each i = 1, 2 , . . . , k the intersection of Ui with the 
sum of all the other subspaces Uj, j ^ i, equals zero. 
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In fact these are equivalent to requiring that every ele
ment of V be expressible in a unique fashion as a sum of the 
form ui + • • • + Ufc where u^ belongs to Ui. 

The concept of a direct sum is a useful one since it often 
allows us to express a vector space as a direct sum of subspaces 
that are in some sense simpler. 

Example 5.3.4 

Let Ui,U2, U3 be the subspaces of R 5 which consist of all 
vectors of the forms 

0 
o 
0 

> 

b 
0 
c 

> 

/ d \ 
0 
0 
0 

respectively, where a, b, c, d, e are arbitrary scalars. 
R5 = Ui@U2®U3. 

Then 

Bases for the sum and intersection of subspaces 

Suppose that V is a vector space over a field F with posi
tive dimension n and let there be given a specific ordered basis. 
Assume that we have vectors u i , . . . , u r and w i , . . . , w s , gen
erating subspaces U and W respectively. How can we find 
bases for the subspaces U + W and UTiW and hence compute 
their dimensions? 

The first step in the solution is to translate the problem 
to the vector space Fn. Associate with each Ui and Wj its 
coordinate column vector Xi and Yj with respect to the given 
ordered basis of V. Then X\,..., Xr and Y\,..., Ys generate 
respective subspaces U* and W* of Fn. It is sufficient if we 
can find bases for U* + W* and U* D W* since from these 
bases for U + W and U C\W can be read off. So assume from 
now on that V equals Fn. 
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Take the case of U + W first - it is the easier one. Let A 
be the matrix whose columns are u i , . . . , u r : remember that 
these are now n-column vectors. Also let B be the matrix 
whose columns are w i , . . . , w s . Then U+W is just the column 
space of the matrix M = [A \ B]. A basis for U + W can 
therefore be found by putting M in reduced column echelon 
form and deleting the zero columns. 

Turning now to UDW, we look for scalars Ci and dj such 
that 

C1U1 + h crur — diwi H 1- dswa : 

for every element of U D W is of this form. Equivalently 

C1U1 H h crur + ( -d i )wi H h (-d8)w8 = 0. 

Now this equation asserts that the vector 

/ C l \ 

-di 

\-daJ 
belongs to the null space of [A | B]. A method for finding a 
basis for the null space of a matrix was described in 5.1. To 
complete the process, read off the the first r entries of each 
vector in the basis of the null space of [A \ B], and take these 
entries to be c 1 ; . . . , cr. The resulting vectors form a basis of 

unw. 
Example 5.3.5 
Let 

M = 
2 
2 

\ 1 

0 
1 

-2 
1 

2 
5 

-1 
5 

1 \ 
2 

- 1 
3 / 



5.3: Operations with Subspaces 141 

and denote by U and W the subspaces of R 4 generated by 
columns 1 and 2, and by columns 3 and 4 of M respectively. 
Find a basis for U + W. 

Apply the procedure for finding a basis of the column 
space of M. Putting M in reduced column echelon form, we 
obtain 

/ l 0 0 0 \ 
0 1 0 0 
0 0 1 0 ' 

\ 3 - 1 / 3 - 2 / 3 0 / 

The first three columns of this matrix form a basis of U + W; 
hence dim(C7 + W)=3. 

Example 5.3.6 

Find a basis of U fl W where U and W are the subspaces of 
Example 5.3.5. 

Following the procedure indicated above, we put the ma
trix M in reduced row echelon form: 

/ l 0 0 - 1 \ 
0 1 0 - 1 j 
0 0 1 1 I ' 

\ 0 0 0 0 / 

From this a basis for the null space of M can be read off, as 
described in the paragraph preceding 5.1.7; in this case the 
basis has the single element 

1 
- 1 " 

V i / 

Therefore a basis for U D W is obtained by taking the linear 
combination of the generating vectors of U corresponding to 
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the scalars in the first two rows of this vector, that is to say 

+ 1-
3 
0 w 

1. Thus dim(C7 n W) 

Example 5.3.7 

Find bases for the sum and intersection of the subspaces U and 
W of P4CR) generated by the respective sets of polynomials 

{l + 2x + x3, 1 x x2} and {x + x2 - 3x3, 2 + 2x - 2x3}. 

The first step is to translate the problem to R 4 by writing 
down the coordinate columns of the given polynomials with 
respect to the standard ordered basis 1, 3 of P4(R). 
Arranged as the columns of a matrix, these are 

A = 

Let U* and W* be the subspaces of R 4 generated by the 
coordinate columns of the polynomials that generate U and 
W, that is, by columns 1 and 2, and by columns 3 and 4 of 
A respectively. Now find bases for U* + W* and U* D W*, 
just as in Examples 5.3.5 and 5.3.6. It emerges that U* + W*, 
which is just the column space of A, has a basis 

/ ! 
2 
0 

\ 1 

1 
- 1 
- 1 

0 

0 
1 
1 

- 3 

2 
2 
0 

- 2 
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On writing down the polynomials with these coordinate vec
tors, we obtain the basis l - 3 x 3 , x + 2x3, x2-5x3 for U* + W*. 

In the case of U D W the procedure is to find a basis for 
U* Pi W*. This turns out to consist of the single vector 

( ; ) 

Finally, read off that the polynomial 

1 • (1 + 2x + x3) + 1 • (1 - x - x2) = 2 + x - x2 + x3 

forms a basis of U l~l W. 

Quotient Spaces 

We conclude the section by describing another subspace 
operation, the formation of the quotient space of a vector 
space with respect to a subspace. This new vector space is 
formed by identifying the vectors in certain subsets of the 
given vector space, which is a construction found throughout 
algebra. 

Proceeding now to the details, let us consider a vector 
space V with a fixed subspace U. The first step is to define 
certain subsets called cosets: the coset of U containing a given 
vector v is the subset of V 

v + [/ = {v + u |ue [ /} . 

Notice that the coset v + U really does contain the vector v 
since v = v + OEv + U. Observe also that the coset v + U 
can be represented by any one of its elements in the sense that 
(v + u) + U = v + U for all u G U. 

An important feature of the cosets of a given subspace is 
that they are disjoint, i.e., they do not overlap. 
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Lemma 5.3.4 
If U is a subspace of a vector space V, then distinct cosets of 
U are disjoint. Thus V is the disjoint union of all the distinct 
cosets of U. 

Proof 
Suppose that cosets v + U and w + U both contain a vector 
x: we will show that these cosets are the same. By hypothesis 
there are vectors u i , U2 in U such that 

X = V + U i = W + U2-

Hence v = w + u where u = 112 — Ui G U, and consequently 
v + U = (w + u) + U = 'w + U, since u + U = U, as claimed. 
Finally, V is the union of all the cosets of U since v € v + U. 

The set of all cosets of U in V is written 

V/U. 

A good way to think about V/U is that its elements arise by 
identifying all the elements in a coset, so that each coset has 
been "compressed" to a single vector. 

The next step in the construction is to turn V/U into a 
vector space by defining addition and scalar multiplication on 
it. There are natural definitions for these operations, namely 

(v + U) + (w + U) = (v + w) + U 

c(v + U) = (cv) + U 

where v, w € V and c is a scalar. 
Although these definitions look natural, some care must 

be exercised. For a coset can be represented by any of its 
vectors, so we must make certain that the definitions just given 
do not depend on the choice of v and w in the cosets v + U 
and w + U. 
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To verify this, suppose we had chosen different represen
tatives, say v' for v + 17 and w' for w + U. Then v' = v + Ui 
and w' = w + u2 where u i , u2 £ U. Therefore 

v' + w' = (v + w) + (ui + u2) e (v + w) + U, 

so that (v7 + w') + U = (v + w) + U. Also cv' = cv + cu± <E 
(cu) + U and hence cv' + U = cv + U. These arguments show 
that our definitions are free from dependency on the choice of 
coset representatives. 

Theorem 5.3.5 
If U is a subspace of a vector space V over a field F, then V/U 
is a vector space over F where sum and scalar multiplication 
are defined above: also the zero vector is 0 + U = U and the 
negative of v + U is (—v) + U. 

Proof 
We have to check that the vector space axioms hold for V/U, 
which is an entirely routine task. As an example, let us verify 
one of the distributive laws. Let v, w G V and let c E F. 
Then by definition 

c((v + U) + (w + U)) = c((v + w) + U) = c(v + w) + U 
= (cv + cw) + U, 

which by definition equals (cv+U) + (cw+U). This establishes 
the distributive law. Verification of the other axioms is left to 
the reader as an exercise. It also is easy to check that 0 is the 
zero vector and (—v) + U the negative ofv + U. 

Example 5.3.8 

Suppose we take U to be the zero subspace of the vector space 
V: then V/0 consists of all v + 0 = {v}, i.e., the one-element 
subsets of V. While V/0 is not the same vector space as V, 
the two spaces are clearly very much alike: this can be made 
precise by saying that they are isomorphic (see 6.3). 
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At the opposite extreme, we could take U = V. Now 
V/V consists of the cosets v + V = V, i.e., there is just one 
element. So V/V is a zero vector space. 

We move on to more interesting examples of coset forma
tion. 

Example 5.3.9 

Let S be the set of all solutions of a consistent linear system 
AX = B of m equations in n unknowns over a field F. If 
5 = 0, then S is a subspace of Fn, namely, the solution 
space U of the associated homogeneous linear system AX = 0. 
However, if B ^ 0, then S is not a subspace: but we will see 
that it is a coset of the subspace U. 

Since the system is consistent, there is at least one solu
tion, say Xi. Suppose X is another solution. Then we have 
AX\ = B and AX = B. Subtracting the first of these equa
tions from the second, we find that 

0 = AX - AXl = A(X - Xi), 

so that X — Xi E U and X £ Xi + U, where U is the solution 
space of the system AX = 0. Hence every solution of AX = B 
belongs to the coset X\ + U and thus S C X\ + U. 

Conversely, consider any Y G X\ + U, say Y = X\ + Z 
where Z eU. Then AY = AXl+AZ = B+0 = B. Therefore 
Y ES SindS = X1 + U. 

These considerations have established the following re
sult. 

Theorem 5.3.6 
Let AX — B he a consistent linear system. Let X\ he any 
fixed solution of the system and let U he the solution space of 
the associated homogeneous linear system AX = 0. Then the 
set of all solutions of the linear system AX = B is the coset 
X^ + U. 



5.3: Operations with Subspaces 147 

Our last example of coset formation is a geometric one. 

Example 5.3.10 

Let A and B be vectors in R 3 representing non-parallel line 
segments in 3-dimensional space. Then the subspace 

U=<A, B> 

has dimension 2 and consists of all cA + dB, (c, d E R). The 
vectors in U are represented by line segments, drawn from the 
origin, which lie in a plane P. Now choose X G R , with 
X = (xi, x2, x3)

T. 
A typical vector in the coset X + U has the form 

X + cA + dB, with c, d e R, i.e., 

(xi + cai + dbi x2 + ca2 + db2 X3 + ca3 + db3)
T. 

Now the points (x i+cai+d&i , X2+ca2+db2, Xs + cas + db3) 
lie in the plane Pi passing through the point (xi, x2, £3), 
which is parallel to the plane P. This is seen by forming the 
line segment joining two such points. The elements of X + U 
correspond to the points in the plane Pi: the latter is called 
a translate of the plane P. 

Dimension of a Quotient Space 

We conclude the discussion by noting a simple formula 
for the dimension of a quotient space of a finite dimensional 
vector space. 

Theorem 5.3.7 
Let U be a subspace of a finite dimensional vector space V. 
Then 

dim(V/C/) = dim(y) - dim(£/). 
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Proof 
If U = 0, then dim([7) = 0 and V/0 = {{v} | v G V}, which 
clearly has the same dimension as V. Thus the formula is 
valid in this case. 

Now let U ^ 0 and choose a basis { u i , . . . , u m } of U. By 
5.1.4 we may extend this to a basis 

{ u i , . . . , u m , u m + i , . . . , u n } 

of V. Here of course m — dim([/) and n = dim(V). A typical 
n 

element v of V has the form v = ^ Cjiij, where the c^ are 

scalars. Next 
n n 

v + C / = ( Yl CiUi)+U= ^ Ci(ui + U), 
i=m+l i=m+l 

m 
since Yl ciui ^ U. Hence u m + i + U, . . . , u n + U generate 

i=l 
the quotient space V/U. 

n 
On the other hand, if Yl Ciiyn + U) — 0v/u

 = U, then 
i=m+l 

n 
Y CjUj e U, so that this vector is a linear combination of 

i=m+l 
U i , . . . , u m . Since the Uj are linearly independent, it follows 
that c m + i — • • • = cn = 0. Therefore u m + i + U, ..., u n + U 
form a basis of V/U and hence 

dim(V/J7) = n-m = dim(V) - dim(C7). 

Exercises 5.3 

1. Find three distinct subspaces U, V, W of R 2 such that 

n2 = u®v = v®w = weu. 



5.3: Operations with Subspaces 149 

2. Let U and W denote the sets of all n x n real symmetric 
and skew-symmetric matrices respectively. Show that these 
are subspaces of M n (R) , and that M n (R) is the direct sum of 
U and W. Find dim(U) and dim(W). 

3. Let U and W be subspaces of a vector space V and suppose 
that each vector v in V has a unique expression of the form 
v = u + w where u belongs to U and w to W. Prove that 
V = U e W. 

4. Let U, V, W be subspaces of some vector space and suppose 
that U C W. Prove that 

(u + v) n w= u + (v n w). 

5. Prove or disprove the following statement: if U, V, W are 
subspaces of a vector space, then (U + V) n W = (U D W) + 
(VHW). 

6. Suppose that U and W are subspaces of Pi4(R) with 
dim(C/) = 7 and dim(W) = 11. Show that dim(U n l f ) > 4 . 
Give an example to show that this minimum dimension can 
occur. 

7. Let M be the matrix 

/ 3 3 2 8 \ 
1 1 - 1 1 
1 1 3 5 

\ - 2 4 6 8 / 

and let U and W be the subspaces of R 4 generated by rows 1 
and 2 of M, and by rows 3 and 4 of M respectively. Find the 
dimensions of U + W and U fl W. 

8. Define polynomials 

/ i = 1 - 2x + x3, f2 = x + x2 - x3. 
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and 

01 = 2 + 2x - Ax2 + x3, g2 = 1 - x + x2, g3 = 2 + 3x - x2. 

Let U be the subspace of P^(JR) generated by {/i, f2} and let 
W be the subspace generated by {gx, g2, g3}. Find bases for 
the subspaces U + W and U C\W. 

9. Let Ui,... ,Uk be subspaces of a vector space V. Prove 
that V = U\ © • • • © Uk if and only if each element of V has a 
unique expression of the form Ui + • • • + u^ where Uj belongs 
to Ui. 

10. Every vector space of dimension n is a direct sum of n 
subspaces each of which has dimension 1. Explain why this 
true. 

11. If Ui,..., Uk are subspaces of a finitely generated vec
tor space whose sum is the direct sum, find the dimension of 
Ui®---®Uk. 

12. Let U\, U2, U3 be subspaces of a vector space such that 
Ui n U2 = U2nU3 = U2r\Ui = 0. Does it follow that 
U\ + U2 + U3 = Ux © U2 © U3? Justify your answer. 

13. Verify that all the vector space axioms hold for a quotient 
space V/U. 

14. Consider the linear system of Exercise 2.1.1, 

x\ + 2x2 — Sx3 + X4 = 7 
-xi + x2 - x3 + X4 = 4 

(a) Write the general solution of the system in the form 
XQ + Y, where XQ is a particular solution and Y is the general 
solution of the associated homogeneous system. 

(b) Identify the set of all solutions of the given linear 
system as a coset of the solution space of the associated ho
mogeneous linear system. 
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15. Find the dimension of the quotient space Pn(R)/U where 
U is the subspace of all real constant polynomials. 

16. Let V be an n-dimensional vector space over an arbitrary 
field. Prove that there exists a quotient space of V of each 
dimension i where 0 < i < n. 

17. Let V be a finite-dimensional vector space and let U and 
W be two subspaces of V. Prove that 

dim((C7 + W)/W) = dim(U/(U n W)). 
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LINEAR TRANSFORMATIONS 

A linear transformation is a function between two vector 
spaces which relates the structures of the spaces. Linear trans
formations include operations as diverse as multiplication of 
column vectors by matrices and differentiation of functions 
of a real variable. Despite their diversity, linear transforma
tions have many common properties which can be exploited 
in different contexts. This is a good reason for studying linear 
transformations and indeed much else in linear algebra. 

In order to establish notation and basic ideas, we begin 
with a brief discussion of functions defined on arbitrary sets. 
Readers who are familiar with this elementary material may 
wish to skip 6.1. 

6.1 Functions Denned on Sets 

If X and Y are two non-empty sets, a function or mapping 
from X to Y, 

F :X -> y, 

is a rule that assigns to each element x o f l a unique element 
F(x) of Y, called the image of x under F. The sets X and 
Y are called the domain and codomain of the function F re
spectively. The set of all images of elements of X is called the 
image of the function F; it is written 

Im(F). 

Examples of functions abound; the most familiar are quite 
likely the functions that arise in calculus, namely functions 
whose domain and codomain are subsets of the set of real 
numbers R. An example of a function which has the flavor 

152 
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of linear algebra is F : MTO)n(R) —> R defined by F(A) = 
det(A), that is, the determinant function. 

A very simple, but nonetheless important, example of a 
function is the identity function on a set X; this is the function 

lx : X -> X 

which leaves every element of the set X fixed, that is, lx(x) = 
x for all elements x of X. 

Next, three important special types of function will be 
introduced. A function F : X —> Y is said to be injective (or 
one-one) if distinct elements of X always have distinct images 
under F, that is, if the equation F(xi) = F{x2) implies that 
X\ = X2- On the other hand, F is said to be surjective (or 
onto) if every element y of Y is the image under F of at least 
one element of X, that is, if y = F(x) for some x in X Finally, 
F is said to be bijective (or a one-one correspondence) if it is 
both injective and surjective. 

We need to give some examples to illustrate these con
cepts. For convenience these will be real-valued functions of 
a real variable x. 

Example 6.1.1 

Define Fx : R - • R by the rule F±(x) = 2X. Then Fx is 
injective since 2X = 2y clearly implies that x — y. But i*\ 
cannot be surjective since 2X is always positive and so, for 
example, 0 is not the image of any element under F. 

Example 6.1.2 

Define a function F2 : R —> R by F2(x) = x2(x — 1). Here 
F2 is not injective; indeed ^ ( 0 ) = 0 = ^ ( 1 ) . However F2 is 
surjective since the expression x2(x — 1) assumes all real values 
as x varies. The best way to see this is to draw the graph of 
the function y = x2(x — 1) and observe that it extends over 
the entire y-axis. 
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Example 6.1.3 

Define F3 : R -»• R by F2(x) = 2x - 1. This function is both 
injective and surjective, so it is bijective. (The reader should 
supply the proof.) 

Composition of functions 

Consider two functions F : X —> Y and G : U —» V such 
that the image of G is a subset of X. Then it is possible to 
combine the functions to produce a new function called the 
composite of F and G 

FoG : U->Y, 

by applying first G and then F; thus the image of an element 
x of U is given by the formula 

FoG(x) = F(G(x)). 

Here it is necessary to know that Im(G') is contained in X, 
since otherwise the expression F(G(x)) might be meaningless. 

Example 6.1.4 

Consider the functions F : R2 —> R and G : C —• R 2 defined 
by the rules 

F((a
b )) = v V + 62 and G(a + v ^ ) = 

Here a and 6 are arbitrary real numbers. Then F o G : C —* R 
exists and its effect is described by 

F o G(a + V^lb) = F((2
2
a
b)) = ^/Aa? + 4b2. 

A basic fact about functional composition is that it sat
isfies the associative law. First let us agree that two functions 

ft-



6.1: Functions Defined on Sets 155 

F and G are to be considered equal - in symbols F = G - if 
they have the same domain and codomain and if F(x) = G(x) 
for all x. 

Theorem 6.1.1 
Let F : X —>Y, G : U —> V and H : R —> S be functions such 
that \m{H) is contained in U and Im(G) is contained in X. 
Then F o (G o H) = (F o G) o H. 

Proof 
First observe that the various composites mentioned in the 
formula make sense: this is because of the assumptions about 
Im(H) and lm(G). Let x be an element of X. Then, by the 
definition of a composite, 

F o (G o H){x) = F((G o H)(x)) = F(G{H(x))). 

In a similar manner we find that (FoG) oH(x) is also equal to 
this element. Therefore Fo(GoH) = (FoG)oH, as claimed. 

Another basic result asserts that a function is unchanged 
when it is composed with an identity function. 

Theorem 6.1.2 

If F : X —>Y is any function, then F o lx = F — l y o F. 

The very easy proof is left to the reader as an exercise. 

Inverses of functions 
Suppose that F : X —> Y is a function. An inverse of 

F is a function of the form G : Y —> X such that FoG and 
G o F are the identity functions on Y and on X respectively, 
that is, 

F{G{y)) = y and G(F(x)) = x 

for all s i n l and y in Y. A function which has an inverse is 
said to be invertible. 
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Example 6.1.5 
Consider the functions F and G with domain and codomain 
R which are defined by F(x) = 2x — 1 and G(x) = (x + l ) /2 . 
Then G is an inverse of F since F o G and G o F are both 
equal to lp^. Indeed 

F o G(x) = F(G(x)) = F((x + l)/2) = 2((x + l)/2) - 1 = 2;, 

with a similar computation for 6* o F(x). 

Not every function has an inverse; in fact a basic theorem 
asserts that only the bijective ones do. 

Theorem 6.1.3 
A function F : X —> Y has an inverse if and only if it is 
bijective. 

Proof 
Suppose first that F has an inverse function G : Y —> X. 
If F(xi) = F(x2), then, on applying G to both sides, we 
obtain G o F(xi) = G o F(x2). But G o F is the identity 
function on X, so xi = x2. Hence F is injective. Next let y 
be any element of Y; then, since FoG is the identity function, 
y = F o G(y) = F(G(y)), which shows that j / belongs to the 
image of F and F is surjective. Therefore F is bijective. 

Conversely, assume that F is a bijective function. We 
need to find an inverse function G : Y —> X for F. To this end 
let y belong to F ; then, since F is surjective, y = F{x) for 
some a; in X; moreover x is uniquely determined by y since 
F is injective. This allows us to define G(y) to be x. Then 
G(F(a;)) = G(y) = x and F(G(y)) = F(ar) = j / . Here it is 
necessary to observe that every element of X is of the form 
G(y) for some y in Y, so that G(F(x)) equals x for all elements 
x of X. Therefore G is an inverse function for F. 

The next observation is that when inverse functions do 
exist, they are unique. 
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Theorem 6.1.4 
Every bijective function F : X —> Y has a unique inverse 
function. 

Proof 
Suppose that F has two inverse functions, say G\ and G2. 
Then {Gx o F) o G2 = lx ° G2 = G2 by 6.1.2. On the other 
hand, by 6.1.1 this function is also equal to G\ o (F o G2) = 
G i o l y = Gi. Thus Gi = G 2 . 

Because of this result it is unambiguous to denote the 
inverse of a bijective function F : X —•> Y by 

F~l : Y -> X. 

To conclude this brief account of the elementary theory of 
functions, we record two frequently used results about inverse 
functions. 

Theorem 6.1.5 
(a) If F : X —> Y is an invertible function, then F~l is 
invertible with inverse F. 
(b) IfF:X^YandG:U^X are invertible 
functions, then the function F o G : U —> Y 
is invertible and its inverse is G~x o F"1. 

Proof 
Since F o F~l = 1Y and F~x o F = lx, it follows that F is 
the inverse of F~x. For the second statement it is enough to 
check that when G - 1 o F _ 1 is composed with F o G on both 
sides, identity functions result. To prove this simply apply the 
associative law twice. 
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Exercises 6.1 

1. Label each of the following functions F : R —• R injective, 
surjective or bijective, as is most appropriate. (You may wish 
to draw the graph of the function in some cases): 

(a) F(x) = x2; (b) F(x) = x3/(x2 + 1); 
(c) F(x) = x(x ~l)(x-2); (d) F(x) = ex + 2. 

2. Let functions F and G from R to R be defined by F{x) = 
2x — 3, and G{x) = (x2 — l)/(x2 + l). Show that the composite 
functions F o G and G o F are different. 

3. Verify that the following functions from R to R are mutu
ally inverse: F(x) = 3x — 5 and G(x) = (x + 5)/3. 

4. Find the inverse of the bijective function F : R —> R 
defined by F(x) = 2x3 — 5. 

5. Let G : F -^ X be an injective function. Construct a 
function F : X —• V such that F o G is the identity function 
on Y. Then use this result to show that there exist functions 
F, G : R -> R such that F o G = 1 R but G o F ^ 1 R . 

6. Prove 6.1.2. 

7. Complete the proof of part (b) of 6.1.5. 

6.2 Linear Transformations and Matrices 

After the preliminaries on functions, we proceed at once 
to the fundamental definition of the chapter, that of a linear 
transformation. Let V and W be two vector spaces over the 
same field of scalars F. A linear transformation (or linear 
mapping) from V to W is a function 

T: V ^ W 

with the properties 

T(vi + v2) = T(vi) + T(v2) and T(cv) = cT(v) 
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for all vectors v, v i , V2 in V and all scalars c in F. In short 
the function T is required to act in a "linear" fashion on sums 
and scalar multiples of vectors in V. In the case where T is a 
linear transformation from V to V, we say that T is a linear 
operator on V. 

Of course we need some examples of linear transforma
tions, but these are not hard to find. 

Example 6.2.1 

Let the function T : R 3 —> R2 be defined by the rule 

Thus T simply "forgets" the third entry of a vector. From 
this definition it is obvious that T is a linear transformation. 

Now recall from Chapter Four the geometrical interpreta
tion of the column vector with entries a, b, c as the line segment 
joining the origin to the point with coordinates (a, b, c). Then 
the linear transformation T projects the line segment onto the 
xy-plane. Consequently projection of a line in 3-dimensional 
space which passes through the origin onto the xy-p\ane is a 
linear transformation from R 3 to R2 . 

The next example of a linear transformation is also of a 
geometrical nature. 

Example 6.2.2 

Suppose that an anti-clockwise rotation through angle 9 about 
the origin O is applied to the xy-plane. Since vectors in R 2 

are represented by line segments in the plane drawn from the 
origin, such a rotation determines a function T : R 2 —> R2; 
here the line segment representing T(X) is obtained by rotat
ing the line segment that represents X. 
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To show that T is a linear operator on R2 , we suppose that 
Y is another vector in R2 . 

T(X+Y) 

Referring to the diagram above, we know from the trian
gle rule that X+Y is represented by the third side of the trian
gle formed by the line segments representing X and Y. When 
the rotation is applied to this triangle, the sides of the result
ing triangle represent the vectors T(X), T(Y), T(X) + T(Y), 
as shown in the diagram. The triangle rule then shows that 
T(X + Y) = T(X)+T(Y). 

In a similar way we can see from the geometrical inter
pretation of scalar multiples in R 2 that T(cX) = cT(X) for 
any scalar c. It follows that T is a linear operator on R . 

Example 6.2.3 

Define T : D^a, b] —> Doo[a, b] to be differentiation, that is, 

T(f(x)) = f'(x). 

Here Doo[a,b} denotes the vector space of all functions of x 
that are infinitely differentiable in the interval [a ,b]. Then 
well-known facts from calculus guarantee that T is a linear 
operator on D^a, b\. 

This example can be generalized in a significant fashion 
as follows. Let a±, a 2 , . . . , an be functions in D^a, b]. For any 
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/ in Doo[a,b], define T(f) to be 

anf^ + a n - i / ( n _ 1 ) + • • • + a i / ' + «o/. 

Then T is a linear operator on Doo[a,b], once again by ele
mentary results from calculus. Here one can think of T as a 
sort of generalized differential operator that can be applied to 
functions in -Doo[a, 6]. 

Our next example of a linear transformation involves quo
tient spaces, which were defined in 5.3. 

Example 6.2.4 
Let U be a subspace of a vector space V and define a function 
T : V -» V/U by the rule T(v) = v + U. It is simple to verify 
that T is a linear transformation: indeed, 

T(vx + v2) = (vi + v2) + U = (vi + U) + (v2 + *7) 
= T ( V l ) + T ( v 2 ) 

by definition of the sum of two vectors in a quotient space. In 
a similar way one can show that T(cv) = c(T(v)). 

The function just defined is often called the canonical 
linear transformation associated with the subspace U. 

Finally, we record two very simple examples of linear 
transformations. 

Example 6.2.5 

(a) Let V and W be two vector spaces over the same field. The 
function which sends every vector in V to the zero vector of W 
is a linear transformation called the zero linear transformation 
from V to W; it is written 

Ov,w or simply 0. 

(b) The identity function \y : V —> V is a linear operator on 
V. 

After these examples it is time to present some elemen
tary properties of linear transformations. 
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Theorem 6.2.1 
Let T : V —> W be a linear transformation. Then 

r(Ov) = ow 

and 

T(c 1v 1+c 2v 2 + - • •+cfcvA!) = c1T(v1)+c2T(v2) + - • -+ckT(vk) 

/or a// vectors v$ and scalars Ci. 

Thus a linear transformation always sends a zero vector 
to a zero vector; it also sends a linear combination of vectors 
to the corresponding linear combination of the images of the 
vectors. 

Proof 
In the first place we have 

T(0V) = T(0V + 0V) = T(0V) + T(0V) 

by the first defining property of linear transformations. Addi
tion of — T(Oy) to both sides gives Ow = T(Oy), as required. 

Next, use of both parts of the definition shows that 

T(civi H h cfc_ivfc_! + ckvk) 

is equal to the vector 

r(cxvi H h Cfc_iVfc_i) + cfcr(vfc). 

By repeated application of this procedure, or more properly 
induction on k, we obtain the second result. 

Representing linear transformations by matrices 
We now specialize the discussion to linear transformations 

of the type 
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where F is some field of scalars. Let {Ei,E2, ...,En} be the 
standard basis of Fn written in the usual order, that of the 
columns of the identity matrix l n . Also let {Di,D2, ...,Dm} 
be the corresponding ordered basis of Fm. Since T(Ej) is a 
vector in Fm, it can be written in the form 

/ 

T{E3) = 

O i j 

— aijDi + • • • + amjDm = 2_^ &ijDi 

\ Ujm3 

Put A = [ajj]m)n, so that the columns of the matrix A are 
the vectors T(E{), ...,T(En). We show that T is completely 
determined by the matrix A. 

Take an arbitrary vector in Fn, say 

X = : J = xiE1 + \~xnEn = Y^xjEr 

\xnl i=i 

Then, using 6.2.1 together with the expression for T(Ej), we 
obtain 

n n n m 

j=l j=l j-l i=l 
m n 

= 52(52ai3xj)Di-
i=l j = l 

Therefore the ith entry of T(X) equals the ith entry of the 
matrix product AX. Thus we have shown that 

T{X) = AX, 

which means that the effect of T on a vector in Fn is to 
multiply it on the left by the matrix A. Thus A determines T 
completely. 



164 Chapter Six: Linear Transformationns 

Conversely, suppose that we start with an m x n matrix 
A over F; then we can define a function T : Fn —> Fm by the 
rule T(X) = AX. The laws of matrix algebra guarantee that 
T is a linear transformation; for by 1.2.1 

A(Xi + X2) = AXX + AX2 and A(cX) = c(AX). 

We have now established a fundamental connection between 
matrices and linear transformations. 

Theorem 6.2.2 
(i) Let T : Fn —> Fm be a linear transformation. Then 
T{X) = AX for all X in Fn where A is the m x n matrix 
whose columns are the images under T of the standard basis 
vectors of Fn. 

(ii) Conversely, if A is any mx n matrix over the field F, the 
function T : Fn -> F m defined by T(X) = AX is a linear 
transformation. 

Example 6.2.6 

Define T : R 3 -»• R2 by the rule 

One quickly checks that T is a linear transformation. The 
images under T of the standard basis vectors Ei, E2, E3 are 

respectively. It follows that T is represented by the matrix 

A = [ 0 - 1 3 ) ' 
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Consequently 

T{ \x2 ) = A \x2 

\x3J \x3 

as can be verified directly by matrix multiplication. 

Example 6.2.7 

Consider the linear operator T : R2 —> R2 which arises from 
an anti-clockwise rotation in the xy-plane through an angle 9 
(see Example 6.2.2.) The problem is to write down the matrix 
which represents T. 

All that need be done is to identify the vectors T(E{) 
and T(E2) where E\ and E2 are the vectors of the standard 
ordered basis. 

(-sin 9, cos 9) - (0 ,1) 

(cos 9, sin 9) 

(1.0) 

The line segment representing E\ is drawn from the origin O to 
the point (1, 0), and after rotation it becomes the line segment 

from O to the point (cos 8, sin 9); thus T(E\) = [ . n 1. 

\ sin " J 
Similarly T(E2) = 

— sin 9 
cos 9 

which represents the rotation T is 

It follows that the matrix 

cos 9 
sin 9 

-sin 9 
cos 9 
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Representing linear transformations by matrices: 
The general case 

We turn now to the problem of representing by matrices 
linear transformations between arbitrary finite-dimensional 
vector spaces. 

Let V and W be two non-zero finite-dimensional vector 
spaces over the same field of scalars F. Consider a linear 
transformation T : V —> W. The first thing to do is to choose 
and fix ordered bases for V and W, say 

B = {vi> v 2 . . . , v n } andC = {wi, w 2 . . . , w m } 

respectively. We saw in 5.1 how any vector v of V can be 
represented by a unique coordinate vector with respect to the 
ordered basis B. If v = ciVi + • • • + cnvn , this coordinate 
vector is 

Similarly each w in W may be represented by a coordinate 
vector [w]c with respect to C . 

To represent T by a matrix with respect to these chosen 
ordered bases, we first express the image under T of each 
vector in B as a linear combination of the vectors of C, say 

m 

T(VJ) = aij-wi H 1- a m i w m = ^ ay'w* 

where the scalars. Thus [T(VJ)]C is the column vector 
with entries aij,..., amj. Let A be the m x n matrix whose 
(i,j) entry is a^. Thus the columns of A are just the coordi
nate vectors of T(vi),..., T(vn) with respect to C. 
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Now consider the effect of T on an arbitrary vector of V, 
say v = C1V1 + • • • + cnvn . This is computed by using the 
expression for T(VJ) given above: 

n n n m 

3 = 1 3 = 1 3 = 1 i=l 

On interchanging the order of summations, this becomes 

m n 

T(V) = ^ E a V c j ) w i -
i=l j=l 

Hence the coordinate vector of T(v) with respect to the or
dered basis C has entries J2^=i aijcj for i = 1, 2 , . . . , m. This 
means that 

[T(v)]c = A[v]B. 

The conclusions of this discussion can be summed up as 
follows. 

Theo rem 6.2.3 
Let T : V —> W be a linear transformation between two non
zero finite-dimensional vector spaces V and W over the same 
field. Suppose that B and C are ordered bases for V and W 
respectively. If v is any vector of V, then 

[T(v)]c = A[v]B 

where A is the mxn matrix whose jth column is the coordinate 
vector of the image under T of the jth vector of B, taken with 
respect to the basis C. 

What this result means is that a linear transformation 
between non-zero finite-dimensional vector spaces can always 
be represented by left multiplication by a suitable matrix. At 
this point the reader may wonder if it is worth the trouble 
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of introducing linear transformations, given that they can be 
described by matrices. The answer is that there are situations 
where the functional nature of a linear transformation is a 
decided advantage. In addition there is the fact that a given 
linear transformation can be represented by a host of different 
matrices, depending on which ordered bases are used. The 
real object of interest is the linear transformation, not the 
representing matrix, which is dependent on the choice of bases. 

Example 6.2.8 
Define T : P n + i ( R ) P n (R) by the rule T(f) = / ' , the 
derivative. Let us use the standard bases B = {1, x, x ,..., xn} 
and C = {l,ai, x2, . . . ,x n _ 1} for the two vector spaces. Here 
T{xl) = ix%~1, so [T(xl)]c is the vector whose ith entry is i 
and whose other entries are zero. Therefore T is represented 
by the n x (n + 1) matrix 

A 

/ 0 1 0 
0 0 2 
0 0 0 

0 0 0 

Vo o o 

°\ 
0 
0 

n 
0 / 

For example, 

A 

( 2 \ 
- 1 

3 
0 

6 
0 

V 07 
V 0/ 

which corresponds to the differentiation 

T(2 - x + 3x2) = (2-x + 3x2)' = 6x - 1. 
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Change of basis 

Being aware of a dependence on the choice of bases, we 
wish to determine the effect on the matrix representing a linear 
transformation when the ordered bases are changed. The first 
step is to find a matrix that describes the change of basis. 

Let B = {v1,..., v n } and B' = {v^, . . . , v'n} be two or
dered bases of a finite-dimensional vector space V. Then each 
v^ can be expressed as a linear combination of v i , . . . , v n , say 

n 

J'=l 

for certain scalars Sji. The change of basis B' —> B is deter
mined by the n x n matrix S = [sij]. To see how this works 
we take an arbitrary vector v in V and write it in the form 

n 

i=l 

where, of course, c\ ,..., cn' are the entries of the coordinate 
vector [v]g/. Replace each v / by its expression in terms of the 
Vj to get 

n n n n 

i = l j = X j = l i = l 

From this one sees that the entries of the coordinate vector 
[V]B are just the scalars Y17-1 sjic'n ^or 3 = 1, 2,..., n. But the 
latter are the entries of the product 

(c'A 

Vn) 
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Therefore we obtain the fundamental relation 

M B = S[v]B>. 

Thus left multiplication by the change of basis matrix S trans
forms coordinate vectors with respect to B' into coordinate 
vectors with respect to B. It is in this sense that the matrix 
S describes the basis change B' —> B. Here it is important 
to observe how S is formed: its ith column is the coordinate 
vector of v[, the ith vector of B', with respect to the basis B. 

It is a crucial remark that the change of basis matrix S 
is always invertible. Indeed, if this were false, there would 
by 2.3.5 be a non-zero n-column vector X such that SX — 0. 
However, if u denotes the vector in V whose coordinate vector 
with respect to basis B' is X, then [u]g = SX = 0, which can 
only mean that u = 0 and X = 0, a contradiction. 

As one would expect, the matrix S~x represents the in
verse change of basis B —> B'\ for the equation M s = ^ M s ' 
implies that 

[v\BI = S-\v\B. 

These conclusions can be summed up in the following 
form. 

Theorem 6.2.4 
Let B and B' be two ordered bases of an n-dimensional vector 
space V. Define S to be the n x n matrix whose ith column is 
the coordinate vector of the ith vector of B' with respect to the 
basis B. Then S is invertible and, ifv is any vector ofV, 

M s = S[v]B> and [v]B/ = S~1[v]B. 
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Example 6.2.9 
Consider two ordered bases of the vector space Pa(R): 

B = {l,x,x2} and B' = {1, 2x, Ax2 - 2}. 

In order to find the matrix S which describes the change of 
basis B' —> B, we must write down the coordinate vectors of 
the elements of B' with respect to the standard basis B: these 
are 

[l]s = I 0 , [2x]B = 2 J , [Ax2 - 2]B = I 0 

Therefore 

The matrix which describes the change of basis B —> B' is 

/ l 0 1/2' 
S" 1 = 0 1/2 0 

\ 0 0 1/4 

For example, to express / = a + bx + ex2 in terms of the basis 
B', we compute 

[ / ]B'=S_ 1[ / ]f l 

Thus / = (a + c/2)l + (b/2)2x + (c/4)(4x2 - 2), which is of 
course easy to verify. 
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Example 6.2.10 
Consider the change of basis in R 2 which arises when the x-
and y-axes are rotated through angle 9 in an anticlockwise 
direction. As was noted in Example 6.2.6, the effect of this 
rotation is to replace the standard ordered basis B = {E\, E2] 
by the basis B' consisting of 

cos 9 \ _. / — sin 9 
sin 9 J y cos 9 

The matrix which describes the change of basis B ' —> B is 

q _ f cos 9 — sin 9 
\ sin 9 cos 9 

so the change of basis B —> B' is described by 

s-l = ,_i _ / cos 9 sin 9 
— sin 9 cos 9 

Hence, if X = I , I, the coordinate of vector of X with re

spect to the basis B' is 

r v\ — c - i v _ f a cos 9 + b sin 9 \ 

This means that the coordinates of the point (a, b) with re
spect to the rotated axes are 

a' = a cos 9 + b sin # and b' = — a sin 9 + b cos 9, 

respectively. 
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Change of basis and l inear t ransformat ions 

We are now in a position to calculate the effect of change 
of bases on the matrix representing a linear transformation. 

Let B and C be ordered bases of finite-dimensional vector 
spaces V and W over the same field, and let T : V —> W be 
a linear transformation. Then T is represented by a matrix A 
with respect to these bases. 

Suppose now that we select new bases B' and C for V 
and W respectively. Then T will be represented with respect 
to these bases by another matrix, say A'. The question before 
us is: what is the relation between A and A'l 

Let X and Y be the invertible matrices that represent 
the changes of bases B —> B' and C —> C respectively. Then, 
for any vectors v of V and w of W, we have 

[v]B/ = X[V]B and [w]C/ = y[w] c . 

Now by 6.2.3 

[T(v)]c = A[w)B and [T(v)]c, = A'[v]s,. 

On combining these equations, we obtain 

[T(v)]c, = Y[T(v)]c = 7A[v]B = YAX-^B'-

But this means that the matrix YAX-1 describes the linear 
transformation T with respect to the bases B' and C of V and 
W respectively. Hence A' = YAX~l. 

We summarise these conclusions in 

Theorem 6.2.5 
Let V and W be non-zero finite-dimensional vector spaces over 
the same field. Let B and B' be ordered bases of V, and C 
and C ordered bases of W. Suppose that matrices X and Y 
describe the respective changes of bases B —> B' and C —> C'. 
If the linear transformation T : V —> W is represented by a 
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matrix A with respect to B and C, and by a matrix A' with 
respect to B' and C, then 

A' = YAX-\ 

The most important case is that of a linear operator 
T : V —• V, when the ordered basis B is used for both domain 
and codomain. 

Theorem 6.2.6 
Let B and B' be two ordered bases of a finite-dimensional vec
tor space V and let T be a linear operator on V. If T is repre
sented by matrices A and A' with respect to B and B' respec
tively, then 

A' = SAS'1 

where S is the matrix representing the change of basis B —> B'. 

Example 6.2.11 
Let T be the linear transformation on -Ps(R) defined by 
T( / ) = / ' . Consider the ordered bases of Pa(R) 

B = {l,x,x2} and B' = {l,2x,4x2 - 2}. 

We saw in Example 6.2.9 that the change of basis B —> B' 
is represented by the matrix 

/ l 0 1/2' 
17 = 0 1/2 0 

\ 0 0 1/4 

Now T is represented with respect to B by the matrix 

A 
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Hence T is represented with respect to B' by 

/ 0 2 0 \ 
[ /At/ - 1 = 0 0 4 . 

\ 0 0 0 / 

This conclusion is easily checked. An arbitrary element of 
P3(R) can be written in the form / = a(l)+6(2ir) + c(4a;2-2). 
Then it is claimed that the coordinate vector of T(f) with 
respect to the basis B' is 

/ 0 2 0 \ / a \ / 2 6 \ 
0 0 4 6 == 4 c . 

\0 0 0/ \ c / W 

This is correct since 

26(1) + 4c(2x) + 0(4a?2 - 2) = 2b + 8cx 
= (a{l) + b(2x) + c(4x2 - 2))'. 

Similar matrices 

Let A and B be two n x n matrices over a field F; then 
B is said to be similar to A over F if there is an invertible 
n x n matrix S with entries in F such that 

B = SAS~1. 

Thus the essential content of 6.2.6 is that two matrices which 
represent the same linear operator on a finite-dimensional vec
tor space are similar. Because of this fact it is to be expected 
that similar matrices will have many properties in common: 
for example, similar matrices have the same determinant. In
deed if B = SAS~\ then by 3.3.3 and 3.3.5 

det(B) = det(S) det(A) det(S)- 1 = det(A). 
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We shall encounter other common properties of similar matri
ces in Chapter Eight. 

Exercises 6.2 

1. Which of the following functions are linear transforma
tions? 

(a) Ti : R 3 —> R where Ti([2:1X2X3]) = \Jx\ + x\ + x§; 

(b) T2 : Mm,n{F) - M n ,m (F) where T2(A) = AT; 

(c) T3 : Mn(F) ->• F where T3(^) = det(4). 
2. If T is a linear transformation, prove that T(—v) = —T(y) 
for all vectors v. 

3. Let I be a fixed line in the xy-plane passing through the 
origin O. If P is any point in the plane, denote by P' the 
mirror image of P in the line /. Prove that the assignment 
O P —> O P ' determines a linear operator on R2 . (This is 
called reflection in the line I). 

4. A linear transformation T : R —> R is defined by 

T{ 
(Xl\ 

X3 

\X4 / 

Xi — X2 — %3 ~ £ 4 

2x i + x 2 - X3 

%2 - %3 + %4 

Find the matrix that represents T with respect to the standard 
bases of R 4 and R3 . 

5. A function T : P^(R) —>• P^(R) is defined by the rule 
T(f) = xf" — 2xf + / . Show that T is a linear operator and 
find the matrix that represents T with respect to the standard 
basis of P4.(R). 

6. Find the matrix which represents the reflection in Exercise 
3 with respect to the standard ordered basis of R2 , given that 
the angle between the positive x-direction and the line I is 4>. 
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7. Let B denote the standard basis of R 3 and let B' be the 
basis consisting of 

Find the matrices that represent the basis changes B —* B' 
and B' - • B. 

8. A linear transformation from R 3 to R2 is defined by 

xx - x2 - x3 
-Xi + X3 

Let B and C be the ordered bases 

of R 3 and R2 respectively. Find the matrix that represents T 
with respect to these bases. 

9. Explain why the matrices I 1 and ( 1 cannot 

be similar. 

10. If B is similar to A, prove that A is similar to B. 

11. If B is similar to A and C is similar to B, prove that C 
is similar to A. 

12. If B is similar to A, then BT is similar to AT; prove or 
disprove. 
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6.3 Kernel, Image and Isomorphism 

If T : V —> W is a linear transformation between two vec
tor spaces, there are two important subspaces associated with 
T, the image and the kernel. The first of these has already 
been defined; the image of T, 

Im(T), 

is the set of all images T(v) of vectors v in V: thus Im(T) is 
a subset of W. 

On the other hand, the kernel of T 

Ker(T) 

is defined to be the set of all vectors v i n 7 such that T(v) = 
0W. Thus Ker(T) is a subset of V. Notice that by 6.2.1 the 
zero vector of V must belong to Ker(T), while the zero vector 
of W belongs to Im(T). 

The first thing to observe is that we are actually dealing 
with subspaces here, not just subsets. 

Theorem 6.3.1 
If T is a linear transformation from a vector space V to a 
vector space W, then Ker(T) is a subspace of V and Im(T) is 
a subspace of W. 

Proof 
We need to check that Ker(T) and Im(T) contain the relevant 
zero vector, and that they are closed with respect to addition 
and scalar multiplication. The first point is settled by the 
equation T(Oy) = Ow, which was proved in 6.2.1. Also, by 
definition of a linear transformation, we have T(vi + V2) = 
T(vi) + T(v2) and T(cvi) = cT(vi) for all vectors v 1 ; v2 of 
V and scalars c. Therefore, if vi and v2 belong to Ker(T), 
then T(vi + v2) = 0 ^ , and T(cvi) = Ow, so that vx + v2 and 
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cvi belong to Ker(T); thus Ker(T) is a subspace. For similar 
reasons Im(T) is a subspace. 

Let us look next at some examples which relate these new 
concepts to some more familiar ones. 

Example 6.3.1 
Consider the homogeneous linear differential equation for a 
function y of the real variable x: 

y™ + an_x{x)y^-^ + ••• + a1(x)y' + a0(x)y = 0, 

with x in the interval [a, b] and di(x) in .Doo[a, &]. There is 
an associated linear operator T on the vector space D^a^b] 
defined by 

T(f) = / ( n ) + an-xOr)/*"-1* + • • • + ax{x)f + aQ(x)f. 

Then Ker(T) is the solution space of the differential equation. 

Example 6.3.2 
Let A be an m x n matrix over a field F. We have seen that 
the rule T(X) = AX defines a linear transformation 

Identify Ker(T) and Im(T). 

In the first place, the definition shows that Ker(T) is 
the null space of the matrix A. Next an arbitrary element of 
Im(T) is a linear combination of the images of the standard 
basis elements of R n ; but the latter are simply the columns 
of the matrix A. Consequently, the image of T coincides with 
the column space of the matrix A. 

Example 6.3.3 
After the last example it is natural to enquire if there is an 
interpretation of the row space of a matrix A as an image 
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space. That this is the case may be seen from a related linear 
transformation. 

Given an m x n matrix A, define a linear transformation 
7\ from Fm to Fn by the rule Ti(X) = XA. In this case 
Im(Xi) is generated by the images of the elements of the stan
dard basis of Fm, that is, by the rows of A. Hence the image 
of T\ equals the row space of A. 

It is now time to consider what the kernel and image tell 
us about a linear transformation. 

Theorem 6.3.2 
Let T be a linear transformation from a vector space V to a 
vector space W. Then 

(i) T is infective if and only ifKer(T) is the zero subspace 
ofV; 
(ii) T is surjective if and only ifIm(T) = W. 

Proof 
(i) Assume that T is an injective function. If v is a vector in 
the kernel of T, then T(v) = 0W = T(0V). Therefore v = 0V 

by injectivity, and Ker(T) = Oy- Conversely, suppose that 
Ker(T') = Oy- If vi and v2 are vectors in V with the property 
T(vi) = T(v2), then T ( V l - v2) = T( V l ) - T(v2) = 0W. 
Hence the vector vi — v2 belongs to Ker(T) and vi = v2 . 
(ii) This is true by definition of surjectivity. 

For finite-dimensional vector spaces there is a simple for
mula which links the dimensions of the kernel and image of a 
linear transformation. 

Theorem 6.3.3 
Let T : V —> W be a linear transformation where V and W 
are finite-dimensional vector spaces. Then 

dim(Ker(T)) + dim(Im(T)) = dim(F). 
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Proof 
Here we may assume that V is not the zero space; otherwise 
the statement is true for obvious reasons. By 5.1.4 it is possi
ble to choose a basis v i , . . . , v n of V such that part of it is a 
basis of Ker(T), say v i , . . . , v r ; here of course 

n = dim(V) > r = dim(Ker(T)). 

We claim that the vectors T(vT .+ 1 ) , . . . , T(vn) are linearly in
dependent. For if c r + i T ( v r + i ) + • • • + cnT(vn) = Ow for 
some scalars Ci, then T(cr+ivr+i + • • • + cnvn) = Oiy, so 
that cr+ivr_|_i + • • • + c nv n belongs to Ker(T) and is there
fore expressible as a linear combination of v i , . . . , v r . But 
v i , . . . , v r , . . . , v n are certainly linearly independent. Hence 
c r + i , . . . , cn are all zero and our claim is established. 

On the other hand, the vectors T ( v r + 1 ) , . . . ,T(v n) by 
themselves generate Im(T) since T(vi) = • • • = T(v r) = Ow', 
hence T ( v r + i ) , . . . ,T(v n ) form a basis of Im(T). It follows 
that 

dim(Im(T)) = n-r = dim(F) - dim(Ker(T)), 

from which the formula follows. 

The dimension formula is in fact a generalization of some
thing that we already know. For suppose we apply the for
mula to the linear transformation T : Fn —• Fm defined by 
T(X) = AX, where A is an m x n matrix. Making the inter
pretations of Ker(T) and Im(T) as the null space and column 
space of A, we deduce that the sum of the dimensions of the 
null space and column space of A equals n. This is essentially 
the content of 5.1.7 and 5.2.4. 

Isomorphism 
Because of 6.3.2 we can tell whether a linear transforma

tion T : V —•> W is bijective. And in view of 6.1.3 this is the 
same as asking whether T has an inverse. A bijective linear 
transformation is called an isomorphism. 
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Theorem 6.3.4 
A linear transformation T : V —> W is an isomorphism if and 
only if Ker(T) is the zero subspace of V and Im(T) equals 
W. Moreover, if T is an isomorphism, then so is its inverse 
T~l : W -> V. 

Proof 
The first statement follows from 6.3.2. As for the second state
ment, all that need be shown is that T~l is actually a linear 
transformation: for by 6.1.5 it certainly has an inverse. This 
is achieved by a trick. Let vj and v2 be any two vectors in V. 
Then certainly 

T ( r - 1 ( v 1 + v 2 ) ) = v 1 + v 2 , 

while on the other hand, 

TOT-VI) + T-XM) = nr-^vi)) + rcr-Va)) 
= vi + v 2 , 

because T is known to be a linear transformation. Since T 
is an injective function, this can only mean that the vectors 
T - 1 ( v i + v2) and T - 1 ( v i ) + T _ 1 ( v 2 ) are equal; for they have 
the same image under T. 

In a similar way it can be demonstrated that T _ 1 (cvi) 
equals cT _ 1 (v i ) where c is any scalar: just check that both 
sides have the same image under T. Hence T~l is a linear 
transformation. 

Two vector spaces V and W are said to be isomorphic if 
there is an isomorphism from one to the other. Observe that 
isomorphic vector spaces are necessarily over the same field of 
scalars. The notation 

V ~W 

is often used to express the fact that vector spaces V and W 
are isomorphic. 
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How can one tell if two finite-dimensional vector spaces 
are isomorphic? The answer is that the dimensions tell us all. 

T h e o r e m 6.3.5 
Let V and W be finite-dimensional vector spaces over a field 
F. Then V and W are isomorphic if and only if dim(V) = 
dim(W). 

Proof 
Suppose first that dim(V) = dim(VF) = n. If n = 0, then V 
and W are both zero spaces and hence are surely isomorphic. 
Let n > 0. Then V and W have bases, say { v i , . . . , v n } and 
{ w i , . . . , w n } respectively. There is a natural candidate for an 
isomorphism from V to W, namely the linear transformation 
T : V -»• W defined by 

T(c1v1 H h cnvn) = ciwi H h cnwn . 

It is straightforward to check that T is a linear transformation. 
Hence V and W are isomorphic. 

Conversely, let V and W be isomorphic via an isomor
phism T : V —> W. Suppose that { v i , . . . , v n } is a basis of V. 
In the first place, notice that the vectors T ( v i ) , . . . , T"(vn) are 
linearly independent; for if ciT(vi) + - • -+cnT(vn) = 0 ^ , then 
T(ciVi + - • - + cnvn) = 0w• This implies that ciVi + - • -+c n v n 

belongs to Ker(T) and so must be zero. This in turn implies 
that c\ = • • • = cn = 0 because v i , . . . , v n are linearly inde
pendent. It follows by 5.1.1 that dim(W) > n = dim(V). In 
the same way it may be shown that dim(W) < dim(V^); hence 
dim(V) = dim{W). 

Corollary 6.3.6 
Every n-dimensional vector space V over a field F is isomor
phic with the vector space Fn. 

For both V and Fn have dimension n. This result makes 
it possible for some purposes to work just with vector spaces 
of column vectors. 
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Isomorphism theorems 

There are certain theorems, known as isomorphism theo
rems, which provide a link between linear transformations and 
quotient spaces (which were defined in 5.3). Such theorems 
occur frequently in algebra. The first theorem of this type is: 

T h e o r e m 6.3.7 
IfT : V —+ W is a linear transformation between vector spaces 
V and W, then 

V/Kev(T) ~ Im(T). 

Proof 
Write K = Ker (T). We define a function S : V/K -> Im(T) 
by the rule S{\ + K) = T(v). The first thing to notice is that 
S is well-defined: indeed if u € K, then 

T(v + u) = T(v) + T(u) = T(v) + 0 = T(v), 

since T(u) = 0. Thus S(v + K) does not depend on the choice 
of representative v of the coset v + K. 

Next it is simple to verify that 5" is a linear transforma
tion: for example, 

^((v! + K) + (v2 + K)) = S((vi + v2) + K) 

= T ( v i + v 2 ) 

= r(vi) + r(v2), 

which equals S(v\ + K) + 5,(v2 + K). In a similar way it can 
be shown that S(c(v + K)) = cS(v + K). 

Clearly the function S is surjective, so all we need do to 
complete the proof is show it is injective. If S(y + K) = 0, 
then T(v) = 0; thus v e K and v + K = 0V/K- Hence, by 
6.3.2, S is injective. 
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The last result provides an alternative proof of the dimen
sion formula in 6.3.3. Let T : V —> W be a linear transfor
mation. Then dim(V/Ker(:T)) = dim(Im(T) by 6.3.7. Prom 
the formula for the dimension of a quotent space (see 5.3.7), 
we obtain 

dim(F) - dim(Ker(T)) = dim(Im(T)), 

so that dim(Ker(T)) + dim(Im(T)) = dim(V). 

There is second isomorphism theorem which provides 
valuable insight into the relation between the sum of two sub-
spaces and certain associated quotient spaces. 

Theorem 6.3.8 
If U and W are subspaces of a vector space V, then 

(u + w)/w ~ u/(unw). 

Proof 
We begin by defining a function T : U —> (U + W)/W by 
the rule T(u) = u + W, where u G U. It is a simple matter 
to check that T is a linear transformation. Since u + W is a 
typical vector in (U + W)/W, we see that T is surjective. 

Next we need to compute the kernel of T. Now T(u) = 
u + W equals the zero vector of (U + W)/W, i.e., the coset W, 
precisely when u G W, which is just to say that u G U D W. 
Therefore Ker(T) = UnW. It now follows directly from 6.3.7 
that U/(U n l f ) ~ ( f / + W)/W. 

We illustrate the usefulness of this last result by using it 
to give another proof of the dimension formula of 5.3.2. 

Corollary 6.3.9 
/ / U and W are subspaces of a finite dimensional vector space 
V, then 

dim(C/ + W) + dim(U n W) = dim(C7) + dim(W). 
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Proof 
Since isomorphic vector spaces have the same dimension, we 
have dim((C7 + W)/W) = dxm(U/(U D W)). Now use the 
formula for the dimension of a quotient space in 5.3.7 to obtain 

dim(U + W) - dim(W) = dim(U) - dim(U D W), 

from which the result follows. 

The algebra of linear operators on a vector space 

We conclude the chapter by observing that the set of all 
linear operators on a vector space has certain formal properties 
which are very similar to properties that have already been 
seen to hold for matrices. This similarity can be expressed by 
saying that both systems form what is called an algebra. 

Consider a vector space V with finite dimension n over a 
field F. Let Ti and Ti be two linear operators on V. Then 
we define their sum Ti + T2 by the rule 

r 1 + T 2 ( v ) = Ti (v)+T 2 (v) 

and also the scalar multiple cTi, where c is an element of F, 
by 

cTi(v)=c(Ti(v)) . 

It is quite routine to verify that T\ + T2 and cT\ are also linear 
operators on V. For example, to show that T\ + T2 is a linear 
operator we compute 

Ti + T2(vx + v2) = Ti (vi + v2) + T2(vi + v2) 
= Ti(vi) + Ti(v2) + T2(V l) + T2(v2), 

from which it follows that 

Ti + T 2 ( V l + v2) = (Ti + r 2 ( v i ) ) + (Ti +T 2 (v 2 ) ) . 
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It is equally easy to show that 7\ + T2(cv) = c(2\ + T2(v)). 
Thus the set of all linear operators on V, which will henceforth 
be written 

L(V), 

admits natural operations of addition and scalar multiplica
tion. 

Now there is a further natural operation that can be per
formed on elements of L(V), namely functional composition 
as defined in 6.1. Thus, if T\ and T2 are linear operators on 
V', then the composite T\ oT2, which will in future be written 

TiT2, 

is defined by the rule 

TiT 2 (v)=Ti(T 2 (v)) . 

One has of course to check that TiT2 is actually a linear trans
formation, but again this is quite routine. So one can also form 
products in the set L(V). 

To illustrate these definitions, we consider an explicit ex
ample where sums, scalar multiples and products can be com
puted. 

Example 6.3.4 
Let Ti and T2 be the linear operators on -Doo[a, b] defined by 
Ti( / ) = f - f and T2(/) = xf" - 2 / ' . The linear opera
tors Ti + T2, cT\ and TiT2 may be found directly from the 
definitions as follows: 

Ti + r2(/) = r1(/) + T2(/) = / ' - / + x / " - 2 / ' 
= -f-f' + xf". 

Also 
cT1(f) = cf'-cf 
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and 

TiT2(/) = T1(T2(f))=T1(xf" - 2/ ') 
= ( * / " - 2 / ' ) ' - ( * / " - 2 / ' ) , 

which reduces to TiT2(/) = 2 / ' - (x + 1 ) / " + xf^\ after 
evaluation of the derivatives. 

At this point one can sit down and check that those 
properties of matrices listed in 1.2.1 which relate to sums, 
scalar multiples and products are also valid for linear oper
ators. Thus there is a similarity between the set of linear 
operators L(V) and Mn(F), the set o f n x n matrices over F 
where n = dim(V). This similarity should come as no sur
prise since the action of a linear operator can be represented 
by multiplication by a suitable matrix. 

The relation between L(V) and Mn(F) can be formalized 
by defining a new type of algebraic structure. This involves 
the concept of a ring, which was was described in 1.3, and 
that of a vector space. 

An algebra A over a field F is a set which is simultane
ously a ring with identity and a vector space over F, with 
the same rule of addition and zero element, which satisfies the 
additional axiom 

c(xy) = (cx)y = x(cy) 

for all x and y in A and all c in the field F. Notice that this 
axiom holds for the vector space Mn(F) because of property 
(j) in 1.2.1. Hence Mn{F) is an algebra over F. Now the 
additional axiom is also valid in L(V), that is, 

c(TlT2) = (cT1)T2 = Tl(cT2). 

This is true because each of the three linear operators men
tioned sends the vector v to c(Ti(T2(v))). It follows that 
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L(V), the set of all linear operators on a vector space V over 
a field F, is an algebra over F. 

Suppose now that we pick and fix an ordered basis B for 
the finite-dimensional vector space V. Then, with respect to 
B, a linear operator T on V is represented by an n x n matrix, 
which will be denoted by 

M(T). 

By 6.2.3 the matrix M(T) has the property 

[T(v)]B = M(r)[v]B. 

It follows from 6.2.3 that the assignment of the matrix 
M(T) to a linear operator T determines a bijective function 
from L(V) to Mn(F). The essential properties of this function 
are summarized in the next result. 

Theorem 6.3.10 
Let Ti and T2 be linear operators on an n-dimensional vector 
space V and let M(Ti) denote the matrix representing Ti with 
respect to a fixed ordered basis B of V. Then the following 
equations hold: 

(i) M(Ti + T2) = M(Ti) + M(T2); 
(ii) M{cT)=cM(T); 
(iii) M(TiT2) = M(Ti)M(T2) for all scalars c. 

It is as well to restate this technical result in words to 
make sure that the reader grasps what is being asserted. Ac
cording to part (i) of the theorem, if we add linear operators 
T\ and T2, the resulting linear operator T\ + T2 is represented 
by a matrix which is the sum of the matrices that represent 
T\ and T2. Also (ii) asserts that the scalar multiple cTi is 
represented by a matrix which is just c times the matrix rep
resenting T\. 
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More unexpectedly, when we compose the linear opera
tions Ti and T2, the resulting linear operator T1T2 is repre
sented by the product of the matrices representing T\ and T2 • 

In technical language, the function which sends T to 
M(T) is an algebra isomorphism from L(V) to Mn(F). The 
main point here is that isomorphic algebras, like isomorphic 
vector spaces, are to be regarded as similar objects, which 
exhibit the same essential features, even although their un
derlying sets may be quite different. 

In conclusion, our vague feeling that the algebras L(V) 
and Mn(F) are somehow quite closely related is made precise 
by the assertion that the algebra of all linear operators on an 
n- dimensional vector space over a field F is isomorphic with 
the algebra of all n x n matrices over F. 

Example 6.3.5 

Prove part (iii) of Theorem 6.3.10. 

Let v be any vector of the vector space; then, using the 
fundamental equation [T(v)]s = M(T)[v]s, we obtain 

[TiT2{-v)}B = M(T1)[r2(v)] s = M(T1)(M(T2)[v]s) 

= M(7i )M(r 2 ) [v] s , 

which shows that M{TXT2) = M(Ti)M(T2), as required. 

Exercises 6.3 

1. Find bases for the kernel and image of the following linear 
transformations: 

(a) T : R 4 —>• R where T sends a column to the sum 
of its entries; 

(b) T : P3(R) - P3(R) where T(f) = / ' ; 

< = ) T : R ^ R ° where r ( ( * ) ) = ( £ ; $ ) . 
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2. Show that every subspace U of a finite-dimensional vector 
space V is the kernel and the image of suitable linear operators 
on V. [Hint: assume that U is non-zero, choose a basis for U 
and extend it to a basis of V]. 

3. Sort the following vector spaces into batches, so that those 
within the same batch are isomorphic: 

R 6 , R 6 , C6 , P6(C),M2 ,3(R),C[0,1] . 

4. Show that a linear transformation T : V —> W is injective if 
and only if it has the property of mapping linearly independent 
subsets of V to linearly independent subsets of W. 

5. Show that a linear transformation T : V —• W is surjec-
tive if and only if it has the property of mapping any set of 
generators of V to a set of generators of W. 

6. A linear operator on a finite-dimensional vector space is 
an isomorphism if and only if some representing matrix is 
invertible: prove or disprove. 

7. Prove that the composite of two linear transformations is 
a linear transformation. 

8. Prove parts (i) and (ii) of Theorem 6.3.10. 

9. Let T : V —> W and S : W —> U be isomorphisms of 
vector spaces; show that the function ST : V —> U is also an 
isomorphism. 

10. Let T be a linear operator on a finite-dimensional vector 
space V. Prove that the following statements about T are 
equivalent: 

(a) T is injective; 
(b) T is surjective; 
(c) T is an isomorphism. 

Are these statements still equivalent if V is infinitely gener
ated? 

11. Show that similar matrices have the same rank. [Use the 
fact that similar matrices represent the same linear operator]. 
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12. (The third isomorphism theorem). Let U and W be sub-
spaces of a vector space V such that W C. U. Prove that U/W 
is a suhspace oiV/W and that (V/W)/(U/W) ~ V/U. [Hint: 
define a function T : V/W -> V/U by the rule T(v + W) = 
v + ?7. Show that T is a well defined linear transformation and 
apply 6.3.7]. 

13. Explain how to define a power T m of a linear operator T 
on a vector space V, where m > 0. Then show that powers of 
T commute. 



Chapter Seven 

ORTHOGONALITY IN 
VECTOR SPACES 

The notion of two lines being perpendicular, or orthogo
nal, is very familiar from analytical geometry. In this chapter 
we show how to extend the elementary concept of orthogonal
ity to abstract vector spaces over R or C. Orthogonality turns 
out to be a tool of extraordinary utility with many applica
tions, one of the most useful being the well-known Method 
of Least Squares. We begin with R n , showing how to define 
orthogonality in this vector space in a way which naturally 
generalizes our intuitive notion of perpendicularity in three-
dimensional space. 

7.1 Scalar Products in Euclidean Space 

Let X and Y be two vectors in R n , with entries x\,..., xn 

and 2/1, . . . , yn respectively. Then the scalar product of X and 
Y is defined to be the matrix product 

XTY = (x1x2 ... xn) 

(Vi\ 
V2 

= Xiyi + X2IJ2 H V XnVn-

This is a real number. Notice that XTY = YTX, so the scalar 
product is symmetric in X and Y. Of particular interest is the 
scalar product of X with itself 

XTX = xl + xl + --- + x2
n. 

193 
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Since this expression cannot be negative, it has a real square 
root, which is called the length of X. It is written 

||X|| = VXTX = ^xl+xl + ... + x 2 n . 

Notice that ||X|| > 0, and \\X\\ = 0 if and only if all the x{ 

are zero, that is, X = 0. So the only vector of length 0 is the 
zero vector. A vector whose length is 1 is called a unit vector. 

At this point it is as well to specialize to R 3 where geo
metrical intuition can be used. Recall that a 3-column vector 
X in R3 , with entries xi, X2, £3, is represented by a line seg
ment in three-dimensional space with arbitrary initial point 
(CJI, a2, a3) and endpoint ( o i + x i , a2+x2, 03 + 2:3). Thus the 
length of the vector X is just the length of any representing 
line segment. 

This suggests that we look for a geometrical interpreta
tion of the scalar product of two vectors in R3. 

Theorem 7.1.1 
Let X and Y be vectors in R3 . Then 

XTY = \\X\\ \\Y\\cos 9. 

where 9 is the angle in the interval [0, TT] between line segments 
representing X and Y drawn from the same initial point. 

Proof 
Consider the triangle rule for adding the vectors X and Y — X 
in the triangle IAB, as shown in the diagram below. 
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The idea is then to apply the cosine rule to this triangle. 

Y-X 

Thus we have 

AB2 = I A2 + IB2 - 21A • IB cos 9, 

which becomes in vector form 

\Y-X\ |xir + i|y|r-2|ix|i imicos e. 

As usual let the entries of X and Y be x\, x2, xs and yi, y2, 
y3 respectively. Then 

2 _ „,2 , „,2 , „,2 Xr = xi + xi + xl \\Y\F = yi+v>2+vi 

and 

\Y - X\\2 = (Vl - xx)
2 + (y2 - x2f + (y3 - x3)

2. 

Now substitute these expressions in the equation for \\Y—X\\2, 
and solve for the expression ||X|| | |y|| cos 9. We obtain after 
some simplification the required result 

\X\\ \\Y\\ cos 9 = xij/i + x2y2 + x3y3 = XTY. 
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The formula of 7.1.1 allows us to calculate quickly the 
angle 6 between two non-zero vectors X and Y; for it yields 
the equation 

XTY 

Hence the vectors X and Y are orthogonal if and only if 

XTY = 0. 

There is another more or less immediate use for the for
mula of 7.1.1. Since cos 6 always lies between —1 and +1 , we 
can derive a famous inequality. 

Theorem 7.1.2 (The Cauchy - Schwartz Inequality) 
If X and Y are any vectors in R3 , then 

\XTY\ < IIXII ||Y||. 

Projection of a vector on a line 

Let X and Y be two vectors in R 3 with Y non-zero. 

We wish to define the projection of X on Y. Now any vector 
parallel to Y will have the form c Y for some scalar c. The 
idea is to try to choose c in such a way that the vector X — cY 
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is orthogonal to Y. For then cFwill be the projection of X 
on Y, as one sees from the diagram. 

The condition for X — cY to be orthogonal to Y is 

0 = (X - cY)TY = XTY - cYTY = XTY - c \\Y\\2. 

The correct value of c is therefore XTY / \\Y\\2 and the vector 
projection of X on Y is 

The scalar projection of X on Y is the length of P, that is, 

\XTY\ 
\P\ 

\Y\ 

We will see in 7.2 how to extend this concept to the projection 
of a vector on an arbitrary subspace. 

Example 7.1.1 
Consider the vectors 

X= - 1 , Y = 

i nR 3 . Here ||X|| = V& \\Y\\ = y/li and XTY = 2 - 3 + 2 = 1. 
The angle 8 between X and Y is therefore given by 

cos 8 = 
84 

and 8 is approximately 83.74°. The vector projection of X on 
Y is (1/14)F and the scalar projection is 1/y/lA. 
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The distance of a point from a plane 

As an illustration of the usefulness of these ideas, we will 
find a formula for the shortest distance between the point 
($0, J/0) ZQ) and the plane whose equation is 

ax + by + cz = d. 

First we need to recall a few basic facts about planes. 
Suppose that (xi, yi, z\) and (x2, j/25 ^2) &re two points 

on the given plane. Then ax\ +byi +cz± = d = ax2 + by2 + cz2, 
so that 

a(xi - x2) + b(yi - y2) + c{zx - z2) = 0. 

Now this equation asserts that the vector 

N = 

is orthogonal to the vector with entries xi—X2,yi—y2, Z1—Z2, 
and hence to every vector in the plane. 

N 

(*2- 72. Z2) 

( * i . y i . * i ) 

Thus iV is a normal vector to the plane ax + by + cz = d, 
which is a familiar fact from the analytical geometry of three-
dimensional space. 
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We are now in a position to calculate the shortest distance 
I from the point (XQ, yo, z0) to the plane. Let (x, y, z) be a, 
point in the plane, and write 

x \ x0 

X=\ y\ and Y = \ y0 

z I \z0 

Then I is simply the scalar projection of XQ — X on N, as may 
be seen from the diagram below: 

(*> y. z) 

Therefore 

Now 

\(X0-X)TN\ 
IliVll 

(X0 - X)TN = a(x0 -x) + b(yQ - y) + c(z0 - z) 
= ax0 + by0 + cz0 - d : 

for ax + by + cz = d since the point (x, y, z) lies in the plane. 
Thus we arrive at the formula 

/ = 
\ax0 + fa/o + cz0 - d\ 

Va2 + b2 + c2 
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Vector products in R3 

In addition to the scalar product, there is another well-
known construction in R 3 called the vector product. This is 
defined in the following manner. 

Suppose that 

X = 

are two vectors in R3 . Then the vector product of X and Y 

X x Y 

is defined to be the vector 

Xi \ 
x2 

X3J 
and Y = 

Vi 
V2 

\V3 

( x2y3 - £32/2 \ 

X\y2 - x2yx / 

Notice that each entry of this vector is a 2 x 2 determinant. 
Because of this, the vector product is best written as a 
3 x 3 determinant. Following a commonly used notation, let 
us write i, j , k for the vectors of the standard basis of R3 . 
Thus 

. - ( i ) , j=(?)„dk=(0o 

Then the vector product X xY can be expressed in the form 

X x Y = (x2y3 - x3y2)i + (x3yi - xxy3)} + {xxy2 - Z22/i)k. 

This expression is a row expansion of the 3 x 3 determinant 

X xY = 
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Here the determinant is evaluated by expanding along row 1 
in the usual manner. 

Example 7.1.2 

The vector product of X = 

1 x 7 = 1 - 1 

which becomes on expansion 

14' 
X x Y = 14i + 8j - 5k = | 8 

The importance of the vector product X xY arises from 
the fact that it is orthogonal to each of the vectors X and Y; 
thus it is represented by a line segment that is normal to the 
plane containing line segments corresponding to X and Y, in 
case these are not parallel. To see this we can simply form the 
scalar product of X x Y in turn with X and Y. For example, 

XT(X xY) = 

Since rows 1 and 2 are identical, this is zero by a basic property 
of determinants (3.2.2). 

In fact the vectors X, Y, X x Y form a right-handed 
system in the sense that their directions correspond to the 
thumb and first two index fingers of the right hand when held 
extended. 
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Theorem 7.1.3 
If X and Y are vectors in R 3

; the vector X xY is orthogonal 
to both X and Y, and the three vectors X, Y, X x Y form a 
right-handed system. 

The length of the vector product, like the the scalar prod
uct, is a number with geometrical significance. 

Theorem 7.1.4 
If X and Y are vectors in R 3 and 9 is the angle in the interval 
[0,7r] between X and Y, then 

\\X xY\\ = \\X\\ \\Y\\sm 9. 

Proof 
We compute the expression | |X||2 | |y| |2 — \\X x Y\\2, by sub
stituting ||X||2 = x\ + x\ + x2

3, \\Y\\2 = y2 + yj + y2 and 

\\X x Y\\2 = (x2y3 - x3y2)
2 + (x3yx - xxy^)2 + (xxy2 - x2yi)2• 

After expansion and cancellation of some terms, we find that 

| |X| |2 | |F | |2 - \\X x Y\\2 = (xlVl + x2y2 + x3y3)
2 = (XTY)2. 

Therefore, by 7.1.1, 

| |X| |2 | |F | |2 -\X x Y\2 = | |X| |2 | |y | |2cos2^. 

Consequently \\X x Y\\2 = \\X\\2 | |F| |2sin2^. Finally, take 
the square root of each side, noting that the positive sign is 
correct since sin 9 > 0 in the interval [0, n]. 

Theorem 7.1.4 provides another geometrical interpreta
tion of the vector product X x Y. For ||X x Y\\ is simply 
the area of the parallelogram IPRQ formed by line segments 
representing the vectors X and Y. Indeed the area of this 
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parallelogram equals 

(IQ sin 9)IP = \\X\\ \\Y\\ sin 6 = \\X x Y\\. 

Q 

Orthogonality in Rn 

Having gained some insight from R3 , we are now ready 
to define orthogonality in n-dimensional Euclidean space. 

Let X and Y be two vectors in R n . Then X and Y are 
said to be orthogonal if 

XTY = 0. 

This a natural extension of orthogonality in R3 . It follows 
from the definition that the zero vector is orthogonal to every 
vector in R n and that no non-zero vector can be orthogonal 
to itself: indeed XTX = x\ + x\ + • • • + x2

n > 0 if X ^ 0. 
It turns out that the inequality of 7.1.2 is valid for Rn . 

Theorem 7.1.5 (Cauchy - Schwartz Inequality) 
If X and Y are vectors in R n , then 

\XTY\ < 11X11 iiyii. 

We shall not prove 7.1.5 at this stage since a more general 
fact will be established in 7.2: see however Exercise 7.1.10. 
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Because of 7.1.5 it is meaningful to define the angle between 
two non-zero vectors X and Y in R n to be the angle 9 in the 
interval [0, ir] such that 

XTY 

An important consequence of 7.1.5 is 

Theorem 7.1.6 (The Triangle Inequality) 
If X and Y are vectors in R n , then 

\\X + Y\\ < ||X|| + ||y||. 

Proof 
Let the entries of X and Y be x\,... ,xn and y±,... ,yn re
spectively. Then 

||X + r | | 2 = (X + Yf{X + Y) = XTX + XTY + YTX + YYT 

and, since XTY = YTX, this equals 

||X||2 + | |y| |2 + 2X T F. 

By the Cauchy-Schwartz Inequality \XTY\ < \\X\\ \\Y\\, so it 
follows that 

\\X + Y\\2 < \\X\\2 + \\Y\\2 + 2\\X\\ \\Y\\ = (\\X\\ + | |F| |)2 , 

which yields the desired inequality. 
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When n = 3, the assertion of 7.1.6 is just the well-known 
fact that the sum of the lengths of two sides of a triangle is 
never less than the length of the third side, as can be seen 
from the triangle rule of addition for the vectors X and Y. 

""£> 
Complex matrices and orthogonality in C n 

It is possible to define a notion of orthogonality in the 
complex vector space C™, a fact that will be important in 
Chapter Eight. However, a crucial change in the definition 
must be made. To see why a change is necessary, consider the 

complex vector X = ( 7 * )• Then XTX = - 1 + 1 = 0. 

Since it does not seem reasonable to allow a non-zero vector 
to have length zero, we must alter the definition of a scalar 
product in order to exclude this phenomenon. 

First it is necessary to introduce a new operation on com
plex matrices. Let A be an m x n matrix over the complex 
field C. Define the complex conjugate 

A 

of A to be the m xn matrix whose (i,j) entry is the complex 
conjugate of the (i,j) entry of A. Then define the complex 
transpose of A to be the transpose of the complex conjugate 

A* = (Af. 
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For example, if 

A = 

then 

4 —v/-l 3 
1 + ^/^T - 4 1 - J=l J ' 

Usually it is more appropriate to use the complex transpose 
when dealing with complex matrices. In many ways the com
plex transpose behaves like the transpose; for example, there 
is the following fact. 

Theorem 7.1.7 
If A and B are complex matrices, then (AB)* = B*A*. 

This follows at once from the equations (AB) — (A)(B) 
and (AB)T = BTAT. 

Now let us use the complex transpose to define the com
plex scalar product of vectors X and Y in C n ; this is to be 

X*Y = xtyi + --- + xnyn, 

which is a complex number. Why is this definition any better 
than the previous one? The reason is that, if we define the 
length of the vector X in the natural way as 

\\X\\ = VX*X = x / | x 1 | 2 + --- + |xn |2 , 

then ||X|| is always a non-negative real number, and it can
not equal 0 unless X is the zero vector. It is an important 
consequence of the definition that Y*X equals the complex 
conjugate of X*Y, so the complex scalar product is not sym
metric in X and Y. 
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It remains to define orthogonality in C n . Two vectors X 
and Y in C n are said to be orthogonal if 

X*Y = 0. 

We now make the blanket assertion that all the results estab
lished for scalar products in R n carry over to complex scalar 
products in C n . In particular the Cauchy-Schwartz and Tri
angle Inequalities are valid. 

Exercises 7.1 

(~2\ ( x 

1. Find the angle between the vectors I 4 I and I —2 
V 3 / V 3. 

2. Find the two unit vectors which are orthogonal to both of 

the vectors I 3 J and I 1 

\ - i / V1. 
3. Compute the vector and scalar projections of 

"!)on (i. 
4. Show that the planes x — 3y + 4z = 12 and 2x — 6y + 8z = 6 
are parallel and then find the shortest distance between them. 

( 2\ f°\ 
5. If X = I —1 J and Y = 4 , find the vector product 

V 3/ W 
X x Y. Hence compute the area of the parallelogram whose 
vertices have the following coordinates: (1, 1, 1), (3, 0, 4), 
(1, 5, 3), (3, 4, 6). 
6. Establish the following properties of the vector product: 

(a) X x X = 0; (b) X x (Y + Z) = X x Y + X x Z; 
(c)XxY = -YxX; (d) Xx(cY) = c{XxY) = (cX)xY. 
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7. If X, Y, Z are vectors in R3 , prove that 

XT(Y x Z) = YT(Z xX) = ZT(X x Y). 

(This is called the scalar triple product of X, Y, Z). Then 
show that that the absolute value of this number equals the 
volume of the parallelopiped formed by line segments repre
senting the vectors X, Y, Z drawn from the same initial point. 

8. Use Exercise 7 to find the condition for the three vectors 
X, Y, Z to be represented by coplanar line segments. 

9. Show that the set of all vectors in R n which are orthog
onal to a given vector X is a subpace of R n . What will its 
dimension be? 

10. Prove the Cauchy-Schwartz Inequality for R n . [Hint: 
compute the expression | |X| |2 | |y | |2 — | X T F | 2 and show that 
it is is non-negative]. 

11. Find the most general vector in C 3 which is orthogonal 
to both of the vectors 

( -s*\ ( x \ 
2 + 7=T and 1 . 

V 3 ) \J=2) 
12. Let A and B be complex matrices of appropriate sizes. 
Prove the following statements: 

( a ) ( i ) T = (W); (b)(A + B)* = A*+B*; (c)(A*)* = A. 

13. How should the vector projection of X on Y be defined 
i n C 3 ? 
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14. Show that the vector equation of the plane through the 
point (xo, yo, ZQ) with normal vector N is 

{X - X0)
TN = 0 

where X and XQ are the vectors with entries x, y, z and xo, 
y0, z0, respectively. 

15. Prove the Cauchy-Schwartz Inequality for complex scalar 
products in C n . 

16. Prove the Triangle Inequality for complex scalar products 
i n C n . 

17. Establish the following expression for the vector triple 
product in R3 : X x (Y x Z) = (X • Z)Y - (X • Y)Z. [Hint: 
note that the vector on the right hand side is orthogonal to 
to both X and Y x Z.\ 

7.2 Inner Product Spaces 

We have seen how to introduce the notion of orthogonal
ity in the vector spaces R n and C n for arbitrary n. But what 
about other vector spaces such as vector spaces of polynomials 
or continuous functions? It turns out that there is a general 
concept called an inner product which is a natural extension 
of the scalar products in R n and C n . This allows the intro
duction of orthogonality in arbitrary real and complex vector 
spaces. 

Let V be a real vector space, that is, a vector space over 
R. An inner product on V is a rule which assigns to each pair 
of vectors u and v of V a real number < u, v >, their inner 
product, such that the following properties hold: 

(i) < v, v > > 0 and < v, v > = 0 if and only if v = 0; 
(ii) < u, v > = < v, u >; 
(iii)< cu + dv, w > = c < u, w > + <i < v, w > . 
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The understanding here is that these properties must hold for 
all vectors u, v, w and all real scalars c, d. 

We now give some examples of inner products, the first 
one being the scalar product, which provided the original mo
tivation. 

Example 7.2.1 
Define an inner product < > on R n by the rule 

< X, Y > = XTY. 

That this is an inner product follows from the laws of matrix 
algebra, and the fact that XTX is non-negative and equals 0 
only if X = 0. This inner product will be referred to as the 
standard inner product on R n . It should be borne in mind 
that there are other possible inner products for this vector 
space; for example, an inner product on R 3 is defined by 

< X, Y >= 2xxv\ + 3x2y2 + 4z3?/3 

where X and Y are the vectors with entries x\, X2, x$ and y±, 
J/2; 2/3 respectively. The reader should verify that the axioms 
for an inner product hold in this case. 

Example 7.2.2 
Define an inner product < > on the vector space C[a,b] by 
the rule 

<f,9>= / f(x)g(x)dx. 
J a 

This is very different type of inner product, which is im
portant in the theory of orthogonal functions. Well-known 
properties of integrals show that the requirements for an in
ner product are satisfied. For example, 

rb 

< / , / > = / f(x)2dx>0 
J a 
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since f(x)2 > 0; also, if we think of the integral as the area 
under the curve y = f{x)2, then it becomes clear that the 
integral cannot vanish unless f(x) is identically equal to zero 
in [a ,b). 

Example 7.2.3 
Define an inner product on the vector space Pn (R) of all real 
polynomials in x of degree less than n by the rule 

n 

< f,9> = ^2f(.Xi)g(xi) 
i=l 

where distinct real numbers. 
Here it is not so clear why the first requirement for an 

inner product holds. Note that 

n 

also the only way that this sum can vanish is if f(x\) = ... 
= f(xn) = 0. But / is a polynomial of degree at most n — 1, so 
it cannot have n distinct roots unless it is the zero polynomial. 

Orthogonality in inner product spaces 

A real inner product space is a vector space V over R 
together with an inner product < > on V. It will be con
venient to speak of "the inner product space Vn, suppressing 
mention of the inner product where this is understood. Thus 
"the inner product space R n " refers to R n with the scalar 
product as inner product: this is called the Euclidean inner 
product space. 

Two vectors u and v of an inner product space V are said 
to be orthogonal if 

< u, v > = 0. 



212 Chapter Seven: Orthogonality in Vector Spaces 

It follows from the definition of an inner product that the zero 
vector is orthogonal to every vector and no non-zero vector can 
be orthogonal to itself. 

Example 7.2.4 
Show that the functions sin x, m = 1,2,.. . , are mutually 
orthogonal in the inner product space C[0, n] where the inner 
product is given by the formula < f,g > = JQ f(x)g(x)dx. 

We have merely to compute the inner product of sin mx 
and sin nx : 

r 
< sin mx, sin nx > = sin mx sin nx dx. 

Jo 
Now, according to a well-known trigonometric identity, 

sinmx sin nx = -(cos(m — n)x — cos(m + n)x). 

Therefore, on evaluating the integrals, we obtain as the value 
of < sin mx, sin nx > 

[ — r sin(m — n)x — — sin(m -f n)x)7. — 0, 
L 2 ( m - n ) v ; 2(m + n) v ; J0 

provided m ^ n. This is a very important set of orthogonal 
functions which plays a basic role in the theory of Fourier 
series. 

If v is a vector in an inner product space V, then 
< v , v > > 0, so this number has a real square root. This 
allows us to define the norm of v to be the real number 

||v|| = V< v , v > . 

Thus ||v|| > 0 and ||v|| equals zero if and only if v = 0. A 
vector with norm 1 is called a unit vector. It is clear that 
norm is a generalization of length in Euclidean space. 
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Example 7.2.5 
Find the norm of the function sin mx in the inner product 
space C[0, IT] of Example 7.2.4. 

Once again we have to compute an integral: 

|| sin rax||2 = / sin2 mx dx = / - ( 1 — cos 2mx)dx = ir/2. 
Jo Jo 2 

Hence || sin mx\\ = ^/(TT/2). It follows that the functions 

2~ 
sin mx, m = 1, 2 , . . . , 

n 

form a set of mutually orthogonal unit vectors. Such sets are 
called orthonormal and will be studied in 7.3. 

There is an important inequality relating inner product 
and norm which has already been encountered for Euclidean 
spaces. 

Theorem 7.2.1 (The Cauchy - Schwartz Inequality) 
Let u and v be vectors in an inner product space. Then 

| < u, v > | < ||u|| ||v||. 

Proof 
We can assume that v ^ 0 or else the result is obvious. Let 
t denote an arbitrary real number. Then, using the defining 
properties of the inner product, we find that < u—tv, u—tv > 
equals 

< u, u > - < u, v > t- < v, u > t+ < v, v > t2, 

which reduces to 

||u||2 - 2 < u,v > t+ \\v\\2t2 > 0. 
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For brevity write a = ||v||2, b = < u, v > and c = ||u||2. Thus 

at2 - 2bt + c =< u - tv, u - tv > > 0. 

To see what this implies, complete the square in the usual 
manner; 

at2_2bt + c = a((t--)2 + (--^)). 
a a a2 ' 

Since a > 0 and the expression on the left hand side of the 
equation is non-negative for all values of t, it follows that 
c/a > b2/a2, that is, b2 < ac. On substituting the values of 
a, b and c, and taking the square root, we obtain the desired 
inequality. 

Example 7.2.6 

If 7.2.1 is applied to the vector space C[a, b] with the inner 
product specified in Example 7.2.2, we obtain the inequality 

f f(x)g(x)dx\ < ( f f(x)2dx)1/2 ( / g(x)2dx)1/2. 
a J a J a 

Normed linear spaces 

The next step in our series of generalizations is to extend 
the notion of length of a vector in Euclidean space. Let V 
denote a real vector space. By a norm on V is meant a rule 
which assigns to each vector v a real number ||v||, its norm, 
such that the following properties hold: 

(i) ||v|| > 0 and ||v|| = 0 if and only if v = 0; 
(ii) ||cv|| = \c\ ||v||; 
(iii) ||u + v | | < ||TU.|| + ||v||. (The Triangle Inequality). 

These are to hold for all vectors u and v in V and all scalars 
c. A vector space together with a norm is called a normed 
linear space. 
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We already know an example of a normed linear space; 
for the length function on R n is a norm. To see why this 
is so, we need to remember that the Triangle Inequality was 
established for the length function in 7.1.6. 

The reader will have noticed that the term "norm" has 
already been used in the context of an inner product space. 
Let us show that these two usages are consistent. 

Theorem 7.2.2 
Let V be an inner product space and define 

| |v|| = yf< V, V > . 

Then || || is a norm on V and V is a normed linear space. 

Proof 
We need to check the three axioms for a norm. In the first 
place, ||v|| = y < v, v > > 0, and this cannot vanish unless 
v = 0, by the definition of an inner product. Next, if c is a 
scalar, then 

||cv|| = y/< cv, cv > = \/{c2 < v, v >) = \c\ |v||. 

Finally, the Triangle Inequality must be established. By the 
defining properties of the inner product: 

||u + v||2 = < u + v, u + v > = ||u||2 + 2 < u, v > +||v| |2 , 

which, by 7.2.1, cannot exceed 

||u||2 + 2| |u| | | |v| | + | | v f = (||u|| + ||v||)2. 

On taking square roots, we derive the required inequality. 

Theorem 7.2.2 enables us to give many examples of 
normed linear spaces. 
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Example 7.2.7 
The Euclidean space R n is a normed linear space if length is 
taken as the norm. Thus 

||X|| = VX^X = /xl+x% + .-- + xl 

Example 7.2.8 

The vector space C[a,b] becomes a normed linear space if | |/ | | 
is defined to be 

{f' f(xfdx)1/2. 
J a 

Example 7.2.9 (Matrix norms) 

A different type of normed linear space arises if we consider 
the vector space of all real m x n matrices and introduce a 
norm on it as follows. If A = [ciij\m,ni define \\A\\ to be 

m n 

<E£4)1/2-

On the face of it this is a reasonable measure of the "size" of 
the matrix. But of course one has to show that this is really a 
norm. A neat way to do this is as follows: put A equal to the 
ran-column vector whose entries are the elements of A listed 
by rows. The key point to note is that \\A\\ is just the length 
of the vector A in R m n . It follows at once that || || is a norm 
since we know that length is a norm. 

Inner products on complex vector spaces 

So far inner products have only been defined on real vec
tor spaces. Now it has already been seen that there is a rea
sonable concept of orthogonality in the complex vector space 
C n , although it differs from orthogonality in R n in that a dif
ferent scalar product must be used. This suggests that if an 
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inner product is to be defined on an arbitrary complex vector 
space, there will have to be a change in the definition of the 
inner product. 

Let V be a vector space over C. An inner product on V 
is a rule that assigns to each pair of vectors u and v i n F a 
complex number < u, v > such that the following rules hold: 

(i) < v, v > > 0 and < v, v > = 0 if and only if v = 0; 
(ii) < u , v > = < v , u >; 
(iii) < cu + dv, w > = c < u, w > +d < v, w > . 

These are to hold for all vectors u, v, w and all complex scalars 
c, d. Observe that property (ii) implies that < v ,v > is 
real: for this complex number equals its complex conjugate. A 
complex vector space which is equipped with an inner product 
is called a complex inner product space. 

Our prime example of a complex inner product space is 
C n with the complex scalar product < X, Y > = X*Y. To 
see that this is a complex inner product, we need to note that 
X*Y = F * X and 

< cX + dY, Z > = (cX + dY)*Z = cX*Z + dY*Z, 

which is just c < X, Z > + d < Y, Z > . 
Provided that the changes implied by the altered condi

tions (ii) and (iii) are made, the concepts and results already 
established for real inner product spaces can be extended to 
complex inner product spaces. In addition, results stated for 
real inner product spaces in the remainder of this section hold 
for complex inner product spaces, again with the appropriate 
changes. 

Orthogonal complements 

We return to the study of orthogonality in real inner prod
uct spaces. We wish to introduce the important notion of the 
orthogonal complement of a subspace. Here what we have in 
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mind as our model is the simple situation in three-dimensional 
space where the orthogonal complement of a plane is the set 
of line segments perpendicular to it. 

Let 5 be a subspace of a real inner product space V. 
The orthogonal complement of S is defined to be the set of all 
vectors in V that are orthogonal to every vector in S: it is 
denoted by the symbol 

S±. 

Example 7.2.10 
Let S be the subspace of R 3 consisting of all vectors of the 
form 

(S) 
where a and b are real numbers. Thus elements of S corre
spond to line segments in the xy-plane. Equally clearly S1- is 
the set of all vectors of the form 

( • ) • 

These correspond to line segments along the 2-axis, hardly a 
surprising conclusion. 

The most fundamental property of an orthogonal com
plement is that it is a subspace. 

Theorem 7.2.3 
Let S be a subspace of a real inner product space V. Then 

(a) S1- is a subspace of V; 
(b) SnS±= 0; 
(c) if S is finitely generated, a vector v belongs to S1 if 
and only if it is orthogonal to every vector in some set of 
generators of S. 
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Proof 
To show that S1 is a subspace we need to verify that it con
tains the zero vector and is closed with respect to addition 
and scalar multiplication. The first statement is true since 
the zero vector is orthogonal to every vector. As for the re
maining ones, take two vectors v and w in S1-1, let s be an 
arbitrary vector in S and let c be a scalar. Then 

< cv, s > = c < v, s > = 0, 

and 
< v + w, s > = < v , s > + < w , s > = 0 . 

Hence cv and v + w belong to S1-. 
Now suppose that v belongs to the intersection S P\ S1-. 

Then v is orthogonal to itself, which can only mean that v = 
0. 

Finally, assume that v i , . . . , v m are generators of S and 
that v is orthogonal to each v^. A general vector of S has the 
form YlT=i civi f° r s o m e scalars Q . Then 

m m 

< V, ^ °iVi > = ^ Q < V, Vj > = 0. 
i=l i= l 

Hence v is orthogonal to every vector in S and so it belongs 
to S-1. The converse is obvious. 

Example 7.2.11 
In the inner product space ^ ( R ) with 

< f,9> = / f{x)g{x)dx, 
Jo 

find the orthogonal complement of the subspace S generated 
by 1 and x. 
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Let / = ao+aix-\-a,2X2 be an element of Ps(R). By 7.2.3, 
a polynomial / belongs to S1- if and only if it is orthogonal 
to 1 and x; the conditions for this are 

f1 1 1 
< / , 1 > = / f{x)dx = a0 + -ax + -a2 = 0 

and 

f1 1 1 1 
< / , x >= / xf(x)dx = - a 0 + -ai + -a2 = 0. 

Solving these equations, we find that ao = t/6, a\ = —t and 
a2 = t, where t is arbitrary. Hence / = t(x2—£+|) is the most 
general element of S1-. It follows that S1- is the 1-dimensional 
subspace generated by the polynomial x2 — x + | . 

Notice in the last example that dim(S') + dim(5,J-) = 3, 
the dimension of Pa(R). This is no coincidence, as the follow
ing fundamental theorem shows. 

T h e o r e m 7.2.4 
Let S be a subspace of a finite-dimensional real inner product 
space V; then 

V = S®S± and dim(V) = dim(S) + dim(5±) . 

Proof 
According to the definition in 5.3, we must prove that V = 
S + S1- and S D Sx = 0. The second statement is true by 
7.2.3, but the first one requires proof. 

Certainly, if S = 0, then S1- = V and the result is clear. 
Having disposed of this case, we may assume that S is non
zero and choose a basis v ^ , . . . , v m for S. Extend this basis of 
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S to a basis of V, say v i , . . . , vTO, v m + i , . . . , v n : this possible 
by 5.1.4. If v is an arbitrary vector of V, we can write 

n 

By 7.2.3 the vector v belongs to S1- if and only if it is orthog
onal to each of the vectors v i , . . . , v m ; the conditions for this 
are 

n 

< v^ v > = 2_. < Vj, Vj > Cj = 0, for i = 1, 2 , . . . , m. 

Now the above equations constitute a linear system of m equa
tions in the n unknowns ci, C2,.. . , cn. Therefore the dimen
sion of S1- equals the dimension of the solution space of the 
linear system, which we know from 5.1.7 to be n — r where r 
is the rank of the m x n coefficient matrix A = [< Vj, Vj >]. 
Obviously r < m; we shall show that in fact r = m. If this is 
false, then the m rows of A must be linearly dependent and 
there exist scalars dfa, • • •, dm, not all of them zero, such that 

m m 

0 = J^d» < Vi, Vj > = < J^djVi, Vj- > 

for j = 1 , . . . ,n. But a vector which is orthogonal to every 
vector in a basis of V must be zero. Hence Yl'iLi ^iv i = 0' 
which can only mean that d\ = d2 = • • • = dm = 0 since 
v i , - - - ) v m are linearly independent. By this contradiction 
r = m. 

We conclude that dim(5±) = n — m = n — dim(S'), which 
implies that dim(5 ,)+dim(5-L) = n — dim(V). It follows from 
5.3.2 that 

dim(5 + S-1-) = dim(5) + dim(5'±) = dim(V). 
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Hence V = S + S1-, as required. 

An important consequence of the theorem is 

Corollary 7.2.5 
If S is a subspace of a finite-dimensional real inner product 
space V, then 

(S^ = S. 

Proof 
Every vector in S is certainly orthogonal to every vector in 
S±; thus S is a subspace of (S-1)-1. On the other hand, a 
computation with dimensions using 7.2.4 yields 

d im((5 ± ) ± ) =dim(V) - d i m ^ 1 ) 
= dim(V) - (dim(F) - dim(S)) 
= dim(S) 

Therefore S={S±)±. 

Projection on a subspace 

The direct decomposition of an inner product space into 
a subspace and its orthogonal complement afforded by 7.2.4 
leads to wide generalization of the elementary notion of pro
jection of one vector on another, as described in 7.1. This 
generalized projection will prove invaluable during the discus
sion of least squares in 7.4. 

Let V be a finite-dimensional real inner product space, let 
S be a subspace and let v an element of V. Since V = StSS-1, 
there is a unique expression for v of the form 

v = s + s1-

where s and s-1 belong to S and S1- respectively. Call s the 
projection ofv on the subspace S. Of course, s-1 is the projec
tion of v on the subspace S1. For example, if V is R3 , and 
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S is the subspace generated by a given vector u, then s is the 
projection of v on u in the sense of 7.1. 

Example 7.2.12 
Find the projection of the vector X on the column space of 
the matrix A where 

X = 1 and A = 

Let S denote the column space of A. Now the columns 
of A are linearly independent, so they form a basis of S. We 
have to find a vector Y in S such that X — Y is orthogonal to 
both columns of A; for then X — Y will belong to S1- and Y 
will be the projection of X on S. Now Y must have the form 

Y = x 

for some scalars x and y. Then if A\ and A^ are the columns 
of A, the conditions for X — Y to belong to S1- are 

< X-Y, Ax > = (l-x-3y) + 2(l-2x + y) + {l-x-4y) = 0 

and 

< X-Y, A2> = 3(l~x-3y)-(l~2x+y)+4{l-x-4:y) = 0. 

These equations yield x = 74/131 and y — 16/131. The pro
jection of X on the subspace S is therefore 

1 f122\ 
i6i \138/ 
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Orthogonality and the fundamental subspaces of a 
matrix 

We saw in Chapter Four that there are three natural sub-
spaces associated with a matrix A, namely the null space, the 
row space and the column space. There are of course corre
sponding subspaces associated with the transpose AT, so in 
all six subspaces may be formed. However there is very little 
difference between the row space of A and the column space 
of AT; indeed, if we transpose the vectors in the row space of 
A, we get the vectors of the column space of AT. Similarly 
the vectors in the row space of AT arise by transposing vec
tors in the column space of A. Thus there are essentially four 
interesting subspaces associated with A, namely, the null and 
column spaces of A and of AT. These subspaces are connected 
by the orthogonality relations indicated in the next result. 

Theorem 7.2.6 
Let A be a real matrix. Then the following statements hold: 

(i) null space of A = (column space of AT)±; 
(ii) null space of AT = (column space of A)1-; 
(iii) column space of A = (null space of A7^)-1; 
(iv) column space of AT = (null space of A)1-. 

Proof 
To establish (i) observe that a column vector X belongs to the 
null space of A if and only if it is orthogonal to every column 
of AT, that is, X is in (column space of AT)±. To deduce (ii) 
simply replace A by AT in (i). Equations (iii) and (iv) follow 
on taking the orthogonal complement of each side of (ii) and 
(i) respectively, if we remember that S = (S-1)1- by 7.2.5. 
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Exercises 7.2 

1. Which of the following are inner product spaces? 
(a) R n where < X, Y > = -XTY; 
(b) R n where < X, Y > = 2XTY; 
(c) C[0,1] where <f,g>= J^(f(x)+g{x))dx. 

2. Consider the inner product space C[0, TT] where < / , g > = 
C f(x)g(x)dx; show that the functions 1/y/n, \J2pn cos mx, 
m — 1,2,. . . , form a set of mutually orthogonal unit vectors. 

3. Let to be a fixed, positive valued function in the vector 
space C[a, b}. Show that if < / , g > is defined to be 

b 

f(x)w(x)g(x)dx, 

then < > is an inner product on C[a, b]. [Here w is called a 
weight function]. 

4. Which of the following are normed linear spaces? 
(a) R 3 where ||X|| =xl + x%+ xj; 

(b) R 3 where ||X|| = y/x\ + x\ - x\\ 
(c) R where ||X|| = the maximum of |xi|, \x2\-, \%?\-

5. Let V be a finite-dimensional real inner product space 
with an ordered basis v i , . . . , v n . Define a^ to be < v^, Vj >. 
If A = [dij] and u and w are any vectors of V, show that 
< u, w > = [u]TA[w] where [ u] is the coordinate vector of u 
with respect to the given ordered basis. 

6. Prove that the matrix A in Exercise 5 has the following 
properties: 

(a) XTAX > 0 for all X; 
(b) XTAX = 0 only if X = 0; 
(c) A is symmetric. 

Deduce that A must be non-singular. 

I 

file:///J2pn
file:///x2/-
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7. Let A be a real n x n matrix with properties (a), (b) and 
(c) of Exercise 6. Prove that < X, Y > = XT AY defines an 
inner product on R n . Deduce that ||X|| = y/XTAX defines a 
norm on R n . 

8. Let S be the subspace of the inner product space -Ps(R) 
generated by the polynomials 1 — x2 and 2 — x + x2, where 
< / , g > = fQ f(x)g(x)dx. Find a basis for the orthogonal 
complement of S. 

9. Find the projection of the vector with entries 1, —2, 3 on 
/ l 0 

the column space of the matrix 2 —4 
\ 3 5 

10. Prove the following statements about subspaces S and T 
of a finite dimensional real inner product space: 

(a) (S + T)1 =S±DT±; 
(b) S1- = T1- always implies that S = T; 
(c) (SDT)1- = S±+T±. 

11. If S is a subspace of a finite dimensional real inner product 
space V, prove that S1- ~ V/S. 

7.3 Orthonormal Sets and the Gram-Schmidt Process 

Let V be an inner product space. A set of vectors in V is 
called orthogonal if every pair of distinct vectors in the set is 
orthogonal. If in addition each vector in the set is a unit vec
tor, that is, has norm is 1, then the set is called orthonormal. 

Example 7.3.1 

In the Euclidean space R 3 the vectors 
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form an orthogonal set since the scalar product of any two of 
them vanishes. To obtain an orthonormal set, simply multiply 
each vector by the reciprocal of its length: 

Example 7.3.2 
The standard basis of R n consisting of the columns of the 
identity matrix l n is an orthonormal set. 

Example 7.3.3 

The functions 

\j2/irs\n. mx, m = 1, 2 , . . . 

form an orthonormal subset of the inner product space 
C[0, 7r]. For we observed in Examples 7.2.4 and 7.2.5 that 
these vectors are mutually orthogonal and have norm 1. 

A basic property of orthogonal subsets is that they are 
always linearly independent. 

Theorem 7.3.1 
Let V be a real inner product space; then any orthogonal subset 
of V consisting of non-zero vectors is linearly independent. 

Proof 
Suppose that the subset { v i , . . . , v n } is orthogonal, so that 
< vi, Vj > = 0 if i / j . Assume that there is a linear relation 
of the form ciVi + • • • + c nv n = 0. Then, on taking the inner 
product of both sides with Vj, we get 

n n 

0 = ^ < QVi, Vj > = '^TjCi <Vi,Vj > = Cj < Vj,Vj > 

i=l i=l 
II 112 

— c • v • 
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since < vi: Vj > = 0 if i ^ j . Now ||vj| | ^ 0 since Vj is not 
the zero vector; therefore Cj — 0 for all j . It follows that the 
Vj are linearly independent. 

This result raises the possibility of an orthonormal basis, 
and indeed we have already seen in Example 7.3.2 that the 
standard basis of R n is orthonormal. While at present there 
are no grounds for believing that such a basis always exists, 
it is instructive to record at this stage some useful properties 
of orthonormal bases. 

Theorem 7.3.2 
Suppose that { v i , . . . , v n } is an orthonormal basis of a real 
inner product space V. If v is an arbitrary vector of V, then 

n n 

v — ^ < v, Vj > Vj and ||v||2 = ^ < v, Vj > 2 . 
i = l i = l 

Proof 
Let v = X)I=i civ« t»e the expression for v in terms of the 
given basis. Forming the inner product of both sides with Vj, 
we obtain 

n n 
< V, Vj > = < ^2 C*V*> Vj > = J ^ Cj < Vj, Vj > = Cj 

i=l i=l 

since < Vj, Vj > = 0 if i ^ j and < Vj, v,- > = 1. Finally, 

n n 

||v||2 = < v, v > = < ^ c i V i , Y;CJVJ > 
t = l 3=1 

n n 

= ̂ YlCiCi <x^j >, 
i = i j = i 

which reduces to Y^i=i c j -
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Another useful feature of orthonormal bases is that they 
greatly simplify the procedure for calculating projections. 

Theorem 7.3.3 
Let V be an inner product space and let S be a subspace and 
v a vector of V. Assume that { s i , . . . , sm} is an orthonormal 
basis of S. Then the projection of v on S is 

m 

^2<V, Si> Si. 
1 = 1 

Proof 
Put p = Y^Li < v ) s i > si> a vector which quite clearly 
belongs to S. Now < p, ŝ - > = < v, Sj >, so 

< V - p , Sj > = < V, Sj > - < p , Sj > 

= < V, Sj > — < V, Sj > 

= 0. 

Hence v — p is orthogonal to each basis element of S, which 
shows that v — p belongs to 5rJ-. Since v = p + (v — p), and 
the expression for v as the sum of an element of S and an 
element of S1- is unique, it follows that p is the projection of 
v on S. 

Example 7.3.4 
The vectors 

form an orthonormal basis of a subspace S of R3 ; find the 
projection on S of the column vector X with entries 1 , -1 ,1 . 
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Apply 7.3.3 with si = X\ and s2 = X2\ we find that the 
projection of X on S is 

P = <X,Xi >Xi+<X,X2 >X2 

4 1 1 / 16> 

Having seen that orthonormal bases are potentially useful, let 
us now address the problem of finding such bases. 

Gram-Schmidt orthogonalization 

Suppose that V is a finite-dimensional real inner prod
uct space with a given basis { u i , . . . , u n } ; we shall describe 
a method of constructing an orthonormal basis of V which is 
known as the Gram-Schmidt process. 

The orthonormal basis of V is constructed one element 
at a time. The first step is to get a unit vector; 

1 
V i = j . jj-Ui. 

Notice that u i and vi generate the same subspace; let us call 
it Si. Then vi clearly forms an orthonormal basis of Si. Next 
let 

Pi = < u 2 , v i > v i . 

By 7.3.3 this is the projection of 112 on Si. Thus u2 — px 

belongs to S^ and u2 — Pi is orthogonal to v i . Notice that 
U2 ~ Pi ^ 0 since ui and u2 are linearly independent. The 
second vector in the orthonormal basis is taken to be 

V2 = 71 n-(u 2 - P i ) . 

l l U 2-P l l | 
By definition of vi and v2 , these vectors generate the same 
subspace as Ui, 112, say S2. Also vi and v2 form an orthonor
mal basis of £2 • 
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The next step is to define 

p 2 = < u3 , vi > v i + < u3 , v2 > v2 , 

which by 7.3.3 is the projection of u 3 on S^. Then u3 — p 2 

belongs to S^ and so it is orthogonal to vi and v2 . Again 
one must observe that u 3 — p 2 7̂  0, the reason being that Ui, 
u2 , u 3 are linearly independent. Now define the third vector 
of the orthonormal basis to be 

V 3 = Ti HI (U3 ~ Ps)-
IIU3-P2II 

Then v i , v2 , v3 form an orthonormal basis of the subspace 
5 3 generated by u i , u2 , u3 . 

The procedure is repeated n times until we have con
structed n vectors v i , . . . , v n ; these will form an orthonormal 
basis of V. 

Our conclusions are summarised in the following funda
mental theorem. 

Theorem 7.3.4 (The Gram - Schmidt Process) 
Let { u i , . . . , u n } be a basis of a finite-dimensional real inner 
product space V. Define recursively vectors v i , . . . , v n by the 
rules 

vi = vi—[7U1 and v i + i = ir(ui+i _ Pi)' 
llul| | l l u i+ l -Pi l l 

where 

Pi = < U i + i . v i > v i H h < u i + i , Vi > Vj 

is the projection of ui+i on the subspace Si =< v i , . . . , Vj >. 
Then v i , . . . , v n form an orthonormal basis ofV. 

The Gram-Schmidt process furnishes a practical method 
for constructing orthonormal bases, although the calculations 
can become tedious if done by hand. 
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Example 7.3.5 
Find an orthonormal basis for the column space S of the ma
trix 

1 1 2' 
1 2 3 
1 2 1 

.1 1 6. 

In the first place the columns X\, X2, X3 of the matrix 
are linearly independent and so constitute a basis of S. We 
shall apply the Gram-Schmidt process to this basis to produce 
an orthonormal basis {Yi, Y2, Y3} of S, following the steps in 
the procedure. 

Now compute the projection of X2 on S\ =< Y\ >; 

Px = <X2, Y1>Yl=3Y1 
1 
1 

\lJ 
The next vector in the orthonormal basis is 

y 2 = | | X 2 - P 1 l | ( X 2 " P l ) - 2 
1 
1 

\-lJ 
The projection of X3 on S2 =< Yi, Y2 > is 

P2 = < X3, Yi > Yx+ < X3, Y2>Y2 = 6Y1 - 2Y2 = 
/ 4 \ 2 

2 

V4/ 
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The final vector in the orthonormal basis of S is therefore 

Y* 

Example 7.3.6 
Find an orthonormal basis of the inner product space P3 (R) 
where < f,g > is defined to be J_1 f(x)g(x)dx. 

We begin with the standard basis {1, x, x2} of Pa(R) and 
then use the Gram-Schmidt process to construct an orthonor
mal basis {/1, fa, fa}. Since | |1| | = y{J_l x) = \ /2, the first 
member of the basis is 

1 - 1 1 - 1 

Next <x,fx> = f^(x/V2)dx = 0, so px = < x, f1>f1 = 0. 
Hence 

since ||x|| = y/(f_1 x2dx) = w | . 

Continuing the procedure, we find that < x2, fi > = 
x/2/3 and < x2, f2 > = 0. Hence p2 = < x2, /1 > / i + < x2, 
H > H — 1/3, and so the final vector of the orthonormal 
basis is 

U = - (x2 --) = ^(x2 - -) 

Consequently the polynomials 

1 ^ . a n d 3 * 2 - 1 " ! 
V2' V 2 2V2 
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form an orthonormal basis of Pa(R). 

QR-factorization 

In addition to being a practical tool for computing or
thonormal bases, the Gram-Schmidt procedure has important 
theoretical implications. For example, it leads to a valuable 
way of factorizing an arbitrary real matrix. This is generally 
referred to as QR-factorization from the standard notation for 
the factors Q and R. 

T h e o r e m 7.3.5 
Let A be a real m x n real matrix with rank n. Then A can 
be written as a product QR where Q is a real m x n matrix 
whose columns form an orthonormal set and R is a real nxn 
upper triangular matrix with positive entries on its principal 
diagonal. 

Proof 
Let V denote the column space of the matrix A. Then V is 
a subspace of the Euclidean inner product space R m . Since 
A has rank n, the n columns X\,... ,Xn of A are linearly 
independent, and thus form a basis of V. Hence the Gram-
Schmidt process can be applied to this basis to produce an 
orthonormal basis of V, say Y±,..., Yn. 

Now we see from the way that the Yi in the Gram-Schmidt 
procedure are defined that these vectors have the form 

fYl=b11X1 

< Y2 = b12X1 + b22X2 

\ Yn = binXi + binX2 + • • • + bnnXn 

for certain real numbers b^ with ba positive. Solving the 
equations for Xi,.. ., Xn by back-substitution, we get a linear 
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system of the same general form: 

X i = r n Y i 
X2 = ri2Yi + r22Y2 

Xn = rinYi + r2nY2 + ••• + rnnYn 

for certain real numbers rij, with ru positive again. These 
equations can be written in matrix form 

A=[XXX2 ... Xn] 

( r \ \ f\2 ••• r l n \ 

= \YiY2 ... Yn] 
0 r22 ••• r2n 

V 0 0 ••• rnnJ 
The columns of the mx n matrix Q = [Yi Y2 . . . Yn] form an 
orthonormal set since they constitute an orthonormal basis of 
R m , while the matrix R = [rjj]n;n is plainly upper triangular. 

The most important case of this theorem is when A is a 
non-singular square matrix. Then the matrix Q is n x n, and 
its columns form a orthonormal set; equivalently it has the 
property 

which, by 3.3.4, is just to say that Q~l = QT. 
A square matrix A such that 

AT = A'1 

is called an orthogonal matrix. We shall see in Chapter 9 that 
orthogonal matrices play an important role in the study of 
canonical forms of matrices. 

It is instructive to determine to investigate the possible 
forms of an orthogonal 2 x 2 matrix. 
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Example 7.3.7 
Find all real orthogonal 2 x 2 matrices. 

Suppose that the real matrix 

A=r \ 
c a 

is orthogonal; thus ATA = I2. Equating the entries of the 
matrix ATA to those of I2, we obtain the equations 

a2 + c2 = 1 = b2 + d2 and ab + cd = 0. 

Now the first equation asserts that the point (a, c) lies on the 
circle x2 + y2 = 1. Hence there is an angle 9 in the interval 
[0, 2n] such that a = cos 9 and c = sin 9. Similarly there is 
an angle 4> in this interval such that b = cos 0 and d = sin (p. 

Now we still have to satisfy the third equation ab+cd = 0, 
which requires that 

cos 9 cos 4> + sin 9 sin 0 = 0 

that is, cos(c/> - 9) = 0. Hence 4> - 9 = ±?r/2 or ±3TT/2. We 
need to solve for b and d in each case. If </> = 0 + 7r/2 or 
cp = 9 — 37r/2, we find that b — — sin 9 and d = cos 9. If, on 
the other hand, (f) = 9 - n/2 or 0 = 9 + 37r/2, it follows that 
b = sin 9 and d = — cos 0. 

We conclude that >1 has of one of the forms 

cos 9 sin 9 
sin 9 — cos 0 

with 9 in the interval [0, 2n\. Conversely, it is easy to verify 
that such matrices are orthogonal. Thus the real orthogonal 
2 x 2 matrices are exactly the matrices of the above types. 
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We remark that these matrices have already appeared 
in other contexts. The first matrix represents an anticlock
wise rotation in R 2 through angle 0: see Example 6.2.6. The 
second matrix corresponds to a reflection in R 2 in the line 
through the origin making angle 0/2 with the positive IE-
direction; see Exercises 6.2.3 and 6.2.6. Thus a connection 
has been established between 2x2 real orthogonal matrices on 
the one hand, and rotations and reflections in 2-dimensional 
Euclidean space on the other. 

It is worthwhile restating the QR-factorization principle 
in the important case where the matrix A is invertible. 

Theorem 7.3.6 
Every invertible real matrix A can be written as a product QR 
where Q is a real orthogonal matrix and R is a real upper tri
angular matrix with positive entries on its principal diagonal. 

Example 7.3.8 
Write the following matrix in the QR-factorized form: 

A 

The method is to apply the Gram-Schmidt process to 
the columns X\, X2, X3 of A, which are linearly independent 
and so form a basis for the column space of A. This yields an 
orthonormal basis {Yi, Y2, Y3} where 

^ = -1 n=^, 

y - ;*UJ- 2 T* + T * 
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and 

= - 3 ^ X 2 + \/2X3 . 

Solving back, we obtain the equations 

Xx = v^Fi 

X2 = 4 ^ / 3 Yx + V6/3 Y2 

X3 = 2VSYX + x/6/2 Y2 + V2/2 Y3 

Therefore A = QR where 

fl/y/3 - 1 / V 6 l / v 7 ^ 
Q = l/>/3 2/\/6 0 

\lA/3 -1/V6 - l / A 

and 
(y/3 4/V3 2^3 \ 

R = 0 \ /6/3 \/6/2 . 
\ 0 0 V2/2J 

Unitary matrices 

We point out, without going through the details, that 
there is a version of the Gram-Schmidt procedure applicable 
to complex inner product spaces. In this the formulas of 7.3.4 
are carried over with minor changes, to reflect the properties 
of complex inner products. 

There is also a QR-factorization theorem. In this an im
portant change must be made; the matrix Q which is pro
duced by the Gram-Schmidt process has the property that 
its columns are orthogonal with respect to the complex inner 
product on Cm. In the case where Q is square this is equiva
lent to the equation 

Q*Q = In 
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or 
Q-X=Q*. 

Recall here that Q* = {Q)T• A complex matrix Q with the 
above property is said to be unitary. Thus unitary matri
ces are the complex analogs of real orthogonal matrices. For 
example, the matrix 

( cos 9 isin9\ 
\isin9 cos9 J ' 

is unitary for all real values of 9; here of course i = \f—l. 

Exercises 7.3 

1. Show that the following vectors constitute an orthogonal 
basis of R 3 : 

'i)-G)-(4 
2. Modify the basis in Exercise 1 to obtain an orthonormal 
basis. 
3. Find an orthonormal basis for the column space of the 
matrix 

0 1 1' 
1 - 2 1 
1 2 0 

4. Find an orthonormal basis for the subspace of ^ ( R ) gen
erated by the polynomials 1 — 6x and 1 — 6x2 where < f,g > 
= Jo f(x)g(x)dx. 

file:///isin9
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3 
5. Find the projection of the vector ( 4 | on the subspace 

-2_ 
of R 3 which has the orthonormal basis consisting of 

6. Express the matrix of Exercise 3 in QR-factorized form. 

7. Show that a non-singular complex matrix can be expressed 
as the product of a unitary matrix and an upper triangular 
matrix whose diagonal elements are real and positive. 

8. Find a factorization of the type described in the previous 
exercise for the matrix 

( — i i 
\l + i 2 

where % = ->/—l. 

9. If A and B are orthogonal matrices, show that A-1 and AB 
are also orthogonal. Deduce that the set of all real orthogonal 
nxn matrices is a group with respect to matrix multiplication 
in the sense of 1.3. 

10. If A = QR — Q'R' are two QR-factorizations of the real 
non-singular square matrix A, what can you say about the 
relationship between the Q and Q', and R and R'l 

11. Let L be a linear operator on the Euclidean inner product 
space R n . Call L orthogonal if it preserves lengths, that is, if 
| |LpO| | = \\X\\ for all vectors X in R n . 

(a) Give some natural examples of orthogonal linear 
operators. 
(b) Show that L is orthogonal if and only if it preserves 

inner products, that is, < L(X),L(Y) > = < X,Y > 
for all X and Y. 
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12. Let L be a linear operator on the Euclidean space R n . 
Prove that L is orthogonal if and only if L(X) — AX where 
A is an orthogonal matrix. 
13. Deduce from Exercise 12 and Example 7.3.7 that a lin
ear operator on R 2 is orthogonal if and only if it is either a 
rotation or a reflection. 

7.4 The Method of Least Squares 

A well known application of linear algebra is a method 
of fitting a function to experimental data called the Method 
of Least Squares. In order to illustrate the practical problem 
involved, let us consider an experiment involving two measur
able variables x and y where it is suspected that y is, approx
imately at least, a linear function of x. 

Assume that we have some supporting data in the form 
of observed values of the variables and x and y, which can be 
thought of as a set of points in the xy-plane 

( a i , 6 i ) , . . . , ( a m , 6 m ) . 

This means that when x = a*, it was observed that y = b{. 
Now if there really were a linear relation, and if the data were 
free from errors, all of these points would lie on a straight line, 
whose equation could then be determined, and the linear rela
tion would be known. But in practice it is highly unlikely that 
this will be the case. What is needed is a way of finding the 
straight line which "bests fits" the given data. The equation 
of this best-fitting line will furnish a linear relation which is 
an approximation to y. 
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It remains to explain what is meant by the best-fitting 
straight line. It is here that the "least squares" arise. 

Consider the linear relation y = cx+d; this is the equation 
of a straight line in the xy-plane. The conditions for the line 
to pass through the m data points are 

{
mi + d = b\ 

ca2+ d = b2 

cam + d — bm 

Now in all probability these equations will be inconsistent. 
However, we can ask for real numbers c and d which come 
as close to satisfying the equations of the linear system as 
possible, in the sense that they minimize the "total error". A 
good measure of this total error is the expression 

(cax + d- bi)2 H h (cam + d- bm)2• 

This is the sum of the squares of the vertical deviations of 
the line from the data points in the diagram above. Here the 
squares are inserted to take care of any negative signs that 
might appear. 

It should be clear the line-fitting problem is just a par
ticular instance of a general problem about inconsistent linear 
systems. Suppose that we have a linear system of m equations 
in n unknowns x\,..., xn 

AX = B. 

Since the system may be inconsistent, the problem of interest 
is to find a vector X which minimizes the length of the vector 
AX — B, or what is equivalent and also a good deal more 
convenient, its square, 

E= WAX -Bf. 
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In our original example, where a straight line was to be fitted 
to the data, the matrix A has two columns \a1a2 ... am] and 

[11 . . . 1], while X = I 1 and B is the column [bib2 • •. bm]T. 

Then E is the sum of the squares of the quantities cai + d — bi. 
A vector X which minimizes E is called a least squares 

solution of the linear system AX = B. A least squares solution 
will be an actual solution of the system if and and only if the 
system is consistent. 

The normal sys tem 

Once again consider a linear system AX = B and write 
E = \\AX — B ||2. We will show how to minimize E. Put 
A = [aij]m,n and let the entries of X and B be x i , . . . , xn and 
b\,..., bm respectively. The ith entry of AX — B is clearly 
(Z)"=i aijxj) - t>i. Hence 

E=\\AX-B\\2 = J2 ((E0*^-)"6*) 
i=i j=i 

2 

which is a quadratic function of xi,..., xn. 
At this juncture it is necessary to recall from calculus 

the procedure for finding the absolute minima of a function 
of several variables. First one finds the critical points of the 
function E, by forming its partial derivatives and setting them 
equal to zero: 

m n 

Hence 

i = l j = l i = l 

file:///a1a2
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for k = 1,2,... ,n. This is a new linear system of equations 
in x\,..., xn whose matrix form is 

(ATA)X = ATB. 

It is called the normal system of the linear system AX = B. 
The solutions of the normal system are the critical points of 
E. 

Now E surely has an absolute minimum - after all it is a 
continuous function with non-negative values. Since the func
tion E is unbounded when \XJ\ is large, its absolute minima 
must occur at critical points. Therefore we can state: 

Theorem 7.4.1 
Every least squares solution of the linear system AX — B is 
a solution of the normal system (ATA)X = ATB. 

At this point potential difficulties appear: what if the 
normal system is inconsistent? If this were to happen, we 
would have made no progress whatsoever. And even if the 
normal system is consistent, need all its solutions be least 
squares solutions? 

To help answer these questions, we establish a simple 
result about matrices. 

Lemma 7.4.2 
Let A be a real mxn matrix. Then A7A is a symmetric nxn 
matrix whose null space equals the null space of A and whose 
column space equals the column space of AT. 

Proof 
In the first place {ATA)T = AT{AT)T = ATA, so ATA is 
certainly symmetric. Let S be the column space of A. Then 
by 7.2.6 the null space of AT equals SL. 

Let X be any n-column vector. Then X belongs to the 
null space of ATA if and only if AT(AX) = 0; this amounts 
to saying that AX belongs to the null space of AT or, what 
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is the same thing, to S-1. But AX also belongs to S; for it is 
a linear combination of the columns of A. Now S fl S1- is the 
zero space by 7.2.3. Hence AX = 0 and X belongs to the null 
space of A. On the other hand, it is obvious that if X belongs 
to the null space of A, then it must belong to the null space 
of ATA. Hence the null space of ATA equals the null space of 
A. 

Finally, by 7.2.6 and the last paragraph we can assert 
that the column space of AT A equals 

(null space of ATA)± = (null space ofA)±. 

This equals the column space of AT, as claimed. 

We come now to the fundamental theorem on the Method 
of Least Squares. 

Theorem 7.4.3 
Let AX = B be a linear system ofm equations in n unknowns. 

(a) The normal system (ATA)X = ATB is always con
sistent and its solutions are exactly the least squares solutions 
of the linear system AX = B; 

(b) if A has rank n, then ATA is invertible and there is 
a unique least squares solution of the normal system, namely 
X = (ATA)-lATB. 

Proof 
By 7.4.2 the column space of ATA equals the column space of 
AT. Therefore the column space of the matrix 

[ATA | ATB\ 

equals the column space of ATA; for the extra column ATB 
is a linear combination of the columns of AT and thus belongs 
to the column space of ATA. It follows that the coefficient 
matrix and the augmented matrix of the normal system have 
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the same rank. By 5.2.5 this is just the condition for the 
normal system to be consistent. 

The next point to establish is that every solution of the 
normal system is a least squares solution of AX = B. Suppose 
that X\ and X2 are two solutions of the normal system. Then 
ATA{XX - X2) = ATB - ATB = 0, so that Y = Xx - X2 

belongs to the null space of ATA. By 7.4.2 the latter equals 
the null space of A. Thus AY = 0. Since Xx - Y + X2, we 
have 

AXi -B = A(Y + X2)-B = AX2 - B. 

This means that E = \\AX — B\\2 has the same value for 
X = Xi and X = X2. Thus all solutions of the normal 
system give the same value of E. Since by 7.4.1 every least 
squares solution is a solution of the normal system, it follows 
that the solutions of the normal system constitute the set of 
all least squares solutions, as claimed. 

Finally, suppose that A has rank n. Then the matrix 
ATA also has rank n since by 7.4.2 the column space of ATA 
equals the column space of AT, which has dimension n. Since 
ATA is n x n, it is invertible by 5.2.4 and 2.3.5. Hence the 
equation ATAX = AT B leads to the unique solution 

X = (ATA)-1ATB, 

which completes the proof On the other hand, if the rank of 
A is less than n, there will be infinitely many least squares 
solutions. We shall see later how to select one that is in some 
sense optimal. 

Example 7.4.1 
Find the least squares solution of the following linear system: 

xi + x2 + x3 = 4 
-x\ + x2 + x3 — 0 

- x2 + x3 =1 
xi + x3 = 2 
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A = and B = 

Here 
1 

so A has has rank 3. Since the augmented matrix has rank 
4, the linear system is inconsistent. We know from 7.4.3 that 
there is a unique least squares solution in this case. To find 
it, first compute 

A1 A = 
3 0 1 \ x / 11 1—3 
0 3 1 I and (ATA)~l = — | 1 1 1 - 3 
1 1 4 - 3 - 3 9 

Hence the least squares solution is 

T A\-\ AT; X = {AiAyLA1B = 
1 

that is, xi = 8/5, x2 = 3/5, £3 = 6/5. 

Example 7.4.2 
A certain experiment yields the following data: 

X 

y 

- l 
0 

0 
l 

l 
3 

2 
9 

It is suspected that y is a quadratic function of x. Use the 
Method of Least Squares to find the quadratic function that 
best fits the data. 

Suppose that the function is y = a + bx + ex2. We need 
to find a least squares solution of the linear system 

a 
a 
a 
a 

~ b + c 

+ b + c 
+ 26 + Ac 

= 0 
= 1 
= 3 
= 9 
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Again the linear system is inconsistent. Here 

A = 

/ I 
1 

1 
1 V 

4 X \ 
0 0 
1 1 
2 4 / 

and B = 
1 
3 W 

and A has rank 3. We find that 

ATA = 

and 

T A\-l (AM) 
12 -20 
36 -20 

-20 20 

The unique least squares solution is therefore 

11 
X = (ATA)-lATB = — I 33 

20 25 

that is, a = 11/20, b = 33/20, c = 5/4. Hence the quadratic 
function that best fits the data is 

11 33 5 o 
y 20 20 4 

Least squares and QR-factorization 

Consider once again the least squares problem for the 
linear system AX = B where A is m x n with rank n; we 
have seen that in this case there is a unique least squares so
lution X — (ATA)~1ATB. This expression assumes a simpler 
form when A is replaced by its QR-factorization. Let this be 
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A = QR, as in 7.3.5. Thus Q is an m x n matrix with or-
thonormal columns and R is an n x n upper triangular matrix 
with positive diagonal elements. Since the columns of Q form 
an orthonormal set, QTQ = In. Hence 

ATA = RTQTQR = RTR. 

Thus X = {RTR)-1RTQTB, which reduces to 

X = R-XQTB, 

a considerable simplification of the original formula. However 
Q and R must already be known before this formula can be 
used. 

Example 7.4.3 
Consider the least squares problem 

Here 

A = 

Xi 

Xi 

Xi 

' \ 

+ x2 
+ 2x2 
+ 2x2 

1 2\ 
2 3 
2 l) 

+ 2x3 = 
+ 3x3 = 
+ x3 = 

and B = 

1 
2 
1 

(I 
1 

V 
It was shown in Example 7.3.8 that A = QR where 

1/ 
Q=' ' 

and 

R 

l/>/3 - 1 / V 6 1/V2' 
1/V3 2 / v ^ 0 
1/V3 - l / \ / 6 - l / \ / 2 / 

V^ 4/\ /3 2 ^ \ 
0 >/6/3 \/6/2 
0 0 V ^ / 2 / 
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Hence the least squares solution is 

X = R~1QTB = 1 ) , 

t h a t is, X\ = 1, X2 = 0, X3 = 0. 

Geometry of the least squares process 

There is a suggestive geometric interpretation of the least 
squares process in terms of projections. Consider the least 
squares problem for the linear system AX = B where A has 
m rows. Let S denote the column space of the coefficient 
matrix A. The least squares solutions are the solutions of the 
normal system ATAX = ATB, or equivalently 

AT{B - AX) = 0. 

The last equation asserts that B — AX belongs to the null 
space of AT, which by 7.2.6 is equal to S1. Our condition 
can therefore be reformulated as follows: X is a least squares 
solution of AX = B if and only if B — AX belongs to S1. 

Now B = AX + (B - AX) and AX belongs to S. Recall 
from 7.2.4 that B is uniquely expressible as the sum of its 
projections on the subspaces S and S-1; we conclude that 
B — AX belongs to S1 precisely when AX is the projection of 
B on S. In short we have a discovered a geometric description 
of the least squares solutions. 

Theorem 7.4.4 
Let AX = B be an arbitrary linear system and let S denote 
the column space of A. Then a column vector X is a least 
squares solution of the linear system if and only if AX is the 
projection of B on S. 

Notice that the projection AX is uniquely determined by 
the linear system AX = B. However there is a unique least 
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squares solution X if and only if X is uniquely determined by 
AX, that is, if AX = AX implies that X = X. Hence X is 
unique if and only if the null space of A is zero, that is, if the 
rank of A is n. Therefore we can state 

Corollary 7.4.5 
There is a unique least squares solution of the linear system 
AX = B if and only if the rank of A equals the number of 
columns of A. 

Optimal least squares solutions 
Returning to the general least squares problem for the 

linear system AX = B with n unknowns, we would like to be 
able to say something about the least squares solutions in the 
case where the rank of A is less than n. In this case there 
will be many least square solutions; what we have in mind is 
to find a sensible way of picking one of them. Now a natural 
way to do this would be to select a least squares solution 
with minimal length. Accordingly we define an optimal least 
squares solution of AX = B to be a least squares solution X 
whose length \\X\\ is as small as possible. 

There is a simple method of finding an optimal least 
squares solution. Let U denote the null space of A; then U 
equals (column space of AT)±, by 7.2.6. Suppose X is a least 
squares solution of the system AX = B. Now there is a unique 
expression X = XQ + X\ where XQ belongs to U and X\ be
longs to U1; this is by 7.2.4. Then AX = AX0 + AXX = AX±; 
for AXQ = 0 since XQ belongs to the null space of A. Thus 
AX — B = AXi — B, so that X\ is also a least squares solution 
of AX = B. Now we compute 

||X||2 = \\XQ+XX\\2 = (X0+X1)
T(X0+X1) = XZXQ+XTXL 

For XQXI = 0 = XJ'XQ since X0 and Xx belong to U and 
U1- respectively. Therefore 

||x||2HI*ol|2 + ||Xi||2>||Xi||2. 
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Now, if X is an optimal solution, then ||X|| = \\X\\\, so that 
\\X0\\ = 0 and hence XQ = 0. Thus X = Xi belongs to U1. It 
follows that each optimal least squares solution must belong 
to t/-1, the column space of AT. 

Finally, we show that there is a unique least squares so
lution in U±. Suppose that X and X are two least squares 
solutions in U^. Then from 7.4.4 we see that AX and AX are 
both equal to the projection of B on the column space of A. 
Thus A(X — X) = 0 and X — X belongs to U, the null space 
of A. But X and X also belong to U^~, whence so does X — X. 
Since U D U1 = 0, it follows that X - X = 0 and X = X. 
Hence X is the unique optimal least squares solution and it 
belongs to Vs-. Combining these conclusions with 7.4.4, we 
obtain: 

Theorem 7.4.6 
A linear system AX = B has a unique optimal least squares 
solution, namely the unique vector X in the column space of 
AT such that AX is the projection of B on the column space 
ofAT. 

The proof of 7.4.6 has the useful feature that it tells us 
how to find the optimal least squares solution of a linear sys
tem AX = B. First find any least squares solution, and then 
compute its projection on the column space of AT. 

Example 7.4.4 

Find the optimal least squares solution of the linear system 

Xl - X2 + X3 = 1 

xi + x2 - 2x3 = 2 
2xi - x3 = 4 
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The first step is to identify the normal system (ATA)X = 
ATB; 

6Xx — 3x3 = 11 
2x2 - 3x3 = 1 

—3xi — 3x2 + 6x3 = —7 

Any solution of this will do; for example, we can take the 
solution vector 

' - (? ) • 
To obtain an optimal least squares solution, find the projec
tion of X on the column space of AT; the first two columns 
of AT form a basis of this space. Proceeding as in Example 
7.2.12, we find the optimal solution to be 

so that Xi = 67/42, x2 = —3/14, X3 = —10/21 is the optimal 
least squares solution of the linear system. 

Least squares in inner product spaces 

In 7.4.4 we obtained a geometrical interpretation of the 
least squares process in R n in terms of projections on sub-
spaces. This raises the question of least squares processes in 
an arbitrary finite-dimensional real inner product space V. 

First we must formulate the least squares problem in V. 
This consists in approximating a vector v in V by a vector in 
a subspace S of V. A natural way to do this is to choose x in 
S so that ||x — v||2 is as small as possible. This is a direct 
generalization of the least squares problem in R n . For, if we 
are given the linear system AX = B and we take S to be the 
column space of A, v to be B and x to be the vector AX of 
S, then the least squares problem is to minimize || AX" — -E?||2. 
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It turns out that the solution of this general least squares 
problem is the projection of v on S, just as in the special case 
o fR n . 

Theorem 7.4.7 
Let V be a finite-dimensional, real inner product space, and let 
v be an element and S a subspace of V. Denote the projection 
of v on S by p . Then, if x is any vector in S other than p, 
the inequality ||x — v|| > ||p — v|| holds. 

Thus p is the vector in S which most closely approximates 
v in the sense that it makes ||p — v|| as small as possible. 

Proof 
Since x and p both belong to S, so does x — p. Also p — v 
belongs to S1- since p is the projection of v on S. Hence 
< p — v, x — p > = 0. It follows that 

||x - v||2 = < (x - p) + (p - v), (x - p) + (p - v) > 
= < x - p , x - p > + < p - v , p - v > 
= ||x - P||2 + ||P - v||2> ||p - v f 

since x — p ^ 0. Hence ||x — v|| > ||p — v||. 

In applying 7.4.7 it is advantageous to have at hand an 
orthonormal basis { v i , . . . , v m } of S. For the task of comput
ing p, the projection of v on S, is then much easier since the 
formula of 7.3.3 is available: 

m 
P = ^2 < V, Si > Sj . 

i = l 

Example 7.4.5 
Use least squares to find a quadratic polynomial that approx
imates the function ex in the interval [—1, 1]. 
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Here it is assumed that we are working in the inner prod
uct space C[—1, 1] where < / , g > = J_x f(x)g(x)dx. Let S 
denote the subspace consisting of all quadratic polynomials in 
x. An orthonormal basis for S was found in Example 7.3.6: 

1 , [3 3>/5, 2 1-

By 7.4.7 the least squares approximation to ex in S is simply 
the projection of ex on S; this is given by the formula 

p = < ex, h > h + < ex, h > h + < ex, h > h-

Evaluating the integrals by integration by parts, we obtain 

and 

<e ' , / i> = ^ J. \ <exJ2>=V6e-1 

<ex,h> = J\{e-le-1). 

The desired approximation to ex is therefore 

P=\(e-e-')+3e-1x + ^(e-7e-')(x2-±). 

Alternatively one can calculate the projection by using the 
standard basis 1, x,x2. 

Exercises 7.4 

1. Find least squares solutions of the following linear systems: 

xi + x2 = 0 

(a) I °°2 + X3 = ° 
* xi - x2 - x3 = 3 

£i + ^3 = 0 
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' xi + x2 - 2x3 — 3 
^ I 2xi - x2 + 3x3 = 4 
1 | xi + x3 = 1 

. X\ + X2 + X3 = 1 

2. The following data were collected for the mean annual tem
perature t and rainfall r in a certain region; use the Method 
of Least Squares to find a linear approximation for r in terms 
of t (a calculator is necessary): 

t 
r 

24 
47 

27 
30 

22 
35 

24 
38 

3. In a tropical rain forest the following data was collected for 
the numbers x and y (per square kilometer) of a prey species 
and a predator species over a number of years. Use least 
squares to find a quadratic function of x that approximates y 
(a calculator is necessary): 

X 

y 

2 
l 

3 
2 

4 
2 

5 
1 

4. Find the optimal least squares solution of the linear system 

Xi + 2x3 = 1 
x2 + 3x3 = 0 

—xi + x2 + x3 = 0 
— x2 — 3x3 — 1 

5. Find a least squares approximation to the function e~x by 
a linear function in the interval [1, 2]. [Use the inner product 
< f,9> = fi f(x)g(x)dx}. 

6. Find a least squares approximation for the function sin x 
as a quadratic function of x in the interval [0, n]. [Here the 
inner product < f,g > = JQ f(x)g(x)dx is to be used]. 



Chapter Eight 

EIGENVECTORS AND EIGENVALUES 

An eigenvector of an n x n matrix A is a non-zero n-
column vector X such that AX = cX for some scalar c, which 
is called an eigenvalue of A. Thus the effect of left multiplica
tion of an eigenvector by A is merely to multiply it by a scalar, 
and when n < 3, a parallel vector is obtained. Similarly, if T 
is a linear operator on a vector space V, an eigenvector of T is 
a non-zero vector v of V such that T(v) = cv for some scalar 
c called an eigenvalue. For example, if T is a rotation in R3 , 
the eigenvectors of T are the non-zero vectors parallel to the 
axis of rotation and the eigenvalues are all equal to 1. 

A large amount of information about a matrix or linear 
operator is carried by its eigenvectors and eigenvalues. In 
addition, the theory of eigenvectors and eigenvalues has im
portant applications to systems of linear recurrence relations, 
Markov processes and systems of linear differential equations. 
We shall describe the basic theory in the first section and 
then we give applications in the following two sections of the 
chapter. 

8.1 Basic Theory of Eigenvectors and Eigenvalues 

We begin with the fundamental definition. Let A be an 
n x n matrix over a field of scalars F. An eigenvector of A is 
a non-zero n-column vector X over F such that 

AX = cX 

for some scalar c in F ; the scalar c is then referred to as the 
eigenvalue of A associated with the eigenvector X. 

257 
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In order to clarify the definition and illustrate the tech
nique for finding eigenvectors and eigenvalues, an example will 
be worked out in detail. 

Example 8.1.1 
Consider the real 2 x 2 matrix 

A<1 
The condition for the vector 

M 

- 1 
4 

'xx^ 
x2) 

to be an eigenvector of A is that AX = cX for some scalar 
c. This is equivalent to (A — cI2)X = 0, which simply asserts 
that X is a solution of the linear system 

2 - c - 1 
2 4 - c 

Xi 

%2 

Now by 3.3.2 this linear system will have a non-trivial solution 
xi, X2 if and only if the determinant of the coefficient matrix 
vanishes, 

2 - c - 1 
2 4 - < 

= 0, 

that is, c2 — 6c + 10 = 0. The roots of this quadratic equa
tion are c\ = 3 + >/^T and C2 = 3 — -\f—l, so these are the 
eigenvalues of A. 

The eigenvectors for each eigenvalue are found by solving 
the linear systems (A — C\I2)X = 0 and (A — c2l2)X = 0. For 
example, in the case of c\ we have to solve 

{-\-4^l)xX- £2=0 

2zi + (l->/=l)a;2 = 0 
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The general solution of this system is £1 = |(—1 + y/—l) and 
x2 — d , where d is an arbitrary scalar. Thus the eigenvectors 
of A associated with the eigenvalue C\ are the non-zero vectors 
of the form 

Notice that these, together with the zero vector, form a 1-
dimensional subspace of C2 . In a similar manner the eigen
vectors for the eigenvalue 3 — \/—T are found to be the vectors 
of the form 

where d ^ 0. Again these form with the zero vector a subspace 
o fC 2 . 

It should be clear to the reader that the method used in 
this example is in fact a general procedure for finding eigen
vectors and eigenvalues. This will now be described in detail. 

The characteristic equation of a matrix 

Let A be an n x n matrix over a field of scalars F, and let 
X be a non-zero n-column vector over F. The condition for X 
to be an eigenvector of A is AX = cX, or 

{A - dn)X = 0, 

where c is the corresponding eigenvalue. Hence the eigenvec
tors associated with c, together with the zero vector, form 
the null space of the matrix A — cln. This subspace is often 
referred to as the eigenspace of the eigenvalue c. 

Now (A — dn)X = 0 is a linear system of n equations in n 
unknowns. By 3.3.2 the condition for there to be a non-trivial 
solution of the system is that the coefficient matrix have zero 
determinant, 

det(A - cln) = 0. 
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Conversely, if the scalar c satisfies this equation, there will 
be a non-zero solution of the system and c will be an eigen
value. These considerations already make it clear that the 
determinant 

an -x a12 • • • aln 

« 2 i a22~ x • • • a2n 

0"nl Q"n2 ' ' ' &nn X 

must play an important role. This is a polynomial of de
gree n in x which is called the characteristic polynomial of 
A. The equation obtained by setting the characteristic poly
nomial equal to zero is the characteristic equation. Thus the 
eigenvalues of A are the roots of the characteristic equation 
(or characteristic polynomial) which lie in the field F. 

At this point it is necessary to point out that A may 
well have no eigenvalues in F. For example, the characteristic 
polynomial of the real matrix 

is x2 + 1, which has no real roots, so the matrix has no eigen
values in R. 

However, if A is a complex nxn matrix, its characteristic 
equation will have n complex roots, some of which may be 
equal. The reason for this is a well-known result known as 
The Fundamental Theorem of Algebra; it asserts that every 
polynomial / of positive degree n with complex coefficients can 
be expressed as a product of n linear factors; thus the equation 
f(x) = 0 has exactly n roots in C. Because of this we can be 
sure that complex matrices always have all their eigenvalues 
and eigenvectors in C. It is this case that principally concerns 
us here. 

Let us sum up our conclusions about the eigenvalues of 
complex matrices so far. 

det(A - xln) = 
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Theorem 8.1.1 
Let A be an n x n complex matrix. 

(i) The eigenvalues of A are precisely the n roots of the 
characteristic polynomial &et(A — xln); 
(ii) the eigenvectors of A associated with an eigenvalue c 
are the non-zero vectors in the null space of the matrix 
A-cIn. 

Thus in Example 8.1.1 the characteristic polynomial of 
the matrix is 

2-x - 1 
2 4-x 

= x2 - 6x + 10. 

The eigenvalues are the roots of the characteristic equation 
x2 — 6x + 10 = 0, that is, c\ = 3 + \f—T and c^ — 3 — \J—1; 
the eigenspaces of c\ and c^ are generated by the vectors 

and ( _ l + v / 3 T ) / 2 - ( l + V=l)/2 
1 

respectively. 

Example 8.1.2 
Find the eigenvalues of the upper triangular matrix 

(a\\-x ai2 ai3 
0 a22 - x a23 

« l n \ 

0-2n 

\ 0 0 0 ann — x / 

The characteristic polynomial of this matrix is 

a n - x a12 a13 

0 a22 - x a23 

0 0 0 

a i n 

0>2n 

Ojn.n. ^ 
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which, by 3.1.5, equals (an — x)(a,22 — x) ... (ann — x). The 
eigenvalues of the matrix are therefore just the diagonal entries 
^11) <^22) • • • i^nn-

Example 8.1.3 
Consider the 3 x 3 matrix 

The characteristic polynomial of this matrix is 

2-x - 1 - 1 
- 1 2-x - 1 
- 1 - 1 -x 

= -x6 + 4x2 - x - 6. 

Fortunately one can guess a root of this cubic polynomial, 
namely x = — 1. Dividing the polynomial by x + 1 using long 
division, we obtain the quotient — x2 + 5x — 6 = — (x — 2)(x — 3). 
Hence the characteristic polynomial can be factorized com
pletely as — (x + l)(x — 2)(x — 3), and the eigenvalues of A are 
— 1, 2 and 3. 

To find the corresponding eigenvectors, we have to solve 
the three linear systems (A + I3)X ~ 0, (A - 2I3)X = 0 and 
(A — 3/s)X = 0. On solving these, we find that the respective 
eigenvectors are the non-zero scalar multiples of the vectors 

The eigenspaces are generated by these three vectors and so 
each has dimension 1. 



8.1: Basic Theory of Eigenvectors 263 

Properties of the characteristic polynomial 

Now let us see what can be said in general about the 
characteristic polynomial o f a n n x n matrix A. Let p(x) denote 
this polynomial; thus 

Q>nn 2-

At this point we need to recall the definition of a determinant 
as an alternating sum of terms, each term being a product of 
entries, one from each row and column. The term of p(x) with 
highest degree in x arises from the product 

(an - x)--- (ann - x) 

and is clearly (—x)n. The terms of degree n — 1 are also easy 
to locate since they arise from the same product. Thus the 
coefficient of xn~x is 

( - l ) n - 1 ( a n + --- + an n) 

and the sum of the diagonal entries of A is seen to have sig
nificance; it is given a special name, the trace of A, 

tr(A) = a n + a22 H h ann. 

The term in p(x) of degree n — 1 is therefore tr(^4) (—a;)"-1. 
The constant term in p(x) may be found by simply 

putting x = 0 in p(x) = det(A — xln), thereby leaving det(A). 
Our knowledge of p(x) so far is summarized in the formula 

p{x) = (-x)n + t r ^ X - a : ) " - 1 + • • • + det(A). 

p(x) = 

a n — x a\2 
0-21 0-22 - X 

0"nl 0-n2 
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The other coefficients in the characteristic polynomial are 
not so easy to describe, but they are in fact expressible as 
subdeterminants of det(i4). For example, take the case of 
xn~2. Now terms in xn~2 arise in two ways: from the product 
(an — x) • • • (ann — x) or from products like 

-a i 2 a 2 i (a 3 3 - x) • • • (ann - x). 

So a typical contribution to the coefficient of xn~2 is 

( - l ) n - 2 ( a n a 2 2 - a12a2i) = (-1) 

From this it is clear that the term of degree n — 2 in p(x) is 
just (—x)n~2 times the sum of all the 2 x 2 determinants of 
the form 

an O'ij 
aji ajj 

where i < j . 
In general one can prove by similar considerations that 

the following is true. 

Theorem 8.1.2 
The characteristic polynomial of the n x n matrix A equals 

n 

J2di(-x)n-* 
i=0 

where di is the sum of all the i x i subdeterminants of det(A) 
whose principal diagonals are part of the principal diagonal of 
A. 

Now assume that the matrix A has complex entries. Let 
ci, c 2 , . . . , cn be the eigenvalues of A. These are the n roots of 
the characteristic polynomial p(x). Therefore, allowing for the 

a n a i 2 
0-21 0-22 
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fact that the term of p(x) with highest degree has coefficient 
(—l)n, one has 

p(x) = (ci - x)(c2 -x)---(cn- x). 

The constant term in this product is evidently just c\Ci... cn, 
while the term in xn~l has coefficient (—l)n-1(ci + • • • + cn). 
On the other hand, we previously found these to be det(A) and 
(—l)n~1tx{A) respectively. Thus we arrive at two important 
relations between the eigenvalues and the entries of A. 

Corollary 8.1.3 
/ / A is any complex square matrix, the product of the eigenval
ues equals the determinant of A and the sum of the eigenvalues 
equals the trace of A 

Recall from Chapter Six that matrices A and B are said 
to be similar if there is an invertible matrix S such that B = 
SAS~X. The next result indicates that similar matrices have 
much in common, and really deserve their name. 

Theorem 8.1.4 
Similar matrices have the same characteristic polynomial and 
hence they have the same eigenvalues, trace and determinant. 

Proof 
The characteristic polynomial of B — SAS^1 is 

det^SAS'1 - xl) =det(S(A - x^S'1) 
= det(S) det(A - xl) det(5)" 1 

= det{A-xI). 

Here we have used two fundamental properties of determi
nants established in Chapter Three, namely 3.3.3 and 3.3.5. 
The statements about trace and determinant now follow from 
8.1.3. 
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On the other hand, one cannot expect similar matrices to 
have the same eigenvectors. Indeed the condition for X to be 
an eigenvector of SAS~X with eigenvalue c is (SAS'^X — 
cX, which is equivalent to Atf^X) = c(S~1X). Thus X is 
an eigenvector of SAS~~l if and only if S~XX is an eigenvector 
of A 

Eigenvectors and eigenvalues of linear transformations 

Because of the close relationship between square matri
ces and linear operators on finite-dimensional vector spaces 
observed in Chapter Six, it is not surprising that one can also 
define eigenvectors and eigenvalues for a linear operator. 

Let T : V —» V be a linear operator on a vector space 
V over a field of scalars F. An eigenvector of T is a non-zero 
vector v of V such that T(v) = cv for some scalar c in F: 
here c is the eigenvalue of T associated with the eigenvector 
v. 

Suppose now that V is a finite-dimensional vector space 
over F with dimension n. Choose an ordered basis for V, say 
B. Then with respect to this ordered basis T is represented 
by an n x n matrix over F, say A; this means that 

[T(y)]B = A[v]B. 

Here [U]B is the coordinate column vector of a vector u in V 
with respect to basis B . The condition T(v) = cv for v to 
be an eigenvector of T with associated eigenvalue c, becomes 
-AMB = c[v]g, which is just the condition for M s to be an 
eigenvector of the representing matrix A; also the eigenvalues 
of T and A are the same. 

If the ordered basis of V is changed, the effect is to replace 
A by a similar matrix. Of course any such matrix will have 
the same eigenvalues as T; thus we have another proof of the 
fact that similar matrices have the same eigenvalues. 
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These observations permit us to carry over to linear op
erators concepts such as characteristic polynomial and trace, 
which were introduced for matrices. 

Example 8.1.4 
Consider the linear transformation T : Doo[a,b] —> Doo[a,6] 
where T(f) = / ' , the derivative of the function / . The con
dition for / to be an eigenvector of T is / ' = cf for some 
constant c. The general solution of this simple differential 
equation is / = decx where d is a constant. Thus the eigen
values of T are all real numbers c, while the eigenvectors are 
the exponential functions decx with d ^ 0. 

Diagonalizable matrices 

We wish now to consider the question: when is a square 
matrix similar to a diagonal matrix? In the first place, why 
is this an interesting question? The essential reason is that 
diagonal matrices behave so much more simply than arbitrary 
matrices. For example, when a diagonal matrix is raised to 
the nth power, the effect is merely to raise each element on 
the diagonal to the nth power, whereas there is no simple 
expression for the nth power of an arbitrary matrix. Suppose 
that we want to compute An where A is similar to a diagonal 
matrix D, with say A = SDS~X. It is easily seen that An = 
SDnS~1. Thus it is possible to calculate An quite simply 
if we have explicit knowledge of S and D. It will emerge in 
8.2 and 8.3 that this provides the basis for effective methods 
of solving systems of linear recurrences and linear differential 
equations. 

Now for the important definition. Let A be a square 
matrix over a field F. Then A is said to be diagonalizable over 
F if it is similar to a diagonal matrix D over F, that is, there 
is an invertible matrix S over F such that A = SDS-1 or 
equivalently, D = S~1AS. One also says that S diagonalizes 
A. A diagonalizable matrix need not be diagonal: the reader 
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should give an example to demonstrate this. It is an important 
observation that if A is diagonalizable and its eigenvalues are 
c\,..., cn, then A must be similar to the diagonal matrix with 
c i , . . . , cn on the principal diagonal. This is because similar 
matrices have the same eigenvalues and the eigenvalues of a 
diagonal matrix are just the entries on the principal diagonal 
- see Example 8.1.2. 

What we are aiming for is a criterion which will tell us 
exactly which matrices are diagonalizable. A key step in the 
search for this criterion comes next. 

Theorem 8.1.5 
Let A be an n x n matrix over a field F and let C\,..., cr 

be distinct eigenvalues of A with associated eigenvectors 
Xi,..., Xr. Then {Xi,..., Xr} is a linearly independent sub
set of Fn. 

Proof 
Assume the theorem is false; then there is a positive integer 
i such that {X±,... ,Xi} is linearly independent, but the ad
dition of the next vector Xi+i produces a linearly dependent 
set {Xi,..., Xi+x}. So there are scalars d\,..., rfj+i, not all 
of them zero, such that 

hXi + • • • + di+1Xi+1 = 0 . 

Premultiply both sides of this equation by A and use the equa
tions AXj = CjXj to get 

CidiXi -I 1- ci+1di+1Xi+i — 0. 

On subtracting Q + I times the first equation from the second, 
we arrive at the relation 

(ci - c i + 1)diXi H h (CJ - ci+i)diXi = 0. 
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Since Xi,..., Xi are linearly independent, all the coefficients 
(CJ —Ci+i)dj must vanish. But c i , . . . , q + 1 are all different, so 
we can conclude that dj = 0 for j = 1 , . . . , i; hence di+iXi+i = 
0 and so di+i = 0, in contradiction to the original assumption. 
Therefore the statement of the theorem must be correct. 

The criterion for diagonalizability can now be established. 

Theorem 8.1.6 
Let A be an n x n matrix over a field F. Then A is diagonal-
izable if and only if A has n linearly independent eigenvectors 
in Fn. 

Proof 
First of all suppose that A has n linearly independent eigen
vectors in Fn, say Xi,..., Xn, and that the associated eigen
values are c i , . . . , cn. Define S to be the n x n matrix whose 
columns are the eigenvectors; thus 

S=(X1...Xn). 

The first thing to notice is that S is invertible; for by 8.1.5 its 
columns are linearly independent. Forming the product of A 
and S in partitioned form, we find that 

AS = {AXX... AXn) = (c1X1 • • • cnXn), 

which equals 

(Xi ••• Xn) 

'ci 0 0 
0 c2 0 

0 0 • 

0 
= SD, 

where D is the diagonal matrix with entries C\,..., cn. There
fore S~1AS = D and A is diagonalizable. 
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Conversely, assume that A is diagonalizable and that 
S~1AS = D is a diagonal matrix with entries c i , . . . , cn. Then 
AS = SD. This implies that if X{ is the zth column of S, 
then AXi equals the ith column of SD, which is CjXj. Hence 
Xi,..., Xn are eigenvectors of A associated with eigenvalues 
c\,..., cn. Since X\,..., Xn are columns of the invertible ma
trix S, they must be linearly independent. Consequently A 
has n linearly independent eigenvectors. 

Corollary 8.1.7 
An n x n complex matrix which has n distinct eigenvalues is 
diagonalizable. 

This follows at once from 8.1.5 and 8.1.6. On the other 
hand, it is easy to think of matrices which are not diagonaliz
able: for example, there is the matrix 

- ( ; o-
Indeed if A were diagonalizable, it would be similar to the 
identity matrix I2 since both its eigenvalues equal 1, and 
S~1AS = I2 for some S; but the last equation implies that 
A = SI2S~l = I2, which is not true. 

An interesting feature of the proof of 8.1.6 is that it pro
vides us with a method of finding a matrix S which diagonal-
izes A. One has simply to find a set of linearly independent 
eigenvectors of A; if there are enough of them, they can be 
taken to form the columns of the matrix S. 

Example 8.1.5 

Find a matrix which diagonalizes A = 

In Example 8.1.1 we found the eigenvalues of A to be 
3 + A / ^ T and 3 — y/^T; hence A is diagonalizable by 8.1.7. We 
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also found eigenvectors for A; these form a matrix 

5 /(-i + v=i)/2 -(i + v=T)/2y 

Then by the preceding theory we may be sure that 

Triangularizable matrices 

It has been seen that not every complex square matrix is 
diagonalizable. Compensating for this failure is the fact such 
a matrix is always similar to an upper triangular matrix; this 
is a result with many applications. 

Let A be a square matrix over a field F. Then A is said 
to be triangularizable over F if there is an invertible matrix S 
over F such that S~lAS = T is upper triangular. It will also 
be convenient to say that S triangularizes A. Note that the 
diagonal entries of the triangular matrix T will necessarily be 
the eigenvalues of A. This is because of Example 8.1.2 and the 
fact that similar matrices have the same eigenvalues. Thus a 
necessary condition for A to be triangularizable is that it have 
n eigenvalues in the field F. When F = C, this condition is 
always satisfied, and this is the case in which we are interested. 

Theorem 8.1.8 
Every complex square matrix is triangularizable. 

Proof 
Let A denote a n n x n complex matrix. We show by induction 
on n that A is triangularizable. Of course, if n = 1, then A is 
already upper triangular: let n > 1. We shall use induction 
on n and assume that the result is true for square matrices 
with n — 1 rows. 
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We know that A has at least one eigenvalue c in C, with 
associated eigenvector X say. Since X ^ 0, it is possible 
to adjoin vectors to X to produce a basis of C n , say X = 
X\,X2,..., Xn\ here we have used 5.1.4. Next, recall that left 
multiplication of the vectors of C n by A gives rise to linear 
operator T on C n . With respect to the basis {Xi,... , X n } , 
the linear operator T will be represented by a matrix with the 
special form 

where A\ and A2 are certain complex matrices, A\ having 
n — 1 rows and columns. The reason for the special form 
is that T{X\) = AX\ = cX\ since X\ is an eigenvalue of 
A. Notice that the matrices A and B\ are similar since they 
represent the same linear operator T; suppose that in fact 
Bi = S^ASi where Si is an invertible n x n matrix. 

Now by induction hypothesis there is an invertible matrix 
62 with n — 1 rows and columns such that B^ = S^1 A\Si is 
upper triangular. Write 

s = Sl{o 1)-
This is a product of invertible matrices, so it is invertible. An 
easy matrix computation shows that S^^-AS equals 

which equals 

Replace Bi by I .2 ) and multiply the matrices together 

to get 
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Q-lAQ— (C A ^ \ - (C A ^ 
b Ab~ \0 S^AXS2) ~ \0 B2 

This matrix is clearly upper triangular, so the theorem is 
proved. 

The proof of the theorem provides a method for triangu
lar izing a matrix. 

Example 8.1.6 

Triangularize the matrix A -
- 1 3 / 

The characteristic polynomial of A is x2 — 4x + 4, so both 
eigenvalues equal 2. Solving (A — 2I2)X = 0, we find that 

all the eigenvectors of A are scalar multiples of X\ = 

Hence A is not diagonalizable by 8.1.6. 
Let T be the linear operator on C 2 arising from left mul

tiplication by A. Adjoin a vector to X2 to X\ to get a basis 

B2 = {Xu X2} of C2 , say X2 = (J J. Denote by Bx the 

standard basis of C2 . Then the change of basis B\ —> B2 is 

described by the matrix Si = ( ). Therefore by 6.2.6 

the matrix A which represents T with respect to the basis B2 

is 

Hence S = S^1 = I j triangularizes A. 
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Exercises 8.1 

1. Find all the eigenvectors and eigenvalues of the following 
matrices: 

«»• (i J D' ( I ! i •!)• 
2. Prove that tr(j4 + £ ) = tr(A) + tv(B) and tr(cA) = c tr(A) 
where A and 5 are nxn matrices and c is a scalar. 

3. If yl and B are nxn matrices, show that AB and BA have 
the same eigenvalues. [Hint: let c be an eigenvalue of AB and 
prove that it is an eigenvalue of BA ]. 

4. Suppose that A is a square matrix with real entries and 
real eigenvalues. Prove that every eigenvalue of A has an 
associated real eigenvector. 

5. If A is a real matrix with distinct eigenvalues, then A is 
diagonalizable over R: true or false? 

6. Let p(x) be the polynomial 

(-l)n(xn + an.xx
n-1 + an_2x

n-2 + • • • + ao). 

Show that p(x) is the characteristic polynomial of the follow
ing matrix (which is called the companion matrix of p(x)): 

/ 0 0 ••• 0 - a 0 \ 
1 0 ••• 0 - a i 
0 1 ••• 0 -a2 

\ 0 0 ••• 1 - a n _ i / 

7. Find matrices which diagonalize the following: 
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w (a a) = 0.) (J j 1 ) • 
8. For which values of a and b is the matrix I , 1 diago

nalizable over C? 

9. Prove that a complex 2 x 2 matrix is not diagonalizable 

if and only if it is similar to a matrix of the form 

where 6 ^ 0 . 

10. Let A be a diagonalizable matrix and assume that S is 
a matrix which diagonalizes A. Prove that a matrix T diago-
nalizes A if and only if it is of the form T = CS where C is a 
matrix such that AC = CA. 

11. If A is an invertible matrix with eigenvalues c i , . . . , cn, 
show that the eigenvalues oi A~l are ĉ ~ , . . . , c^1. 

12. Let T : V —>• V be a linear operator on a complex n-
dimensional vector space V. Prove that there is a basis 
{vi, ..., v n } of V such that T(VJ) is a linear combination of 
v i 5 . . . , v n for i = 1 , . . . ,n. 

13. Let T : P n (R) —• Pn(R-) be the linear operator corre
sponding to differentiation. Show that all the eigenvalues of 
T are zero. What are the eigenvectors? 

14. Let c i , . . . , c n be the eigenvalues of a complex matrix A. 
Prove that the eigenvalues of Am are Cj" , . . . , c™ where m is 
any positive integer. [Hint: A is triangularizable]. 

15. Prove that a square matrix and its transpose have the 
same eigenvalues. 

a b 
0 a 
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8.2 Applications to Systems of Linear Recurrences 

A recurrence relation is an equation involving a function y 
of a non-negative integral variable n, the value of y at n being 
written yn. The equation relates the values of the function at 
certain consecutive integers, typically yn+i,yn,..., yn-r. In 
addition there may be some initial conditions to be satisfied, 
which specify certain values of j/j. If the equation is linear in y, 
the recurrence relation is said to be linear. The problem is to 
solve the recurrence, that is, to find the most general function 
which satisfies the equation and the initial conditions. Linear 
recurrence relations, and more generally systems of linear re
currence relations, occur in many real-life problems. We shall 
see that the theory of eigenvalues provides an effective means 
for solving such problems. 

To understand how systems of linear relations can arise 
we consider a predator-prey problem. 

Example 8.2.1 
In a population of rabbits and weasels it is observed that each 
year the number of rabbits is equal to four times the number 
of rabbits less twice the number of weasels in the previous 
year. The number of weasels in any year equals the sum of 
the numbers of rabbits and weasels in the previous year. If 
the initial numbers of rabbits and weasels were 100 and 10 
respectively, find the numbers of each species after n years. 

Let rn and wn denote the respective numbers of rabbits 
and weasels after n years. The information given in the state
ment of the problem translates into the equations 

r n + i = 4rn - 2wn 

wn+1 = rn + wn 

together with the initial conditions ro = 100, w0 = 10. Thus 
we have to solve a system of two linear recurrence relations 
for r n and wn, subject to two initial conditions. 
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At first sight it may not seem clear how eigenvalues enter 
into this problem. However, let us put the system of linear 
recurrences in matrix form by writing 

x- = ( - J a n d ' 4 = ( i ~'i 
Then the two recurrences are equivalent to the single matrix 
equation 

Xn+i = AXn, 

while the initial conditions assert that 

100' 
X° ' 10 

These equations enable us to calculate successive vectors Xn; 
thus X\ = AX0, X2 = A2XQ, and in general 

Xn = AnXo. 

In principle this equation provides the solution of our prob
lem. However the equation is difficult to use since it involves 
calculating powers of A; these soon become very complicated 
and there is no obvious formula for An. 

The key observation is that powers of a diagonal matrix 
are easy to compute; one simply forms the appropriate power 
of each diagonal element. Fortunately the matrix A is diago-
nalizable since it has distinct eigenvalues 2 and 3. Correspond
ing eigenvectors are found to be I J and I J; therefore the 

(\ 2 \ 
matrix 5 = 1 1 diagonalizes A, and 

D = S~1AS=i I ° 
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It is now easy to find Xn; for An = (SOS'1)™ = SDnS~1. 
Therefore 

Xn = AnX0 = SDnS-1X0 

(I 2 \ (2n 

-{i iJ(,o 
lich leads to 

M 
3n J 

(-1 
\ 1 

2 ) 
- l j 

/100 
\ 10 

= f 180 • 3 n - 80 • 2n 

n ~ \ 90 • 3 n - 80 • 2n 

The solution to the problem can now be read off: 

rn = 180 • 3" - 80 • 2n and wn = 90 • 3 n - 80 • T. 

Let us consider for a moment the implications of these equa
tions. Notice that rn and wn both increase without limit as 
n —> oo since 3 n is the dominant term; however 

lim ( ^ ) = 2. 
n—>oo t o n 

The conclusion is that, while both populations explode, in the 
long run there will be twice as many rabbits as weasels. 

Having seen that eigenvalues provide a satisfactory so
lution to the rabbit-weasel problem, we proceed to consider 
systems of linear recurrences in general. 

Systems of first order linear recurrence relations 
A system of first order (homogeneous) linear recurrence 

relations in functions y„ , . . . , j/n of an integral variable n is 
a set of equations of the form 

t (i) (i) , , M 
Vn+l = aHVn + ••• + O-lmVn 

(2) (1) , , {rn) 
Vn+l = a 2 l 2 M + • • • + 0,2mVn 

(m) _ (!) i i ( m ) 

Vn-\-l — amiyn -r ' • • - r 0,mrnyn 
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We shall only consider the case where the coefficients 
constants. One objective might be to find all the functions 
Vn , • • • i Vn which satisfy the equations of the system, i.e., 
the general solution. Alternatively, one might want to find a 
solution which satisfies certain given conditions, 

V6 
(1) _ h ,.(2) _ , 7 / ( m ) - h 

where &i, . . . , bm are constants. Clearly the rabbit and weasel 
problem is of this type. 

The method adopted in Example 8.2.1 can be applied 
with advantage to the general case. First convert the given 
system of recurrences to matrix form byintroducing the matrix 
A = [aij]m,m> the coefficient matrix, and defining 

Yn = 
yV 

\ 

\y^J 

and B = 

/ 6 i \ 
b2 

\bmJ 

Then the system of recurrences becomes simply 

*n+l = AYn, 

with the initial condition YQ — B. The general solution of this 
is 

Yn = AnB0. 

Now assume that A is diagonalizable: suppose that in 
fact D = S~lAS is diagonal with diagonal entries di,..., dm. 
Then A = SDS'1 and An = SDnS-1, so that 

Yn = SDnS~1B 

Here of course Dn is the diagonal matrix with entries 
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d\n', d2n . . . , dm
n. Since we know how to find S and D, all we 

need do is compute the product Yn, and read off its entries to 
obtain the functions yn^\ ..., j / n ^ m - * . 

At this point the reader may ask: what if A is not di-
agonalizable? A complete discussion of this case would take 
us too far afield. However one possible approach is to exploit 
the fact that the coefficient matrix A is certainly triangular-
izable by 8.1.8. Thus we can find S such that S'1AS = T is 
upper triangular. Now write Un = S~1Yn, so that Yn — SUn. 
Then the recurrence Yn+i = AYn becomes SUn+i = ASUn, 
or Un+i = (S~1AS)Un = TUn. In principle this "triangular" 
system of recurrence relations can be solved by a process of 
back substitution: first solve the last recurrence for Un , then 
substitute for Un in the second last recurrence and solve for 
Un , and so on. What makes the procedure effective is the 
fact that powers of a triangular matrix are easier to compute 
than those of an arbitrary matrix. 

Example 8.2.2 
Consider the system of linear recurrences 

Vn+l = Vn + Zn 
Zn+1 = Vn i "->zn 

The coefficient matrix A = I 1 is not diagonalizable, 

but it was triangularized in Example 8.1.6; there it was found 
that 

T = S~1AS= (2
Q ^ where S = (^ J 

Put Un = S~1Yn; here the entries of Un and Yn are written un, 
vn and yn, zn respectively. The recurrence relation Yn+i = 
AYn becomes Un+i = TUn. This system of linear recurrences 
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is in triangular form: 

= 2un + vn 

The second recurrence has the obvious solution vn = d22
n 

with d2 constant. Substitute for vn in the first equation to 
get un+i = 2un + d22

n. This recurrence can be solved in a 
simple-minded fashion by calculating successively ui,u2,-.-
and looking for the pattern. It turns out that un = di2n + 
d2n 2 n _ 1 where d\ is another constant. Finally, yn and zn can 
be found from the equation Yn = SUn; the general solution is 
therefore 

yn = dx2
n + d2n2n-1 

zn = dl2
n + d2(n + 2)2n-1 

Higher order recurrence relations 
A system of recurrence relations for yh. , • • •, yn which 

expresses each y^+i in terms of the y, for j = n — r + 1,..., n, 
is said to be of order r. When r > 2, such a system can 
be converted into a first order system by introducing more 
unknowns. The method works well even for a single recurrence 
relation, as the next example shows. 

Example 8.2.3 (The Fibonacci sequence) 
The sequence of integers 0, 1, 1, 2, 3, 5,. .. is generated by 
adding pairs of consecutive terms to get the next term. Thus, 
if the terms are written yo, yi, y2, • • •, then yn satisfies 

Vn+i =yn + yn-i, n>l, 

which is a second order recurrence relation. 
To convert this into a first order system we introduce the 

new function zn = yn~i, {n > !)• This results in an equivalent 
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system of first order recurrences 

Vn+l =Vn + Zn 

Zn+l = Vn 

with initial conditions y0 = 0 and z0 = 1. The coefficient 

matrix A = I J has eigenvalues (1 + v/5)/2 and 

(1 — y /5)/2, so it is diagonalizable. Diagonalizing A as in 
Example 8.1.5, we find that 

D-S-1AS-((1 + V5)/2 ° "i 

where 
S = ( r ( 1 + V5)/2 ( l - V 5 ) / 2 y 

Then Yn = AnY0 = (SBS'1)^ = SDnS'1Y0. This yields 
the rather unexpected formula 

for the (n + l)th Fibonacci number. 

Markov processes 

In order to motivate the concept of a Markov process, we 
consider a problem about population movement. 

Example 8.2.4 
Each year 10% of the population of California leave the state 
for some other part of the United States, while 20% of the 
U.S. population outside California enter the state. Assum
ing a constant total population of the country, what will the 
ultimate population distribution be? 
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Let yn and zn be the numbers of people inside and outside 
California after n years; then the information given translates 
into the system of linear recurrences 

Writing 

Vn+l = .9j/n + -2Zn 
zn+i = .lyn + .8zn 

x-=it)"**=(* :« 
we have Xn+i = AXn. The matrix A has eigenvalues 1 and 
.7, so we could proceed to solve for yn and zn in the usual way. 
However this is unnecessary in the present example since it is 
only the ultimate behavior of yn and zn that is of interest. 

Assuming that the limits exist, we see that the real object 
of interest is the vector 

X00= l im Xn = (^n^ocVn 
n->oo y i imn^oo Zn 

Taking the limit as n —> oo of both sides of the equation 
Xn+i = AXn, we obtain X = AX; hence X is an eigenvec
tor of A associated with the eigenvalue 1. An eigenvector is 

quickly found to be ( J. Thus Xoo must be a scalar multiple 

of this vector. Now the sum of the entries of X^ equals the 
total U.S. population, p say, and it follows that 

Y — y p 
3 VI 

So the (alarming) conclusion is that ultimately two thirds of 
the U.S. population will be in California and one third else
where. This can be confirmed by explicitly calculating yn and 
zn and taking the limit as n —*• oo. 
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The preceding problem is an example of what is known as 
a Markov process. For an understanding of this concept some 
knowledge of elementary probability is necessary. A Markov 
process is a system which has a finite set of states Si,..., Sn. 
At any instant the system is in a definite state and over a fixed 
period of time it changes to another state. The probability 
that the system changes from state Sj to state Si over one 
time period is assumed to be a constant Pij. The matrix 

* = [Pij\n,n 

is called the transition matrix of the system. In Example 8.2.4 
there are two states: a person is either in or not in California. 
The transition matrix is the matrix A. 

Clearly all the entries of P lie in the interval [0, 1]; more 
importantly P has the property that the sum of the entries in 
any column equals 1. Indeed Y^i=\Pij = 1 s m c e it is certain 
that the system will change from state Sj to some state Si. 
This property guarantees that 1 is an eigenvalue of P; indeed 
det(P — I) = 0 because the sum of the entries in any column 
of the matrix P — / is equal to zero, so its determinant is zero. 

Suppose that we are interested in the behavior of the 
system over two time periods. For this we need to know the 
probability of going from state Sj to state Si over two periods. 
Now the probability of the system going from Sj to Si via Sk 
is PikPkj) s o the probability of going from state Sj to Si over 
two periods is 

n 

^2 PikPkj-

But this is immediately recognizable as the (i,j) entry of P2; 
therefore the transition matrix for the system over two time 
periods is P2. More generally the transition matrix for the 
system over k time periods is seen to be Pk by similar consid
erations. 
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The interesting problem for a Markov process is to deter
mine the ultimate behavior of the system over a long period of 
time, that is to say, limfc_+00(P

fc). For the (i,j) entry of this 
matrix is the probability that the system will go from state Si 
to state Sj in the long run. 

The first question to be addressed is whether this limit 
always exists. In general the answer is negative, as a very 

simple example shows: if P = ( 1, then Pk equals either 

1 or I 1, according to whether k is even or odd; 

so the limit does not exist in this case. Nevertheless it turns 
out that under some mild assumptions about the matrix the 
limit does exist. Let us call a transition matrix P regular 
if some positive power of P has all its entries positive. For 

example, the matrix I 1 is regular; indeed all powers 

after the first have positive entries. But, as we have seen, the 

matrix I I is not regular. A Markov system is said to 

be regular if its transition matrix is regular. 
The fundamental theorem about Markov processes can 

now be stated. A proof may be found in [15], for example. 

Theorem 8.2.1 
Let P be the transition matrix of a regular Markov system. 
Then limfc_^00(P

A:) exists and has the form (XX ... X) 
where X is the unique eigenvector of P associated with the 
eigenvalue 1 which has entry sum equal to 1. 

Our second example of a Markov process is the library 
book problem from Chapter One (see Exercise 1.2.12). 

Example 8.2.5 
A certain library owns 10,000 books. Each month 20% of the 
books in the library are lent out and 80% of the books lent out 
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are returned, while 10% remain lent out and 10% are reported 
lost. Finally, 25% of books listed as lost the previous month 
are found and returned to the library. How many books will 
be in the library, lent out, and lost in the long run? 

Here there are three states that a book may be in: Si = 
in the library: S2 = lent out: S3 = lost. The transition matrix 
for this Markov process is 

.8 .8 .25' 
P= I .2 .1 0 

0 .1 .75 

Clearly P2 has positive entries, so P is regular. Of course P 
has the eigenvalue 1; the corresponding eigenvector with entry 
sum equal to 1 is found to be 

So the probabilities that a book is in states Si, S2, S3 after a 
long period of time are 45/59, 10/59, 4/59 respectively. There
fore the expected numbers of books in the library, lent out, 
and lost, in the long run, are obtained by multiplying these 
probabilities by the total number of books, 10,000. These 
numbers are therefore 7627, 1695, 678 respectively. 

Exercises 8.2 

1. Solve the following systems of linear recurrences with the 
specified initial conditions: 

(a) \ Vn+1 Z v , llX
z
n where y0 = 0,z0 = 1; 

(b) \ y;+l : %- X f where y = <>•*> =l-
Zn+l — zVn -r 3Zn 
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2. In a certain nature reserve there are two competing animal 
species A and B. It is observed that the number of species A 
equals three times the number of A last year less twice the 
number of species B last year. Also the number of species B 
is twice the number of B last year less the number of species A 
last year. Write down a system of linear recurrence relations 
for an and bn, the numbers of each species after n years, and 
solve the system. What are the long term prospects for each 
species? 

3. A pair of newborn rabbits begins to breed at age one 
month, and each successive month produces one pair of off
spring (one of each sex). Initially there were two pairs of rab
bits. If rn is the total number of pairs of rabbits at the begin
ning of the nth month, show that rn satisfies rn+i = r n + r n _ i 
and ri = 2 = r^- Solve this second order recurrence relation 
for rn. 

4. A tower n feet high is to be built from red, white and blue 
blocks. Each red block is 1 foot high, while the white and 
blue blocks are 2 feet high. If un denotes the number of dif
ferent designs for the tower, show that the recurrence relation 
un+i = un + 2un_i must hold. By solving this recurrence, 
find a formula for un. 

5. Solve the system of recurrence relations yn+i = 3yn — 2zn, 
zn+i — 2yn — zn, with the initial conditions yo = 1, zo = 0. 

6. Solve the second order system yn+i = yn-i, zn+i = yn + 
4zn, with the initial conditions yo = 0, y\ = 1 = z\. 

7. In a certain city 90% of employed persons retain their jobs 
at the end of each year, while 60% of the unemployed find 
a job during the year. Assuming that the total employable 
population remains constant, find the unemployment rate in 
the long run. 
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8. A certain species of bird nests in three locations A, B and 
C. It is observed that each year half of the birds at A and half 
of the birds at B move their nests to C, while the others stay 
in the same nesting place. The birds nesting at C are evenly 
split between A and B. Find the ultimate distribution of birds 
among the three nesting sites, assuming that the total bird 
population remains constant. 

9. There are three political parties in a certain city, conserva
tives, liberals and socialists. The probabilities that someone 
who voted conservative last time will vote liberal or socialist 
at the next election are .3 and .2 respectively. The proba
bilities of a liberal voting conservative or socialist are .2 and 
.1. Finally, the probabilities of a socialist voting conservative 
or liberal are .1 and .2. What percentages of the electorate 
will vote for the three parties in the long run, assuming that 
everyone votes and the number of voters remains constant? 

8.3 Applications to Systems of Linear Differential 
Equations 

In this section we show how the theory of eigenvalues 
developed in 8.1 can be applied to solve systems of linear 
differential equations. Since there is a close analogy between 
linear recurrence relations and linear differential equations, 
the reader will soon notice a similarity between the methods 
used here and in 8.2. 

For simplicity we consider initially a system of first or
der linear {homogeneous) differential equations for functions 
yi,..., yn of x. This has the general form 

{ y'l = aiiVi + ••• + ainVn 

y'n = anlyi + •• • + annyn 
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Here the Qj<ij £1X6 assumed to be constants. The object is to 
find the most general functions 2/ i , . . . , j / n , differentiable in 
some interval [a ,b], which satisfy the equations of the system. 
Alternatively one may wish to find functions which satisfy in 
addition a set of initial conditions of the form 

yi(xQ) = h, y2(x0) = b2, ..., yn(xn) = K-

Here the bi are certain constants and x$ is in the interval [a, b]. 
Let A = [a,ij], the coefficient matrix of the system and 

write 
fyi\ 

Y = 

\yn/ 

Then we define the derivative of Y to be 

Y' = 

/y[\ 
y'2 

With this notation the given system of differential equations 
can be written in matrix form 

Y' = AY. 

By a solution of this equation we shall mean any column 
vector Y of n functions in D[a, b] which satisfies the equation. 
The set of all solutions is a subspace of the vector space of all 
n-column vectors of differentiable functions; this is called the 
solution space. It can be shown that the dimension of the so
lution space equals n, so that there are n linearly independent 
solutions, and every solution is a linear combination of them. 
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If a set of n initial conditions is given, there is in fact a 
unique solution of the system satisfying these conditions. For 
an account of the theory of systems of differential equations 
the reader may consult a book on differential equations such 
as [15] or [16]. Here we are concerned with methods of finding 
solutions, not with questions of existence and uniqueness of 
solutions. 

Suppose that the coefficient matrix A is diagonalizable, 
so there is an invertible matrix S such that D = S~1AS is 
diagonal, with diagonal entries d\,..., dn say. Here of course 
the di are the eigenvalues of A. Define 

U = S-XY. 

Then Y — SU and Y' = SU' since S has constant entries. 
Substituting for Y and Y' in the equation Y' = AY, we obtain 
SU' = ASU, or 

U' = {S~1AS)U = DU. 

This is a system of linear differential equations for u\,..., un, 
the entries of U. It has the very simple form 

d\Ui 
d2u2 

The equation u\ = diUi is easy to solve since its differential 
form is 

d(ln Ui) = di. 

Thus its general solution is u^ = CiediX where ci is a con
stant. The general solution of the system of linear differential 
equations for u\,..., un is therefore 

ui =c ie d i a ; , . . . ,un = cne
dnX. 

u'2 
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To find the original functions yi, simply use the equation Y = 
SU to get 

n n 

3=1 3=1 

Since we know how to find S, this procedure provides 
an effective method of solving systems of first order linear 
differential equations in the case where the coefficient matrix 
is diagonalizable. 

Example 8.3.1 
Consider a long tube divided into four regions along which 
heat can flow. The regions on the extreme left and right are 
kept at 0°C, while the walls of the tube are insulated. It is 
assumed that the temperature is uniform within each region. 
Let y(t) and z(t) be the temperatures of the regions A and 
B at time t. It is known that the rate at which each region 
cools equals the sum of the temperature differences with the 
surrounding media. Find a system of linear differential equa
tions for y[t) and z(t) and solve it. 

0° / A 

m° 

\ 
B 

z(t)° 
"s n° 

According to the law of cooling 

y' =(z-y) + {0-y) 

Z' =(y-Z) + (p-Z) 
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Thus we are faced with the linear system of differential equa
tions 

y' =-2y + z 
z' = y - 2z 

Here 

A=l~l _X)^Y=(l 
Now the matrix A is diagonalizable; indeed 

D = S~1AS=[~l _°3 J where S = (l _ J 

Setting U = S~XY, we obtain from Y' = AY the equation 
U' = DU. This yields two very simple differential equations 

u[ = — u\ 
u'o = —3u 2 

where u\ and «2 are the entries of U. Hence u\ = ce * and 
u-i = de~3t, with arbitrary constants c and d. Finally 

Y = SU-l a _ t _ . _ 3 t 
ce * + de 3t 

ce~t — de 

The general solution of the original system of differential equa
tions is therefore 

y = ce~* + de~3t 

z = ce~f — de~3t 

Thus the temperatures of both regions A and B tend to zero 
as t —> oo. 

In the next example complex eigenvalues arise, which 
causes a change in the procedure. 
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Example 8.3.2 
Solve the linear system of differential equations 

( y[ = Vi ~ Vi 

\y'2 = yi+y2 

The coefficient matrix here is 

A = 

which has complex eigenvalues 1 + % and 1 — i; we are us
ing the familiar notation % = \/—l here. The corresponding 
eigenvectors are 

0and (~i* 
respectively. Let S be the 2 x 2 matrix which has these vectors 
as its columns; then S~1AS = D, the diagonal matrix with 
diagonal entries 1 + i and 1 — i. If we write U = S~XY, the 
system of equations becomes U' = DU, that is, 

tti = (1 +i)u\ 

u'2 = (1 - i)u2 

where u\ and U2 are the entries of U. 
The first equation has the solution u\ = e(

1+^x, while the 
second has the obvious solution u2 = 0. Using these values 
for u\ and U2, we obtain a complex solution of the system of 
differential equations 

Y _ s u _ ( i e W \ y _ su - I e(1+i)x I 

Of course we are looking for real solutions, but these are in 
fact at hand. For the real and imaginary parts of Y will also 
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be solutions of the system Y' = AY. Thus we obtain two real 
solutions from the single complex solution Y, by taking the 
real and imaginary parts of Y; these are respectively 

/—e^sin x\ , , . / e^cos x 
\ e cos x J \ ex sin x 

Now Y\ and Y2 are easily seen to be linearly independent solu
tions; therefore the general solution of the system is obtained 
by taking an arbitrary linear combination of these: 

Y = c1Y1 + c2Y2 = e*( ~Cl S i n x + C2 C ° S X 

y c\ cos x + c2 sin x 

where c\ and c2 are arbitrary real constants. Hence 

J/i =ex(—ci sin x + c2 cos x) 

y2 = ex(c\ cos a: + C2 sin a;) 

Of course the success of the method employed in the last 
two examples depended entirely upon the fact that A is diag-
onalizable. However, should this not be the case, one can still 
treat the system of differential equations by triangularizing 
the coefficient matrix and solving the resulting triangular sys
tem using back substitution, rather as was done for systems 
of linear recurrences in 8.2. 

Example 8.3.3 
Solve the linear system of differential equations 

2/i = 3 / i + 2/2 
2/2 = -2/1 + 32/2 

In this case the coefficient matrix 
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is not diagonalizable, but it can be triangularized. In fact it 
was shown in Example 8.1.6 that 

T = S->AS=(l \ 

where S = I J. Put U = S Y and write ui, u2 for 

the entries of U. Then Y = SU and Y' = SU'. The equation 
Y' = AY now becomes U' = TU. This yields the triangular 
system 

u[ = 2ui + u<i 

u'2 = 2u2 

Solving the second equation, we find that u2 = c2e2x with 
C2 an arbitrary constant. Now substitute for u^ in the first 
equation to get 

u[ - 2ui = c2e
2x. 

This is a first order linear equation which can be solved by a 
standard method: multiply both sides of the equation by the 
"integrating factor" 

f -2dx -2x 

The equation then becomes (uie~2x)' = c2, whence u\e~2x = 
c2x + ci, with c\ another arbitrary constant. Thus u\ — 
c2xe2x + cxe2x. To find the original functions j/i and y2, we 
form the product 

Y = SU = e2x( C l + C 2 X ^ \ c i +c2{x + 1) 

Thus the general solution of the system is 

J/i = (ci +c2x)e2x, 

y2 = (ci + c2(x + l))e2x 
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Finally, suppose that initial conditions j/i (0) = 1 and 
V2 (0) = 0 are given. We can find the correct values of c\ and 
c2 by substituting t = 0 in the expressions for y\ and j/2, to get 
ci = 1 and C2 = — 1. The required solution is y\ = (1 — x)e2x 

and ?/2 = — x e2x. 

The next application is one of a military nature. 

Example 8.3.4 
Two armored divisions A and B engage in combat. At time t 
their respective numbers of tanks are a(t) and b(t). The rate 
at which tanks in a division are destroyed is proportional to 
the number of intact enemy tanks at that instant. Initially 
A and B have ao and bo tanks where ao > &o- Predict the 
outcome of the battle. 

According to the information given, the functions a and 
b satisfy the linear system 

a' = -kb 
b' = -ka 

where k is some positive constant. Here the coefficient matrix 
is 

0 -k' 
A~ ' -k 0 

The characteristic equation is x2 — k2 = 0, so the eigenvalues 
are k and —k and A is diagonalizable. It turns out that 

where S = ( . If we set F = , the system of 

differential equations becomes Y' = AY. On writing U = 
S-XY, we get U' = DU. This is the system 

u' = ku 
v' = —kv 



8.3: Applications to Systems of Linear Differential Equations 297 

where U = I 1. Hence u = cekx and v = de kx, with c and W 
d arbitrary constants. The general solution is Y = SU, which 
yields 

j a= cekt + de~kt 

\b = -cekt 4- de~kt 

Now the initial conditions are a(0) = ao and b(0) = bo, so 

c + d = ao 

—c + d=bo 

Solving we obtain c = (ao — bo)/2, d = (a0 + &o)/2. Therefore 
the numbers of tanks surviving at time t in Divisions A and 
B are respectively 

a = {2^y^+^o + bo\e-kt 

ao - feo\ ekt + (ao + b0\ e_fc( 

It is more convenient to write a(t) and b(t) in terms of the 
hyperbolic functions cosh(:r) = ^(ex + e~x) and sinh(x) = 
\{ex — e~x). Then the solution becomes 

a = aocosh(kt) — 6osinh(H) 

b = bocosh(kt) — aosinh(A;i) 

Now Division B will have lost all its tanks when 6 = 0, 
i.e., after time 

t=itanh-1(-). k vao 

Observe also that 

2 t2 2 1,2 
a — b — an — bf, 
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because of the identity cosh2(kt) — sinh2(A;i) = 1. Therefore 
at the time when Division B has lost all of its tanks, Division 
A still has a tanks where a2 — 0 = a§ — &o- Hence the number 
of tanks that Division A has left at the end of the battle is 

V ao - bo-

Not surprisingly, since it had more tanks to start with, Divi
sion A wins the battle. 

However, there is a way in which Division B could con
ceivably win. Suppose that 

— a 0 < bQ < a0. 
v 2 

Suppose further that Division A consists of two columns with 
equal numbers of tanks, and that Division B manages to at
tack one column of Division A before the other column can 
come to its aid. Since 60 > | a 0 , Division B defeats the first 

column of Division A, and it still has •Jb2
) — \OQ tanks left. 

Then Division B attacks the second column and wins with 

y bl - ial - 4°o = y bl - 2ao 

tanks left. 
Thus Division B wins the battle despite having fewer 

tanks than Division A: but it must have more than ao/^2 
or 71% of the strength of the larger division for the plan to 
work. This explains the frequent success of the "divide and 
conquer strategy". 

Higher order equations 
Systems of linear differential equations of order 2 or more 

can be converted to first order systems by introducing addi
tional functions. Once again the procedure is similar to that 
adopted for systems of linear recurrences. 
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Example 8.3.5 
Solve the second order system 

v'i 
= -2y2 + y[ + 2y'2 

= 2yx +2y[ 2/2 

The system may be converted to a first order system by 
introducing two new functions 

2/3 = 2/i and y4 = y'2. 

Thus y'{ = y'3 and y2 = y4. The given system is therefore 
equivalent to the first order system 

' 2/i = 2/3 

2/2=2/4 

y'3 = -2y2 + y3 + 2y4 

, 2/4 = 22/i + 2y3 - y4 

The coefficient matrix here is 

A = 

0 1 
0 0 

-2 1 
0 2 

1 
2 

- 1 / 

Its eigenvalues turn out to be 1, —1, 2, —2, with corresponding 
eigenvectors 

/ 2 \ 
-1 
-2 

\ 1 / 

1 
2 

W 

/ 
-1 
-2 

V 2 / 

Therefore, if S denotes the matrix with these vectors as its 
columns, we have S~1AS = D, the diagonal matrix with di
agonal entries 1, - 1 , 2 , - 2 . Now write U = S~1Y. Then the 
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equation Y' = AY becomes U' = {S~XAS)U = DU, which is 
equivalent to 

u[ = wi, ^2 — ~ u2, u'3 = 2v,3, u'A = —2M4. 

Solving these simple equations, we obtain 

ui=ciex, u2 = c2e~x, u3 = c3e2x, •u4 = c4e~2:r. 

The functions 2/1 and 2/2 m aY n o w De read off from the equation 
Y = SU to give the general solution 

2/1 = cie* + 2c2e~x + c3e
2a; + c4e-2:E 

y2 = 2ciea: — C2e_x + c^e2x — c$e~2x 

Exercises 8.3 

1. Find the general solutions of the following systems of linear 
differential equations: 

(a) {ti=-Vl+* (b) ly) = lyi 72/2 
{V2= 2yi~ 3y2

 x {y2 = - 2yi + 3y2 

2/1 = 2/1+2/2 + 2/3 

(c) { y'2= 2/2 

y's = 2/2 + ys 

2. Find the general solution (in real terms) of the system of 
differential equations 

y'i= 2 / i + 2/2 

V2 = —22/1 + 3y2 

Then find a solution satisfying the initial conditions yi(0) = 1, 
2/2(0) = 2. 
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3. By triangularizing the coefficient matrix solve the system 
of differential equations 

(y'i = 5yi + 3y2 

\ 2/2 = -3yi - V2 

Then find a solution satisfying the initial conditions yi(0) = 0, 
y2(0) = 2. 

4. Solve the second order linear system 

y'( = 2j/i + y2 + y[ + y'2 

y'i = ~ %i + 22/2 + 5yi - y'2 

5. Given a system of n (homogeneous) linear differential equa
tions of order k, how would you convert this to a system of 
first order equations? How many equations will there be in 
the first order system? 

6. Describe a general method for solving a system of second 
order linear differential equations of the form Y" = AY, where 
A is diagonalizable. 

7. Solve the systems of differential equations 

2 y'i = y\ - 2/2 (h) [y'i = - 4y-
y'{ = 33/1 + 5y2

 { M y'{ = Vl + 5y2 

[Note that the general solution of the differential equation 
u" = o?u is u = cicosh(ax) + c2sinh(ax)]. 

8. {The double pendulum) A string of length 21 is hung from 
a rigid support. Two weights each of mass m are attached 
to the midpoint and lower end of the string, which is then 
allowed to execute small vibrations subject to gravity only. 
Let y\ and y2 denote the horizontal displacements of the two 
weights from the equilibrium position at time t. 

(a) (optional) By using Newton's Second Law of Motion, 
show that yi and y2 satisfy the differential equations 
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Vi = a2(-3yi + y2), y2 = a2(yx - y2) where a = y/gjl and g 
is the acceleration due to gravity. 

(b) Solve the linear system in (a) for y\ and y2. [Note: 
the general solution of the differential equation y" + a2y = 0 
is y = c\ cos ax + c2 sin ax]. 

9. In Example 8.3.4 assume that Division A consists of m 
equal columns. Suppose that Division B is able to attack 
each column of A in turn. Show that Division B will win the 
battle provided that bo > -s^-. 



Chapter Nine 

M O R E ADVANCED TOPICS 

This chapter is intended to serve as an introduction to 
some of the more advanced parts of linear algebra. The most 
important result of the chapter is the Spectral Theorem, which 
asserts that every real symmetric matrix can be diagonalized 
by means of a suitable real orthogonal matrix. This result 
has applications to quadratic forms, bilinear forms, conies and 
quadrics, which are described in 9.2 and 9.3. The final section 
gives an elementary account of the important topic of Jordan 
normal form, a subject not always treated in a book such as 
this. 

9.1 Eigenvalues and Eigenvectors of Symmetric and 
Hermitian Matrices 

In this section we continue the discussion of diagonaliz-
ability of matrices, which was begun in 8.1, with special regard 
to real symmetric matrices. More generally, a square complex 
matrix A is called hermitian if 

A = A*, 

that is, A = (A)T. Thus hermitian matrices are the complex 
analogs of real symmetric matrices. It will turn out that the 
eigenvalues and eigenvectors of such matrices have remark
able properties not possessed by complex matrices in general. 
The first indication of special behavior is the fact that their 
eigenvalues are always real, while the eigenvectors tend to be 
orthogonal. 

303 
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T h e o r e m 9.1.1 
Let A be a hermitian matrix. Then: 

(a) the eigenvalues of A are all real; 
(b) eigenvectors of A associated with distinct eigenvalues 
are orthogonal. 

Proof 
Let c be an eigenvalue of A with associated eigenvector X, so 
that AX — cX. Taking the complex transpose of both sides 
of this equation and using 7.1.7, we obtain X*A = cX* since 
A = A*. Now multiply both sides of this equation on the right 
by X to get X*AX = cX*X = c||X||2: remember here that 
X*X equals the square of the length of X. But (X*AX)* = 
X*A*X** = X*AX; thus the scalar X* AX equals its complex 
conjugate and so it is real. It follows that c||X||2 is real. Since 
lengths of vectors are always real, we deduce that c, and hence 
c, is real, which completes the proof of (a). 

To prove (b) take two eigenvectors X and Y associated 
with distinct eigenvalues c and d. Thus AX = cX and AY = 
dY. Then Y*AX = Y*(cX) = cY*X, and in the same 
way X*AY = dX*Y. However, by 7.1.7 again, (X*AY)* = 
Y*A*X = Y*AX. Therefore (dX*Y)* = cY*X, or dY*X = 
cY*X because d is real by the first part of the proof. This 
means that (c—d)Y*X = 0, from which it follows that Y*X = 
0 since c ^ d. Thus X and Y are orthogonal. 

Suppose now that {Xi,..., Xr} is a set of linearly inde
pendent eigenvectors of the n x n hermitian matrix A, and 
that r is chosen as large as possible. We can multiply Xi by 
l / | |Xj | | to produce a unit vector; thus we may assume that 
each Xi is a unit vector. By 9.1.1 {Xi,..., Xr} is an orthonor-
mal set. Now write U = (X\ .. -Xr), an n x r matrix. Then 
U has the property 

AU = (AYi . . . AXr) = {c1X1 ... crXr), 
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where c\,..., cr are the eigenvectors corresponding to 
X\,..., Xr respectively. Hence 

AU = (X1X2...Xr) 

/ c i 0 0 
0 c2 0 

\ 0 0 0 

0 

Cr/ 

= UD, 

where D is the diagonal matrix with diagonal entries c\,..., 
cr. Since the columns of U form an orthonormal set, U*U = 
Ir. 

In general r < n, but should it be the case that r = n, 
then U is n x n and we have U^1 = U*, so that U is unitary 
(see 7.3). Therefore U*AU = D and A is diagonalized by the 
matrix U. In other words, if there exist n mutually orthogonal 
eigenvectors of A, then A can be diagonalized by a unitary 
matrix. The outstanding question is, of course, whether there 
are always that many linearly independent eigenvectors. We 
shall shortly see that this is the case. 

A key result must first be established. 

Theorem 9.1.2 (Schur '5 Theorem) 
Let A be an arbitrary square complex matrix. Then there is a 
unitary matrix U such that U*AU is upper triangular. More
over, if A is a real symmetric matrix, then U can be chosen 
real and orthogonal. 

Proof 
Let A be an n x n matrix. The proof is by induction on n. 
Of course, if n = 1, then A is already upper triangular, so 
let n > 1. There is an eigenvector X\ of A, with associated 
eigenvalue c\ say. Here we can choose X\ to be a unit vector 
in Cn. Using 5.1.4 we adjoin vectors to X\ to form a basis of 
C n . Then the Gram-Schmidt procedure (in the complex case) 
may be applied to produce an orthonormal basis X\,..., Xn 

of C n ; note that X\ is a member of this basis. 
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Let UQ denote the matrix (X\... Xn); then UQ is unitary 
since its columns form an orthonormal set. Now 

U*QAXX = U*0{ClXx) = ci(C/0*Xi). 

Also X*Xl=0iii>l, while X?XX = 1. Hence 

U^AXX = Cl 

/ c i \ 
0 

. XnXl J W 
Since 

UZAUQ = U*QA{X1 ...Xn) = (U£AX1 U*0AX2 ... U£AXn), 

we deduce that 

ci B 
U^AUo = 

0 Ai 

where A\ is a matrix with n — 1 rows and columns and 5 is 
an (n — l)-row vector. 

We now have the opportunity to apply the induction 
hypothesis on n; there is a unitary matrix U\ such that 
C/*i4it/i = Ti is upper triangular. Put 

C/2 = 
1 0 
0 C/i 

which is surely a unitary matrix. Then let U — VQU^'I this 
also unitary since U*U = U^(U^U0)U2 = U;U2 = I. Finally 

^ M £ / = C^(^0M^o)y'2 = ^ ( C
0

1 f j ^ , 
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which equals 

1 0 \ / c i B \ ( l 0 \ (a BUX \ 
0 UZJ\0 A1J\0 Uj V° UtA&iJ-

This shows that 

U*AU=(C' B^y 

an upper triangular matrix, as required. 
If the matrix A is real symmetric, the argument shows 

that there is a real orthogonal matrix S such that STAS is 
diagonal. The point to keep in mind here is that the eigenval
ues of A are real by 9.1.1, so that A has a real eigenvector. 

The crucial theorem on the diagonalization of hermitian 
matrices can now be established. 

Theorem 9.1.3 (The Spectral Theorem) 
Let A be a hermitian matrix. Then there is a unitary matrix U 
such that U*AU is diagonal. If A is a real symmetric matrix, 
then U may be chosen to be real and orthogonal. 

Proof 
By 9.1.2 there is a unitary matrix U such that U*AU = T 
is upper triangular. Then T* = U*A*U = U*AU = T, so 
T is hermitian. But T is upper triangular and T* is lower 
triangular, so the only way that T and T* can be equal is if 
all the off-diagonal entries of T are zero, that is, T is diagonal. 

The case where A is real symmetric is handled by the 
same argument. 

Corollary 9.1.4 
If A is an n x n hermitian matrix, there is an orthonormal 
basis of C n which consists entirely of eigenvectors of A. If 
in addition A is real, there is an orthonormal basis of R n 

consisting of eigenvectors of A. 
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Proof 
By 9.1.3 there is a unitary matrix U such that U* AU = D is 
diagonal, with diagonal entries d\,..., dn say. If Xi,..., Xn 

are the columns of U, then the equation AU = UD implies 
that AXi = diXi for i = 1 , . . . , n. Therefore the Xi are eigen
vectors of A, and since U is unitary, they form an orthonormal 
basis of C n . The argument in the real case is similar. 

This justifies our hope that an n x n hermitian matrix 
always has enough eigenvectors to form an orthonormal basis 
of C n . Notice that this will be the case even if the eigenvalues 
of A are not all distinct. 

The following constitutes a practical method of diago-
nalizing an n x n hermitian matrix A by means of a unitary 
matrix. For each eigenvalue find a basis for the correspond
ing eigenspace. Then apply the Gram-Schmidt procedure to 
get an orthonormal basis of each eigenspace. These bases are 
then combined to form an orthonormal set, say {Xi,..., Xn}. 
By 9.1.4 this will be a basis of C n . If U is the matrix with 
columns X\,..., Xn, then U is hermitian and U*AU is diago
nal, as was shown in the discussion preceding 9.1.2. The same 
procedure is effective for real symmetric matrices. 

Example 9.1.1 
Find a real orthogonal matrix which diagonalizes the matrix 

The eigenvalues of A are 3 and —1, (real of course), and 
corresponding eigenvectors are 

( l ) a n d ( ~ l ) ' 
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These are orthogonal; to get an orthonormal basis of R2 , re
place them by the unit eigenvectors 

Finally let 

^OO^T^i 

which is an orthogonal matrix. The theory predicts that 

as is easily verified by matrix multiplication. 

Example 9.1.2 
Find a unitary matrix which diagonalizes the hermitian matrix 

/ 3/2 i/2 0' 
A= -i/2 3/2 0 

V 0 0 1 

where i = /̂—T. 

The eigenvalues are found to be 1, 2, 1, with associated 
unit eigenvectors 

-if y/2\ ( 1/V2 \ / 0 ' 
l/x/2 , -i/y/2 , 0 

Therefore 

U*AU = 
/ l 0 0' 

0 2 0 
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where U is the unitary matrix 

^ 2 V 0 0 V2/ 

Normal matrices 

We have seen that every nxn hermitian matrix A has the 
property that there is an orthonormal basis of C n consisting 
of eigenvectors of A. It was also observed that this property 
immediately leads to A being diagonalizable by a unitary ma
trix, namely the matrix whose columns are the vectors of the 
orthonormal basis. We shall consider what other matrices 
have this useful property. 

A complex matrix A is called normal if it commutes with 
its complex transpose, 

A* A = AA*. 

Of course for a real matrix this says that A commutes with 
its transpose AT. Clearly hermitian matrices are normal; for 
if A = A*, then certainly A commutes with A*. What is the 
connection between normal matrices and the existence of an 
orthonormal basis of eigenvectors? The somewhat surprising 
answer is given by the next theorem. 

Theorem 9.1.5 
Let A be a complex nxn matrix. Then A is normal if and 
only if there is an orthonormal basis of Cn consisting of eigen
vectors of A. 

Proof 
First of all suppose that C n has an orthonormal basis of 
eigenvectors of A. Then, as has been noted, there is a uni
tary matrix U such that U*AU = D is diagonal. This leads 
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to A = UDU* because U* = U~x. Next we perform a di
rect computation to show that A commutes with its complex 
transpose: 

AA* = UDU*UD*U* = UDD*U*, 

and in the same way 

A* A = UD*U*UDU* = UD*DU*. 

But diagonal matrices always commute, so DD* = D*D. It 
follows that AA* = A*A, so that A is normal. 

It remains to show that if A is normal, then there is an 
orthonormal basis of C n consisting entirely of eigenvectors of 
A. From 9.1.2 we know that there is a unitary matrix U such 
that U* AU = T is upper triangular. The next observation 
is that T is also normal. This too is established by a direct 
computation: 

T*T = U*A*UU*AU = U*(A*A)U. 

In the same way TT* = U*(AA*)U. Since A*A = AA*, it 
follows that T*T = TT*. 

Now equate the (1, 1) entries of T*T and TT*; this yields 
the equation 

| t i i | 2 = | i i i | 2 + |£i2|2 + -- ' + | i in |2 , 
which implies that £12,..., t\n are all zero. By looking at the 
(2, 2), (3, 3 ) , . . . , (n, n) entries of T*T and TT*, we see that 
all the other off-diagonal entries of T vanish too. Thus T is 
actually a diagonal matrix. 

Finally, since AU = UT, the columns of U are eigenvec
tors of A, and they form an orthonormal basis of C n because 
U is unitary. This completes the proof of the theorem. 

The last theorem provides us with many examples of di-
agonalizable matrices: for example, complex matrices which 
are unitary or hermitian are automatically normal, as are real 
symmetric and real orthogonal matrices. Any matrix of these 
types can therefore be diagonalized by a unitary matrix. 
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Exercises 9.1 

1. Find unitary or orthogonal matrices which diagonalize the 
following matrices: 

( a ( i a) ; (»>(; j - » ) ! 

2. Suppose that A is a complex matrix with real eigenvalues 
which can be diagonalized by a unitary matrix. Prove that A 
must be hermitian. 

3. Show that an upper triangular matrix is normal if and only 
if it is diagonal. 

4. Let A be a normal matrix. Show that A is hermitian if and 
only if all its eigenvalues are real. 

5. A complex matrix A is called skew-hermitian if A* = —A. 
Prove the following statements: 

(a) a skew-hermitian matrix is normal; 
(b) the eigenvalues of a skew-hermitian matrix are purely 
imaginary, that is, of the form a\f^l where a is real; 
(c) a normal matrix is skew-hermitian if all its eigenvalues 
are purely imaginary. 

6. Let A be a normal matrix. Prove that A is unitary if and 
only if all its eigenvalues c satisfy \c\ = 1. 

7. Let X be any unit vector in C n and put A = In — 2XX*. 
Prove that A is both hermitian and unitary. Deduce that 
A = A~\ 

8. Give an example of a normal matrix which is not hermitian, 
skew-hermitian or unitary. [Hint: use Exercises 4, 5, and 6]. 
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9. Let A be a real orthogonal n x n matrix. Prove that A 
is similar to a matrix with blocks down the diagonal each of 
which is Ii, —Im, or else a matrix of the form 

cos 9 — sin 9 \ 
sin 9 cos 9 J 

where 0 < 9 < 2n, and 9 ^ TT. [Hint: by Exercise 6 the 
eigenvalues of A have modulus 1; also A is similar to a diagonal 
matrix whose diagonal entries are the eigenvalues]. 

9.2 Quadratic Forms 

A quadratic form in the real variables x\,..., xn is a poly
nomial in x\,..., xn with real coefficients in which every term 
has degree 2. For example, the expression ax2 + 2bxy + cy2 

is a quadratic form in x and y. Quadratic forms occur in 
many contexts; for example, the equations of a conic in the 
plane and a quadric surface in three-dimensional space involve 
quadratic forms. 

We begin by observing that the quadratic form 

q — ax2 + 2bxy + cy2 

in x and y can be written as a product of two vectors and a 
symmetric matrix, 

In general any quadratic form q in x i , . . . , xn can be written 
in this form. For let q be given by the equation 

n n 

q = y j / j aijXiXj 

i=l j = l 
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where the a -̂ are real numbers. Setting A = [ar,]n)Tl and 
writing X for the column vector with entries x\,..., xn, we see 
from the definition of matrix products that q may be written 
in the form 

q = XTAX. 

Thus the quadratic form q is determined by the real matrix 
A. 

At this point we make the crucial observation that noth
ing is lost if we assume that A is symmetric. For, since XTAX 
is scalar, q may also be written as (XTAX)T = XTATX; 
therefore 

q= \{XTAX + XTATX) = XT{ \{A + AT) )X. 
ZJ Zi 

It follows that A can be replaced by the symmetric matrix 
^(A + AT). For this reason it will in future be tacitly assumed 
that the matrix associated with a quadratic form is symmetric. 

The observation of the previous paragraph allows us to 
apply the Spectral Theorem to an arbitrary quadratic form. 
The conclusion is that a quadratic form can be written in 
terms of squares only. 

Theorem 9.2.1 
Let q = XTAX be an arbitrary quadratic form. Then there is 
a real orthogonal matrix S such that q = cix[ + • • • + cnx'n 

where x[,..., x'n are the entries of X — STX and C\,..., cn 

are the eigenvalues of the matrix A. 

Proof 
By 9.1.3 there is a real orthogonal matrix S such that STAS = 
D is diagonal, with diagonal entries c±,..., cn say. Define X 
to be STX; then X = SX . Substituting for X, we find that 

q = XTAX = (SX')TA(SX') = {X')T{STAS)X' 

= (X')TDX'. 
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Multiplying out the final matrix product, we find that q = 
/ 2 , - / 2 

C\Xi T • • • ~r cnxn . 

Application to conies and quadrics 

We recall from the analytical geometry of two dimensions 
that a conic is a curve in the plane with equation of the second 
degree, the general form being 

ax2 + 2bxy + cy2 + dx + ey + f = 0 

where the coefficients are real numbers. This can be written 
in the matrix form 

XTAX + (d e)X + f = 0 

where 

x - ( ; ) - d A - ( ; J). 
So there is a quadratic form in x and y involved in this conic. 
Let us examine the effect on the equation of the conic of ap
plying the Spectral Theorem. 

Let S be a real orthogonal matrix such that STAS = 

, J where a' and d are the eigenvalues of A. Put X' = 

STX and denote the entries of X by x',y'; then X = SX' 
and the equation of the conic takes the form 

( X ' ) T ( o °)x' + {de)SX' + f = 0, 

or equivalent ly, 

a'x'2 + c'y'2 + d'x' + e'y' + / = 0 

for certain real numbers d' and e'. Thus the advantage of 
changing to the new variables x' and y' is that no "cross term" 
in x'y' appears in the quadratic form. 
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There is a good geometrical interpretation of this change 
of variables: it corresponds to a rotation of axes to a new set 
of coordinates x' and y'. Indeed, by Examples 6.2.9 and 7.3.7, 
any real 2 x 2 orthogonal matrix represents either a rotation 
or a reflection in R2; however a reflection will not arise in the 
present instance: for if it did, the equation of the conic would 
have had no cross term to begin with. By Example 7.3.7 the 
orthogonal matrix S has the form 

cos 9 — sin 9 \ 
sin 9 cos 9 J 

where 9 is the angle of rotation. Since X = STX, we obtain 
the equations 

x' = x cos 9 + y sin 9 

y' = —x sin 9 + y cos 9 

The effect of changing the variables from x,y to x',y' is 
to rotate the coordinate axes to axes that are parallel to the 
axes of the conic, the so-called principal axes. 

Finally, by completing the square in x' and y' as nec
essary, we can obtain the standard form of the conic, and 
identify it as an ellipse, parabola, hyperbola (or degenerate 
form). This final move amounts to a translation of axes. So 
our conclusion is that the equation of any conic can be put in 
standard form by a rotation of axes followed by a translation 
of axes. 

Example 9.2.1 
Identify the conic x2 + Axy + y2 + 3x + y — 1 = 0. 

The matrix of the quadratic form x2 + 4xy + y2 is 
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It was shown in Example 9.1.1 that the eigenvalues of A are 
3 and -1 and that A is diagonalized by the orthogonal matrix 

S = 
V2 

Put X — STX where X has entries x' and y'; then X — SX 
and we read off that 

1 ( ' 
X =T2{X y') 

y ^ (*- + •) 

So here 9 = TT/4 and the correct rotation of axes for this conic 
is through angle n/4 in an anticlockwise direction. Substitut
ing for x and y in the equation of the conic, we get 

3x'2 - y'2 + 2^/2x' - y/2y' - 1 = 0. 

From this we can already see that the conic is a hyperbola. 
To obtain the standard form, complete the square in x' and 
y': 

3(z' + ^ ) 2 - ( y ' + 4;)2 
3 ' ™ ' y/2} 6" 

Hence the equation of the hyperbola in standard form is 

3x"2 - y"
2 = 7/6, 

where x" = x' + ^ 2 / 3 and y" = y' + l/y/2. This is a hy
perbola whose center is at the point where x' = — \/2/3 and 
y' = —\j\J1\ thus the xy - coordinates of the center of the 
hyperbola are (1/6, —5/6). The axes of the hyperbola are the 
lines x" = 0 and y" = 0, that is, x + y = —2/3 and x — y = l . 

file://�/j/J1/
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Quadrics 
A quadric is a surface in three-dimensional space whose 

equation has degree 2 and therefore has the form 

ax2 + by2 + cz2 + 2dxy + 2eyz + 2fzx + gx + hy + iz + j = 0. 

Let A be the symmetric matrix 

a d f \ 
d b e . 
f e c) 

Then the equation of the quadric may be written in the form 

XTAX + (gh i)X + .7=0 . 

where X is the column with entries x, y, z. 
Recall from analytical geometry that a quadric is one the 

following surfaces: an ellipsoid, a hyperboloid, a paraboloid, a 
cone, a cylinder (or a degenerate form). The type of a quadric 
can be determined by a rotation to principal axes, just as for 
conies. Thus the procedure is to find a real orthogonal matrix 
S such that STAX = D is diagonal, with entries a', b', c' say. 
Put X' = STX. Then X = SX' and XTAX = (X')TDX': 
the equation of the quadric becomes 

(X'fDX' + (g h i)SX' + . 7 = 0 , 

which is equivalent to 

a'x'2 + b'y'2 + c V 2 + g'x' + tiy' + i'z' + j = 0. 

Here a',b',c' are the eigenvalues of A, while g\h\i' are cer
tain real numbers. By completing the square in x', y', z' as 
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necessary, we shall obtain the equation of the quadric in stan
dard form; it will then be possible to recognise its type and 
position. The last step represents a translation of axes. 

Example 9.2.2 
Identify the quadric surface 

x2 +y2 + z2 + 2xy + 2yz + 2zx - x + 2y - z = 0. 

The matrix of the relevant quadratic form is 

A = 

and the equation of the quadric in matrix form is 

XTAX + (-l 2 - l ) X = 0. 

We diagonalize A by means of an orthogonal matrix. The 
eigenvalues of A are found to be 0, 0, 3, with corresponding 
unit eigenvectors 

W 2 \ / 0\ / l A / 3 \ 
-1/V2 , 1A/2 , W 3 . 

o J V-WV \W3/ 
The first two vectors generate the eigenspace corresponding to 
the eigenvalue 0. We need to find an orthonormal basis of this 
subspace; this can be done either by using the Gram-Schmidt 
procedure or by guessing. Such a basis turns out to be 
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Therefore A is diagonalized by the orthogonal matrix 

/ W2 W6 W 3 \ 
S = -1 /^2 1A/6 1/^3 . 

V 0 -2/V6 1/V3/ 

The matrix 5 represents a rotation of axes. P u t X = 5 T X ; 
then X = SX' and 

X r A X = (X ' ) T (5 T A5)X = (X'fDX, 

where D is the diagonal matrix with diagonal entries 0, 0, 3. 
The equation of the quadric becomes 

X'TDX' + (-l 2 -1)SX' = 0 

or 

V2 V® 
This is a parabolic cylinder whose axis is the line with equa
tions y' = y/Zx', z' = 0. 

Definite quadratic forms 

Consider once again a quadratic form q = XTAX in real 
variables x±,..., xn, where A is a real symmetric matrix. In 
some applications it is the sign of q that is significant. 

The quadratic form q is said to be positive definite if q > 0 
whenever 1 ^ 0 . Similarly, q is called negative definite if q < 0 
whenever X ^ 0. If, however, q can take both positive and 
negative values, then q is said to be indefinite. The terms 
positive definite, negative definite and indefinite can also be 
applied to a real symmetric matrix A, according to the behav
ior of the corresponding quadratic form q = XTAX. 

For example, the expression 2x2 + 3y2 is positive unless 
x = 0 = y, so this is a positive definite quadratic form, while 
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—2x2 — 3y2 is clearly negative definite. On the other hand, 
the form 2x2 — 3y2 can take both positive and negative values, 
so it is indefinite. 

In these examples it was easy to decide the nature of the 
quadratic form since it contained only squared terms. How
ever, in the case of a general quadratic form, it is not possible 
to decide the nature of the form by simple inspection. The 
diagonalization process for symmetric matrices allows us to 
reduce the problem to a quadratic form whose matrix is diag
onal, and which therefore involves only squared terms. From 
this it is apparent that it is the signs of the eigenvalues of the 
matrix A that are important. The definitive result is 

Theorem 9.2.2 
Let A be a real symmetric matrix and let q = XTAX: then 

(a) q is positive definite if and only if all the eigenvalues 
of A are positive; 
(b) q is negative definite if and only if all the eigenvalues 
of A are negative; 
(c) q is indefinite if and only if A has both positive and 
negative eigenvalues. 

Proof 
There is a real orthogonal matrix S such that STAS = D 
is diagonal, with diagonal entries c\,..., cn, say. Put X1 = 
STX; then X = SX' and 

q = XTAX = (X')T(STAS)X' = (x'fDX, 

so that q takes the form 

q = c\x'2 + c2x'2
2 H h cnx'n

2 

where the entries of X . Thus q, considered as 
a quadratic form in x'-y,...,x'n, involves only squares. Now 
observe that as X varies over the set of all non-zero vectors 
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in R n , so does X' = STX. This is because ST = S'1 is 
invertible. Therefore q > 0 for all non-zero X if and only if 
q > 0 for all non-zero X . In this way we see that it is sufficient 
to discuss the behavior of q as a quadratic form in x[,..., x'n. 
Clearly q will be positive definite as such a form precisely when 
c\,..., cn are all positive, with a corresponding statement for 
negative definite: but q is indefinite if there are positive and 
negative Q'S. Finally c i , . . . , cn are just the eigenvalues of A, 
so the assertion of the theorem is proved. 

Let us consider in greater detail the important case of a 
quadratic form q in two variables x and y, say 
q = ax2 + 2bxy + cy2; the associated symmetric matrix is 

Let the eigenvalues of A be d± and d2. Then by 8.1.3 we have 
the relations det(A) = d\d2 and tr(A) = d\ + d2; hence 

d\d2 = ac — b2 and d\ + d2 = a + c. 

Now according to 9.2.2 the form q is positive definite if and 
only if d\ and d2 are both positive. This happens precisely 
when ac > b2 and a > 0. For these conditions are certainly 
necessary if d\ and d2 are to be positive, while if the conditions 
hold, a and c must both be positive since the inequality ac > b2 

shows that a and c have the same sign. 
In a similar way we argue that the conditions for A to be 

negative definite are ac > b2 and a < 0. Finally, q is indefinite 
if and only if ac < b2: for by 9.2.2 the condition for q to be 
indefinite is that d\ and d2 have opposite signs, and this is 
equivalent to the inequality d\d2 < 0. Therefore we have the 
following result. 
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Corollary 9.2.3 
Let q = ax2 + 2bxy + cy2 be a quadratic form in x and y. 
Then: 

(a) q is positive definite if and only if ac > b2 and a > 0; 
(b) q is negative definite if and only if ac > b2 and a < 0; 
(c) q is indefinite if and only if ac < b2. 

Example 9.2.3 
Let q = -2x2 + xy - 3y2. Here we have a = - 2 , b = 1/2, 
c = —3. Since ac — b2 > 0 and a < 0, the quadratic form is 
negative definite, by 9.2.3. 

The status of a quadratic form in three or more variables 
can be determined by using 9.2.2. 

Example 9.2.4 
Let q = —2x2 — y2 — 2z2 + 6xz be a quadratic form in x, y, z. 
The matrix of the form is 

1-2 0 3 
A= 0 - 1 0 

\ 3 0 - 2 

which has eigenvalues —5, —1,1. Hence q is indefinite. 

Next we record a very different criterion for a matrix to 
be positive definite. While it is not a practical test, it has a 
very striking form. 

Theorem 9.2.4 
Let A be a real symmetric matrix. Then A is positive definite 
if and only if A — BTB for some invertible real matrix B. 

Proof 
Suppose first that A = BTB with B an invertible matrix. 
Then the quadratic form q = XTAX can be rewritten as 

q = XTBTBX = (BX)TBX = \\BX\\2. 
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If X ^ 0, then BX ^ 0 since B is invertible. Hence \\BX\\ is 
positive if X ^ 0. It follows that q, and hence A, is positive 
definite. 

Conversely, suppose that A is positive definite, so that 
all its eigenvalues are positive. Now there is a real orthogonal 
matrix S such that STAS = D is diagonal, with diagonal 
entries d 1 ( . . . , dn say. Here the di are the eigenvalues of A, so 
all of them are positive. Define \[D to be the real diagonal 
matrix with diagonal entries y/d~[,..., y/d^,. Then we have 
A = {ST)~lDST = SDST since ST = S"1 , and hence 

A = S(VDVD)ST = {y/DST)T{VDST). 

Finally, put B = \/DST and observe that B is invertible since 
both S and y/~D are. 

Application to local maxima and minima 
A well-known use of quadratic forms is to determine if 

a critical point of a function of several variables is a local 
maximum or a local minimum. We recall briefly the nature of 
the problem; for a detailed account the reader is referred to a 
textbook on calculus such as [18]. 

Let / be a function of independent real variables xi,..., 
xn whose first order partial derivatives exist in some region 
R. A point P(ai, ...,an) of R is called a local maximum (min
imum) of / if within some neighborhood of P the function / 
assumes its largest (smallest) value at P. A basic result states 
that if P is a local maximum or minimum of f lying inside 
R, then all the first order partial derivatives of f vanish at P: 

fXi(ai,...,an) =0 for i = l,...,n. 

A point at which all these partial derivatives are zero is called 
a critical point of / . Thus every local maximum or minimum 
is a critical point of / . However there may be critical points 
which are not local maxima or minima, but are saddle points 
of/. 
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For example, the function f(x, y) = x2 — y2 has a saddle 
point at the origin, as shown in the diagram. 

The problem is to devise a test which can distinguish 
local maxima and minima from saddle points. Such a test is 
furnished by the criterion for a quadratic form to be positive 
definite, negative definite or indefinite. 

For simplicity we assume that / is a function of two vari
ables x and y. Assume further that / and its partial deriva
tives of degree at most three are continuous inside a region R 
of the plane, and that (xo, yo) is a critical point of / in R. 

Apply Taylor's Theorem to the function / at the point 
(x0, y0), keeping in mind that fx(x0,y0) = 0 = fy{x0, y0). If h 
and k are sufficiently small, then f(xo + h, yo + k) — f(xo, yo) 
equals 

-^{h2fxx(xo, yo) + 2hkfxy(x0, yo) + k2fyy(x0, y0)) + S : 

here S is a remainder term which is a polynomial of degree 3 
or higher in h and k. Write a = fxx(xQ, yQ), b = fxy(xQ, y0) 
and c = fyy(xo, y0); then 

f(x0 + h,y0 + k)- /(xo, yo) = -^{ah2 + 2bhk + ck2) + S. 

Here S is small compared to the other terms of the sum if h 
and k are small. 
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Let q — ax2 + 2bxy + cy2. If q is negative definite, then 
/(XQ + h, yo + k) < f(x0, yo) when h and k are small and P is 
a local maximum. On the other hand, if q is positive definite, 
then P is a local minimum since f(xo + h, yo + k) > /(XQ, yo) 
for sufficiently small h and k. Finally, should q be indefinite, 
the expression f(xo + h, yo+k)—f(xo, yo) can be both positive 
and negative, so P is neither a local maximum nor a local 
minimum, but a saddle point. 

Thus the crucial quadratic form which provides us with 
a test for P to be a local maximum or minimum arises from 
the matrix 

TT / Jxx Jxy \ 

\ Jxy JyyJ 

If the matrix H(xo, yo) is positive definite or negative definite, 
then / will have a local minimum or local maximum respec
tively at P. If, however, H(x0, yo) is indefinite, then P will 
be a saddle point of / . Combining this result with 9.2.3, we 
obtain 

Theorem 9.2.5 
Let f be a function of x and y and assume that f and its 
partial derivatives of order < 3 are continuous in some region 
containing the critical point P(xo, yo)- Let D — fxxfyy — fxy

: 

(a) If D(xQ, yo) > 0 and fxx{xQ, y0) < 0, then P is a 

local maximum of f; 

(b) If D(XQ, yo) > 0 and fxx(x0, y0) > 0, then P is a 

local minimum of f; 

(c) If D < 0, then P is a saddle point of f. 

The argument just given for a function of two variables 
can be applied to a function / of n variables x\,..., xn. The 
relevant quadratic form in this case is obtained from the 
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matrix 
/fXlXl fXlXa ••• fXlXn\ 

TT JX2X1 JX2X2 ' ' ' JX2Xn 

J Xf\X\ J XJIX2 J XfiXji 

which is called the hessian of the function / . Notice that the 
hessian matrix is symmetric since fXiXj = fXjXi, provided that 
/ and all its derivatives of order < 3 are continuous. 

The fundamental theorem may now be stated. 

Theorem 9.2.6 
Let f be a function of independent variables xi,... ,xn. As
sume that f and its partial derivatives of order < 3 are contin
uous in a region containing a critical point P(ai,a,2, • • • ,an). 
Let H be the the hessian of f. 

(a) / / H(ai,..., an) is positive definite, then P is a local 
minimum of f; 
(b) if H(a±,..., on) is negative definite, then P is a local 
maximum of f; 
(c) if H(ai,..., an) is indefinite, then P is a saddle point 
off-

Example 9.2.5 
Consider the function f(x, y) = (x2 — 2x) cos y. It has a 
single critical point (1, n) since this is the only point where 
both first derivatives vanish. To decide the nature of this point 
we compute the hessian of / as 

H = 
2 cos y — (2x — 2) sin y 

-{fix — 2) sin y —(x2 — 2x) cos y 

Hence H(1,TT) — I J, which is clearly negative defi

nite. Thus the point in question is a local maximum of / . 

Notice that the test given in 9.2.6 will fail to decide the 
nature of the critical point P if at P the matrix H is not 
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positive definite, negative definite or indefinite: for example, 
H might equal 0 at P . 

Extremal values of a quadratic form 

Consider a quadratic form in variables x±,..., xn 

q = XTAX, 

where as usual A is a real symmetric nxn matrix and X is the 
column consisting of x±,..., xn. Suppose that we want to find 
the maximum and minimum values of q when X is subject to 
a restriction. One possible restriction is that 

| |X|| = a 

for some a > 0, that is, x\ + • • • + x\ — a2. Thus we are 
looking for the maximum and minimum values of q on the n-
sphere with radius a and center the origin in R n . One could 
use calculus to attack this problem, but it is simpler to employ 
diagonalization. 

There is a real orthogonal nxn matrix S such that 
STAS = D, where D is the diagonal matrix with the eigen
values of A, say d i , . . . , dn, on its diagonal. Put Y = S~1X: 
thus we have X = SY and 

q = XTAX = YTSTASY = YTDY = dlV\ + ••• + dny
2
n, 

where y i , . . . , yn are the entries of Y. 
In addition we find that 

XTX = YT(STS)Y = YTY, 

since ST = 5 _ 1 . Therefore our problem may be reformulated 
as follows: find the maximum and minimum values of the ex
pression diyf-\ \-dnVn subject to y2 + - • -+yn = a2. But this 

file:///-dnVn
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is easily answered. For assume that m and M are respectively 
the smallest and the largest eigenvalues of A. Then 

q = dxy\ + ••• + dnyl < M(yf + • • • + j/*) = Ma2, 

and 

q = diyl + ••• + dnyl > m(yi + --' + vl)= mo?-

Suppose that the largest eigenvalue M occurs for k differ
ent yj's; then we can take each of the corresponding y^s to be 
equal to a/y/k and all other y^s to be 0. Then y2+- • •Jry2

l = a2 

and the value of q at this point is exactly 

Mk{a/^k)2 = Ma2. 

It follows that the largest value of q on the n-sphere really is 
Ma2. By a similar argument the smallest value of q on the 
n-sphere is ma2. We state this conclusion as: 

Theorem 9.2.7 
The minimum and maximum values of the quadratic form q = 
XTAX for \\X\\ — a > 0 are respectively ma2 and Ma2 where 
m and M are the smallest and largest eigenvalues of the real 
symmetric matrix A. 

We conclude with a geometrical example. 

Example 9.2.6 
The equation of an ellipsoid with center the origin is given as 
XTAX = c, where A is a real symmetric 3 x 3 matrix and c 
is a positive constant. Find the radius of the largest sphere 
with center the origin which lies entirely within the ellipsoid. 

By a rotation to principal axes we can write the equation 
of the ellipsoid in the form dx' + ey'2 + fz' = c, where the 
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eigenvalues d, e, f of A are positive. Hence the equation of the 
ellipsoid takes the standard form 

/2 /2 /2 
x y z 

h - — I = 1. 
c/d c/e c/f 

Clearly the sphere will lie entirely inside the ellipsoid pro
vided that its radius a does not exceed the length of any of 
the semi-axes: thus a cannot be larger than any of 

Therefore the condition on a is that a < y/jfr, where M is 
the biggest of the eigenvalues d, e, / . Thus the largest sphere 
which is contained entirely within the ellipsoid has radius 

Exercises 9.2 

1. Determine if the following quadratic forms are positive 
definite, negative definite or indefinite: 

(a) 2x2 -2xy + 3y2; 
(b) x2 -3xz-2y2 + z2; 
(c) x2 + y2 + \xz + yz. 

2. Determine if the following matrix is positive definite, neg
ative definite or indefinite: 

G i 0-
3. A quadratic form q — X7 AX is called positive semidefinite 
if q > 0 for all X. The definition of negative semidefinite is 
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similar. Prove that q is positive semidefinite if and only if all 
the eigenvalues of A are > 0, and negative semidefinite if and 
only if all the eigenvalues are < 0. 

4. Let A be a positive definite nxn matrix and let S be a 
real invertible nxn matrix. Prove that STAS is also positive 
definite. 

5. Let A be a real symmetric matrix. Prove that A is nega
tive definite if and only if it has the form —(BTB) for some 
invertible matrix B. 

6. Identify the following conies: 
(a) Ux2-16xy+hy2 = 6; (b) 2x2+4xy+2y2+x-3y = 1. 

7. Identify the following quadrics: 
(a) 2x2 + 2y2+3z2+4yz = 3; (b) 2x2 + 2y2 + z2+4xz = 4. 

8. Classify the critical points of the following functions as 
local maxima, local minima or saddle points: 

(a) x2 + 2xy + 2y2 + Ax\ 
(b) (x + yf + {x- yf - 12(3x + y); 
(c) x2 + y2 + 3z2 — xy + 2xz — z. 

9. Find the smallest and largest values of the quadratic form 
q = 2a:2 + 2y2 + 3z2 + 4yz when the point (x,y,z) is required 
to lie on the sphere with radius 1 and center the origin. 

10. Let XTAX = c be the equation of an ellipsoid with center 
the origin, where A is a real symmetric 3 x 3 matrix and c is a 
positive constant. Show that the radius of the smallest sphere 
with center the origin which contains the ellipsoid is y ^ , 
where m is the smallest eigenvalue of A. 

11. Show that bx2 + 2xy + 2y2 + 5z2 = 1 is the equation of 
an ellipsoid with center the origin. Then find the radius of 
the smallest and largest sphere with center the origin which 
contains, respectively is contained in, the ellipsoid. 
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9.3 Bilinear Forms 

Roughly speaking, a bilinear form is a scalar-valued linear 
function of two vector variables. One type of a bilinear form 
which we have already met is an inner product on a real vector 
space. It will be seen that there is a close connection between 
bilinear forms and quadratic forms. 

Let V be a vector space over a field of scalars F and write 

VxV 

for the set of all pairs (u, v) of vectors from V. Then a bilinear 
form on V is a function 

f:VxV^F, 

that is, a rule assigning to each pair of vectors (u, v) a scalar 
/ ( u , v ) , which satisfies the following requirements: 

(i) / ( u i + u 2 ,v ) = / ( u i , v ) + / ( u 2 , v ) ; 
(ii) / (u , vi + v2) = / (u , vi) + / (u , v2); 
(iii) / (cu ,v) = c / (u ,v) ; 
(iv) / (u ,cv) = c / (u ,v) . 

These rules must hold for all vectors u, u i , 112, v, v i , v 2 in V 
and all scalars c in F. The effect of the four defining properties 
is to make / (u , v) "linear" in both the variables u and v. 

As has been mentioned, an inner product < > on a real 
vector space is a bilinear form / in which 

/ (u , v) = < u, v > . 

Indeed the defining properties of the inner product guarantee 
this. 

A very important example of a bilinear form arises when
ever a square matrix is given. 
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Example 9.3.1 
Let A be an n x n matrix over a field F. A function 
/ : Fn x Fn —> F is defined by the rule 

f(X, Y) = XTAY. 

That / is a bilinear form on Fn follows from the usual rules of 
matrix algebra. The importance of this example stems from 
the fact that it is typical of bilinear forms on finite-dimensional 
vector spaces in a sense that will now be made precise. 

Matrix representation of bilinear forms 

Suppose that f : V xV —>• F is a bilinear form on a vector 
space V of dimension n over a field F. Choose an ordered basis 
B = { v i , . . . , v n } of V and define a -̂ to be the scalar / ( V J , Vj). 
Thus we can associate with / the n x n matrix 

A= [aij]. 

Now let u and v be arbitrary vectors of V and write them 
in terms of the basis as u = YM=\ ^V* an<^ v = S?= i c j v i ' 
then the coordinate vectors of u and v with respect to the 
given basis are 

[u]B = I : and [v]B = 

\bn/ 

The linearity properties of / can be used to compute / (u , v) 
in terms of the matrix A. 

n n n n 

/(u, v) = f(^2 biVl, J2 c iv i ) = X) bif(Vi> Yl ciwi"> 
i = l j = l i = l j ' = l 

n n 

i=l i = l 

Cl 
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Since / (VJ ,VJ ) = a^-, this becomes 

n n 

/(u,v) = ] P ^ 6 i a i i c i , 
i=i j=i 

from which we obtain the fundamental equation 

/ ( u , v ) = ([u] s)
rA[v] e . 

Thus the bilinear form / is represented with respect to the 
basis B by the n x n matrix A whose (i,j) entry is / ( V J , V J ) . 

The values of / can be computed using the above rule. In 
particular, if / is a bilinear form on Fn and the standard 
basis of Fn is used, then f(X, Y) = XTAY. 

Conversely, if we start with a matrix A and define / by 
means of the equation / (u , v) = ([u]e)TA[v]B, then it is easy 
to verify that / is a bilinear form on V and that the matrix 
representing / with respect to the basis B is A. 

Now suppose we decide to use another ordered basis B': 
what will be the effect on the matrix A? Let S be the invertible 
matrix which describes the change of basis B' —• B. Thus 
[u]B = 5[U]B' , according to 6.2.4. Therefore 

/ ( u , v ) = (S[u}BI)
TA(S[v]B/) = ([u}B,)T(STAS)[v]B,, 

which shows that the matrix STAS represents / with respect 
to the basis B '. 

At this point we recognize that a new relation between 
matrices has arisen: a matrix B is said to be congruent to a 
matrix A if there is an invertible matrix S such that 

B = STAS. 

While there is an analogy between congruence and similarity 
of matrices, in general similar matrices need not be congruent, 
nor congruent matrices similar. 



9.3: Bilinear Forms 335 

The point that has emerged from the preceding discussion 
is that matrices which represent the same bilinear form with 
respect to different bases of the vector space are congruent. 
This result is to be compared with the fact that the matrices 
representing the same linear transformation are similar. 

The conclusions of the the last few paragraphs are sum
marized in the following basic theorem. 

Theorem 9.3.1 
(i) Let f be a bilinear form on an n-dimensional vector space 
V over a field F and let B = { v i , . . . , v n } be an ordered basis 
of V. Define A to be the n x n matrix whose (i,j) entry is 
/ (v» , Vj); then 

/ ( u , v ) = ([u]B)TA[v]B, 

and A is the n x n matrix representing f with respect to B. 

(ii) If B' is another ordered basis of V, then f is represented 
with respect to B' by the matrix ST AS where S is the invertible 
matrix describing the basis change B' —> B. 

(iii) Conversely, if A is any n x n matrix over F, a bilinear 
form on V is defined by the rule / (u , v) = ([U]B)TA[V]B- It 
is represented by the matrix A with respect to the basis B. 

Symmetric and skew-symmetric bilinear forms 

A bilinear form / on a vector space V is called symmetric 
if its values are unchanged by reversing the arguments, that 
is, if 

/ ( u , v ) = / ( v , u ) 

for all vectors u and v. Similarly, / is said to be skew-
symmetric if 

/ ( u , v ) = - / ( v , u ) 

is always valid. Notice the consequence, / ( u , u) = 0 for all 
vectors u. For example, any real inner product is a symmetric 
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bilinear form; on the other hand, the form defined by the rule 

z i \ Vi 

is an example of a skew-symmetric bilinear form on R2 . As 
the reader may suspect, there are connections with symmetric 
and skew-symmetric matrices. 

Theorem 9.3.2 
Let f be a bilinear form on a finite-dimensional vector space 
V and let A be a matrix representing f with respect to some 
basis of V. Then f is symmetric if and only if A is symmetric 
and f is skew-symmetric if and only if A is skew-symmetric. 

Proof 
Let A be symmetric. Then, remembering that [u]TA[v] is 
scalar, we have 

/ (u , v) = [u]TA[v] = ([u]TA[v])T = [v}TAT[u} = {v]TA[u} 
= / ( v , u ) . 

Therefore / is symmetric. Conversely, suppose that / is sym
metric, and let the ordered basis in question be { v i , . . . , v n } . 
Then a -̂ = f(vi,Vj) = / ( V J , Vj) = a^, so that A is symmet
ric. 

The proof of the skew-symmetric case is similar and is 
left as an exercise. 

Symmetric bilinear forms and quadratic forms 

Let / be a bilinear form on R n given by f(X, Y) = 
XTAY. Then / determines a quadratic form q where 

q = f(X,X) = XTAX. 
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Conversely, if q is a quadratic form in x i , . . . , xn, we can 
define a corresponding symmetric bilinear form / on R n by 
means of the rule 

f(X,Y) = ±{q(X + Y)-q(X)-q(Y)} 

where X and Y are the column vectors consisting of x\,..., xn 

and y i , . . . ,yn. To see that / is bilinear, first write q(X) = 
XTAX with A symmetric; then we have 

f(X, Y) =±{{X + Y)TA(X + Y)~ XTAX - YTAY} 
= \{XTAY + YTAX) 

= XTAY, 

since XTAY = (XTAY)T = YTAX. This shows that / is 
bilinear. 

It is readily seen that the correspondence q —> / just 
described is a bijection from quadratic forms to symmetric 
bilinear forms on Rn . 

Theorem 9.3.3 
There is a bijection from the set of quadratic forms in n vari
ables to the set of symmetric bilinear forms on R n . 

From past experience we would expect to get significant 
information about symmetric bilinear forms by using the Spec
tral Theorem. In fact what is obtained is a canonical or stan
dard form for such bilinear forms. 
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Theorem 9.3.4 
Let f be a symmetric bilinear form on an n-dimensional real 
vector space V. Then there is a basis BofV such that 

/ (u , v) = mvi H h ukvk - uk+ivk+1 UlVi 

where u\,..., un and v±,..., vn are the entries of the coordi
nate vectors [u]g and [v]g respectively and k and I are integers 
satisfying 0 < k < I < n. 

Proof 
Let / be represented by a matrix A with respect some basis 
B' oiV. Then A is symmetric. Hence there is an orthogonal 
matrix S such that STAS = D is diagonal, say with diagonal 
entries di,... ,dn; of course these are the eigenvalues of A. 
Here we can assume that d\,..., dk > 0, while dk+i,... ,di < 0 
and di+i = • • • = dn = 0, by reordering the basis if necessary. 
Let E be the nxn diagonal matrix whose diagonal entries are 
the real numbers 

1/y/di, ••-, 1/y/dk, l/y/-dk+1, ...,1/y/^dl, 1 , . . . , 1 . 

Then 
(SE)TA{SE) = ET(STAS)E = EDE, 

and the final product is the matrix 

/ h I 0 | 0 \ 

B 0 I 
— I 

\ 0 I 

-Ii-k I 0 
— I — 
0 1 0 / 

Now the matrix SE is invertible, so its inverse determines a 
change of basis from B' to say B. Then / will be represented 
by the matrix B with respect to the basis B. Finally, / (u , v) = 



9.3: Bilinear Forms 339 

([U]B)T-B[V]B , so the result follows on multiplying the matrices 
together. 

Example 9.3.2 
Find the canonical form of the symmetric bilinear form on R 2 

defined by f(X, Y) = xxyx + 2x±y2 + 2x2yi + x2y2. 

The matrix of the bilinear form with respect to the stan
dard basis is 

* - G ?)• 
which, by Example 9.1.1, has eigenvalues 3 and — 1, and is 
diagonalized by the matrix 

then 

f(X,Y) = XTAY = (X')TSTAS Y' = (X)T (3
Q _°\ Y', 

so that 
f(X,Y)=3x'1y'1-x2y'2. 

Here x[ = 772(^1 + x2) and x'2 = -^(—xi + x2), with corre
sponding formulas in y. 

To obtain the canonical form of / , put x'[ = y/Zx^, y'{ = 
y/3y[, and x'2' = x'2, y'2' = y'2. Then 

f(X,Y) = x'{y';-x'2
ly2', 

which is the canonical form specified in 9.3.4. 

Eigenvalues of congruent matrices 

Since congruent matrices represent the same symmetric 
bilinear form, it is natural to expect that such matrices should 
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have some common properties, as similar matrices do. How
ever, whereas similar matrices have the same eigenvalues, this 
is not true of congruent matrices. For example, the matrix 

( o - a ) 
has eigenvalues 2 and —3, but the congruent matrix 

( i ! )G-° ) ( i 9 - ( ' - ? ) 
has eigenvalues —2 and 3. 

Notice that, although the eigenvalues of these congruent 
matrices are different, the numbers of positive and negative 
eigenvalues are the same for each matrix. This is an instance 
of a general result. 

Theorem 9.3.5 (Sylvester's Law of Inertia) 
Let A be a real symmetric n x n matrix and S an invertible 
n x n matrix. Then A and STAS have the same numbers of 
positive, negative and zero eigenvalues. 

Proof 
Assume first of all that A is invertible; this is the essential 
case. Recall that by 7.3.6 it is possible to write S in the form 
QR where Q is real orthogonal and R is real upper triangular 
with positive diagonal entries; this was a consequence of the 
Gram-Schmidt process. 

The idea of the proof is to obtain a continuous chain 
of matrices leading from S to the orthogonal matrix Q; the 
point of this is that QTAQ — Q~lAQ certainly has the same 
eigenvalues as A. Define 

S{t)=tQ + {l-t)S, 

where 0 < t < 1. Thus 5(0) = S while 5(1) = Q. Now write 
U = tl + (1 - t)R, so that S{t) = QU. Next U is an upper 
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triangular matrix and its diagonal entries are t + (1 — t)ru\ 
these cannot be zero since ra > 0 and 0 ^ t ^ 1. Hence U is 
invertible, while Q is certainly invertible since it is orthogonal. 
It follows that S(t) = QU is invertible; thus det(S(t)) ^ 0. 

Now consider A(t) = S(t)TAS{t); since 

det(A{t)) = det(A) det(S(t))2 ^ 0, 

it follows that A(t) cannot have zero eigenvalues. Now as t 
goes from 0 to 1, the eigenvalues of A(0) = STAS gradually 
change to those of A(l) = QTAQ, that is, to those of A. 
But in the process no eigenvalue can change sign because the 
eigenvalues that appear are continuous functions of t and they 
are never zero. Consequently the numbers of positive and 
negative eigenvalues of STAS are equal to those of A. 

Finally, what if A is singular? In this situation the trick 
is to consider the matrix A + el, which may be thought of as 
a "perturbation" of A. Now A + el will be invertible provided 
that € is sufficiently small and positive: for det(A + xl) is a 
polynomial of degree n in x, so it vanishes for at most n values 
of x. The previous argument shows that the result is true for 
A + el if e is small and positive; then by taking the limit as 
e —•> 0, we can deduce the result for A. 

It follows from this theorem that the numbers of posi
tive and negative signs that appear in the canonical form of 
9.3.4 are uniquely determined by the bilinear form and do not 
depend on the particular basis chosen. 

Example 9.3.3 

Show that the matrices ( j and I J are not con

gruent. 

All one need do here is note that the first matrix has 
eigenvalues 1,3, while the second has eigenvalues 3 , - 1 . Hence 
by 9.3.5 they cannot be congruent. 
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Skew-symmetric bilinear forms 
Having seen that there is a canonical form for symmetric 

bilinear forms on real vector spaces, we are led to enquire if 
something similar can be done for skew-symmetric bilinear 
forms. By 9.3.2 this is equivalent to trying to describe all 
skew-symmetric matrices up to congruence. The theorem that 
follows provides a solution to this problem. 

Theorem 9.3.6 
Let f be a skew-symmetric bilinear form on an n-dimensional 
vector space V over either R or C. Then there is an ordered 
basis ofV with the form {ui, v i , . . . ,uk, vfc, w i , . . .,wn_2fc}, 
where 0 < 2k < n, such that 

f(ui,v^ = 1 = - / (v i ,Ui) , i = l,...,k 

and f vanishes on all other pairs of basis elements. 

Let us examine the consequence of this theorem before 
setting out to prove it. If we use the basis provided by the 
theorem, the bilinear form / is represented by the matrix 

/ 

V 

0 
- 1 

0 
0 

0 

0 

1 
0 

0 
0 

0 

0 

0 
0 

0 
• - 1 

0 

0 

0 
0 

1 
0 

0 

0 

0 • 
0 

0 •• 
0 • 

0 

0 

• ° \ 
0 

0 
0 

0 

• 0 ) 

where the number of blocks of the type is k. This 
0 1 

- 1 0 
allows us to draw an important conclusion about skew-
symmetric matrices. 



9.3: Bilinear Forms 343 

Corollary 9.3.7 
A skew-symmetric n x n matrix A over R or C is congruent 
to a matrix M of the above form. 

This is because the bilinear form / given by f(X, Y) = 
XT AY is skew-symmetric and hence is represented with re
spect to a suitable basis by a matrix of type M; thus A must 
be congruent to M. 

Proof of 9.3.6 
Let z i , . . . , zn be any basis of V. If / ( Z J , Zj) = 0 for all i and j , 
then / (u , v) = 0 for all vectors u and v, so that / is the zero 
bilinear form and it is represented by the zero matrix. This is 
the case k = 0. So assume that / ( Z J , Zj) is not zero for some i 
and j . Since the basis can be reordered, we may suppose that 
/ ( z i , z2) = a ^ 0. Then / ( a _ 1 z i , z2) = a _ 1 / ( z i 5 z2) = 1. 
Now replace zi by a _ 1 z i ; the effect is to make / ( z i , z2) = 1, 
and of course / ( z 2 , zi) = —1 since / is skew-symmetric. 

Next put bi = /(zi,Zj) where i > 2. Then 

/ ( z i . z i - 6 z 2 ) = /(zi,Zi) - 6 / ( z i , z 2 ) = 6 - 6 = 0. 

This suggests that we modify the basis further by replacing Zj 
by Zj — 6z2 for i > 2; notice that this does not disturb linear 
independence, so we still have a basis of V. The effect of this 
substitution is make 

/(zi,Zj) = 0 for i = 3 , . . . ,n . 

Next we have to address the possibility that / ( z 2 , z;) may 
be non-zero when i > 2; let c = / ( z 2 , Zj). Then 

/ ( z 2 , Z j + CZi) = / ( z 2 , Z j ) + c / ( z 2 , Z i ) = C + C ( - 1 ) = 0 . 

This suggests that the next step should be to replace Zj by 
Zj + czi where i > 2; again we need to observe that Z i , . . . , zn 
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will still be a basis of V. Also important is the remark that this 
substitution will not nullify what has already been achieved; 
the reason is that when i > 2 

/(zi ,Zi + czi) = / ( z i , z i ) + c/(z1 ,z1) = 0 . 

We have now reached the point where 

/ ( z i , z 2 ) = 1 = - / ( z 2 , z i ) and / (z i , z , ) = 0 = /(z2 ,Zi) , 

for all i > 2. Now we rename our first two basis elements, 
writing Ui = zi and vi = z2. 

So far the matrix representing / has the form 

/ O i l 0 0 \ 
- 1 0 1 0 0 

I 
V 0 0 I B J 

where B is a skew-symmetric matrix with n — 2 rows and 
columns. We can now repeat the argument just given for the 
subspace with basis {Z3, . . . , z n } ; it follows by induction on n 
that there is a basis for this subspace with respect to which 
/ is represented by a matrix of the required form. Indeed 
let u 2 , . . . , u f c , v2 , . . . ,Vfc,wi,.. . ,wn_2A; be this basis. By 
adjoining ui and v i , we obtain a basis of V with respect to 
which / is represented by a matrix of the required form. 

Example 9.3.4 
Find the canonical form of the skew-symmetric matrix 

/ 0 0 2 
A= \ 0 0 - 1 

\ - 2 1 0 

We need to carry out the procedure indicated in the proof 
of the theorem. Let {E±, E2, E3} be the standard basis of R3 . 
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The matrix A determines a skew-symmetric bilinear form / 
with the properties f{E1,E3) = 2 = -f(E3, Ex), f{E3, E2) = 
1 = -f(E2,E3), f(E1,E2) = 0 = f(E2,E1). 

The first step is to reorder the basis as {Ei,E3,E2}; 
this is necessary since f(E\,E2) = 0 whereas f(Ei,E3) ^ 
0. Now replace {Ei,E3,E2} by {±Ei,E3,E2}, noting that 
f(\EuE3) = 1 = - / ( £ 3 , | £ i ) . Next f(E3,E2) = 1, so we 
replace E2 by 

E2 + f(E3,E2)-Ei = -Ei + E2. 

Note that f{\Eu \EX + E2) = 0 = f(E3, \EX + E2). 
The procedure is now complete. The bilinear form is 

represented with respect to the new ordered basis 

by the matrix 
/ 

M = 
( 0 1 0 

- 1 0 0 
I 0 0 0 

which is in canonical form. The change of basis from 
{^Ei,E3, | E \ + E2} to the standard ordered basis is repre
sented by the matrix 

1/2 0 1/2' 
5 = | 0 0 1 

0 1 0 

The reader should now verify that STAS equals M, the canon
ical form of A, as predicted by the proof of 9.3.6. 
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Exercises 9.3 

1. Which of the following functions / are bilinear forms? 
(a) f(X,Y) = X~Y on Rn-
(b) f(X,Y) =XTY o n R n ; 

(c) f(g,h) = fag{x)h(x) dx on C{a,b]. 

2. Let / be the bilinear form on R 2 which is defined by the 
equation f(X,Y) = 2x\y2 — 3x2yi- Write down the matrices 
which represent / with respect to (a) the standard basis, and 

(b) the basis {( J J ( j ) } . 

3. If / and g are two bilinear forms on a vector space V, define 
their sum / + g by the rule / -f- g(u,v) = f(u,v) + g(u,v); 
also define the scalar multiple cf by the equation cf(u, v) = 
c(f(u,v)). Prove that with these operations the set of all 
bilinear forms on V becomes a vector space V . If V has 
dimension n, what is the dimension of V ? 

4. Prove that every bilinear form on a real or complex vector 
space is the sum of a symmetric and a skew-symmetric bilinear 
form. 

5. Find the canonical form of the symmetric bilinear form on 
R2 given by f(X, Y) = 3ziyi + xxy2 + x2yi + 3x2y2-

6. Let / be a bilinear form on R n . Prove that / is an inner 
product on R n if and only if / is symmetric and the corre
sponding quadratic form is positive definite. 

7. Test each of the following bilinear forms to see if it is an 
inner product: 

(a) f(X, Y) = 3zi2/i + xxy2 + x2yi + 5x2y2] 
(b) f(X,Y) = 2x1y1+xiy2+x1y3 + x2yi + 3x2y2-2x2y3 

+x3yt - 2x3y2 + 3x3y3. 
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8. Find the canonical form of the skew-symmetric matrix 

and also find an invertible matrix S such that STAS equals 
the canonical form. 

9. (a) If A is a square matrix and S is an invertible matrix, 
prove that A and STAS have the same rank. 

(b) Deduce that the rank of a skew-symmetric matrix 
equals twice the number of 2 x 2 blocks in the canonical form 
of the matrix. Conclude that the canonical form is unique. 

10. Call a skew-symmetric bilinear form / on a vector space 
V non-isotropic if for every non-zero vector v there is an
other vector w in V such that / (v , w) ^ 0. Prove that a 
finite-dimensional real or complex vector space which has a 
non-isotropic skew-symmetric bilinear form must have even 
dimension. 

9.4 Minimum Polynomials and Jordan Normal Form 

The aim of this section is to introduce the reader to one 
of the most famous results in linear algebra, the existence of 
what is known as Jordan normal form of a matrix. This is a 
canonical form which applies to any square complex matrix. 
The existence of Jordan normal form is often presented as the 
climax of a series of difficult theorems; however the simpli
fied approach adopted here depends on only elementary facts 
about vector spaces. We begin by introducing the important 
concept of the minimum polynomial of a linear operator or 
matrix. 
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The minimum polynomial 
Let T be a linear operator on an n-dimensional vector 

space V over some field of scalars F. We show that T must sat
isfy some polynomial equation with coefficients in F. At this 
point the reader needs to keep in mind the definitions of sum, 
scalar multiple and product for linear operators introduced in 
6.3. For any vector v of V, the set {v, T ( v ) , . . . , T n(v)} con
tains n + 1 vectors and so it must be linearly dependent by 
5.1.1. Consequently there are scalars ao, a i , . . . , an, not all of 
them zero, such that 

a0v + aiT(v) + • • • + anT
n(v) = 0. 

Let us write / v for the polynomial ao+a-\_x + - • • + anx
n. Then 

MT)=a0l + a1T+--- + anT
n, 

where 1 denotes the identity linear operator. Therefore 

/vCO(v) = a0v + aiT(v) + ••• + anT
n(v) = 0. 

Now let { v i , . . . , v n } be a basis of the vector space V and 
define / to be the product of the polynomials / V l , /v2 > •••) /v n • 
Then 

/(r)(vi) = / V l (r ) - . . / V n (7)^0 = 0 

for each i = l , . . . , n . This is because fVi(T)(vi) = 0 and 
the / v (T) commute, since powers of T commute by Exercise 
6.3.13. Therefore f(T) is the zero linear transformation on V, 
that is, 

/CO = o. 
Here of course / is a polynomial with coefficients in F. 

Having seen that T satisfies a polynomial equation, we 
can select a polynomial / in x over F of smallest degree such 
that f(T) = 0. In addition, we may suppose that / is monic, 
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that is, the highest power of x in / has its coefficient equal to 
1. This polynomial / is called a minimum polynomial of T. 

Suppose next that g is an arbitrary polynomial with coef
ficients in F. Using long division, just as in elementary algebra, 
we can divide g by / to obtain a quotient q and a remainder r; 
both of these will be polynomials in x over F. Thus g = fq+r, 
and either r = 0 or the degree of r is less than that of / . Then 
we have 

g(T) = f(T)q(T) + r(T) = r(T) 

since f(T) = 0. Therefore g(T) = 0 if and only if r(T) = 0. 
But, remembering that / was chosen to be of smallest degree 
subject to f(T) = 0, we can conclude that r(T) = 0 if and 
only if r = 0, that is, g is divisible by / . Thus the polynomials 
that vanish at T are precisely those that are divisible by the 
polynomial / . 

If g is another monic polynomial of the same degree as 
/ such that g(T) = 0, then in fact g must equal / . For g is 
divisible by / and has the same degree as / , which can only 
mean that g is a constant multiple of / . However g is monic, 
so it actually equals / . Therefore the minimum polynomial of 
T is the unique monic polynomial / of smallest degree such 
that f(T) = 0. 

These conclusions are summed up in the following result. 

Theorem 9.4.1 
Let T be a linear operator on a finite-dimensional vector space 
over a field F with a minimum polynomial f. Then the only 
polynomials g with coefficients in F such that g(T) = 0 are 
the multiples of f. Hence f is the unique monic polynomial 
of smallest degree such that f(T) = 0 and T has a unique 
minimum polynomial. 

So far we have introduced the minimum polynomial of 
a linear operator, but it is to be expected that there will be 



350 Chapter Nine: Advanced Topics 

a corresponding concept for matrices. The minimum poly
nomial of a square matrix A over a field F is defined to be 
the monic polynomial / with coefficients in F of least degree 
such that f(A) = 0. The existence of / is assured by 9.4.1 
and the relationship between linear operators and matrices. 
Clearly the minimum polynomial of a linear operator equals 
the minimum polynomial of any representing matrix. There 
is of course an exact analog of 9.4.1 for matrices. 

Example 9.4.1 
What is the minimum polynomial of the following matrix? 

/ 2 1 1 
4 = I 0 2 0 

\ 0 0 2 

In the first place we can see directly that (A — 2J3)2 = 0. 
Therefore the minimum polynomial / must divide the poly
nomial (x — 2)2, and there are two possibilities, / = x — 2 and 
f = (x — 2)2. However / cannot equal x — 2 since A — 21 7̂  0. 
Hence the minimum polynomial of A is / = (x — 2)2. 

Example 9.4.2 
What is the minimum polynomial of a diagonal matrix D? 

Let d\,. . ., dr be the distinct diagonal entries of D. Again 
there is a fairly obvious polynomial equation that is satisfied 
by the matrix, namely 

(A - dj) •••(A- drI) = 0. 

So the minimum polynomial divides (x — d\) • • • (x — dr) and 
hence is the product of certain of the factors x — di. However, 
we cannot miss out even one of these factors; for the product 
of all the A — djI for j ^ i is not zero since dj ^ di. It follows 
that the minimum polynomial of D is the product of all the 
factors, that is, (x — d\) • • • (x — dr). 
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In the computation of minimum polynomials the next 
result is very useful. 

Lemma 9.4.2 
Similar matrices have the same minimum polynomial. 

The quickest way to see this is to recall that similar ma
trices represent the same linear operator, and hence their min
imum polynomials equal the minimum polynomial of the lin
ear operator. Thus, by combining Lemma 9.4.2 and Example 
9.4.2, we can find the minimum polynomial of any diagonal-
izable complex matrix. 

Example 9.4.3 

Find the minimum polynomial of the the matrix 

By Example 9.1.1 the matrix is similar to 

Hence the minimum polynomial of the given matrix is 
(x-3)(x + l). 

In Chapter Eight we encountered another polynomial as
sociated with a matrix or linear operator, namely the charac
teristic polynomial. It is natural to ask if there is a connection 
between these two polynomials. The answer is provided by a 
famous theorem. 

Theorem 9.4.3 (The Cayley-Hamilton Theorem) 
Let A be annxn matrix over C. Ifp is the characteristic poly
nomial of A, then p(A) = 0. Hence the minimum polynomial 
of A divides the characteristic polynomial of A. 

Proof 
According to 8.1.8, the matrix A is similar to an upper tri
angular matrix T; thus we have S~XAS = T with S invert-
ible. By 9.4.2 the matrices A and T have the same minimum 
polynomial, and we know from 8.1.4 that they have the same 

1 2 
2 1 
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characteristic polynomial. Therefore it is sufficient to prove 
the statement for the triangular matrix T. From Example 8.1.2 
we know that the characteristic polynomial of T is 

( in -x)---(tnn -x). 

On the other hand, direct matrix multiplication shows that 
(tnl — T) • • • (tnnI — T)=0: the reader may find it helpful to 
check this statement for n — 2 and 3. The result now follows 
from 9.4.1. 

At this juncture the reader may wonder if the minimum 
polynomial is really of much interest, given that it is a divisor 
of the more easily calculated characteristic polynomial. But in 
fact there are features of a matrix that are easily recognized 
from its minimum polynomial, but which are unobtainable 
from the characteristic polynomial. One such feature is diag-
onalizability. 

Example 9.4.4 
(\ \ \ 

Consider for example the matrices I2 and I I: both of 

these have characteristic polynomial (x — l ) 2 , but the first 
matrix is diagonalizable while the second is not. Thus the 
characteristic polynomial alone cannot tell us if a matrix is 
diagonalizable. On the other hand, the two matrices just con
sidered have different minimum polynomials, x — 1 and (x — l ) 2 

respectively. 

This example raises the possibility that it is the mini
mum polynomial which determines if a matrix is diagonaliz
able. The next theorem confirms this. 

Theorem 9.4.4 
Let A be an n x n matrix over C. Then A is diagonalizable if 
and only if its minimum polynomial splits into a product of n 
distinct linear factors. 
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Proof 
Assume first that A is diagonalizable, so that S~1AS — D, a 
diagonal matrix, for some invertible S. Then A and D have 
the same minimum polynomials by 9.4.2. Let di,...,dr be 
the distinct diagonal entries of D; then Example 9.4.2 shows 
that the minimum polynomial of D is (x — d\) • • • (x — dr), 
which is a product of distinct linear factors. 

Conversely, suppose that A has minimum polynomial 

/ = (x-di)---(x-dr) 

where di,... ,dr are distinct complex numbers. Define #; to be 
the polynomial obtained from / by deleting the factor x — di. 
Thus 

/ 
9i = -}-• 

x — di 

Next we recall the method of partial fractions, which is 
useful in calculus for integrating rational functions. This tells 
us that there are constants b\,..., br such that 

I = V^ bi 
f ~ ^ x- d{ 

Multiplying both sides of this equation by / , we obtain 

1 = M i -\ r- Kgr 

by definition of gi. 
At this point we prefer to work with linear operators, so 

we introduce the linear operator T on C n defined by T(X) — 
AX. It follows from the above equation that b\g\{T) + • • • + 
brgr(T) is the identity function. Hence 

X = bl9l(T)(X) + --- + brgr(T)(X) 
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for any vector X. Let Vi denote the set of all elements of the 
form gi(T)X with X a vector in C n . Then Vj is a subspace 
and the above equation for X tells us that 

C n = Vi + • • • + Vr. 

Now in fact C n is the direct sum of the subspaces Vj, which 
amounts to saying that the intersection of a Vi and the sum 
of the remaining Vj, with j 7̂  i, is zero. To see why this 
is true, take a vector X in the intersection. Observe that 
9i{T)gj{T) = 0 if % ^ j since every factor x — dk is present in 
the polynomial giQj. Therefore gk(T)(X) = 0 for all k. Since 
X = £ L i bkgk(T)(X), it follows that X = 0. Hence C n is 
the direct sum 

Cn = Vx®---®Vr. 

Now the effect of T on vectors in Vi is merely to multiply 
them by d; since (T - d^g^T) = / (T) = 0. Therefore, if we 
choose bases for each subspace V\,..., Vr and combine them 
to form a basis of C n , then T will be represented by a diagonal 
matrix. Consequently A is similar to a diagonal matrix. 

Example 9.4.5 
The matrix 

has minimum polynomial (x — 2)2, as we saw in Example 9.4.1. 
Since this is not a product of distinct linear factors, the matrix 
cannot be diagonalized. 
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Example 9.4.6 
The n x n upper triangular matrix 

°\ 0 
0 

1 
cJ 

has minimum polynomial (x —c)n; this is because (A — cl)n = 
0, but (A — cl)n~1 / 0. Hence A is diagonalizable if and only 
if n = 1. Notice that the characteristic polynomial of A equals 
(c-x)n. 

Jordan normal form 
We come now to the definition of the Jordan normal form 

of a square complex matrix. The basic components of this are 
certain complex matrices called Jordan blocks, of the type 
considered in Example 9.4.6. In general a n n x n Jordan block 
is a matrix of the form 

0 0 \ 
0 0 
0 0 

c 1 
0 c) 

for some scalar c. Thus J is an upper triangular n x n ma
trix with constant diagonal entries, a superdiagonal of l's, and 
zeros elsewhere. By Example 9.4.6 the minimum and charac
teristic polynomials of J are (x — c)n and (c — x)n respectively. 

We must now take note of the essential property of the 
matrix J. Let E±,..., En be the vectors of the standard basis 
of C n . Then matrix multiplication shows that JE\ = cEi, 
and JEi = cEi + -E^-i where 1 < i < n. 

A 

(c 

0 
0 

0 
Ko 

1 
c 
0 

0 
0 

0 •• 
1 • • 

c • • 

0 •• 
0 •• 

• 0 
• 0 
• 0 

c 
• 0 

J 

I c ± u 

0 c 1 
0 0 c 

0 0 0 
V n n n 
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In general, if A is any complex n x n matrix, we call a 
sequence of vectors X\,..., XT in C n a Jordan string for A if 
it satisfies the equations 

AX i = cX1 and AXi = cXi + X;_i 

where c is a scalar and 1 < i < r. Thus every n x n Jordan 
block determines a Jordan string of length n. 

Now suppose there is a basis of C n which consists of 
Jordan strings for the matrix A. Group together basis elements 
in the same string. Then the linear operator on C n given 
by T(X) = AX is represented with respect to this basis of 
Jordan strings by a matrix which has Jordan blocks down the 

°\ 
0 

JkJ 
Here Jj is a Jordan block, say with Cj on the diagonal. This 
is because of the effect produced on the basis elements when 
they are multiplied on the left by A. 

Our conclusion is that A is similar to the matrix N, which 
is called the Jordan normal form of A. Notice that the diagonal 
elements Q of N are just the eigenvalues of A. Of course we 
still have to establish that a basis consisting of Jordan strings 
always exists; only then can we conclude that every matrix 
has a Jordan normal form. 

Theorem 9.4.5 (Jordan Normal Form) 
Every square complex matrix is similar to a matrix in Jordan 
normal form. 

Proof 
Let A be an n x n complex matrix. We have to establish the 
existence of a basis of C n consisting of Jordan strings for A. 
This is done by induction on n; if n = 1, any non-zero vector 

v- i"'fc>^""'1-

N 

/Jx 0 
0 J2 

V 0 0 
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qualifies as a Jordan string of length 1, so we can assume that 
n > 1. 

Since A is complex, it has an eigenvalue c. Thus the 
matrix A' = A — cl is singular, and so its column space C 
has dimension r < n. Recall from Example 6.3.2 that C 
is the image of the linear operator on C" which sends X to 
A1 X. Restriction of this linear operator to C produces a linear 
operator which is represented by an r x r matrix. Since r < n, 
we may assume by induction hypothesis on n that C has a 
basis which is a union of Jordan strings for A. Let the ith 
such string be written Xij, j = 1 , . . . ,U\ thus AXn = CjXji 
and in addition AXij = QXJJ + Xij-i for 1 < j < h- Then 
A'Xn = 0 and A'Xij = Xy-_i if j > 1. 

Next let D denote the intersection of C with N, the null 
space of A', and set p = dim(D). We need to identify the 
elements of D. Now any element of C has the form 

Y = > J y]aijXij 
i 3 

where a^ is a complex number. Assume that Y is in D, and 
thus in N, the null space of A'. Suppose that â - ^ 0 and let 
j be as large as possible with this property for the given i. If 
j > 1, then the equations A'Xn = 0 and A'Xik = Xik-i will 
prevent A'Y from being zero. Hence j = 1. It follows that 
the Xii form a basis of .D, so there are exactly p of these Xn. 

Every vector in C is of the form A'Y for some Y, since C 
is the image space of the linear operator sending X to A'X. 
For each i write the vector Xut in the form X ^ = A'Yi, for 
some Yi , i = 1 , . . . , p. There are p of these Yi. Finally, N has 
dimension n — r, so we can adjoin a further set of n — r — p 
vectors to the Xn to get a basis for N, say Z\,..., Z n _ r _ p . 

Altogether we have a total of r + p + (n — r — p) = n 
vectors 
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We now assert that these vectors form a basis of Cn which 
consists of Jordan strings of A. Certainly 

AYk = (A' + d)Yk = A'Yk + cYk = cYk + Xklk. 

Thus the Jordan string Xki,..., Xkik has been extended by 
adjoining Yk. Also AZm = cZm since Zm belongs to the null 
space of A'; thus Zm is a Jordan string of A with length 1. 
Hence the vectors in question constitute a set of Jordan strings 
of A 

What remains to be done is to prove that the vectors 
Xij,Yk, Zm form a basis of C n , and by 5.1.9 it is enough to 
show that they are linearly independent. To accomplish this, 
we assume that e^, fk,gm are scalars such that 

^ ^ eijXij + ^ fkYk + ^ 9mZm = 0. 

Multiplying both sides of this equation on the left by A', we 
get 

53 53 ey(0 or X^) + J2 fk*kik = 0. 
Now Xkik does not appear among the terms of the first sum 
in the above equation since j — 1 < lk. Hence fk = 0 for all 
k. Thus 

/ J QrnZm = ~ / v / _, eijX{j, 

which therefore belongs to D. Hence e^ = 0 if j > 1, and 
J2 9mZm = — Yl eaXn. This can only mean that gm = 0 
and eji = 0 since the Xn and Z m are linearly independent. 
Hence the theorem is established. 

Corollary 9.4.6 
Every complex n x n matrix is similar to an upper triangular 
matrix with zeros above the superdiagonal. 

This follows at once from the theorem since every Jordan 
block is an upper triangular matrix of the specified type. 
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Example 9.4.7 
Put the matrix 

/ H 
^ 3 1 0 

- 1 1 0 
V 0 0 2 

in Jordan normal form. 

We follow the method of the proof of 9.4.5. The eigen
values of A are 2, 2, 2, so define 

1 1 0' 
A' = A-2I=\-1 - 1 0 

0 0 0 

The column space C of A1 is generated by the single vector 

( l \ 
X = —1 . Note that AX = 2X, so X is a Jordan string 

V 0 / 
of length 1 for A. Also the null space N of A' is generated by 
X and the vector 

Thus D — C D N — C is generated by X. The next step is to 
write X in the form A'Y: in fact we can take 

Y 

0' 
Thus the second basis element is Y. Finally, put Z = [ 0 | , 

so that {X, Z} is a basis for N. Then 

A'X = 0, A'Y = X, A'Z = 0 
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and hence 

AX = 2X, AY = 2Y + X and AZ = 2Z. 

It is now evident that {X, Y, Z} is a basis of C 3 consisting 
of the two Jordan strings X,Y, and Z. Therefore the Jordan 
form of A has two blocks and is 

N 

/ 2 1 1 0 
0 2 1 0 

V 0 0 1 2 

As an application of Jordan form we establish an inter
esting connection between a matrix and its transpose. 

Theorem 9.4.7 
Every square complex matrix is similar to its transpose. 

Proof 
Let A be a square matrix with complex entries, and write N 
for the Jordan normal form of A. Thus S~1AS = N for some 
invertible matrix S by 9.4.5. Now 

NT = STAT(S-1)T = STAT(ST)-\ 

so NT is similar to AT. It will be sufficient if we can prove that 
N and NT are similar. The reason for this is the transitive 
property of similarity: if P is similar to Q and Q is similar to 
R, then P is similar to R. 

Because of the block decomposition of N, it is enough 
to prove that any Jordan block J is similar to its transpose. 
But this can be seen directly. Indeed, if P is the permutation 
matrix with a line of l's from top right to bottom left, then 
matrix multiplication shows that P~XJP — JT. 
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Another use of Jordan form is to determine which matri
ces satisfy a given polynomial equation. 

Example 9.4.8 
Find up to similarity all complex n x n matrices A satisfying 
the equation A2 = I. 

Let N be the Jordan normal form of A, and write N = 
S^AS. Then N2 = S~1A2S. Hence A2 = I if and only if 
N2 = / . Since N consists of a string of Jordan blocks down the 
diagonal, we have only to decide which Jordan blocks J can 
satisfy J2 = i". This is easily done. Certainly the diagonal 
entries of J will have to be 1 or — 1. Furthermore, matrix 
multiplication reveals that J2 ^ I if J has two or more rows. 
Hence the block J must be 1 x 1. Thus N is a diagonal 
matrix with all its diagonal entries equal to +1 or — 1. After 
reordering the rows and columns, we get a matrix of the form 

where r + s = n. Therefore A2 = 1 if and only if A is similar 
to a matrix with the form of N. 

Next we consider the relationship between Jordan nor
mal form and the minimum and characteristic polynomials. 
It will emerge that knowledge of Jordan form permits us to 
write down the minimum polynomial immediately. Since in 
principle we know how to find the Jordan form - by using the 
method of Example 9.4.7 - this leads to a systematic way of 
computing minimum polynomials, something that was lacking 
previously. 

Let A be a complex nxn matrix whose distinct eigenval
ues are c i , . . . , cr. For each Q there are corresponding Jordan 
blocks in the Jordan normal form N of A which have Q on 
their principal diagonals, say Jn,..., Jut\ let n^- be the num
ber of rows of Ja. Of course A and N have the same minimum 
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and characteristic polynomials since they are similar matrices. 
Now J^ is an n^ x n^ upper triangular matrix with ci on 
the principal diagonal, so its characteristic polynomial is just 
(ci — x)nii. The characteristic polynomial p of N is clearly the 
product of all of these polynomials: thus 

r h 

p — TT(CJ — x)mi where rrii = \ J n i j -
i = i j=i 

The minimum polynomial is a little harder to find. If / 
is any polynomial, it is readily seen that f(N) is the matrix 
with the blocks f(Jij) down the principal diagonal and zeros 
elsewhere. Thus f(N) = 0 if and only if all the / ( J ^ ) = 0. 
Hence the minimum polynomial of N is the least common 
multiple of the minimum polynomials of the blocks J^. But 
we saw in Example 9.4.6 that the minimum polynomial of the 
Jordan block J^ is (x — Ci)nij. It follows that the minimum 
polynomial of iV is 

n 

/ = n o * - c*)fci 

where ki is the largest of the n^ for j = 1 , . . . , U. 

These conclusions, which amount to a method of com
puting minimum polynomials from Jordan normal form, are 
summarized in the next result. 

Theo rem 9.4.8 
Let A be an nxn complex matrix and let c±,... ,cr be the dis
tinct eigenvalues of A. Then the characteristic and minimum 
polynomials of A are 

n n 

Y[(ci-x)mi and Y[(x-Ci)
ki 

i = l i = l 
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respectively, where m; is the sum of the numbers of columns 
in Jordan blocks with eigenvalue ci and ki is the number of 
columns in the largest such Jordan block. 

Example 9.4.9 
Find the minimum polynomial of the matrix 

A = 

The Jordan form of A is 

N 

/ 2 1 I 0 \ 
0 2 1 0 

— I 

V 0 0 1 2 / 

by Example 9.4.7. Here 2 is the only eigenvalue and there are 
two Jordan blocks, with 2 and 1 columns. The minimum poly
nomial of A is therefore (x — 2)2. Of course the characteristic 
polynomial is (2 — x)3, 

Application of Jordan form to differential equations 

In 8.3 we studied systems of first order linear differential 
equations for functions yi, y.2,..., yn of a variable x. Such a 
system takes the matrix form 

Y' = AY. 

Here Y is the column of functions y\,. . . , yn and A is an n x 
n matrix with constant coefficients. Since any such matrix 
A is similar to a triangular matrix (by 8.1.8), it is possible 
to change to a system of linear differential equations for a 
new set of functions which has a triangular coefficient matrix. 
This new system can then be solved by back substitution, 
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as in Example 8.3.3. However this method can be laborious 
for large n and Jordan form provides a simpler alternative 
method. 

Returning to the system Y' = AY, we know that there is 
a non-singular matrix S such that N = S~1AS is in Jordan 
normal form: say 

7V = 

0 

0 

0 

jj 
Here Ji is a Jordan block, say with di on the diagonal. Of 
course the di are the eigenvalues of A. Now put U = S~~1Y, 
so that the system Y' — AY becomes (SU)' = ASU, or 

U' = NU, 

since N = S~1AS. To solve this system of differential equa
tions it is plainly sufficient to solve the subsystems U[ = JiUi 
for i — 1 , . . . , k where Ui is the column of entries of U corre
sponding to the block Ji in N. 

This observation effectively reduces the problem to one 
in which the coefficient matrix is a Jordan block, let us say 

(d 1 0 ••• 0 0^ 
0 d 1 ••• 0 0 

A = 

\o 
0 
0 

0 
0 

d 
0 

1 
d) 

Now the equations in the corresponding system have a 
much simpler form than in the general triangular case: 

du\ + u2 

du2 + u3 

u. 
ur 

dun. \- ur 

dur 
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The functions Ui can be found by solving a series of first 
order linear equations, starting from the bottom of the list. 
Thus u'n = dun yields un = cn-\e

dx where cn_i is a constant. 
The second last equation becomes 

u'n_x - dun-i = cn-ie
dx, 

which is first order linear with integrating factor e~dx. Multi
plying the equation by this factor, we get (un-ie~dx)' = cn_i. 
Hence 

un-i = (cn_2 + cn-ix)edx 

where cn_2 is another constant. The next equation yields 

u'n_2 - dun-2 = (cn-2 + cn-ix)edx, 

which is also first order linear with integrating factor e~dx. It 
can be solved to give 

/ . c n - 2 , c n - l 2\ dx 

Un-2 = (cn-3 + ~jrX + ~^TX ) e ' 

where cn„2 is constant. Continuing in this manner, we find 
that the function «n_i is given by 

^•n—i — (Cn — i — 1 i r~| X "T ' " ' ~r r. X )C , 
1! i\ 

where the Cj are constants. The original functions j/j can then 
be calculated by using the equation Y — SU. 

Example 9.4.10 
Solve the linear system of differential equations below using 
Jordan normal form: 

y[ = 3yi + y2 

y2 = -yi + V2 
y'3 = 2y3 
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Here the coefficient matrix is 

A = 

The Jordan form of A was found in Example 9.4.7: we recall 
the results obtained there. There is a basis of R 3 consisting 
of Jordan strings: this is {X, W, Z}, where 

X = - 1 , W = 0 and Z 

Here AX = 2X, AW = 2W + X, AZ = 2Z. 
The matrix which describes the change of basis from 

{X, W, Z} to the standard basis is 

By 6.2.6 the matrix which represents the linear operator aris
ing from left multiplication by A, with respect to the basis 
{X,W,Z}, is 

S^AS = J 

Now put U = S XY, so that Y = SU and the system of 
equations becomes U' = S~1ASU = JU, that is, 

2u3 

u[ 
u'2 

U'o 

= 2ui 

= 
= 

+ u2 
2u2 
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We solve this system, beginning with the last equation, and 
obtain u3 = c2e

2x. Next u'2 = 2u2, so that u2 = c\e2x . Finally 
we solve 

u[ - 2ui = cie2x, 

a first order linear equation, and find the solution to be 

u\ — (CQ + c1x)e2x. 

Therefore 

ci I <?\ 

and since Y = SU, we obtain 

Co + C\ +CiX 

Y = | -CQ-CXX \ e2x, 

c2 

from which the values of the functions yi,y2,V3 can be read 
off. 

Exercises 9.4 

1. Find the minimum polynomials of the following matrices 
by inspection : 

w ( S S > w ( S i ) i ( c , ( ! S 
/ 3 0 0' 

(d) 0 2 1 
\ 0 0 2 

2. Let A be an n x n matrix and S an invertible n x n ma
trix over a field F. If / is any polynomial over F, show that 
f(S~1AS) = S~1f(A)S. Use this result to give another proof 
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of the fact that similar matrices have the same minimum poly
nomial (see 9.4.2). 

3. Use 9.4.4 to prove that if an n x n complex matrix has n 
distinct eigenvalues, then the matrix is diagonalizable. 

4. Show that the minimum polynomial of the companion ma
trix 

/ 0 0 - c 
A= 1 0 -b 

\ 0 1 -a 

is x3 + ax2 + bx + c . (See Exercise 8.1.6). [Hint: show that 
ul + vA + wA2 = 0 implies that u — v = w = 0]. 

5. Find the Jordan normal forms of the following matrices: 

« G 2);<b»(-! J)'(«=>(» ~\ j j -
6. Read off the minimum polynomials from the Jordan forms 
in Exercise 5. 

7. Find up to similarity all nxn complex matrices A satisfying 
A = A2. 

8. The same problem for matrices such that A2 = A3. 

9. (Uniqueness of Jordan normal form) Let A be a complex 
nxn matrix with Jordan blocks Jij, where J^ is a block 
associated with the eigenvalue Cj. Prove that the number of 
r x r Jordan blocks Jij for a given i equals d r_i — dr, where 
dk is the dimension of the intersection of the column space of 
(A — Ciln)

k and the null space of A — Ciln. Deduce that the 
blocks that appear in the Jordan normal form of A are unique 
up to order. 

10. Using Exercise 9.4.4 as a model, suggest an n x n matrix 
whose minimal polynomial is xn + an-\x

n~x + • • • + a,\x + a0. 
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11. Use Jordan normal form to solve the following system of 
differential equations: 

2/i = Vi + 2/2 + 2/3 

2/2 = 2/2 

2/3 = 2/2 + 2/3 



Chapter Ten 

LINEAR P R O G R A M M I N G 

One of the great successes of linear algebra has been the 
construction of algorithms to solve certain optimization prob
lems in which a linear function has to be maximized or min
imized subject to a set of linear constraints. Typically the 
function is a profit or cost.Such problems are called linear 
programming problems. 

The need to solve such problems was recognized during 
the Second World War, when supplies and labor were limited 
by wartime conditions. The pioneering work of George Danzig 
led to the creation of the Simplex Algorithm, which for over 
half a century has been the standard tool for solving linear 
programming problems. Our purpose here is to describe the 
linear algebra which underlies the simplex algorithm and then 
to show how it can be applied to solve specific problems. 

10.1 Introduction to Linear Programming 

We begin by giving some examples of linear programming 
problems. 

Example 10.1.1 (A productionproblem) 

A food company markets two products F\ and F2l which are 
made from two ingredients I\ and I2. To produce one unit 
of product Fj one requires â - units of ingredient Jj. The 
maximum amounts of I\ and I2 available are mi and m2, 
respectively. The company makes a profit of pi on each unit 
of product Fi sold. How many units of F\ and F2 should 
the company produce in order to maximize its profit without 
running out of ingredients? 

370 
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Suppose the company decides to produce Xj units of prod
uct Fj. Then the profit on marketing the products will be 
z — p\Xi + P2X2. On the other hand, the production process 
will use a n ^ i +012X2 units of ingredient I± and 021^2 + 022^2 
units of ingredient 72- Therefore X\ and x2 must satisfy the 
constraints 

auxi + CL12X2 < mi and a2 i£i + a22^2 < ™2-

Also x\ and x2 cannot be negative. 
We therefore have to solve the following linear program

ming problem: 

maximize : z = p\X\ + P2X2 

{ auxi + ai2x2 < mi 
0^21^1 + 022^2 < ?™2 

x\,x2 > 0 

Example 10.1.2 (A transportationproblem) 

A company has m factories F±,..., Fm and n warehouses 
Wi,..., Wn. Factory Fj can produce at most r̂  units of a 
certain product per week and warehouse Wj must be able to 
supply at least Sj units per week. The cost of shipping one 
unit from factory Fi to warehouse Wj is Cij. How many units 
should be shipped from each factory to each warehouse per 
week in order to minimize the total transportation cost and 
yet still satisfy the requirements on the factories and ware
houses? 

Let Xij be the number of units to be shipped from factory 
Fi to warehouse Wj per week. Then the total transportation 
cost for the week is 

m n 

i=l j=X 
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The condition on factory Fi is that 52 xij < rii while that on 

m 

warehouse Wj is 52 xij — s j • We are therefore faced with the 

following linear programming problem: 

minimize: z = Y_, 2_. 
i = l j=l 

C-ij Xij 

f n 

52 x^ < n, i = i,...,m 
J'=l 

subject t o : < ™ . 
/ J xij — sji 3 = *•J • • • > ^ 

i = l 

The general linear programming problem 

After these examples we are ready to describe the general 
form of a linear programming problem. 

Let xi, x2, • • •, xn be variables. There is given a linear 
function of the variables 

z = ciXi + c2x2 H h cnxn, 

called the objective function, which has to be maximized or 
minimized. The variables Xj are subject to a number of linear 
conditions, called the constraints, which take the form 

anxi + ai2x2 -\ h ainxn < or = or > bi, 

i = 1, 2 , . . . , m. In addition, certain of the variables may be 
constrained, i.e., they must take non-negative values. The gen
eral linear programming problem therefore takes the following 
form: 
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maximize or minimize: z = C\Xx + 1- cnxn 

{ a-nxi H V ainxn < or = or > bi, 
i = 1,2,... ,m, 
certain Xj > 0. 

The understanding here is that a^-, &*, Cj are all known quan
tities. The object is to find x\,..., xn which optimize the ob
jective function z, while satisfying the constraints. Evidently 
Examples 10.1.1 and 10.1.2 areproblems of this type. 

Feasible and optimal solutions 

It will be convenient to think of X = (£i,a;2, • • • > xn)T 

in the above problem as a point in Euclidean space R n . If 
X satisfies all the constraints (including the conditions Xj > 
0), then it is called a feasible solution of the problem. A 
feasible solution for which the objective function is maximum 
or minimum is said to be an optimal solution. 

For a general linear programming problem there are three 
possible outcomes. 

(i) There are no feasible solutions and thus the problem 
has nooptimal solutions. 

(ii) Feasible solutions exist, but the objective function has 
arbitrarily large or small values at feasible solutions. 
Again thereare no optimal solutions. 

(iii) The objective function has finite maximum or 
minimumvalues at feasible points. Then optimal 
solutions exist. 

In a linear programming problem the object is to find an 
optimal solution or show that none exists. 
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Standard and canonical form 
Since the general linear programming problem has a com

plex form, it is important to develop simpler types of prob
lem which are equivalent to it. Here two linear programming 
problems are said to be equivalent if they have the same sets 
of feasible solutions and the same optimal solutions. 

A linear programming problem is said to be in standard 
form if it is a maximization problem with all constraints in
equalities and all variables constrained. It therefore has the 
general form 

maximize: z — c\X\ + • • • + cnxn 

subject to: 

' anXi + a\2x2 + h ainxn < bi 
a2\Xi + a22x2 + h a2nxn < b2 

I amixi + am2x2 H h amnxn < bm 

Xj>0, j = l,2,...,n 

This problem can be written in matrix form: let A = (a,ij)mn, 
B = (bi b2 . . . bm)T, C = (ci c2 . . . cn)

T and X = 
(x\ x2 ... xn)

T. Then the problem takes the form: 

maximize : z = C X 

, . . , (AX<B 
subject to- S x > Q 

Here a matrix inequality U < V means that U and V are 
of the same size and Uy < v^j for all i,j: there is a similar 
definition of U > V. 
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A second important type of linear programming problem 
is a maximization problem with all constraints equalities and 
allvariables constrained. The general form is: 

maximize : z = C X 

subject to: 

Such a linear programming problem is said to be in canonical 
form. 

Changes to a linear programming problem 

Our aim is to show that any linear programming problem 
is equivalent to one in standard form and to one in canoni
cal form. To do this we need to consider what changes to a 
program will produce an equivalent program. There are four 
types of change that can be made. 

Replace a minimization by a maximization 
If the objective function in a linear program is z = CTX, 

the minimum value of z occurs for the same X as the maxi
mum value of (—C)TX. Thus we can replace "minimize" by 
"maximize" and CTX by the new objective function (—C)TX. 

Reverse an inequality 
The inequality anX\ + - • -+ainxn > bi is clearly equivalent 

to (-Oji)a;i -I h {-ain)xn < -bi. 

Replace an equality by two inequalities 
The constraint anXi + - • -+ainxn = bn is equivalent tothe 

two inequalities 

a-nxi H h ainxn < bi 
(-aa)xi H h (-ain)xn < -bi 

\ AX = B 
\ X > 0. 
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Elimination of an unconstrained variable 
Suppose that the variable Xj is unconstrained, i.e., it can 

take negative values. The trick here is to replace Xj by two 
new variables xt,xj which are constrained. Write Xj in the 
form x-j = xf — x~ where xf.xj > 0. This is possible since 
any real number can be written as the difference between two 
positive numbers. 

If we replace Xj by x~j~ — xj in each constraint and in 
the objective function, and we add new constraints x^ > 0, 

xj > 0, then the resulting equivalent program will have fewer 
unconstrained variables. 

By a sequence of operations of types I-IV a general linear 
programming problem may be transformed to an equivalence 
problem in standard form. Thus we have proved: 

Theorem 10.1.1 Every linear programming problem is 
equivalent to a program in standard form. 

Example 10.1.3 

Put the following programming problem in standard form. 

minimize: z = 3x% + 2x2
 — ^3 

{ Xi + X2 + 2x3 > 6 
%l + ^2 + 3^3 < 2 

£1,2:3 > 0 

First of all change the minimization to a maximization 
and replace the constraints involving = and > by constraints 
involving < : 
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maximize: z = —3xi — 2x2 + x3 

subject to: 

—xi — x2 — 2xz < —6 
xi + x2 + x3 < 4 

—x\ — x2 - x3 < —4 
x\ - x2 + 3x3 < 2 

x\,x3 > 0 

Next write x2, which is an unconstrained variable, in the form 
J/O Xn This yields a problem in standard form: 

maximize: z = —3xi — 2xt + 2x2 + x3 

subject to: 

-Xi 

xx 

Xi 

+ Xn -x2 

+ xt-
+ xt + 

Xn 

x
2 

- 2x3 

+ x3 

x3 

— xt + x2 + 3̂ 3 
Xi,X~2,X2 ,X3 > 0 

< - 6 
< 4 
< - 4 
< 2 

Slack variables 

If we wish to transform a linear programming problem 
to canonical form, a method for converting inequalities into 
equalities is needed. This can be achieved by the introduction 
of what are called slack variables. 

Consider a linear programming problem in standard form: 

maximize: z CTX 

subject to: 
AX < B 
X > 0 

where A is m x n and the variables are x±,x2,... ,xn. We 
introduce m new variables, xn+i,..., xn+m, the so-called slack 
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variables, and replace the ith constraint anXi+- • -+ainxn < bi 
by the new constraint 

for i = 1, 2 , . . . , m, together with X{+n > 0, i — 1 , . . . , m. 
The effect is totransform the problem to an equivalent linear 
programming problem incanonical form: 

maximize: z = C\X\ + • • • + cnxn 

subject to: 

{
alxxi + • • • + alnxn + xn+i 

a2\Xi + • • • + a2nXn + Xn+2 

Q"ml%l r " ' ' T arnn£n ~r Xn-\-m 

Xi > 0, i = 1,2,.. . , n + m. 

Combining this observation with 10.1.1, we obtain: 

Theorem 10.1.2 Every linear programmingproblem is 
equivalent to one in canonical form. 

Exercises 10.1 

1. A publishing house plans to issue three types of pamphlets 
Pi) ?2) ?3- Each pamphlet has to be printed and bound. 
The times in hours required to print and to bind one copy 
of pamphlet Pj are Ui and Vi respectively. The printing and 
binding machines can run for maximum times s and t hours 
per day respectively. The profit made on one pamphlet of 
type Pi is pi. Let xi,x2,X3 be thenumbers of pamphlets 
of the three types to be produced per day. Set up a linear 
program in xi,x2,x3 which maximizes the profitp per day 

= h 
= b2 
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and takes into account the times for which the machines are 
available. 
2. A nutritionist is planning a lunch menu with two food types 
A and B. One ounce of A provides ac units of carbohydrate, 
a/ units of fat and ap units of protein: for B the figures are 
bc, bf, bp, respectively. The costs of one unit of A and one 
unit of B are p and q respectively. The meal must provide at 
least mc units of carbohydrate, m/ units of fat and mp units 
of protein. Set up a linear program to determine how many 
ounces of A and B should be provided in the meal in order to 
minimize the cost e, while satisfying the dietary requirements. 

3. Write the following linear programming problem in stan
dard form: 

minimize: z = 2x\ — x2 — £3 4- £4 

{ xi + 2x2 + £3 - £4 > 5 
3^1 + £2 — x3 + £4 < 4 

xi,x2 > 0 

4. Write the linear programming problem in Exercise 10.4.3 
in canonical form. 

5. Consider the following linear programming problem in 
£1, X2, • • •, xn with n constraints: 

maximize: z = CTX 

subject to: 

where A is an n x n matrix with rank n. 
(a) Show that there is a feasible solution if and only if 
A~XB>Q. 
(b) Show that if a feasible solution exists, it must be 
optimal. 
(c) If an optimal solution exists, what is the maximum 
value of zl 

AX = B 
X>0 
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10.2 The Geometry of Linear Programming 

Valuable insight into the nature of the linear program
ming problem is gained by adopting a geometrical point of 
view and regarding the problem as one about n-dimensional 
space. 

We will identify an n-column vector X with a point 

(x1,x2,...,xn) 

in n-dimensional space and denote the latter by R n . The set 
of points X such that 

a\Xi + • • • + anxn — b, 

where the real numbers <2j,6 are not all zero, is called a hy
perplane in R n . Thus a hyperplane in R 2 is a line and a 
hyperplane in R 3 is a plane. 

Let A = (ai a2 . . . an) ; thus the equation of the hyper
plane is AX = b: let us call it H. Then H divides R n into 
two halfspaces 

H1 = {X eKn \AX < b} 

and 
H2 = {XeRn\AX> b}. 

Clearly 
R n = ff!U H2 and H = H1nH2. 

In a linear programming program in x\,..., xn, each con
straint requires the point X to lie in a half space or a hyper
plane. Thus the set of feasible solutions corresponds to the 
points lying in all of the half spaces or hyperplanes correspond
ing to the constraints. In this way we obtain a geometrical 
picture of the set of feasible solutions of the problem. 
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Example 10.2.1 

Consider the simple linear programming problem in standard 
form: 

laximi 

to: < 

ze: z = x + y 

(2x+ y 
x + 2y 

x,y>0 

< 3 
< 3 

The set S of feasible solutions is the region of the plane which 
is bounded by the lines 2x + y = 3, x + 2y = 3, x = 0, y = 0 

The objective function z = x + y corresponds to a plane 
in 3-dimensional space. The problem is to find a point of S 
at which the height of the plane above the xj/-plane is largest. 
Geometrically, it is clear that this point must be one of the 
"corner points" (0,0), (f ,0), (1,1), (0, §). The largest value of 
z — x + y occurs at (1,1). Therefore x = 1 = y is an optimal 
solution of the problem. 

The next step is to investigate the geometrical properties 
of the set of feasible solutions. This involves the concept of 
convexity. 
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Convex subsets 
Let Xi and X2 be two distinct points in R n . The line 

segment X\X2 joining X\ and X2 is defined to be the set of 
points 

{tXx + (1 - t)X2 I 0 < t < 1}. 

For example, if n < 3, the point tX\ + (1 — t)X2, where 
0 < t < 1, is a typical point lying between Xi and X2 on the 
line which joins them. To see this one has to notice that 

X2 - (tX1 + (1 - t)X2) = t{X2 - Xx) 

and 
{tXx + (1 - t)X2) - X, = (1 - i)(X2 - Xi) 

are parallel vectors. 

(Keep in mind that we are using X to denote both the point 
(xi,X2,xs) and the column vector {x\ X2 X3)7'.) 

A non-empty subset S of R n is called convex if, whenever 
X\ and X2 are points in S, every point on the line segment 
X\X2 is also a point of S. 
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It is easy to visualize the situation in R2 : for example, 
consider the shaded regions shown. 

The interior of the left hand figure is clearly convex, but the 
interior of the right hand one is not. 

The following property of convex sets is almost obvious. 

Lemma 10.2.1 
The intersection of a collection of convex subsets of R n is 
either empty or convex. 

Proof 
Let {Si | i G / } be a set of convex subsets of R n and assume 
that S — f] Si is not empty. If S has only one element, then 

iei 
it is obviously convex. So assume X\ and X2 are distinct 
points of S and let 0 < t < 1. Now Xi and X2 belong to Si 
for all i, as must tX\ + (1 — t)X2 since Si is convex. Hence 
tX\ + (1 — t)X2 G S and S is convex. 

Our interest in convex sets is motivated by the following 
fundamental result. 

Theorem 10.2.2 
The set of all feasible solutions of a linear programming prob
lem is either empty or convex. 



384 Chapter Ten: Linear Programming 

Proof 
By 10.1.1 we may assume that the linear programming prob
lem is in standard form. Hence the set of feasible solutions 
is the intersection of a collection of half spaces. Because of 
10.2.1 it is enough to prove that every half space H is convex. 

For example, consider H = {X e R n | AX < b} where A 
is an n-row vector. Suppose that Xi,X2 <G H and 0 < t < 1. 
Then 

A(tXi + (l-t)X2) = t(AXx) + (l-t)AX2 < tb+(l-t)b = b. 

Hence tX\ + (1 — t)X2 G H and H is convex. 

The convex hull 

Let Xi, Xii • • •, Xm be vectors in R n . Then a vector of 
the form 

m 

^CiXi, 

where 

m 

Ci > 0 and VJ Q = 1, 
i = i 

is called a convex combination of Xi,X2,..., Xm. For exam
ple, when TO = 2, every convex combination of Xi, X2 has the 
form tXi + {\ — t)X2, where 0 < t < 1. Thus the line segment 
X±X2 consists of all the convex combinations of X\ and X2. 

The set of all convex combinations of elements of a non
empty subset S of R n is called the convex hull of S: 

C{S). 

For example, the convex hull of {Xi, X2}, where X\ ^ X2, is 
just the line segment XiX2-

The relation between the convex hull and convexity is 
made clear by the next result. 
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Theorem 10.2.3 
Let S be a non-empty subset o /R n . Then C(S) is the smallest 
convex subset o / R n which contains S. 

Proof 
In the first place it is clear that 5 C C(S). We show next 
that C(S) is a convex set. Let X,Y G C(S); then we can 

m m 

write X = Yl ci^i a n d Y = Yl diXi, where Xi,..., Xm G S, 
i = l i = l 

m m 
0 < Cj, di < 1, and Y Ci = 1 = Y2 d%. Then for any t 

i=i i=i 
satisfying 0 < t < 1, we have 

m m 

iX + (1 - t)Y= Y^teiXi + 5 ] ( 1 - t)diXi 
i=l i = l 
m 

= ^2(ta + {l-t)di)Xi. 
i = l 

Now 

m / m \ / m 

^ ( t c i + ( l - t ) d i ) = t l ^ c i ] + ( l - t ) ] T d j 
i = l \ i = l / \ i = l 

= t + (l-t) 

= 1. 

Consequently £X + (1 - t )F G C(S) and (7(5) is convex. 
Next suppose T is any convex subset of R n containing 

S. We must show that C(S) C T; for then C(S) will be the 
smallest convex subset containing S. 

m 
Let X G C(S) and write X = £ CjXj, where X; G 5, 

i = i 
771 

Cj > 0 and ]T Q = 1. We will show that X G T by induction 
i = l 
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on m > 1, the claim being clearly true if m = 1. Now we have 

m — 1 

X = (1 - Cm) J2 iTZ—)Xi + CmXm-
X Cm. 

m—1 

Next, since ^ c» = 1 — cm , we have 
i-X 

m—X 

E l C-i \ *• ^ m 1 

M _ r ' _ 1 _ r ~~ 
i = l - ^ 

Also 0 < , ci < 1 since Q < ci + • • • + cm_i = 1 — cm for 
1 < i < m — 1. Hence 

m—X 

-1- *^T77. 
1 = 1 

by the induction hypothesis on m. Finally, 

X = (1 - c m )F + cmXm e T, 

since T is convex. 

Extreme points 

Let S be a convex subset of R n . A point of S is called an 
extreme point if it is not an interior point of any line segment 
joining two points of S. For example, the extreme points of 
the set of points in the polygon below are just the six vertices 
shown. 
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The extreme points of a convex set can be characterized 
in terms of convex combinations. 

Theorem 10.2.4 
Let S be a convex subset o / R n and let X e S. Then X is an 
extreme point of S if and only if it is not a convex combination 
of other points of S. 

Proof 
Suppose X is not an extreme point of S; then 

X = tY + (l-t)Z, 

where 0 < t < 1 and Y, Z G S. Then X is certainly a convex 
combination of points of S, namely Y and Z. 

Conversely, suppose that X is a convex combination of 
other points of S. We will show that X is not an extreme 

m 
point of S. By assumption it is possible to write X = ^ qXi 

2 = 1 

m 

where Xi G S, Xi ^ X, 0 < c; < 1 and ]T Q = 1. Notice 
m 

that Cj ^ 1; for otherwise ^ Q = 0 and Cj = 0 for all 
i=l, i^j 

i T̂  j , so that X = Xj. 
Just as in the proof of Theorem 10.2.3, we can write 

m—1 

X = (1 - Cm) J2 (TZ^)Xi + Cm*™-
i=l X C m 

Also 
m — 1 

1 — C 1 — r ~~ 

and 0 < yf*— < 1, since a < c\ + • • • + Cm-i = 1 — cm if 
i < m. It follows that 

ro— 1 
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and X = (1 — cm)Y + cmXm is an interior point of the line 
segment joining Y and Xm. Hence X is not an extreme point 
of S, which completes the proof. 

It is now time to explain the connection between optimal 
solutions of a linear programming problem and the extreme 
points of the set of feasible solutions. 

Theorem 10.2.5 (The Extreme Point Theorem) 
Let S be the set of all feasible solutions of a linear program
ming problem. 

(i) If S is non-empty and bounded, then there is an 
optimal solution. 
(ii) If an optimal solution exists, then it occurs at an 
extreme point of S. 

Here a subset S of R n is said to be bounded if there exists 
a positive number d such that — d < Xi < d, for i — 1, 2 , . . . , n 
and all (xi,X2,... ,xn) in S. 

Proof of Theorem 10.2.5 
Suppose that we have a maximization problem. For simplicity 
we will assume throughout that S is bounded and n = 2: 
thus S can be visualized as a region of the plane bounded by 
straight lines corresponding to the constraints. 

Let z = f(x, y) — ex + dy be the objective function: we 
can assume c and d are not both 0. Since S is bounded and / 
is continuous in 5*, a standard theorem from calculus can be 
applied to show that / has an absolute maximum in S. This 
establishes (i). 

Next assume that there is an optimal solution. By an
other standard theorem, if P(x, y) is a point of P which is an 
absolute maximum of / , then either P is a critical point of 
S or else it lies on the boundary of S. But / has no critical 
points: for fx = c, fy = d, so fx and fy cannot both vanish. 
Thus P lies on the boundary of S and so on a line. By the 
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same argument P cannot lie in the interior of the line. There
fore P is a point of intersection of two lines and hence it is an 
extreme point of S. 

We can now summarize the possible situations for a linear 
programming problem with set of feasible solutions S. 

(a) S is empty: the problem has no solutions; 
(b) S is non-empty and bounded: in this case the problem 
has an optimal solution and it occurs at an extreme point 
of S. 
(c) S is unbounded: here optimal solutions need not exist, 
but, if they do, they occur at extreme points of S. 

We will see in 10.3 that if S is non-empty and bounded, 
then it has a finite number of extreme points. By computing 
the value of the objective function at each extreme point one 
can find an optimal solution of the problem. We conclude 
with two examples. 

Example 10.2.2 

maximize: z = 2x + 3y 

( x+y > 1 
subject to: < x — y > — 1 

(x,y>0 

Here the set of feasible solutions S corresponds to the region 
of the xy-plane bounded by the lines x + y = 1, x — y = —1, 
x — 0, y = 0. Clearly it is unbounded and z can be arbitrary 
large at points in S. Thus no optimal solutions exist. 
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Example 10.2.3 

maximize: z = 1 — 12x — 3y 

( x + y > 1 
x — y > — 1 

x,y>0 

In this problem the set of feasible solutions is the same set S 
as in the previous example. However the maximum value of 
z in S occurs at x = 0, y = 1: this is an optimal solution of 
the problem. 

Exercises 10.2 

In Exercises 10.2.1-10.2.3 sketch the convex subset of all 
feasible solutions of a linear programming problem with the 
given constraints. 

( x- y < - 2 
1. < 2x+ y < 3 

(x,y>0 

{ x - 2y < 3 
x+ y < 6 
x,y>0 

{ x + y + z < 5 
x - y - z < 0 
x,y,z > 0 

4. Find all the extreme points in the programs of Exercises 
10.2.1 and 10.2.2 . 

5. Suppose the objective function in Exercise 10.2.2 is 
z = 2x + 3y. Find the optimal solution when z is to be 
maximized. 

6. Let S be any subspace of R n . Prove that S is convex. 
Then give an example of a convex subset of R 2 containing 
(0,0) which is not a subspace. 
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7. Let S be a convex subset of R n and let T be a linear 
operator on R n . Define T(S) to be {T(X) \ X e S}. Prove 
that T(S) is convex. 

8. Suppose that X\ and Xi are distinct feasible solutions 
of a linear programming problem in standard form. If the 
objective function has the same values at X\ and X2, prove 
that this is the value of the objective function at any point on 
the line segment joining X\ and X<i-

10.3 Basic Solutions and Extreme Points 

We have seen in 10.2 that the extreme points for a linear 
programming problem are the key to obtaining an optimal 
solution. In this section we describe a method for finding the 
extreme points which is the basis of the Simplex Algorithm. 

Consider a linear programming problem in canonical form 
- remember that any problem can be put in this form: 

maximize: z = C X 

subject to: 

Suppose that the problem has n variables xi,..., xn and 
rn constraints, which means that A is an m x n matrix, while 
X,C ERn a n d B 6 R m 

The linear system AX = B must be consistent if there is 
to be any chance of a feasible solution, so we assume this to be 
the case; thus the matrix A and the augmented matrix (A | B) 
have the same rank r. Hence the linear system AX = B is 
equivalent to a system whose augmented matrix has rank r, 
with its final m — r rows zero. These rows correspond to 
constraints of the form 0 = 0, which are negligible. Therefore 

AX = B 
X>0 
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there is no loss in supposing that A is an m x n matrix with 
rank m; of course now m < n. 

Since A has rank m, this matrix has m linearly indepen
dent columns, say Ah, Ah,... ,Ajm, (jt < j 2 < • • • < j m ) -
Define 

A = (Aj1 Aj2 ... Ajm), 

which is an m x m matrix of rank m, so that (A')~1 exists. 
The linear system 

A (XJ1 Xj2 ... Xjm) = B 

therefore has a unique solution for (XJX Xj2 ... Xjm)T, 
namely {A')-lB. 

This solution is in R m , not R n . To remedy this, define 
X = (xi x2 ... xn) by putting xi = 0 if j ^ juj2,.. .,jm. 
Then 

AX = A{xx x2 ... xn)
T = xjlAjl + xhAh + ••• + xjmAjm 

= B. 

Therefore X is a solution of AX = B with the property that 
all entries of X, except perhaps those in positions j i , . . . , j m , 
are zero. Such a solution is called a basic solution of the 
linear programming problem; if in addition all the 
non-negative, it is a basic feasible solution. The called 
the basic variables. 

The next step is to relate the basic feasible solutions to 
the extreme points of a linear programming problem in canon
ical form. 

T h e o r e m 10.3.1 
A basic feasible solution of a linear programming problem in 
canonical form is an extreme point of the set of feasible solu
tions. 
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Proof 
Suppose that the linear programming problem is 

maximize: z = C X 

subject to: 

and it has variables x\,..., xn. Here A may be assumed to be 
an m x n matrix with rank m: as has been pointed out, this 
is no restriction. Then A has m linearly independent columns 
and, by relabeling the variables if necessary, we can assume 
these are the last m columns, say A[,..., A'm. Let 

X = (0 . . . 0 x[ ... x'jr 

be the corresponding basic solution. Assume that X is feasi
ble, i.e., x'j > 0 for j — 1,2,... ,m. Our task is to prove that 
X is an extreme point of S, the set of all feasible solutions. 

Suppose X is not an extreme point of S; then 

X = tU+(l- t)V, 

where 0 < t < 1, U, V 6 S and X ^ U, V. Write 

U = (Ui ... Un-m u[ ... u'm)T 

and 
V = (Vi . . . Vn-m v[ ... v'm)T. 

Equating the j th entries of X and tU + (1 — t)V, we obtain 

tuj + (1 — t)vj = 0 , 1 < j < n — m 
tu'j + (1 - t)v'j =x'j, l<j<m 

Since 0 < t < 1 and Uj,Vj > 0, the first equation shows that 
Uj = 0 = Vj for j = 1 , . . . , n — m. 

AX = B 
X>Q 
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Since U G S, we have AU = B, so that 

u'1A'l + -.. + u'mA!m = B 

and 
x1A1 + • • • + xmArn — B, 

since AX = B. Therefore, on subtracting, we find that 

K - x'M'i + • • • + K - 4 ) 4 = o. 

However A^...,Nm are linearly independent, which means 
that u[ = x[, . . . , u'm = x'm, i.e., U = X, which is a contra
diction. 

The converse of this result is true. 

Theorem 10.3.2 
An extreme point of the set of feasible solutions of a linear 
programming problem in canonical form is a basic feasible so
lution. 

Proof 
Let the linear programming problem be 

maximize: z = CTX 

, . . . (AX = B 
subject to: < x >Q 

where A is an m x n matrix of rank m. Let X be an extreme 
point of the set of feasible solutions. 

Suppose that X has s non-zero entries and label the vari
ables so that the last s entries of X are non-zero, say 

X = (0 . . . O i i . . . x's)
T. 

Let A'j be the column of A which corresponds to the entry x'j. 
We will prove that A[,..., A' are linearly independent. 
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Assume that diA[ -\ h dsA's = 0 where not all the dj 
are 0. Let e be any positive number. Then 

In a similar fashion we have 

a 

Now define 

£/ = (0 . . . 0 xi + edi . . . x's + ed s)
T 

1/ = (0 . . . 0 x[ - edx ... x's- eds)T 

Then AU = B = AV. 
Next choose e so that 

x', 
0 < e < -rj- j = l , 2 , . . . , s , 

Mil 

if dj ^ 0. This choice of e ensures that x' ± edj > 0 for 
j = 1, 2 , . . . , s. Hence U > 0 and V > 0, so that U and V are 
feasible solutions. However, X = \U + \V, which means that 
X = U or V since X is an extreme point. But both of these 
are impossible because e > 0. It follows that A[,..., A'a are 
linearly independent and X is a basic feasible solution. 

We are now able to show that there are only finitely many 
extreme points in the set of feasible solutions. 
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Theorem 10.3.3 
In a linear programming problem there are finitely many ex
treme points in the set of feasible solutions. 

Proof 
We assume that the linear programming problem is in canon
ical form: 

maximize: z = CTX 

subject to: 

We can further assume here that A is an m x n matrix 
with rank m. Let X be an extreme point of S, the set of feasi
ble solutions. Then X is a basic feasible solution by 10.3.2. In 
fact, if the non-zero entries of X are Xjl,..., Xjs, the proof of 
the theorem shows that the corresponding columns of A, that 
is, Aj1,..., Aj3, are linearly independent and thus s < m. In 
addition we have 

xji An + ^ xjsAjs = B. 

By 2.2.1 this equation has a unique solution for Xjx,... ,Xjs. 
Therefore X is uniquely determined by j±,... ,js. Now there 
are at most (n) choices for ji,. • • ,js, so the total number of 
extreme points is at most ^2™=0 (") • 

The last theorem shows that in order to find an optimal 
solution of a linear programming problem in canonical form, 
one can determine the finite set of basic feasible solutions and 
test the value of the objective function at each one. The sim
plex algorithm provides a practical method for doing this and 
is discussed in the next section. 

In conclusion, we present an example of small order which 
illustrates how the basic feasible solutions can be determined. 

( AX = B 
1 A>0 
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Example 10.3.1 
Consider the linear programming problem 

maximize: z = 3x + 2y 

(2x-y< 6 
subject to: < 2x + y < 10 

{ x,y>0 

First transform the problem to canonical form by intro
ducing slack variables u and v: 

maximize: z = 3x + 2y 

{ 2x — y + u = 6 
2x + y + v = 10 

x,y,u,v > 0 

The matrix form of the constraints is 

2 
2 

- 1 1 0 \ 
1 0 l) 

y 
u 

- (6 

" I io 

The coefficient matrix has rank 2 and each pair of columns 
is linearly independent. Clearly there are (*) = 6 basic solu
tions, not all of them feasible. In each such solution two of the 
non-basic variables are zero. The basic solutions are listed in 
the table below: 

x y u v type z 

0 
0 
3 
5 
4 
0 

0 
10 
0 
0 
2 

- 6 

6 
16 
0 

- 4 
0 
0 

10 
0 
4 
0 
0 

16 

feasible 
feasible 
feasible 

infeasible 
feasible 

infeasible 

0 
20 
9 

15 
16 

-12 



398 Chapter Ten: Linear Programming 

There are four basic feasible solutions, i.e., extreme points. 
The one that produces the largest value of,zis:r = 0,y = 10, 
giving z = 20. Thus x = 0, y = 10 is an optimal solution. 

Exercises 10.3 

In each of the following linear programming problems, 
transform the problem to canonical form and determine all the 
basic solutions. Classify these as infeasible or basic feasible, 
and then find the optimal solutions. 

1. 
maximize: z = 3x — y 

( x + 3y < 6 
subject to: < x — y < 2 

{ x,y>0 
2. 

maximize: z = 2x + 3y 
( 2x-y < 6 

subject to: < 2x + y < 10 
[x,y>0 

3. 
maximize: z = X\ + x-i + X3 

{ 2xx - x2+ 4x3 < 12 
4xi + 2x2 + 5x3 < 4 

xi,x2,x3 > 0 
4. A linear programming problem in standard form has m 
constraints and n variables. Prove that the number of extreme 
points is at most YlT=o (™^n) • 
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10.4 The Simplex Algorithm 

We are now in a position to describe the simplex algo
rithm, which is a practical method for solving linear program
ming problems, based on the theory developed in the preced
ing sections. The method starts with a basic feasible solution 
and, by changing one basic variable at a time, seeks to find 
an optimal solution of the problem. It should be kept in mind 
that there are finitely many basic feasible solutions. 

Consider a linear programming problem in standard form 
with variables x\,X2,... ,xn and m constraints: 

maximize: z = CTX 

subject to: <̂  x >0 

Thus A is an mxn matrix. For the present we will assume 
that B > 0, which is likely to be true in many applications: 
just what to do if this condition does not hold will be discussed 
later. 

Convert the program to one in canonical form by intro
ducing slack variables xn+i,..., xn+rn: 

maximize: z = CTX 

subject to: 

where 
A' = (A\ l m ) , 

an m x (n + m) matrix. Also I = ( i i X2 • • • xn+rn)
T and 

C = (ci C2 . . . cn 0 . . . 0)T . Notice that A' has rank m since 
columns n + l,n + 2,...,n + m are linearly independent. 

J A'X = B 
1 *>0 
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Recall from 10.3 that the extreme points of the set of 
feasible solutions are exactly the basic feasible solutions. Also 
keep in mind that in a basic solution the non-basic variables 
all have the value 0. 

The initial tableau 

For the linear programming problem in canonical form 
above we have the solution 

X\ — X2 — ' — Xn U, £ n_|_i — 0\, . • . , Xn-^-m — 0 m . 

Since B > 0, this is a basic feasible solution in which the basic 
variables are the slack variables xn+i,..., xn+m. The value of 
z at this point is 0 since z = c\Xi + 1- cnxn. 

The data are displayed in an array called the initial 
tableau. 

xn+x 
Xn+2 

%n-\-m 

Xi 

an 
« 2 1 

1 m l 

- C l 

X2 

a\2 

« 2 2 

O'ml 

- c 2 

2-n 

O'ln 

a-2n 

Q"mn 

C n 

xn+l 
1 
0 

0 
0 

•En+m 

0 
0 

1 
0 

z 
0 
0 

0 
1 

h 
b2 

bn 

0 

Here the rows in the array correspond to the basic vari
ables, which appear on the left, while the columns correspond 
to all the variables, including z. The bottom row, which lies 
outside the main array and is called the objective row, displays 
the coefficients in the equation — cixi — • • • — cnxn + z — 0. 
The z-column is often omitted since it never changes during 
the algorithmic process. The right most column displays the 
current values of the basic variables, with the value of z in the 
lower right corner. 



10.4: The Simplex Algorithm 401 

Entering and departing variables 
Consider the initial tableau above. Suppose that all the 

entries in the objective row are non-negative. Then Cj < 0 
n 

and, since z = ^2 CjXj = 0, if we change the value of one of 

the non-basic variables x\,... ,xn by making it positive, the 
value of z will decrease or remain the same. Therefore the 
value of z cannot be increased from 0 and thus the solution is 
optimal. 

On the other hand, suppose that the objective row con
tains a negative entry —Cj, so Cj > 0. Since z = C\X\ + • • • + 

d 1 < j < n, it may be possible to increase z by in
creasing Xj; however this must be done in a manner that does 
not violate any of the constraints. 

Suppose that the most negative entry in the objective 
row is — Cj. The question of interest is: by how much can we 
increase the value of Xjl Since all other non-basic variables 
equal 0, the zth constraint requires that 

so that xn+j = bi — ciijXj > 0. Hence 

for i = 1,2,... , m. Now if a -̂ < 0, this imposes no restriction 
on Xj since bi > 0. Thus if a -̂ < 0 for all i, then Xj can be 
increased without limit, so there are no optimal solutions. 

If aij > 0 for some i, on the other hand, we must ensure 
that 

bi 
0<Xj < — . 

The number 
h_ 
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is called a 6-ratio for Xj. Hence the value of Xj cannot be 
increased by more than the smallest non-negative #-ratio of 
XJ; for otherwise one of the constraints will be violated. 

Suppose that the smallest non-negative #-ratio for Xj oc
curs in the ith row: this is called the pivotal row. One then 
applies row operations to the tableau, with the aim of making 
the ith entry of column j equal to 1 and all other entries of the 
column equal to 0. (This is called pivoting about (i,j) entry). 
The choice of i and j guarantees that no negative entries will 
appear in the right most column. Replace Xi (the departing 
variable) by Xj (the entering variable). Now Xj becomes a 
basic variable with value —*-, replacing X{. With this value of 

Xj, the value of z will increase by biCj/aij, at least if 6; > 0. 
After substituting Xj for Xi in the list of basic variables, 

we obtain the second tableau. This is treated in the same way 
as the first tableau, and if it is not optimal, one proceeds to a 
third tableau. If at some point in the procedure all the entries 
of the objective row become non-negative, an optimal solution 
has been reached and the algorithm stops. 

Summary of the simplex algorithm 

Assume that a linear programming problem is given in 
standard form 

maximize: z = C X 

, . . . (AX<B 
subject to: < x > Q 

where B > 0. Then the following procedure is to be applied. 

1. Convert the program to canonical form by introducing 
slack variables. With the slack variables as basic 
variables, construct the initial tableau. 

2. If no negative entries appear in the objective row, the 
solution is optimal. Stop. 

3. Choose the column with the most negative entry in 
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the objective row. The variable for this column, say Xj, 
is the entering variable. 

4. If all the entries in column j are negative, then there 
are no optimal solutions. Stop. 

5. Find the row with the smallest non-negative 9-value 
of Xj. If this corresponds to Xi, then X, is the departing 
variable. 

6. Pivot about the (i, j ) entry, i.e., apply row operations 
to the tableau to obtain 1 as the (i, j) entry, with all other 
entries in column j equal to 0. 

7. Replace Xi by Xj in the tableau obtained in step 6. 
This is the new tableau. Return to Step 2. 

Example 10.4.1 

maximize: z = 8xi + 9x2 + 5x 

subject to: 

x\ + x2 + 2^3 < 2 
2JCI + 3x2 + 4x3 < 3 

3xi + 3x2 + £3 < 4 
x i , x 2 , x 3 > 0 

Convert the problem to canonical form by introducing 
slack variables X4,X5,X6: 

maximize: z = 8x1 + 9x2 + 5x3 

subject to: 

Xi + x2 + 2x3 + x4 = 2 
2xi + 3x2 + 4x3 + x5 = 3 
3xx + 3x2 + xs + xe = 4 

Xj > 0, 

The initial basic feasible solution is X\ = X2 = x3 = 0, 
x4 = 2, X5 = 3, XQ = 4, with basic variables x4,X5,x6. The 
initial tableau is: 
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£4 

* * £5 

XQ 

Xi 

1 
2 
3 
-8 

*x2 

1 
3 
3 
-9 

X3 

2 
4 
1 
-5 

£4 

1 
0 
0 
0 

£5 

0 
1 
0 
0 

x6 

0 
0 
1 
0 

2 
3 
4 
0 

Here the z-column has been suppressed. The initial basic 
feasible solution £4 = 2, £5 = 3, XQ = 4 is not optimal since 
there are negative entries in the objective row; the most neg
ative entry occurs in column 2, so £2 is the entering variable, 
(indicated in the tableau by *). 

The #-values for £2 are 2 ,1 , | , corresponding to £4, £5, x&. 
The smallest (non-negative) 9-value is 1, so £5 is the departing 
variable (indicated in the tableau by **). Now pivot about the 
(2, 2) entry to obtain the second tableau. 

£4 

X2 

* * £ 6 

*X\ 

1/3 
2/3 
1 
-2 

X2 

0 
1 
0 
0 

X3 

2/3 
4/3 
-3 
7 

£4 

1 
0 
0 
0 

£5 

-1/3 

1/3 
-1 
3 

x6 

0 
0 
1 
0 

1 
1 
1 
9 

The objective row still has a negative entry, so this is not 
optimal: the entering variable is x\. The smallest 9-value for 
£1 is 1, occurring for £6, so this is the departing variable. Now 
pivot about the (3,1) entry to get the third tableau. 

£4 

X2 

£l 

£l 

0 
0 
1 
0 

x2 

0 
1 
0 
0 

X3 

5/3 
10/3 

-3 
1 

£4 

1 
0 
0 
0 

£5 

0 
1 

-1 
1 

£6 

-1/3 

-2/3 

1 
2 

2/3 
1/3 
1 
11 
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Since there are no negative entries in the objective row, 
this tableau is optimal. The optimal solution is therefore x\ = 
1, x2 = §, x3 = 0, giving z = 11. 

The next example shows how the simplex method can 
detect a case where there are no optimal solutions. 

Example 10.4.2 

maximize: z = 5xi — 4x2 

subject to: 
£1 — £2 < 2 

2xi +x2<2 
xi ,x 2 > 0 

Introduce slack variables X3 and X4 and pass to canonical 
form: 

maximize: z = 5xi — 4x2 

xi - x2 + x3 = 2 
subject to: < —2xi + X2 + X4 = 2 

Xi,X2,X3,X4 > 0 

The initial basic feasible solution is xi = 0 = X2, X3 = 2, 
X4 = 2, with basic variables X3,X4. The initial tableau is 
therefore 

* * X3 

X4 

*Xi 

1 
-2 
-5 

%2 

-1 
1 
4 

x3 

1 
0 
0 

X4 

0 
1 
0 

2 
2 
0 

The entering variable is x\ and the departing variable X3. 
The second tableau is: 

Xi 

X4 

Xi 

1 
0 
0 

*x2 
-1 
-1 
-1 

X3 

1 
2 
5 

X4 

0 
1 
0 

2 
6 
10 
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The next entering variable is x2; however all the entries 
in the X2-column are negative, which means that x2 can be in
creased without limit. Therefore this problem has no optimal 
solution. 

Geometrically, what happened here is that the set of fea
sible solutions is the infinite region of the plane lying between 
the lines x1 - x2 = 2, -2x± + x2 = 2, x± = 0, x2 = 0. In this 
region z = bxi — 4x2 can take arbitrarily large values. 

Degeneracy 

Up to this point we have not taken into account the pos
sibility that the simplex algorithm may fail to terminate: in 
fact this could happen. 

To see how it might occur, suppose that at some stage 
in the simplex algorithm the entering variable has two equal 
smallest non-negative 9-values. Then after pivoting one of the 
basic variables will have the value zero, a phenomenon called 
degeneracy. If in the next tableau the basic variable whose 
value was 0 is the departing variable, the objective function 
will not increase in value. This raises the possibility that at 
some point we might return to this tableau, in which event 
the simplex algorithm will run forever. 

In practice the simplex algorithm very seldom fails to ter
minate. In any case there is a simple adjustment to the algo
rithm which avoids the possibility of non-termination. These 
adjustments involve different choices of entering and departing 
variables, as indicated below. 

(i) To select the entering variable, choose the variable 
with a negative entry in the objective row which has the 
smallest subscript. 
(ii) To select the departing variable choose the basic 
variable with smallest non-negative 8-value and smallest 
subscript. 

This procedure is known as Bland's Rule. It can be shown 
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that the simplex method, when combined with Bland's Rule, 
will always terminate, even if degeneracy occurs. 

The Two Phase Method 
The reader may have noticed that our version of the sim

plex algorithm does not work if some constraints have nega
tive numbers on the right side. We consider briefly how this 
situation can be remedied. 

Consider a linear program in standard form: 

rp 

maximize: z = C X 

subject to: <̂  x >0 

where A is m x n. As usual we introduce slack variables 
x n + i , . . . , xn+m to obtain a problem in canonical form: 

rp 

maximize: z = C X 

subject to: 

where A' = [A | lm]. If some bi is negative, we can multiply 
that constraint by —1 to get an entry — bi > 0 on the right 
hand side. The problem now is that we do not have a basic 
feasible solution — for the obvious solution xn+i = bi is not 
feasible. What is called for at this point is a general method 
for finding an initial basic feasible solution for any linear pro
gramming problem in canonical form. 

Suppose we have a linear programming problem in canon
ical form: 

rp 

maximize: z = C X 

subject to: I x >0 ® 

where A is m x n. The problem is to find an initial basic 
feasible solution. Once this is found, the simplex algorithm 

A'X = B 
X > 0 
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can be run. There is no loss in assuming that B > 0 since we 
can, if necessary, multiply a constraint by —1. 

The method is to introduce new variables yi,V2,- • • ,ym 

called artificial variables. These are used to form the auxiliary 
program: 

maximize: z -J>* 

subject to: <̂  X Y >0 ^ ' 

If (II) has an optimal solution X, Y with z = 0, then 
all the yi must equal 0 and thus AX = B. Hence X is a 
basic feasible solution of (I). On the other hand, if the optimal 
solution of (II) yields a negative value of 2, there are no feasible 
solutions of (II) with Y = 0, i.e., there are no feasible solutions 
of (I). Thus if we can solve the problem (II), we will either find 
a basic feasible solution of (I) or else conclude that (I) has no 
feasible solutions. 

But can we in fact solve the problem (II)? The answer 
is affirmative: for X = 0, y\ = b\, . . . , ym = bm is clearly 
a basic feasible solution of (II), so it can be used to form the 
initial tableau for problem (II). After solving (II), either we 
will have a basic feasible solution of (I) or we will know that 
no feasible solutions exist. In the former event the simplex 
algorithm can then be run for problem (I). This is known as 
the Two Phase Method. 

We summarize the two phases for solving the linear pro
gramming problem (I). 

Phase One 
Apply the simplex method to the auxiliary program (II). If 
there is no optimal solution or if the optimal solution yields 
a negative value z, then there are no feasible solutions of (I). 
Stop. Otherwise a basic feasible solution to problem I is found. 
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Phase Two 
Starting with the basic feasible solution obtained in Phase 
One, use the simplex algorithm to find an optimal solution of 
(I) or show that none exists. 

In conclusion, the Two Phase Method can be applied to 
any linear programming problem in canonical form. 

Example 10.4.3 

maximize: z — 2x\ — 

( xi + 2x2 

subject to: < 3xi + 6x2 

1 Xi>0 

2x2 — 3x3 + 2x4 

+ x3 + x4 

+ 2x3 

= 18 
= 24 

This problem is given in canonical form. The Two Phase 
Method will be applied, the first phase being to find a basic 
feasible solution. To this end we set up the auxiliary problem: 

maximize: z = -y\ — 2/2 — J/3 

( Xi + 2x2 + 2X3 + 

u . , , 1 xi + 2x2 + x 3 + x4 + 
a b j G C t t 0 : 3x, + 6x2 + 2x3 + 

I Xi,yj > 0 

The initial tableau for this problem is: 

Vi 
V2 
V3 

= 12 
= 18 
= 24 

yi 
V2 
2/3 

Xi 

1 
1 
3 
0 

X2 
2 
2 
6 
0 

X3 X4 

2 0 
1 1 
2 0 
0 0 

Vi 
1 
0 
0 
- 1 

2/2 
0 
1 
0 

- 1 

2/3 
0 
0 
1 

- 1 

12 
18 
24 

- 5 4 

Here the initial basic feasible solution is y\ = 12, yi = 18, yz = 
24, with z = —54. But notice that the entries in the objective 
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row corresponding to the basic variables are not 0; this is 
because z is expressed as —y\ — y2 — y3. We need to replace 
2/1,2/2,2/3 by expressions in x±, x2, x3, x4 and thereby eliminate 
the offending entries. Note that —y\ = x\ + 2^2 + 2x3 — 12, 
-2/2 = x1 + 2x2 + x3 + x4 - 18 and - y 3 = 3xi + 6x2 + 2x3 - 24. 
Adding these, we obtain 

z = -2/i - 2/2 - 2/3 = 5xi + 10£2 + 5x3 + X4 - 54. 

The next step is to use this expression to form the new 
objective row: 

2/1 
2/2 

* *2/3 

Xi 

1 
1 
3 

- 5 

*x2 

2 
2 
6 

-10 

Z 3 

2 
1 
2 

- 5 

X4 

0 
1 
0 

- 1 

2/i 
1 
0 
0 
0 

2/2 
0 
1 
0 
0 

2/3 
0 
0 
1 
0 

12 
18 
24 

-54 

This is the first tableau for the auxiliary problem. The enter
ing variable is x2 and the departing variable y3. The second 
tableau is: 

* * 2 / i 

2/2 

%2 

X i 

0 
0 

1/2 
0 

X2 

0 
0 
1 
0 

*x3 

4/3 
1/3 
1/3 

- 5 / 3 

x4 

0 
1 
0 
- 1 

2/1 
1 
0 
0 
0 

2/2 
0 
1 
0 
0 

2/3 
- 1 / 3 
- 1 / 3 

1/6 
5/3 

4 
10 
4 

-14 

The entering variable is x3 and the departing variable is 
y\. The third tableau is: 

X3 

* * 2/2 

Xi 

xi x2 x3 *x4 j/i y2 2/3 
0 0 1 0 3/4 0 - 1 / 4 
0 0 0 1 - 1 / 4 0 1/4 

1/2 1 0 0 - 1 / 4 0 1/4 
0 0 0 - 1 5/4 0 5/4 

3 
9 
3 

- 9 
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The entering variable is £4 and the departing variable is 
y2. The fourth tableau is 

x3 

£ 4 

X2 

X\ £ 2 

0 0 
0 0 

1/2 1 
0 0 

X3 

1 
0 
0 
0 

£ 4 

0 
1 
0 
0 

Vi 
3/4 
- 1 / 4 
- 1 / 4 

1 

V2 
0 
0 
0 
0 

2/3 
- 1 / 4 
- 1 / 4 
1/4 
1 

3 
9 
3 
0 

This tableau is optimal with z = 0. Hence we have a 
basic solution of the original problem, x\ = 0, £2 = 3, £3 = 3, 
£4 = 9. 

Now Phase Two begins. To obtain an initial tableau, in 
the final tableau of Phase 1 delete the columns corresponding 
to the artificial variables yi,y2,V3- The new basic variables 
are £3, £4, £2. Replace the objective row by the entries of the 
original objective function, but retain 0 in the bottom right 
hand corner: 

X3 

£ 4 

X2 

XX £ 2 £ 3 X4 

0 0 1 0 
0 0 0 1 

1/2 1 0 0 
- 2 2 3 - 2 

3 
9 
3 
0 

Next eliminate the non-zero entries in the objective row 
corresponding to the basic variables £3,£4,£2. This is done 
by adding to the objective row (—2) x row 3, (—3) x row 1 
and 2 x row 2. This yields the tableau: 

X3 

£ 4 

* * £2 

* £ l £2 £ 3 £ 4 

0 0 1 0 
0 0 0 1 

1/2 1 0 0 
- 3 0 0 0 

3 
9 
3 
3 
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The entering variable is x\ and the departing variable is x<i-
The next tableau is: 

%3 

X4 

Xi 

Xi 

0 
0 
1 
0 

x2 

0 
0 
2 
6 

£ 3 

1 
0 
0 
0 

£ 4 

0 
1 
0 
0 

3 
9 
6 

21 

This tableau is optimal with solution x± = 6, x2 = 0, x3 = 3, 
£4 = 9 and 2 = 21. 

In conclusion we remark that there is one possible situa
tion that the Two Phase Method cannot handle. It could be 
that in the final tableau of Phase One at least one artificial 
variable is basic. There is a modification of the Two Phase 
Method to deal with this possibility. The reader is referred to 
a text on linear programming such as [12] or [13] for details. 

Needless to say, we have merely skimmed the surface of 
linear programming. Recently an improvement on the simplex 
method known as Kamarkar's algorithm has been discovered. 
Again the interested reader may consult one of the above ref
erences for details. 

Exercises 10.4 

In the following problems use the simplex method to solve 
the linear programming problem or show that no optimal so
lution exists. 

1. 
maximize: z = 3x — y 

(x+ 3y < 6 
subject to: < x — y < 2 

[x,y> 0 
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6. 

maximize: z = 

f 
subject to: < 

minimize: z — 

\ 
subject to: < 

minimize: z = 

f 
subject to: < 

I 
maximize: z -

( 
subject to: < 

I 
maximize: z = 

subject to: 
( 2xi - x2 

1 2xi + 3x2 

| 3xi + x2 

I Xj > 0 

= 2x + 3y 

2x- y 
2x+ y 
x,y > 0 

- 2 x + 3y 

x- y 
x- 2y 

x,y > 0 

3xi — 2x2 

Xi + X 2 

< 6 
< 10 

> - 2 
< 4 

+ 2x3 
2xx + x2 + x3 

Xj > 

-- xi + 2x2 

3xx + x2 

2xx + 4x2 

X-

0 

+ Z 3 -

+ 2x 

< 7 
< 4 

X4 

3 -XA 

- 4x3 

i> 0 

= xi + x2 + 3x3 -

+ xz 

+ 2x3 

+ XA 

+ 4x4 

XA 

< 8 
< 6 
< 18 

< 2 
< 4 
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7. Use the Two Phase Method to solve the following linear 
programming problem, noting that only one artificial variable 
is needed. 

maximize: z = x\ + 2^2 — Xs 

subject to: 

{ 2a:i + x2+ x3 < 4 
xi + x-i + 2x3 — 3 

Xj> 0 



Appendix 

MATHEMATICAL INDUCTION 

Mathematical induction is one of the most powerful meth
ods of proof in mathematics and it is used in several places 
in this book. Since some readers may be unfamiliar with in
duction, and others may feel in need of a review, we present 
a brief account of it here. 

The method of proof by induction rests on the following 
principle. 

Principle of mathematical induction 

Let m be an integer and let P(n) be a statement or propo
sition defined for each integer n > m. Assume furthermore 
that the following hold: 

(i) P(m) is true; 
(ii) if P(n — 1) is true, then P(n) is true. 

Then the conclusion is that P{n) is true for all integers n > m. 

While this may sound harmless enough, it is in fact an 
axiom for the integers: it cannot be deduced from the usual 
arithmetic properties of the integers and its validity must be 
assumed. 

We shall give some examples to illustrate the use of this 
principle. 

Example A. l 
If n is any positive integer, prove by mathematical induction 
that the sum of the first n positive integers equals \n{n + 1). 

Let P(n) denote the statement: 

1 + 2 +• • • + n = - n ( n + l ) . 

415 



416 Appendix 

We have to show that P(n) is true for all integers n > 1. Now 
clearly P( l ) is true: it simply asserts that 1 = \{2). Suppose 
that P(n — 1) is true; we must show that P(n) is also true. 
In order to prove this, we begin with 1 + 2 + • • • + (n — 1) = 
\{n — l)n, which is known to be true, and then add n to both 
sides. This yields 

1 + 2 + • • • + (n - 1) + n = - ( n - l)ra + n = ~n{n + 1). 

Hence P(n) is true. Therefore by the Principle of Mathemat
ical Induction P(n) is true for all n > 1. 

Example A.2 
Let n be any positive integer. Prove by mathematical induc
tion that the integer 8 n + 1 + 9 2 n _ 1 is always divisible by 73. 

Let P{n) be the statement: 73 divides 8 n + 1 + 9 2 n _ 1 . Then 
we easily verify that -P(l) is true. Assume that P(n — 1) is 
true; thus 8n + 92n~3 is divisible by 73. We need to show 
that P(n) is true. The method in this example is to express 
gn+l + g2n-l i n t e r m s o f gn + Q2n-3. t h u g 

gn+1 + Q2n-1 = g(gn + g2n-3) + g2n-l _ g^n-3^ 

= 8(8n + 92n~3) + 92n~3(92 - 8) 

= 8 ( 8 n + 9 2 n - 3 ) + 73(9 2 n ' 3) . 

Since P(n — 1) is true, the last integer is divisible by 73. There
fore P(n) is true. 

Occasionally, the following alternate form of mathemati
cal induction is useful. 

Principle of mathematical induction - alternate form 

Let m be an integer and let P{n) be a statement or propo
sition defined for each integer n > m. Assume furthermore 
that the following hold: 
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(i) P(m) is true; 
(ii) if P(k) is true for all k < n , then P(n) is true. 

Then the conclusion is that P(n) is true for all integers n > m. 

Example A 3 
Prove that every integer n > 1 is a product of prime numbers. 

Let P{n) be the statement that n is a product of primes; 
here n > 2. Then P(2) is certainly true since 2 is a prime. 
Assume that P(k) is true for all k < n. We have to show-
that P(n) is true. Now if n is a prime, P(n) is certainly true. 
Assume that n is not a prime; then n = n\n<i where n\ and 
n,2 are positive integers less than n. Hence P{n\) and P(ri2) 
are true, so both n\ and n^ are products of primes. Therefore 
n = n\Ti2 is a product of primes and Pin) is true. It now 
follows from the second form of the Principle of Mathematical 
Induction that P(n) is true for all n > 2. 

Exercises 

1. If n is a positive integer, prove by induction that the sum 
of the squares of the first n positive integers equals 
| n ( n + l)(2n + l) . 

2. If n is a positive integer, prove by induction that the sum 
of the cubes of the first n positive integers equals ( | n (n + l))2 . 

3. Let uo,ui,U2, • • • be a sequence of integers which satisfies 
the recurrence relation un+i — 2un + 3 and also UQ = 1. Prove 
by induction that un = 2 n + 2 — 3. 

4. Prove by induction that the number of symmetric n x n 
matrices over the field of two elements equals 2n(n + 1) /2 . 

5. Use the second form of mathematical induction to prove 
that each integer > 1 is uniquely expressible as a product of 
primes. 



ANSWERS TO THE EXERCISES 

Exercises 1.1 

1- (_3 ""4 J " g ) - 2 . (a)(- l)^-1;(b)4z + j - 4 . 

3. Six: 0i2,i, 06,2, 04)3, 03i4, 02,6, Oi,^. 4. n should be prime. 
5. Diagonal matrices. 

Exercises 1.2 

22 
- 5 
14 

14 
- 6 

1 

/ 9 

A3 =1-4 
\ 1 2 

3. A is m x n and B is n x m. 4. A6 = I2. 9. True. 
12. Numbers of books in library, lent out, lost are 7945, 1790, 
265 respectively. 

14. The matrix equals 
1 5/2 11/2 \ / 0 1/2 - 3 / 2 ' 

5/2 5 - 7 / 2 + - 1 / 2 0 5/2 
11/2 - 7 / 2 5 / \ 3/2 - 5 / 2 0, 

18. (a) The inverse is | ( „ " I; (b) not invertible. 

21 . 

/ 0 1 0" 
0 0 1 

\ 0 0 0 

Exercises 1.3 

2. A non-zero matrix need not have an inverse. 
o <yn2 o n ( n + l ) / 2 

418 
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1 0 0 
4. A + B= \ 1 0 0 | , A2 = 

1 0 0 

0 1 0' 
AB= | 0 0 1 

1 1 1 
7. The integer 2 does not have an inverse. 

Exercises 2.1 

1. xi = c/3 + d/3 - 1/3, x2 = 4c/3 - 2d/3 + 11/3, x3 = c, 
£4 = d. 
2. xi = 2c/3 - 5/3, x2 = 2c/3 + 7/3, x3 = c/3 + 2/3, x4 = c. 
3. Inconsistent. 
4. (a) xi = — c , X2 = c , X3 = 0, X4 = 0; (b) x\ = X2 = X3 = 
0. 
5. For t = - 4 or 3. 6. t ^ - 1 / 3 . 7. n(n + l ) / 2 . 

Exercises 2.2 

1. W [ 0 ^ 4/5);(b) ( J g "J 
2 - 2 \ ,. 

l V 5 J ; ( b ) ( ( 

1 2 - 3 0 
(c) ( 0 1 -11 /5 1/5 

0 0 0 1 

/ l 0 7/5 \ / l 0 7/5 0' 
2. (a) /3; (b) 0 1 -11 /5 ; (c) 0 1 -11 /5 0 

\ 0 0 0 / \ 0 0 0 1 

5. n(n + l ) / 2 . 6. n2. 7. J2 and H j 

8. The number of pivots equals n. 
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Exercises 2.3 

M.)( i ! ) (J_3°)(J?)( i?"J 
(b) 

(These answers are not unique). 

2. 

5. n(n + l ) /2 and n' 

2 
6. (a) i ^ 3^ . ( b ) _ i / 3 _ 6 - 3 ; (c) not 

invert ible. 
7. t = — 3 or 2. 8. Entries on the principal diagonal must be 
non-zero. 

Exercises 3.1 

1. O d d ; -aiia23a38a45a52066a.74087-

2. Even; ai8a25«33«4205ia67076a89a94-
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3. 19. 4. n(n\) - 1. 5. M13 = 11 = A13, M23 = 7 = - A 2 3 , 
M33 = - 6 = A33. 6. 84. 7. (a) -40 , (b) -30 , (c) -36 . 

/ 0 0 1 0 0 \ 
1 0 0 0 0 

9. 0 0 0 1 0 
0 0 0 0 1 

Vo 1 0 0 0 / 

Exercises 3.2 

1. (a) 133; (b) 132; (c) -26 . 10. u2 = 3, u3 = 14, w4 = 63. 

Exercises 3.3 
-6 -14 

2- (a) ^ ( 2 4 ) ; ( b ) - & ( - 1 5 - 1 1 _ 8 j ; 

/ I 
0 
0 

\ 0 

- 1 
1 
0 
0 

0 
- 1 

1 
0 

0 
0 

- 1 
1 

(c) 

4. (a) xi = 1, x2 = 2, £3 = 3; (b) x\ = 1, x2 = 0, x3 = - 2 . 
7. 2x-3y-z = l. 

Exercises 4.1 

2. (a) No; (b) no; (c) yes; (d) yes. 

Exercises 4.2 

1. (a) No; (b) no; (c) yes. 2. (a) No; (b) yes; (c) yes. 3. 
Yes. 4. No. 

Exercises 4.3 

1. (a) Linearly independent; (b) linearly independent; 
(c) linearly dependent. 2. True. 3. True. 4. False. 
9. False. 10. No. 



422 Answers 

Exercises 5.1 

1. (a) Ex = l / 1 3 ( 9 X i + 3 X 2 - 8 X 3 ) , E2 = l /13( -3Xi - X 2 + 
7X3), E3 = l /13(-17Xi - 10X2 + I8X3); 
(b) Ex = -2YX + AY2 - Y3, E2 = AYX - 7Y2 + 2y3, E3 = 
y i - 3 F 2 + y3. 
2. (a) ( -2 - 1 1)T; (b) ( 1 - 1 1 0)T and ( -2 1 0 1)T. 
3. mn. 6.S = V. 8. - 4 ( - l 1 0)T - 2 ( - l 0 l ) r . 

Exercises 5.2 

1. (a) Basis of the row space is (1 0 63/2), (0 1 18), basis of 
the column space is (10)T , (0 1)T; (b) basis of the row space is 
(1 0 5/19 25/19), (0 1 4/19 20/19), basis of the column space 
i s ( 1 0 4)T ,(0 1 1)T. 
2. (a) 1 + 5z 3 /3 , x + x3/3, x2 + x3; 

( b ) ( 1/76/7J' ( l / 7 -1/7 
5. vn — r. 6. They are < rank of A and < rank of B. 

Exercises 5.3 

1. The subspaces generated by (1 0)T , (1 1)T, (0 l ) r . 
2. dim(t/) = n(n + l ) /2 and dim(W) = n(n - l ) /2 . 5. False. 
6. Let U =< fi I i = 1 , . . . , 7 > and W =< fi | i = 4,..., 14 > 
where fi = xl~l. 
7. dim(U + W)=3, dim(UnW) = l. 
8. Basis for U+W 3, basis for UC\W is l — x+x2. 
11. dim(E/i) + -.- + dim({7fc). 12. No. 

/ - l / 3 \ / c / 3 + d / 3 \ 

1 4 y _ [ 11/3 v [ 4c/3-d/3 
0 ~ 0 ' c 

V 0 y V d / 
15. n - 1 . 
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Exercises 6.1 

1. (a) None of these; (b) bijective; (c) surjective; (d) injective. 
4. F - 1 (x ) = {(x + 5)/2}1 /3 . 

Exercises 6.2 

1. (a) No; (b) yes; (c) no, unless n — 1. 

i - i - i - i \ Z1 ° 
4. I 2 1 - 1 0 | . 5 . 

0 1 - 1 1 

6. 

7. 

8. 

cos 20 sin 20 
sin 20 — cos 20 

1/2 1/4 - 3 / 4 
0 1/2 - 1 / 2 
0 0 1 

0 
2 

-3 
0 

0 
6 

- 5 / 

6 - 7 - 2 

x2 - 3 - 1 
12. The statement is true. 

9. They have different determinants. 

Exercises 6.3 

1. (a) Basis of kernel is ( -1 1 0 0)T , ( -1 0 1 0 ) r , ( - 1 0 0 1)T , 
basis of image is 1; (b) basis of kernel is 1, basis of image is 
1, x; (c) basis of kernel is (—3 2)T , basis of image is (1 2)T . 
3. R6 , R 6 and M(2,3, R) are all isomorphic: C 6 and P6(C) 
are isomorphic. 6. True. 10. They are not equivalent for 
infinitely generated vector spaces. 

3. 1/14(1 2 3)T and 

Exercises 7.1 

1. 92.84°. 2. ±l/v/42(4 1 - 5)T 

1/VTi. 4. 9/^/26. 5. Vector product = (-14 - 4 8)'", area 
= 2^69. 8. det(X Y Z) = 0. 9. Dimension = n - 1 or n , 
according as X ^ 0 or X — 0. 
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11. t(3-V2 + 3(V2 + l)i ( \ / 2 - 3 ) ( l + i ) 4) where i = V = l 
and t is arbitrary. 13. (X*Y/\\Y\\2)Y. 

Exercises 7.2 

1. (a) No; (b) yes; (c) no. 4. (a) No; (6) no; (c) yes. 
8. 23-120:r+110:r 2 . 9. 1/105(17 - 190 331)T. 

Exercises 7.3 

2. l/>/2(l 0 - 1 ) T , 1/3(2 1 2)T , l / v l 8 ( l - 4 1)T. 
3. 1/^2(0 1 l ) r , 1/3(1 - 2 2)T , l/>/l8(4 1 - 1)T . 
4. 1/^7(1 -6x), 75/154(2 + 30x-42a;2). 5. (1/2 4 1/2)T. 

/ 0 1/3 
6. Q = l/y/2 - 2 / 3 lA/18 I and 

\ l/v/2 2/3 

V 2 0 1/^2 
i ? = | 0 3 - 1 / 3 

0 0 5/VT8 

8. The product of ( " " v * V « + « ) / 3 \ 

(f(1-^3).10.Q = 0'a,dfl = iJ'. 

Exercises 7.4 
1. (a) xi = 1, z2 = - 3 / 5 , x3 = - 3 / 5 ; (b) m = 1631/665, 
x2 = -88/95, x3 = -66/95. 2. r = -70£/51 + 3610/51. 
3. y = - 4 + 7x/2 - x 2 /2 . 4. xi = 13/35, x2 = -17/70, 
x3 = 1/70. 5. ( -8e - x + 26e~2) + (6e_1 - 18e"2)x. 
6. 12(TT2 - 10)/TT3 + 60(-TT 2 + 12)x/ir4 + 60(TT2 - 12)X2/TT5. 

Exercises 8.1 

1. (a) Eigenvalues —2, 6; eigenvectors t(—5 3)T, t(\ 1)T; 
(b) eigenvalues 1, 2, 3, eigenvectors t ( - l 1 2)T , t(-2 1 4)T , 
£(—1 1 4)T ; (c) eigenvalues 1, 2, 3, 4, eigenvectors 
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( 2 - 4 - 1 1)T, ( 0 - 2 0 1)T, (0 0 1 1)T, (0 0 0 1)T. 5. False. 

7. (a) ( - J ) ; ( b ) ( l "j "jJ. 
8. They should be both zero or both non-zero. 13. Non-zero 
constants. 

Exercises 8.2 

1. (a) yn = 4- 3 n + 1 - 3 • 4n+1, zn = - 3 n + 1 + 4n+1; 
(b) yn = l/9(10-7" + 5(-2)"+1), zn = 1/9(5- 7n -2(-2)-+1). 

2. an = l/3(a0 + 2b0 + 2.4n(a0 - &o)), bn = l /3(a0 + 260 + 
4n(—ao + bo)) '• if ^0 > bo> species A nourishes, and species B 
dies out: if ao < bo, the reverse holds. 
3. rn = 2/V5{((l + >/5)/2)" - ((1 - y/E)/2)n}. 
4. u n = (2n+1 + ( - l ) n ) / 3 . 
5. yn = 1 + 2n, zn = 2n. 6. yn = ( ( - l ) n + 1 + l ) /2 , 
zn = (38.4"-1 + 3 ( - l ) n - 5)/30. 
7. Employed 85.7%, unemployed 14.3%. 8. Equal numbers 
at each site. 9. Conservatives 24%, liberals 45%, socialists 
31%. 

Exercises 8.3 

1. (a) yi = - c i e~ 5 x + 2c2e
x, y2 = cxe~5x + c2e

x; 
(b) yi = aex - c2e

5x, y2 = cxe
x + c2e

5x; 
(c) 2/i = cxe

x + c3e
3x, 2/2 = -2c2e

x, y3 = c2e
x + c3e

3x. 
2. 2/i = e2x(cos x + sin x), y2 = 2e2x cos x. 
3. 2/1 = {3c2x — ci)e2x, 2/2 = (—3c2£ + ci + c2)e

2x : particular 
solution 2/i = 6xe2x, y2 — (2 — 6x)e2s. 
4. 2/i = cie^ +C2e~x + c3e

3a:: -f-C4e~3x, y2 = —c\ex + 5c2e~x + 
c3e3x — 5c4e_3x. 
5. n/c. 7. (a) 2/1 = — u\ + u2, y2 = u\ — 3^2 where ui = 
cicosh y/2x + disinh \[2x and 1*2 = c2cosh 2x + d2sinh 2x; 
(b) 2/1 = — 4tii — u2, 2/2 = wi + u2 where u\ = cicosh x+ 
disinh x and u2 = C2COsh 2x + d2smh 2x. 
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8- Vi = ( - 1 - \/2)wi + ( -1 + V2)w2, 2/2 = wi + w2 where 
wi = ci cos ux + di sin ux and w2 = C2 cos vx + d2 sin us 
with tt = a\J2 + 1/2 and w = a \ / 2 - \ / 2 . 

Exercises 9.1 

-1 /^ /3 2 /^6 0' / 1 1 \ / -1-/V0 */Vv u 

1. (a) 1/^2 _ } ! ; (b) l/v/3 1/^6 - 1 / ^ 2 
V J \ W3 W6 W2, 

(c)W2Q j ) , » = >/=!. 

8.r-u=^. 
Exercises 9.2 

1. (a) Positive definite; (b) indefinite; (c) indefinite. 
2. Indefinite. 6. (a) Ellipse; (b) parabola. 
7. (a) Ellipsoid; (b) hyperboloid (of one sheet). 
8. (a) Local minimum at (—4, 2); (b) local maximum at 
( -1 - y/2, 1 - y/2), local minimum at (1 + ^ 2 , - 1 + ^2), 
saddle points at (^/2 - 1 , ^ / 2 + 1) and (1 - y/2, - 1 - y/2); 
(c) local minimum at (—2/5, —1/5,3/10). 

9. The smallest and largest values are 5 2 17 and 5 ^ 17 re
spectively. 

11. The spheres have radii 0.768 and 0.434 respectively. 

Exercises 9.3 

1. (a) No; (b) yes; (c) yes. 2. (a) ( _ ° J ) ! 0>) ( ° I ? ) • 

3. dim(V') = n2. 5. 2zi yi + 4x2 y'2. 7. (a) Yes; (b) no. 

0 1 0 \ / 1 / 2 0 1/2' 
8. I - 1 0 0 ; S= 0 1 1 / 2 

0 0 0 / I 0 0 1 
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Exercises 9.4 

1. (a) x-2; (b) {x - 2)(x - 3); (c) x2 - 1; (d) {x - 2)2{x - 3). 

6. (a) (a - 4)(x + 1); (b) (x - 2)2; (c) (x - l)3. ' 
L 0 

7. A must be similar to where r + s 
Lr 

0 os 

8. A must be similar to a block matrix with a block Ir, t 
1 and a block 0S where r + 2t + s 

blocks 

10. 
0 0 

n. 

n. 

fO 0 
1 0 
0 1 

Vo 0 

0 
0 
0 -o2 

1 - a n _ i / 

11. 
y 3 : 

Vi = {\c2x
2 + (ci + c2):r + (c0 + cx))e

x, y2 = c2e
x, 

(c2x + ci)ex. 

Exercises 10.1 

1. 
maximize: p = pix± + p2x2 + P3X3 

subject to 
U1X1 + U2X2 + U3X3 < S 

V\X\ + V2X2 + V3X3 < t 

Xj > 0 

minimize: e = px + qy 

acx + bcy > mc 

dfx + bfy > rrif 
apx + bpy > mp 

x,y > 0 

subject to : 
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3. 

maximize: z = —2xi + x2 + x£ — x% — X4 

{ —x\ — 2x2 — X3 + x^ + x\ < — 5 
3xi + x2 — x£ + X3 + X4 < 4 

xi,x2,x^,x^ > 0 

4. 

maximize: z = —2x\ + x2 + x^ — x% — X4 

{ —xi — 2x2 — X3 + X3 + X4 + Xs = — 5 
3xi + x2 — £3" + X3 + X4 + Xe = 4 

Xi,X2,X~3,Xs,X4,X5,Xe > 0 

5. (c) z = CTA~lB. 

Exercises 10.2 

4. (a) In Exercise 10.2.1 the extreme points are (0, 2), 
(1 /3 , 7/3), (0, 3). 
(b) In Exercise 10.2.2 the extreme points are (0, 0), (3, 0), 
(5, 1),(6, 0), 

5 . The optimal solution is x = 0, y = 6. 

Exerc ises 10.3 

1. The optimal solution is x = 3, y = 1. 

3 . The optimal solution is x = 0, y = 10. 

4 . The optimal solution is X\ = 0 , x2 = 2, £3 = 0. 

Exerc ises 10.4 

1. x = 3, y = 1. 

2. x = 0, y = 10. 
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3 . No optimal solution. 

4 . x\ = 0, x2 = 4, xz = 0. 

5 xi = 0, 22 = 4 / 3 , x3 = 1/3, X4 = 0. 

6. X! = 0, x2 = 2 /3 , x3 = 26/3 , 2 4 = 0. 

7. x i = 0 , 22 = 3, x3 = 0. 
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Index 

Addition, 
of linear operators, 186 
of matrices, 6 

Adjoint of a matrix, 80 
Algebra, 188 

of linear operators, 186 
of matrices, 188 

Angle between two vectors, 196 
Artificial variable, 408 
Associative law, 12, 25, 155 
Augmented matrix, 3 
Auxiliary program, 408 

Back substitution, 32 
Basic solution, 392 
Basis, 114 

change of, 169 
ordered, 120 

Bijective function, 153 
Bilinear form, 332 

matrix representation of, 333 
skew-symmetric, 335 
symmetric, 335 

Bland's rule, 406 
Block, Jordan, 355 

Canonical form, linear program in 
375 

Cauchy-Schwartz inequality, 196, 203, 
213 

Cayley-Hamilton Theorem, 351 
Change of basis, 169 

and linear transformations, 173 
Characteristic equation, 260 
Characteristic polynomial, 260 
Codomain, 152 
Coefficient matrix, 3 
Cofactor, 65 
Column, 

echelon form, 49 

expansion, 66 
operation, 49 
space, 126 
vector, 4 

Commutative law, 12, 25 
Companion matrix, 274 
Complex, 

inner product space, 217 
scalar product, 206 
transpose, 205 

Composite of functions, 154 
Congruent matrices, 334 

eigenvalues of, 339 
Conic, 315 
Consistent linear system, 34 
Constraint, 372 
Convex 

combination, 384 
hull, 384 
set, 382 

Coordinate vector, 120 
Coset, 143 
Cost matrix, 15 
Cramer's rule, 84 
Critical point, 324 
Crossover diagram, 60 

Degeneracy, 406 
Departing variable, 402 
Determinant, 57 

definition of, 64 
of a product, 79 
properties of, 70 

Diagonal matrix, 5 
Diagonalizable matrix, 267, 307 
Differential equations, 108 

system of, 288, 363 
Dimension, 117 

formulas, 134, 147, 180 
Direct sum of subspaces, 137 
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Distance of a point from a plane, 
198 

Distributive law, 13, 25 
Domain of a function, 152 

Echelon form, 36 
Eigenspace, 257 
Eigenvalue, 257, 266 

of hermitian matrix, 304 
Eigenvector, 257, 266 
Elementary, 

column operation, 49 
matrix, 47 
row operation, 41 

Entering variable, 402 
Equations, linear, 3, 30 

homogeneous, 38 
Equivalent linear systems, 34 
Euclidean space, 88 
Even permutation, 60 
Expansion, 

column, 66 
row, 66 

Extreme point, 386 
Theorem, 388 

Factorization, QR —, 234 
Feasible solution, 373 
Fibonacci sequence, 281 
Field, 

axioms of a, 25 
of two elements, 26 

Finitely generated, 101 
Function, 152 
Fundamental subspaces, 224 
Fundamental Theorem of Algebra, 

260 

Gaussian elimination, 35 
Gauss-Jordan elimination, 37 
General solution, 34 
Geometry of linear programming, 380 
Gram-Schmidt process, 230 
Group, 28 

general linear, 28 

Hermitian matrix, 303 
Hessian, 327 
Homogeneous, 

linear differential equation, 108 
linear system, 38 

Identity, 
element, 25 
function, 153 
linear operator, 161 
matrix, 4 

Image, 
of a function, 152 
of a linear transformation, 178 

Inconsistent linear system, 34 
Indefinite quadratic form, 320 
Infinitely generated, 102 
Injective function, 153 
Inner product, 209 

complex, 217 
real, 209 
standard, 210 

Inner product space, 209 
Intersection of subspaces, 133 

finding basis of, 139 
Inverse, 

of a function, 155 
of a matrix, 17, 53 

Inversion of natural order, 60 
Invertible, 

function, 155 
matrix, 17 

Isomorphic, 
algebras, 190 
vector spaces, 182 

Isomorphism, 181, 190 
Isomorphism theorems, 184, 192 

Jordan, 
block, 355 
normal form, 356, 368 
string, 356 

Kernel, 178 
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Law of Inertia, 340 
Laws of, 

exponents, 22 
matrix algebra, 12 

Least Squares, Method of, 241 
and Q.R-factorization, 248 
geometric interpretation of, 250 
in inner product spaces, 253 

Least squares solution, 243 
Length of a vector, 193 
Line segment, 88 
Linear, 

combination, 99 
dependence, 104 
differential equation, 108 
independence, 104 
mapping, 158 
operator, 159 
recurrence, 276 

Linear programming problems, 370 
Linear system, 

of differential equations, 288 
of equations, 3, 30 
of recurrences, 278 

Linear transformation, 158 
matrix representation of, 162, 

166 
Linearly, 

dependent, 104 
independent, 104 

Lower triangular, 5 

Markov process, 284 
regular, 285 

Mathematical induction, 415 
Matrices, 

addition of, 6 
congruent, 334 
equality of, 2 
multiplication of, 7 
scalar multiplication of, 60 
similar, 175 

Matrix, 
definition of, 1 
diagonal, 5 

diagonalizable, 267, 307 
elementary, 47 
hermitian, 303 
identity, 4 
invertible, 17 
non-singular, 17 
normal, 310 
orthogonal, 235 
partitioned, 20 
permutation, 62 
powers of, 11 
scalar, 5 
skew-hermitian, 312 
skew-symmetric, 12 
square, 4 
symmetric, 12 
triangular, 4 
triangularizable, 271 
unitary, 238 

Maximum, local, 324 
Method of Least Squares, 241 
Minimum, local, 324 
Minimum polynomial, 349 
Minor, 65 
Monic polynomial, 349 
Multiplication of matrices, 7 

Negative, 
of a matrix, 6 
of a vector, 95 

Negative definite quadratic form, 320 
Negative semidefinite, 330 
Non-singular, 17 
Norm, 212 
Normal, 

form of a matrix, 50 
matrix, 310 
system, 244 

Normed linear space, 214 
Null space of a matrix, 99 

Objective, 
function, 372 
row, 400 

Odd permutation, 60 
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One-one, 153 
correspondence, 153 

Onto, 153 
Operation, 

column, 49 
row, 41 

Optimal least squares solution, 251 
Optimal solution of linear program, 

373 
Ordered basis, 120 
Orthogonal, 

basis, 228 
complement, 218 
linear operator, 240 
matrix, 235 
set, 226 
vectors, 196, 203, 211 

Orthogonality, 
in inner product spaces, 211 
i n R n , 203 

Orthonormal, 
basis, 228 
set, 226 

Parallelogram rule, 90 
Partitioned matrix, 20 
Permutation, 59 

matrix, 62 
Pivot, 36 
Pivotal row, 402 
Polynomial, 

characteristic, 260 
minimum, 349 

Positive definite quadratic form, 320 
Positive semidefinite, 330 
Powers of a matrix, 11 

negative, 24 
Principal axes, 316 
Principal diagonal, 4 
Product of, 

determinants, 79 
linear operators, 187 
matrices, 7 

Projection of a vector, 
on a line, 196 

on a subspace, 222 

QR-factorization, 234 
Quadratic form, 313 

indefinite, 320 
negative definite, 320 
positive definite, 320 

Quadric surface, 318 
Quotient space, 143 

dimension of, 147 

Rank of a matrix, 130 
Ratio, 6-, 402 
Real inner product space, 209 
Recurrences, linear, 276 

system of, 278 
Reduced, 

column echelon form, 49 
echelon form, 37 
row echelon form, 37, 44 

Reflection, 176 
Regular Markov process, 285 
Right-handed system, 201 
Ring with identity, 12 

matrix over, 26 
o f n x n matrices, 27 

Rotation, 172 
Row, 

echelon form, 41 
expansion, 66 
operation, 41 
space, 126 
vector, 3 

Row-times-column rule, 8 

Saddle point, 324 
Scalar, 6 

matrix, 5 
multiplication, 6, 95 
product, 193 
projection, 197 
triple product 208 

Scalar multiple, 
of a linear operator, 186 
of a matrix, 6 
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Schur's Theorem, 305 
Sign of a permutation, 62 
Similar matrices, 175 
Simplex algorithm, 399 
Singular matrix, 17 
Skew-hermitian matrix, 312 
Skew-symmetric, 

bilinear form, 335 
matrix, 12 

Slack variable, 377 
Solution, 

general, 34 
non-trivial, 38 
trivial, 38 

Solution space, 99 
Spectral Theorem, 307 
Standard basis, 

of P n (R) , 118 
of R n , 114 

Standard form, linear program in, 
374 

String, Jordan, 356 
Subspace, 97 

fundamental, 224 
generated by a subset, 100 
improper, 97 
spanned by a subset, 100 
zero, 97 

Sum of subspaces, 133 
finding a basis for, 139 

Surjective function, 153 
Sylvester's Law of Inertia, 340 
symmetric, 

bilinear form, 335 
matrix, 12 

System, 
of differential equations, 288 
of linear equations, 3, 30 
of linear recurrences, 278 

Tableau, 400 
Trace, 263 
Transaction, 123 
Transition matrix, 284 
Transpose, 11 

complex, 205 
Transposition, 61 
Triangle inequality, 204, 215 
Triangle rule, 90 
Triangular matrix, 4 
Triangularizable matrix, 271 
Trivial solution, 38 
Two Phase Method, 407 

Unit vector, 194, 212 
Unitary matrix, 238 
Upper triangular matrix, 4 

Vandermonde determinant, 75 
Vector, 95 

column, 4 
product, 200 
projection, 197 
row, 3 
triple product, 209 

Vector space, 87 
axioms for, 95 
examples of, 87 

Weight function, 225 
Wronskian, 109 

Zero, 
linear transformation, 161 
matrix, 4 
subspace, 97 
vector, 95 
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