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Preface

Block designs have applications in almost all areas of human investiga-
tion including agriculture, biology, engineering, medicine, physical and
chemical sciences and industrial experimentation. The most primitive of
the block designs is the randomized (complete) block design. However,
in many practical situations, adoption of a complete block design is not
appropriate and in some cases, not at all feasible. This fact prompted
the development of various kinds of incomplete block designs, which in
turn have been used extensively for experiments in a variety of fields.
Moreover, these designs opened up many challenging problems in com-
binatorial mathematics. In view of the importance of block designs both
from a theoretical and practical perspective, the author published a book
Theory of Block Designs in 1986, which was well received in academic
circles. However, the book went out of print around 1992. The author
initially toyed with the idea of bringing out a second edition of the book,
incorporating only minor additions/changes. While attempting to do so,
however, it was realized that during the intervening period, the subject
has grown considerably and the emphasis on certain topics has shifted.
The author therefore decided to write the present book which, while
retaining some of the flavor of the earlier book, is substantially different
from it in both coverage and presentation.

The literature on incomplete block designs is vast and it is near
impossible to cover each and every development in incomplete block de-
signs in a single book of reasonable length. In this book, an attempt
has been made to cover all the developments in this area which in the
author’s perception are the major ones. Since the classical incomplete
block designs like the balanced incomplete block and partially balanced
incomplete block designs are still found useful in several applications
and newer applications of these, e.g., in visual cryptography, have been
found, such designs have been covered at some length. Some of the
more recent developments in incomplete block designs for special types
of experiments, like biological assays and diallel crosses have also been
discussed. Important results on the optimality aspects of various incom-
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plete block designs are also reviewed.

The book is organized into six chapters followed by an appendix. A
brief description of the chapter contents appears in Chapter 1. The ap-
pendix covers some essentials on linear algebra, linear statistical models,
finite fields and finite geometries. There are a large number of exercises
at the end of Chapters 2-6 and there is a fairly exhaustive bibliography.

Throughout, results in matrix theory are used extensively and thus, a
background in basic linear algebra and theory of matrices will be helpful
in reading the book. Familiarity with the general area experimental
designs and linear statistical models at an advanced undergraduate level
is also assumed.

The book can be used in a variety of ways. The material in Chapter
2, the first four sections of Chapter 3 and Sections 4.1-4.4 and 4.6 of
Chapter 4 can provide a solid foundation of the theory of incomplete
block designs for a master’s level course. The material in Sections 3.5~
3.7, 4.7-4.11 and that in Chapters 5 and 6 may be used as a basis of
a more advanced course. While the book is addressed to an audience
whose primary interest is in the theory and applications of statistical de-
sign of experiments, portions of the book can also be used for a course
in combinatorial designs for mathematicians. The material in Chap-
ters 5 and 6 may be found useful for research students and consulting
statisticians.

This work was supported by the Indian National Science Academy
(INSA) under the Senior Scientist program of the Academy. The sup-
port is gratefully acknowledged. I sincerely thank Rahul Mukerjee for
going through an early version of the manuscript and suggesting several
changes for improvement. The manuscript was reviewed and commented
upon by several referees and it is a pleasure to thank the reviewers for
their comments. I would also like to thank the Editors of the TRIM Se-
ries for their constructive help. Rajendra Bhatia deserves special thanks
for his dilligent and efficient handling of the project. Finally, I thank the
Delhi Center of the Indian Statistical Institute for providing a conducive
environment to carry out this work.

Aloke Dey
February, 2010
New Delhi



Chapter 1

Introduction

1.1 Prologue

The modern foundations of design of experiments were laid by R. A.
Fisher during the early part of the 20th century. Since then, this area
has seen a phenomenal growth. Design of experiments has for long been
an integral part of almost all scientific investigations and continues to
be so. It has therefore played a fundamental role in statistical practice
and research. Statistical training also has always emphasized the role of
design of experiments in extracting correct information and making valid
inference on the underlying problem and thus, design of experiments is
an essential component of most statistics curricula.

While designing an experiment, the principles of randomization,
replication and local control are of vital importance. These principles
were first enunciated by Fisher while planning agricultural experiments.
It was observed by Fisher that a completely random allocation of treat-
ments to the experimental units, leading to a completely randomized
design, eliminates bias in assessing treatment differences.

In certain experimental situations, there may be systematic varia-
tions present among the experimental units. For example, in a field
experiment, the experimental units are typically plots of land. In such
an experiment, there may be a fertility gradient present such that plots
on the same fertility level are more homogeneous than those which are
at different fertility levels. In experiments with piglets as experimental
units, it is very plausible that piglets belonging to the same litter are
genetically closer to each other (being born to the same pair of parents)
than those belonging to different litters. Similarly, in experiments with
livestock, different breeds (or, different ages) might be involved and ani-
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mals belonging to the same breed are expected to be more alike than the
ones belonging to different breeds. In the context of clinical trials with
patients forming the experimental units, the trial may be conducted at
different centers (mainly to get enough number of observations) and pa-
tients from the same center may be more alike than those from different
centers due to differences in treatment practices and/or management
procedures followed at different centers.

The above examples, which are merely illustrative and by no means
exhaustive, demonstrate that in many situations there is a systematic
variation among the experimental units. In such situations, use of a
completely randomized design is not appropriate. Rather, one should
take advantage of the a priori information about this systematic varia-
tion while designing the experiment in the sense that this information
should be used while designing to eliminate the effect of such variability.
The impact of this effort will be reflected in a reduced error, thereby
increasing the sensitivity of the experiment. The above considerations
led to the notion of local control or blocking. The groups of relatively
homogeneous experimental units are called blocks. When the blocking
is done according to one attribute, we get a block design. In a block
design, the treatments are applied randomly to the experimental units
within a block, the randomized allocation of treatments to experimental
units within a block being done independently in each block.

The simplest among the block designs is the randomized complete
block design. In such a design, each block is required to have as many
experimental units as the number of treatments, i.e., the block size is
equal to the number of treatments. However, it is not always possible
to adopt a randomized complete block design in every experimental sit-
uation. Firstly, if one assumes that the intra-block variance is directly
dependent on the block size, then adoption of a design with blocks of
small sizes is preferable over one which has large block sizes. This re-
stricts the use of randomized complete block designs in situations where
the number of treatments is large. For example, in agronomic experi-
ments, the experimenter generally chooses a block of size 10-12 and if
this is accepted, then one cannot adopt a randomized complete block
design in situations where say 20 treatments are to be compared. Fur-
thermore, in many experimental situations, the block size is determined
by the nature of the experiment. For example, with some experiments
in psychology, it is quite common to consider the two members of a twin
pair as experimental units of a block. In that case, clearly a randomized
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complete block design cannot be prescribed if the number of treatments
is larger than two. Similarly, it is reasonable to take litter-mates (of
say mice) as units of a block and litter size may not be adequate to
accommodate all the treatments under test.

The few examples considered above clearly show that in many situ-
ations, one cannot adopt a randomized complete block design and thus,
there is a need to look for designs where not all treatments appear in
each block. Such designs are termed as incomplete block designs. The
present book deals with block designs in general and their analysis, with
special emphasis on certain important classes of incomplete block de-
signs. The terms block design and incomplete block design are used
interchangeably whenever there is no scope for confusion.

A reasonable amount of familiarity with basic notions of vector
spaces and the algebra of matrices is assumed throughout and one may
refer e.g., to Bapat (2000) for details on these aspects. We also assume a
background of linear statistical models and of the general area of design
of experiments at an advanced undergraduate level. Excellent accounts
of the general area of design of experiments and its applications are avail-
able e.g., in Cox (1958), Hinkelmann and Kempthorne (1994), Dean and
Voss (1999), Wu and Hamada (2000) and Bailey (2008).

1.2 Outline of the Book

The book has five more chapters followed by an appendix. In Chap-
ter 2, the discussion is initiated by describing the intra-block analysis
of an arbitrary block design. Balancing in incomplete block designs is
considered next in Section 2.3 of this chapter. The two notions of bal-
ance, viz., variance- and efficiency-balance are reviewed. The analysis
of incomplete block designs with recovery of inter-block information is
discussed in Section 2.4. Finally, in Section 2.5, the notion of efficiency
factor of an incomplete block design is briefly studied.

Balanced designs are considered in Chapter 3. The most important
of the balanced designs are the classical balanced incomplete block (BIB)
designs. Such designs are still found useful in designing experiments in
diverse fields and newer applications of these designs, e.g., in visual cryp-
‘tography, have been found in recent years (see e.g., Bose and Mukerjee
(2006), Adhikary, Bose, Kumar and Roy (2007) and the references cited
therein). We initiate the discussion in this chapter by considering some
properties of BIB designs in Section 3.2. The analysis of BIB designs
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is briefly considered in Section 3.3. Some results on construction and
existence of BIB designs are presented in Section 3.4. Generalizations
of BIB designs are considered in the next section. The BIB designs are
the only designs in the class of binary, equireplicate and proper designs
that are both variance- and efficiency-balanced; however, it is possible
to find other variance- and efficiency-balanced designs if one expands
the class of designs to non-binary, non-equireplicate or non-proper de-
signs. The construction methods of variance- and efficiency-balanced
designs with possibly unequal replications and unequal block sizes are
briefly reviewed in Section 3.6. Properties and construction of nested
BIB designs are discussed briefly in Section 3.7.

Partially balanced designs are the subject matter of Chapter 4.
Among the partially balanced designs, the partially balanced incomplete
block (PBIB) designs are the most studied ones and continue to be used
in actual applications. These are therefore covered at some length in
Sections 4.2-4.6. PBIB designs are formally introduced in Section 4.2
via, the notion of an association scheme. The algebra of association
matrices is briefly discussed in Section 4.3. Designs with two or more
associate classes as also the analysis of PBIB designs are discussed in
Sections 4.4-4.6. In Sections 4.7-4.11, some other partially balanced de-
signs which are not necessarily PBIB designs are covered. These include
lattice, cyclic, linked block, C designs and « designs.

In Chapters 3 and 4, incomplete block designs are studied for sit-
uations where all the treatments are on equal footing and thus, the
interest is mainly on elementary treatment contrasts or, more gener-
ally, on a complete set of orthonormal treatment contrasts. However, in
practice there are situations where the interest lies in inference on con-
trasts of special types. Such situations arise typically, e.g., in factorial
experiments and biological assays. Incomplete block designs for such
experiments are considered in Chapter 5. Specifically, incomplete block
designs for factorial experiments (Section 5.2), biological assays (Section
5.3), test-control experiments (Section 5.4) and diallel cross experiments
(Section 5.5) are covered. Finally, in Section 5.6, results on incomplete
block designs that are robust against an outlier and against missing data
are reviewed. Some aspects of trend-free block designs are also covered
in this section.

In Chapter 6, optimality aspects of some incomplete block designs
are discussed. Different optimality criteria are introduced in Section
6.2. Important results on optimality of proper incomplete block de-
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signs for inference on a complete set of orthonormal treatment contrasts
are reviewed in Section 6.3. Optimal designs for making inferences on
contrasts among several test treatments and a control are discussed in
Section 6.4. Optimality of designs for parallel line assays, considered in
Chapter 5 are reviewed in Section 6.5. In the last section (Section 6.6),
optimal incomplete block designs for diallel crosses are considered.

The Appendix consists of four sections. Some results in linear al-
gebra that are used throughout the book are given in Section A.1. In
Section A.2, some basic results in linear statistical models are summa-
rized. Section A.3 describes some essential facts about finite (Galois)
fields. In Section A.4, basic ideas and results from finite projective and
Euclidean geometries are reviewed.



Chapter 2

Analysis and Properties of Block Designs

2.1 Introduction

This chapter is concerned with the analysis and some general properties
of arbitrary block designs, including incomplete block designs. We ini-
tiate the discussion in Section 2.2 by reviewing the intra-block analysis
of a general block design under a standard fixed effects model. Two no-
tions of balance are introduced and studied in Section 2.3. The recovery
of inter-block information is discussed in Section 2.4. In section 2.5, the
notion of efficiency factor of an incomplete block design is briefly intro-
duced. Throughout, we use the following notations and terminology in
respect of an arbitrary block design.

Consider an arbitrary block design d involving v treatments and b
blocks. For 1 < j < b, the size of the jth block of d is denoted by kg;,
that is, the jth block has k4 experimental units and for 1 <i < v, rg;
is the replication of the ith treatment in d, that is, the ith treatment
appears rq; times in the d. A design d is called proper if kg; = k for all
j and equireplicate if r4; = r for all i. A block design d is completely
characterized by a v x b matrix Ny = (ng;;) where ng;; is the number
of times the ith treatment appears in the jth block. Clearly, the {n4;;}
are nonnegative integers and

v b
D naj=kg 1<i<b, Y ngj=ra, 1<i <0, (2.1.1)

i=1 j=1

The matrix Ny is called the incidence matriz of the design d. A block
design is called binary if ng;;j =0or1foralli,j, 1<i<v,1<j<bh
We shall throughout use the following notations with respect to a
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block design d:

ks = (ka,-..,ka)’, the column vector of block sizes,

rq = (Ta1,...,Tay), the column vector of replication numbers,

K; = diag(ka,-..,ka), the diagonal matrix of block sizes,

Ry = diag(ra,...,"Tdv), the diagonal matrix of replication numbers.

Then, it is easy to see that 1, Ny = k; and N41, = 4, where Ny is the
incidence matrix of d. The subscript d refers to a given block design d
and we may drop this subscript when there is no confusion likely.

2.2 Intra-block Analysis

Consider a block design with v treatments, b blocks and incidence matrix
Ng = (ng;i;). As before, for 1 < i < v, we let r4; to denote the replication
of the ith treatment and for 1 < j < b, kyj, to denote the block size of
the jth block. At this stage, we do not make any assumptions about
the block sizes or replications of the treatments. For the analysis of the
data obtained through the design d, we postulate the following linear
model:

Yiju = p+ 75 + Bj + €iju, (2.2.1)

where Y;;,, is the observable random variable corresponding to the uth
observation in the (7, j)th cell defined by the ith treatment and the jth
block, 4 is a general mean, 7;, the effect of the ith treatment, 3;, the
effect of the jth block and {¢;;,,} are random error components, assumed
to be mutually uncorrelated with zero means and constant finite variance
o?. Clearly, if ng; = 0 for some pair (i, j), then there is no observation
in that cell. Barring the error components, all other effects on the right
side of (2.2.1) are assumed to be fized (nonrandom). The analysis under
such a fixed effects model is generally termed as intra-block analysis.

It may be noted that in the above formulation, we have considered
an arbitrary block design which is possibly unequally replicated, has
possibly unequal block sizes and could be non-binary. Also, in model
(2.2.1), we assume that the intra-block variance, o2, is a constant. In
practice, often an experimenter chooses a block design with equal block
sizes. However, there exist practical situations where blocks of unequal
sizes arise quite naturally (see e.g., Pearce (1964)) and, in such situa-
tions, one might have to use designs with unequal block sizes. If the
intra~block variance is assumed to be proportional to the block size and
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the block sizes do not vary appreciably, the assumption of constancy of
intra-block variance is not very serious and consequently, the analysis
that follows under the model (2.2.1) remains valid.

We may rewrite (2.2.1) in matrix notation as

Y = pl, + Digm + DB + ¢, (2.2.2)

with
E(e) =0, D(e) = 0°I,, (2.2.3)

where Y is the n x 1 vector of Yiju's, 7 = (11,...,7) .8 = (b1, - ,Bb)’,
€ is the vector of random error components, n = Y ;_; g = Eg=1 kg
D4 (respectively, Dy;) denotes the v x n (respectively, b x n) treat-
ments (respectively, blocks) versus observations incidence matrix, i.e.,
the (@, B)th element of Dy4 (respectively, Daq) is 1 if the Bth obser-
vation comes from the ath treatment (respectively, ath block), and is
zero otherwise. In (2.2.3), E stands for expectation and ) denotes the
dispersion (variance-covariance) matrix.
It can easily be verified that

DldD,ld = Rds D2dD’2¢i = Kd7 DldD,2d = Nd’ (224)
D1gln = 74, Dagln = kd, Dlldlv =1, = ’2dlb- (2'2'5)

Applying the method of least squares for the estimation of parame-
ters of the model (2.2.2), we arrive at the following normal equations:

n kj 7} © G
ke Ky Né J¢) = B}, (2.2.6)
rea Ng Ry T T

where G = 1,Y is the grand total of all observations, B = (By, ..., Bp)’
= D,gY is the vector of block totals and T = (T1,...,T) = DY
is the vector of treatment totals.

Observe that (2.2.5) implies

n kij r4
Rank | kg Kg Nj = Rank(E), (2.2.7)
ras Ng Ry
where K N
= d 'd ) 2.2.8
E=( 2 ) (22.8)

We now have the following result.
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Lemma 2.2.1 For any block design d with v treatments and b blocks,
the identity

b+ Rank(Cy) = v + Rank(Dg) (2.2.9)
holds, where
Ca= Ry~ NyK7'N} and Dy = K4~ NiR7'Ny. (2.2.10)
Proof. Let
_ I 0 (D —NéRd'l
Al = ( _Nde—l Iv ) )A2 = ( 0 Iv . (2.2.11)

Clearly, A; and Aj are nonsingular matrices. Hence,

Rank(E) = Rank(A;EA,) = Rank( Ka co.,)

Dy © (2.2.12)
0 Ry /)
The result now follows. (m}

Note that the matrices Cy and Dy, given by (2.2.10) are symmetric
of orders v and b, respectively, and each has zero row sums.
Premultiplying both sides of (2.2.6) by the matrix

(ov _Nde—l Iv)

= Rank(A2EA}) = Rank(

we get the equation
Cat=Q (2.2.13)
where
Q=T - N:K;'B. (2.2.14)
The vector Q is called the vector of adjusted treatment totals. Equations

(2.2.13) are often called the reduced normal equations for treatment ef-
fects.

The matrix Cy, given by (2.2.10) and appearing in the reduced nor-
mal equations (2.2.13), is of fundamental importance in the analysis of
block designs. This matrix is generally referred to as the “C-matrix” of
the design and we shall often use this terminology in the sequel.

Remark 2.2.1 The matrix Cy can also be expressed in terms of an
orthogonal projection matrix (see A.1.12 of the Appendix) as

Cq = Dygprt (L) D}y,
where L = (1, Dj,).
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Lemma 2.2.2 E(Q) = Cym; D(Q) = 0%Cy.
Proof. From (2.2.14),
E(Q) = E(T - N;K;'B)
= (D1a — D14D%y(D2aD}y) "' Daa) E(Y')

= (D14 — D1aD}4(D2aDjg) "' Dog)(pln + DiyT + DyB)
(Ra— NgK7'N))T, using (2.2.4)

I

Cdr.
Again,
072D(Q) = (Dig— D1aD}y(D2aDig) Dag) x
(D14 — D1aD3g(D2aD’g) " Daa)'

= Ryq— N4K7'N}

= Cy.
In the right side of the first line above, x denotes the usual matrix
product. m]

Lemma 2.2.3 (a) Cy is n.n.d.; (b) Cql, = 0 and hence Rank(Cy) <
v —1; (c) the equations (2.2.13) are consistent, whatever be the rank of
Ca.

Proof. The proofs of (a) and (b) are left as an exercise; we provide a
proof of (c) only. We have

Cs = DiaDjy— D1aD}y(D2aD}y) " DaaDyy
= Dya(I — Dyy(D24Dly) ' Dag)Diy (2.2.15)
where
Zyg=1—- D'zd(Ddeéd)_lDZd = pr‘L(D'zd), (2.2.16)

by virtue of the result in A.1.12, is a symmetric idempotent matrix.
From (2.2.15), it follows that

C(Ca) = C(DhaZa) (2.2.17)

where C(A) denotes the column space of a matrix A and in proving
(2.2.17), we have used the fact stated in A.1.4. Also from (2.2.14),

Q (D1g — D1aDy(D2gDyy) ' D2a)Y
Dld(I - Déd(DMD'Zd)‘lDzd)Y (2.2.18)
D14Z4Y = Dygprt (Déd)Y.
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Hence, Q € C(D149Z4) and the proof is complete. O

Definition 2.2.1 A linear parametric function p'T is said to be a treat-
ment contrast if p is non-null and p'l, = 0. A treatment contrast is
called an elementary contrast if p has only two nonzero entries, these
being —1 and 1. Furthermore, a treatment contrast p'r is called nor-
malized if p'p = 1.

Lemma 2.2.4 A linear parametric function p’t is estimable under a
block design d if and only if p € C(Cy), where Cy is the C-matriz of d.

Proof. Suppose p € C(Cq) = p = Cy for some vector A. If ¥ is a
solution of (2.2.13), then

p'F=NCi7=NQ
and by Lemma 2.2.2,
E(p't) = NE(Q) = NCyr = p'T,

so that p’T is estimable.
Conversely, let p’T be estimable. Then, by the definition of an es-
timable function, there exists a linear function of Y, say, I'Y such that

EQY) = p'r,forallpcR, TR’ BecR®
= ul'l, +UD)yT+UDyB = p'r, forallpeR,7cR’,BeR®

= l,].n = 0, l,Déd = 0, p’ = l,Did'

Now, p = Digl = Dg(I — D,2d(D2dD'2d)—.1D2d)l' as Dgogl = 0. This
implies that p € C(D14Z). But C(D14Z) = C(C4) and hence the result.
a
It follows from Lemma 2.2.3 (b) and Lemma 2.2.4 that a necessary
condition for a linear parametric function p’7 to be estimable under a
design d is that it be a treatment contrast. Also, if p’7 is estimable
under a design d, then its best linear unbiased estimator (BLUE) is p’+,
where 7 is a solution of (2.2.13).

Definition 2.2.2 A block design d is said to connected if all treatment
contrasts are estimable under d.

An equivalent definition of connectedness of a block design, given by
Bose (1950) is as follows.
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Definition 2.2.3 A treatment i and a block j in a block design are
said to be associated if the treatment i appears in block j. A pair of
treatments is said to be connected if it is possible to pass from one to the
other through a chain consisting alternatively of treatments and blocks
such that any two members of a chain are associated. A design is said
to be connected if every pair of treatments is connected.

The property of connectedness is related to the rank of the C-matrix
of the design, as shown in the following result.

Theorem 2.2.1 A block design d with v treatments is connected if and
only if Rank(Cyg) =v — 1.

Proof. Let d be connected. Then all treatment contrasts are estimable
under d, i.e., by Lemma 2.2.4, p € C(Cy) for all non-null v x 1 vectors
p satisfying p’1, = 0. Since the space of all such vectors has dimension
v—1, we get Rank(Cq4) > v— 1, which, in conjunction with Lemma 2.2.3
(b), yields Rank(Cy) =v — 1.

Conversely, if Rank(Cy) = v—1, then by Lemma 2.2.3 (b), p € C(Cy)
for all non-null v x 1 vectors satisfying p’1, = 0. Thus by Lemma 2.2.4,
all treatment contrasts are estimable and the design is connected. O

We next bring in the notion of an orthogonal block design. Consider
the equations (2.2.6). Premultiplying both sides of (2.2.6) by the matrix

(0, I, — N,R7Y),

we get the equation
DsB8=P (2.2.19)

where
Dy=Ky— NjR;'Ns, P =B - NJR;'T. (2.2.20)

The equations (2.2.19) are the reduced normal equations for block effects.
The vector P is called the vector of adjusted block totals. Rewriting

Q = T-N,K;'B
= (Dia— D1aDyyK7'Dy)Y,
and
P = B-NjR;'T
= (Dag— DoyDy 4Ry D1g)Y
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it is seen that the covariance between Q and P (i.e., the v x b matrix of
covariances between the components of Q and P) is

072Cov(Q,P) = (Dia— D14Dy4K;' D2g)(D2a — DagDi4Ry  Dra)
= NnglN&Rgl Ny — Ny. (2.2.21)

Lemma 2.2.5 For a connected block design d, the covariance between
Q and P is zero if and only if Ny = rqkly/n.

Proof. The “if” part is easy to prove, so we only provide a proof of the
“only if” part.

Cov(Q, P)
= NaK7'NjRJ'Ng— Ny =
= (R4 — Cy)R;'Ng— Ny =
= CnglNd =

o o0 o0

Let R;lNd = A, where A is a v x b matrix. Since the design is connected,
by Lemma 2.2.3 (b) and Theorem 2.2.1, it follows that the columns of
A, say aj,as,...,a are proportional to 1,, i.e.,

a; =0a;1,, 1<i<b, (2.2.22)
where aifs are some scalars. This gives
A=R;'N;=1,d, (2.2.23)
where & = (ay,...,0). From (2.2.23), we have
Ny = Ryl,a’ =rqa’

which gi