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Preface 

Since pUblication of the first edition in 1977, there has been a steady flow 
of books on regression ranging over the pure-applied spectrum. Given the 
success of the first edition in both English and other languages (Russian and 
Chinese), we have therefore decided to maintain the same theoretical approach 
in this edition, so we make no apologies for a lack of data! However, since 1977 
there have major advances in computing, especially in the use of powerful sta­
tistical packages, so our emphasis has changed. Although we cover much the 
same topics, the book has been largely rewritten to reflect current thinking. 
Of course, some theoretical aspects of regression, such as least squares and 
maximum likelihood are almost set in stone. However, topics such as analysis 
of covariance which, in the past, required various algebraic techniques can now 
be treated as a special case of multiple linear regression using an appropriate 
package. 

We now list some of the major changes. Chapter 1 has been reorganized 
with more emphasis on moment generating functions. In Chapter 2 we have 
changed our approach to the multivariate normal distribution and the ensuing 
theorems about quadratics. Chapter 3 has less focus on the dichotomy of 
full-rank and less-than-full-rank models. Fitting models using Bayesian and 
robust methods are also included. Hypothesis testing again forms the focus 
of Chapter 4. The methods of constructing simultaneous confidence intervals 
have been updated in Chapter 5. In Chapter 6, on the straight line, there is 
more emphasis on modeling and piecewise fitting and less on algebra. New 
techniques of smoothing, such as splines and loess, are now considered in 
Chapters 6 and 7. Chapter 8, on analysis of variance and covariance, has 

xv 



xvi Preface 

been updated, and the thorny problem of the two-way unbalanced model 
is addressed in detail. Departures from the underlying assumptions as well 
as the problem of collinearity are addressed in Chapter 9, and in Chapter 
10 we discuss diagnostics and strategies for detecting and coping with such 
departures. Chapter 11 is a major update on the computational aspects, 
and Chapter 12 presents a comprehensive approach to the problem of model 
selection. There are some additions to the appendices and more exercises have 
been added. 

One of the authors (GAFS) has been very encouraged by positive comments 
from many people, and he would like to thank those who have passed on errors 
found in the first edition. We also express our thanks to those reviewers of 
our proposed table of contents for their useful comments and suggestions. 

Auckland, New Zealand 
November 2002 

GEORGE A. F. SEBER 
ALAN J. LEE 



1 
Vectors of Random Variables 

1.1 NOTATION 

Matrices and vectors are denoted by boldface letters A and a, respectively, 
and scalars by italics. Random variables are represented by capital letters 
and their values by lowercase letters (e.g., Y and y, respectively). This use 
of capitals for random variables, which seems to be widely accepted, is par­
ticularly useful in regression when distinguishing between fixed and random 
regressor (independent) variables. However, it does cause problems because 
a vector of random variables, Y" say, then looks like a matrix. Occasionally, 
because of a shortage of letters, aboldface lowercase letter represents a vector 
of random variables. 

If X and Yare randomvariables, then the symbols E[Y), var[Y], cov[X, Y), 
and E[XIY = y) (or, more briefly, E[XIY)) represent expectation, variance, 
covariance, and conditional expectation, respectively. 

The n x n matrix with diagonal elements d1 , d2 , •.• ,dn and zeros elsewhere 
is denoted by diag( d1 , d2 , •.. , dn ), and when all the di's are unity we have the 
identity Il].atrix In. 

If a is an n x 1 column vector with elements al, a2, . .. , an, we write a = (ai), 
and the length or norm of a is denoted by Iiali. Thus 

lIall = Va'a = (a~ + a~ + ... + a~y/2. 
The vector with elements all equal to unity is represented by In, and the set 
of all vectors having n elements is denoted by lRn . 

If the m x n matrix A has elements aij, we write A = (aij), and the 
sum of the diagonal elements, called the trace of A, is denoted by tr(A) 
(= a11 + a22 + ... + akk, where k is the smaller of m and n). The transpose 
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2 VECTORS OF RANDOM VARIABLES 

of A is represented by A' = (a~j)' where a~j = aji. If A is square, its 
determinant is written det(A), and if A is nonsingular its inverse is denoted 
by A -1. The space spanned by the columns of A, called the column space of 
A, is denoted by C(A). The null space or kernel of A (= {x: Ax = O}) is 
denoted by N(A). 

We say that Y '" N(B, (7"2) if Y is normally distributed with mean B and 
variance (7"2: Y has a standard normal distribution if B = 0 and (7"2 = 1. The 
t- and chi-square distributions with k degrees of freedom are denoted by tk 
and X~, respectively, and the F-distribution with m and n degrees offreedom 
is denoted by Fm,n' 

Finally we mention the dot and bar notation, representing sum and average, 
respectively; for example, 

J 

ai· = Laij 
j=l 

and 

In the case of a single subscript, we omit the dot. 
Some knowledge of linear' algebra by the reader is assumed, and for a short 

review course several books are available (see, e.g., Harville [1997)). However, 
a number of matrix results are included in Appendices A and B at the end of 
this book, and references to these appendices are denoted by, e.g., A.2.3. 

1.2 STATISTICAL MODELS 

A major activity in statistics is the building of statistical models that hope­
fully reflect the important aspects of the object of study with some degree of 
realism. In particular, the aim of regression analysis is to construct math­
ematical models which describe or explain relationships that may exist be­
tween variables. The simplest case is when there are just two variables, such 
as height and weight, income and intelligence quotient (IQ), ages of husband 
and wife at marriage, population size and time, length and breadth of leaves, 
temperature and pressure of a certain volume of gas, and so on. If we have n 
pairs of observations (Xi, Yi) (i = 1,2, . .. , n), we can plot these points, giving 
a scatter diagram, and endeavor to fit a smooth curve through the points in 
such a way that the points are as close to the curve as possible. Clearly, 
we would not expect an exact fit, as at least one of the variables is subject 
to chance fluctuations due to factors outside our control. Even if there is 
an "exact" relationship between such variables as temperature and pressure, 
fluctuations would still show up in the scatter diagram because of errors of 
measurement. The simplest two-variable regression model is the straight line, 
and it is assumed that the reader has already come across the fitting of such 
a model. 

Statistical models are fitted for a variety of reasons. One important reason 
is that of trying to uncover causes by studying relationships between vari-
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abIes. Usually, we are interested in just one variable, called the response (or 
predicted or dependent) variable, and we want to study how it depends on 
a set of variables called the explanatory variables (or regressors or indepen­
dent variables). For example, our response variable might be the risk of heart 
attack, and the explanatory variables could include blood pressure, age, gen­
der, cholesterol level, and so on. We know that statistical relationships do 
not necessarily imply causal relationships, but the presence of any statistical 
relationship does give us a starting point for further research. Once we are 
confident that a statistical relationship exists, we can then try to model this 
relationship mathematically and then use the model for prediction. For a 
given person, we can use their values of the explanatory variables to predict 
their risk of a heart attack. We need, however, to be careful when making 
predictions outside the usual ranges of the explanatory variables, as the model 
~ay not be valid there. 

A second reason for fitting models, over and above prediction and expla­
nation, is to examine and test scientific hypotheses, as in the following simple 
examples. 

EXAMPLE 1.1 Ohm's law states that Y = rX, where X amperes is the 
current through a resistor of r ohms and Y volts is the voltage across the 
resistor. This give us a straight line through the origin so that a linear scatter 
diagram will lend support to the law. 0 

EXAMPLE 1.2 The theory of gravitation states that the force of gravity 
F between two objects is given by F = a/ df3. Here d is the distance between 
the objects and a is a constant related to the masses of the two objects. The 
famous inverse square law states that (3 = 2. We might want to test whether 
this is consistent with experimental measurements. 0 

EXAMPLE 1.3 Economic theory uses a production function, Q = aLf3 K"I , 
to relate Q (production) to L (the quantity of labor) and K (the quantity of 
capital). Here a, (3, and 'Y are constants that depend on the type of goods 
and the market involved. We might want to estimate these parameters for a 
particular, market and use the relationship to predict the effects of infusions 
of capital on the behavior of that market. 0 

From these examples we see that we might use models developed from the­
oretical considerations to (a) check up on the validity of the theory (as in the 
Ohm's law example), (b) test whether a parameter has the value predicted 
from the theory, under the assumption that the model is true (as in the grav­
itational example and the inverse square law), and (c) estimate the unknown 
constants, under the assumption of a valid model, and then use the model for 
prediction purposes (as in the economic example). 



4 VECTORS OF RANDOM VARIABLES 

1.3 LINEAR REGRESSION MODELS 

If we denote the response variable by Y and the explanatory variables by 
Xl, X 2 , ... , X K , then a general model relating these variables is 

although, for brevity, we will usually drop the conditioning part and write 
E[Y]. In this book we direct our attention to the important class of linear 
models, that is, 

which is linear in the parameters {3j. This restriction to linearity is not as re­
strictive as one might think. For example, many functions of several variables 
are approximately linear over sufficiently small regions, or they may be made 
linear by a suitable transformation. Using logarithms for the gravitational 
model, we get the straight line 

logF == loga - (3 log d. (1.1) 

For the linear model, the Xi could be functions of other variables z, w, etc.; 
for example, Xl == sin z, X2 == logw, and X3 == zw. We can also have Xi == Xi, 

which leads to a polynomial model; the linearity refers to the parameters, 
not the variables. Note that "categorical" models can be included under our 
umbrella by using dummy (indicator) x-variables. For example, suppose that 
we wish to compare the means of two populations, say, JLi = E[Ui ] (i = 1,2). 
Then we can combine the data into the single model 

E[Y] - JLl + (JL2 - JLl)X 

- {30 + {3lX, 

where X = a when Y is a Ul observation and X = 1 when Y is a U2 observation. 
Here JLl = {30 and JL2 == {30 + {3l, the difference being {3l' We can extend this 
idea to the case of comparing m means using m - 1 dummy variables. 

In a similar fashion we can combine two straight lines, 

(j = 1,2), 

using a dummy X2 variable which takes the value 0 if the observation is from 
the first line, and 1 otherwise. The combined model is 

E[Y] al + I'lXl + (a2 - al)x2 + (')'2 - I'I)XlX2 

{30 + {3lXl + {32 x 2 + {33 x 3, (1.2) 

say, where X3 == Xl X2. Here al == {30, a2 = {30 + {32, 1'1 == {3l, and 1'2 == {3l + {33' 
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In the various models considered above, the explanatory variables mayor 
may not be random. For example, dummy variables are nonrandom. With 
random X-variables, we carry out the regression conditionally on their ob­
served values, provided that they are measured exactly (or at least with suf­
ficient accuracy). We effectively proceed as though the X-variables were not 
random at all. When measurement errors cannot be ignored, the theory has 
to be modified, as we shall see in Chapter 9. 

1.4 EXPECTATION AND COVARIANCE OPERATORS 

In this book we focus on vectors and matrices, so we first need to generalize 
the ideas of expectation, covariance, and variance, which we do in this section. 

Let Zij (i = 1,2, ... , mj j = 1,2, ... , n) be a set of random variables 
with expected values E[Zij]. Expressing both the random variables and their 
expectations in matrix form, we can define the general expectation operator 
of the matrix Z = (Zij) as follows: 

Definition 1.1 
E[Z] = (E[Zij]). 

THEOREM 1.1 If A = (aij), B = (bij ), and C = (Cij) are l x m, n x p, 
and l x p matrices, respectively, of constants, then 

E[AZB + C] = AE[Z]B + C. 

Proof· Let W = AZB + Cj then Wij = 2::."=1 2:;=1 airZrsbsj + Cij and 

E [AZB + C] = (E[Wij]) = (~~ airE[Zrs]bsj + Cij ) 

= ((AE[Z]B)ij) + (Cij) 

= AE[Z]B + C. 0 

In this proof we note that l, m, n, and p are any positive integers, and 
the matrices of constants can take any values. For example, if X is an m x 1 
vector, tlien E[AX] = AE[X]. Using similar algebra, we can prove that if A 
and B are m x n matrices of constants, and X and Yare n x 1 vectors of 
random variables, then 

E[AX + BY] = AE[X] + BE[Y]. 

In a similar manner we can generalize the notions of covariance and variance 
for vectors. IT X and Yare m x 1 and n x 1 vectors of random variables, then 
we define the generalized covariance operator Cov as follows: 
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Definition 1.2 
Cov[X, Y] = (COV[Xi , ¥j]). 

THEOREM 1.2 If E[X) = a and E[Y) = (3, then 

Cov[X, Y] = E [(X - a)(Y - (3)']. 

Proof· 

Cov[X, Y) = (COV[Xi, Yj]) 

= {E[(Xi - ai)(Yj - .aj)]} 
=E {[(Xi - ai)(Yj - .aj)]} 

=E [(X - a)(Y - (3)']. o 

Definition 1.3 When Y = X, Cov[X, X], written as Var[X], is called the 
variance (variance-covariance 01' dispersion) matrix of X. Thus 

Var[X] - (cov[Xi , Xj]) 

var[X1] cov[XI , X 2 ] cov[XI,Xn] 
COV[X2,XI) var[X2) cov[X2 ,Xn ] 

(1.3) 

cov[Xn,Xd cov[Xn,X2] var[Xn] 

Since cov[Xi, X j ] = cov[Xj , Xi], the matrix above is symmetric. We note 
that when X = Xl we write Var[X] = var[Xd. 

From Theorem 1.2 with Y = X we have 

Var[X] = E [(X - a)(X - a)'] , (1.4) 

which, on expanding, leads to 

Var[X] = E[XX') - aa'. (1.5) 

These last two equations are natural generalizations of univariate results. 

EXAMPLE 1.4 If a is any n x 1 vector of constants, then 

Var[X - a) = Var[X]. 

This follows from the fact that Xi - ai - E[Xi - ail = Xi - E[Xi ], so that 

o 
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THEOREM 1.3 If X and Yare m x 1 and n x 1 vectors of random variables, 
and A and B are l x m and p x n matrices of constants, respectively, then 

Cov[AX, BY] = A Cov[X, Y]B'. 

Proof. Let U = AX and V = BY. Then, by Theorems 1.2 and 1.1, 

Cov[AX, BY] = Cov[U, V] 

=E [(U - E[U]) (V - E[V])'] 

=E [(AX - Aa)(BY - B,8)'] 

=E [A(X - a)(Y - ,8)'B'] 

=AE [(X - a)(Y - ,8)'] B' 

=A Cov[X, Y]B' . 

From the theorem above we have the special cases 

Cov[AX, Y] = A Cov[X, Y] and Cov[X, BY] = Cov[X, Y]B'. 

(1.6) 

o 

Of particular importance is the following result, obtained by setting B = A 
and Y = X: 

Var[AX] = Cov[AX, AX] = ACov[X,X]A' = A Var[X]A'. (1.7) 

EXAMPLE 1.5 If X, Y, U, and V are any (not necessarily distinct) n xl 
vectors of random variables, then for all real numbers a, b, c, and d (including 
zero), 

Cov[aX + bY,eU + dV] 

- ac Cov[X, U] + ad Cov[X, V] + be Cov[Y, U] + bd CoYlY , V]. 

(1.8) 

To prove this result, we simply multiply out 

E [(aX + bY - aE[X]- bE[Y])(cU + dV - cE[U] - dE[V])'] 

= E [(a(X - E[X]) + b(Y - E[Y])) (c(U - E[U]) + d(V - E[V]))']. 

If we set U = X and V = Y, c = a and d = b, we get 

Var[aX + bY] Cov[aX + bY,aX + bY] 

- a2 Var[X] + ab(Cov[X, Y] + CoylY, X]) 

+b2 Var[Y]. (1.9) 

o 
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In Chapter 2 we make frequent use of the following theorem. 

THEOREM 1.4 If X is a vector of random variables such that no element 
of X is a linear combination of the remaining elements ri. e., there do not exist 
a (=1= 0) and b such that a'X = b for all values of X = xj, then Var[X) is a 
positive-definite matrix (see A.4). 

Proof. For any vector e, we have 

o < var[e'X) 

e'Var[X)e [by equation (1. 7»). 

Now equality holds if and only if e'X is a constant, that is, if and only if 
e'X = d (e =1= 0) or e = O. Because the former possibility is ruled out, e = 0 
and Var[X) is positive-definite. 0 

EXAMPLE 1.6 If X and Y are m x 1 and n x 1 vectors of random variables 
such that no element of X is a linear combination of the remaining elements, 
then there exists an n x m. matrix M such that Cov[X, Y - MX) == O. To 
find M, we use the previous results to get 

Cov[X, Y - MX) Cov[X, Y) - Cov[X, MX) 

Cov[X, Y) - Cov[X, X]M' 

Cov[X, Y) - Var[X)M'. (1.10) 

By Theorem lA, Var[X] is positive-definite and therefore nonsingular (AA.1). 
Hence (1.10) is zero for 

M' = (Vai[X])-1 Cov[X, Y). o 
EXAMPLE 1.7 We now give an example of a singular variance matrix by 
using the two-cell multinomial distribution to represent a binomial distribu­
tion as follows: 

(X X ) n! "'1 "'2 1 pr I = Xl, 2 = X2 = , ,PI P2 , PI + P2 == ,Xl + X2 = n. 
Xl· X2' 

IT X = (XI ,X2)', then 

Var[X) = ( npl(l- PI) 
-npIP2 

which has rank 1 as P2 = 1 - Pl' 

EXERCISES 1a 

o 

1. Prove that if a is a vector of constants with the same dimension as the 
random vector X, then 

E[(X - a)(X - a)') = Var[X] + (E[X] - a)(E[X] - a)'. 
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If Var[X] = E = ((J'ij), deduce that 

E[IIX - aWl = L (J'ii + IIE[X] - aW· 
i 

2. If X and Y are m x 1 and n x 1 vectors of random variables, and a and 
bare m x 1 and n x 1 vectors of constants, prove that 

Cov[X - a, Y - b] = Cov[X, Y]. 

3. Let X = (XI ,X2 , ••• ,Xn)' be a vector of random variables, and let 
YI = Xl, Yi = Xi - X i - l (i = 2,3, ... , n). If the Yi are mutually 
independent random variables, each with unit variance, find Var[X]. 

4. If Xl, X 2 , ••• , Xn are random variables satisfying Xi+l = pXi (i = 
1,2, ... , n - 1), where p is a constant, and var[Xd = (J'2, find Var[X]. 

1.5 MEAN AND VARIANCE OF QUADRATIC FORMS 

Quadratic forms play a major role in this book. In particular, we will fre­
quently need to find the expected value of a quadratic form using the following 
theorem. 

THEOREM 1.5 Let X = (Xi) be an n x 1 vector of random variables, and 
let A be an n x n symmetric matrix. If E[X) = J1, and Var[X) = E = ((J'ij) , 
then 

Proof· 

E[X' AX) = tr(AE) + J1,' AJ1,. 

E[X' AX) = tr(E[X' AX)) 

=E[tr(X' AX)) 

=E[tr(AXX')) [by A.1.2) 

= tr(E[AXX')) 

= tr( AE[XX'J) 

= tr [A( Var[X) + J1,J1,')) [by (1.5)) 

= tr(AE) + tr(AJ.LJ1,') 
=tr(AE) + J1,'AJ1, [by A.1.2). o 

We can deduce two special cases. First, by setting Y = X - b and noting 
that Var[Y) = Var[X) (by Example 1.4), we have 

E[(X - b)'A(X - b)) = tr(AE) + (J1, - b)'A(J1, - b). (1.11) 
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Second, if ~ = 0-2In (a common situation in this book), then tr(A~) = 
0-2 tr(A). Thus in this case we have the simple rule 

E[X'AX] = 0-2(sum of coefficients of Xl) + (X'AX)x=l'. (1.12) 

EXAMPLE 1.8 If Xl, X 2 , • •• ,Xn are independently and identically dis­
tributed with mean J.t and variance 0-2, then we can use equation (1.12) to 
find the expected value of 

Q = (Xl - X 2)2 + (X2 - X3)2 + ... + (Xn-l - Xn)2. 

To do so, we first write 

n n-l 

Q = X'AX = 2 LX; - xl - X~ - 2 L XiXi+l. 
i=l i=l 

Then, since COV[Xi' Xj] = 0 (i f= j), ~ = 0-2In and from the squared terms, 
tr(A) = 2n - 2. Replacing each Xi by J.t in the original expression for Q, we 
see that the second term of. E[X' AX] is zero, so that E[Q] = 0-2(2n - 2). 0 

EXAMPLE 1.9 Suppose that the elements of X = (Xl ,X2, ... ,Xn)' have 
a common mean J.t and X has variance matrix ~ with o-ii = 0-2 and o-ij = p0-2 
(i f= j). Then, when p = 0, we know that Q = Ei(Xi - X)2 has expected 
value 0-2 (n - 1). To find its expected value when p f= 0, we express Q in the 
form X' AX, where A = [(Oij - n-l

)] and 

1 -1 -n -n -1 -n -1 1 p p 
-1 1 -1 -1 

P 1 p 
A~ 0-2 -n -n -n 

-n -1 -n -1 1 -1 -n P P 1 

0-2(1 - p)A. 

Once again the second term in E[Q] is zero, so that 

E[Q] = tr(A~) = 0-2(1- p) tr(A) = 0-2(1- p)(n - 1). 0 

THEOREM 1.6 Let Xl, X 2, ... , Xn be independent random variables with 
means (h, B2, ... ,Bn, common variance J.t2, and common third and fourth mo­
ments about their means, J.t3 and J.t4, respectively (i.e., J.tr = E[(Xi - Bit]). 
If A is any n x n symmetric matrix and a is a column vector of the diagonal 
elements of A, then 

var[X' AX] = (J.t4 - 3J.t~)a' a + 2J.t~ tr(A 2) + 4J.t2(J' A 2(J + 4J.t3(J' Aa. 

(This result is stated without proof in Atiqullah {1962}.} 

Proof. We note that E[X] = (J, Var[X] = J.t2In, and 

Var[X'AX] = E[(X'AX)2]- (E[X'AX])2. (1.13) 
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Now 
X'AX = (X - O)'A(X - 0) + 20'A(X - fJ) + O'AfJ, 

so that squaring gives 

(X' AX)2 = [(X - 0)' A(X - 0)]2 + 4[0' A(X - 0)]2 + (0' AfJ)2 

+ 20'AO[(X -0)' A(X - 0) + 40' AOO'A(X - 0)] 
+40'A(X - O)(X - O)'A(X - 0). 

Setting Y = X - 0, we have E[Y] = 0 and, using Theorem 1.5, 

E[(X'AX)2] = E[(Y'Ay)2] +4E[(O'Ay)2] + (O'AO? 

+ 20'AOJ.L2 tr(A) + 4E[O' AYY' AY]. 

As a first step in evaluating the expression above we note that 

(Y'Ay)2 = 2:2:2:2>ijaklYiYjYkll. 
i j k I 

Since the l'i are mutually independent with the same first four moments about 
the origin, we have 

Hence 

i = j = k = l, 
i = j, k = lj i = k, j = lj i = l,j = k, 
otherwise. 

E[(Y' Ay)2] - J.L4 L:>~i + J.L~ L (L aiiakk + 2: atj + L aijaji) 
i i k#-i #i #i 

- (J.L4 - 3J.L~)a'a + J.L~ [tr(A)2 + 2tr(A2)] , (1.14) 

since A is symmetric and Ei E j a~j = tr(A2). Also, 

say, and 

so that 

and 

(O'Ay)2 = (b'y)2 = LLbibjYiYj, 
i j 

fJ'Ayy'AY = LLLbiajkYiYjYk, 
i j k 

E[(O' Ay)2] = J.L2 L b~ = J.L2b'b = J.L20' A 20 
i 

E[O' AYY' AY] = J.L3 L biaii = J.L3b'a = J.L30' Aa. 
i 



12 VECTORS OF RANDOM VARIABLES 

Finally, collecting all the terms and substituting into equation (1.13) leads to 
the desired result. 0 

EXERCISES Ib 

1. Suppose that Xl, X 2 , and X3 are random variables with common mean 
fl, and variance matrix 

Var[X] = u 2 

( ~
1 o 

1 
I 
'4 

2. If Xl, X 2 , ••• , Xn are independent random variables with common mean 
fl, and variances u?, u~, ... , u;, prove that I:i(Xi - X)2 I[n(n -1)] is an 
unbiased estimate of var[ X]. 

3. Suppose that in Exercise 2 the variances are known. Let X w = I:i WiXi 
be an unbiased estimate of fl, (Le., I:i Wi = 1). 

(a) Prove that var[Xw] is minimized when Wi <X l/ur Find this min­
imum variance Vrnin. 

(b) Let S! = L:i Wi (Xi - Xw)2/(n - 1). If WW; = a (i = 1,2, ... , n), 
prove that E[S!] is an unbiased estimate of Vrnin. 

4. The random variables Xl, X 2 , ••• , Xn have a common nonzero mean fl" 
a common variance u 2 , and the correlation between any pair of random 
variables is p. 

( a) Find var[X] and hence prove that -1 I (n - 1) < P < 1. 

(b) If 

Q = a ~X; +b (~Xi)2 
is an unbiased estimate of u 2 , find a and b. Hence show that, in 
this case, 

Q _ n (Xi _ X)2 

-~(I-p)(n-1)" 
5. Let Xl, X 2 , • •• , Xn be independently distributed as N(fl" ( 2

). Define 
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and 
n-1 

1 "" 2 Q = 2(n _ 1) ~(Xi+1 - Xi) . 
• =1 

(a) Prove that var(82) = 20-
4 j(n - 1). 

(b) Show that Q is an unbiased estimate of 0-2 • 

(c) Find the variance of Q and hence show that as n -+ 00, the effi­
ciency of Q relative to 8 2 is ~. 

1.6 MOMENT GENERATING FUNCTIONS AND INDEPENDENCE 

If X and tare n x 1 vectors of random variables and constants, respectively, 
then the moment generating function (m.g.f.) of X is defined to be 

Mx(t) = E[exp(t'X»). 

A key result about m.g.f.'s is that if Mx(t) exists for all Iltll < to (to> 0) 
(i.e., in an interval containing the origin), then it determines the distribution 
uniquely. Fortunately, most of the common distributions have m.g.f. 's, one 
important exception being the t-distribution (with some of its moments being 
infinite, including the Cauchy distribution with 1 degree offreedom). We give 
an example where this uniqueness is usefully exploited. It is assumed that the 
reader is familiar with the m.g.f. of X~: namely, (1- 2t)-r/2. 

EXAMPLE 1.10 Suppose that Qi '" X~i for i = 1,2, and Q = Q1 - Q2 is 
statistically independent of Q2. We now show that Q '" X~, where r = r1 -r2. 
Writing 

(1 - 2t)-rl/2 E[exp(tQ1») 

E[exp(tQ + tQ2») 

- E[exp(tQ»)E[exp(tQ2») 

E[exp(tQ»)(l - 2t)-1/2, 

we have 
E[exp(tQ») = (1 - 2t)-h-r2)/2, 

which is the m.g.f. of X~. o 

Moment generating functions also provide a convenient method for proving 
results about statistical independence. For example, if Mx(t) exists and 

Mx(t) = MX(t1, ... , tr , 0, ... , O)Mx(O, ... , 0, tr+1' ... ' tn ), 
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then Xl = (X1, ... ,Xr )' andX2 = (Xr +1,' .. 'Xn )' are statistically indepen­
dent. An equivalent result is that Xl and X 2 are independent if and only if 
we have the factorization 

Mx(t) = a(tI, ... , tr)b(tr+l, ... , tn) 

for some functions a(·) and b(·). 

EXAMPLE 1.11 Suppose that the joint distribution of the vectors of ran­
dom variables X and Y have a joint m.g.f. which exists in an interval contain­
ing the origin. Then if X and Yare independent, so are any (measurable) 
functions of them. This follows from the fact that if c(·) and d(·) are suitable 
vector functions, 

E[exp{s'c(X) + s'd(Y)} = E[exp{s'c(X)}]E[exp{s'd(Y)}] = a(s)b(t), 

say. This result is, in fact, true for any X and Y, even if their m.g.f.'s do not 
exist, and can be proved using characteristic functions. 0 

Another route .that we shall use for proving independence is via covariance. 
It is well known that cov[X, Y] = 0 does not in general imply that X and 
Y are independent. However, in one important special case, the bivariate 
normal distribution, X and Y are independent if and only if cov[X, Y] = O. A 
generalization of this result applied to the multivariate normal distribution is 
given in Chapter 2. For more than two variables we find that for multivariate 
normal distributions, the variables are mutually independent if and only if 
they are pairwise independent. Bowever, pairwise independence does not 
necessarily imply mutual independence, as we see in the following example. 

EXAMPLE 1.12 Suppose that Xl, X 2 , and X3 have joint density function 

(27r) -3/2 exp [- ~xt + x~ + xm 
x {I + XIX2X3 exp [-Hx~ + x~ + x~)]} 

-00 < Xi < 00 (i = 1,2,3). 

Then the second term in the braces above is an odd function of X3, so that 
its integral over -00 < X3 < 00 is zero. Hence 

(27r)-1 exp [-~(x~ + xm 
!I (Xd!z(X2), 

and Xl and X 2 are independent N(O,l) variables. Thus although Xl, X 2 , 

and X3 are pairwise independent, they are not mutually independent, as 
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EXERCISES Ie 

1. If X and Y are random variables with the same variance, prove that 
cov[X + Y, X - Y] = O. Give a counterexample which shows that zero 
covariance does not necessarily imply independence. 

2. Let X and Y be discrete random variables taking values 0 or 1 only, 
and let pr(X = i, Y = j) = Pij (i = 1, OJ j = 1,0). Prove that X and Y 
are independent if and only if cov[X, Y] = o. 

3. If X is a random variable with a density function symmetric about zero 
and having zero mean, prove that cov[X, X2] = O. 

4. If X, Y and Z have joint density function 

f(x,y,z) = i(1 + xyz) (-1 < x,y,z < 1), 

prove that they are pairwise independent but not mutually independent. 

MISCElLANEOUS EXERCISES I 

1. If X and Y are random variables, prove that 

var[X) = Ey{ var[XJYJ} + vary{E[XJYJ}. 

Generalize this result to vectors X and Y of random variables. 

( 
5 2 3) 

Var[X) = 2 3 0 . 
303 

(a) Find the variance of Xl - 2X2 + X 3 • 

(b) Find the variance matrix of Y = (Yi, }2)', where Yl = Xl + X 2 

and Y2 = Xl +X2 +X3 • 

3. Let Xl, X2, . .. , Xn be random variables with a common mean f.L. Sup­
pose that cov[Xi , Xj) = 0 for all i and j such that j > i + 1. If 

i=l 

and 
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prove that 

E [3Ql - Q2] = var[X]. 
n(n - 3) 

4. Given a random sample X l ,X2,X3 from the distribution with density 
function 

f(x) = ~ 

find the variance of (Xl - X 2)2 + (X2 - X3)2 + (X3 - Xl)2. 

5. If Xl, ... , Xn are independently and identically distributed as N(O, 0"2), 
and A and B are any n x n symmetric matrices, prove that 

Cov[X' AX, X'BX] = 20"4 tr(AB). 



2 
Multivariate Normal Distribution 

2.1 DENSITY FUNCTION 

Let E be a positive-definite n x n matrix and I-L an n-vector. Consider the 
(positive) function 

where k is a constant. Since E (and hence E-l by A.4.3) is positive-definite, 
the quadratic form (y -I-L),E-l(y - I-L) is nonnegative and the function f is 
bounded, taking its maximum value of k-1 at y = I-L. 

Because E is positive-definite, it has a symmetric positive-definite square 
root El/2, which satisfies (El/2)2 = E (by A.4.12). 

Let z = E-1/2(y - I-L), so that y = El/2 z + I-L. The Jacobian of this 
transformation is 

J = det (8Yi
) = det(El /2) = [det(EW/2. 

8z j 

Changing the variables in the integral, we get 

L:··· L: exp[-~(y -1-L)'E-1(y -I-L)] dYl·· ·dYn 

L: ... L: exp( _~z'El/2E-lEl/2z)IJI dZl ... dZn 

L: ... L: exp(-~z'z)IJI dz1 ··• dZn 

17 
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,(,,, ,"CO 

- PI [11 exp( -~zf) dZi 
i=:I. J -(X) 

n 

i=l 

(27r)n/2 det(:E)1/2. 

Since f > 0, it follows that if k = (27r)n/2 det(:E)1/2, then (2.1) represents a 
density function. 

Definition 2.1 The distribution corresponding to the density (2.1) is called 
the multivariate normal distribution. 

THEOREM 2.1 If a random vector Y has density (2.1), then E[Y] = I-L 
and Var[Y] = :E. 

Proof. Let Z = :E-1/2(y - I-L). Repeating the argument above, we see, using 
the change-of-variable formula, that Z has density 

f[y(z)lIJI 

(2.2) 

(2.3) 

The factorization of the joint density function in (2.2) implies that the Zi are 
mutually independent normal variables and Zi '" N(O, 1). Thus E[Z] = 0 and 
Var[Z] = In, so that 

E[Y] = E[:E1/2Z + I-L] = :E1
/
2 E[Z] + f-L = I-L 

and 
Var[Y] = Var[:E1/ 2Z + I-L] = Var[:E1/2Z] = :El/2In:El/2 = :E. 0 

We shall use the notation Y ,...., Nn(I-L,:E) to indicate that Y has the density 
(2.1). When n = 1 we drop the subscript. 

EXAMPLE 2.1 Let Zl, .. " Zn be independent N(O,l) random variables. 
The density of Z = (Zr, ... , Zn)' is the product of the univariate densities 
given by (2.2), so that by (2.3) the density of Z is of the form (2.1) with 
I-L = 0 and :E = In [Le., Z '" Nn(O, In)]. 0 

We conclude that if Y '" Nn(I-L,:E) and Y = :E1/ 2 Z + f-L, then Z = 
:E-1 / 2(y - f-L) and Z '" Nn(O,In). The distribution of Z is the simplest and 
most fundamental example of the multivariate normal. Just as any univariate 
normal can be obtained by rescaling and translating a standard normal with 
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mean zero and variance 1, so can any multivariate normal be thought of as 
a rescaled and translated Nn(O, In). Multiplying by :E1 / 2 is just a type of 
rescaling of the the elements of Z, and adding J1, is just a translation by J1,. 

EXAMPLE 2.2 Consider the function 

1 
f(x,y) = 2 (1 2)1 

7r - P 2 (1a;(1y 

X exp {_ 1 2 [(X - ~a;)2 _ 2p (X - f-La;)(Y - f-Ly) + (y - ~y)2]} 
2(1- P ) (1a; (1a;(1y (1y 

where (1a; > 0, (1y > 0, and Ipi < 1. Then f is of the form (2.1) with 

The density f above is the density of the bivariate normal distribution. 0 

EXERCISES 2a 

1. Show that 

f(Yl,Y2) = k-1 exp[-H2y~ + y~ + 2YIY2 - 22Yl - 14Y2 + 65)] 

is the density of a bivariate normal random vector Y = (Y1 , Y2)'. 

(a) Find k. 

(b) Find E[Y] and Var[Y]. 

2. Let U have density 9 and let Y = A(U + c), where A is nonsingular. 
Show that the density f of Y satisfies 

f(y) = g(u)/I det(A)I, 

where y = A(u + c). 

3. (a) Show that the 3 x 3 matrix 

E~O ! n 
is positive-definite for p > - t. 

(b) Find :E1/ 2 when 
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2.2 MOMENT GENERATING FUNCTIONS 

We can use the results of Section 2.1 to calculate the moment generating 
fUnction (m.gJ.) of the multivariate normal. First, if Z ,...., Nn(O, In), then, by 
the independence of the Zi'S, the m.gJ. of Z is 

E[exp(t'Z)] E [exp (ttiZi )] 

- E [fi eXp(tiZi)] 

n 

- II E [exp(tiZi)] 
i=l 

n 

- II exp(~t;) 
i=l 

exp(~t't). (2.4) 

Now if Y '" Nn(l-t, E), we can write Y = E1/2Z + I-t, where Z '" Nn(O, In). 
Hence using (2.4) and putting s = E1/2t, we get 

E[exp(t'Y)] - E[exp{t'(E1/2Z + I-t)}] 
E[exp(s'Z)) exp(t' I-t) 

- exp( ~s' s) exp( t' I-t) 

- exp( ~t'E1/2 E1/2t + t' I-t) 
- exp(t' I-t + ~t'Et). (2.5) 

Another well-known result for the univariate normal is that if Y '" N(p"a2 ), 

then aY + b is N(ap, + b, a2
(

2
) provided that a ::f. O. A similar result is true 

for the multivariate normal, as we see below. 

THEOREM 2.2 Let Y '" Nn(/L, E), C be an m x n matrix of rank m, and 
d be an m x 1 vector. Then CY + d '" Nm(CI-t + d, CEC'). 

Proof. The m.gJ. of CY + d is 

E{exp[t'(CY + d)]} E{exp[(C't)'Y + t'd]} 

exp[(C't)' /L + ~(C't)'EC't + t'd] 

- exp[t'(C/L + d) + ~t'CEC't). 

Since C:EC' is positive-definite, the equation above is the moment generating 
function of Nm(CI-t + d, CEC'). We stress that C must be of full rank to 
ensure that CEC' is positive-definite (by A.4.5), since we have only defined 
the multivariate normal for positive-definite variance matrices. 0 
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COROLLARY If Y = AZ + 1-£, where A is an n x n nonsingular matrix, 
then Y "" Nn(l-£, AA'). 
Proof. We replace Y, 1-£, E and d by Z, 0, In and 1-£, respectively, in Theorem 
2.2. 0 

EXAMPLE 2.3 Suppose that Y "" Nn(O, In) and that T is an orthogonal 
matrix. Then, by Theorem 2.2, Z = T'Y is Nn(O, In), since T'T = In. 0 

In subsequent chapters, we shall need to deal with random vectors of the 
form CY, where Y is multivariate normal but the matrix C is not of full rank. 
For example, the vectors of fitted values and residuals in a regression are of 
this form. In addition, the statement and proof of many theorems become 
much simpler if we admit the possibility of singular variance matrices. In 
particular we would like the Corollary above to hold in some sense when C 
does not have full row rank. 

Let Z "" Nm(O, 1m), and let A be an n x m matrix and 1-£ an n x 1 vector. 
By replacing El/2 by A in the derivation of (2.5), we see that the m.g.f. of 
Y = AZ + 1-£ is exp(t'1-£ + ~t'Et), with E = AA'. Since distributions having 
the same m.g.f. are identical, the distribution of Y depends on A only through 
AA'. We note that E[Y] = AE[Z] + 1-£ = 1-£ and Var[Y] = A Var[Z]A' = 
AA'. These results motivate us to introduce the following definition. 

Definition 2.2 A random n x 1 vector Y with mean 1-£ and variance matrix E 
has a multivariate normal distribution if it has the same distribution as AZ + 
1-£, where A is any n x m matrix satisfying E = AA' and Z "" Nm(O, 1m). We 
write Y "" AZ + 1-£ to indicate that Y and AZ + 1-£ have the same distribution. 

We need to prove that whenE is positive-definite, the new definition is 
equivalent to the old. As noted above, the distribution is invariant to the 
choice of A, as long as E = AA'. If E is of full rank (or, equivalently, is 
positive-definite), then there exists a nonsingular A with E = AA', by AA.2. 
If Y is multivariate normal by Definition 2.1, then Theorem 2.2 shows that 
Z = A -1 (Y - 1-£) is Nn(O, In), so Y is multivariate normal in the sense of 
Definition 2.2. Conversely, if Y is multivariate normal by Definition 2.2, then 
its m.g.f. is given by (2.5). But this is also the m.g.f. of a random vector 
having dellsity (2.1), so by the uniqueness of the m.g.f.'s, Y must also have 
density (2.1). 

If E is of rank m < n, the probability distribution of Y cannot be expressed 
in terms of a density function. In both cases, irrespective of whether E is 
positive-definite or just positive-semidefinite, we saw above that the m.g.f. is 

exp (t' 1-£ + ~t'Et) . (2.6) 

We write Y "" Nm(l-£, E) as before. When E has less than full rank, Y is 
sometimes said to have a singular distribution. From now on, no assumption 
that E is positive-definite will be made unless explicitly stated. 
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EXAMPLE 2.4 Let Y '" N(/-t, (52) and put yl = (Y, -Y). The variance­
covariance matrix of Y is 

Put Z = (Y - /-t)/(5. Then 

1 
-1 

-1 ) 
1 . 

Y = ( _~ ) Z + ( ~ ) = AZ + ~ 
and 

E = AA/. 

Thus Y has a multivariate normal distribution. o 
EXAMPLE 2.5 We can show that Theorem 2.2 remains true for random 
vectors having this extended definition of the multivariate normal without the 
restriction on the rank of A. If Y '" Nn(~' E), then Y '" AZ +~. Hence 
CY '" CAZ + C~ = HZ + b, say, and CY is multivariate normal with 
E[CY] = b = C~ and Var[CY] = BB' = CANC' = CEC/. 0 

EXAMPLE 2.6 Under the extended definition, a constant vector has a 
multivariate normal distribution. (Take A to be a matrix of zeros.) In par­
ticular, if A is a zero row vector, a scalar constant has a (univariate) normal 
distribution under this definition, so that we regard constants (with zero vari­
ance) as being normally distributed. 0 

EXAMPLE 2.7 (Marginal distributions) Suppose that Y '" Nn(~, E) and 
we partition Y, ~ and E conformably as 

Then Y 1 '" Np(~l' Ell). We see this by writing Y 1 = BY, where B = (Ip, 0). 
Then B~ = ~l and BEB' = Eu , so the result follows from Theorem 2.2. 
Clearly, Y 1 can be any subset of Y. In other words, the marginal distributions 
of the multivariate normal are multivariate normal. 0 

Our final result in this section is a characterization of the multivariate 
normal. 

THEOREM 2.3 A random vector Y with variance-covariance matrix E and 
mean vector ~ has a Nn(~, E) distribution if and only if a/y has a univariate 
normal distribution for every vector a. 

Proof. First, assume that Y '" Nn(~, E). Then Y '" AZ + ~, so that a/y '" 
a l AZ + a l ~ = (A/a)'Z + a/~. This has a (univariate) normal distribution in 
the sense of Definition 2.2. 
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Conversely, assume that t'Y is a univariate normal random variable for all 
t. Its mean is t' I-t and the variance is t'Et. Then using the formula for the 
m.g.f. of the univariate normal, we get 

E{exp[s(t'Y)]} = exp[s(t'I-t) + ~s2(t'Et)]. 

Putting s = 1 shows that the m.g.f. of Y is given by (2.6), and thus Y ,...., 
Nn(J-t,E). 0 

We have seen in Example 2.7 that the multivariate normal has normal 
marginalsj and in particular the univariate marginals are normal. However, 
the converse is not true, as the following example shows. Consider the function 

which is nonnegative (since 1 + ye-y2 > 0) and integrates to 1 (since the 
integral r~: ye-y2

/ 2 dy has value 0). Thus f is a joint density, but it is not 
bivariate normal. However, 

1 1 1+00 

I'<'L exp( - ~y~) x I'<'L exp( - ~y~) dY2 
y 27r y 27r -00 

1 1 1+00 

+ I'<'LYl exp( - ~Yn x I'<'L Y2 exp( - ~y~) dY2 
y 27r y 27r -00 

~ exp( - ~y~), 

so that the marginals are N(O, 1). In terms of Theorem 2.3, to prove that Y 
is bivariate normal, we must show that a'Y is bivariate normal for all vectors 
a, not just for the vectors (1,0) and (0,1). Many other examples such as 
this are known; see, for example, Pierce and Dykstra [1969], Joshi [1970], and 
Kowalski [1970]. 

EXERCISES 2b 

1. Find the moment generating function of the bivariate normal distribu­
tion given in Example 2.2. 

2. If Y,""" Nn(J-t, E), show that Yi '" N(P,i, au). 

3. Suppose that Y '" N 3 (1-t, E), where 

~~(n andE~U~D 
Find the joint distribution of Zl = Y1 + Y2 + Y3 and Z2 = Yl - Y2. 

4. Given Y '" Nn(I-t,In), find the joint density of a'Y and b'Y, where 
a'b = 0, and hence show that a'Y and b'Y are independent. 
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5. Let (Xi, Yi), i = 1,2, ... ,n, be a random sample from a bivariate normal 
distribution. Find the joint distribution of (X, Y). 

6. If Yl and Y2 are random variables such that Yi + Y2 and Yl - Y2 are 
independent N(O, 1) random variables, show that Yl and Y2 have a 
bivariate normal distribution. Find the mean and variance matrix of 
Y = (Yl, Y2 )'. 

7. Let Xl and X 2 have joint density 

Show that Xl and X 2 have N(O, 1) marginal distributions. 

(Joshi [1970]) 

8. Suppose that Yl , Y2 , • •• , Yn are independently distributed as N(O,l). 
Calculate the m.g.f. of the random vector 

(Y, Yl - Y, Y2 - Y, ... , Yn - Y) 

and hence show that Y is independent of 'Ei(Yi _ y)2. 

(Hogg and Craig [1970]) 

9. Let Xl, X 2 , and X3 be LLd. N(O,l). Let 

Yl (Xl + X 2 + X 3 )/V3, 
- (Xl - X2)/v'2, 

(Xl + X 2 - 2X3)/V6. 
Show that Yl , Y2 and Y3 are LLd. N(O,l). (The transformation above 
is a special case of the so-called Helmert transformation.) 

2.3 STATISTICAL INDEPENDENCE 

For any pair of random variables, independence implies that the pair are 
uncorrelated. For the normal distribution the converse is also true, as we now 
show. 

THEOREM 2.4 Let Y '" Nn(J.L, I:.) and partition Y, f-t and I:. as in Example 
2.7. Then Y land Y 2 are independent if and only if I:.12 = 0. 

Proof. The m.g.f. of Y is exp (t' f-t + ~t' I:.t). Partition t conformably with Y. 
Then the exponent in the m.g.f. above is 

t~f-tl + t~f-t2 + ~t~I:.lltl + ~t~I:.22t2 + t~I:.12t2. (2.7) 



STATISTICAL INDEPENDENCE 25 

If E12 = 0, the exponent can be written as a function of just tl plus a function 
of just t 2, so the m.g.f. factorizes into a term in tl alone times a term in t2 
alone. This implies that Y I" and Y 2 are independent. 

Conversely, if Y1 and Y2 are independent, then 

where M is the m.g.f. of Y. By (2.7) this implies that t~E12t2 = 0 for 
all tl and t 2, which in turn implies that E12 = O. [This follows by setting 
tl = (1,0, ... ,0)', etc.] 0 

We use this theorem to prove our next result. 

THEOREM 2.5 Let Y ....., Nn(/-L, E) and define U = AY, V = BY. Then 
U and V are independent if and only if Cov[U, V] = AEB' = O. 

Proof. Consider 

Then, by Theorem 2.2, the random vector W is multivariate normal with 
variance-covariance matrix 

Var[W] = ( ~ ) Var[Y) (A' ,B') = ( ~~1: AEB' ) 
REB' . 

Thus, by Theorem 2.4, U and V are independent if and only if AEB' = O. 0 

EXAMPLE 2.8 Let Y ....., N n (/-L,0'2In ) and let In be an n-vector of 1's. 
Then the sample mean Y = n- 1 Zi Yi is independent of the sample variance 
8 2 = (n - 1)-1 L:i(Yi - y)2. To see this, let I n = Inl~ be the n x n matrix 
of 1's. Then Y = n-ll~ Y (= AY, say) and 

~-Y 
Y2 -Y 

Yn-Y 

say. Now 

A~B' -II' 21 (I -IJ) 2 -11 2 -11 0 ~ = n nO' n n - n n = 0' n n - 0' n n = , 

so by Theorem 2.5, Y is independent of (~ - Y, ... , Yn - Y), 
independent of 8 2. 

and hence 
o 

EXAMPLE 2.9 Suppose that Y ....., Nn(/-L, E) with E positive-definite, and 
Y is partitioned into two subvectors y' = (Yi, Y~), where Y1 has di~ension 
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T. Partition ~ and j;' similarly. Then the conditional distribution of Yl given 
Y 2 = Y2 is NAILl -:- :£12 :E2"l(Y2 - J-L2),:E ll - :Elz:E2"l:E2d· 

To derive this, put 

U 1 Y 1 - J-Ll - :E12:E2"21(Y2 - J-L2), 

U 2 Y 2 - J-L2· 

Then 

so that U is multivariate normal with mean 0 and variance matrix A:EA' 
given by 

Hence, U 1 and U 2 are independent, with joint density of the form g(Ul, U2) = 
gl(Ul)g2(U2). 

Now consider the conditional density function of Y 1 given Y 2: 

(2.8) 

and write 

Ul Yl - J-Ll - :E12 :E2"21(Y2- J-L2), 

u2 - Y2 - J-L2· 

By Exercises 2a, No.2, h(Y2) = g2(U2) and f(Yl, Y2) = g1(U1)g2(U2), so that 
from (2.8), f1!2(YlIY2) = g1 (ud = gl (Yl - J-L1 - :E12:E2"l (Y2 - J-L2)). The result 
now follows from the fact that g1 is the density of the Nr(O,:Ell - :E12 :E2"l:E21 ) 
distribution. 0 

EXERCISES 2c 

1. If Y1 , Y2 , ••• , Yn have a multivariate normal distribution and are pairwise 
independent, are they mutually independent? 

2. Let Y '" Nn(p,ln, :E), where :E = (1- p)In + pJn and p> -l/(n - 1). 
When p = 0, Y and Li(Yi - y)2 are independent, by Example 2.8. Are 
they independent when p f= O? 
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3. Given Y ,...., N 3 (J-L, E), where 

E~U'U PO) 
1 P , 
P 1 

for what value(s) of P are Yi + Y2 + Y3 and Y1 - Y2 - Y3 statistically 
independent? 

2.4 DISTRIBUTION OF QUADRATIC FORMS 

Quadratic forms in normal variables arise frequently in the theory of regression 
in connection with various tests of hypotheses. In this section we prove some 
simple results concerning the distribution of such quadratic forms. 

Let Y ,..., Nn(J-L, E), where E is positive-definite. We are interested in the 
distribution of random variables of the form yl A Y = L:?=1 L:;=1 aij Y,; 1j. 
Note that we can always assume that the matrix A is symmetric, since if 
not we can replace aij with ~(aij + aji) without changing the value of the 
quadratic form. Since A is symmetric, we can diagonalize it with an orthog­
onal transformation; that is, there is an orthogonal matrix T and a diagonal 
matrix D with 

TI AT = D = diag(d1 , ... , dn ). (2.9) 

The diagonal elements di are the eigenvalues of A and can be any real num­
bers. 

We begin by assuming that the random vector in the quadratic form has a 
Nn(O,In) distribution. The general case can be reduced to this through the 
usual transformations. By Example 2.3, if T is an orthogonal matrix and Y 
has an Nn(O, In) distribution, so does Z = T/y. Thus we can write 

n 

y/AY = y/TDT/y = Z/DZ = L:diZl, 
i=l 

(2.10) 

so the distribution of yl AY is a linear combination of independent X~ random 
variables. Given the values of d i , it is possible to calculate the distribution, 
at least numerically. Farebrother [1990] describes algorithms for this. 

There is an important special case that allows us to derive the distribution 
of the quadratic form exactly, without recourse to numerical methods. If r of 
the eigenvalues di are 1 and the remaining n - r zero, then the distribution 
is the sum of r independent X~'s, which is X~. We can recognize when the 
eigenvalues are zero or 1 using the following theorem. 

THEOREM 2.6 Let A be a symmetric matrix. Then A has r eigenvalues 
equal to 1 and the rest zero if and only if A2 = A and rank A = r. 
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Proof. See A.6.1. o 
Matrices A satisfying A 2 = A are called idempotent. Thus, if A is sym­

metric, idempotent, and has rank r, we have shown that the distribution of 
yl AY must be X~. The converse is also true: If A is symmetric and yl AY 
is X~, then A must be idempotent and have rank r. To prove this by The­
orem 2.6, all we need to show is that r of the eigenvalues of A are 1 and 
the rest are zero. By (2.10) and Exercises 2d, No.1, the m.g.f. of Y' AY 
is n~=1 (1 - 2di t)-1/2. But since Y' AY is X~, the m.g.f. must also equal 
(1 - 2t)-r/2. Thus 

n 

II(I- 2di t) = (1- 2W, 
i=1 

so by the unique factorization of polynomials, r of the di are 1 and the rest 
are zero. 

We summarize these results by stating them as a theorem. 

THEOREM 2.7 Let Y '" Nn(O, In) and let A be a symmetric matrix. Then 
yl AY is X~ if and only irA is idempotent of rank r. 

EXAMPLE 2.10 Let Y '" NnUL, cr2In) and let 8 2 be the sample variance 
as defined in Example 2.8. Then (n - 1)82/ cr2 

'" X~-1' To .see this, recall 
that (n - 1)82 /cr2 can be written as cr-2yl(In - n-1J n )Y. Now define Z = 
cr- 1(y - {tIn), so that Z'" Nn(O,In). Then we have 

(n - 1)82 /cr2 = ZI(In - n-1J n )Z, 

where the matrix In - n-1J n is symmetric and idempotent, as can be veri­
fied by direct multiplication. To calculate its rank, we use the fact that for 
symmetric idempotent matrices, the rank and trace are the same (A.6.2). We 
get 

so the result follows from Theorem 2.7. 

tr(In - n-1J n ) 

tr(In) - n -1 tr(Jn) 

n -1, 

o 

Our next two examples illustrate two very important additional properties 
of quadratic forms, which will be useful in Chapter 4. 

EXAMPLE 2.11 Suppose that A is symmetric and Y '" Nn(O, In). Then if 
Y' A Y is X~, the quadratic form Y' (In - A) Y is X~-r' This follows because A 
must be idempotent, which implies that (In - A) is also idempotent. (Check 
by direct multiplication.) Furthermore, 

rank(In - A) = tr(In - A) = tr(In) - tr(A) = n - r, 
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so that Y'(In - A)Y is X~-r' 0 

EXAMPLE 2.12 Suppose that A and B are symmetric, Y '" Nn(O, In), 
and Y'AY and Y'BY are both chi-squared. Then Y'AY and Y'BY are 
independent if and only if AB = O. 

To prove this, suppose first that AB = O. Since A and B are idempo­
tent, we can write the quadratic forms as Y'AY = YA'AY = IIAYl12 and 
Y'BY = IIBYII2. By Theorem 2.5, AY and BY are independent, which 
implies that the quadratic forms are independent. 

Conversely, suppose that the quadratic forms are independent. Then their 
sum is the sum of independent chi-squareds, which implies that Y'(A + B)Y 
is also chi-squared. Thus A + B must be idempotent and 

A + B = (A + B)2 = A 2 + AB + BA + B2 = A + AB + BA + B, 

so that 
AB +BA = O. 

Multiplying on the left by A gives AB + ABA = 0, while multiplying on the 
right by A gives ABA + BA = OJ hence AB = BA = O. 0 

EXAMPLE 2.13 (Hogg and Craig [1958, 1970]) Let Y '" Nn (8, 0"2In) and 
let Qi = (Y - 8)'Pi(Y - 8)/0"2 (i = 1,2). We will show that if Qi '" X~. and 
QI - Q2 > 0, then QI - Q2 and Q2 are independently distributed as X;1-r2 
and X~2' respectively. 

We begin by noting that if Qi '" X~i' then P~ = Pi (Theorem 2.7). Also, 
QI - Q2 > 0 implies that PI - P 2 is positive-semidefinite and therefore 
idempotent (A.6.5). Hence, by Theorem 2.7, QI - Q2 '" X~, where 

r rank(P l - P 2) 

tr(PI - P 2) 

- trPI - trP2 
rankPI - rankP2 

Also, by A.6.5, P IP 2 = P 2P I = P 2, and (PI - P 2 )P2 = O. Therefore, 
since Z = (Y - 8)/0"2", Nn(O,In ), we have, by Example 2.12, that QI - Q2 
[= Z'(PI - P 2)Z] is independent of Q2 (= Z'P2Z). 0 

We can use these results to study the distribution of quadratic forms when 
the variance-covariance matrix :E is any positive-semidefinite matrix. Suppose 
that Y is now Nn(O, :E), where :E is of rank 8 (8 < n). Then, by Definition 2.2 
(Section 2.2), Y has the same distribution as RZ, where :E = RR' and R is 
n x 8 of rank 8 (A.3.3). Thus the distribution of Y' AY is that of Z'R' ARZ, 
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which, by T~'leOTem 2.7, will be X~ if and only if RI AR is idempotent of rank 
r. However, this is not a very useful condition. A better one is contained in 
our next theorem. 

THEOREM 2.8 Suppose that Y '" Nn(O, ~), and A is symmetric. Then 
yl A Y is X~ if and only if r of the eigenvalues of A~ are 1 and the rest are 
zero. 

Proof. We assume that Y' AY = Z'R' ARZ is X~. Then R' AR is symmetric 
and idempotent with r unit eigenvalues and the rest zero (by A.6.1), and its 
rank equals its trace (A.6.2). Hence, by (A.1.2), 

r = rank(R' AR) = tr(R' AR) = tr(ARR') = tr(A~). 
Now, by (A.7.1), R'AR and ARR' = A~ have the same eigenvalues, with 
possibly different multiplicities. Hence the eigenvalues of A~ are 1 or zero. 
As the trace of any square matrix equals the sum of its eigenvalues (A.1.3), r 
of the eigenvalues of A~ must be 1 and the rest zero. The converse argument 

is just the reverse of the' one above. 0 

For nonsymmetric matrices, idempotence implies that the eigenvalues are 
zero or 1, but the converse is not true. However, when ~ (and hence R) has 
full rank, the fact that R' AR is idempotent implies that A~ is idempotent. 
This is because the equation 

R' ARR' AR = R' AR 

can be premultiplied by (R')-land postmultiplied by R' to give 

A~A~=A~. 

Thus we have the following corollary to Theorem 2.8. 

COROLLARY Let Y '" Nn(O, ~), where :E is positive-definite, and sup­
pose that A is symmetric. Then Y' AY is X~ if and only A:E is idempotent 
and has rank r. 

For other necessary and sufficient conditions, see Good [1969, 1970] and 
Khatri [1978]. 

Our final theorem concerns a very special quadratic form that arises fre­
quently in statistics. 

THEOREM 2.9 Suppose that Y '" NnUL, :E), where :E is positive-definite. 
Then Q = (Y - 1-£)':E-1(y - 1-£) <'oJ X;. 

Proof. Making the transformation Y = :E1/2 Z + 1-£ considered in Theorem 2.1, 
we get 

n 

Q = Z':EI/2:E-l:EI/2Z = Z'Z = L Z?' 
i=l 
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Since the Zl's are independent x~ variables, Q '" X~. 0 

EXERCISES 2d 

1. Show that the m.g.f. for (2.10) is n~(1- 2tdi )-1/2. 

2. Let Y '" Nn(O, In) and let A be symmetric. 

(a) Show that the m.g.f. of Y' AY is [det(ln - 2tA)]-1/2. 

(b) If A is idempotent ofrank r, show that the m.g.f. is (1 - 2t)-r/2. 

(c) Find the m.g.f. if Y '" Nn(O, ~). 

3. If Y '" N 2 (0, 12 ), find values of a and b such that 

aCYl - y2)2 + b(Yl + y2)2 '" X~· 

4. Suppose that Y '" N3 (0, In). Show that 

t [(Yl - y2)2 + (Y2 - y3 )2 + (Y3 - Yl)2] 

has a X~ distribution. Does some multiple of 

(Yl - y2 )2 + (Y2 - y3 )2 + ... + (Yn-l - Yn)2 + (Yn - Yd 

have a chi-squared distribution for general n? 

5. Let Y '" Nn(O, In) and let A and B be symmetric. Show that the joint 
m.g.f. of Y' AY and Y'BY is [det(ln - 2sA - 2tB)]-1/2. Hence show 
that the two quadratic forms are independent if AB = 0. 

MISCELLANEOUS EXERCISES 2 

1. Suppose that e '" N 3 (0, (1"213) and that Yo is N(O, (1"5), independently of 
the c:/s. Define 

}i = p}i-l + C:i (i = 1,2,3). 

(a) Find the variance-covariance matrix of Y = (Yl , Y2 , Y3 )'. 

(b) What is the distribution of Y? 

2. Let Y '" Nn(O, In), and put X = AY, U = BY and V = CY. Suppose 
that Cov[X, U] = ° and Cov[X, V] = 0. Show that X is independent 
ofU + V. 

3. If Yl , Y2 , ••• , Yn is a random sample from N(IL, (1"2), prove that Y is 
independent of L:~;ll (}i - }i+l)2. 

4. If X and Y are n-dimensional vectors with independent multivariate 
normal distributions, prove that aX + bY is also multivariate normal. 
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5. If Y '" Nn(O, In) and a is a nonzero vector, show that the conditional 
distribution of Y'Y given a'Y = 0 is X;-l' 

6. Let Y '" N n(f.Lln, :E), where :E = (1- p)In + plnl~ and p > -1/(n -1). 
Show that 2:i(Yi - y)2 /(1- p) is X;-l' 

7. Let Vi, i = 1, ... , n, be independent Np(/L,:E) random vectors. Show 
that 

is an unbiased estimate of :E. 

8. Let Y '" Nn(O, In) and let A and B be symmetric idempotent matrices 
with AB = BA = 0. Show that Y'AY, Y'BY and Y'(In - A - B)Y 
have independent chi-square distributions. 

9. Let (Xi,Yi), i = 1,2, ... ,n, be a random sample from a bivariate 
normal distribution, with means f.Ll and J-t2, variances a? and a~, and 
correlation p, and let 

(a) Show that W has a N2n(/L,:E) distribution, where 

(b) Find the conditional distribution of X given Y. 

10. If Y '" N 2 (O, :E), where :E = (aij), prove that 

( Y':E-ly _ Yl) '" X~. 
all 

). 

11. Let aD, al, ... , an be independent N(O, ( 2 ) random variables and define 

Yi = ai + c/Jai-l (i = 1,2, ... , n). 

Show that Y = (Yl , Y2 , • •• ,Yn )' has a multivariate normal distribution 
and find its variance-covariance matrix. (The sequence Yl , Y2 , ••• is 
called a moving average process of order one and is a commonly used 
model in time series analysis.) 

12. Suppose that Y rv Na(O, In). Find the m.gJ. of 2(Y1 Y2 - Y2 Y3 - YaYl)' 
Hence show that this random variable has the same distribution as that 
of 2Ul - U2 - U3 , where the U;'s are independent xi random variables. 
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13. Theorem 2.3 can be used as a definition of the multivariate normal 
distribution. If so, deduce from this definition the following results: 

(a) If ZI, Z2, ... ,Zn are LLd. N(O, 1), then Z '" Nn(O, In). 

(b) If Y '" Nn(J.t, "E), then Y has m.g.f. (2.5). 

(c) If"E is positive-definite, prove that Y has density function (2.1). 

14. Let Y = (YI , Y2 , ••• , Yn )' be a vector of n random variables (n > 3) 
with density function 

f(y) = (27T)-n/2 exp ( -! t Yl) { 1 + g[Yi exp( -!yl)l } , 

-00 < Yi < 00 (i = 1,2, ... ,n). 

Prove that any subset of n - 1 random variables are mutually indepen­
dent N(O, 1) variables. 

(Pierce and Dykstra [1969]) 

15. Suppose that Y = (YI , Yz, Y3, Y4 )' '" N4 (0,14 ), and let Q == YI Y2 - Y3 Y4 . 

(a) Prove that Q does not have a chi-square distribution. 

(b) Find the m.g.f. of Q. 

16. If Y "" Nn(O, In), find the variance of 

(YI - y2)2 + (Y2 - y3)2 + ... + (Yn-I - Yn)2. 

17. Given Y "" Nn(j.t, "E), prove that 

var[Y' AYl = 2 tr(A"EA"E) + 4j.t' A"EAj.t. 





3 
Linear Regression: Estimation and 

Distribution Theory 

3.1 LEAST SQUARES ESTIMATION 

Let Y be a random variable that fluctuates about an unknown parameter 1}i 

that is, Y = r} + c, where c is the fluctuation or error. For example, c may 
be a "natural" fluctuation inherent in the experiment which gives rise to 1}, 

or it may represent the error in measuring r}, so that r} is the true response 
and Y is the observed response. As noted in Chapter 1, our focus is on linear 
models, so we assume that r} can be expressed in the form 

r} = (30 + (31Xl + ... + (3p-1Xp-l, 

where the explanatory variables Xl,X2, ••• ,Xp-l are known constants (e.g., 
experimental variables that are controlled by the experimenter and are mea­
sured with negligible error), and the (3j (j = O,I, ... ,p - 1) are unknown 
parameters to be estimated. If the Xj are varied and n values, Y1 , Y2 , ... , Yn , 

of Yare observed, then 

(i = 1,2, . .. ,n), (3.1) 

where Xij is'the ith value of Xj. Writing these n equations in matrix form, we 
have 

Y1 XlO Xu X12 Xl,p-l (30 Cl 

Y2 X20 X2l X22 X2,p-1 (31 c2 
+ 

Yn ]XnO Xnl Xn2 Xn,p-l (3p-l cn 

or 
Y = X{3+c:, (3.2) 

35 
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where X10 = X20 = .,. = XnO = 1. The n x p matrix X will be called the 
regression matrix, and the Xii'S are generally chosen so that the columns of 
X are linearly independent; that is, X has rank p, and we say that X has 
full rank. However, in some experimental design situations, the elements of 
X are chosen to be 0 or 1, and the columns of X may be linearly dependent. 
In this case X is commonly called the design matrix, and we say that X has 
less than full rank. 

It has been the custom in the past to call the xi's the independent variables 
and Y the dependent variable. However, this terminology is confusing, so we 
follow the more contemporary usage as in Chapter 1 and refer to Xj as a 
explanatory variable or regressor and Y as the response variable. 

As we mentioned in Chapter 1, (3.1) is a very general model. For example, 
setting X'ij = x{ and k = p - 1, we have the polynomial model 

Again, 

is also a special case. The essential aspect of (3.1) is that it is linear in the 
unknown parameters (3j; for this reason it is called a linear model. In contrast, 

is a nonlinear model, being nonlinear in (32. 
Before considering the problem of estimating {3, we note that all the theory 

in this and subsequent chapters is developed for the model (3.2), where XiO is 
not necessarily constrained to be unity. In the case where XiO f= 1, the reader 
may question the use of a notation in which i runs from 0 to p - 1 rather 
than 1 to p. However, since the major application of the theory is to the case 
XiO = 1, it is convenient to "separate" (30 from the other (3j's right from the 
outset. We shall assume the latter case until stated otherwise. 

One method of obtaining an estimate of {3 is the method of least squares. 
This method consists of minimizing Ei E:~ with respect to {3j that is, setting 
(J = X{3, we minimize g'g = IIY - (J1I 2 subject to (J E C(X) = n, where n is 
the column space of X (= {y : y = Xx for any x}). If we let (J vary in n, 
IIY - (JUZ (the square of the length of Y - (J) will be a minimum for (J = 9 
when (Y - 8) J. n (cf. Figure 3.1). This is obvious geometrically, and it is 
readily proved algebraically as follows. 

We first note that iJ can be obtained via a symmetric idempotent (projec­
tion) matrix P, namely 9 = PY, where P represents the orthogonal projection 
onto n (see Appendix B). Then 

Y - (J = (Y - 9) + (9 - (J), 
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Fig. 3.1 The method of least squares consists of finding A such that AB is a minimum. 

where from P9 = 9, P' = P and p 2 = P, we have 

Hence 

(Y - 0)' (0 - 9) (Y - PY)'P(Y - 9) 
y' (In - P)P(Y - 9) 

- o. 

IIY - 9W - IIY - oW + 110 - 911 2 

> IIY - oW, 
with equality if and only if 9 = 0. Since Y - 0 is perpendicular to n, 

X'(Y - 0) == 0 

or 
X'o = X'Y. (3.3) 

Here 0 is uniquely determined, being the unique orthogonal projection of Y 
onto n (see Appendix B). 

We now assume that the columns of X are linearly independent so that 
there exists ,a unique vector !:J such that 0 == X!:J. Then substituting in (3.3), 
we have 

X'X!:J = X'Y, (3.4) 

the normal equations. As X has rank p, X'X is positive-definite (A.4.6) and 
therefore nonsingular. Hence (3.4) has a unique solution, namely, 

(3.5) 

Here!:J is called the (ordinary) least squares estimate of {3, and computational 
methods for actually calculating the estimate are given in Chapter 11. 
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We note tr.at 8 can also be obt.O'.ined by writing 

c' e: - (Y ~ X{3)' (Y - X(3) 

_ Y'y - 2(3'X'Y + (3'X'X(3 

[using the fact that (3'X'Y = ((3'X'Y)' = Y'X(3] and differentiating e:' e: with 
respect to (3. Thus from 8e:'e:/8(3 = 0 we have (A.8) 

-2X'Y + 2X'X(3 = 0 (3.6) 

or 
X'X(3 = X'Y. 

This solution for (3 gives us a stationary value of e:' e:, and a simple algebraic 
identity (see Exercises 3a, No.1) confirms that (:J is a minimum. 

In addition to the method of least squares, several other methods are used 
for estimating (3. These are described in Section 3.13. 

Suppose now that the columns of X are not linearly independent. For a 
particular fJ there is no longer a unique (:J such that fJ = X(:J, and (3.4) does 
not have a unique solution. However, a solution is given by 

(:J = (X'X)-X'Y, 

where (X'X)- is any generalized inverse of (X'X) (see A.lO). Then 

fJ = X(:J = X(X'X)-X'Y = PY, 

and since P is unique, it follows that P does not depend on whic.l} generalized 
inverse is used. 

We denote the fitted values X(:J by Y = (YI , ... , Yn)'. The elements of the 
vector 

Y - Y - Y - X(:J 
(In - P)Y, say, (3.7) 

are called the residuals and are denoted bye. The minimum value of e:' e:, 
namely 

e' e (Y - X(:J)' (Y - X(:J) 
y'y - 2(:J'X'Y + (:J'X'X(:J 
y'y - (:J'X'Y + (:J'[X'X(:J - X'Yj 

- y'y - (:J'X'Y [by (3.4)], 

- y'y - (:J'X'X(:J, 
(3.8) 

(3.9) 

is called the residual sum of squares (RSS). As fJ = X(:J is unique, we note 
that Y, e, and RSS are unique, irrespective of the rank of X. 
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EXAMPLE 3.1 Let Y1 and Y2 be independent random variables with means 
a and 2a, respectively. We will now find the least squares estimate of a and 
the residual sum of squares using both (3.5) and direct differentiation as in 
(3.6). Writing 

we have Y = X{3 + e, where X = ( ; ) and {3 = a. Hence, by the theory 

above, 

& (X'X)-lX'Y 

- { (1,2) ( ; ) } -1 (1, 2)Y 

- H1,2) ( ~ ) 
!(Y1 + 2Y2) 

and 

e'e - y'y - i:J'X'Y 
- y'y - &(Y1 + 2Y2) 

- y1
2 + y2

2 - !(Y1 + 2y2)2. 

We note that 

. The problem can also be solved by first principles as follows: e' e = (Y1 -

a)2 + (Y2 - 2a)2 and 8e'e/8a = 0 implies that & = !(Yi'+ 2Y2). FUrther, 

e'e - (Y1 - &)2 + (Y2 - 2&)2 

Yi2 + y2
2 - &(2Y1 + 4Y2) + 5&2 

y1
2 + y2

2 
- !(Y1 + 2y2)2. 

In practice, both approaches are used. o 

EXAMPLE 3.2 Suppose that Y1, Y2, ... , Yn all have mean (3. Then the 
least squares estimate of (3 is found by minimizing L:/Yi - (3)2 with respect to 
(3. This leads readily to $ = Y. Alternatively, we can express the observations 
in terms of the regression model 

Y = 1n(3 + e, 
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where In is an n-dimensional column of 1 's. Then 

~ = (l~ln)-ll~ Y = .!.1~ y = Y. 
n 

Also, 

1 1 1 

P = In (1' I n)-ll' =.!. 1 1 1 1 
= -In. 0 n n n n 

1 1 1 

We have emphasized that P is the linear transformation representing the 
orthogonal projection of n-dimensional Euclidean space, lRn, onto n, the space 
spanned by the columns of x. Similarly, In - P represents the orthogonal 
projection of lRn onto the orthogonal complement, n.l.., of n. Thus Y = 
PY + (In - P)Y represents a unique orthogonal decomposition of Y into two 
components, one in n and the other in n.l... Some basic properties of P and 
(In -P) are proved in Theorem 3.1 and its corollary, although these properties 
follow directly from the more general results concerning orthogonal projections 
stated in Appendix B. For a more abstract setting, see Seber [1980]. 

THEOREM 3.1 Suppose that X isnxp ofrankp, so thatP = X(X'X)-lX'. 
Then the following hold. 

(i) P and In - P are symmetric and idempotent. 

(ii) rank(In - P) = tr(In - P) = n - p. 

(iii) PX = X. 

Proof. (i) P is obviously symmetric and (In - P)' = In - P'= In - P. Also, 

p2 _ X(X'X)-lX'X(X'X)-lX' 

_ XIp(X'X)-lX' = P, 

and (In - P)2 = In - 2P + p 2 = In - P. 
(ii) Since In - P is symmetric and idempotent, we have, by A.6.2, 

where 

rank(In - P) - tr(In - P) 

n - tr(P), 

tr(P) - tr[X(X'X)-lX'] 

- tr[X'X(X'X)-l] 

- tr(Ip) 

- p. 

(by A.1.2) 



LEAST SQUARES ESTIMATION 41 

(iii) PX = X(X'X)-l X'X = X. 0 

COROLLARY If X has rank r (r < p), then Theorem 3.1 still holds, but 
with p replaced by r. 
Proof. Let Xl be an n x r matrix with r linearly independent columns and hav­
ing the same column space as X [Le., C(Xd = OJ. Then P = Xl(X~Xl)-lX~, 
and (i) and (ii) follow immediately. We can find a matrix L such that 
X = XlL, which implies that (cf. Exercises 3j, No.2) 

PX = Xl(X~Xd-lX~XlL = XlL ::::: X, 

which is (iii). o 

EXERCISES 3a 

1. Show that if X has full rank, 

(Y - X(3)'(Y - X(3) = (Y - xfj)'(Y - xfj) + (fj - (3)'X'X(fj - (3), 

and hence deduce that the left side is minimized uniquely when (3 = fj. 
n A 

2. If X has full rank, prove that 2: i=1 (Yi - Yi) = O. Hint: Consider the 
first column of X. 

3. Let 

Yl 8 + el 

Y2 - 28 - cjJ + e2 

Y3 . - 8 + 2cjJ + e3, 

where E[eij = 0 (i = 1,2,3). Find the least squares estimates of 8 and 
cjJ. 

4. Consider the regression model 

(i=I,2,3), 

where Xl = -1, X2 = 0, and X3 = +1. Find the least squares estimates 
of (30, (31, and (32. Show that the least squares estimates of (30 and (31 
are unchanged if (32 = O. 

5. The tension T observed in a nonextensible string required to maintain a 
body of unknown weight w in equilibrium on a smooth inclined plane of 
angle 8 (0 < 8 < 1r /2) is a random variable with mean E[T] = w sin 8. 
If for 8 = 8; (i = 1,2, ... , n) the corresponding values of T are Ti 
(i = 1,2, ... , n), find the least squares estimate of w. 

6. If X has full rank, so that P = X(X'X)-l X', prove that C(P) = C(X). 
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7. For a general regression model in which X mayor may not have full 
rank, show that 

n 

L Yi(Yi - Yi) = O. 
i=1 

8. Suppose that we scale the explanatory variables so that Xij = kjWij for 
all i, j. By expressing X in terms of a new matrix W, prove that Y 
remains unchanged under this change of scale. 

3.2 PROPERTIES OF LEAST SQUARES ESTIMATES 

If we assume that the errors are unbiased (i.e., E[e] = 0), and the columns of 
X are linearly independent, then 

E[.B] (X'X)-IX' E[Y] 
(X'X)-IX'X,8 

- (3, (3.10) 

and .B is an unbiased estimate of (3. If we assume further that the Ci are 
uncorrelated and have the same variance, that is, COV[ci,Cj] = Oij(j2, then 
Var[e] = (j2In and 

Hence, by (1.7), 

Var[Y] = Var[Y - X(3] = Var[e]. 

Var[.B] Var[(X'X) -1 X'Y] 

(X'X)-IX' Var[Y] X(X'X)-1 
_ (j2(X'X)-1 (X'X)(X'X)-1 

(j2(X'X)-I. (3.11) 

The question now arises as to why we chose .B as our estimate of (3 and not 
some other estimate. We show below that for a reasonable class of estimates, 
~j is the estimate of (3j with the smallest variance. Here ~j can be extracted 
from .B = (~o, ~1" .. , ~p-l)' simply by premultiplying by the row vector c', 
which contains unity in the (j+l)th position and zeros elsewhere. It transpires 
that this special property of ~j can be generalized to the case of any linear 
combination a'.B using the following theorem. 

THEOREM 3.2 Let 0 be the least squares estimate of (J = X(3, where (J E 
n = C(X) and X may not have full rank. Then among the class of linear 
unbiased estimates of c' (J, c' 0 is the unique estimate with minimum variance. 
[We say that c'O is the best linear unbiased estimate (BLUE) of c'(J.) 
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Proof. From Section 3.1, 0 = PY, where P9 = PX/3 = X/3 == 9 (Theorem 
3.1, Corollary). Hence E[e'O) == e'P9 = e'9 for all 9 E n, so that e'O 
[= (Pe)'Y) is a linear unbiased estimate of e'9. Let d'Y be any other linear 
unbiased estimate of e'9. Then e'9 = E[d'Y) = d'9 or (e - d)'9 = 0, so that 
(e - d) 1- n. Therefore, P(e - d) = 0 and Pe == Pd. 

Now 

so that 

var[e'O) - var[(Pe)'Y) 

- var[(Pd)'Y) 

- a 2d'P'Pd 

- a2d'p2 d 

- a2 d'Pd (Theorem 3.1) 

var[d'Y)- var[e'O) var[d'Y)- var[(Pd)'Y) 

a2 (d'd - d'Pd) 

- a 2 d'(In - P)d 

a 2 d'(In - P)'(In - P)d 

- a2d~ db say, 

> 0, 

with equality only if (In - P)d = 0 or d == Pd = Pe. Hence e' 0 has minimum 
variance and is unique. 0 

COROLLARY If X has full rank, then a' {:J is the BLUE of a' /3 for every 
vector a. 

Proof. Now 9 == X/3 implies that /3 == (X'X)-IX'9 and {:J = (X'X)-IX'O. 
Hence setting e' = a' (X'X) -1 X' we have that a' {:J (= c' 0) is the BLUE of 
a' /3 (= e'9) for every vector a. 0 

Thus far we have not made any assumptions about the distribution of the 
Ci. However, when the Ci are independently and identically distributed as 
N(0,a2 ), that is, e roJ N(O,a2In ) or, equivalently, Y roJ Nn (X/3,a2 In ), then 
a' {:J has minimum variance for the entire class of unbiased estimates, not just 
for linear estimates (cf. Rao [1973: p. 319) for a proof). In particular, bi, 
which is also the maximum likelihood estimate of (3i (Section 3.5), is the most 
efficient estimate of (3i. 

When the common underlying distribution of the Ci is not normal, then 
the least squares estimate of (3i is not the same as the asymptotically most 
efficient maximum likelihood estimate. The asymptotic efficiency of the least 
squares estimate is, for this case, derived by Cox and Hinkley [1968). 

Eicker [1963) has discussed the question of the consistency and asymptotic 
normality of {:J as n -+ 00. Under weak restrictions he shows that {:J is a 
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consistent estimate of f3 if and only if the smallest eigenvalue of X'X tends to 
infinity. This condition on the smallest eigenvalue is a mild one, so that the 
result has wide applicability. Eicker also proves a theorem e;iving necessary 
and sufficient conditions for the asymptotic normality of each (3j (see Anderson 
[1971: pp. 23-27]). 

EXERCISES 3b 

1. Let Yi = (30 + (31 Xi + ci (i = 1,2, ... ,n), where E[e] = 0 and Var[e] = 
0'2In. Find the least squares estimates of (30 and (31. Prove that they 
are uncorrelated if and only if x = O. 

2. In order to estimate two parameters B and ¢ it is possible to make 
observations of three types: (a) the first type have expectation B, (b) 
the second type have expectation B + ¢, and (c) the third type have 
expectation B - 2¢. All observations are subject to uncorrelated errors 
of mean zero and constant variance. If m observations of type (a), 
m observations of (b), and n observations of type (c) are made, find 
the least squares ~stimates 9 and~. Prove that these estimates are 
uncorrelated if m = 2n. 

3. Let Y1, Y2, ... , Yn be a random sample from N(B,0'2). Find the linear 
unbiased estimate of B with minimum variance. 

4. Let 

(i=1,2, ... ,n), 

where Xj = ~~=1 Xij In, E[e] = 0, and Var[e] = 0'2In. If ~1 is the least 
squares estimate of (31, show that 

, 0'2 

var[(31] = ~i(Xi1 - xd2 (1 - r2)' 

where r is the correlation coefficient of the n pairs (Xii, Xi2)' 

3.3 . UNBIASED ESTIMATION OF (1'2 

We now focus our attention on 0'2 (= var[ci]). An unbiased estimate is de­
scribed in the following theorem. 

THEOREM 3.3 If ElY1 = Xf3, where X ~s an n x p matrix of rank r 
(r < p), and VarlY1 = 0'2In, then 

S2 = (Y - o)'(Y - 0) = RSS 
n-r n-r 



UNBIASED ESTIMATION OF 0- 2 45 

is an unbiased estimate of 0-2. 

Proof. Consider the full-rank representation (J = Xlo, where Xl is n x r of 
rank r. Then 

Y - iJ == (In - P)Y, 

where P = Xl(X~Xd-IX~. From Theorem 3.1 we have 

(n - r)S2 - Y'(In - P)'(In - P)Y 
Y'(In _ p)2y 

Y'(In - P)Y. (3.12) 

Since p(J = (J, it follows from Theorems 1.5 and 3.1(iii) applied to Xl that 

E[Y'(In - P)YJ - 0- 2 tr(In - P) + (J'(In - P)(J 
_ 0-2(n-r), 

and hence E[S2J = 0-2 • 0 

When X has full rank, S2 = (Y - x/3)'(Y - XjJ)/(n - p). In this case it 
transpires that 82, like jJ, has certain minimum properties which are partly 
summarized in the following theorem. 

THEOREM 3.4 (Atiqullah [1962)} Let YI , Y2, ... , Yn be n independent ran­
dom variables with common variance 0-2 and common third and fourth mo­
ments, J-ts and P,4, respectively, about their means. If E[YJ = X(3, where X is 
n x p of rank p, then (n - p)82 is the unique nonnegative quadratic unbiased 
estimate of (n - p)0-2 with minimum variance when J-t4 = 30-4 or when the 
diagonal elements of P are all equal. 

Proof. Since 0-2 > 0 it is not unreasonable to follow Rao [1952J and consider 
estimates that are nonnegative. Let Y' AY be a member of the class C of 
nonnegative quadratic unbiased estimates of (n - p)0-2. Then, by Theorem 
1.5, 

(n - p)0-2 = E[Y' AYJ = 0-2 tr(A) + (3'X' AX(3 

for all (3, so that tr(A) = n - p (setting (3 = 0) and (3'X' AX(3 = 0 for all 
(3. Thus X'AX = 0 (A.l1.2) and, since A is positive semidefinite, AX = 0 
(A.3.5) and X' A = O. Hence if a is a vector of diagonal elements of A, and 
,2 = (P,4 - 30-4) /0- 4, it follows from Theorem 1.6 that 

var[Y' AYJ = 0-4,2a'a + 20-4 tr(A2) + 40-2 (3'X' A 2X(3 + 4p,s(3'X' Aa 

= 0-4,2a'a + 20-4 tr(A2). (3.13) 

Now by Theorem 3.3, (n-p)82 [= Y'(In -P)Y = Y'RY, sayJ is a member 
of the class C. Also, by Theorem 3.1, 

tr(R2) = tr(R) = n - p, 
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so that if we substitute in (3.13), 

var[Y'RY] = oA'Y2r'r + 2oA(n - p). (3.14) 

To find sufficient conditions for Y'RY to have minimum variance for class 
C, let A = R + D. Then D is symmetric, and tr(A) = tr(R) + tr(D); 
thus tr(D) = O. Since AX = 0, we have AP = AX(X'X)-l X' = 0, and 
combining this equation with p2 = P, that is, RP = 0, leads to 

and 

Hence 

and 

o = AP = RP + DP = DP 

DR=D (= D' = RD). 

A2 _ R2 +DR+RD +D2 

R+2D+D2 

tr(A2) = tr(R) + 2 tr(D) + tr(D2) 

= (n - p) + tr(D2). 

Substituting in (3.13), setting a = r + d, and using (3.14), we have 

var[Y' AY] - oA'Y2a'a + 2oA[(n - p) + tr(D2)] 

- oA'Y2(r'r + 2r'd + d'd) + 2oA[(n - p) + tr(D2
)] 

- 0'4'Y2r'r + 20'4(n - p) + 20'4 b2 (r'd + ~d'd) + tr(D2)] 

- var[Y'RY] 

+ 2.' [1> (~r"<4; + n?1;) + ~~d1,] . 
To find the estimate with minimum variance, we must minimize var[Y' AY] 
subject to tr(D) = 0 and DR = D. The minimization in general is difficult 
(cf. Hsu [1938]) but can be done readily in two important special cases. First, 
if 'Y2 = 0, then 

var[Y'AY] = var[Y'RY] + 20'4 L L d;j, 
i j 

which is minimized when dij = 0 for all i,j, that is, when D = 0 and A = R. 
Second, if the diagonal elements of P are all equal, then they are equal to pin 
[since, by Theorem 3.1(ii), tr(P) = pl. Hence rii = (n - p)ln for each i and 

var[Y' A Y] - var[Y'RY] + 20'4 ['Y2 (0 + ~ ~ d;i) + L L d;j] 

v;u[Y'RY[ + 2.' [(!1> + 1) ~ di; + L1.F di; 1 ' 
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as L:i riidii = [en - p)/n] tr(D) = O. Now 'Y2 > -2 (A.13.1), so that 
var[y'AY] is minimized when dij = 0 for all i,j. Thus in both cases we 
have minimum Variance if and only if A = R. 0 

This theorem highlights the fact that a uniformly minimum variance quad­
ratic unbiased estimate of (72 exists only under certain restrictive conditions 
like those stated in the enunciation of the theorem. If normality can be 
assumed b2 = 0), then it transpires that (Rao [1973: p. 319]) 52 is the 
minimum variance unbiased estimate of (72 in the entire class of unbiased 
estimates (not just the class of quadratic estimates). 

Rao [1970, 1972] has also introduced another criterion for choosing the 
estimate of (72: minimum norm quadratic unbiased estimation (MINQUE). 
Irrespective of whether or not we assume normality, this criterion also leads 
to 52 (cf. Rao [1970, 1974: p. 448]). 

EXERCISES 3c 

1. Suppose that Y '" N n (X{3, (72In), where X is n x p of rank p. 

(a) Find var[52]. 

(b) Evaluate E[(Y' Al Y - (72)2] for 

Al = 1 [In - X(X'X)-IX']. 
n-p+2 

(c) Prove that Y' Al Y is an estimate of (72 with a smaller mean­
squared error than 52. 

(Theil and Schweitzer [1961]) 

2. Let YI , Y2 , ... , Yn be independently and identically distributed with 
mean 8 and variance (72. Find the nonnegative quadratic unbiased esti­
mate of (72 with the minimum variance. 

3.4 DISTRIBUTION THEORY 

Until now the only assumptions we have made about the Ci are that E[e] = 0 
and Var[e] = (72In. If we assume that the Ci are also normally distributed, 
then e '" Nn(O, (72In) and hence Y '" Nn(X{3, (72In). A number of distribu­
tional results then follow. 

THEOREM 3.5 If Y '" Nn (X(3 , (72In), where X is n x p of rank p, then: 

(i) (3'" N p ({3,(72(X'X)-I). 

(ii) «(3 - (3)'X'X«(3 - (3)/(72 '" X;. 
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(iii) i:J is independent of S2. 

(iv) RSS/.,.2 = (n - p)S2/O'2 
rv X;-p' 

Proof. (i) Since i:J = (X'X) -1 X'y = CY, say, where C is a p x n matrix such 
that rank C = rank X' = rank X = p (by A.2.4), (:3 has a multivariate normal 
distribution (Theorem 2.2 in Section 2.2). In particular, from equations (3.10) 
and (3.11), we have (:3 rv Np(,8,O'2 (X'X)-1). 

(ii) ((:3 - ,8)'X'X((:3 - ,8)/0'2 = ((:3 - ,8)'( Var[(:3])-1 ((:3 - ,8), which, by (i) 
and Theorem 2.9, is distributed as X~. 

(iii) 

Cov[(:3, Y - xi:Jj Cov [(X'X)-1X'Y, (In - P)Y] 

- (X'X)-1X' Cov[Y] (In - P)' 
_ O'2(X'X)-1X'(In - P) 

o [by Theorem 3.1(iii)]. 

If U = i:J and V = Y - X(:3 in Theorem 2.5 (Section 2.3), (:3 is independent 
of II (Y - X (:3 ) Wand therefore of S2. 

(iv) This result can be proved in various ways, depending on which theo­
rems relating to quadratic forms we are prepared to invoke. It is instructive to 
examine two methods of proof, although the first method is the more standard 
one. 
Method 1: Using Theorem 3.3, we have 

RSS y' (In - P)Y 

= (Y - X,8)' (In - P)(Y - X,8) 

= e'(In-P)e, 

[by Theorem 3.1(iii)] 

(3.15) 

where In -P is symmetric and idempotent of rank n-p. Since e rv Nn(O, O'2In), 
RSS/O'2 

rv X;-p (Theorem 2.7 in Section 2.4). 
Method 2: 

Q1 (Y - X,8)'(Y - X,8) 

(Y - X(:3 + X(i:J - ,8) )' (Y - xi:J + X((:3 - ,8) ) 

(Y - xi:J)' (Y - X(:3) 

+ 2((:3 - ,8)'X' (Y - X(:3) + ((:3 - ,8)'X'X((:3 - ,8) 

(Y - X(:3)' (Y - X(:3) + ((:3 - ,8)'X'X((:3 - ,8) 

Q + Q2, say, 

since, from the normal equations, 

(3.16) 

((:3 - ,8)'X' (Y - X(:3) = ((:3 - ,8)' (X'Y - X'X(:3) = O. (3.17) 
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Now Qdu2 (= "£iCU(2) is X~, and Q2/u2 '" X; [by (ii)]. Also, Q2 is a 
continuous function of 11, so that by Example 1.11 and (iii), Q is independent 
of Q2. Hence Q/u2 '" X~-p (Example 1.10, Section 1.6). 0 

EXERCISES 3d 

1. Given Y1 , Y2 , .•. , Yn independently distributed as N(B, ( 2 ), use Theorem 
3.5 to prove that: 

(a) Y is statistically independent of Q = "£i(Yi _ y)2. 

(b) Q / u2 
'" X~-l' 

2. Use Theorem 2.5 to prove that for the full-rank regression model, RSS 
is independent of (11- {3)'X'X(l1- {3). 

3.5 MAXIMUM LIKELIHOOD ESTIMATION 

Assuming normality, as in Section 3.4, the likelihood function, L({3, ( 2 ) say, 
for the full-rank regression model is the probability density function of Y, 
namely, 

L({3, ( 2
) = (21ru2

) -n/2 exp {- 2!2 11y - X{3) 112 } . 

Let lC{3, v) = log LC{3, ( 2 ), where v = u 2 • Then, ignoring constants, we have 

n 1 2 
l({3, v) = - 2 logv - 2v Ily - X{311 , 

and from C3.6) it follows that 

and 

Bl 1(, ') 8{3 = - 2v -2X Y + 2X X{3 

Bl n 1 2 
8v = - 2v + 2v211y - X{311 . 

Setting Bl/8{3 = 0, we get the least squares estimate of {3, which clearly 
maximizes l({3, v) for any v > O. Hence 

L({3,v) < LCl1,v) for all v > 0 

with equality if and only if {3 = 11. 
We now wish to maximize LCl1, v), or equivalently l (11, v), with respect to 

v. Setting Bl/8v = 0, we get a stationary value of v = Iiy - X.B)1I 2 /n. Then 

lCl1,v) -lCl1,v) - -; [log (~) + 1-~] 
> 0, 
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since x < ex - 1 and therefore logx < x-I for x > 0 (with equality when 
x = 1). Hence 

L(f3, v) < L(/3, fJ) for all v > 0 

with equality if and only if f3 = /3 and v = fj. Thus /3 and v are the maximum 
likelihood estimates of f3 and v. Also, for future use, 

(3.18) 
'. 

In determining the efficiency of the estimates above, we derive the (ex­
pected) information matrix 

I - E[ 82l/8(J8(J'] 

Var[8l/8(J], 

where (J = (f3', v)'. As a first step we find that 

and 

82 l 1 
8f3 8f3' = - v2 (X'X), 

8
2
1 1 ( , ') 

8 f3 8v = v2 - 2X Y + X Xf3 

82 l n 1 2 
8v2 = 2v2 - v311y - Xf311 . 

(3.19) 

We note that IIY _Xf3112/v = e'e/v '" X;, so that E[e'e] = nv (as E[X;] = n). 
Replacing y by Y and taking expected values in the equations above gives us 

( 

~(X'X) 
I = V 

0' 
o ) n . 

2v2 

This gives us the multivariate Cramer-Rao lower bound for unbiased estimates 
of (J, namely, 

1-1 = ( v(X'X)-l 

0' 
o ) 2~2 . 

Since Var[/3] = v(X'X)-l, /3 is the best unbiased estimate of f3 in the sense 
that for any a, a' /3 is the minimum variance unbiased estimate (MINVUE) of 
a' f3. 

Since (n - p)S2/v '" X;- [by Theorem 3.5(iv)] and var[x;_p] = 2(n - p), 
it follows that var[S2] = 2v~ /(n - p), which tends to 2v2/n as n -+ 00. This 
tells us that S2 is, asympotically, the MIN VUE of v. However, the Cramer­
Rao lower bound gives us just a lower bound on the minimum variance rather 
than the actual minimum. It transpires that S2 is exactly MINVUE, and a 
different approach is needed to prove this (e.g., Rao [1973: p. 319]). 
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3.6 ORTHOGONAL COLUMNS IN THE REGRESSION MATRIX 

Suppose that in the full-rank model E[Y] = X{3 the matrix X has a column 
representation 

X = (x(O), x{1), ..• , X(P-1»), 

where the columns are all mutually orthogonal. Then 

o o 
(X(O) 'x(O) )-1 x(O) 'y 
(x{1)'x{l) )-1 x {1) 'y 

(X(P-1) 'X(P-1») -1 X(p-1) 'Y 

o 
o 
o 

X(p-1) 'X(p-1) 

-1 

Thus fij = xU)'y jx(j)'x(j) turns out to be the least squares estimate of f3j 
for the model E[Y] = x(j) f3j, which means that the least squa.res estimate of 
f3j is unchanged if any of the other f3z (l =1= j) are put equal to zero. Also, 
from equations (3.8) and (3.9), the residual sum of squares takes the form 

RSS - y'y - f3'X'Y 
p-1 

- Y'Y- "'i:}jxU)'y 
j=O 

p-1 

y'y - I: fiJ(xU) 'xU»). 
j=O 

(3.20) 

If we put f3j = 0 in the model, the only change in the residual sum of squares 
is the additiop. of the term fijxU)'y, so that we now have 

p-1 

y'y - I: firx(r)'y. (3.21) 
r=O,r#j 

Two applications of this model are discussed in Sections 7.1.2 and 7.3.1. 

EXAMPLE 3.3 Consider the full-rank model 

(i = 1,2, ... ,n), 
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where the ei are LLd. N(O, (72) and the Xij are standardized so that for 
j = 1,2, ... ,p - 1, Ei Xij = 0 and Ei xtj = c. We now show that 

p-1 
1" A - L.J var[,B j] 
P j=O 

is minimized when the columns of X are mutually orthogonal. 
From 

say, we have 

X'X = (n 0') o C ' 

p-1 

L var[.Bj] 
j=O 

tr( Var[.BJ) 

_ (72 [tr(C-1
) + ~] 

p-1 
_ (72" ),':-1 

L.J J ' 
j=O 

(3.22) 

(3.23) 

where Ao = nand Aj (j = 1,2, ... ,p - 1) are the eigenvalues of C (A.1.6). 
Now the minimum of (3.23) subject to the condition tr(X'X) = n+c(p-1), or 
tr(C) = c(p-1), is given by Aj = constant, that is, Aj = c (j = 1,2, ... ,p-1). 
Hence there exists an orthogonal matrix T such that T'CT = cIp - 1 , or 
C = cIp - 1 , so that the columns of X must be mutually orthogonal. 0 

This example shows that using a particular optimality criterion, the "opti­
mum" choice of X is the design matrix with mutually orthogonal columns. A 
related property, proved by Hotelling (see Exercises 3e, No.3), is the following: 
Given any design matrix X such that xU) 'xU) = c~, then 

and the minimum is attained when x(j)'x(r) = 0 (all r, r 7:- j) [i.e., when xU) 

is perpendicular to the other columns]. 

EXERCISES 3e 

1. Prove the statement above that the minimum is given by Aj = c (j = 
1,2, ... ,p-1). 

2. It is required to fit a regression model of the form 

(i = 1,2,3), 



ORTHOGONAL COLUMNS IN THE REGRESSION MATRIX 53 

where rjJ(x) is a second-degree polynomial. If Xl = -1, X2 = 0, and 
X3 = 1, find rjJ such that the design matrix X has mutually orthogonal 
columns. 

3. Suppose that X = (x (0) , X(l), ... , X(p-l), x(p») = (W, x(p») has linearly 
independent columns. 

(a) Using A.9.5, prove that 

det(X'X) = det(W'W) (x(P)'x(P) - x(p)'W(W'W)-IW'x(P») . 

(b) Deduce that 
det(W'W) > 1 
det(X'X) - x(p)'x(p) , 

and hence show that var[~pl > 0-2(x(p)'X(p»)-1 with equality if and 
only if x(p) 'xU) = 0 (j = 0,1, .. . ,p - 1). 

(Rao [1973: p. 236)) 

4. What modifications in the statement of Example 3.3 proved above can 
be made if the term (30 is omitted? 

5. Suppose that we wish to find the weights (3i (i = 1,2, ... , k) of k objects. 
One method is to weigh each object r times and take the average; this 
requires a total of kr weighings, and the variance of each average is 0-2 1r 
(0-2 being the variance of the weighing error). Another method is to 
weigh the objects in combinations; some of the objects are distributed 
between the two pans and weights are placed in one pan to achieve 
equilibrium. The regression model for such a scheme is 

where Xi = 0,1, or -1 according as the ith object is not used, placed in 
the left pan or in the right pan, c is the weighing error (assumed to be the 
same for all weighings), and Y is the weight required for equilibrium (Y 
is regarded as negative if placed in the left pan). After n such weighing 
operations we can find the least squares estimates ~i of the weights. 

(a) Show that the estimates of the weights have maximum precision 
(Le., minimum variance) when each entry in the design matrix X 
is ±1 and the columns of X are mutually orthogonal. 

(b) If the objects are weighed individually, show that kn weighings are 
required to achieve the same precision as that given by the optimal 
design with n weighings. 

(Rao [1973: p. 309)) 
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3.7 INTRODUCING FURTHER EXPLANATORY VARIABLES 

3.7.1 General Theory 

Suppose that after having fitted the regression model 

ElY) = Xj3, 

we decide to introduce additional xj's into the model so that the model is 
now enlarged to 

G: ElY) Xj3 + Z'/' 

(X, Z) ( ~ ) 

W6, (3.24) 

say, where X is n x p of rank p, Z is n x t of rank t, and the columns of Z are 
linearly independent of the. columns of Xj that is, W is n x (p + t) of rank 
p + t. Then to find the least squares estimate Ja of 6 there are two possible 
approaches. We can either compute Ja and its dispersion matrix directly 
from 

and 

or to reduce the amount of computation, we can utilize the calculations al­
ready carried out in fitting the original model, as in Theorem 3.6 below. A 
geometrical proof of this theorem, which allows X to have less than full rank, 
is given in Section 3.9.3. But first a lemma. 

LEMMA If R = In - P = In - X(X'X)-lX', then Z'RZ is positive­
definite. 
Proof. Let Z'RZa = OJ then, by Theorem 3.1(i), 

a'Z'R'RZa = a'Z'RZa = 0, 

or RZa = O. Hence Za = X(X'X)-l X'Za = Xb, say, which implies that 
a = 0, as the columns of Z are linearly independent of the columns of X. 
Because Z'RZa = 0 implies that a = 0, Z'RZ has linearly independent 
columns and is therefore nonsingular. Also, a'Z'RZa = (RZa)' (RZa) > O. 

o 

THEOREM 3.6 Let Ra = In - W(W'W)-lW', L = (X'X)-lX'Z, M == 
(Z'RZ)-l, and 

Then: 

(i) ia = (Z'RZ)-lZ'RY. 
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(ii) fja = (X'X)-lX'(Y - Z1'a) = fj - L1'a. 

(iii) Y'RaY = (Y - Z1'a)'R(Y - Z1'a) = Y'RY - 1'aZ'RY. 

(iv) 

V [ ~ 1 - 2 ( (X'X)-l + LML' -LM) 
ar (Ja - a -ML' M' 

Proof. (i) We first "orthogonalize" the model. Since C(PZ) c C(X), 

X{3 + Z, - X{3 + PZ, + (In - P)Z, 

- Xo+RZ, 

- (X,RZ) ( ~ ) 

- VA, 

(3.25) 

say, where a = {3 + (X'X)-l X'Z, = {3 + L, is unique. We note that 
C(X) 1. C(RZ). Also, by A.2,4 and the previous lemma, 

rank(RZ) = rank(Z'R'RZ) = rank(Z'RZ) = t, 

so that V has full rank p + t. Since XR = 0, the least squares estimate of A 
is 

x - (V'V)-lV'Y 

( 
X'X X'RZ )-1 ( X' ) 

Z'RX Z'R'RZ Z'R Y 

( 
X'X 0 ) -1 ( X' ) 

o Z'RZ Z'R Y 

( 
(X'X)-l X'Y) (a) 

(Z'RZ)-lZ'RY = i . 

Now the relationship between ({3, ,) and (0, I) is one-to-one, so that the same 
relationships exist between their least square estimates. Hence 

1'a = i = (Z'RZ)-lZ'RY. (3.26) 

(ii) We also have 

fja a -Li 
- fj - L1'a 
- (X'X)-lX'(Y - Z1'a). (3.27) 
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(iii) Using (3.27) gives 
A 

RGY - Y - X(3G - Zi'G 

- Y - X(X'X)-lX'(Y - zi'G) - Zi'G 

- (In - X(X'X)-lX') (Y - zi'G) 

- R(Y - Zi'G) 

- RY - RZ(Z'RZ)-lZ'RY, 

so that by (3.28), 

Y'RGY - (Y - W6G)'(Y - W6G) 
A , A 

(Y - X(3G - Zi'G) (Y - X(3G - Zi'G) 

- (Y - Zi'G)'R'R(Y - Zi'G) 

- (Y - Zi'G)'R(Y - Z1'G), 

since R is symmetric and idempotent [Theorem 3.l(i)]. 
Expanding equation (3.30) gives us 

(iv) 

Y'RGY - Y'RY - 2i'aZ'RY + i'aZ'RZi'G 
y'RY - i'aZ'RY - i'a(Z'RY - Z'RZi'G) 
Y'RY - i'aZ'RY [by (3.26)]. 

Var[i'G] - (Z'RZ)-lZ'R Var[Y] RZ(Z'RZ)-l 
_ 0-2 (Z'RZ)-l (Z'RZ)(Z'RZ)-l 
_ 0-2(Z'RZ)-1 = 0-2M. 

Now, by Theorem 1.3, 

Cov[,B,i'G] - Cov[(X'X)-lX'Y, (Z'RZ)-lZ'RY] 
0-2 (X'X)-l X'RZ(Z'RZ)-l 

- 0, 

since X'R = o. Hence using (i) above, we have, from Theorem 1.3, 

Cov[.BG, i'G 1 = Cov[,8 - Li'G, i'G 1 
= Cov[,8, i'GJ- L Var[i'G] 

= - (T2LM [by (3.31)] 

and 

Var[.BG] =Var[.B - Li'G] 

=Var[.BJ - Cov[.B, Li'GJ - Cov[Li'G,.B] + Var[Li'G] 

= Var[.BJ + L Var[i'G]L' [by (3.31)J 

(3.28) 
(3.29) 

(3.30) 

(3.31) 

. =0-2 [(X'X)-l + LML'] . 0 
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o 
From Theorem 3.6 we see that once X'X has been inverted, we can find 

6a and its variance-covariance matrix simply by inverting the txt matrix 
Z'RZj we need not invert the (p + t) x (p + t) matrix W'W. The case t = 1 
is considered below. 

3.7.2 One Extra Variable 

Let the columns of X be denoted by xU) (j = 0,1,2, ... ,p - 1), so that 

E[Y] (x(O) , x(1), ... ,X(p-l»)f3 

- x(O)(3o +X(1)(31 + ... +X(P-l)(3P_l' 

Suppose now that we wish to introduce a further explanatory variable, xp , say, 
into the model so that in terms of the notation above we have Z'j' = x(p) (3p. 
Then by Theorem 3.6, the least squares estimates for the enlarged model are 
readily calculated, since Z'RZ (= x(p) 'Rx(p») is only a 1 x 1 matrix, that is, 
a scalar. Hence 

x(p)'RY 
- ia = (Z'RZ)-IZ'RY = x(p)'Rx(p)' 

, , , _ ' '-1' (p)' 
((30 ,a , ... ,(3p-l,a) - f3 - (X X) X x (3p,a, 

y'RY - (3' ax(p)'RY p, , 

(3.32) 

(3.33) 

and the matrix Var[6a] is readily calculated from (X'X)-I. The ease with 
which "corrections" can be made to allow for a single additional x variable 
suggests that if more than one variable is to be added into the regression 
model, then the variables should be brought in one at a time. We return to 
this stepwise procedure in Chapter 11. 

The technique above for introducing one extra variable was first discussed 
in detail by Cochran [1938] and generalized to the case of several variables by 
Quenouille [1950]. 

EXAMPLE 3.4 A recursive algorithm was given by given by Wilkinson 
[1970] (see also James and Wilkinson [197l], Rogers and Wilkinson [1974], 
and Pearce et al. [1974]) for fitting analysis-of-variance models by regression 
methods. This algorithm amounts to proving that the residuals for the aug­
mented model are given by RSRY, where S = In - Z(Z'RZ)-IZ'. We now 
prove this result. By (3.28) the residuals required are 

RaY =RY - RZia 

=R(RY - Zia) 

=R [In - Z(Z'RZ)-IZ'] RY 

=RSRY. 

(3.34) 

o 
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The basic steps of the Wilkinson algorithm are as follows: 

Algorithm 3.1 

Step 1: Compute the residuals RY. 

Step 2: Use the operator S, which Wilkinson calls a sweep (not to be con­
fused with the sweep method of Section 11.2.2), to produce a vector of 
apparent residuals RY - Zi'a (= SRY). 

Step 3: Applying the operator R once again, reanalyze the apparent residu­
als to produce the correct residuals RSRY. 

If the columns of Z are perpendicular to the columns of X, then RZ = Z 
and, by (3.34), 

RSR R(In - Z(Z'RZ)-lZ')R 

R - Z(Z'Z)-lZ'R 

SR, 

so that step 3 is unnecessary. We see later (Section 3.9.3) that the procedure 
above can still be used when the design matrix X does not have full rank. 

By setting X equal to the first k columns of X, and Z equal to the (k+ 1)th 
column (k = 1,2, ... ,p - 1), this algorithm can be used to fit the regression 
one column of X at a time. Such a stepwise procedure is appropriate in ex­
perimental design situations because the columns of X then correspond to 
different components of the model, such as the grand mean, main effects, 
block effects, and interactions, and some of the columns are usually orthog­
onal. Also, the elements of the design matrix X are 0 or 1, so that in many 
standard designs the sweep operator S amounts to a simple operation such as 
subtracting means, or a multiple of the means, from the residuals. 

EXERCISES 3f 

1. Prove that 

Y'RY - Y'RaY = 11
2i'a (Var[i'a])-l i'a. 

2. Prove that i'a can be obtained by replacing Y by Y - Z, in Y'RY and 
minimizing with respect to ,. Show further that the minimum value 
thus obtained is Y'RaY. 

3. If (3a = (Sa,i) and (3 = (Si), use Theorem 3.6(iv) to prove that 

var[Sa,i] > var[Si]' 
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4. Given that Y1 , Y2 , • •• , Yn are independently distributed as N(e, (72), find 
the least squares estimate of (J. 

(a) Use Theorem 3.6 to find the least squares estimates and the residual 
sum of squares for the augmented model 

(i=1,2, ... ,n), 

where the Ci are independently distributed as N(O, (72). 

(b) Verify the formulae for the least square estimates of (J and "( by 
differentiating the usual sum of squares. 

3.8 ESTIMATION WITH LINEAR RESTRICTIONS 

As a prelude to hypothesis testing in Chapter 4, we now examine what hap­
pens to least squares estimation when there are some hypothesized constraints 
on the model. We lead into this by way of an example. 

EXAMPLE 3.5 A surveyor measures each of the angles 0:, (3, and"( and 
obtains unbiased measurements Y1 , Y2 , and Y3 in radians, respectively. If 
the angles form a triangle, then 0: + (3 + "( = 11". We can now find the least 
squares estimates of the unknown angles in two ways. The first method uses 
the constraint to write "( = 11" - 0: - (3 and reduces the number of unknown 
parameters from three to two, giving the model 

1 
o 

-1 J ) ( p ) + ( :: ) . 

We then minimize (Y1 - 0:)2 + (Y2 - (3)2 + (Y3 - 11" + 0: + (3)2 with respect to 0: 

and (3, respectively. Unfortunately, this method is somewhat ad hoc and not 
easy to use with more complicated models. 

An alternative and more general approach is to use the model 

and minimize (Y1 - 0:)2 + (Y2 - (3)2 + (Y3 - "()2 subject to the constraint 
0: + (3 + "( = 11" using Lagrange multipliers. We consider this approach for a 
general model below. 0 . 
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3.8.1 Method of Lagrange Multipliers 

Let Y == Xj3 + e, where X is n x p of full rank p. Suppose that we wish 
to find the minimum of e' e subject to the linear restrictions Aj3 = c, where 
A is a known q x p matrix of rank q and c is a known q x 1 vector. One 
method of solving this problem is to use Lagrange multipliers, one for each 
linear constraint a~j3 == Ci (i = 1,2, ... , q), where a~ is the ith row of A. As a 
first step we note that 

q 

L >'i(a~j3 - Ci) - >..'(Aj3 - c) 
i=l 

(13' A' - c')>.. 

(since the transpose of a 1 x 1 matrix is itself). To apply the method of 
Lagrange multipliers, we consider the expression r == e'e + (j3'A' - c')>" and 
solve the equations 

Aj3 = c 

and or / 013 == OJ that is (from A.8), 

-2X'Y + 2X'Xj3 + A' >.. = o. 

(3.35) 

(3.36) 

For future reference we denote the solutions of these two equations by {JH and 
5..H. Then, from (3.36), 

and from (3.35), 

{JH - (X'X)-lX'Y - t(X'X)-lA'5..H 

{J- !(X'X)-lA'5..H, 

C A{JH 
- A{J - !ACX'X)-l A'5..H. 

(3.37) 

Since (X'X)-l is positive-definite, being the inverse of a positive-definite ma­
trix, A(X'X)-l A' is also positive-definite (A.4.5) and therefore nonsingular. 
Hence 

-!5..H = [A(X'X)-l A'r
l 

(c - A{J) 

and substituting in (3.37), we have 

{JH == {J + (X'X)-lA' [A(X'X)-l A'rl (c - A{J). (3.38) 

To prove that 13H actually minimizes e'e subject to A{3 = c, we note that 

IIX({J _ 13) 112 ({J - (3)'X'X({J - (3) 

({J -{JH + {JH - j3)'X'XC{J -{JH + {JH - 13) 
C{J -{JH)'X'XC{J -{JH) + C{JH - j3)'X'X({JH - (3) (3.39) 

IIXC{J -{JH)W + IIXC{JH - 13)11 2 C3.40) 
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since from (3.37), 

2(13 -13H)'X'X(13H - 13) :;:::: >"~A(13H - 13) :;:::: >"~(c - c) :;:::: O. (3.41) 

Hence from (3.16) in Section 3.4 and (3.40), 

e'e :;:::: IIY - x13112 + IIX(13 - 13)112 

:;:::: IIY - x13112 + II (X(13 -13H)112 + IIX(13H - f3)W (3.42) 

is a minimum when IIX(13H - 13)112 :;:::: 0, that is, when X(13H - 13) :;:::: 0, or 
13 :;:::: 13H (since the columns of X are linearly independent). 

Setting 13 :;:::: 13H, we obtain the useful identity 

IIY - X13HW :;:::: IIY - x13112 + IIX(13 -13H )11 2 (3.43) 

or, writing Y :;:::: x13 and Y H :;:::: X13H, 

(3.44) 

. This identity can also be derived directly (see Exercises 3g, No.2, at the end 
of Section 3.8.2). 

3.8.2 Method of Orthogonal Projections 

It is instructive to derive (3.38) using the theory of B.3. In order to do this, 
we first "shift" c, in much the same way that we shifted 7r across into the 
left-hand side of Example 3.5. 

Suppose that 130 is any solution of Af3 :;:::: c. Then 

Y - Xf30 :;:::: X(f3 - 130) + e (3.45) 

or Y:;:::: X-y+e, and A-y:;:::: Af3-Af3o :;:::: o. Thus we have the model Y :;::::8+e, 
where (J En:;:::: C(X), and since X has full rank, A(X'X)-IX'(J :;:::: A-y :;:::: O. 
Setting Al :;:::: A(X'X)-IX' and w :;:::: N(Ad n n, it follows from B.3.3 that 
w.L n n :;:::: CepoA~), where 

PoA~ :;:::: X(X'X)-1X'X(X'X)-1 A' :;:::: X(X'X)-1 A' 

is n x q of rank q (by Exercises 3g, No.5, below). Therefore, by B.3.2, 

Hence 

Po - P w Pw.Lno 

(PoAD[AIP~AU-1 (PoA~)' 

_ X(X'X)-1A' [A(X'X)-1A'r1 AeX'X)-1X'. 

X-rH:;:::: P w Y:;:::: Po Y - Pw.Lno Y 
Po Y - Xf30 - X(X'X)-1 A' [AeX'X)-1X'] -1 (A13 - c), 

(3.46) 
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since PnX,Bo = Xf30 ar,d A/30 = c. Therefore, canceling X,Bo and multiplying 
both sides by (X'X)--l XI leads to (3H of (3.38). Clearly, this gives a minimum 
as IIY - X(3H11 2 = IIV - Xi'HI12. 
EXERCISES 3g 

1. (a) Find the least squares estimates of a and j3 in Example 3.5 using 
the two approaches described there. What is the least squares 
estimate of "(? 

(b) Suppose that a further constraint is introduced: namely, a = j3. 
Find the least squares estimates for this new situation using both 
methods. 

2. By considering the identity Y - Y H = Y - Y + Y - Y H, prove that 

3. Prove that 

Var[(3H] = (12 {(XIX)-l - (X'X)-l A' [A(X'X)-l A'] -1 A(X'X)-l}. 

Hence deduce that 
var[J1Hi] < var[.Bi], 

where .BHj and .Bi are the jth elements of (3H and (3, respectively. 

4. Show that 

IIY - YHI1 2 -IIY - YI12 = (125..~ (var[5..H]) -1 5..H. 

5. If X is n x p of rank p and B is p x q of rank q, show that rank(XB) = q. 

3.9 DESIGN MATRIX OF LESS THAN FULL RANK 

3.9.1 Least Squares Estimation 

When the techniques of regression analysis are used for analyzing data from 
experimental designs, we find that the elements of X are 0 or 1 (Chapter 8), 
and the columns of X are usually linearly dependent. We now give such an 
example. 

EXAMPLE 3.6 Consider the randomized block design with two treatments 
and two blocks: namely, 

(i = 1,2; j = 1,2), 
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where Yij is the response from the ith treatment in the jth block. Then 

Yl1 1 1 0 1 0 J1, 1011 

Y12 1 1 0 0 1 <l1 1012 
- <l2 + (3.47) 

Y21 1 0 1 1 0 71 1021 
Y22 1 0 1 0 1 72 1022 

or Y = X{3 +c:, where, for example, the first column of X is linearly dependent 
on the other columns. 0 

In Section 3.1 we developed a least squares theory which applies whether 
or not X has full rank. IrX is n x p of rank r, where r < p, we saw in Section 
3.1 that l:J is no longer unique. In fact, l:J should be regarded as simply a 
solution of the normal equations [e.g., (X'X)-X'Yj which then enables us to 
find Y = xl:J, e = Y - xl:J and RSS = e'e, all of which are unique. We 
note that the normal equations X'X{3 = X'Y always have a solution for {3 as 
C(X') = C(X'X) (by A.2.5). Our focus now is to consider methods for finding 
l:J. 

So far in this chapter our approach has been to replace X by an n x r 
matrix Xl which has the same column space as X. Very often the simplest 
way of doing this is to select r appropriate columns of X, which amounts to 
setting some of the f3i in X{3 equal to zero. Algorithms for carrying this out 
are described in Section 11.9. 

In the past, two other methods have been used. The first consists of impos­
ing identifiability constraints, H{3 = 0 say, which take up the "slack" in {3 so 
that there is now a unique {3 satisfying (J = X{3 and H{3 = o. This approach 
is described by Scheffe [1959: p. 17]. The second method involves computing 
a generalized inverse. In Section 3.1 we saw that a l:J is given by (X'X)-X'Y, 
where (X'X)- is a suitable generalized inverse of X'X. One commonly used 
such inverse of a matrix A is the Moore-Penrose inverse A +, which is unique 
(see A.lO). 

EXAMPLE 3.7 In Example 3.6 we see that the first column of X in (3.47) 
is the sum of columns 2 and 3, and the sum of columns 4 and 5. Although 
X is 4 x 5, it has only three linearly independent columns, so it is of rank 3. 
To reduce the model to one of full rank, we can set <l2 = 0 and 72 = 0, thus 
effectively removing the third and fifth columns. Our model is now 

111 
110 
101 
1 0 0 

Alternatively, we can use two identifiability constraints, the most common 
being L:i <li = 0 and L:j 7j = o. IT we add these two constraints below X, we 
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get 

1 1 0 1 0 
1 1 0 0 1 J1, 

( + ) (:) ~= 1 0 1 1 0 a1 

1 0 1 0 1 a2 

71 
0 1 1 0 0 72 
0 0 0 1 1 

where the augmented matrix now has five linearly independent columns. Thus 
given 8, ~ is now unique. 0 

EXERCISES 3h 

1. Suppose that X does not have full rank, and let (3i (i = 1,2) be any two 
solutions of the normal equations. Show directly that 

2. If the columns of X are linearly dependent, prove that there is no matrix 
C such that CY is an unbiased estimate of ~. 

3.9.2 Estimable Functions 

Since (3 is not unique, ~ is not estimable. The question then arises: What 
can we estimate? Since each element (Ji of 8 (= X~) is estimated by the 
ith element of iJ = PY, then every linear combination of the (Ji, say b'8, is 
also estimable. This means that the (Ji form a linear subspace of estimable 
functions, where (Ji = x~~, x~ being the ith row of X. Usually, we define 
estimable functions formally as follows. 

Definition 3.1 The parametric function a' ~ is said to be estimable if it has 
a linear unbiased estimate, b'Y, say. 

We note that if a' ~ is estimable, then a' ~ = E[b'Y] = b' 8 = b'X~ 
identically in {3, so that a' = b'X or a = X'b (A.l1.1). Heiice a' ~ is estimable 
if and only if a E C(X'). 

EXAMPLE 3.8. If a' {3 is estimable, and (j is any solution of the normal 
equations, then a i (3 is unique. To show this we first note that a = X'b for 
some b, so that a' {3 == b'X~ = b'8. Simi~arly, a' /3 = b'X/3 = b'8, which i:; 
unique. Furthermore, by Theorem 3.2, b'8 is the BLUE of b'8, so that a'~ 
is the BLUE of a'~. 0 
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In conclusion, the simplest approach to estimable functions is to avoid them 
altogether by transforming the model into a full-rank model! 

EXERCISES 3i 

1. Prove that a' E[.8) is an estimable function of (3. 

2. If a~(3, a2(3, ... , a~(3 are estimable, prove that any linear combination 
of these is also estimable. 

3. If a'.8 is invariant with respect to .8, prove that a' (3 is estimable. 

4. Prove that a' (3 is estimable if and only if 

a'(X'X)-X'X = a'. 

(Note that AA - A = A.) 

5. If a' (3 is an estimable function, prove that 

6. Prove that all linear functions a' (3 are estimable if and only if the 
columns of X are linearly independent. 

3.9.3 Introducing Further Explanatory Variables 

If we wish to introduce further explanatory variables into a less-than-full-rank 
model, we can, once again, reduce the model to one of full rank. As in Section 
3.7, we see what happens when we add Z-y to our model X(3. It makes sense 
to assume that Z has full column rank and that the columns of Z are linearly 
independent of the columns of X. Using the full-rank model 

Y = Xla + Z-y + e, 

where Xl is n x r of rank r, we find that Theorem 3.6(ii), (iii), and (iv) of 
Section 3.7.1 'still hold. To see this, one simply works through the same steps 
of the theorem, but replacing X by Xl, (3 by a, and R by In - P, where 
P = Xl(X~Xl)-lXl is the unique projection matrix projecting onto C(X). 

3.9.4 Introducing Linear Restrictions 

Referring to Section 3.8, suppose that we have a set of linear restrictions a~(3 = 
o (i = 1,2 ... ,q), or in matrix form, A(3 = O. Then a realistic assumption is 
that these constraints are all estimable. This implies that a~ = m~X for some 
mi, or A = MX, where M is q x n of rank q [as q = rank(A) < rank(M) 
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by A.2.1J. Since Af3 = MXf3 = IVI;,), we therefore find the restricted least 
squares estimate of e by minimizing IIY - OW subject to 0 E C(X) = nand 
MO = 0, that is, subject to 

o E N(M) n n (= w, say). 

If Pn and P w are the projection matrices projecting onto nand w, respec­
tively, then we want to find 8w = P w Y. Now, from B.3.2 and B.3.3, 

where wJ. n n = C(B) and B = PnM'. Thus 

8w - PwY 

- Pn Y - P w.Lnn Y 
- 8n - B(B'B)-B1y' 

EXERCISES 3j 

1. If P projects onto C(X), show that Z'(In - P)Z is nonsingular. 

2. Prove that if Xl is n x r of rank r and consists of a set of r linearly 
independent columns of X, then X = X1L, where L is r x p of rank r. 

3. Prove that B has full column rank [i.e., (B'B)- = (B'B)-lJ. 

4. If X has full rank and 8w = X(3 H, show that 

(3H = (3 - (X'X)-l A'(A(X'X)-l A,)-l A(3. 

[This is a special case of (3.38).J 

5. Show how to modify the theory above to take care of the case when the 
restrictions are Af3 = c (c "I 0). 

3.10 GENERALIZED LEAST SQUARES 

Having developed a least squares theory for the full-rank model Y = Xf3 + e, 
where E[eJ = 0 and Var[eJ = (72In, we now consider what modifications are 
necessary if we allow the ei to be correlated. In particular, we assume that 
Var[eJ = (72y, where Y is a known n x n positive-definite matrix. 

Since Y is positive-definite, there exists an n x n nonsingular matrix K 
such that Y = KK' (AA.2). Therefore, setting Z = K-ly, B = K-1X, and 
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"1 = K-1c:, we have the model Z = B,8 +"1, where B is n x p of rankp (A.2.2). 
Also, E["1] = 0 and 

Var["1] = Var[K-1c:] = K-1 Var[c:]K-1' = o-2K-1KK'K,-1 = o-2In. 

Minimizing "1'''1 with respect to ,8, and using the theory of Section 3.1, the 
least squares estimate of ,8 for this transformed model is 

,8* 

with expected value 

dispersion matrix 

_ (B'B)-lB'Z 

(X'(KK')-lX)-l X'(KK,)-ly 

(X'V-1X)-lX'V-1y, 

Var[.B*] - o-2(B'B)-1 
_ 0-2 (X'V-1X)-1 , 

and residual sum of squares 

f'f - (Z - B,8*)'(Z - B,8*) 
(Y - X,8*)'(KK')-l(y - X,8*) 

(Y - X,8*),V-1 (Y - X,8*). 

Alternatively, we can obtain f3* simply by differentiating 

"1' "1 - c:'V-1 c: 

(Y - X,8)' (Y - Xf3) 

with respect to,8. Thus, by A.8, 

8"1'''1 = -2X'V-1y + 2X'V-1X,8 
8,8 , 

(3048) 

(3.49) 

and setting this equad to zero leads once again to ,8*. Using this approach 
instead of the general theory above, we see that X'V-1 X has an inverse, as 
it is positive-definite (by Ao4.5). We note that the coefficient of 2,8 in (3049) 
gives us the inverse of Var[.B*]/o-2. 

There is some variation in terminology among books dealing with the model 
above: Some texts call ,8* the weighted least squares estimate. However, 
we call ,8* the generalized least squares estimate and reserve the expression 
weighted least squares for the case when V is a diagonal matrix: The di?gonal 
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case is discussed in various places throughout this book (see, e.g., Section 
lOA). 

EXAMPLE 3.9 Let Y = xf3 + e, where Y = (Yi) and x = (Xi) are n x 1 
vectors, E[e] = 0 and Var[e] = (j2V. If V = diag(wl1,w2"1, ... ,w;;-1) (Wi> 
0), we now find the weighted least squares estimate of (3 and its variance. Here 
it is simpler to differentiate ",'", directly rather than use the general matrix 
theory. Thus, since V-1 = diag( W1, W2, ••. , wn ), 

and 

",'", == 2:(Yi - xi(3) 2Wi 
i 

Setting the right side of (3.50) equal to zero leads to 

and from the coefficient of 2(3, 

var[(3*] == (j2 (~WiX~) -1 

We can also find the variance directly from 

(X'V-1X)-1 = (x'V-1X)-1 == (2: WiXn -1. 

(3.50) 

o 

Since the generalized least squares estimate is simply the ordinary least 
squares estimate (OLSE) for a transformed model, we would expect {3* to 
have the same optimal properties, namely, that a' (3* is the best linear unbiased 
estimate (BLUE) of a' (3. To see this, we note that 

a'(3* = a'(X'V-1X)-1X'V-1y = b'Y, 

say, is linear and unbiased. Let b~ Y be any other linear unbiased esti­
mate of a'(3. Then, using the transformed model, a'(3* = a'(B'B)-1B'Z 
and b~·Y = b~KK-1y = (K'bI)'Z. By Theorem 3.2 (Section 3.2) and the 
ensuing argument, 

var[a' (3*] < var[(K'bdZ] = var[b~ Y]. 

Equality occurs if and only if (K'bd = a'(B'B)-1B', or 

b~ = a'(B'B)-1B'K-1 = a'(X'V-1X)-1X'V-1 = b'. 

Thus a' (3* is the unique BLUE of a' (3. Note that the ordinary least squares es­
timate a'i3 will still be an unbiased estimate of a' (3, but var[ a' i3] > var[a' (3*]. 
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EXERCISES 3k 

1.. Let Yi = f3xi + ei (i = 1,2), where &1 '" N(O, 0'2), e2 '" N(O, 20'2), and 
e1 and e2 are statistically independent. If Xl = +1 and X2 = -1, obtain 
the weighted least squares estimate of (3 and find the variance of your 
estimate. 

2. Let Yi (i = 1,2, ... , n) be independent random variables with a Common 
mean () and variances 0'21wi (i = 1,2, ... , n). Find the linear unbiased 
estimate of () with minimum variance, and find this minimum variance. 

3. Let Y1 , Y2 , ••• ,Yn be independent random variables, and let Yi have 
a N(i(}, i 20'2) distribution for i = 1,2, ... , n. Find the weighted least 
squares estimate of () and prove that its variance is 0'2 In. 

4. Let Y1 , Y2 , •.• , Yn be random variables with common mean () and with 
dispersion matrix 0'2V, where Vii = 1 (i = 1,2, ... , n) and Vij = P 
(0 < P < 1; i, j = 1,2, ... ,n; i =I- j). Find the generalized least squares 
estimate of () and show that it is the same as the ordinary least squares 
estimate. Hint: V- 1 takes the same form as V. 

(McElroy [1967]) 

5. Let Y '" N n (Xf3, 0'2V), where X is n x p of rank p and V is a known 
positive-definite n x n matrix. If 13* is the generalized least squares 
estimate of 13, prove that 

(a) Q = (Y - Xf3*)'V-1(y - Xf3*)10'2 '" X;-p. 
(b) Q is the quadratic nonnegative unbiased estimate of (n - p)0'2 with 

minimum variance. 
(c) If y* = Xf3* := P*Y, then P* is idempotent but not, in general, 

symmetric. 

6. Suppose that E[Y] = 9, A9 = 0, and Var[Y] = 0'2V, where A is a q x n 
matrix of rank q and V is a known n x n positive-definite matrix. Let 
9* be the generalized least squares estimate of 9; that is, 9* minimizes 
(Y - 9)'V-1(y - 9) subject to A9:= o. Show that 

Y - 9* := VA''''(*, 

where ..y* is the generalized least squares estimate of "'( for the model 
E[Y] = VA''''(, Var[Y] = 0'2V. 

(Wedderburn [1974]) 

3.11 CENTERING AND SCALING THE EXPLANATORY VARIABLES 

It is instructive to consider the effect of centering and scaling the x-variables 
on the regression model. We shall use this theory later in the book. 
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3.11.1 Centering 

Up until now, we have used the model Y = Xf3 + c. Suppose, however, that 
we center the x-data and use the reparameterized model 

where 
ao = (30 + (31 X 1 + ... + (3p-1 X p-1 

and Xj = L:i Xij In. Our model is now Y = XcQ + e, where 

Xc = (In, X), and X has typical element Xij = Xij - X j. Because the trans­
formation between Q and f3 is one-to-one, the least squares estimate of f3c 
remains the same. Then, since X'I n = 0, 

(3.51) 

so that &0 = Y and {;c = (X'X)-lX'Y. Now C(Xc) = C(X), which can 
be proved by subtracting Xj x column (1) from column (j + 1) of X for each 
j = 1, ... ,p -1. Hence Xc and X have the same projection matrices, so that 

p - Xc(X~Xc)-lX~ 

(In' X) (~ ;,~) -1 (In' X)' 

(3.52) 

Let Xi now represent the ith row of X, but reduced in the sense that the initial 
unit element (corresponding to ao) is omitted. Picking out the ith diagonal 
element of (3.52), we get 

Pii n- 1 + (n _1)-l(Xi - x)'S;;(Xi - x) 

n-1 + (n -1)-lMDi , (3.53) 

where x = L:~=1 Xi, S",,,, is the sample covariance matrix X'X/(n - 1), and 
MDi is the Mahalanobis distance between the ith reduced row of X and the 
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average reduced row (cf. Seber [1984: p. 1O]).Thus Pii is a measure of how 
far away Xi is from the center of the x-data. 

We note that the centering and subsequent reparameterization of the model 
do not affect the fitted model Y, so that the residuals for both the centered 
and uncentered models are the same. Hence, from (3.52), the residual sum of 
squares for both models is given by 

RSS - Y'(In - P)Y 

- Y' (In - ~ Inl~ - X(X'X)-lX) Y 

Y'(I -.!.ll')Y-Y'PY n n n . n 

L(1li - y)2 - Y'PY, (3.54) 
i 

where P = X(X'X)-lX'. We will use this result later. 

3.11.2 Scaling 

Suppose that we now also scale the columns of X so that they have unit 
length. Let s~ = L:i X~j and consider the new variables Xij = Xij / S j. Then 
our model becomes 

where 'Yj == {3jSj. Because the transformation is still one-to-one, "'Ij = {3jSj 
and &0 = Y. If X* = (xij) and 1= bI,'" ,'Yp-I)', then replacing X by X* 
in (3.51) gives us 

..y = (X·'X*)-lX*'Y = R;;X*'Y, 

where R",,,, is now the (symmetric) correlation matrix 

and 

1 T12 TI,p-l 
T21 1 T2,p-l 

Tp-I,I Tp-l,2 1 

Tjk = L(Xij - Xj)(Xik - Xk)/(SjSk) 
i 

(3.55) 

is the (sample) correlation coefficient of the jth and kth explanatory variables. 
If we introduce the notation X* = (x*{l) , .. , ,X*(p-I» for the columns of X*, 
we see that Tjk = x*(j)'x*(k). 
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EXAMPLE 3.10 For later reference we consider the special case of p = 3. 
Then 

Rxx = (; ~), 
where r = X*(l)'x*(2). Also, from (3.55), we have 

so that 
1'1 = 1 (x*(l)'Y_rx*(2)'y) and [31 =1r/8 1. 

1 - r2 
By interchanging the superscripts (1) and (2), we get 

Since 

1'2 = 1 (x*(2)'y - rx*(l),y) and [32 = 1'2/8 2. 
1 - r2 

x - X* ( 81 - 0 

say, it follows that 

P =n-llnl~ + X*Sd(SdX*'X*Sd)-lSdX·' 

=n-llnl~ + X*(X*'X*)-lX*' 

=n-11nl~ 

+ 1 (X*(l) x*(2») (1 -lr ) (X*(l), x*(2»)' 
1 - r 2 ' -r 

=n-11nl~ + x*(2)X*(2)' 

+ 1 1 2 (x~l) - rx*(2») (X*(l) - rx*(2»),. 
-r 

EXERCISES 31 

(3.56) 

(3.57) 

(3.58) 

o 

1. If Yi = Yi - Y and Y = (Yl, ... , Yn )', prove from (3.54) that RSS = 
Y'(In - P)Y. 

2. Suppose that we consider fitting a model in which the Y-data are cen­
tered and scaled as well as the x-data. This means that we use Yi* = 
(Yi - Y)/ By instead of Yi, where B~ = L:i(Yi - Y)2. Using (3.54), obtain 
an expression for RSS from this model. 
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3.12 BAYESIAN ESTIMATION 

This method of estimation utilizes any prior information that we have about 
the parameter vector 0 = (13', u)'. We begin with the probability density 
function.ofY, f(y,O), say, which we have assumed to be multivariate normal 
in this chapter, and we now wish to incorporate prior knowledge ab')ut 0, 
which is expressed in terms of some density function f(O) of (). Our aim is 
to make inferences on the basis of the density function of 0 given Y = y, the 
posterior density junction of O. To do this, we use Bayes' formula, 

f(Oly) 
f(O,y) 
fey) 

f(yIO)f(O) 
fey) 

cf(yIO)f(O), (3.59) 

where c does not involve O. It is usual to assume that 13 and u have indepen­
dent prior distributions, so that 

f(O) = h(f3)h(u). 

Frequently, one uses the noninformative prior (see Box and Taio [1973: Sec­
tion 1.3] for a justification) in which f3 and log u are assumed to be locally 
uniform and u > O. This translates into h(f3) = !:.onstant and h(u) ex: 1/u. 
These priors are described as improper, as their integrals are technically infi­
nite (although we can get around this by making the intervals of the uniform 
distributions sufficiently large). Using these along with the independence as­
sumption, we obtain from (3.59) 

f(f3, uly) cf(yI0)u-1 

= c(27r)-n/2u -(n+1) exp ( - 2~2 IIy - X(3112) . 

Using the result 

1= x-(b+1) exp (-a/x2) dx = %a-b/2r(b/2) 

derived from the gamma distribution, we find that 

f(f3ly) ex: 1= f(f3, ulY) du 

ex: IIy - Xf311- n. 

Now, from Exercises 3a, No.1, 

IIy - Xf311 2 - IIy - X,BW + IIX,B - X,all2 
- (n - p)s2 + IIX,B - Xf3W, 

(3.60) 

(3.61) 

(3.62) 



74 LINEAR REGRESSION: ESTIMATION AND DISTRIBUTION THEORY 

so that 

f(f3ly) ex: [1 + (13 - /:J),x'X(f3 - /:J)] -n/2 
(n - p)S2 

This is a special case of the p-dimensiollal multivariate t-distribution 

J(t) = r(~[v + p]) [1 + v-l(t _I-£)'~-l(t -1-£)l-(II+p)/2 
(-7rv)P/2r(~v)I~ll/2 ' 

with v = n - p, ~ = s2(X'X)-l, and 1-£ = /:J. 
What estimate of 13 do we use? If we use the mean or the mode of the 

posterior distribution (which are the same in this case, as the distribution is 
symmetric) we get /:J, the least squares estimate. For interval inferences, the 
marginal posterior distribution of (3r is a t-distribution given by 

where (crs ) = (X'X)-l. 
If some information is available on 8, it is convenient, computationally, 

to use a conjugate prior, one that combines with J(yI8) to give a posterior 
distribution which has the same form as the prior. For example, suppose that 
J(,81(T2) is the density function for the Np(rn, (T2V) distribution and that (T2 
has an lnverted gamma distribution with density function 

(3.63) 

Then 

J(,8, (T2) J(,81(T2)J«(T2) 

ex: «(T2)-(d+p+2)/2 exp { __ 1_[(f3 - rn)'V- l (f3 - rn) + al } . 2(T2 

Combining this prior with the normal likelihood function, we obtain 

f(,8, (T2Iy) ex: J(ylf3, (T2)J(f3, (T2) 
ex: ((T2)-(d+ p+n+2)/2 exp [-(Q + a) / (2(T2)] , 

where 
Q = (y - X,8)'(y - X,8) + (,8 - rn)'V- l (f3 - rn). 

We can now integrate out (T2 to get the posterior density of 13. Thus 

f(f3ly) - 1= J(,8,(T2Iy)dCT2 

ex: 1= «(T2)-(d+n+p+2)/2 exp [-(Q + a)/(2(T2)] d(T2. 
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Using the standard integral formula 

1000 

x-(v+1) exp(-k/x) dx = r(v)k- V
, 

we see that the posterior density is proportional to 

(Q + a)-(d+n+p )/2. (3.64) 

To make further progress, we need the following result. 

THEOREM 3.7 Define V. = (X' X + V-I )"':1 and let m. be given by m. = 
V.(X'y + V-1m). Then 

Q = ((3 - m.)'V;l(.B ~ m.) + (y - Xm)'(In + XVX')-l(y - Xm). (3.65) 

Proof· 

Q - (3'(X'X + V-l )(3 - 2(3'(X'y + V-1 m) + y'y + m'V-lm 

- (3'V;l(3 - 2(3'V;lm. + y'y + m'V-lm 

- ((3 - m.)'V;l((3 - m.) + y'y + m'V-lm - m~ V;lm •. 

Thus, it is enough to show that 

Consider 

y'y + m'V-lm - m~ V;lm. 

- y'y + m'V-lm - (X'y + V-lm)'V.(X'y + V-1 m) 

y'(In - XV.X')y - 2y'XV.V-l m 
+ m'(V-l - V-lV-lV.V-l)m. (3.67) 

By the definition of V., we have V. (X' X + V-I) = Ip, so that 

and 

V. V-I = Ip - V.X'X 

XV .. V-l _ X - XV.X'X 

(In - XV.X')X. 

Also, by A.9.3, 

V-I _ V-IV. V-I _ V-I _ V-I (X'X + V-l)-lV-1 

(V + (X'X)-l)-l 

_ X'X - X'X(X'X + V-l)-lX'X 

(3.68) 

- X'(In - XV.X')X. (3.69) 
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Substituting (3.68) and (3.69) into (3.67), we get 

y'(In - XV.X')y - 2y'(In - XV .. X')m + m'(In - XV.X')m 

= (y - Xm)'(In - XV .. X')(y - Xm). (3.70) 

Finally, again using A.9.3, 

(In + XVX')-l - In - X(X'X + V-l)-lX' 

- In - XV .. X', 

proving the theorem. 0 

Using Theorem 3.7, we see from (3.64) that the posterior density of {3 is 
proportional to 

where 
a .. = a + (y ~ Xm)'(In + XVX')-l(y - Xm). 

This is proportional to 

[1 + (n + d)-l({3 - m.)'W;l({3 _ m .. )r(d+n+p )/2, 

where W.. = a .. V .. / (n + d), so from A .13.5, the posterior distribution of (3 
is a multivariate tp(n + d, m .. , W .. ). In particular, the posterior mean (and 
mode) is m .. , which we can take as our Bayes' estimate of (3. 

These arguments give the flavor of the algebra involved in Bayesian regres­
sion. Further related distributions are derived by O'Hagen [1994: Chapter 9] 
and in Section 12.6.2. Clearly, the choice of prior is critical and a necessary 
requirement in the conjugate prior approach is the choice of the values of m 
and V. These might Come from a previous experiment, for example. Distribu­
tions other than the normal can also be used for the likelihood, and numerical 
methods are available for computing posterior likelihoods when analytical so­
lutions are not possible. Numerical methods are surveyed in Evans and Swartz 
[1995]. For further practical details, the reader is referred to Gelman et al. 
[1995], for example. 

EXERCISES 3m 

1. Derive equations (3.60) and (3.61). 

2. Using the noninformative prior for 9, show that the conditional poste­
rior density f({3ly,O') is multivariate normal. Hence deduce that the 
posterior mean of (3 is /3. 

3. Suppose that we use the noninformative prior for 9. 

(a) If v = 0'2, show that f( v) ex: l/v. 
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(b) Obtain an expression proportional to 1({3, vly). 

(c) Using (3.62), integrate out {3 to obtain 

j(vly) ex: V-(v/2+1) exp (-;) , 

where 1/ = n - p and a = Ily - X.BW /2. 
(d) Find the posterior mean of v. 

3.13 ROBUST REGRESSION 

Least squares estimates are the most efficient unbiased estimates of the re­
gression coefficients when the errors are normally distributed. However, they 
are not very efficient when the distribution of the errors is long-tailed. Under 
these circumstances, we can expect outliers in the data: namely, observations 
whose errors Ci are extreme. We will see in Section 9.5 that least squares fits 
are unsatisfactory when outliers are present in the data, and for this reason 
alternative methods of fitting have been developed that are not as sensitive 
to outliers. 

When fitting a regression, we minimize some average measure of the size 
of the residuals. We can think of least squares as "least mean of squares" 
which fits a regression by minimizing the mean of the squared residuals (or, 
equivalently, the sum of the squared residuals). Thus, least squares solves the 
minimization problem 

1 n 

min - L e~ (b), 
b n i=1 

where ei(b) = Yi - x~b. Here, average is interpreted as the mean and size as 
the square. The sensitivity of least squares to outliers is due to two factors. 
First, if we measure size using the squared residual, any residual with a large 
magnitude will have a very large size relative to the others. Second, by using 
a measure of location such as a mean that is not robust, any large square 
will have a very strong impact on the criterion, resulting in the extreme data 
point having a disproportionate influence on the fit. 

Two remedies for this problem have become popular. First, we can measure 
size in some other way, by replacing the square e2 by some other function pee) 
which reflects the size of the residual in a less extreme way. To be a sensible 
measure of size, the function p should be symmetric [Le., pee) = p( -e)], 
positive [pee) > 0] and monotone [P(le1J) > P(le2J) if led > le21l. This idea 
leads to the notion of M-estimation, discussed by, for example, Huber [1981: 
Chapter 7], Hampel et al. [1986: Chapter 6], and Birkes and Dodge [1993: 
Chapter 5]. 

Second, we can replace the sum (or, equivalently, the mean) by a more 
robust measure of location such as the median or a trimmed mean. Regression 
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methods based on this idea include least median of squares and least trimmed 
squares, described in Rousseeuw [1984] and Rousseeuw and Leroy [1987]. A 
related idea is to minimize some robust measure of the scale of the residuals 
(Rousseeuw and Yohai [1984]). 

3.13.1 M-Estimates 

Suppose that the observed responses Yi are independent and have density 
functions 

(3.71) 

where a is a scale parameter. For example, if f is the standard normal density, 
then the model described by (3.71) is just the standard regression model and 
a is the standard deviation of the responses. 

The log likelihood corresponding to this· density function is 

n 

l(/3, a) = -.nloga + :Elogf[(Y,; - x~/3)/a], 
i=l 

which, putting p = -log f, we can write as 

Thus, to estimate /3 and a using maximum likelihood, we must minimize 

n 

nlogs + :Ep[ei(b)/s) (3.72) 
i=l 

as a function of b and s. Differentiating leads to the estimating equations 

n 

:E '1jJ [ ei (b) / s) Xi 0, (3.73) 
i=l 

n 

:E '1jJ [ei(b/ s)] ei(b) ns, (3.74) 
i=l 

where '1jJ = p'. 

EXAMPLE 3.11 Let p(x) = ~x2 so that '1jJ(x) = x. Then (3.73) reduces to 
the normal equations (3.4) with solution the least squares estimate (LSE) /3, 
and (3.74) gives the standard maximum likelihood estimate 

o 
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EXAMPLE 3.12 Let p(x) := Ixl. The corresponding estimates are values 
of s and b that minimize 

1 n 

nlogs + - L lei(b)l· 
s i=1 

(3.75) 

Clearly, a value of b minimizing (3.75) is also a value that minimizes 

and is called the L1 estimate. Note that there may be more than one value of 
b that minimizes (3.75). There is a large literature devoted to L1 estimation; 
see, for example, Bloomfield and Steiger [1983] and Dodge [1987J. Note that 
the L1 estimate is the maximum likelihood estimator if f in (3.71) is the 
double exponential density proportional to exp( -lyD. An alternative term 
for the L1 estimate is the LAD (Least Absolute Deviations) estimate. 0 

If we have no particular density function f in mind, we can choose p to 
make the estimate robust by choosing a p for which 1jJ = p' is bounded. We 
can generalize (3.73) and (3.74) to the estimating equations 

n 

L 1jJ[ei(b)/s]Xi = 0, (3.76) 
i=1 

n 

Lx[ei(b)/s] = 0, (3.77) 
i=1 

where X is also chosen to make the scale estimate robust. The resulting 
estimates are called M-estimates, since their definition is motivated by the 
maximum likelihood estimating equations (3.73) and (3.74). However, there 
is no requirement that 1jJ and X be related to the density function f in (3.71). 

EXAMPLE 3.13 (Huber "Proposal 2," Huber [1981: p. 137]) Let 

{ 

-k 
1jJ(x) = x: 

k, 

x <-k , 
-k < x <k, 

x> k, 
(3.78) 

where k is a constant to be chosen. The function (3.78) was derived by Hu­
ber using minimax asymptotic variance arguments and truncates the large 
residuals. The value of k is usually chosen to be 1.5, which gives a reason­
able compromise between least squares (which is the choice giving greatest 
efficiency at the normal model) and L1 estimation, which will give more pro­
tection from outliers. 0 

An estimate fJ of a parameter () is consistent if fJ -+ () as the sample size 
increases. (Roughly speaking, consistency means that () is the parameter 
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actually being estimated bye.) It Can be shown that a necessary condition 
for consistency when the parameters are estimated using (3.76) and (3.77) is 

E['¢>(Z)] = 0, (3.79) 

and 
E[X(Z)] = 0, (3.80) 

where Z has density function f. Equation (3.79) will be satisfied if f is 
symmetric about zero and if'¢> is antisymmetric [Le., '¢>( -z) = '¢>(z)]. This will 
be the case if p is symmetric about zero. We note that the conditions (3.79) 
and (3.80) are only necessary conditions, so the estimates may be biased even 
if they are satisfied. However, Huber [1981: p. 171] observes that in practice 
t-he bias will be small, even if the conditions are not satisfied. 

EXAMPLE 3.14 In Huber's Proposal 2, the function,¢> is asymmetric, so 
condition (3.79) is satisfied. The scale parameter is estimated by taking 
X(x) = '¢>2(x) - c for some constant c, which is chosen to make the estimate 
consistent when f is the normal density function. From (3.80), we require 
that c = E['¢>(Z)2], where Z is standard normal. 0 

EXAMPLE 3.15 Another popular choice is to use X(z) = sign(lzl - l/c) 
for some constant c. Then (3.77) becomes 

n 

:Esign(lei(b)l- sic) = 0, 
i=l 

which has solution (see Exercises 3n, No.1, at the end of this chapter) 

s = cmediani lei(b)l. 

This estimate is called the median absolute deviation (MAD); to make it 
consistent for the normal distribution, we require that c-1 = <[>-1 (3/4) = 
0.6749 (Le., c = 1.4326). 0 

Regression coefficients estimated using M-estimators are almost as efficient 
as least squares if the errors are normal, but are much more robust if the 
error distribution is long-tailed. Unfortunately, as we will see in Example 
3.23 below, M-estimates of regression coefficients are just as vulnerable as 
least squares estimates to outliers in the explanatory variables. 

3.13.2 Estimates Based on Robust Location and Scale Measures 

As an alternative to M-estimation, we can replace the mean by a robust 
measure of location but retain the squared residual as a measure of size. This 
leads to the least median of squares estimate (LMS estimate), which minimizes 

mediani ei (b) 2 . 
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The LMS estimator was popularized by Rousseeuw [1984] and is also discussed 
by Rousseeuw and Leroy [1987]. An alternative is to use the trimmed mean 
rather than the median, which results in the least trimmed squares estimate 
(LTS estimate), which minimizes 

h 

2:= e(i)(b)2, (3.81) 
i=l 

where h is chosen to achieve a robust estimator and e(1)(b)2 < ... < eCn) (b)2 
are the ordered squared residuals. The amount of trimming has to be quite 
severe to make the estimate robust. The choice h == [n/2] + 1 (where [x] is the 
greatest integer < x) is a popular choice, which amounts to trimming 50% of 
the residuals. The choice of h is discussed further in Section 3.13.3. 

These estimates are very robust to outliers in both the errors and the 
explanatory variables but can be unstable in a different way. In certain cir­
cumstances, small changes in nonextreme points can make a very large change 
in the fitted regression. In Figure 3.2(a), the eight points lie on one of two 
lines, with the point marked A lying on both. If a line is fitted through the 
five collinear points, all five residuals corresponding to those points are zero. 
Since a majority of the residuals are zero, the median squared residual is also 
zero, so a line through these points minimizes the LMS criterion. 

Now move the point marked B to be collinear with the remaining three 
points, resulting in Figure 3.2(b). This results in a new set of five collinear 
points. Using the same argument, this small change has resulted in the fitted 
LMS line now passing through the new set of collinear points. A small change 
in point B has resulted in a big change in the fit. 

y y 

• 
• 

B 

• • • 
x ~--------------~ x 

(a) (b) 

Fig. 3.2 Instability of the LMS estimator. 
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if the data are actually normally distributed. In this case, the asymptotic 
relative efficieEcy c: LMS reh,;~ive -:c the LSE is zero. (That is, the ratio of 
the variance of the IcSE to that of the LMS estimate approaches zero as the 
sample size increases.) The equivalent for the LTS is 8% (Stromberg et al. 
[2000]). These poor efficiencies have motivated a search for methods that are 
at the same time robust and efficient. Before describing these, we need to 
discuss ways of quantifying robustness more precisely. 

3.13.3 Measuring Robustness 

We will discuss two measures of robustness. The first is the notion of break­
down point, which measures how well an estimate can resist gross corruption 
of a fraction of the data. The second is the influence curve, which gives 
information on how a single outlier affects the estimate. 

Breakdown Point of an Estimate 

Suppose that we select.a fraction of the data. Can we cause an arbitrarily 
large change in the estimate by making a suitably large change in the selected 
data points? 

Clearly, for some estimates the answer is yes; in the case of the sample mean 
we can make an arbitrarily large change in the mean by making a sufficiently 
large change in a single data point. On the other hand, for the sample median 
we can make large changes to almost 50% of the data without cl}anging the 
median to the same extent. 

Definition 3.2 The breakdown point of an estimate is the smallest fraction 
of the data that can be changed by an arbitrarily large amount and still cause 
an arbitrarily large change in the estimate. 

Thus, the sample mean has a breakdown point of lin and the sample 
median a breakdown point of almost 1/2. We note that a breakdown point of 
1/2 is the best possible, for if more than 50% of the sample is contaminated, 
it is impossible to distinguish between the "good" and "bad" observations, 
since the outliers are now typical of the sample. 

Since the least squares estimate of a regression coefficient is a linear combi­
nation of the responses, it follows that an arbitrarily large change in a single 
respor~de will cause an arbitrarily large change in at least one regression coef­
ficient. Thus, the breakdown point of the least squares estimate is l/n. 

Since the median has a very high breakdown point, and the median of 
the data Y i , ... , Yn minimizes the least absolute deviation I:i IYi - 91 as a 
function of 9, it might be thought that the L1 estimator of the regression 
coefficients would also have a high breakdown point. Unfortunately, this is 
not the case; in fact, the breakdown point of L1 is the same as that of least 
squares. It can be shown, for example in Bloomfield and Steiger [1983: p. 7], 
that when the regression matrix X is of full rank, there is a value minimizing 
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L:~1 !ei(b)! for which at least p residuals are zero. Further, Bloomfield and 
Steiger [1983: p. 55] also prove that if one data point is arbitrarily far from the 
others, this data point must have a zero residual. It follows that by moving 
the data point an arbitrary amount, we must also be moving the fitted plane 
by an arbitrary amount, since the fitted plane passes through the extreme 
data point. Thus replacing a single point can cause an an arbitrarily large 
change in the regression plane, and the breakdown point of the L1 estimate is 
lin. The same is true of M-estimates (Rousseeuw and Leroy [1987: p. 149]). 

We saw above that the LMS and LTS estimates were inefficient compared 
to M-estimates. They compensate for this by having breakdown points of 
almost 1/2, the best possible. If we make a small change in the definition of 
the LMS, its breakdown point can be slightly improved. Let 

h = [n/2] + [(P + 1)/2], (3.82) 

where [x] denotes the largest integer < x. If we redefine the. LMS estimator 
as the value of b that minimizes e(h) (b)2, rather than the median squared 
residual, the LMS breakdown point becomes ([(n - p)/2] + l)/n. If h is given 
by (3.82), then the LTS estimate which minimizes 

h 

2: e(i)(b)2 
i=1 

also has breakdown point ([(n - p)/2] + l)/n, slightly higher than with the 
choice h = [n/2] + 1. These results are discussed in Rousseeuw and Leroy 
[1987: pp. 124, 132]. 

Influence Curves 

Suppose that F is a k-dimensional distribution function (d.:.), and (J is a 
population parameter that depends on F, so that we may write (J = T(F). 
We call T a statistical functional, since it is a function of a function. 

EXAMPLE 3.16 Perhaps the simplest example of a statistical functional 
is the mean E F [X] of a random variable X, where the subscript F denotes 
expectation with respect to the d.f. F. In terms of integrals, 

T(F) = EF[X] 

= ! xdF(x). 

(3.83) 

o 

EXAMPLE 3.17 If Z is a random k-vector with distribution function F, 
then the matrix EF[ZZ'] is a statistical functional, also given by the k­
dimensional integral 

T(F) = ! zz' dF(z). (3.84) 

o 
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Definition 3.3 If Zi, ... , Zn are independent and identically distributed ran­
dom vectors each with distribution function F, the empirical distribution func­
tion (e. d.f.) Fn is the d.f. which places mass n -1 at each of the n points 
Zi, i = 1, .. . ,n. 

Integration with respect to the e.d.f. is just averaging; if h is a function, 
then 

! h(z) dFn(z) = n-1 t h(Zi). 
i=l 

Many statistics used to estimate parameters T(F) are plug-in estimates 
of the form T(Fn), where Fn is the e.dJ. based on a random sample from F. 

EXAMPLE 3.18 (Vector sample mean) Let Zl, ... , Zn be a random sample 
from some multivariate distribution having dJ. F. The plug-in estimate of 

T(F) = ! z dF(z) 

IS 

the sample mean. 

EXAMPLE 3.19 The plug-in estimate of (3.84) is 

n 

= n-1 2:ZiZ~, 
i=l 

o 

(3.85) 

o 

Consider a regression with a response variable Y and explanatory variables 
Xl, ..• , X p -1. When studying the statistical functionals that arise in regres­
sion, it is usual to assume that the explanatory variables are random. We 
regard the regression data (Xi, Yi), i = 1, ... , n, as n identically and inde­
pendently distributed random (p + I)-vectors, distributed as (x, Y), having a 
joint distribution function F, say. Thus, in contrast with earlier sections, we 
think of the vectors Xi as being random and having initial element 1 if the 
regression contains a constant term. As before, we write X for the (random) 
matrix with ith row x~. 

We shall assume that the conditional distribution of Y given X has density 
function g [(y - f3'x) / (j] , where g is a known density, for example the standard 
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normal. For simplicity, we will sometimes assume that the scale parameter 
(j is known. In this case, we can absorb (j into 9 and write the conditional 
density as g(y - f3'x). 

EXAMPLE 3.20 (Least squares) Consider the functional 

The plug-in estimator of T is 

T(Fn) . (n-1 t XiX~) -1 (n-1 t XiYi) 
.=1 .=1 

(3.86) 

= (XX)-1X'Y. o 

To assess the robustness of a plug-in estimator T(Fn), we could study how 
it responds to a small change in a single data point. An alternative, which 
we adopt below, is to examine the population version: We look at the effect 
of small changes in F on the functional T(F). This allows us to examine the 
sensitivity of T inore generally, without reference to a particular set of data. 

Suppose that F is a distribution function. We can model a small change in 
F at a fixed (Le., nonrandom) value Zo = (x~, Yo)' by considering the n.ixture 
of distributions Ft = (1 - t)F + tozo ' where ozo is the distribution function 
of the constant Zo, and t > 0 is close to zero. The sensitivity of T can be 
measured by the rate at which T(Ft ) changes for small values of t. 

Definition 3.4 The influence curve (IC) of a statistical functional T is the 
derivative with respect to t of T(Ft } evaluated at t = 0, and is a measure of 
the rate at which T responds to a small amount of contamination at Zo. 

We note that the influence curve depends on both F and zo, and we use 
the notation 

IC(F, zo) = dT(Ft ) 
dt 

to emphasize this. Cook and Weisberg [1982: Chapter 3], Hampel et aI. [1986] 
and Davison 'and Hinkley [1997] all have more information on influence curves. 

EXAMPLE 3.21 (IC of the mean) Let T be the mean functional defined in 
Example 3.16. Then 

J xdFt(x) 

(1- t) J xdF(x) + t J x do", 0 (x) 

(1 - t)T(F) + txo, 
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so that 

and 

T(Ft ) - T(F) = Xo _ T(F) 
t 

IC(xo, F) = Xo - T(F). 

This is unbounded in Xo, suggesting that a small amount of contamination 
can cause an arbitrarily large change. In other words, the mean is highly 
nonrobust. 0 

EXAMPLE 3.22 (IC for the LSE) Let T be the LSE functional defined in 
Example 3.20. Write :EF = EF[xX/] and 'IF = EF[xY]. Then 

We have 

EF, [XXI] 
(1 - t)EF[xX/] + txox~ 
(1 - t):EF + txox~ 
(1 - t){:EF + tlxOX~}, 

where tl = tl(l - t). By A.9.1 we get 

:E-1 = (1 _ t)-I:E-1 _ t l F XoXo F . 
[ 

:E-l I :E-1 ] 
F, F 1 + oCt) 

Similarly, 
'IF, = (1 - t)'!F + txoyo· 

Substituting (3.88) and (3.89) in (3.87) yields 

so that 

. T(Ft) = T(F) + tl:EF1xOYO - t/:EFlxox~:EFI + oCt), 

T(Ft ) - T(F) -1 -1 I ) () 
~~---'--'- = :EF xoYo -:EF xoxoT(F + a 1 . 

t 

Letting t -+ 0, we get 

(3.87) 

(3.88) 

(3.89) 

We see that this is unbounded in both Xo and Yo, indicating that the LSE is 
not robust. 0 

The situation is somewhat better for M-estimates. 
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EXAMPLE 3.23 (IC for M-estimates) For simplicity we will assume that 
the scale parameter (f is known. Consider the functional T defined implicitly 
by the equation 

EF ('I/J{[Y - x'T(F)]/(f }x) = O. (3.90) 

The plug-in version is T(Fn) is the solution of 

which is of the form (3.76). Thus, the functional T defined by (3.90) is the 
M-estimation functional. 

To derive its influence curve, we substitute Ft for F in (3.90). This yields 

(1 - t)EF['I/J{ [Y - x'T(Ft )]/ (f }x] + t'I/J{ [Yo - x~ T(Ft )]/ (f }xo = O. (3.91) 

Let T t = dT(Ft)/dt, lOt = [Y - x'T(Ft)]/(f and rJt = [Yo - x~T(Ft)]/(f, and 
note the derivatives 

d'I/J(rJd = __ J.l( )x'T /(f 
dt Of' rJt 0 t 

and 

EF [ d'I/Jd:t ) x] 
-EF ['I/J'(et)xx'] Tt/(f. 

Now differentiate both sides of (3.91). We obtain 

which, using the derivatives above, gives 

-(1- t)EF ['I/J'(et)xx'] 'it/(f - EF['I/J(et)x]- t'I/J'(rJt)xoxo'Tt/(f +'I/J(rJt)xo = o. 

Now set t = O. Noting that F t = F when t = 0, and using (3.90), we get 

EF['I/J(eo)] = EF ['I/J{[Y - x'T(F)]/(f}] 

= 0, 

and from the definition of the IC, To = IC(zo, F). Thus, 

-EF ['I/J' {[Y - x'T(F)]/(f )}xx'] IC(zo, F)/(f + 'I/J{ [Yo - x~ T(F)]/ (f }xo = 0, 

so finally, 
(3.92) 

where M = EF ['I/J{ (Y -x'T(F))/(f } xx'] . Thus, assuming that 'I/J is bounded, 
the influence curve is bounded in Yo, suggesting that M-estimates are robust 
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with respect to outliers in the errors. However, the IC is not bounded in xo, 
so M-estimates are not robust with respect to high-leverage points (Le., points 
with outliers in the explanatory variables; see Section 9.4). 0 

The robust estimates discussed so far are not entirely satisfactory, since 
the high breakdown estimators LMS and LTS have poor efficiency, and the 
efficient M-estimators are not robust against outliers in the explanatory vari­
ables and have breakdown points of zero. Next, we describe some other robust 
estimates that have high breakdown points but much greater efficiency that 
LMS or LTS. 

3.13.4 Other Robust Estimates 

Bounded Influence Estimators 

As we saw above, M-estimators have infiuence curves that are unbounded 
in Xo and so are not robust with respect to high-leverage points. However, it 
is possible to modify the estimating equation (3.73) so that the resulting IC 
is bounded in Xo. Consider' an estimating equation of the form 

n 

:E W(Xi)'¢{ ei(b) /[aw(xi)]}Xi = 0, (3.93) 
i=1 

where, for simplicity, we will assume that the scale parameter a is known. 
This modified estimating equation was first suggested by Handschin et al. 
[1975], and the weights are known as Schweppe weights. It can be shown (see 
Hampel et al. [1986: p. 316]) that the IC for this estimate is 

IC(zo, F) = aw(xo)'¢{ (Yo -:- x~ T(F))/(aw(xo)) }M-1xo, 

where M is a matrix [different from the M appearing in (3.92)] not depending 
on Zo. The weight function w is chosen to make the IC bounded, and the 
resulting estimates are called bounded influence estimates or generalized M­
estimates (OM-estimates). 

To make the IC bounded, the weights are chosen to downweight cases that 
are high-leverage points. However, including a high-leverage point that is 
not an outlier (in the sense of not having an extreme error) increases the 
efficiency of the estimate. This is the reason for including the weight function 
w in the denominator in the expression ei(b)/[aw(xi)], so that the effect of a 
small residual at a high-leverage point will be magnified. An earlier version 
of (3.93), due to Mallows [1975], does not include the weight W(Xi) in the 
denominator and seems to be less efficient (Hill [1977]). 

The weights can be chosen to minimize the asymptotic variance of the 
estimates, subject to the infiuence curve being bounded by some fixed amount. 
This leads to weights of the form w(x) = IIAxlI-1 for some matrix A. More 
details may be found in Ronchetti [1987] and Hampel et al. [1986: p. 316]. 
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Krasker and Welsch [1982) give additional references and discuss some other 
proposals for choosing the weights. 

The breakdown point of these estimators is better than for M-estimators, 
but cannot exceed lip (Hampel et al. [1986: p. 328)). This can be low for 
problems with more than a few explanatory variables. To improve the break­
down point of GM-estimators, we could combine them in some way with high 
breakdown estimators, in the hope that the combined estimate will inherit 
the desirable properties of both. 

The estimating equation (3.93) that defines the GM-estimate is usually 
solved iteratively by either the Newton-Raphson method or Fisher scoring 
(A.14), using some other estimate as a starting value. (This procedure is 
discussed in more detail in Section 11.12.2.) 

A simple way of combining a high breakdown estimate with a GM-estimate 
is to use the high breakdown estimate as a starting value and then perform 
a single Newton-Raphson or Fisher scoring iteration using the GM iteration 
scheme discussed in Section 11.12.2; the resulting estimate is called a one-step 
GM-estimate. This idea has been suggested informally by several authors: for 
example, Hampel et al. [1986: p. 328) and Ronchetti [1987). 

Simpson et al. [1992) have carried out a formal investigation of the prop­
erties of the one-step GM-estimate. They used the Mallows form of the es­
timating equation (3.93), with weights w(xd based on a robust Mahalanobis 
distance. The Mallows weights are given by 

(3.94) 

where b and a are tuning constants, in and C are robust measures of the 
location and dispersion of the explanatory variables, and the Xi'S are to be 
interpreted in the "reduced" sense, without the initial 1. Thus, the denomi­
nator in the weight function is a robust Mahalanobis distance, measuring the 
distance of Xi from a typical x. Suitable estimates rn and C are furnished by 
the minimum volume ellipsoid described in Section 10.6.2 and in Rousseeuw 
and Leroy [1987: p. 258). 

If the robust, distance used to define the weights and the initial estimate 
of the regression coefficients both have a breakdown point of almost 50%, 
then the one-step estimator will also inherit this breakdown point. Thus, 
if LMS is used as the initial estimator, and the minimum volume ellipsoid 
(see Section 10.6.2) is used to calculate the weights, the breakdown point 
of the one-step estimator will be almost 50%. The one-step estimator also 
inherits the bounded-infiuence property of the GM-estimator. Coakley and 
Hettmansperger [1993) suggest that efficiency can be improved by using the 
Schweppe form ofthe estimating equation and starting with the LTS estimate 
rather than the LMS. 
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$- ESl:u maWfS 

We can think or tile "",verage size" of the residuals as a measure of their 
disperslon, so we can consider mo;:", general regression estimators based on 
some dispersion or scale estimator s(el"'·' en). This leads to minimizing 

D(b) = s[el(b), ... , en(b)], (3.95) 

where s is a estimator of scale. The scale parameter (J' is estimated by the 
minimum value of (3.95). 

EXAMPLE 3.24 If we use the standard deviation as an estimate of scale, 
(3.95) reduces to 

n n 

2:[ei(b) - ei(bW = 2: [Yi - Y - bl(Xil - Xl) _ ... - bp-I(Xi,p-1 - Xp_I)]2, 
i=l i=l 

which is the residual sum of squares. The estimates minimizing this are the 
least squares estimates. Thus, in the case of a regression with a constant 
term, taking the scale estimate s to be the standard deviation is equivalent 
to estimating the regression coefficients by least squares. 0 

EXAMPLE 3.25 Using the MAD as an estimate of scale leads to minimiz­
ing mediani lei(b)l, which is equivalent to minimizing mediani lei(b)12. Thus, 
using the estimate based on the MAD is equivalent to LMS. 0 

Rousseeuw and Yohai [1984] considered using robust scale estimators s = 
s( el, ... ,en) defined by the equation 

where K = E[p(Z)] for a standard normal Z, and the function p is symmetric 
and positive. They also assume that p is strictly increasing on [0, e] for some 
value e and is constant on (e,oo). Estimators defined in this way are called 
S-estimators. 

Rousseeuw and Yohai show that the breakdown point of such an estimator 
can be made close to 50% by a suitable choice of the function p. The biweight 
junction, defined by 

Ixi < e, 
Ixi > e, 

is a popular choice. If the constant e satisfies pee) = 2E[p(Z)], where Z is 
standard normal, then Rousseeuw and Yohai prove that the breakdown point 
of the estimator is ([n/2] - p + 2)/n, or close to 50%. For the biweight esti­
mator, this implies that e = 1.547. The efficiency at the normal distribution 
is about 29%. 
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R-Estimators 

Another class of estimators based on a measure of dispersion are the R­
estimators, where the dispersion measure is defined using ranks. Let an(i), i = 
1, ... , n, be a set of scores, given by 

an(i) = h[i/(n + 1)], (3.96) 

where h is a function defined on [0,1]. Examples from nonparametric statistics 
include the Wilcoxon scores, [h(u) = u - 0.5], the van der Waerden scores 
[h(u) = ~-l(u)] and median scores [h(u) = sign(u - 0.5)]. All these scores 
satisfy 2:~=1 an(i) = O. 

Jaeckel [1972] defined a dispersion measure by 

n 

s(el, ... ,en) = Lan(~)ei' 
i=l 

(3.97) 

where Ri is the rank of ei (Le., its position in the sequence {el, ... ,en }). 

Since the scores sum to zero, the dispersion measure will be close to zero if 
the e/s are similar. For a fixed vector b, let Ri be the rank of ei(b). Jaeckel 
proposed as a robust estimator the vector that minimizes s[el (b), ... , en(b)]. 

Note that since the scores satisfy 2:~=1 an(i) = 0, the measure s has the 
property 

s(el + c, ... ,en + c) = s(el, ... ,en). 

Thus, for any vector b, if the regression contains a constant term, the quantity 
s[el (b), ... , en (b)] does not depend on the initial element bo of b. If we write 
b = (bo,bD /, then s[el(b), ... ,en(b)] is a function of b l alone, which we 
can denote by D(bl ). It follows that we cannot obtain an estimate of (30 
by minimizing D(bl ); this must be obtained separately, by using a robust 
location measure such as the median applied to the residuals ei(b), where 
b = (0, bD', bl being the minimizer of D(bl ). 

The estimate defined in this way has properties similar to those of an M­
estimator: For the Wilcoxon scores it has an infiuence function that is bounded 
in Yo but not in Xo, has a breakdown point of lin, and has high efficiency at 
the normal distribution. These facts are proved in Jaeckel [1972]' Jureckova 
[1971], and Naranjo and Hettmansperger [1994]. 

The estimat~ can be modified to have a better breakdown point by modi­
fying the scores and bru:;ing the ranks on the absolute values of the residuals, 
or equivalently, on the ordered absolute residuals, which satisfy 

Consider an estimate based on minimizing 

n 

D(b) = :E an(i)ie(i) (b)l, (3.98) 
i=l 
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where the scores are now of the form an(i) = h+(i/(n + 1)), where h+ is a 
nonnegative function defined on [0,1) and is zero on [a, 1) for 0 < a < 1. Then 
Hossjer [1994) shows that for suitable choice of h+, the breakdown point of the 
estimate approaches min (a, 1- a) as the sample size increases. The efficiency 
decreases as the breakdown point increases. For a breakdown point of almost 
50%, the efficiency is about 7% at the normal model, similar to LTS. 

The efficiency can be improved while retaining the high breakdown prop­
erty by considering estimates based on differences of residuals. Sievers [1983], 
Naranjo and Hettmansperger [1994), and Chang et a1. [1999) considered es­
timates of the regression coefficients (excluding the constant term) based on 
minimizing the criterion 

D(bd = 2: wijlei(b) - ej(b)l, (3.99) 
l:S;i<j:S;n 

which, like Jaeckel's estimator, does not depend on boo The weights Wij can 
be chosen to achieve a high breakdown point, bounded influence, and high 
efficiency. Suppose that b and if are preliminary 50% breakdown estimates 
of /3 and a. For example, we could use LMS to estimate /3, and estimate a 
using the MAD. Chang et a1. [1999) show that if the weights are defined by 

(3.100) 

then the efficiency can be raised to about 67% while retaining a 50% break­
down point. In (3.100), the weights W(Xi) are the Mallows weights defined in 
(3.94), and c is a tuning constant. If Wij = 1 for all i < j, then the estimate 
reduces to Jaeckel's estimate with Wilcoxon scores (see Exercises 3n, NO.2). 

Similar efficiencies can be achieved using a modified form of S-estimate 
which is also based on differences of residuals. Croux et al. [1994) define a 
scale estimate s = s(el, ... , en) as the solution to the equation 

(3.101) 

where h = [(n + p + 1)/2). Then the estimate based on minimizing s(bd = 
s[el(b), ... ,en(b)) is called a generalized S-estimate. Note that again this 
criterion does not depend on boo 

Defining 

p(x) = { 1, 
0, 

Ixl > 1, 
Ixl < 1, 

(3.102) 

gives an estimate called the least quartile difference estimate (LQD estimate), 
since (see Exercises 3n, No.3) the resulting s is approximately the lower 

quartile of all the G) differences lei(b) - ej(b)l. Croux et a1. [1994) show 
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that the LQD estimator has a breakdown point of almost 50% and roughly 
67% efficiency. It does not have a bounded influence function. 

A similar e~timate, based on a trimmed mean of squared differences, is the 
least trimmed difference estimate (LTD estimate), which minimises the sum 

of the first (~) ordered squared differences. This estimate, introduced in 

Stromberg et aI. [2000], has properties similar to those of the LQD. 

EXERCISES 3" 

1. Let X(z) = sign(lzl- 1je) for some constant e. Show that the solution 
of (3.77) is the MAD estimate 

s = c mediani lei(b)l. 

2. Show that if we put Wij = 1 in (3.99), we get Jaeckel's estimator defined 
by (3.97) with Wilcoxon weights. 

3. Show that if s is the solution of (3.101) with p given by (3.102), then the 

resulting s is approximately the lower quartile of the (;) differences 

lei(b) - ej(b)l· 

MISCELLANEOUS EXERCISES 3 

1. Let Yi = ad31 + bi l12 +ci (i = 1,2, ... , n), where the ai, bi are known and 
the Ci are independently and identically distributed as N(O, a 2 ). Find a 
necessary and sufficient condition for the least squares estimates of 111 
and 112 to be independent. 

2. Let Y = 9+10, where E[e] = O. Prove that the value of 9 that minimizes 
IIY - 911 2 subject to A9 = 0, where A is a known q x n matrix of rank 
q, is 

iJ = (In - A'(AA,)-l A)Y. 

3. Let Y =,X(3 + 10, where E[e] = 0, Var[e] = a2In, and X is n x p of 
rank p. If X and (3 are partitioned in the form 

prove that the least squares estimate (:J2 of (32 is given by 

[X;X2 - X;Xl(X~Xl)-lX~X2]-1 

X [X~Y - X~Xl(X~Xl)-lX~Y]. 



94 LINEAR REGRESSION: ESTIMAT/OM AND DfSTF:J5:UTJOiJ TrJEORY 

4. Suppose that E[Y] = X(3 and Var[Y] = a:l:I",. Prove that a'Y is the 
linear unbiased estimate of E[a'Y] with minimum variance if and only 
if cov[a'Y, b'Y] = 0 for all b such that E[b'Y] = 0 (Le., b'X = 0'). 

(Rao [1973]) 

5. If X has full rank and Y = X(3, prove that 

n 
""' A 2 ~ var[Yi] = (J p. 
i=l 

6. Estimate the weights /3i (i = 1,2,3,4) of four objects from the following 
weighing data (see Exercises 3e, No.5, at the end of Section 3.6 for 
notation): 

Xl X2 X3 X4 Weight (Y) 

1 1 1 1 20.2 
1 -1 1 -1 8.0 
1 1 -1 -1 9.7 
1 -1 -1 1 1.9 

7. Three parcels are weighed at a post office singly, in pairs, and all to­
gether, giving weights Yijk (i,j, k = 0,1), the suffix 1 denoting the pres­
ence of a particular parcel and the suffix 0 denoting its absence. Find 
the least squares estimates of the weights. 

(Rahman [1967]) 

8. An experimenter wishes to estimate the density d of a liquid by weighing 
known volumes of the liquid. Let Yi be the weight for volume Xi (i = 
1,2, ... , n) and let E[Yi] = dXi and var[Yi] = (J2 f(Xi). Find the least 
squares estimate of d for the following cases: 

9. Let Yi = /30 + {3lXi +ei (i = 1,2,3), where E[e] = 0, Var[e] = (J2V with 

(

1 pa P) 
V = pa a2 pa , 

p pa 1 

(a, p unknown) 
0<p<1 

and Xl = -1, X2 = 0, and X3 = 1. Show that the generalized least 
squares estimates of {30 and {3l are 
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where T = 1 + p + 2a2 - 4ap. Also prove the following: 

(a) If a = 1, then the fitted regression Yi* = fJo +fJrxi cannot lie wholly 
above or below the values of Yi (Le., the Yi - Yi* cannot all have 
the same sign). . 

(b) If 0 < a < p < 1, then the fitted regression line can lie wholly 
above or below the observations. 

(Canner [1969]) 

10. If X is not of full rank, show that any solution (3 of X'V-l X(3 = 
X'V-Iy minimizes (Y - X(3)'V-l(y - X(3). 

11. Let 

and 

fh+()2+ Cl, 

()l - 2()2 + 102, 

1'3 = 2()1 - ()2 + 103, 

where E[cd = 0 (i = 1,2,3). Find the least squares estimates of 81 and 
()2. If the equations above are augmented to 

()1 - 2()2 + ()3 + 102, 

2()1 - ()2 + ()3 + 103, 

find the least squares estimate of ()3. 

12. Given the usual full-rank regression model, prove that the random vari­
ables Y and L:i(Yi - yi )2 are statistically independent. 

13. Let Yi = fJxi + Ui, Xi > 0 (i = 1,2, ... , n), where Ui = PUi-1 + Ci and 
the Ci are independently distributed as N(O, a 2 ). If i3 is the ordinary 
least squares estimate of fJ, prove that var[i3] is inflated when p > O. 

14. Suppose that E[ytJ = fJo + fJl cos(27rklt/n) + fJ2 sin(27rk2 t/n), where 
t = 1,2, ' ... , n, and kl and k2 are positive integers. Find the least 
squares estimates of fJo, fJl, and fJ2. 

15. Suppose that E[YiJ = ao + fJl (Xii - Xl) + fJ2(Xi2 - X2), i = 1,2, ... , n. 
Show that the least squares estimates of ao, fJb and fJ2 can be obtained 
by the following two-stage procedure: 

(i) Fit the model E[YiJ = ao + fJl (Xii - Xl)' 

(ii) Regress the residuals from (i) on (Xi2 - X2). 





4 
Hypothesis Testing 

4.1 INTRODUCTION 

In this chapter we develop a procedure for testing a linear hypothesis for 
a linear regression model. To motivate the general theory given below, we 
consider several examples. 

EXAMPLE 4.1 From (1.1) we have the model 

logF = loge - /3logd, 

representing the force of gravity between two bodies distance d apart. Setting 
Y = log F and x = - log d, we have the usual linear model Y = /30 + /31 X + c, 
where an error term c has been added to allow for uncontrolled fluctuations 
in the experiment. The inverse square law states that /3 = 2, and we can test 
this by taking n pairs of observations (Xi, Yi) and seeing if the least squares 
line has a slope close enough to 2, given the variability in the data. 0 

Testing whether a particular /3 in a regression model takes a value other 
than zero is not common and generally arises in models constructed from some 
underlying theory rather than from empirical considerations. 

EXAMPLE 4.2 From (1.2) we have the following model for comparing two 
straight lines: 

E[Y] = /30 + /31 Xl + /32 X 2 + /33 x 3, 

where /30 = 01, /31 = 1'1, /32 = 02 - 01, and /33 = 1'2 - 1'1· To test whether 
the two lines have the same slope, we test /33 = 0; while to test whether the 
two lines are identical, we test /32 = /33 = O. Here we are interested in testing 
whether certain prespecified /3i are zero. 0 

97 
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G : Yi = /30 + fhxil +- ... + flp-1X·;,:o-1 + Ci, 

or Y = X(3 + E:. When p is large We will usually be interested in considering 
whether we can set some of the fli equal to zero. This is the problem of model 
selection discussed in Chapter 12. If we test the hypothesis flr = flr+l = ... = 
flp-l = 0, then our model becomes 

H : Yi = flo + fllXil + ... + flr-lXi,r-l + Ci, 

or Y = X r(3 + e. Here Xr consists of the first l' columns of X. o 
Examples 4.1 and 4.2 are special cases of Example 4.3 whereby we wish 

to test a submodel H versus the full model G. The same computer package 
used to fit G and obtain RSS can also be used to fit H and obtain RSSH = 
IIY - Xr.BHW· We can also express the hypothesis constraints in the matrix 
form 

0= 

o 
o 

o 

010 
001 

000 

o 
o 

1 

where the rows of A are linearly independent. 

= A(3, 

Combining the three examples above, a general hypothesis can be expressed 
in the form H : A(3 == c. In the next section we develop a likelihood ratio 
test for testing H. 

4.2 LIKELIHOOD RATIO TEST 

Given the linear model G : Y = X(3 + E:, where X is n x p of rank p and 
E: ~ Nn(O, (72In), we wish to test the hypothesis H : A(3 == c, where A is q x P 
of rank q. The likelihood function for G is 

L((3, (72) = (27r(72)-n/2 exp [- 2~211Y - X(3W] . 

In Section 3.5 we showed that the maximum likelihood estimates of (3 and (72 
are.B = (X'X)-lX'Y, the least squares estimate, and {;2 = IIY - X.BW/n. 
The maximum value of the likelihood is given by [see equation (3.18)] 

L(.B, (2) == (27r{;2)-n/2 e-n/2. 

The next step is to find the maximum likelihood estimates subject to the 
constraints H. This requires use of the Lagrange multiplier approach of Sec­
tion 3.8, where we now consider 

l' - logL((3, (72) + ((3'A' - c')>' 

constant - ; (72 - 2~211Y - X(3112 + ((3' A' - c')>'. 
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Using algebra almost identical to that which led to (:JH of (3.38), we find that 
the maximum likelihood estimates are (:JH and 0-1£ = IIY - X(:JH11 2 /n with a 
maximum of 

L((3A A2 ) _ (2 A 2 )-n/2 -n/2 H,(jH - 7r(jH e . 

The likelihood ratio test of H is given by 

(4.1) 

(4.2) 

and according to the likelihood principle, we reject H if A is too small. Unfor­
tunately, A is not a convenient test statistic and we show in the next section 
that 

F = n - p (A -2/n _ 1) 
q 

has an Fq,n-p distribution when H is true. We then reject H when F is too 
large. 

4.3 F-TEST 

4.3.1 Motivation 

Since we want to test H : A(3 = c, a natural statistic for testing this is 
A(:J - c; H will be rejected if A(:J is sufficiently different from c. However, 
not every element in A(:J should be treated the same, as they have different 
precisions. One way of incorporating the precision of each [3i into a a suitable 

distance measure is to use the quadratic (A!3 - c)'(Var[A(:Jl) -1 (A!3 - c), 

where Var[A!31 = (j2 A(X'X) -1 A'. If we estimate (j2 by its unbiased estimate 
8 2 = RSS/(n - p), we arrive at (A(:J -- c)'[A(X'X)-l A'l-l(A(:J - c)/82 • 

We will now derive a test statistic which is a constant times this quadratic 
measure. 

4.3.2 Derivation 

Before we derive our main theorem, we recall some notation. We have 

RSS = IIY - x!3W = IIY - Yl12 

and 

where, from (3.38), 
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Here nssH is the minimum value of e'e subject to A(3 = c. An F-statistic 
for testing H is described in the following theorem. 

THEOREM 4.1 

(i) RSSH - RSS = IIY - Y HW = (A/3 - c)'[A(X'X)-l A')-l(A/3 - c). 

(ii) 

E[RSSH - RSS] (J2q + (A(3 - c)'[A(X'X)-l A,]-l(A(3 - c) 

- (J2q + (RSSH - RSS)Y=E[Yj. 

(iii) When H is true, 

F = (RSSH - RSS)/q = (A/3 - c),[A(X'X)-l A']-l(A/3 - c) 
RSS/(n - p) qS2 

is distributed as Fq,n':"'p (the F -distribution with q and n - p degrees of 
freedom, respectively). 

(iv) When c = 0, F can be expressed in the form 

F= n-pY'(P-PH)Y 
q Y'(In - P)Y , 

where PHis symmetric and idempotent, and PH P = PP H = PH. 

Proof. (i) From (3.43) and (3.44) in Section 3.8.1 we have 

RSSH - RSS - IIY - Y HII2 

- (/3 - /3H)'X'X(/3 - /3H), 

and substituting for /3 - /3H using equation (4.3) leads to the required result. 
(ii) The rows of A are linearly independent and /3 '" Np ((3,(J2(X'X)-1), 

so from Theorem 2.2 in Section 2.2, we get A/3 '" Nq (A(3,(J2A(X'X)-lA'). 
Let Z = Ai3 - c and B = A(X'X)-l A'; then E[Z) = A(3 - c and 

Var[Z) = Var[A/3) = (J2B, 

Hence, using Theorem 1.5 in Section 1.5, 

E[RSSH - RSS) - E[Z'B-1Z) [by (i)] 

- tr((J2B-1B) + (A(3 - c)'B-1(A(3 - c) 

tr((J2Jq) + (A(3 - c)'B-1(A(3 - c) 

- (J2q + (A(3 - c)'B-1(A(3 - c). (4.4) 
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(iii) From (i), RSSH - RSS is a continuous function of fj and is therefore 
independent of RSS [by Theorem 3.5(iii) in Section 3.4 and Example 1.11 in 
Section 1.5]. Also, when H is true, A/:J '" N q (c,a2 A(X'X)-lA'), so that by 
Theorem 2.9, 

RSSH - RSS = (Afj _ c)'(Var[Afj])-l(Afj - c) 
a 2 

is X~. Finally, since RSS/a2 '" X~-p [Theorem 3.5(iv)], we have that 

F = (RSSH - RSS)/a2 q 
RSS/a2 (n - p) 

is of the form [x~/q]/[X~_p/(n - p)] when H is true. Hence F '" Fq,n-p when 
H is true. 

(iv) Using equation (4.3) with c = 0, we have 

YH - XfjH 
_ {X(X'X)-lX' - X(X'X)-l A'[A(X'X)-l A']-I A(X'X)-IX'} Y 

- (P - PdY (4.5) 

- PHY, (4.6) 

say, where PHis symmetric. Multiplying the matrices together and canceling 
matrices with their inverses where possible, we find that PI is symmetric and 
idempotent and PIP = PPI = Pl' Hence 

P~ p2 - PIP - PPI + pi 

- P - 2P I +P I 

P -PI 

PH, 

(P - PI)P = P - PI = PH 

(4.7) 

(4.8) 

and taking transposes, PP H = PH. To complete the proof, we recall that 
RSS = Y'(In - P)Y and, in a similar fashion, obtain 

• 2 IIY -X,8HII 
= Y'(In - PH)2y 

= Y'(In - PH)Y. (4.9) 

Thus RSSH - RSS = Y'(P - PH)Y. 0 

We note that if S'iI = (RSSH - RSS)/q, then from Theorem 4.1(ii), 

E[S'iIJ 
2 (A,8 - c)'[A(X,X)-1 A']-I(A,8 - c) 

- a + -'--'----'-'----'---:"'---'--'---'---'-
q 

_ a2 + 6, say, 
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where <5 > 0 [since A(X'X)-l AI = Var[A,B]/a2 is positive-definite]. Also 
(Theorem 3.3, Section 3.3), 

When H is true, <5 = 0 and SiI and 8 2 are both unbiased estimates of a2; 
that is, F = 8iI/S2 ~ 1. When H is false, <5 > 0 and E[SiI] > E[82], so that 

E[F] = E[SiI]E [;2] > E[SiI]/E[S2] > 1 

(by the independence of SiI and S2, and A.13.3). Thus F gives some in­
dication as to the "true state of affairs"; H is rejected if F is significantly 
large. 

When q > 2 it is usually more convenient to obtain RSS and RSSH 
by finding the unrestricted and restricted minimum values of e ' e directly. 
However, if q < 2, F can usually be found most readily by applying the 
general matrix theory above; the matrix [A(X'X)-l A'] to be inverted is 
only of order one or two. It can also be found directly using the fact that 
[A(X'X)-l A']-l = Var[A.Bl/a2 • Examples are given in Section 4.3.3. It 
should be noted that since RSSH is unique, it does not matter what method 
we use for obtaining it. We could, for example, use the constraints A(3 = c to 
eliminate some of the (3j and then minimize e ' e with respect to the remaining 
(3;'s. 

Part (iv) of Theorem 4.1 highlights the geometry underlying the F-test. 
This geometry can be used to extend the theory to the less-than-full-rank 
case (cf. Theorem 4.3 in Section 4.7). 

From aiI = RSSH/n and 172 = RSS/n we see that 

F 
-2 -2 n - p O'H - a 

q 172 

n - p (~iI -1) 
q 0'2 

n - P(A-2/n -1), 
q 

where A is the likelihood ratio test statistic (4.2). 

EXERCISES 4a 

1. Prove that RSSH - RSS > o. 

2. If H : A(3 = c is true, show that F can be expressed in the form 

n-p e'(P-PH)e 
q . el(In - P)e . 
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3. If ~H is the least squares estimate of the Lagrange multiplier associated 
with the constraints A(3 = c (cf. Section 3.8), show that 

RSSH - RSS = (1"2~~(Var[~H])-1~H. 

(This idea is used to construct Lagrange multiplier tests.) 

4. Suppose that we want to test A(3 = 0, where A is q x p of rank q. 
Assume that the last q columns of A, A2 say, are linearly independent, 
so that A = (AI, A 2), where A2 is a nonsingular matrix. By expressing 
(32 in terms of (31, find a matrix X A so that under H the linear model 
becomes E[Y] == XA'i'. Prove that X A has full rank. 

5. Consider the full-rank model with X(3 = (X1,X2}«(3~,(3~)', where X 2 
is n x q. 

(a) Obtain a test statistic for testing H : (32 == 0 in the form of the 
right-hand side of Theorem 4.1(i). Hint: Use A.9.1. 

(b) Find E[RSSH - RSS]. 

4.3.3 Some Examples 

EXAMPLE 4.4 Let 

Y1 a1 + e1, 

1'2 - 2a1 - a2 + e2, 

Y3 - a1 + 2a2 + e3, 

where e '" N3(0, (1"213). We now derive the F-statistic for testing H : a1 = a2. 
We note first that 

or Y = X(3 + e, where X is 3 x 2 of rank 2. Also, H is equivalent to 

(1, -1) ( ~~ ) == 0, 

or A(3 = 0, where A is 1 x 2 of rank 1. Hence the theory above applies with 
n = 3, p = 2, and q = 1. 

The next step is to find 

XiX = ( ~ 2 
-1 -~ ) ~ ( 6 0 

o 5 ). 
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Then 

and from equation (3.9), 

RSS - y'y - (3 'X'X(3 

- Y? + y2
2 + Y; - 6&f - 5&~ .. 

We have at least two methods of finding the F-statistic. 

Method 1 

A(X'X)-1 A' = (1, -1) ( g 
and 

F -

where S2 = RSS/(n - p) = RSS. When H is true, F,..., Fq,n-p = FI,I' 

Method 2 
Let a1 = a2 = a. When H is true, we have 

e'e = (Y1 - a)2 + (Y2 - a)2 + (Y3 - 3a)2 

and 8e'el8a = 0 implies that &H = 1\ (YI + Y2 + 3Y3 ). Hence 

RSSH = (YI - &H)2 + (1'2 - &H)2 + (1'3 - 3&H)2 

and 

F 
= RSSH - RSS 

RSS . 

(4.10) 

o 

EXAMPLE 4.5 Let Ul> . .. , Un, be sampled independently from N(J.LI, (T2), 
and let VI, ... , Vn2 be sampled independently from N(J.L2, (T2). We now derive 
a test statistic for H : J.L1 = J.L2. 

Writing 
(i = 1,2, ... , n1) 
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and 
Vj = /.L2 + cn,+j 

we have the matrix representation 

U1 1 0 
U2 1 0 

Un, 1 0 
-

VI 0 1 
(4.11) 

V2 0 1 

Vnz 0 1 

where n = nl + n2' Thus our model is of the form Y = X(3 + e, where X is 
n x 2 of rank 2 and e '"" Nn(O, cr2In). Also, as in Example 4.4, H takes the 
form A(3 = 0, so that our general regression theory applies with p = 2 and 
q = 1. Now 

X'X _ (nl 0) 
- 0 n2 ' 

so that 

) ~ (X'X)-'X'Y ~ (~ 1,) ( 
A/3 = fJ,2 - fJ,2 = U - v, 

and 

RSS - y'y - /3 'x'x/3 

- L: ul + L: v/- nl u2 
- n2 v2 

i j 

'" -2 '" -2 - L)Ui - U) + L-(V; - V) . 
i j 

Also, 

so that the F -statistic for H is 

F = (A/3)'[A(X'X)-l A']-l A/3 
qS2 

(U-V? 

)=(~), 

( 4.12) 
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where 52 = RSS/(n - p) = RSS/(ni + n2 - 2). When H is true, F "" 
F 1 ,n,+n2-2 . 

Since, distribution-wise, we have the identity F1,k = t%, the F-statistic 
above is the square of the usual t-statistic for testing the difference of two 
normal means (assuming equal variances). 0 

EXAMPLE 4.6 Given the general linear model 

(i - 1,2, ... ,n), 

we can obtain a test statistic for H : {3j = c, where j > O. 
We first need the following partition: 

(X/X)-l = ( :u m' ) 
D ' 

where l is 1 x 1. Now H is of the form a' (3 = c, where a' is the row vector 
with unity in the (j + l)th position and zeros elsewhere. Therefore, using the 
general matrix theory, a'(X/X)-la = djj (the jth diagonal element of D), 
a' jJ - c = {lj - c, and the F-statistic is 

F = ({lj - C)2 
5 2 djj , 

( 4.13) 

which has the F1,n-p distribution when H is true. As in Example 4.5, F is 
again the square of the usual t-statistic. 

The matrix D can be identified using the method of A.9 for inverting a 
partitioned symmetric matrix. Let In be an n x 1 column vector of l's and 
let x' = (X'l, X.2, ... ,X.p-l)' Then X = (ln, Xd, 

and by A.9.1, 

X'X = ( ~ nx 

(X'x)-I = n x x, 
( 

1 +-/y-l-

Y -l­- x, 

), 

_x'y-l 
V-I 

where Y = (Vjk) = X~Xl - nxx' and 

i 

2:(Xij - X.j)(Xik - X.k). 
i 

), ( 4.14) 

(4.15) 

Thus D is the inverse of Y, where Y is the matrix of corrected sums of squares 
and products of the x's. In the notation of Section 3.11, Y = X'X. Similar 
examples are considered in Section 9.7. 0 
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EXAMPLE 4.7 Suppose that in Example 4.6 we want to test H : a' (3 = c .. 
Then q = 1, 

and 
(a'(3-c)2 

F= , 
s2a'(X'X)-la 

which is distributed as F1 ,n-p when H is true. Again this is the square of 
usual t-statistic, which we can also derive directly as follows. 

By Theorem 2.2, a'(3 '" N(a'(3,a2 a'(X'X)-la ), so that 

Ui = a' (3 - a' (3 '" N(O 1). 
a {a'(X'X)-la }1/2 ' 

Also, by Theorem 3.5 (Section 3.4), V = (n - p)82 /a2 
'" X~-p, and since 8 2 

is statistically independent of (3, V is independent of U. Hence 

U 
T = 

ylV/(n - p) 

S{a'(X'X)-la}1/2 
a' (3 - a' (3 

( 4.16) 

has the tn - p distribution. To test H : a' (3 = c we set a' (3 equal to c in T 
and reject H at the 0 level of significance if ITI > t~l!;)"'j here t~r.!.;)'" is the 

upper 0/2 point of the tn - p distributionj that is, pr(T > t~!;)"') = 0/2. 
Alternatively, we can construct a 100(1 - 0)% confidence interval for a' (3, 
namely, 

(4.17) 

or since 8 2 {a'(X'X)-la} is an unbiased estimate of a 2a'(X'X)-la (the vari­
ance of a' (3), 

'(3' ± t(l/2)"" . a n-p a a' (:J' 

and see if the interval above contains c. 

4.3.4 The Straight Line 

say, (4.18) 

o 

Let Yi = (30 + (31xi + Ci (i = 1,2, ... , n), and suppose that we wish to test 
H : (31 = c. Then X = (In' x), 

X'X = ( n..:, 
nx, 

nx ) 
Ex~ , (X'X)-l = 1 

E(Xi - x)2 

and 

X'y= ( ). 



108 HYPOTHESIS TESTING 

Also, from 13 = (X'X)-lX'Y we have, after some simplification, 

Bo - Y - BlX, 
E Yi(Xi - x) E(Yi - Y)(Xi - x) 

-E(Xi - X)2 E(Xi - X)2 

and 

Yi - Bo + BlXi 
Y + Bl(Xi - x). 

(Actually, Bo and Bl can be obtained more readily by differentiating e'e with 
respect to f30 and f3l.) Finally, from Example 4.6 with p = 2, the F-statistic 
for testing H is given by 

F = (Bl - C)2 = (Bl - C)2 , 
82dl1 8 2 / E(Xi - X)2 

where 

We note from (4.21) that 

'"' -2 L)Yi - Y) 

where 

E(Yi - y)2 

E(Yi - Y)2 

B? E(Xi - X)2 
E(Yi - y)2 

[E(Yi - Y)(Xi - X)]2 
E(Yi - y)2 E(Xi - X)2 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

( 4.23) 

(4.24) 

is the square of the sample correlation between Y and x. Also, r is a measure 
of the degree of linearity between Y and x since, from (4.23), 

'"' • 2 RSS - L...-(Yi - Yi) 
2,", -2 - (1 - r ) L...- (Yi - Y) , (4.25) 
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so that the larger the value of r2, the smaller RSS and the better the fit of 
the estimated regression line to the observations. 

Although 1 - r2 is a useful measure of fit, the correlation r itself is of 
doubtful use in making inferences. Thkey [1954] makes the provocative but 
not unreasonable statement that "correlation coefficients are justified in two 
and only two circumstances, when they are regression coefficients, or when 
the measurement of one or both variables on a determinate scale is hopeless." 
The first part of his statement refers to the situation where X and Y have a 
bivariate normal distribution; we have (Example 2.9) 

E[YIX = x] _ J-ty + /JY (x - J-tx) 
Ux 

f30 + f31X, 

and when u3c = u}, f31 = p. One area where correlation coefficients are 
widely used, and determinate scales seem hopeless, is in the social sciences. 
Here the measuring scales are often completely arbitrary, so that observations 
are essentially only ranks. A helpful discussion on the question of correlation 
versus regression is given by Warren [1971]. 

We note that when c = 0, the F-statistic (4.19) can also be expressed in 
terms of r2. From equation (4.25) we have 

so that 

F 
B~ E(Xi - x)2(n - 2) 
(1 - r 2) E(Yi - y)2 

r2(n-'--2) 
1- r2 . 

The usual t-statistic for testing f31 = 0 can also be expressed in the same form, 
namely, 

r 
T = -V/T.( l;==r=;;2'F) /;'7'( n=~2) (4.26) 

EXERCISES 4b 

1. Let Yi == f30 + f31xil + '" + f3p-1Xi,p-l + Ci, i = 1,2, ... , n, where the 
Ci are independent N(0,u2 ). Prove that the F-statistic for testing the 
hypothesis H : f3q = f3q+l == ... = f3p-l = 0 (0 < q < p-l) is unchanged 
if a constant, c, say, is subtracted from each Yo. 

2. Let Yi == f30 + f31Xi + ci, (i = 1,2, ... , n), where the ci are independent 
N(O, ( 2 ). 

(a) Show that the correlation coefficient of Bo and Bl is -nx/(nJE x~). 
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(b) Derive an F-statistic for testing H : f30 = 0. 

3. Given that x = 0, derive an F-statistic for testing the hypothesis H : 
f30 = f31 in Exercise No.2 above. Show that it is equivalent to a certain 
t-test. 

4. Let 

Y1 - (}1 + (}2 + C1, 

Y2 2(}2 + C2, 

and 
Y3 = -(}1 + (}2 + C2, 

where the ci (i = 1,2,3) are independent N(O, (72). Derive an F-statistic 
for testing the hypothesis H : (}1 = 2(}2. 

5. Given Y = O+e, where e '" N4(O, (7214) and (}1 +(}2 +(}3 +(}4 = 0, show 
that the F -statistic for testing H : (}1 = (}3 is 

4.4 MULTIPLE CORRELATION COEFFICIENT 

For a straight line, from equation (4.25) we have 

Thus, r2 is a measure of how well the least squares line fits the data. Noting 
that Pi = [30 + [31Xi = Y + [31(Xi - x), we have . 

r = 
[3d(L:(Yi - Y)2(L:(Xi - x)2]1/2 

L:(Yi - Y)(Pi - Y) 

which is the correlation coefficient of the pairs (Yi , Pi). To demonstrate this, 
we note~hat L:(Yi - Pi) = L:[Yi - Y i - [31 (Xi - x)] = 0, so that the mean of 

the Pi, Y say, is the same as Y. 
This reformulation of r suggests how we might generalize this measure 

from a straight line to a general linear model. We can now define the sample 
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multiple correl"at-ion coefficient R as the correlation coefficient of the pairs 
CYi, Pi), namely, 

C4.27) 

The quantity R2 is commonly called the coefficient of determination. We now 
prove a useful theorem that generalizes equations C4.22) and C4.24). 

THEOREM 4.2 

(i) 

(ii) 

'" -2", A2 ",A_ 2 L.,..CYi - Y) = L.,..CYi - Yi) + L.,..(Yi - Y) . 
iii 

A - 2 
ECYi - Y) 
ECYi - y)2 

_ 1- RSS 
ECYi - y)2 

Proof. Ci) Y = PY, so that 

Y'y = Y'p2y = Y'PY = y'Y. C4.28) 

Also, by differentiating EiCYi - /10 - /1ixil - ... - {3P-ixi,p_d 2 with respect 
to {30, we have one of the normal equations for /1, namely, 

ECYi - /10 - /1iXii - ... - {3p-iXi,p-d = 0 

or 
EcYi - Pi) = o. C 4.29) 

i 

Hence 

EcYi - y)2 - ECYi - Vi + Pi _ y)2 

- ECYi - "fi)2 + EcYi - y)2, 

since 

~)Yi - Yi){Yi - Y) ECYi - Vi)Yi [by equation C4.29») 

- CY-Y)'Y 
- 0 [by equation C 4.28»). 
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(ii) From equation (4.29), we get Y = Y, so that 

z)Yi - Y) (Yi - Y) 

2)Yi - Yi + Yi - Y)(Yi - Y) 

2)Yi - y)2, 

and the required expression for R2 follows immediately from (4.27). The 
second expression for R2 follows from (i). 0 

From the theorem above, we have a generalization of (4.25), namely, 

(4.30) 

and the greater the value of R2, the closer the fit of the estimated surface to 
the observed data; if Yi = Yi, we have a perfect fit and R2 = 1, otherwise 
R2 < 1. When there is just a single x-regressor then R2 = r2. By writing P = 
X(X'X)-X', where (X'X)--: is a generalized inverse of X'X, we find that the 
theorem above still holds even when X is not of full rank. Alternatively, we can 
write P = Xl (X~ Xl) -1 X~, where Xl is the matrix of linearly independent 
columns of X. 

EXAMPLE 4.8 Given the linear model Yi = !3o + !31Xi1 + ... + !3p-lxx,p-l + 
E:i (i = 1,2, ... , n), suppose that we wish to test whether or not the regression 
on the regressor variables is significant; that is, test H : !3l = !32 = ... = 
!3p-l = O. Then H takes the form Af3 = 0, where A = (0, Ip-d is a (P-1) xp 
matrix of rank p - 1, so that the general regression theory applies with q = 
p - 1. We therefore find that 

minimum 2)Yi - (30)2 
f30 . • 

" -2 L..,.(Yi - Y) , 

and by Theorem 4.2 and (4.30), 

F 
(RSS H - RSS)/(P - 1) 

RSS/(n - p) 

2:(Yi - Ji')2 - 2:(Yi - Yi)2 n - p 

RSS p-1 

2:(Yi - Y)2 n - p 

(1 - R2) 2:(Yi - y)2 p - 1 

R2 n-p 

1 - R2 P - l' 

where F ~ Fp-1,n-p when H is true. 

(4.31) 
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The statistic F provides a test for "overall" regression, and we reject H if 
F > F;-l,n-p, F;'-l,n_p being the upper a point for the Fp-1,n-p distribution. 
If we reject H, we say that there is a significant regression and the Xij values 
cannot be totally ignored. However, the rejection of H does not mean that 
the fitted equation Y = xi:J is necessarily adequate, particularly for predictive 
purposes. Since a large R2 leads to a large F statistic, a working rule suggested 
by Draper and Smith [1998: p. 247) for model adequacy is that the observed 
F-ratio must be at least four or five times F;_l,n_p. 0 

EXERCISES 4c 

1. Suppose that {31 = {32 = ... = (3p-l = O. Find the distribution of R2 
and hence prove that 

E[R2) = P - 1. 
n-1 

2. For the general linear full-rank regression model, prove that R2 and the 
F-statistic for testing H : {3j = 0 (j =I 0) are independent of the units 
in which the }Ii and the Xij are measured. . 

3. Given the full-rank model, suppose that we wish to test H : {3j = 0, 
j =I O. Let Rk be the coefficient of determination for the model with 
{3j = o. 

(a) Prove that the F-statistic for testing H is given by 

R2 - Rk n-p 
F = 1- R2 . 1 

(This result shows that F is a test for a significant reduction in 
R2.) 

(b) Deduce that R2 can never increase when a {3 coefficient is set equal 
to zero. 

4.5 CANONICAL FORM FOR H 

Suppose that we wish to test H : A(3 = 0, where A is q x p of rank q, for the 
full-rank model Y = X(3 + g. Since A has q linearly independent columns, 
we can assume without loss of generality (by relabeling the (3j if necessary) 
that these are the last q columns; thus A = (AI, A 2 ), where A2 is a q x q 
nonsingular matrix. Partitioning (3 in the same way, we have 



114 f-JYPOT!-JES!S TESTiNG 

and multiplying tirolig~c by Ail leads to 

(4.32) 

This means that under the hypothesis H, the regression model takes the 
"canonical" form 

Xf3 - (Xl, X 2)f3 

- X l f31 + X 2f32 

- (Xl - X 2 A 21 
Adf31 

- XH'Y, (4.33) 

say, where XH is n x (p - q) of rank p - q and 'Y = f3I. The matrix X H has 
linearly independent columns since 

By expressing the hypothesized model H : E[Y] = XH'Y in the same form 
as the original model E[Y] = Xf3, we see that the same computer package 
can be used for calculating both RSS and RSSH, provided, of course, that 
XH can be found easily and accurately. If X H is not readily found, then the 
numerator of the F -statistic for testing H can be computed directly using the 
method of Section 11.11. We note that q = rank(X) - rank(XH). 

One very simple application of the theory above is to test H : f32 = OJ 
XH is simply the first p - q columns of X. Further applications are given in 
Section 6.4, Chapter 8, and in Section 4.6. 

EXERCISES 4d 

1. Express the hypotheses in Examples 4.4 and 4.5 in canonical form. 

2. Suppose that we have nI observations on WI, W2, •.• , Wp-I and U, giving 
the model 

(1) (1) (1) 
Ui = 10 + II Wi! + ... + Ip-I Wi,p-l + 'f/i (i=I,2, ... ,nd· 

We are now given n2 (> p) additional observations which can be ex­
presl'led in the same way, namely, 

U· = '"'1(2) + '"'I(2)W'I + ... + '"'1(2) W' 1 +..,. • ,0 ,1' ,p-I ',p- ." 
(i = nI + 1, n2 + 2, ... , nI + n2)' 

Derive an F-statistic for testing the hypothesis H that the additional 
observations come from the same model. 

, 
" 
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4.6 GOODNESS-Of-FIT TEST 

Suppose that for each set of values taken by the regressors in the model 

(4.34) 

we have repeated observations on Y, namely, 

(4.35) 

where E[cir) = 0, var[cir) = (12, r = 1,2, ... ,Ri, and i = 1,2, ... ,n. We 
assume that the R;, repetitions Yir for a particular set (XiI, ... , Xi,p-l) are 
genuine replications and not just repetitions of the same reading for Yi in a 
given experiment. For example, if p = 2, Y is yield and Xl is temperature, 
then the replicated observations Yir (r = 1,2, ... , Ri) are obtained by having 
Ri experiments with Xl = XiI in each experiment, not by having a single 
experiment with Xl = XiI and measuring the yield Ri times. Clearly, the 
latter method would supply only information on the variance of the device 
for measuring yield, which is just part of the variance (12; our definition of (12 
also includes the variation in yield between experiments at the same temper­
ature. However, given genuine replications, it is possible to test whether the 
model (4.34) is appropriate using the F-statistic derived below. 

Let lir = cPi + cir, say. Then writing 

Y' = (Yll , YI 2, •.. , YIR1 ,· .. , Ynl , Yn2 , . .. , YnRn ), etc., 

we have Y = Wl/J + e, where 

IRl 0 0 cPI 

Wl/J = 
0 IR. 0 cP2 (4.36) 

0 0 IRn cPn 

Defining N = ~iR;" then W is an N x n matrix of rank n; we also assume 
that e '" NN(0,(12IN). Now testing the adequacy of (4.34) is equivalent to 
testing the hypothesis 

(i = 1,2, ... ,n) 

or H : l/J = X(3, where X is n x p of rank p. We thus have the canonical form 
(cf. Section 4.5) E[Y) = WX(3. We note in passing that H can be converted 
into the more familiar constraint equation form using the following lemma. 

LEMMA l/J E C(X) if and only if Al/J = 0 for some (n - p) x n matrix A 
of rank n - p. 
Proof. Let P = X(X'X)-IX'. If l/J E C(X), that is, l/J = X(3 for some 
(3, then (In - P)l/J == (In - P)X(3 = 0 [by Theorem 3.1(iii)). Conversely, 
if (In - P)l/J = 0, then l/J = Pl/J = X(X'X)-IX'l/J = X, E C(X). Hence 
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¢ E C(X) if and only if (In - P)¢ = o. By Theorem 3.1(ii) the n x n matrix 
In - P has rank n - p and therefore has n - p linearly independent rows which 
we can take as our required matrix A. 0 

Using the Lemma above or the canonical form, we see that the general 
regression theory applies to H, but with n, p, and q replaced by N, n, and 
n - p, respectively; hence 

F = (RSSH - RSS)/(n - p) . 
RSS/(N - n) 

Here RSS is found directly by minimizing L:i L:r (Yir - ¢) 2. Thus differenti­
ating partially with respect to ¢, we have 

A L: Yir - '" '" - 2 rpi = Hi ::::: Y i . and RSS = L....J L....J(Yir - Yd . 

To find RSSH we minimize L:i L:r(Yir -!3o - !31Xil - ... - !3P_lxi,P_l)2 (= d, 
say). Therefore, setting 8d/8[Jo ::::: 0 and 8d/8!3j ::::: 0 (j =f. 0), we have 

and 

L Ri(Yi. - !3o - !31xil - ... - !3p-lXi,p-t} = 0 
i 

(4.37) 

L L Xij (Yir - !3o - !31Xil - ... - !3p-lXi,p-I) ::::: 0 (j = 1,2, ... ,p-1), 
i r 

that is, 
LRiXij(Yi . -!3o - !31Xil _ ... - !3p-lXi,p-t} = O. 

i 

(4.38) 

Since equations (4.37) and (4.38) are identical to the usual normal equations, 
except that Yi is replaced by Zi = Y i., we have 

and 

4.7 F-TEST AND PROJECTION MATRICES 

The theory of Theorem 4.1 can be generalized to the case when X has less than 
full rank and the rows of A in testing H : A(3 == 0 are linearly dependent, so 
that some of the hypothesis constraints are redundant. However, the algebra 
involves the use of generalized inverses, and the resulting formulation is not 
the one used to actually carry out the computations. Theorem 4.1(iv) suggests 
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that a more elegant approach is to use projection matrices. To set the scene, 
suppose that we have the model Y = (J + e, where (J E n (an r-dimensional 
subspace of ~n), and we wish to test H : (J E w, where w is an (r - q)­
dimensional subspace of n. Then we have the following theorem. 

THEOREM 4.3 When H is true and e '" Nn(O, (72In), 

F == (RSSH - RSSVq = e'(Pn - pw~e/q ) '" Fq,n-r, 
RSS/(n - r e'(In - Pn)e/ n - r 

where Pn and P ware the symmetric idempotent matrices projecting ~n onto 
nand w, respectively (Appendix B). 

Proof. 0 = P n Y and OH = P w Y are the respective least squares estimates 
of (J, so that 

RSS = IIY - 011 2 = Y'(In - Pn)Y 

and 
RSSH = Y'(In - Pw)Y. 

Also, (In - Pn)(J = 0 (since (J En), which implies that 

RSS == (Y - (J)'(In - Pn)(Y - (J) = e'(In - Pn)e. 

Similarly, when H is true, (J E wand 

RSSH = e'(In - Pw)e. 

Now (In - Pn) and (Pn - P w ) project onto n.l and w.l n n (by B.1.6 and 
B.3.2), so that these matrices are symmetric and idempotent (B.1.4) and have 
ranks n - r and r - (r - q) == q by B.1.5. Since PnPw = P w we have (In -
Pn)(Pn - P w ) = O. Hence by Theorem 2.7 and Example 2.12 in Section 2.4, 
e'(Pn - P w )e/(72 and e(In - Pn)e/(72 are independently distributed as X~ 
and X;-r, respectively. Thus F '" Fq,n-r. 0 

It is readily seen that Theorem 4.1(iv) is a special case of the above; there 
n = C(X), and when c = 0, w = N(A(X'X)-lX') n n. 

MISCELLANEOUS EXERCISES 4 

1. Aerial observations Y1 , Y2 , Y3 , and Y4 are made of angles (h, (h, (}3, and 
(}4, respectively, of a quadrilateral on the ground. If the observations are 
subject to independent normal errors with zero means and common vari­
ance (72, derive a test statistic for the hypothesis that the quadrilateral 
is a parallelogram with (}1 = (}3 and (}2 == (}4. 

(Adapted from Silvey [1970].) 

2. Given the two regression lines 

(k = 1,2; i = 1,2, ... ,n), 
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show that the P-"tatistic for teS"Cirlg H : (31 = (32 can be put in the form 

3" Show that the usual full-rank regression model and hypothesis H : Af3 = 
o can be transformed to the model Z = Jl. + 'lJ, where J.tP+l = J.tp+2 = 
... = J.tn = 0 and 'lJ '" Nn(O, (72In), and the hypothesis H : J.t1 = J.t2 = 
... = J.tq = O. Hint: Choose an orthonormal basis of p - q vectors 
{Oq+l,Oq+2, ... ,Op} for C(XA)' where XA is defined in Exercises 4a, 
No.4; extend this to an orthonormal basis {01,02, ... ,Op} for C(X); 
and then extend once more to an orthonormal basis {01, 02, ... , On} for 
~n. Consider the transformation Z = Tty, where T = (01,02, ... , On) 
is orthogonal. 

4. A series of n + 1 observations Yi (i = 1,2, ... , n + 1) are taken from 
a normal distribution with unknown variance (72. After the first n ob­
servations it is suspected that there is a sudden change in the mean of 
the distribution. Derive a test statistic for testing the hypothesis that 
the (n + 1)th observation has the same population mean as the previous 
observations. 



5 
Confidence Intervals and Regions 

5.1 SIMULTANEOUS INTERVAL ESTIMATION 

5.1.1 Simultaneous Inferences 

We begin with the full-rank model Y = X/3 + e, where X is n x p of rank 
p. A common statistical problem for such a model is that of finding two­
sided confidence intervals for k linear combinations aj/3 (j = 1,2, ... , k). One 
solution would simply be to write down k t-intervals of the form given in 
(4.18) of Section 4.3.3, namely, 

(5.1) 

A typical application of this would be to write a~ = (1,0, ... , 0), a~ -
(0,1, ... ,0), etc., and k = p, so that we are interested in confidence intervals 
for all the fJj (j = 0,1, ... ,p - 1). The intervals above would then become 

fJ' . ± t(I/2)a Sd~(2 
J n-p 11' (5.2) 

where djj is the (j + l)th diagonal element of (X'X)-I (see Example 4.6). 
For j = 1, ... ,p - 1 we note that d jj is also the jth diagonal element of V-I, 
where V is given by equation (4.15). 

If we attach a probability of 1 - a to each separate interval, as we have 
done above, the overall probability that the confidence statements are true 
simultaneously is, unfortunately, not 1 - a. To see this, suppose that E j 

(j = 1,2, ... , k) is the event that the jth statement is correct, and let pr[Ej ] = 
119 
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1 - o.j. If E j denotes the complementary event of Ej, then 

k k 

> 1- Lpr[Ej ] = 1- Lo.j. (5.3) 
j=1 j=1 

Here c5, the probability of getting at least one statement wrong, is referred to 
variously as the probability of a nonzero family error rate, the abbreviated 
probability error rate, (Miller [1981: p. 6], the familywise error rate (FWE, 
Hochberg and Tamhane [1987: p. 7]), or the experimentwise error rate Clukey 
[1953]). For the case o.j = a (j = 1,2, ... , k), 

(5.4) 

so that the probability of all the statements being correct is not 1 - a but 
something greater than 1 - ko.. For example, if a = 0.05 and k = 10, then 
1 - ko. = 0.5. Furthermore, as pointed out by Miller [1977: p. 779; 1981: p. 
8), the inequality (5.4) is surprisingly sharp: It is not as crude as one might 
expect, provided that k is not too large (say, k < 5) and a is small, say, 0.01. 

It is also worth noting that 

~ pr[E1] pr[E2]· •• pr[Ek] 

(1 - o.I)(1 - 0.2) ... (1 - o.k) (5.5) 

if the dependence between the events Ei is small. As we shall see below, (5.5) 
can sometimes provide a lower bound for pr[njEj ] (Miller [1977: p. 780]). 
Other related probability inequalities are given by Hochberg and Tamhane 
[1987: Appendix 2]; for a general review, see Tong [1980]. 

There is one other problem associated with the E j • If o.j = 0.05 (j = 
1,2, ... , k), there is 1 chance in 20 of making an incorrect statement about 
aj{3, so that for every 20 statements made we can expect 1 to be incorrect. In 
other words, 5% of our k confidence intervals can be expected to be unreliable; 
there is an expected error rate of 1 in 20. 

A number of authors (cf. Hochberg and Tamhane [1987: pp. 9-11]) rec­
ommend that c5 should be the quantity to control in any given multiple­
comparison situation. When k is finite, Spj6tvoll [1972] suggested that 'Y = 
Lj o.j should be controlled, where 'Y is the expected number of incorrect 
statements (see Miscellaneous Exercises 5, No.1). Hochberg and Tamhane 
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[1987: pp. 9-12] discuss the relative merits of controlling 6, 'Y, or 'Ylk; it de­
pends on whether k is infinite or not and whether the focus is exploratory or 
explanatory. It turns out that 'Y I k < 6 < 'Y [ef. (5.3)]. 

We now consider several ways of avoiding some of the problems mentioned 
above. 

Bonferroni t-Intervals 

If we use an individual significance level of cxl k instead of cx (Le., use t~~~k» 
for each of the k confidence intervals, then, from (5.4), 

(5.6) 

so that the overall probability is at least 1 - cx. However, a word of caution. 
When k is large, this method could lead to confidence intervals that are so 
wide as to be of little practical use. This means that a reasonable compromise 
may be to increase cx: for example, use cx = 0.10. 

To use the method above we frequently require significance levels for the 
t-distribution which are not listed in the common t-tables. The following 
approximation due to Scott and Smith [1970] may therefore be useful: 

'" Za + 1 ( 2 )-1 
tv ~Z", 1 - 4v ' 

where Z", denotes the upper cx point of the N(O,l) distribution. Statistical 
packages (e.g., S-PLUS and R) generally provide t~ for any cx. Hochberg and 
Tamhane [1987: Appendix 3, Table i] give an extensive table for small values 
of cx together with rules for interpolation. A table of t~/(2k) for cx = 0.05, 
0.01; k = 2(1)10(5)50, 100, 250; v = 5, 7, 10, 12, 15, 20, 24, 30, 40, 60, 120, 
00 is given in Appendix C.l. 

The intervals described above based on replacing cx by cxlk are called Bon­
ferroni t-intervals, as (5.3) is a Bonferroni inequality (Feller [1968: p. 110]). 
The corresponding tests are called Bonferroni tests and a number of modifi­
cations of such tests have been proposed (see Rencher [1998: Section 3.4.5] 
for a brief summary). 

Maximum Modulus t-Intervals 

Let u~,v,p be the upper-tail cx significance point of the distribution of the 
maximum absolute value of k Student t-variables, each based on v degrees of 
freedom and having a common pairwise correlation p (these variables have a 
joint multivariate t-distribution-see A.13.5); when p == 0, we simply denote 
this point by u~,v. Now if the aji:J (j = 1,2, ... , k) are mutually independent 

(k < p) and also independent of 8 2 (as i:J is independent of 8 2 by Theorem 
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3.5(iii)), the pairwise sJvar~ances of -~~le i-variables 

aj'/3 - aj/3 

conditional on 8 2
, are zero. Since E[Tj l82 = 0], it follows from the Miscel­

laneous Exercises 5, No.3 (with X = Ti , Y = Tj , and Z = 8 2 ) that the 
unconditional covariances (and correlations) are also zero. Hence 

I-a - pr[ max IT-I < u"'k ] l~j~k J - ,n-p 

- pr[ITjl < uk',n_p, all j] , 

and the set of k intervals 
(5.7) 

will have an overall confidence probability of exactly 1 - a. Thus 6 = a. 
However, if the aj'/3 are not independent, which is the more usual situation, 
then the intervals (5.7) can still be used, but they will be conservative; the 
overall probability will be at least 1 - a. (This result follows from a theorem 
by Sidak [1968]; see Hahn and Hendrickson [1971] and Hahn [1972].) We note 
in passing that if Bonferroni t-intervals are used with a/ k instead of a [as in 
(5.6)], then (5.5) becomes a lower bound (Miller [1977: p. 780]), so that 

pr[niEi] > (1- ~)k > (1- a), 

which is a slight improvement on the Bonferroni inequality. However, these 
Bonferroni intervals won't be as narrow as those given by (5.7). 

Hahn [1972] showed that when k = 2, the intervals 

(i=1,2), 

where p, the correlation between a~'/3 and a~'/3, is given by 

(5.8) 

have an exact overall probability of 1 - a. This result can be used in straight­
line regression (see Chapter 6). 

A table of uk',v,p for a = 0.05,0.01; k = 1(1)6, 8, 10, 12, 15, 20; v = 3(1)12, 
15, 20, 25, 30, 40, 60; and p = 0.0, 0.2, 0.4, and 0.5 is given in Appendix C.2. 
Hochberg and Tamhane [1987: Appendix 3, Tables 4 and 7] give a slightly 
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more extensive table for p = 0.1,0.3,0.5 and 0.7, and an extensive table for 
p=O. 

Scheffe's S-Method 

We may assume without loss of generality that the first d vectors of the set 
{ a 1 , a2, ... , ad are linearly independent, and the remaining vectors (if any) 
are linearly dependent on the first d vectors; thus d < min(k,p). Consider 
the d x p matrix A, where A' = (al, a2,. " , ad), and let cp = Af3. Now A 
is a d x p matrix of rank d so that using the same argument as that given in 
proving Theorem 4.1(iii) and setting ~ = A(3, we have 

(~_ cp)' [A(X'X)-l A'] -1 (~_ cp) 
dS2 

Setting L == A(X'X)-l A', it now follows that 

1 - a pr[Fd,n_p < Fd,n-p] 

- pr [(~ - cp)' [A(X'X)-l A'r
l (~- cp) < dS2 Fd,n-p] 

(5.9) 

- pr[(~-cp)'L-l(~_cp)<m], say, (5.10) 

_ pr[b'L-lb<m] 

[ { 
(h'b)2 } ]. 

- pr ~~~ h'Lh < m (by A.4.11) 

[ 
(h'b)2 ] 

- pr h'Lh < m, all h (=I 0) 

[ lh'~-h'CPI .( FOI )1/2 llh( ..J.)] (5.11) 
pr S(h'Lh)l/2 < d d,n-p ,a h., 0 . 

We can therefore construct a confidence interval for any linear function h' cp, 
namely, 

h'A, ± (dFOI )1/2S(h'Lh)1/2 '¥ d,n-p , (5.12) 

and the overall probability for the entire class of such intervals is exactly 1-a. 
The term S2~'Lh involved in the calculation of (5.12) is simply an unbiased 
estimate of var[h' ~l; frequently, the latter expression can be found directly 
without the need for matrix inversion (e.g., see Section 8.2.2). The interval 
(5.12) can therefore be written in the more compact form 

(5.13) 

Since h' cp = cPj for certain h, we see that a confidence interval every ajf3 == 
cPj (i = 1,2, ... , d) is included in the set of intervals (5.13). In addition, an 
interval for every cPj (j = d + 1, d + 2, ... , k) is also included in this set, owing 
to the linear dependence of the aj (j = d + 1, ... , k) on the other a/so For 
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example, if ad+I == hI al + ... +hdad, then ¢d+1 = a~+If3 = ~;=1 hj¢j = h' cpo 
Therefore, if Ej is the event that ajf3 lies in the interval 

I f3A ± (dFe> )1/2 A 
aj d,n-p Ua/. p, , (5.14) 

then since the complete set of intervals (5.13) is more than the intervals for 
¢j (j = 1,2, ... , k) that we asked for, 

We note that the class of parametric functions h' cp form a linear space, .c 
say, with basis ¢1, ¢2, ... ,¢d. In fact, .c is the smallest linear space containing 
the k functions ¢j (j = 1,2, ... , k). The method above is due to Scheffe [1953] 
and is called the S-method of multiple comparisons in his book (Scheffe [1959: 
p. 68]). Other methods for constructing simultaneous confidence intervals for 
special subsets of .c are discussed in Section 8.2.2. For general references on 
the subject of multiple comparisons, the reader is referred to Miller [1977, 
1981], Hochberg and Tamahane [1987], and Hsu [1996). The class of linear 
functions .c of the form h' cp (= h' A(3) is only a subclass of all possible linear 
functions at f3, where a is now any p x 1 vector. However, setting d = k = P 
and A == Ip, we have cp = {3, and the corresponding confidence intervals for 
the class of all functions h' {3 take the form [cf. (5.13)) 

h /f3A ± (Fe> )1/2 A P p,n-p uh/p · (5.15) 

5.1.2 Comparison of Methods 

For k confidence intervals, the Bonferroni t-intervals, the maximum modulus 
t-intervals (5.7), and Scheffe's S-intervals (5.14) all give a lower bound of 1-a 
for pr[njEj ). By comparing Tables 5.1 and 5.2 we see that for a = 0.05, d < k, 
and k not much greater than d, 

t~/(2k) < (dF:t,v)1/2. (5.16) 

When k is much greater than d, the reverse inequality holds. Also, it can be 
shown theoretically (compare Table 5.1 and Appendix C.2) that 

ue> < te>/(2k) (5.17) k,v v , 

so that for the common situation of d = k (Le., no "redundant" confidence in­
tervals), the maximum modulus intervals are the shortest and the F-intervals 
are the widest. For example, when a = 0.05, d = k = 5, p = 6, and n = 26, 
we have 

v = 20, t~/(2k) = 2.85, and u~ v == 2.82. 
• 

If we were interested in just a single t-interval, we would use tL1/2)e> = 2.09, 
which is much smaller than the previous three numbers. 
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Table 5.1 Values of t,:/(2k) for a = 0.05 

v\k 1 2 3 4 5 6 7 8 9 10 15 20 50 

5 2.57 3.16 3.54 3.81 4.04 4.22 4.38 4.53 4.66 4.78 5.25 5.60 6.87 
10 2.23 2.64 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 3.83 4.01 4.59 
15 2.13 2.49 2.70 2.84 2.95 3.04 3.11 3.18 3.24 3.29 3.48 3.62 4.08 
20 2.09 2.42 2.61 2.75 2.85 2.93 3.00 3.06 3.11 3.16 3.33 3.46 3.85 
24 2.07 2.39 2.58 2.70 2.80 2.88 2.94 3.00 3.05 3.09 3.26 3.38 3.75 

30 2.04 2.36 2.54 2.66 2.75 2.83 2.89 2.94 2.99 3.03 3.19 3.30 3.65 
40 2.02 2.33 2.50 2.62 2.70 2.78 2.84 2.89 2.93 2.97 3.12 3.23 3.55 
60 2.00 2.30 2.47 2.58 2.66 2.73 2.79 2.84 2.88 2.92 3.06 3.16 3.46 

120 1.98 2.27 2.43 2.54 2.62 2.68 2.74 2.79 2.83 2.86 3.00 3.09 3.38 
00 1.96 2.24 2.40 2.50 2.58 2.64 2.69 2.74 2.78 2.81 2.94 3.03 3.29 

SOURCE : Dunn [1959]. Reprinted with permission from the Journal of the American 
Statistical Association. Copyright (1959) by the American Statistical Association. All 
rights reserved. 

Table 5.2 Values of (dF:t,v)1/2 for a = 0.05 

v\d 1 2 3 4 5 6 7 8 

5 2.57 3.40 4.03 4.56 5.02 5.45 5.84 6.21 
10 2.23 2.86 3.34 3.73 4.08 4.40 4.69 4.96 
15 2.13 2.71 3.14 3.50 3.81 4.09 4.36 4.60 
20 2.09 2.64 3.05 ·3.39 3.68 3.95 4.19 4.43 
24 2.06 2.61 3.00 3.34 3.62 3.88 4.12 4.34 

30 2.04 2.58 2.96 3.28 3.56 3.81 4.04 4.26 
40 2.02 2.54 2.92 3.23 3.50 3.75 3.97 4.18 
60 2.00 2.51 2.88 3.18 3.44 3.67 3.90 4.10 

120 1.98 2.48 2.84 3.13 3.38 3.62 3.83 4.02 
00 1.96 2.45 2.79 3.08 3.32 3.55 3.75 3.94 

SOURCE : Dun'n [1959]. Reprinted with permission from the Journal of the American 
Statistical Association. Copyright (1959) by the American Statistical Association. All 
rights reserved. 

5.1.3 Confidence Regions 

Suppose that d = k. Then from (5.10) we have 
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where the region (4) - ;p )'L -1 (4) - ;p) < m is a soEd ellipsoid with center 
(p, since L [= A(X'X)-l A'], and therefore L-I, is positive definite. This 
ellipsoid gives us a 100(1 - a)% confidence region for cpo However, unless k is 
small, say, 2 or 3, such a region will not be computed readily, nor interpreted 
easily. In this respect, suitable contour lines or surfaces may be sufficient to 
give a reasonable description of the region. For example, if k = 3, the region 
may be pictured in two dimensions by means of a contour map as in Figure 
5.1; here we have a plot of CP1 versus CP2 for three values of CP3. For k > 3 
it is still possible to convey the general shape of the confidence region by 
using a set of contour maps. However, generally speaking, the contour region 
approach is of limited value. 

~------------------------------~;, 

Fig. 5.1 Contour map of the confidence region for fjJ' == (</>1, </>2,.</>3)' 

If our focus of interest is just {3, which will usually be the case, we can set 
A = Ip and cp = {3 in the preceding equation to get 

1 - a = pr [({3 - j3)'X'X({3 - 13) < pS2 P;",n-p] , 

a confidence ellipsoid for {3. 

(5.18) 

EXAMPLE 5.1 All the conservative confidence intervals for the (3j [ef. (5.2)] 
take the form j3j ± tS d~~2, where t is one of t~/2P, (pP;",v) 1/2 , or u~,v' We shall 
derive a formula for comparing the rectangular volume R contained within the 
joint confidence intervals for all of the (3j, derived from one of the conservative 
methods, with the volume E of the confidence ellipsoid for {3. 

First, 
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where djj is the (j + l)th diagonal element of D = (X/X)-1. Second, the 
p-dimensional ellipsoid 

((3 - j3)'X/X((3 - 13) = pS2 F;'n_p = c, 

say, has volume (cf. Seber and Wild [1989: p. 679]) 

where the aj are the lengths of the semimajor axes. For p = 2, we can compare 
A1X~ + A2X~ = C with the standardized form (xUa~) + (xVa~) = 1 and we 
see that aj = (C/Aj)1/2, where Aj is an eigenvalue of X'X. Thus, for general 
p, 

p/2 
E = 7r cP/2IDI1/ 2 

r(p/2 + 1) , 

since IX/XI = ITj Aj (by A.1.3). 
Comparing E and R, we have 

E 7rp / 2pp/2 (F;'n_p)P/2 ID11/ 2 

R - 2p r(p/2 + 1) tP (ITj djj )1/2' 
(5.19) 

Draper and Smith [1998: p. 143] express IDI1/2(ITjdjj)-1/2 in the form IWI1/ 2, 
where Wij = dij /(diidj j )1/2. 0 

5.1.4 Hypothesis Testing and Confidence Intervals 

An interesting relationship exists between the set of confidence intervals (5.12) 
and the F-statistic for testing the hypothesis H: cp = e. From (5.9) we see 
that the F -statistic is not significant at the a level of significance if and only 
if 

A 1 A 

F = (cp - e)/L- (cp - e) < FC< 
dS2 - d,n-p' 

which is true if and only if cp = e is contained in the region (cp - ¢) L -1 (cp -
¢) < m [by (5.10)], that is, if and only if hie is contained in (5.12) for every 
h. Therefore, F is significant if one or more of the intervals (5.12) does not 
contain hie, and the situation can arise where each interval for rpi contains 
Ci (i = 1,2, ... , k) but H is rejected. For example, when k = 2 the separate 
intervals for rp1 and rp2 form the rectangle given in Figure 5.2, and the ellipse 
is the region (cp - ¢ )/L -1 (cp - ¢) < mj a point e that lies within the rectangle 
does not necessarily lie within the ellipse. 

Usually, interval estimation is preceded by an F-test of some hypothesis 
H: A(3 = e. However, when a preliminary test is carried out, the appropri­
ate probability to be considered is now the conditional probability pr[njEilF 
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~o 

Confidence 
ellipsoid 

Fig. 5.2 Separate confidence intervals for {3o and {31 compared with a joint confidence 
region. 

significant], which may be greater or less than the unconditional probability 
pr[niEi] (Olshen [1973]). 

A null hypothesis is inevitably false, as, for example, two unknown param­
eters are never exactly equal. The question is whether there are sufficient 
data to detect the differences. Confidence intervals should therefore always 
be constructed. 

EXAMPLE 5.2 Suppose that we test H: /31 = /32 = .. , = /3d == 0 (d < 
p - 1). We then should examine each /3j (j = 1,2, ... , d) separately using 
the confidence intervals fij ± ta Pi provided by anyone of the three methods 
given above. However, the maximum modulus intervals would normally be 
preferred if they are the shortest. We hope that those intervals that do not 
contain zero will indicate which of the /3j are significantly different from zero, 
and by how much. We can also obtain intervals for all linear combinations 
L:~=1 ai/3i using Scheffe's method. 0 

EXAMPLE 5.3 Suppose that we wish to test H: /31 = /32 = .. , = /3d+1' 
Subsequent to the test, we will be interested in all k [= d(d+1)/2] pairs /3i-/3j 
(i < j). For example, if d = 4, n - p = v = 20, and a = 0.05, then k = 10, 
(dF:!,v)1/2 = 3.39, tr:/(2k) = 3.16, and u~,v == 3.114, so that the maximum 
modulus intervals are still the shortest. Now H can also be written in the 
form ¢i = /3i - /3d+1 = 0 (i = 1,2, ... , d), so that Scheffe's method will provide 
confidence intervals for all linear combinations 

(5.20) 
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where ~~;;ll Ci = OJ thus every linear combination of the ¢i is a contrast in 
the (3i. By reversing the argument above we see that every contrast in the (3i 
is a linear combination of the ¢i. Hence Scheffe's method provides a set of 
multiple confidence intervals for all contrasts in the (3; (i = 1,2, ... , d + 1). 0 

5.2 CONFIDENCE BANDS FOR THE REGRESSION SURFACE 

5.2.1 Confidence Intervals 

Once we have estimated (3 from n observations Y, we can use the predictor 

Y=~O+~lXl+···+~p-lXp-l (=x'{:J, say) 

for studying the shape of the regression surface 

f(Xl, X2, ... , Xp-l) = (30 + (31Xl + ... + (3p-lXp-l = x' (3 

over a range of values of the regressors Xj. In particular, we can construct a 
two-sided 100(1 - Q)% confidence interval for the value of f at a particular 
value of x, say, Xo = (I,XOl,X02, ... ,XO,p-l)', using Yo = xb{:J. Thus from 
(4.17), we have the interval 

(5.21) 

where Vo = xb(X'X)-lxO. 
If we are interested in k particular values of x, say, x = aj (j = 1,2, ... , k), 

then we can use any of the three methods discussed in Section 5.1 to obtain k 
two-sided confidence intervals for the aj(3 with a joint confidence probability 
of at least 1 - Q. (Application of the Bonferroni and the Scheffe intervals to 
this problem seems to be due to Lieberman [1961).) 

5.2.2 Confidence Bands 

If we are interested in all values of x, then using Scheffe's method we have 
from (5.15) that x' (3 lies in 

x'{:J ± (pF;:n_p)1/2S{x'(X'X)-lx}1/2 (5.22) 

for all x = (1;Xl,X2, ... ,Xp-I)', with an exact overall probability of 1- Q. 

(Although the first element of x is constrained to be unity, this does not mean 
that the appropriate constant in (5.22) should now be [(p - I)F;_I,n_ pW/2; 
the interval is invariant under a scale change of one element of Xj cf. Miller 
[1981: pp. 110-114]). The expression above gives two surfaces defined by the 
functions fO and fo, where 

pr[fO(xI,X2, ... ,Xp-t} > f(Xl,X2, ... ,Xp-t} 

> fO(Xl, X2, ... , Xp-l), all Xl, X2,· .. , xp-d 
1- Q. 
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The region between f O and 10 is cornmonly ca.ned a confidence band. As 
pOinted out by Miller [1981]' the band over that part of the regression surface 
that is not of interest, or is physically meaningless, is ignored. This means 
that the probability associated with the regression band over a limited region 
exceeds 1-a, and the intervals given by (5.22) will be somewhat conservative. 
The question of constructing a confidence band over a limited region, with an" 
exact probability 1 - a, is discussed by Wynn and Bloomfield [1971). A 
solution is given by Halperin and Gurian [1968) for the case of an ellipsoidal 
region centered on the vector of means (X.1' X.2,' .. , x.p-I). Various solutions 
for the straight-line case are considered in detail in Section 6:1.3. 

Scheffe's method described by (5.22) is a special case of a more general 
procedure developed by Bowden [1970)." Let 

l<m<oo 

m=oo; 

then, as Bowden proves, 

pr[lxl,8 - xl.81 < SIIxllmz~, all x] = 1- a, (5.23) 

where z~ is the upper a significant point of the distribution of 11(,8 - .8) / Slim. 
By taking m = 1, 2, or 00 and varying the value of x, different types of 
regression bands can be obtained; when p = 2 (the straight-line case), the 
band has uniform or trapezoidal width (m = 1), or is hyperbolic (m = 2), or 
is bounded by straight-line segments (m = 00). However, it transpires that 
for p > 2, Scheffe's method (m = 2) and its corresponding one-sided analog 
have certain optimal properties (Bohrer [1973)). When k is large it is natural 
to ask whether the maximum modulus t-intervals of (5.7) are still shorter 
than the intervals given by the confidence band of (5.22), particularly when 
k is much greater than p. Hahn [1972) has calculated 

'" _ uk,n_p 

r - (pF'" )1/2 ' 
p,n-p 

(5.24) 

the ratio of the interval widths, for a = 0.1, 0.05, 0.01, and for different values 
of k, p, and n - p. Table 5.3 gives the maximum value of k (for a = 0.05, 
p = 2, 3, 5 and n - p = 5, 10, 20, 40, 60) for which r < 1. Hahn also found 
that, for these values of a, r increased slightly as a decreased. 

Sometimes a model consists of several regression models combined together 
using dummy explanatory variables. For example, suppose that we have J 
straight lines 

E[}j) == aj + lix, (j = 1,2, ... , J), 

and for all x [= (1, X)/) and all j (j = 1, ... , J), we want to construct si­
multaneous confidence intervals for x'.8i [.8j == (aj, Ii )'). An obvious method 
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Table 5.3 Maximum Value of k for which r < 1 [r is defined by equation (5.24)], 
Q = 0.05. 

n-p p=2 p=3 p=5 

5 3 6 20+ 
10 3 8 20+ 
20 3 8 20+ 
40 3 9 20+ 
60 3 9 20+ 

SOURCE : Hahn [1972: Table 3]. Reprinted with permission from Technometrics. 
Copyright (1972) by the American Statistical Association. All rights reserved. 

would be to allocate 0./ J to each model, as with the Bonferroni method, and 
then apply Scheffe's method to each of the J individual models. We can write 
each individual model as a regression model with regression matrix Xo and 
Po (= 2) parameters and then combine them using dummy explanatory vari­
ables, as demonstrated by equation (1.2), to obtain a regression model with p 
(= 2J) parameters. Then, for the combined model, S2 is independent of each 
'/3j, so that we can use S2 to obtain a confidence ellipsoid for {3j. Thus from 
(5.22) it follows that Xl {3j lies in 

(5.25) 

with probability at least 1- 0./ J. Using (5.3) we can combine all J models to 
obtain a probability of at least 1 - L: 0. / J (= 1 - 0.) that the statement above 
is true for all j = 1,2, ... ,J with probability at least (1 - 0.). This method 
is essentially that proposed by Lane and DuMouchel [1994]. They compare 
the intervals given above with those obtained by the less efficient procedure 
of using the combined model and constructing Scheffe intervals for all Xl {3, 
where now x E lRp • 

5.3 PREDICTION INTERVALS AND BANDS FOR THE RESPONSE 

5.3.1 Prediction Intervals 

In the preceding section we discussed the problem of predicting the value of a 
regression surface Xl {3 at a given value of x = xo, say. However, in practice, we 
are generally more interested in predicting the value, Yo, say, of the random 
variable Y, where 

Yo = x~{3 + co· 
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If we assume that eo ,..., N(O, a 2 ) and that eo is independent of Y, then 

E[Yo - Yo] - xri,B - xri,B = 0, 

var[Yo - Yol - var[yol + var[Yo] 

- a 2 xri(X'X)-lxo + a2 

- a2 (vo + 1), (5.26) 

say, and (Yo - Yo) ,..., N(O, a2 (vo + 1)). We can therefore construct at-statistic 
and obtain the 100(1 - a)% confidence interval for Yo given by 

Y; ± t(1/2)Ot S(v + 1)1/2 o n-p 0 , (5.27) 

which may be compared with the interval (5.21). 
If we are interested in predicting Y for k different values of x, say, x = aj 

(j = 1,2, .. , ,k), then we can use any of the three methods discussed in Section 
5.1.1 to obtain k confidence intervals with an overall confidence probability of 
at least 1 - a. For k = 2, Hahn [1972] shows that the intervals 

Y,(j) ± uOt S(vU) + 1)1/2 o 2,n-p,p 0 (j = 1,2), 

have an exact overall probability of. 1 - a. 
Fitted regressions are used for two types of prediction (Box [1966]). First, 

we may wish to predict Y in the future from passive observation of the Xj's. 

We assume that the system is not interfered with, so that the regression model 
proposed is still appropriate in the future. Second, we want to discover how 
deliberate changes in the Xj'S will affect Y, with the intention of actually 
modifying the system to get a better value of Y. The need to distinguish 
between these two situations is borne out by the following example adapted 
from Box [1966]. In a chemical process it is found that undesirable frothing 
can be reduced by increasing the pressure (xd; it is also known that the yield 
(Y) is unaffected directly by a change in pressure. The standard operating 
procedure then consists of increasing the pressure whenever frothing occurs. 
Suppose, however, that the frothing is actually caused by the presence of 
an unsuspected impurity (X2), and that unknown to the experimenter, an 
increase in concentration of impurity causes an increase in frothing and a 
decrease in Y. If Xl and X2 are positively correlated because an increase in 
pressure causes an increase in impurity, then although Y is unaffected directly 
by changes in Xl, there is a spurious negative correlation between Y and Xl 

as Y and Xl are both affected by X2, but in opposite directions. This means 
that there will be a significant regression of Y on Xl, and the fitted regression 
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can be used for adequately predicting Y, provided that the system continues 
to run in the same fashion as when the data were recorded. However, this 
regression does not indicate the true causal situation. We are mistaken if we 
think that we can increase Y by decreasing Xl. 

5.3.2 Simultaneous Prediction Bands 

Carlstein [1986] gives two examples where the k predictions mentioned in the 
preceding section are at unknown values of x = aj (j = 1,2, ... , k). In this 
case what is needed is a prediction band for each of k future values of Y. 
Writing yU) = yU)(x), Carlstein [1986] proves the following theorem. 

THEOREM 5.1 The event that yU) lies in the interval 

for all x E Rp , with Xo = 1, and all j = 1,2, ... , k has probability at least 
(1- 0:). 

Proof. Let y(j)(x) = x'(3 + cn+j (j = 1, ... ,k), where the cn+j are inde­
pendent of the n initial observations Y. Let eb = (cn+1, ... , cn+k), b' = 
(13' - (3', eb), and 

W = (X'X
O
)-l 0·) 

Ik . 

We recall that S2 = IIY - xj3W /(n - p) is independent of 13, and therefore 
of b, where b '" Np+k(O, a 2W). Also, b'W-1b/a2 '" X;+k, so that 

b'W-1b/(p +k)S2 '" Fp+k,n-p' 

Then arguing as in the theory leading to equation (5.11) yields 

1-0: pr{ b'W- 1b < S[(p + k)F:+k,n_pj1/2} 

{ Ih'bl [ '" ]1/2 } pr 1 < S (p + k)Fp+k n-p for all h E Rp+k, h i= 0 . 
(h'Wh)' - , 

Now consider only those h such that h' = (x', (h, 02, .. . , Ok), where x E Rp is 
arbitrary and the o/s are all zero except for a single OJ = -1 (j = 1,2, ... , k). 
Then 

h'b = x'j3 - yU)(x) and h'Wh = 1 + x'(X'X)-l X • 

The result follows by noting that we are only looking at a subset of the possible 
vectors h, so that (1 - 0:) is now a lower bound. 0 

Carlstein [1986] also gives an alternative method by obtaining separate 
confidence intervals for the two components x' (3 and cn+i of yU), as in the 
following theorem. 
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THEOREM: .5,2 LeT:) < a < a. The I~vent that }<:i) lies in the interval 

x'lj ± S{"lP x' (X'X)-lX ~"4'&. )1/2 + [kFOt
-

5t )1/2} /. \ p,n-p k,n-p 

for all x E lRp, with :Vo = 1, and all j == 1,2, ... , k has probability at least 
(1 - a). 

Proof. We use a Bonferroni argument and allocate a to a confidence band for 
x' (3, and a - a to k simultaneous intervals for the elements Cn+1, ... ,cn+k of 
co· 

Now x' (3 lies in 

x' (3 ± S{p x' (X'X)-lX F~n_dl/2 for all x E lRp, :Vo = 1 

with probability (1 - a). Also, since c~cO/0"2 ~ x% and is independent of 8 2, 
we have c~co/k82 ~ Fk,n-p and, from (5.11), 

1-a+a pre:,::! <8{kF:';;-~p}1/2 forallaElRk) 

> pr(!cn+i! < 8{kF:';;-~p}1/2 for all j == 1,2, ... , k). 

The last equation follows by setting a == (1,0, ... ,0), etc. 
The probability statements above are then combined by using pr(A U B) < 

1, which leads to 

pr(A n B) > pr(A) + pr(B) - 1 

1 - a + 1 - (a - a) - 1 

1- a. 

[This result is a special case of (5.3) with k == 2.) o 
We note that a can be chosen to give the shortest intervals. Carlstein 

(1986) gives a.n example which demonstrates that neither of the two methods 
above is uniformly better than the other. 

By noting that 

1-a+a pr [iEl~~'k !c:;i! < ur:;;~p] 
pr[lcn+j! < 8u~,-;'~p for all j == 1,2, ... , k), 

where Uk,n-p is defined prior to equation (5.7), Zimmerman (1987) obtained 
shorter intervals by replacing (kF::'-;;~p)1/2 by the smaller value Uk,-;'~p in the 
statement of Theorem 5.2. 

A third method, proposed by Lane and DuMouchel [1994), is based on the 
fact that with :Vo = I, 

x'13 - y(j) 
~ , 

x(3 - x (3 - cn+i 
- x/hj, 
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where b j = (So - {30 - cn+j,(31 - {31, ... ,Sp-1 - (3p-1Y· Replacing W in 
Theorem 5.1 by Var[b j ], and using (5.25), it can be shown that y(j) lies in 

x' (:J ± S{p(1 + X(X'X)-lx)F:'~":..p}1/2 for all x E lRp, Xo = 1, 

and all j = 1,2, ... , k (5.28) 

with probability at least 1 - n. 
Lane and DuMouchel [1994] give some examples where this method is better 

than the previous ones. Clearly, intervals could be computed using all the 
methods, and the shortest selected. If k, the number of predictions is large 
or unknown, another method is to use simultaneous tolerance intervals (cr. 
Limam and Thomas [1988] for several methods). 

5.4 ENLARGING THE REGRESSION MATRIX 

Suppose that our original regression model is enlarged by the addition of an 
extra regressor x p , say, so that our model is now 

(i=I,2, ... ,n). 

What effect will this have on the width of the confidence intervals given in 
Sections 5.2 and 5.3? Surprisingly, the answer is that the intervals will be at 
least as wide and, in fact, almost invariably wider! To see this, we use the 
general theory of Section 3.7 to show that a2 v, the variance of the predictor 
-V, cannot decrease when another regressor is added to the model. Setting 

{3p = " (Xip) = xp = z, and W = (X, z), 

we can write the model G in the form 

y - X(3 +Z,+e 
- Wo +e, 

and the least squares estimate of 0 is 

6a = (W'W)-lW'Y. 

For G, the new predictor at (xb, xop) is 

-Voa = (xb, xop)6a , 

and from Theorem 3.6(iv) in Section 3.7.1, 

var[Yoa] - I [' I I (xo, xop) Var Oa)(xo, xp) 

- a2(x~, xOp)(W'W)-l (x~, XOp)' 

2( I ) ( (X'X)-l +mkk', - a xo, xOp k' -m , 
-mk ) ( m 

Xu ), xOp 
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where m = (Z'RZ)-1 and k = (X'X)-1X'Z. Multiplying out the matrix 
expression above, and completing the square on k'xo, we have 

var[YOG] 

> 
a2x~(X'X)-1XO + ma2(k'xo - XOp)2 

a2x~(X'X)-lxo (= a2vo) 

var[Yo] , (5.29) 

with equality if and only if xOp = k'xo = z'X(X'X)-lXO. Since variances and 
covariances are independent of a change of origin, we see that the result above 
holds even if E[Y) is not equal to either X(3 or WOj in this case, both predic­
tors YOG and Yo are biased estimates of E[Y). We conclude, therefore, that 
although we may sometimes reduce the bias and improve the fit by enlarging 
the regression model, the variance of the predictor is not reduced. Walls and 
Weeks [1969) give an example in which the variance of prediction at a par­
ticular point is increased tenfold when the model is enlarged from a straight 
line to a quadratic. If we use the mean-squared error (MSE) of prediction as 
our criterion, then the MSE may increase or decrease when extra regressors 
are added to the model. Mallows' Cp statistic (see Section 12.3.2), which is 
used for comparing different regression models, is based on an "average" MSE 
criterion. By setting xOp = 0 and setting Xo equal to the column vector with 
unity in the (j + 1 )th position and zeros elsewhere in the theory above, we have 
var[,6jG) > var[,6j] with equality if and only if z'X(X'X) -lXO = O. Equality 
holds if z is orthogonal to the columns of X. However, in general, the variance 
of the least squares estimate of /3j increases when the model is enlarged. The 
lesson to be learned from this discussion is that we should avoid "overfitting" 
regression models. See Section 12.2 for further discussion of this point. 

MISCELLANEOUS EXERCISES 5 

1. Referring to Section 5.1.1, prove that 1= E j aj is the expected number 
of incorrect statements. Hint: Let I j = 1 if E j is incorrect, and 0 
otherwise. 

2. Prove that (1 - alk)k > 1 - a (k> 1). 

3. Suppose X, Y, and Z are random variables and a(·) and b(·) are func­
tions. Define 

covz[a(Z), b(Z)) = Ez[(a(Z) - E{a(Z)} )(b(Z) - E{b(Z)})]. 

Prove that 

cov[X, Y) = Ez[ cov(X, YIZ)] + covz[E(XIZ), E(YIZ)). 

4. Given the predictor Y == ,60 + ,61x1 + ... + ,6p-1Xp-1, show that Y has a 
minimum variance of a2 In at the x point Xj = ?E.j (j = 1,2, ... ,p - 1). 
Hint: Consider the model 

}Ii = 0.0 + /31 (XiI - X.I) + ... + !3p-l (Xi,p-l - :f.P-I) + Ci· 
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(Kupper [1972: p. 52)) 

5. Generalize the argument given in Section 5.4; namely, show that the 
addition of several regressors to a regression model cannot decrease the 
variance of the prediction Y. [Such a proof is, of course, not necessary, 
as we can add in the regressors just one at a time and evoke (5.29).] 

6. Let Yi = (30 + (31 Xi + ci (i = 1,2, ... ,n), where the Ci are independently 
distributed as N(O, a 2 ). Obtain a set of multiple confidence intervals for 
all linear combinations ao(3o + a1(31 (ao, a1 not both zero) such that the 
overall confidence for the set is 100(1 - a)%. 

7. In constructing simultaneous confidence intervals for all Xl (3, explain 
why setting Xo = 1 does not affect the theory. What modifications to 
the theory are needed if (30 = O? 





6 
Straight-Line Regression 

6.1 THE STRAIGHT LINE 

The simplest regression model is that of a straight line, namely, 

(i=1,2, ... ,n), 

where the Ci are independently and identically distributed as N(O, a 2 ). The 
least squares theory was derived in Section 4.3.4 and we recall the following 
results: 

and 

(X'X)-l _ 1 ( 2: xr 
- n 2:(Xi - X)2 -nx 

-nx) 
n ' 

/30 = Y - /31X, 
/31 = 2:(Yi - Y)(Xi - x) 

2:(Xi - X)2 
2: Yi(Xi - x) 

- 2:(Xi - X)2 ' 

S2 = n ~ 2 {}:)Yi - y)2 - /3i }:)Xi - x)2} . 

(6.1) 

We now use the theory of Chapter 5 to construct various confidence intervals 
and bands. 

6.1.1 Confidence Intervals for the Slope and Intercept 

Using the maximum modulus method of Section 5.1.1 [equation (5.8)] with 
a~ = (1,0) and a~ = (0,1), we have an exact overall confidence probability of 

139 
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1 - a for the following confidence intervals for (30 and (31: 

~ ~X· { ,,2 }2 
(30 ± U~,n_2,pS n 2: (Xi .:.. X)2 

and . {1}2 
(31 ± U~,n_2,pS 2:(Xi _ X)2 ' 

where from Exercises 4b, No. 2(a), 

-nx 
P = (n 2:X;)1/2' 

Conservative intervals are obtained by setting p = 0 or using the Bonferroni 
method with multiplier t~~~. 

The two intervals can also be used for jointly testing a hypothesis about 
(30 and a hypothesis about (31. However, if we are interested in just a single 
hypothesis, say, H: (31 = c, then we can use the usual t-statistic, 

~1 - c 
T= S/{2:(Xi- X)2P/2' 

(6.2) 

and reject H at the a level of significance if ITI > t~l~;)"'. This statistic can 
be derived directly from the fact that ~1 '" N«(31, a2/ 2:(Xi - X)2) and S2 is 
independent of ~1' The F-statistic T2 is given by (4.19). 

6.1.2 Confidence Interval for the x-Intercept 

When E[Y] = 0,0 = (30 + (31 X and the x-intercept is ¢ = -(30/(31. We now 
derive a confidence interval for ¢ using a technique due to FieHer [1940]. 

Let 

0 
E[Y] 

-
E[~l] 
(30 + (31 X 

-
(31 

- -¢+Xj (6.3) 

then E[Y - O~1] = O. Also, 

cOV[Y'~1] cov[a'Y, b'Y] 

- a'Var[Y]b 

a 2 a'b 
2 2:i(Xi - x) 

- a 
2:i (Xi - x)2n 

- 0, 
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so that 

say. Now Y - OS1 is of the form e'Y, so that it is univariate normal, namely, 
N(0,a2w). Also, S2 is independent of (So,Sd [Theorem 3.5(iii), Section 3.4] 
and therefore of Y - OS1 [= So + S1(X - 0)]. Hence, by the usual argument 
for constructing t-variables [see equation (4.16)], 

Y-OS1 
T = Svw ,..., tn -2, 

and a 100(1 - a)% confidence set for 0 is given by 

T2 < (t(I/2)Ot)2 = FOt _ n-2 1,n-2· 

It transpires that this set reduces to the simple interval d1 < 0 < d2 , where 
dl and d2 are the roots of the quadratic 

2 { '2 s2 Fi" n-2} - , (-2 1 2 ) 
d (31 - 2:(Xi ~ X)2 - 2dY(3I + Y - n S F1:n-2 = 0 (6.4) 

if and only if the coefficient of d2 in equation (6.4) is positive (Le., the line is 
not too flat). In this case, from equation (6.3), the corresponding interval for 
4> is [x - d2 ,x - dl ], and ~ = -So/Sllies in this interval. 

We note that ~ is the ratio of two correlated normal random variables; the 
exact distribution of such a ratio IS given by Hinkley [1969a]. 

EXAMPLE 6.1 A model that often arises in animal population studies (cf. 
Seber [1982: p. 298]) is the following: 

E[Y] I(N - x) 

IN-Ix 

( (30 + (3IX, say). 

In such applications we are interested in finding a confidence interval for the 
population size N = - (30 /(31. 0 

6.1.3 Prediction Intervals and Bands 

The fitted regression line is 

y - So + .s1X 
- Y+S1(x-x), 
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which passes through the point (x, Y). From the general theory of Section 
5.2 we see that we can use the prediction Yo = xbfJ = (1, xa)fJ to obtain a 
100(1 - a)% confidence interval for E[Yo] = (1, xo)(3, the expected value of Y 
at x = Xa. This interval is 

where, from equation (6.1), 

y;' ± t(l/2) Ot S ~ o n-2 yVo, 

Vo - xb(X'X)-lxO 

L: x; - 2xonx + nX5 
n L:(Xi - X)2 

L: x; - nx2 + n(xa - X)2 
n L:(Xi - X)2 

1 (xo - X)2 - + -=====-~-'-7-::­n L:(Xi - X)2' 

(6.5) 

(6.6) 

(Here Va can also be obtained directly-see Exercises 6a, No. 1.) We note 
that Va is a minimum when Xo = Xj the farther we are from x, the wider our 
confidence interval. 

If we require k prediction intervals, then our critical constant t~~22 in (6.5) 

is replaced by t~~(;k), (2F2~n_2)1/2, and Uk,n-2 for the Bonferroni, Scheffe, 
and maximum modulus methods, respectively. However, if k is unknown 
or is so large that the intervals are too wide, we can construct a confidence 
band for the entire regression line and thus obtain an unlimited number of 
confidence intervals with an overall confidence probability of at least 1 - a. 
From equation (5.22) this infinite band is the region between the two curves 
(Figure 6.1) 

_ , {1 (X-X)2 }1/2 
y=Y+,61(X-X)±'\S -+L:( )2 ' n Xi - X 

(6.7) 

where'\ = (2F:f n_2)1/2. This band, commonly called the Working-Hotelling 
confidence band (Working and Hotelling [1929]), is of variable vertical width 
d, d being a minimum at the point (x, Y). The intervals obtained from this 
band are simply the Scheffe F-intervals. 

An alternative confidence band with straight sides (Figure 6.2) has been 
proposed by Graybill and Bowden [1967], namely, 

y = Y + ~l(X - x)± U~,n_2S )n (1 + Ix ~ xl) , (6.8) 

where s; = L:(Xi - X)2 In. This band has two advantages over (6.7): (1) it 
is easier to graph, and (2) it has a smaller average width, although this is 
misleading since the average is taken over the entire band, including extreme 
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y 

d 

~ __ L-__________________________ ~x 

Fig. 6.1 Working-Hotelling confidence band. 

values of x. However, Dunn [1968] and Halperin and Gurian [1968: p. 1027] 
show that for Q = 0.05, (6.7) provides narrower intervals than (6.8) when x 
satisfies (approximately) 

0.1 < Ix - xl < 9. 
8", 

Since, in practice, one would not expect the experimental range of Ix - xl 
to exceed 58"" the Working-Hotelling band is preferred. A similar conclusion 
holds for 90% confidence levels (Q = 0.1). Both bands can be derived as special 
cases of a general procedure given by Bowden [1970] [ef. equation (5.23) and 
the following discussion]. 

The problem of obtaining an exact confidence band for the regression line 
when Xo is restricted to the finite interval [a, b] was first solved by Gafarian 
[1964]. He showed how to construct a band of uniform width 20' and provided 
appropriate tables for the case x = ~(a + b) and even n. Miller [1981: p. 121] 
gave a useful discussion of this method and pointed out that the two conditions 
necessary for the use of the tables are not very restrictive: The interval [a, b] 

y 

~----------------------------~X 

Fig. 6.2 Graybill-Bowden confidence band. 



144 STRAIGHT-LINE REGRESSION 

is usually sufficiently ill-defined to permit adjustment so that x is the middle 
point, and interpolation in the tables gives approximate results for odd values 
of n. However, Bowden and Graybill [1966) later provided tables for any finite 
interval [a, b) and even n. Their tables can also be used for computing exact 
trapezoidal confidence bands, which may be more appropriate than uniform 
width bands when x lies outside [a, b). 

Dunn [1968) provided a truncated modification of (6.8) which gave a con­
servative confidence band. Halperin et al. [1967) and Halperin and Gurian 
[1968) gave an exact confidence band of the form (6.7) but with a different 
value of A, and truncated at x = a and x = b. However, their tables can only 
be used for the case x = ~(a + b); A is tabulated in Halperin et al. [1967) for 
different values of Q-1, where 

Q 
= 1 (b - a)2 

+ 42 Sx 

Wynn and Bloomfield [1971), however, tackled the problem from a different 
viewpoint and provided tables (reproduced in Appendix C.3) for any interval 
[a, b). One simply calculates a "standardized" version of the interval width, 
namely, 

(b - a)sx 
c= ------------------~~--~~~----------------

[{ s~ + (a - X)2}{ s~ + (b - x)2}] 1/2 + s~ + (a - x)(b - x) 
(6.9) 

and looks up the corresponding value of A in Appendix C.3. When x = Hc+b) 
we note that c = (b-a) /2s x and Q = 1 +c2 , thus linking the tables in Halperin 
et al. [1967) with Appendix C.3. Letting a -+ -00, b -+ 00, we have c = 00 and 
A = (2Ff n_2)1/2, as expected. Calculations given by Halperin and Gurian 
[1968) suggest that this modification of the Working-Hotelling band generally 
provides narrower confidence intervals than either the uniform or trapezoidal 
bands mentioned above. In conclusion, therefore, we recommend the general 
use of (6.7) but with A obtained from Appendix C.3 in the case x E [a, b]. 

Finally, we mention one-sided confidence intervals. Bohrer and Francis 
[1972] give an (upper) one-sided analog of (6.7), namely (modifying their 
model slightly so that x E [a, b) instead of x - x E [a, b)), 

{ . [1 x-x ]1/2 
l-a=pr (30+(31X<Y+(31(X-X)+AS·n+2:(Xi_X)2 ' 

all x E [a, b) }, (6.10) 

where A (= c# in their notation) is tabulated for different n, ¢* (= arctan[(b­
x)/ sx)-arctan[(a-x)/ s"']), and a (= I-a in their notation). Lower one-sided 
intervals are obtained by reversing the inequality and replacing A by -A. 
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6.1.4 Prediction Intervals for the Response 

From the general theory of Section 5.3, we can use the predictor Yo to obtain 
a 100(1 - a)% confidence interval for the random variable Yo, namely, 

Yo ± t~l~~)'" S(l + VO)1/2, 

where Vo is given by equation (6.6). If k intervals are required at x = x~j) 
(j = 1,2, ... , k), then we can use 

(j = 1,2, ... ,k), 

where A is t~~~k), (kFk,n_2)1/2, and u~,n_2 for the Bonferroni, Scheffe, and 
maximum modulus methods, respectively. However, if k is so large that the 
intervals are hopelessly wide, or k is unknown, then we can use simultaneous 
tolerance intervals (see Limam and Thomas [1988) for several methods). 

6.1.5 Inverse Prediction (Calibration) 

Single Observation 

Suppose that we wish to calibrate an instrument, say, a pressure gauge, and 
we know that the gauge reading is a linear function of the pressure, namely, 

"gauge reading" = (30 + (31 "pressure" + "error" 

or 
Y = (30 + (31 X + c. 

In order to calibrate the gauge, we subject it to two or more (say, n) controlled 
pressures Xi (i = 1, 2, ... , n) and note the gauge readings Yi. Using these data 
we obtain the fitted equation Y = iJo + iJ1X, which can be used for estimating 
(predicting) the unknown pressure Xo for a given gauge reading yo. This is 
the inverse problem to the one considered in Section 6.1.4 of predicting Yo for 
a given x = Xo, and it is commonly referred to as the cont7YJlled calibration 
problem. The case when x is fixed rather than random, which we consider 
here, is also referred to as the absolute calibration problem. 

A natural estimate of :vo (which is also the maximum likelihood estimate) 
is found by solving the fitted equation Yo = So + iJ1X, namely, 

" Yo - So _ Yo - Y 
Xo = A = X + " . 

(31 (31 
(6.11) 

This ratio-type estimate is biased because, in general, 

E[i ) =1= E[Yo -:- /Jo) 
o E[(31] 

= Xo· 
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However, a confidence interval for ::to can be constructed using the method of 
Section 6.1.2. From equation (5.26), we get 

so that 
Yo - Yo Yo - y - ~l (xo - x) 

T = = ...., tn -2, 
8v'1 + Vo 8v'1 + Vo 

where Vo is given by (6.6). Since 

I-a - [ITI < t(1/2)Ot] pr _ n-2 

pr [T2 < (t~1!;)Ot)2] , 

the set of all values of x satisfying the inequality 

{ 
_. _ }2 2 2 { 1 (x - x)2 } 

Yo - y - f31(X - x) < ). 8 1 + n + 2:
i
(Xi _ x)2 ' (6.12) 

with), = t~l!;)Ot (and ).2 = F~n_2)' will provide a 100(1 - a)% confidence 
region for the unknown Xo. This set of points, commonly called the discrimi­
nation interval, may give a finite interval, two semi-infinite lines, or the entire 
real line (see Miller [1981: pp. 118-119; Figures 2, 3, and 4] and Hoadley 
[1970]). One obtains a finite interval if and only if ~r > ).282 / 2:(Xi - X)2j 

that is, the F-test for f31 = 0 is significant, which we would expect for any 
sensible calibration curve. In this case the interval contains the estimate Xo 
and is given by [d1 + x, d2 + x], where dl and d2 are the (real unequal) roots 
of 

(6.13) 

[This equation follows from (6.12) by setting d = x - x.] If Xo does not 
lie in [dl + x, d2 + x), then the confidence region for Xo is the union of two 
semi-infinite lines. However, if (6.13) has no real roots, then the region is the 
entire real line. The confidence region defined by (6.13) can also be derived 
by inverting a test of the hypothesis x = Xo (Cox and Hinkley [1974: p. 268]). 
A bootstrap approach to the problem is given by Jones and Rocke [1999]. 

The theory above is readily extended in two directions. If k values of 
Yo are observed at different values of xo, then one simply substitutes yoW 
(j = 1, ... ,k) in (6.13) and sets). equal to t~~~k) and uk n-2 for the Bonferroni 

• 
and maximum modulus intervals, respectively. Unfortunately, this method 
cannot be used when k is unknown. Such will be the case in calibration 
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problems where the estimated calibration line is used to "correct" an unlimited 
number of future readings taken with the instrumentj for example, in bioassay 
a standard curve is constructed for making future assays (discriminations). 
If k is large, A may be so large as to render the discrimination intervals 
useless. However, when k is large or unknown, several simultaneous confidence 
intervals can be constructed (see Mee and Eberhardt (1996]). 

Krutchoff [1967, 1969] resurrected an alternative estimate :1:0, called the 
inverse estimate, obtained by regressing x on Y (even when x is not a random 
variable) and then predicting Xo from Yo in the usual manner. There has been 
an extensive debate on the relative merits of xo and Xo in the literature, and 
details are given by Osborne [1991]. It is clear that xo is satisfactory provided 
that ~l is not too small, as already mentioned above, and the properties of 
xo should be derived conditional on this requirement. Hoadley [1970] showed 
that :1:0 is a Bayes solution with respect to a particular prior distribution on 
Xo. He also gave a confidence interval based on Xo when the particular prior 
could be justified. For further comments on this issue, see Brown (1993: pp. 
31-33]. 

In practice there is not a great deal of difference between xo and :1:0 when 
the data are close to a straight line [Le., when r2 is large; see Exercises 6a, 
No.4]. 

Replicated Observations 

Suppose that we have m replications YOj (j = 1,2, ... , mj m > 1), with 
sample mean Yo, at the unknown value x = Xo. In this situation we have 
two estimates of a2 , namely, 8 2 and L . (YOj - Yo)2/(m - 1), which can be 
combined to give a confidence interval for Xo as follows. Following Graybill 
[1961: pp. 125-127], let U = Yo - Y - fil(XO - x). Then E(U] = 0, 

2 { 1 1 (xo - X)2} 2 
var(U] = a - + - + "( )2 = au, 

m n L..J Xi - X 

say, and U /au ,..., N(O, 1). If 

n 2 

Vl=L[Yi-Y-~l(Xi-X)] =RSS 
i=l 

and 
m 

'\:'"' - 2 
V2 = L.)YOj - Yo) , 

j=l 

then U, VI, and V2 are mutually independent and 

(n + m - 3)&2 

a 2 
,..., 2 

Xn-2+m-l' (6.14) 



148 STRAIGHT-LINE REGRESSION 

'Therefore, 

T 

U 
-------------:1,-;/-=-2 '" t n+m -3 

, { 1 1 (xo - x)2 } 
(j - + - + =-.;--~ 

m n z=(Xi - X)2 

(6.15) 

and (6.13) now becomes 

2 { '2 p,
2

fJ
2

} '- V\ 
d (31 - 2:(Xi _ X)2 - 2d(31(YO - Y, 

+ { (YO - y)2 _ p,2 fJ2 (~ + ~) } = 0, (6.16) 

h 2 ( (1/2)0:)2 FO: UT h' 2 b d 3 were p, = tn + m - 3 = 1,n+m-3. vve note t at (j, ase on n + m -
degrees offreedom, has a sIilaller sampling variance than 52 with n-2 degrees 
of freedom; also, p,2 < )..2. These two facts imply that (Cox [1971]) (1) the 
intervals given by (6.16) will, on the average, be narrower than those given 
by (6.13), and (2) the coefficient of d2 in (6.16) is generally larger than that 
in (6.13), so that the probability of obtaining a finite confidence interval for 
Xo is greater when there are replications of Yo. 

Using a profile likelihood approach, Brown [1993: pp. 26-30] showed that 
the profile likelihood is a monotonic function of (6.15). 

EXERCISES 6a 

1. In fitting the straight line Yi = (30 + (31Xi + Ci (i = 1,2, ... , n), prove 
that Y and (Jl are uncorrelated. If Yo = (Jo + (JIXO, deduce that 

, 2 {I (xo - X)2 } 
var[Yol = (j n + z=(Xi - x)2 . 

2. Using the notation of Section 6.1.2, prove that 1> = -(JO/(Jl is the max­
imum likelihood estimate of 4>. 

3. Given a general linear regression model, show how to find a confidence 
interval for the ratio a'd3/a~f3 of two linear parametric functions. 

4. Using the notation of Section 6.1.5, show that when x = 0, 

Xo -: Xo = 1 _ r2, 
Xo 

where r is the correlation coefficient of the pairs (Xi, Yi). 
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6.2 STRAIGHT LINE THROUGH THE ORIGIN 

In many situations it is known that E[Y) = 0 when x = 0, so that the 
appropriate regression line is Yi = /31Xi + Ci. The least squares estimate of /31 
1S now 

and the unbiased estimate of (12 is 

S2 = 1 (~Y.2 _ [32 ~ x~) 
n-1 L..J. 1L..J.· (6.17) 

Because [31 ~ N (/31, (12/ 'E x;), a t-confidence interval for /31 is 

[31 ± t~~i)a S ( ~ x~) -1/2 (6.18) 

We can use the predictor Yo = X0[31 to obtain a confidence interval for 
E[YoJ = X0/31 at x = Xo, namely, 

y. ± p/2)aS ~ o n-1 yVo, (6.19) 

where Vo = X5/ 'E x;; this interval gets wider as we move away from the 
origin. Since /31 lies in the interval (6.18) if and only if X0/31 lies in (6.19) for 
every Xo, a 100(1 - a)% confidence band for the entire regression line is the 
region between the two lines, 

y = [31 X ± t~~i)a Slxl (2: x~) -1/2 

Prediction intervals for Yo, or k values of Yo, are obtained as in Section 6.1.4; 
however, Vo is defined as above and the appropriate degrees of freedom are 
now n -1 instead of n - 2. Inverse prediction is also straightforward. Following 
the method of Section 6.1.5, we find that Xo is estimated by xo = YO/[31, and 
the corresponding confidence interval for Xo is given by the roots of 

2 (-2 ),2 S2) - 2 2 2 
X /31- 'Ex; -2X/31 YO+ YO -), S =0, (6.20) 

where), =,t~!i)a and S2 is given by (6.17). For m replications YOj at x = Xo, 

the corresponding quadratic is (cf. Cox [1971)) 

2 (-2 p,2(;2) - _ -2 p,2(;2 
X /31 - 'Ex; - 2X/31Y O + Yo - m- = 0, 

where p, = t~~~~2' and 

{ 

n m } 2 1 - 2 - 2 
fj = -2 :ECYi-/31Xi) +2:(YOj- Y o) . 

n + m i=l j=l 
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6"3 WEIGHTED LEAST SQUARES FOR THE STRAIGHT LINE 

6.3.1 Known Weights 

Let Yi = /30 + /31xi + Ci (i = 1,2, ... , n), where the Ci are independently 
distributed as N (0, (12W;1), and the Wi are known positive numbers. Then, 
from Section 3.10, the weighted least squares estimates /36 and /3i of /30 and 
/31, respectively, are obtained by minimizing z= Wi(Yi - /30 - /31Xi)2. Therefore, 
differentiating this expression partially with respect to /30 and /31, we have 

(6.21) 

and 
(6.22) 

Dividing (6.21) by z= Wi and defining the weighted means Y w = z= wiYi/ L Wi, 
etc., we have 

. /36 = y w - /3ixw. 

Substituting (6.23) in (6.22) leads to 

z= Wi YiXi - z= WiX/V w 
z= WiX~ - z= WiXiXw 

z= Wi(Yi - Y w)(Xi - Xw) 
Z=Wi(Xi - Xw)2 

From the alternative expression 

it readily follows that 

(12 

var[/3il = L ( )2 . Wi Xi - Xw 

Using the general theory of Section 3.10, we can show that 

n ~ 2 {2: Wi [Yi - Y w - /3i(Xi - Xw)]2} 

n ~ 2 {2: Wi(Yi - Y w)2 - (/3i)2 2: Wi(Xi - xw)2} 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

is an unbiased estimate of (12, and a 100(1- a)% confidence interval for /31 is 
given by 

(6.27) 
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When (30 = 0 and (31 = (3 we have, from Example 3.9 in Section 3.10, 

(3* - z= Wi YiXi 
- Z=WiX~ , 

and the appropriate confidence interval for (3 is now 

(3* ± t(1/2)o: w 
( 

52 ) 1/2 
n-1 LWiX~ , 

where 

(6.28) 

(6.29) 

[We note that these formulas follow from those given by equations (6.24) 
to (6.27) by setting Y w = Xw = 0 and replacing n - 2 by n - 1.) Under the 
normality assumptions, (3* is the maximum likelihood estimate of (3. However, 
Turner [1960] has shown that for certain Wi, (3* can still be the maximum 
likelihood estimate when Y is not normally distributed (cf. Exercises 6b, No. 
1). Inverse prediction (discrimination) for this model is discussed by Cox 
[1971]. 

6.3.2 Unknown Weights 

Let 

Yi - (h + Ci 

- (30 + (31 Xi + ci (i=1,2, ... ,n), 

where the ci are independently distributed as N(O, vg(ei»j here v = (12, 9 is 
a known positive function, and the weights Wi = l/g(ei ) are now unknown. 
Two methods are available for estimating (30 and (31. 

Maximum Likelihood Method 

If gi = g(ei ), then L, the logarithm of the likelihood function, is given by 

1 1 ""' 1 ""' (Yi - (30 - (31 Xi)2 L = - -n log 271' - - L.." loge vgi) - - L.." 
2 2 . 2 . vgi • • 

Now 
8logg = .!.. 8g = h 

8e 9 8e ' 

say, so that 
8g 8g 8e 

8(30 = 8e . 8(30 = gh 

and 
8g 8g 8e 

8(31 = 8e . 8(31 = ghx. 
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The maximum likelihood estimates [30, [31, and ii are obtained by solving 
8L18(30 = 8L18(31 = 8LI8v = 0, namely, 

_~ '" h- ~ '" {hi(Yi - Bi)2} '" {(Yi - Bi)} = 0 2 ~ ,+ 2 ~ -- + ~ -- , _ _ Vgi _ Vgi 
" . 

_ ~ '" h-x _ ~ '" {hiXi(Yi - Bi)2 } '" {Xi(Yi - Bi)} = 0 
2 ~ • • + 2 ~ -- + ~ -- , _ _ Vgi _ Vgi ., , 

and 

where hi, [Ii, and Bi are functions of [30 and Pl. Multiplying through by ii, 
setting Yi = Bi = [30 + [31Xi, and Wi = 1/?h, we can reduce the equations above 
to 

and 

l: WiYi + ~ l: hi [Wi(Yi - Yi)2 - ii], (6.30) 

l: WiXiYi + ~ l: hiXi [Wi(Yi - Yi)2 - ii](6.31) 

ii = ~ l: Wi(Yi - Yi)2. (6.32) 

Equations (6.30) and (6.31) may be compared with (6.21) and (6.22). There­
fore, given initial approximations to [30 and P1 (say, unweighted least squares 
estimates), we can evaluate the corresponding values of Wi, hi' and v, solve 
(6.30) and (6.31), and obtain new approximations for Po and Pl. This pro­
cess is then repeated. When n is large, the variance-covariance matrix of the 
maximum likelihood estimates is approximately 
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where 

Frequently, the second term of the preceding equation is small. For example, 
if gi = B;, then the second term is 2v, which can be neglected if v is much 
smaller than ~. In this case the variance-covariance matrix for [30 and [31 is 
approximately 

v ( Li Wi L XiWi ) -1 

Li XiWi Li X~Wi ' 
(6.33) 

which is the variance-covariance matrix of /30 and /3i in Section 6.3.1. 
The treatment above is based on Williams [1959: pp. 67-70], although with 

the following differences: We have worked with (12 instead of (1, and Williams's 
g; is our gi (his gi may be negative). 

Least Squares Method 

This technique consists of estimating the weights Wi [= 1/ g(/3o + /31Xi)] 

from trial estimates of /30 and /31, say, the unweighted least squares estimates 
(which are unbiased), and then solving equations (6.21) and (6.22) for new 
estimates of /30 and /31, These new values may be used for recalculating the 
Wi, and the process can be repeated. Williams [1959] suggests that only two 
cycles of iteration are generally required, as great accuracy in the weights is 
not necessary for giving accurate estimates of /30 and /31' Ignoring the fact 
that the estimated Wi are strictly random variables, the variance-covariance 
matrix of the least squares estimates is given approximately by (6.33). By the 
same argument, approximate tests and confidence intervals can be obtained 
using the theory of Section 6.3.1, but with the Wi estimated. For this reason, 
and for computational simplicity, the least squares method is often preferred 
to the maximum likelihood approach. 

EXERCISES 6b 

1. Let Y1, Y2 , ..• , Yn be independent random variables such that for i 
1,2, ... ,n, 

and 
var[YiIX =: Xi] = (12Wi1 (Wi> 0). 

(a) If the conditional distribution of Y given x is the Type III (scaled 
gamma) distribution, 

o < y < 00, p > 0, 
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where ax is a function of x, and wil == x;, prove that the maximum 
likelihood estimate of (31 is also the weighted least squares estimate. 

(b) If the conditional distribution of Y given x is Poisson, and wil = 
Xi, show that the maximum likelihood estimate is just the weighted 
least squares estimate. 

(Thrner [1960]) 

2. Given the model Yi = (3lXi +C:i (i = 1,2, ... ,n), where the C:i are 
independently distributed as N(O, (12Wil), Wi > 0, show how to predict 
Xo for a given value Yo of Y. Describe briefly a method for constructing 
a confidence interval for Xo. 

3. Given the regression line 

(i=1,2, ... ,n), 

where the C:i are independent with E[C:i] = ° and var[c:;] = (12Xr, show 
that weighted least squares estimation is equivalent to ordinary least 
squares estimation for the model 

6.4 COMPARING STRAIGHT LINES 

6.4.1 General Model 

Suppose that we wish to compare K regression lines 

(k = 1,2, ... ,K), 

where E[c:] = 0, and var[c:] (= (12, say) is the same for each line. If we are 
given nk pairs of observations (Xki' Yki ) (i = 1,2, ... , nk) on the kth line, then 
we have the model 

(i = 1,2, ... ,nk), (6.34) 

where the C:ki are independently and identically distributed as N(O, (12). Writ­
ing 



etc., we have Y = X-y + E:, where 

X-y = 

1 
1 

1 

0 
0 

0 

o 
o 

o 

0 
0 

0 

1 
1 

1 

o 
o 

o 

0 
0 

0 

0 
0 

0 

1 
1 

1 

Xu 
X12 

X1n, 

0 
0 

0 

o 
o 

o 
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0 
0 

0 

X21 

X22 

X2n2 

o 
o 

o 

0 
0 

0 

0 
0 

0 

XK1 

XK2 

(3K 

(6.35) 
Here X is an N x 2K matrix of rank 2K, where N = 2:::=1 nk, so that we can 
test any hypothesis of the form H: A -y == c using the general regression theory 
of Chapter 4; examples of three such hypotheses are considered below. With 
a regression software package we do not need to derive any algebraic formulas. 
All we need to do is identify the X matrix corresponding to each hypothesis 
and then compute RSS for that model. However, it is informative to derive 
least squares estimates and residual sums of squares for each hypothesis, and 
such derivations are relegated to Exercises 6c. The following examples can 
also be handled using the analysis of covariance method (Section 8.8). 

EXAMPLE 6.2 (Test for parallelism) Suppose that we wish to test whether 
the K lines are parallel; then our hypothesis is HI: (31 = (32 = ... = (3K (= (3, 
say) or (31 - (3K == (32 --.: (3K == ... = (3K-1 - (3K = 0; in matrix form this is 

o 

1 
o 

o 

o 
1 

o 

o 
o 

o o 

o -1 
o -1 

1 -1 

or A-y = 0, where A is (K - 1) x 2K of rank K - 1. Applying the general 
regression theory with q = K - 1, n = N, and p == 2K, the test statistic for 
HI is 

F = (RSSH, - RSS/(K - 1) 
RSS/(N - 2K) . 

To obtain RSSH, we see that when HI is true, the design matrix, Xl say, is 
obtained by Simply adding together the last K columns of X in (6.35). 0 

EXAMPLE 6.3 (Test for coincidence) To test whether the K lines are co­
incident, we consider H 2 : 01 = 02 = ... = OK (= 0, say) and (31 = (32 = 
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... = (3K (= (3, say). Arguing as in Example 6.2, we see that H2 is of the 
form A'Y = 0, where A is now (2K - 2) x 2K of rank 2K - 2. The F -statistic 
for testing H2 is 

F = (RSSH2 - RSS)/(2K - 2) 
RSS/(N - 2K) . 

(6.36) 

To compute RSSH2 , we note that the design matrix for H 2 , X 2 say, is obtained 
by adding together the first K columns of X and then the last K columns. 

In practice we would probably test for parallelism first and then, if H1 is 
not rejected, test for H2 (given that H1 is true) using 

F = (RSS H2 - RSSHJ/(K -1). 
RSSH1/(N - K - 1) 

If this also is not significant, then we can check this nested procedure using 
(6.36) as a final test statistic. 0 

EXAMPLE 6.4 (Test for concurrence with x-coordinate known) Suppose 
that we wish to test the hypothesis H3 that all the lines meet at a point 
on the y-axis (x = 0), that is, H3: a1 = a2 = ... = aK (= a, say). The 
F -statistic for testing H 3 is then 

F = (RSSHa - RSS)/(K -1) 
RSS/(N - 2K) 

The design matrix for H3 is obtained by adding together the first K columns of 
X. An estimate of a, the y coordinate of the point of concurrence is obtained 
automatically when the model for H3 is fitted. 

If we wish to test whether the lines meet on the line x = e, we simply 
replace Xki by Xki - e in the theory above; we shift the origin from (0,0) to 
(e,O). In this case the y-coordinate of the concurrence point is still given by 
the estimate of a. 0 

EXAMPLE 6.5 (Test for concurrence with x-coordinate unknown) The hy­
pothesis that the lines meet at x = ¢, where ¢ is now unknown, takes the 
form H: ak + f3k¢ = constant for k = 1,2, ... , K, or, eliminating ¢, 

H: a1 - Q = ... = aK - Q. 

(31 - f3 f3K - (3 

Since H is no longer a linear hypothesis, we cannot use the general regression 
theory to derive a test statistic. However, an approximate test is provided by 
Saw [1966]. 0 

6.4.2 Use of Dummy Explanatory Variables 

Suppose that we wish to compare just two regression lines, 

(k = 1,2; i = 1,2, ... ,nk). 
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By introducing the dummy variable d, where 

d _ {1, if the observation comes from the second line, 
- 0, otherwise, 

we can combine these two lines into a single model, namely, 

where 

and 

al + (31Xi + (a2 - al)di + «(32 - (31) (dX)i + Ci 

'Yo + "YIZil + 'Y2 Zi2 + 'Y3 Zi3 + ci, 

d. _ {O, i = 1,2, ... ,nl, 
,- 1, i=nl+1, ... ,nl+n2. 

(6.37) 

We note that the model (6.37) is simply a reparameterization of (6.34) (with 
K = 2); the parameters al, a2, (31, and (32 are now replaced by 'Yo = al, 
'Y1 = (31, 'Y2 = a2 - aI, and 'Y3 = (32 - (31. For this new model, the various 
tests discussed above reduce to the following: 'Y3 = 0 (parallelism), 'Y2 = 0 
(common intercept on the y-axis), and 'Y2 = 'Y3 = 0 (coincidence). In the case 
of three straight lines, we introduce two dummy variables: 

{ 
1, 
0, 

{ 
1, 
0, 

and obtain 

if the observation comes from the second line, 
otherwise; 

if the observation comes from the third line, 
otherwise, 

Yi - al + (31Xi + (a2 - al)dil + (a3 - aI)di2 + «(32 - (31) (dlx)i 

+ «(33 - (31)(d2 X)i + ci 

- 'Yo + 'YIXil + 'Y2 Xi2 + 'Y3 Xi3 + 'Y4 Xi4 + 'Y5 Xi5 + ci, 

say. Further generalizations are straightforward (see, e.g., Gujarati [1970]). 

EXERCISES 6c 

1. Using the notation of Example 6.2, prove that the least squares estimates 
of ak and the common slope (3 (under the null hypothesis of parallelism) 
are given by 

and 
~ = l:k 2:i(Yki - Y k.)(Xki - Xk.) 

l:k l:i(Xki - Xk.)2 
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Prove that 

RSSH, = LL(Yki - Yd2 -!J2 EL(Xki - XkY' 
k i k i 

If iJk is the least squares estimate of /3k under the general model, prove 
that 

2. In Example 6.3 find the least squares estimates of a and /3 when H2 is 
true. 

3. In Example 6.4 derive the following results. 

(a) Show that the least squares estimates of a and /3k> under H 3 , are 
given by 

( N - 2:~~~ii -'" - 2:~~~J a' 

= (y _ Xl· 2:i YiiXli _ ... _ XK· 2:i YKiXKi) 
.. "'2 ",2 

L..Ji Xli L..Ji X K i 

and 

/3
' - 2:i(Yki - a')Xki 
k - 2 2:i X ki 

(k=1,2, ... ,K). 

(b) When the values of X are the same for each line so that nk = nand 
Xki = Xi (k = 1,2, . .. , K), prove that 

, _ (72 2: x~ 
var[a] - K2:( )2' n Xi - X 

and 

Hint: Y .. and iJk are uncorrelated. 

4. The examples in Section 6.4 are all special cases of the following problem. 
Consider the model 
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where Xi is n x Pi of rank Pi (i = 1,2). We want to test the hypothesis 
H that all the elements of {32 are equal (to (3, Le., {32 = Ip2(3)· 

(a) If jj is the least squares estimate of (3 under H, show that 

- 1~2X~(In - PdY 
(3 = 1~2X~(In - P 1 )X2 1p2 ' 

where P l = Xl(X~Xl)-lX~. 

(b) If /32 is the least squares estimate of {32 under G, prove that 

(c) If V G is t.he fitted regression for G, prove that 

V G = P l Y + (In - Pt}X2/32 

and 

Hint: For (a) and (b) apply Theorem 3.6 with Z equal to X 2 and Ip2, 
respectively. For part (c) note that RSSG - RSSH = IIV G - V H112. 

6.5 TWO~PHASE LINEAR REGRESSION 

Multiphase regression models are models that undergo One of more changes 
in their structure. Such models, including nonlinear models, are described in 
detail by Seber and Wild [1989: Chapter 9], and in this section we consider 
just a linear two-phase model. Looking at this simple model will give a good 
idea as to the kinds of problems one might encounter in this topic. Here the 
underlying model is a straight line, but it undergoes a change in slope at some 
point x = 'Y, where the change may be continuous, smooth, or abrupt. Also, 'Y 
may be (1) known, (2) unknown but known to lie between two observed values 
of x, or (3) completely unknown. Assuming that the change is continuous, we 
have the model 

E[Y] = { 

where continuity requires that 

al + (3lx, x < 'Y, 
a2 + (32X, x > 'Y, 

(= B). (6.38) 

For example, x may be an increasing function of time, and at time tc a treat­
ment is applied that may possibly affect the slope of the regression line either 
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immediately or after a time lag. Following Sprent [1961}, we call x = "I the 
changeover point and () the changeover value. 

Known Changeover Point 

Given n1 observations on the first line and n2 on the second, we have, using 
(6.38), 

. Yli - a1+(31xli+cli (i=1,2, ... ,n1), 

Y2i a1 + (31"1 + (32 (X2i - "I) + C2i (i = 1,2, .. . , n2), 

where 

Xu < X12 < ... < x1nl < "I < X21 < X22 < ... < x2n2' 

and "I is known. Writing Y j = (Yj1, Yj2, •.. , Yjn; )', Xj = (Xj1, ... , Xjn;)', and 
Cj = (Cj1, ... ,Cjn;)', for j = 1,2, we have 

or 
Y = X{3 + E:, 

where X is (n1 + n2) x 3 of rank 3. Given a value of "I, we can use a re­
gression software package to find the least squares estimate (:J = (0:1, /31, /32)' 
and (X'X)-1. Assuming that E: "" Nnl+n2(O,o-2In)' we can apply several 
inferential procedures. For example, to estimate () we can use 

{j = 0:1 +"1/31 = (l,'Y,O)(:J (= a'(:J, say), 

and we can construct a t-confidence interval for a' {3 in the usual manner (ef. 
(4.17)]. 

IT we want to test H : "I = c, where c lies between a pair of x values, 
say x n1 < c < X21, then testing H is equivalent to testing whether two lines 
Concur at x = c. This can be done using Example 6.4. 

Unknown Changeover Point 

In practice the changeover point "I will be unknown. Suppose, however, 
it is known that x1nl < "I < X21i then "I can be estimated by (cf. equation 
(6.38)] 

where O:k and /3k are the usual least squares estimates for the kth line (k = 
1,2). Since l' is the ratio of two correlated normal variables, we can use 
Fieller's method for finding a confidence interval for "I as follows. Consider 
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U = (&1 - &2) + 'Y(~l - ~2). Then E[U] = 0 and from (6.6) in Section 6.1.3 
with Xo = 'Y, we have 

var[U] 

2 
- (j W, . 

say. 
Arguing as in Section 6.1.2, a 100(1- a)% confidence interval for 'Y is given 

by the roots of 

where 52 = RSS/(n - 4) and n = nl + n2. 
If l' does not lie in the interval (Xln" x2d, then the experimenter must 

decide whether to attribute this to sampling errors (and the confidence interval 
for 'Y will shed some light on this) or to an incorrect assumption about the 
position of 'Y. When the position of'Y is unknown, the problem becomes much 
more difficult, as it is now nonlinear. In this case the two-phase model can be 
written in the form (Hinkley [1971]) 

y; _ { () + /31 (Xi - 'Y) + ti, 
.- (}+/32(Xi-'Y)+ti, 

(i = 1, 2, ... , K-), 
(i=K-+1, ... ,n), 

where Xl < ... < XI< < 'Y < XI<+l < ... < X n , () is the changeover value, 
and K- is now unknown and has to be estimated. Hinkley summarizes the 
maximum likelihood estimation procedure for estimating 'Y, (), /31, /32, and K-: 

This is descdbed in detail in Hudson [1966] and Hinkley [1969b]. Hinkley also 
provides approximate large sample confidence intervals for the parameters and 
gives large sample tests for the hypotheses /31 = /32 (no change in slope) and 
/32 = o. Another approach to testing /31 = /32 is given by Farley and Hinich 
[1970]. We note that Hudson's technique was generalized by Williams [1970] 
to the case of three-phase linear regression. For a general discussion of the 
problem, see Seber and Wild [1989: Section 9.3]. Instead of changing slope 
abruptly from one straight line to the next, the transition can be modeled 
smoothly. Methods for doing this are described by Seber and Wild [1989: 
Section 9.4]. 
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6.6 LOCAL LINEAR REGRESSION 

A wide range of methods are available for fitting a nonlinear curve to a scatter 
plot. One of the conceptually simplest methods is to fit a series of straight-line 
segments, thus giving a piecewise linear regression reminiscent of multiphase 
linear regression. In fitting a straight-line segment at a target point, xo, 
say, it is clear that data points close to Xo should carry more weight than 
those farther away. One method of doing this is to use lowess, developed 
by Cleveland [1979] and implemented in S-PLUS as the function lowess. 
The name lowess, which stands for "locally weighted scatterplot smoother", 
is essentially a robust version of a locally weighted regression in which a 
local regression model such as a polynomial is fitted at each point. If the-. 
underlying model is Y = f(x) + c:, the linear version of lowess (the default 
for lowess) consists of carrying out a weighted least squares by minimizing 
2:~W(XO,Xi)(Yi - (30 - f3lXi)2 with respect to (30 and (31. Although we use 
all the data to fit the line, we use only the fitted line to evaluate the fit at 
the single point Xo, namely, j(xo) = /10 + /1lXO = (1, xo)/:J. If W is the 
diagonal matrix with ith di"agonal element w(xo, Xi) and X= (In' x), where 
x = (Xl, ... ,Xn )', we have from Section 3.10 that 

j(xo) (1, Xo)' (X'WX)-lX'WY 
n 

L li(xo)Yi , 
i=l 

say. Then, using a Taylor expansion for f(Xi) (Hastie et al. [2001: p. 170]), 
we get 

E[j(xo)] 
i=l 

n n 

f(xo) L li(XO) + f' (xo) 2:)Xi - xo)li(xo) + R 
i=l i=l 

f(xo) + R, 

by the following lemma. Here the remainder term R involves second and 
higher-order derivatives of f and is typically small under suitable smoothness 
assumptions, so that E[j(xo)] ~ f(xo). 

LEMMA 

n 

L1i(xo) = 1 and Lli(XO)(Xi - xo) - o. 
i=l i=l 
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Proof. Taking expected values of the two expressions for j(xo) yields 

n 

L li(xo)(l, Xi),8 (1, xo)(X'WX)-1X'WX,8 

(1, xo),8 
i=1 

for all ,8 and all Xo. Setting {30 = 1 and (31 = 0 in the equation above we get 
L:~ li(XO) = 1. Also, setting {30 = 0, (31 = 1 and replacing x by x - xo, we 
have 

n 

L li(XO)(Xi - xo) = (1, Xo - xo)(O, I)' = O. o 
i=d 

In applying this theory, we need to choose an appropriate weight function. 
Typically, we set w(Xo, x.) = K,,(xo - xd, where K is a kernel function and oX 

is an appropriate scale constant. A more general version of lowess (Cleveland 
and Devlin [1988]) is loess, which is also implemented in S-PLUS and can 
incorporate several regressors. For further details, see, for example, Hastie 
and Loader [1993] and Hastie et al. [2001]. 

MISCELLANEOUS EXERCISES 6 

1. Let F = ~i L:i (Xi - X )2/82, the F -statistic for testing H : {31 = 0 for a 
straight line. Using the notation of Section 6.1.5, prove that 

_ _ F (_ _) 
Xo - x = F + (n _ 2) Xo - x . 

(Hoadley [1970]) 

2. Derive an P-statistic for testing the hypothesis that two straight lines 
intersect at the point (a, b). 

3. Obtain an estimate and a confidence interval for the horizontal distance 
between two parallel lines. 

4. Show how to transform the following equation into a straight line so 
that a and {3 can be estimated by least squares: 

a{3 
Y = a sin2 () + {3 cos2 (). 

(Williams [1959: p. 19]) 





7 
Polynomial Regression 

7.1 POLYNOMIALS IN ONE VARIABLE 

7.1.1 Problem of III-Conditioning 

When faced with a well-behaved curved trend in a scatter plot a statistician 
would be tempted to try and fit a low-degree polynomial. Technical sup­
port for this decision comes from the Weierstrass approximation theorem (see 
Davis [1975: Chapter VI]), which implies that any continuous function on a 
finite interval can be approximated arbitrarily closely by a polynomial. This 
amounts to lumping any remainder terms from a Taylor series expansion of 
the unknown model function into the error term. Although the approxima­
tion can be improved by increasing the order of the polynomial, the cost is an 
increase in the number of unknown parameters and some oscillation between 
data points. However, another problem arises when fitting a high-degree poly­
nomial, which we now discuss. 

If we set Xij = x{ and k = p - 1 « n - 1) in the general multiple linear 
regressio~ model, we have the kth-degree [(k + l)th-orderJ polynomial model 

(i=1,2, ... ,n). (7.1) 

Although it is theoretically possible to fit a polynomial of degree up to n -1, a 
number of practical difficulties arise when k is large. First, for k greater than 
about 6, we find that the regression matrix X associated with (7.1) becomes 
ill-conditioned (Section 11.4). For example, assuming that Xi is distributed 

165 
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approximately uniformly on [0,1], then for large n we have (Forsythe [1957]) 

(X'X)rs 

n 
(7.2) 

Hence X'X is something like n times the matrix [1/(r + S + 1)], Cr, s = 
0,1, ... , k), which is the (k + 1) x (k + 1) principal minor of the Hilbert matrix 

1 1 1 
2" 3 

1 1 1 

H= 2" 3 4" 
1 1 1 
3 4" :5 

It is well known that H is very ill-conditioned (Todd [1954, 1961]); for exam­
ple, when k = 9, the inverse of H 10, the 10 x 10 principal minor of H, has 
elements of magnitude 3 x 1010 (Savage and Lukacs [1954]). Thus a small 
error of 10-10 in one element of X'Y will lead to an error of about 3 in an 
element of l:J = (X'X)-lX'Y. 

Two things can done to help overcome this ill-conditioning and the insta­
bility in the computations. The first is to "normalize" the Xi so that they run 
from -1 to +1. The normalized x is given by 

, 2x - max(xi) - min(xi) 
x == . 

max(xi) - min(xi) 

The second is to use orthogonal polynomials, which we now discuss. 

7.1.2 Using Orthogonal Polynomials 

General Statistical Properties 

Consider the model 

where ¢r(Xi) is an rth-degree polynomial in Xi (r == 0,1, ... , k), and the 
polynomials are orthogonal over the x-set: namely, 

n 

E ¢r(Xi)¢s(Xi) = 0 (all r,s,r =I- s). (7.3) 
i=l 
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Then Y = X-y + e, where 

X= 

has mutually orthogonal columns, and 

X'X= 

o o 

Hence, from i' = (X'X)-lX'Y, we have 

¢k(Xl) 
¢k(X2) 

¢k(Xn ) 

o 
o 

(r=O,1, ... ,k), (7.4) 

which holds for all k. The orthogonal structure of X implies that the least 
squares estimate of 'Yr (r < k) is independent of the degree k of the polynomial 
(cf. Section 3.6)-a very desirable property. Since ¢O(Xi) is a polynomial of 
degree zero, we can set ¢o(x) = 1 and obtain 

The residual sum of squares is then 

RSSk+1 - (Y - Xi')'(Y - Xi') 
- Y'Y - i"X'Xi' 

- ~Y/ - t [~¢;(Xi)] i'~ 
2. r=O? 

- ~(Yi - y)2 - t [~¢; (Xi)] i'~. (7.5) 
1. r=l 1. 

If we wish to test H : 'Yk = 0 [which is equivalent to testing f3k = 0 in equation 
(7.1)], then the residual sum of squares for the model H is 

RSSk t(Yi - y)2 - ~ [~¢;(Xi)] i'~ 

- RSSk+l + [~¢~(Xi)] i'~, (7.6) 
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and the appropriate F-statistic is 

F = 
RSSk - RSSk+l 

RSSk+l/(n - k - 1) 

L:i ¢% (Xi )1% 
RSSk+d(n - k - 1)' 

The question arises as to how we choose the degree, K say, of our polynomial. 
We note from (7.6) that RSSk+l, the residual sum of squares for a polynomial 
of degree k, decreases as k increases. Ideally, RSSk+l decreases consistently at 
first and then levels off to a fairly constant value, at which stage it is usually 
clear when to stop (see, e.g., Hayes [1970: Section 8, Example AD. In cases 
of doubt, we can test for significance the coefficient of the last polynomial 
added to the model; this is the forward selection procedure procedure with a 
predetermined order for the regressors (although it is used only at an appro­
priate stage of the fitting, not necessarily right from the beginning). However, 
th,is test procedure should be used cautiously because it may lead to stopping 
prematurely. For example, we have the possibility that RSSk+l may level off 
for awhile before decreasing again. To safeguard against these contingencies, 
it is preferable to go several steps beyond the first insignificant term, and then 
look carefully at RSS. 

Another test procedure that can be used is the backward elimination pro­
cedure. In this case the maximum degree that will be fitted is determined 
in advance and then the highest-degree terms are eliminated one at a time 
using the F-test; the process stops when there is a significant F-statistic. 
The procedure is more efficient than forward selection, and it is suggested 
that the best significance level to use at each step is Q ::::: 0.10 (Kennedy and 
Bancroft [1971: p. 1281)). However, there remains the problem of deciding 
the maximum degree to be fitted. Unfortunately, the forward and backward 
procedures do not necessarily lead to the same answer. These procedures are 
discussed in more detail in Section 12.4. 

Generating Orthogonal Polynomials 

Orthogonal polynomials can be obtained in a number of ways. Following 
Forsythe [1957], a pioneer in the field, Hayes [1974J suggested using ~he three­
term recurrence relationship 

(7.7) 

beginning with initial polynomials 

¢o(X) = 1 and 

Here X is normalized so that -1 < x < +1, and the ar+l and br are chosen 
to make the orthogonal relations (7.3) hold, namely, 

L:~=l Xi¢; (Xi) 
ar+l =""n 2 ( .) 

,Ld=l ¢r X, 
(7.8) 
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and 

(7.9) 

where r = 0,1,2, ... , k-1, bo = 0, and a1 = x. (Forsythe used the range -2 to 
+2 and the factor unity instead of the factor 2 given in equation (7.7). These 
two differences in detail are essentially compensatory, for there is an arbitrary 
constant factor associated with each orthogonal polynomial; cf. Hayes [1969].) 
We note that the method of generating the ¢;r is similar to Gram-Schmidt 
orthogonalization, with the difference that only the preceding two polynomials 
are involved at each stage. A computer program based on Forsythe's method 
is given by Cooper [1968, 1971a,b]. Each ¢;r(x) can be represented in the 
computer by its values at the (normalized) points Xi or by its a's and b's. 
However, Clenshaw [1960] has given a useful modification of the method above 
in which each ¢;r (x) is represented by the coefficients {cJrl } in its Chebyshev 
series form, namely, . 

(7.10) 

where 
Tr+1(x) = 2xTr(x) - Tr- 1(x) (r = 1,2, ... ), 

starting with To(x) = 1 and T1 (x) = x. The recurrence (7.7) is now carried out 
in terms of the coefficients {c}rl}, and the fitted polynomial can be expressed 
in terms of Chebyshev polynomials, namely, 

y h(x) 

~d~klTo(x)+ d~klT1(X) + ... + dkklTk(x), (7.11) 

say. The appropriate recurrence relationships for carrying out these compu­
tations are [by substituting (7.10) in (7.7)) 

(7.12) 

and by substituting (7.10) and (7.11) in the equation 

we get 

d(r-1) + A (r) 
j 'YrCj (7.13) 

where j = 0,1, ... ,r + 1 and c;r) = dJr) = ° for j > r. 
Although the modification above takes about two to three times as long 

as Forsythe's method, the computing time is generally small in either case. 
Therefore, because time is not generally the decisive factor, the modification 
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is recommended by Clenshaw and Hayes [1965: p. 168] as it presents a con­
venient output in concise form. The c;rl, for example, carry more information 
than the ar and br • Hayes (1969) also shows that the recurrence relation (7.7) 
can operate entirely in terms of the coefficients c;rl and certain of the quan­
tities 2::i ¢Jr(xi)Ts(Xi). If these numbers are stored, then we need not store 
either the Xi or the ¢Jr(Xi). Another useful feature of Clenshaw's modification, 
pointed out by Hayes [1970: p. 52], is that the coefficients c;kl (for increasing 
j and fixed k) behave in a very similar manner to RSS k (for increasing k)j 
they decrease steadily, except possibly at the start and then settle down to 
constant values. This feature, illustrated by Examples A and B in Section 8 
of Hayes [1970], provides additional "evidence" for determining the degree of 
the polynomial fit. 

When the coefficients d~kl in (7.11) have been computed, j can be evaluated 
at any desired value of X by a procedure given by Clenshaw [1955]. In this 
we first compute the auxiliary numbers 9k,9k-l, .. ' ,90 from the recurrence 
relation 

.9i = 2X9i+l - 9i+2 + d~kl 

starting with 9k+l = 9k+2 = O. The required value of j is then given by 

(7.14) 

An error analysis of Clenshaw's modification is given by Clenshaw and 
Hayes [1965: p. 169]. In particular, they give a method for estimating the 
numerical error in each 'Yjj this error can then be used to deduce an error 
estimate for djr) in equation (7.11), using (7.13) and the computed values of 

(rl cj . 

Equally Spaced x-Values 

Suppose that the x-values are equally spaced so that they can be trans­
formed to 

Xi = i - ~(n + 1) (i = 1,2, ... ,n). (7.15) 

Then we have the following system of orthogonal polynomials (generally as­
cribed to Chebyshev): 

¢Jo(x) 

¢Jl (x) 

¢J2(X) 

¢J3 (x) 

¢J4 (x) 

1 

AI X 

A2 (x 2 - 112(n2 -1)) 

A3 (x3 
- 2

1
0 (3n 2 -7)X) 

A4 (x4 - 114 (3n 2 - 13)x + 5~0 (n2 - 1)(n2 - 9») , etc., 

where the Ar are chosen so that the values ¢Jr(Xi) are all positive and negative 
integers. These polynomials are tabulated extensively in Pearson and Hartley 
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[1970] for n = 1(1)52 and r = 1(1)6 (r < n - 1); a section of their table is 
given in Table 7.1. 

To illustrate the use of this table, suppose that n = 3. Then Xi = -1,0, I, 
4;o(x) = I, (h(x) = A1X = X, (/J2(x) = A2(X - ~) = 3x2 - 2 and the fitted 
polynomial is 

where 

Y, 

"Ei:4;~i~;~~ = H(-I)Y1 + (0)Y2 + (I)Ys} = ~(Ys -- Y1 ), 

and 
A 1 /32 = ij(Yi - 2Y2 + Ys). 

Also, the residual sum of squares is given by [equation (7.5)] 

i=1 i i 

The theory of this section and the tables can be used for fitting poly­
nomials up to degree 6. However, its main application is in the theory of 
experimental design, where various sums of squares are sometimes split into 
linear, quadratic, etc. components. A simple method for generating the or­
thogonal polynomials iteratively when x = 0, I, ... , n - I, due to Fisher and 
Yates [1957], is described by Jennrich and Sampson [1971]. 

Table 7.1 Values of the orthogonal polynomials, 4;r(x), for the equally spaced x-data 
of equation (7.15) 

n=3 n=4 n=5 
(h ifJ2 4;1 ifJ2 ifJs 4;1 4;2 4;s 4;4 
-1 1 -3 1 -1 -2 2 -1 1 

0 -2 -1 -1 3 -1 -1 2 ~4 

1 1 1 -1 -3 0 -2 0 6 

3 1 1 1 -1 -2 -4 

2 2 1 1 

"E~ ifJ~ (Xi) 2 6 20 4 20 10 14 10 70 

Ar 1 3 2 1 10 1 1 

* 
S5 

R 12 
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Application of Constraints 

A possible requirement in curve fitting is for the fitting function f (x), and 
possibly its derivatives also, to take specified values at certain values of x. 
For example, the function may be required to pass through the origin or to 
join smoothly onto a straight line at some point, or we may wish to fit the 
data in two adjoining ranges separately, forcing continuity up to some order of 
derivative at the joint. For examples, see Clenshaw and Hayes [1965], Payne 
[1970J and Hayes [1974J. If the polynomial is constrained to be nonnegative, 
nondecreasing, or convex, then the quadratic programming type method of 
Hudson [1969J can be used for fitting the polynomial. 

7.1.3 Controlled Calibration 

Suppose that we have fitted a polynomial calibration curve (see Section 6.1.5) 

x'iJ , 

say. We observe a value of Y, Y. say, and we want to predict the corresponding 
value of x, say~. If x( = (1,~, e, .. . , ~k), then an estimate of ~ is found by 

solving Y. = x(iJ for~. The solution will be unique if the polynomial is 
monotonic in the region of interest. To construct a confidence interval we can 
proceed as in Section 5.3.1 and consider the distribution of Y. - "f{, where 
Y{ = x(iJ. Fr0n: (5.26) this is N(O, (72[1 + v{]), where v{ = X~(X'X)-lX~. 
Then 

Y. -"f{ 
T = S '01'1 + v{ '" tn-k-l 

and a 100(1 - a)% confidence interval for ~ is the set of all ~ satisfying 

Brown [1993: pp. 47-88J shows that this interval is essentially a profile like­
lihood interval and generalizes the result to replicated data. He also extends 
the theory to orthogonal polynomials. 

7.2 PIECEWISE POLYNOMIAL FITTING 

7.2.1 Unsatisfactory Fit 

Sometimes a polynomial fit is unsatisfactory even when orthogonal polynomi­
als up to, say, degree 20 are fitted. This lack of fit is usually revealed in several 
ways. One symptom is the failure of RSSk to settle down to a constant value 
as k increases; the residual sum of squares may, for example, just continue to 
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decrease slowly. Another symptom is the behavior of the residuals: a resid­
ual plot (see Chapter 10) of ri = Y.: -. Yi versus Xi will continue to exhibit a 
systematic pattern instead of a random one (see, e.g., Hayes [1970: Section 8, 
Example EJ). In the worst cases there will be waves in the fitted curve which 
eventually become oscillations between adjacent data points, usually near the 
ends of the range. These difficulties most frequently arise when the behav­
ior of the underlying function is very different in one part of the range from 
another. It may, for example, be varying rapidly in one region and varying 
slowly in another. 

An alternative approach to the problem is to divide up the range of X into 
segments and fit a low-degree polynomial in each segment (e.g., Seber and 
Wild [1989: Section 9.3.3]. There are several ways of doing this, and the most 
useful method employs the theory of spline functions pioneered by Schoenberg 
[1946]. 

7.2.2 Spline Functions 

The method of splines consists of dividing up the range of x into segments 
with join points called knots. A polynomial of a fixed degree is then fitted 
to each segment with constraints applied to ensure appropriate continuity at 
the knots. Questions arise as to the number and placement of the knots, the 
degree of the polynomial, and the appropriate continuity constraints. The 
term spline is borrowed from a mechanical device that was used to draw cross 
sections of ships' hulls. The mechanical spline was a flexible piece of wood 
which was forced to pass through certain fixed points and otherwise allowed 
to find its natural position. 

More formally, we define the spline function s (x) of order M (degree M -1), 
with knots 6,6"",~K (where 6 < 6 < ... < ~K) and having domain 
[a,b] (-00 < a < 6,~K < b < 00), to be a function with the following 
properties: 

1. In each of the intervals 

a<x<6, ~j_l<x<~j(j=2,3, ... ,K), and ~K<x<b, 

s(x) is a polynomial of degree M - 1 at most. 

2. s(x) and its derivatives up to order (M - 2) are continuous. (When a 
and b are finite, which is the usual case in practice, some authors call 
~o = a and ~K+l = b knots also, a convention that we shall adopt.) 

We usually refer to the splines described above as regression splines. 
The cubic spline (M = 4) is a satisfactory function for fitting data in most 

situations, and second-derivative continuity is usually adequate for most prac­
tical problems. Apparently, cubic splines are claimed to be the lowest-order 
spline for which knot discontinuity, (in this case third order discontinuity), is 
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not visible to the t.uT£lan eye (Has-d.e et al. [2001: p. 120]). In cubic splines 
there are four pa!"am.eters for each cubic and three constraints at each knot, 
thus giving 4(K + 1) - 3K = K + 4 free parameters to be estimated. 

Unfortunately, a restricted least squares approach using the constraints at 
the knots is cumbersome, and more parameters need to be estimated than 
the "minimum" K + 4. However, any cubic spline with knots ej has a unique 
representation in the form 

where 

3 K 

sex) = L ahxh + L,Bj(x - ej)~, 
h=O j=1 

u+ = max(O, u) = { ~: u > 0, 
u < O. 

(7.16) 

This representation contains K + 4 basis functions (four power terms and K 
one-sided cubics), the smallest number by which the general cubic spline with 
K knots can be represented. We can reduce the number of parameters from 
K +4 to K by constraining second- and third-order derivatives to be zero at eo 
and eK+1, thus forcing the spline to be linear on [eO, 6] and [eK,eK+1]' This 
allows four more knots to be used. The modified spline is called a natural 
cubic spline and the additional constraints are called the natural boundary 
conditions. 

The truncated power series approach of (7.16) has a certain algebraic sim­
plicity, but computationally it has some problems. For example, each cubic 
term is evaluated at all points to the right of its knot, and the buildup of 
powers of large numbers leads to the ill-conditioning alluded to at the be­
ginning of this chapter. Equation (7.16) is therefore not recommended for 
computational use. 

Instead of using the truncated power series basis, a better approach com­
putationally is to use the B-spline basis. This is defined for any order, and 
the reader is referred to the texts of de Boor [1978], Schumaker [1981] and 
Diercx [1993] for the underlying theory. However, we shall follow Eilers and 
Marx [1996: pp. 90-91] and provide a gentle approach to the topic. 

An Mth-order basis spline is an (M - l)th-degree piecewise polynomial 
which is positive in the interior of a domain of M intervals spanned by M + 1 
consecutive knots, and zero elsewhere. It is made up of M pieces, one spanning 
each of the M intervals. To generate the basis, we start the first spline M - 1 
(artificially created) intervals to the left of the lower boundary point eo so 
that the "important" part of the function, that is, the part actually between 
the boundary points, is positive on (eo,6). The second basis spline is then 
defined on a similar range but shifted one interval to the right. We keep 
shifting one interval to the right until we get the last spline, which is positive 
on (eK, eK+1) and extends for M - 1 artificially created intervals to the right 
of the upper boundary point eK+1. To define the complete basis, we therefore 
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need to introduce M - 1 additional knots ~-(M-l)" .. , ~i-2' ~-1 at the lower 
end and M - 1 knots ~K+2' ~K+3, ... , ~K+M at the upper end. These must 
satisfy 

~-(M-l) < ... < ~-1 < ~o and 

Notationally, it is convenient to relabel the knots as THM = ~j for j 
-(M -1), ... ,0, ... , K +M, so that we have knots Tl, ... , TK+2M. For m < M 
we can define the family of B-splines (sometimes called fundamental splines) 
as 

(j = l,2, ... ,K+M), 

where Bj,m(x), termed the jth basis function of order m, is positive in the 
interval (Tj, THm) and has a single local maximum. Although the divided 
difference formula above is complicated, there is a recursive relationship which 
is convenient for computation, namely (de Boor [1978]), 

B j ,I(X) = { 1, 
0, 

for j = 1,2, ... , K + 2M - 1 and 

Tj < X < Tj+l, 

otherwise, 

(7.17) 

for j = 1,2, ... , K + 2M - m. For a given m, it can be shown that the basis 
above spans the space of piecewise polynomials of order m. Thus if sex) is a 
piecewise polynomial of order m, we can write 

K+m 

sex) = L 'YjBj,m(x) (7.18) 
j=1 

for some 'Yj. 
When 1vf = 4, the functions B j ,4(X) (j = 1,2, ... , K + 4) are the K + 4 

cubic B-spline basis functions for the knot sequence e = (6,.·., ~K)" We 
can use the recursive formulae to generate the B-spline basis for any order 
spline. 

One unanswered question is the choice of the extra knots. We recall that the 
Mth-order spline has (M - 2)th-order continuity at the knots e. For example, 
a cubic spline basis has continuous first- and second-order derivatives but a 
discontinuous third-order derivative at an interior knot. If we duplicate an 
interior knot, it transpires that the resulting basis still spans the space of 
piecewise polynomials but with one less continuous derivative at the knot. If 
we repeat that knot three times, then we have two fewer continuous derivatives 
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there. For example, if the spline is cubic, repeating ej three times means that 
the first derivative is discontinuous at ej; repeating it four times means that 
the spline itself is discontinuous at ej. Thus for an Mth-order spline, repeating 
an interior knot M times means that there is a discontinuity at the knot. We 
can now answer our question about the extra knots. By making the M - 1 
knots outside each boundary point the same as the boundary point, we make 
the spline discontinuous at the boundary points and thus undefined beyond 
the boundaries. We note that some care is needed in the interpretation of the 
recursive formulas above when knots are duplicated. Any term with a zero 
denominator is set equal to zero. Some nice figures graphing the spline basis 
functions for M = 1,2,3,4 are given by Hastie et al. [2001: p. 162]. 

We shall now briefly discuss the process of fitting the spline to the data 
(Xi, Yi), i = 1,2, ... , n. The model (7.18) is linear in the unknown parameters 
'"ti, so we can fit the usual linear model (without an intercept) using the values 
of Bj,m(Xi) and obtain the squares estimates of these parameters. The fact 
that each spline has local support, being only nonzero over M intervals, means 
that there are a lot of zeros in the design matrix X, which has a band-like 
structure. 

The question of the number and placing of the knots needs to be considered, 
and Wold [1974] makes the following useful recommendations. Knots should 
be located at data points and should be a few as possible with at least four 
or five data points between each knot. No more than one extremum and one 
inflection should fall between knots (as a cubic cannot approximate more vari­
ations), with extrema centered in the intervals and the inflections lcicated near 
the knots. Eubank [1984] gives a number of test procedures and diagnostics 
for assessing the appropriateness of the knot selection. The S-PLUS func­
tion bs (x, degree=m-1, knots=c (0.1, 0.2, ... )), with K specified inte­
rior knots 0.1, 0.2, etc. computes the values of the K + m 8-spline basis 
functions of degree m - 1, and returns the n x (K + m) design matrix; if 
the degree is not mentioned, the default is m - 1 = 3. Alternatively, we can 
specify df instead of knots, which places df - m knots uniformly along the 
range of x. The design matrix is then n x df. In both situations one can 
also choose whether or not to include an intercept. The function nO does a 
similar thing with natural splines. 

7.2.3 Smoothing Splines 

We now discuss a spline basis method that avoids the problem of knot selection 
completely by using a "maximal" set of knots. If we wanted to fit a smooth 
function f to the data (Xi, Yi) (i = 1, ... , n), we could use the least squares 
criterion of minimizing RSS(f) = 2:~=1 [Yi - f(Xi)J2 to get the best-fitting 
function. However, if we choose our function as one that passes through each 
data point [i.e., f(Xi) = Yi for all i], then RSS(f) will be zero. Such a function 
with this property is called an interpolating junction, as it interpolates the 
points (Xi, Yi). The simplest such f could be obtained simply by joining up 
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consecutive points with straight lines. Unfortunately, this piecewise linear 
graph would not be smooth, as its derivatives do not exist at each point. 
Alternatively, we could use a piecewise polynomial and impose the condition 
oftwo continuous derivatives at each point; this would give a smoother-looking 
graph with curves between consecutive points. Unfortunately f could end 
up looking quite "wiggly" or rough between consecutive points. What we 
would like to do is impose a penalty function that measures the degree of 
roughness. Since we would not want our measure to be affected by the addition 
of a constant or a linear function, we could utilize the second derivative f". 
Although various measures of the magnitude of f" could be considered, a very 
useful one is the global measure J: {f"(X))2 dx. Combining the two ideas of 
least squares and roughness leads to the criterion of finding f which minimizes 

n b 

RSS(f,.:\) = L[Yi - f(Xi)J2 +.:\ 1 [J"(t)]2 dt, 
i=l a 

(7.19) 

the penalized residual sum of squares. The first term, which some authors 
(e.g., Eubank [1999]) divide by n, measures closeness of fit, while the second 
term penalizes curvature, with a fixed smoothing parameter .:\ providing a 
trade-off between the two criteria. If.:\ = 0, then f is any interpolating 
function, while if .:\ = 00, there is no second derivative and we get the least 
squares fit of a straight line. As .:\ ranges between 0 and 00, f can vary from 
very rough to very smooth. 

We note that (7.19) can also be motivated by approximating the remainder 
from a Taylor series expansion of I(x) (Eubank [1999: p. 228-229]) or using 
a Bayes regression approach (cf. Eubank [1999: Section 5.6]). 

Suppose that f is any curve with two continuous derivatives, and let g 
be any natural cubic spline that interpolates the n points (Xi, f(Xi)). Then 
g(Xi) = f(Xi) for all i, so that the first term of (7.19) is the same for both func­
tions. However, it can be shown that (Green and Silverman [1994: Chapter 
2]) 

lb [g(X)J2 dx < lb [J(xW dx 

with strict inequality if f is not a natural cubic spline. Thus if f is any twice­
differentiable function we can always find a natural cubic spline which has a 
smaller RSS(f, .:\). This means that when minimizing RSS(f, .:\), we only need 
to consider natural cubic splines with knots at each of the Xi. Although we 
seem to have too many knots, particularly when n is large and the points are 
close together, the penalty on the spline coefficients has a "linearizing" effect 
on the spline, so that some of the powers of the polynomials are reduced. 
Since f(x) is a natural spline, we find that we can write 

n 

f(x) = :E (hNk(X), 
k=l 
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where the Nk (x) are n basis functions for the family of natural splines. Setting 

{N}ik = Nk(Xi) and {V N hk = J: Nj' (x)Nf.' (x) dx, we see that (7.19) reduces 
to 

RSS(j, A) = (y - NO)'(y - NO) + AO'V NO. (7.20) 

Differentiating (7.20) with respect to 0 and using A.8, we obtain 

-2N'y + 2N'NO + 2A V NO == 0, 

which has solution 

(7.21) 

which is a form of ridge regression (see Section 10.7.3). 
Following the discussion in Hastie et al. [2001: p. 163], we note that in 

practice, it is computationally more convenient not to use natural splines but 
rather to use the larger space of unconstrained B-splines. Writing 

n 

f(x) = :E "fjBj(x), 
j=l 

the solution looks like (7.21), namely, 

i' == (B'B + AV B)-lB'y, 

except that the n x n matrix N is replaced by the (n + 4) x n matrix B, and 
the (n + 4) x (n + 4) penalty matrix VB replaces the n x n matrix V N. It 
turns out that, rather conveniently, the penalty term automatically imposes 
boundary derivative constraints. When n is large, it is not necessary to use 
all n interior knots and any suitable thinning strategy will work just as well. 
For example, the S-PLUS function smooth. spline uses an approximately 
logarithmic strategy, so that if n < 50, all the knots are used, while if n = 
5000, only 204 knots are used. 

Determining the Smoothing Parameter 

We shall now consider methods for finding A, using either a subjective 
estimate or an estimate computed automatically. It transpires that A controls 
the trade-off between the bias and the variance of the fitted function fA: 
the larger the value of A, the smoother the curve (with a resulting smaller 
variance) and the larger the bias. If Y ::::: (i>.(Xl), ... ,j)..(xn ))', then from 
(7.21) we have 

S)..Y, (7.22) 

where the n x n positive-definite matrix S).. is known as the smoother matrix. 
This matrix is analogous to the projection (hat) matrix P == X(X'X)-l X 
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arising from Y = xiJ = PY. As SA connects Y to Y, it is also referred 
to as a hat matrix. Since the trace of P equals p, being both the number of 
parameters in the linear model E[Y] = X{3 and essentially the "degrees of 
freedom," we can define in an analogous fashion, 

dfA = tr(SA), 

as the effective degrees of freedom of the smoothing spline. A related quantity 
is EDF = n- dfA which has been described as the equivalent degrees of freedom 
for noise. 

Several other criteria have been proposed for dfA, such as tr(SAS>J and 
tr(2SA - SAS~). However, as noted by Hastie et al. [2001: p. 130], tr(SA) 
has a number of conceptual advantages as well as being simple and easy to 
compute. By trying several values of dfA and using various diagnostics, we 
can arrive at a particular value and then back-solve numerically to get the 
corresponding value of.>... A value of dfA equal to 4 or 5 is often used as the 
default in software. The appropriate function for fitting a smoothing spline 
in S-PLUS is smooth. spline. 

To compute A automatically, several criteria are available. For example, 
we have the popular cross-validation method, which finds ACV to minimize 
the cross-validation sum of squares 

where f1 -i) is the fitted value at Xi computed by leaving out the ith data 
point. If Sii,A is the ith diagonal element of SA' then Craven and Wahba 
[1979] (see also Green and Silverman [1994: p. 32]) proved that 

~/. _ fA( -i) ( .) _ Yi - fA (Xi) L' A· X, - 1 ' 
- Sii,A 

so that 

Previously, i1 variant of CV A was used called the generalized cross-validation 
(GCV A)' in which Sii,A is replaced by the average value tr(SA) In. Generally, 
GCV A is closely related to CV A (Eubank [1999: p. 43]), although GCV A tends 
to lead to undersmoothing with small sample sizes. 

Estimating q 

There is one parameter we have not considered thus far, namely, q. Given 
a value of .>.., a natural estimate of q2 is 
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Green and Silverman [1994: Section 3.4] review the topic of estimating (72 and 
compare a-~ (using df>. = tr[S>.D with two other estimates based on first and 
second differences of the data. They note that the former has a substantially 
smaller asymptotic mean-squared error. 

Use of Weights 

The theory above can be generalized to allow for weighted smoothing; we 
simply use 2::i wdYi - f(XiW in (7.19). For example, if we have repeated data 
with Xi repeated ni times, we can use Wi = ni' Green and Silverman [1994: 
Section 3.5] show that the theory goes through in a similar fashion using the 
weighted sum of squares. 

In concluding this section we note that there are many other kinds of 
splines such as v-splines, P-splines, Q-splines, exponential splines, subsplines, 
additive splines, ANOVA splines, hybrid and partial splines, tensor prod­
uct splines, and thin plate splines! In addition to smoothing using splines, 
there are other families of smoothing methods such as kernel, near neighbor 
and wavelet smoothers. All these topics might be described under a general 
heading of nonparametric regression, for which there is a very extensive litera­
ture: for example, general methods (Simonoff [1995], Eubank [1999], Schimek 
[2000], and some chapters in Hastie et al. [2001]), local polynomial smoothing 
(Fan and Gjibels [1996]), kernel smoothing (HardIe [1990], Wand and Jones 
[1995]), and spline smoothing (Wahba [1990], Green and Silverman [1994]). 

7.3 POLYNOMIAL REGRESSION IN SEVERAL VARIABLES 

7.3.1 Response Surfaces 

An important application of polynomial regression in several variables is in the 
study of response surfaces. We illustrate some of the basic features of response 
surface methodology by considering the simple case of just two regressors. 

Suppose that the response (yield) 7] from a given experiment is an un­
known function of two variables, Xl (temperature) and X2 (concentration), 
namely, 7] = g(Xl, X2)' It is assumed that this three-dimensional surface is 
well-behaved, in particular is smooth with a single well-defined peak. The 
response 7] is measured with error so that we actually observe Y = 7] + c, 
where E[c] = 0 and var[c] = (72. One basic problem of response theory then 
is to estimate the coordinates, (X01, X02, 7]0) say, of the summit. 

One method of doing this is to use a sequence of experiments and a steepest 
ascent technique to "climb" up the surface. Typically, experimental data 
points are expensive to obtain, so we need to choose a design with a small 
number of data points and locate them in an optimal fashion so as to maximise 
the efficiency of estimation. For points away from the summit the surface is 
relatively linear in a small region, so that it can be represented locally by a 
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plane, namely, 
(7.23) 

To estimate the coefficients f3i' we can, for example, use a very simple design 
such as the 22 design; we shall see later that that such a design has certain 
optimal properties. In this design we observe Y at the four vertices of a small 
rectangle, with center PI, in the (Xl,X2) plane (Figure 7.1). Suppose that Yr. 

is the Y observed at (Xrl' X B2), where Xrl (r = 1,2) are the two chosen values 
of Xl and Xs2 (8 = 1,2) are the two chosen values of X2. Then we can fit the 
model 

Y rs = f30 + f3lx r l + f32 x s2 + Crs, 

where r = 1,2 and 8 = 1,2, and obtain the fitted plane 

(7.24) 

(7.25) 

If Ql is the point on this plane vertically above PI, we can use the fitted 
plane, which approximates the surface in the neighborhood of Ql, to help 
us climb up the surface to a higher point Q2 and thus obtain a higher yield 
Y. For example, if ~l and ~2 are both positive in (7.25), we would increase 
Xl and X2. However, the most efficient way of climbing up the surface is to 
choose the direction of steepest slope. To find this path of steepest ascent, 
we now consider the following problem. Suppose that we wish to maximize 
¢;(d l , d2 ) - ¢;(O, 0) subject to di + d~ = r2. Using a Lagrange multiplier A, we 
have 

(i=1,2), 

or, setting ¢; equal to the right side of (7.25), di <X ~i for a maximum. There­
fore, regarding Ql as the origin, the (Xl, X2) coordinates of the next experi­
mental observation should be (k~l' k~2) for some k > O. By steadily increasing 

.', 

r-----~L .. , 

o 

Fig. 7.1 A response surface. 
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k, we can go on measuring Y until we reach a point P2 in the (Xl, X2) plane at 
which the increase in Y due to a change in k becomes very small, or possibly 
negative. A new 22 experiment is then carried out on another small rectangle 
using P2 as center, and another plane (7.25) is fitted. The path of steepest as­
cent is redetermined and, once again, we proceed in this direction until there 
is little change in Y. In this way we climb the surface toward the summit. 

As we approach the summit, ~l and ~2 get smaller, so that progress by 
the method of steepest ascent becomes more difficult; -the curvature of the 
surface also begins to have a significant effect on the yield. When we are 
in the region of the summit, we can then fit a general quadratic form using, 
say, a 32 design; that is, we use three appropriate values for each of Xl and 
X2 and observe Y at the nine design points. Alternatively, we can use the 
popular 12-point central composite design, which consists of a 22 design with 
an additional four replicates at the center of the rectangle and four "coaxial" 
points (cf. Myers and Montgomery [1995: p. 298] for a description of its 
properties). By shifting the origin and rotating the axes, the fitted surface 

(7.26) 

can be expressed in the canonical form 

(7.27) 

where (CI, C2, C3) is an estimate of the summit point (XOI, X02, 1]0). The triple 
(CI,C2,C3) can be found by differentiating (7.26) partially with respect to Xl 
and X2, and solving the resulting pair of equation for Xl and X2; C3. is the 
value of yin (7.26) at the solution (CI,C2). 

This rather sketchy description of response surface methodology leaves a 
number of questions unanswered, such as the following: 

1. In our discussion, we used a 22 design to carry out a planar fit (called a 
first order design) and two possible designs for the quadratic fit (called a 
second order design). This raises the question: What is the best design 
to use in each case? 

2. How do we know when to change from a first-order to a second-order 
design? 

3. How do we select the values of k in (k~l' k~2)? 

4. What happens if in our climb, we run into a stationary point which is 
not the maximum, or a slowly rising ridge? [Such a situation is indicated 
when one or other of the Ai in equation (7.27) is negative.] 

We don't have the space to consider these and other important practical 
questions, and we refer the readers to the comprehensive text by Myers and 
Montgomery [1995]. 
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EXAMPLE 7.1 It was shown in Section 3.6 that an optimal design is one 
in which the design matrix has orthogonal columns. We now show that the 
22 design lies in this category if we scale the values of Xl and X2 so that they 
take the values ±l. To examine this orthogonal structure, it is convenient to 
represent the two levels of Xl symbolically by 1 and a, and the two levels of X2 

by 1 and b, so that the four possible combinations (1,1), (1, a), (1, b), (a, b) can 
be represented symbolically (by multiplying the levels together in each pair) as 
1,a,b, and ab, with observed Yvalues Yl,Ya,Yl., and Yab , respectively. Thus 
setting Xl = -1 and X2 = --1 in (7.24), we see that Yl = f30 - f3l - f32 + Cl. 

In a similar fashion, we get , 

1 -1 -1 
1 1-1 
1 -1 1 
111 

(7.28) 

or Y = X{3 + e, where the columns of X are mutually orthogonal and satisfy 
the conditions of Example 3.3 in Section 3.6. Then X'X = 414 and 

hence 

and 

{j = (X'X)-lX'y = .!. [ -~ 
. 4 -1 

1 1 
1 -1 

-1 1 

~o -
~l -

-

Y, 

~(-Yl + Ya - Yb + Yab ) 

~ [~(Ya + Yab ) - ~(Yl + Yl.)] 
~(average effect of first factor at upper level 

- average effect of first factor at lower level), 

~(-Yl - Ya + Yb + Yab ) 

~ a(Yb + Yab ) - HYl + Ya)] , 

RSS - y'y - {j'X'X{j 

LY; - 4y2 - 4~r - 4~? 
c 

We note that var[~jJ = (72/4 (j = 0,1,2), and this is the smallest variance 
that can be attained with a design of just four points. Finally, we note that 
if we use factor terminology and call Xl and X2 factors A and B, then Pl and 
P2 can be identified as estimates of what we might call the main effects of A 
and B, respectively. 0 
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7.3.2 Multidimensional Smoothing 

Local Regression 

We can generalize the method of Section 6.6 to accommodate k regressors 
and fit local hyperplanes f3'x = {3o + {3lxl + ... (3kxk instead of lines. If Xi is 
the value of x at the ith data point, then at each Xo we minimize 

n 

LK>.(Xi,XO)(Yi - X:(3)2 
i=l 

with respect to f3 to fit j(xo) = x~j3, where j3 will be a function of Xo. Typi­
cally, K>.(Xi, xo) will be an appropriate kernel function of the form K(llxi -
xoill A). As noted in Section 6.6, loess 0 in S-PLUS incorporates multi­
dimensional local regression. It should be noted that there are some problems 
as k increases, and local regression tends to become less useful for k > 3 (cf. 
Hastie et al. [2001: p. 174J. Local quadratics can also be used. 

Multidimensional Splines 

The theory of Section 7.2.2 can be generalized using basis functions that 
are tensor products of (one-dimensional) B-splines. For example, if k = 2, we 
can establish a basis of functions B lj (xd (j = 1,2, ... , Md for Xl and a basis 
B 2k (X2) (k = 1,2, ... , M 2) for X2' Then the (Ml x M2)-dimensional tensor 
product basis, defined by 

Bjk(X) = Blj(xdB2k(X2) (j = 1, ... ,Ml; k = 1, ... ,M2), 

can be used to represent a two dimensional function, namely, 

·M, M2 

f(x) = L L BjkBjk(X). 
j=lk=l 

The parameters Bjk can then be estimated by least squares. 
Smoothing splines can also be used. Assuming once again that k = 2, we 

now have the two-dimensional problem of minimizing 
n 

RSS(A, f) = L {Yi - f(Xi)}2 + AJ(f), 
i=l 

where 

rd lb {(82 
f)2 (82 

f)2 (82 
f)2} 

J(f) = lc a 8xi + 2 8X18x2 + 8x~ dXl dX2. 

This leads to a two-dimensional cubic natural spline called a thin plate spline 
or Laplacian smoothing spline. However, the solution is computationally ex­
pensive. Software for multidimensional smoothing splines is available in S­
PLUS, and on StatLib and NetLib. For further details, see Green and Silver­
man [1994: Chapters 7 and 8J. 
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MISCELLANEOUS EXERCISES 7 

1. Using the method of orthogonal polynomials described in Section 7.1.2, 
fit a third-degree equation to the following data: 

y (index): 
x (year): 

9.8 
1950 

11.0 
1951 

13.2 
1952 

15.1 
1953 

16.0 
1954 

Test the hypothesis that a second-degree equation is adequate. 

2. Show that the least squares estimates of !31 and !32 for the model (7.28) 
are still unbiased even when the true model includes an interaction term 
!312, that is, 

E[Y) == !3o + !31 x l + !32 x 2 + !312 x I X 2· 

Find the least squares estimate of !312. 

3. Suppose that the regression curve 

has a local maximum at x = Xm where Xm is near the origin. If Y is 
observed at n points Xi (i = 1,2, ... , n) in [-a, a), x = 0, and the usual 
normality assumptions hold, outline a method for finding a confidence 
interval for X m . Hint: Use the method of Section 6.1.2. 

(Williams [1959: p. 110)) 





8 
Analysis of Variance 

8.1 INTRODUCTION 

In this chapter we look at certain special cases of the multiple regression 
model. When the regressors are qualitative so that indicator variables are 
involved (taking values 0 or 1), then we refer to the model as an analysis­
of-variance model (ANOVA model). In this case the regression matrix X is 
usually referred to as the design matrix. However, ifthere are both qualitative 
and quantitative x-variables, then we refer to the model as an analysis-of­
covariance model (ANCOVA model). 

In ANOVA models we begin with the relationship ElY] = (I, where (I is 
known to belong to some space of values. We then find a matrix X such that 
this space is C(X). Clearly, such a representation is not unique, as 

(I 

(8.1) 

say, where B is a p x p nonsingular matrix. The choice of XB will depend 
on the reparameterizing transformation 'Y = B{3, which in turn depends on 
which linear combinations of the {3's we are interested in. Typically, we are 
interested in just the individual {3j or in contrasts :Ej Cj{3j, where :Ej Cj = 0, 
for example, {3j - {3j-l . Under the broad umbrella of ANOVA models, there 
is a large family of designs. We shall consider some of these in the following 
sections. 

187 
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8.2 ONE-WAY CLASSIFICATION 

8.2.1 General Theory 

EXAMPLE 8.1 A health researcher wishes to compare the effects of four 
anti-inflammatory drugs on arthritis patients. She takes a random sample of 
patients and divides them randomly into four groups of equal size, each of 
which receives one of the drugs. In the course of the study several patients 
became seriously ill and had to withdraw, leaving four unequal-sized groups. 
We thus have four independent samples, each receiving a different treatment. 

o 

In the example above, the type of drug is usually referred to as a factor 
or treatment, and the four kinds of drug are often called levels of the factor. 
The entire experiment is variously called a single-factor experiment, a one-way 
layout, or a one-way classification. Instead of four different kinds of drug, we 
could have used a single drug but at four different dosages. 

In general, we could have 1 levels of the factor, giving 1 independent random 
samples with Ji observations in the ith sample (i = 1,2, ... , I). We can regard 
each sample as coming from its own underlying (hypothetical) population, 
which we assume to be normal with a common variance (12. Our first task is 
to compare the means of these populations. 

Let Yij be the jth observation (j = 1,2, ... , Ji) on the ith normal popula­
tion N(P,i, (12) (i = 1,2, ... ,1), so that we have the following array of data: 

Population 1: 

Population 2: 

Yll , Y1 2 , ... , YiJ, 
Y21, Y 22 , •....• , Y2J2 

Sample mean 

Y 1 · 

Y2· 
................................................. ". 
Population I: 

We can combine the information above into the single model 

(i = 1,2, ... ,1; j = 1,2, ... ,Ji ), 

where the Cij are LLd. (independently and identically distributed) as N(O, (12). 
In Example 4.5 (Section 4.3.3) we considered the special case of comparing 
just two normal populations, and the theory there provides a background for 
what follows. 

Let Y i = (Yil, Yi2, ... , YiJJ' represent the sample from the ith population. 
Then following Example 4.5, we "stack" these vectors to give 

y = (Y~, ... , Y~ )' , 

a vector with n = 2:{=1 Ji elements. This vector has mean 

(J = (p,11~"p,21~2'··. ,P,I1~I)" 
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so that Y = 9 + e, where to '" Nn(O, (T2In). We now wish to specify a matrix 
whose column space contains the set of all such vectors 9. We can find the 
columns of one such matrix by setting all the fJ,'S except /.ti equal to zero for 
each i. This gives us 

X= 

o o o 

o 
o 

(8.2) 

an n x I matrix of rank I (since the columns, being mutually orthogonal, are 
linearly independent), and Y = X/-L+e, where /-L = (/.tI, ... ,/.tI)'. (We find 
it notationally more convenient in what follows to use /-L instead of (3.) This 
is our usual regression matrix, but without an initial column of unit elements 
(corresponding to flo), as X essentially describes qualitative information. 

If we wish to test H : /.tl = /.t2 = ... = /.tI (= /.t,say), then 9 reduces to 
9 = In/.t = XH/.t, say, where XH is In, and is obtained by adding the columns 
of X together. This is the "canonical" form for H given in Section 4.5, so we 
can apply the general theory of Chapter 4 to get an F-test for H as follows. 

For the original model, the least squares estimates are most readily found 
by direct minimization; that is, we differentiate E:=l Ef::l (Yij - /.ti)2) with 
respect to /.ti, giving us 

Ji 
, L Yij Yi. y /.ti = - = - = i· J. J. 

j=l' • 

and 
RSS = L L(Yij - fi,i)2 = L L(Yij - Yd 2. 

i j i j 

Similarly, under H, we minimize E E(Yij - /.t)2 with respect to /.t to get 

- Y. _Y - - .. 
n 

and 

Since X is n x I of rank I, and XH is n x 1 of rank 1, we have from Theorem 
4.1 in Section 4.3.2 with p = I and q = 1-1 (the difference in ranks between 
X and X H ) 

F - (RSSH - RSS)/(I - 1) '" F 
- RSS/(n - I) I-I,n-I, 

when H is true. We can also express F in the form S'f.r/S2, a ratio of mean 
sum of squares, where S'f.r = (RSSH - RSS)/(I - 1), etc. 
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Setting ·Y = Xp, and Y H = XHP,H, we have, by Theorem 4.1(i), 

Thus 

RSSH - RSS 

i j 

i j 

i j 

i 

F = 2: Ji(Yi . - y'.)2 /(/ - 1) 

2: 2: Yij - Yd 2 /(n - I) 

(8.3) 

(8.4) 

In preparation for thinking· about two-way classification models, we shall con­
sider some other parameterizations. 

Alternative Parameterizations 

The hypothesis H can also be expressed in the form P,l - P,[ = P,2 -

p,[ = ... = P,[-l - P,[ = 0, so that we have I - 1 contrasts 0i = P,i - P,[ 

(i = 1, ... ,I - 1). In order to transfer from the p,i to the 0i [as demonstrated 
by (8.1)) we need one more parameter, for example p,[. Putting p,[ = p" we 
have Yij = p, + 0i + Cij or Y = Xl')' + e, where,), = (P,,01, ... ,01-1)1 and 
Xl is simply X with its last column deleted and having a new first column 
In. Writing')' = BtL, it is readily seen that B is nonsingular. We also note 
that Xl is n x I of rank I, and H amounts to testing 01 = .... = 0[-1 = o. 
What we have done is to effectively set o[ = 0 in p, + 0[. We could have 
also set 01 = 0 by writing P,l = P, instead and then defining 0i = p,i - P,l 

(i=2, ... ,I). 
Instead of singling out one of the o's to be zero, we can use a more sym­

metric approach and define the contrasts 0i = P,i - P, (i = 1, ... , I), where 
we now define p, = 2:{=1 p,d I to be the average of the p,/s. However, the 0i 

are mathematically dependent, as o. = 2:[ Oi = 0 (sometimes referred to as 
an identifiability constraint), and the corresponding model Yij = p, + 0i + Cij 

has a design matrix X2, where X2 is X plus a first column In. This is an 
n X (I + 1) matrix and does not have full rank, as its first column is the sum 
of the other columns. We can turn this matrix into one of full rank by setting 
o[ = - 2:{'::11 0i. One conceptual advantage in using X 2 instead of X is that 
X 2 contains XH as its first column. 

Clearly, a wide range of reparameterizations are possible. Another common 
one is to define p, = 2:i JiP,i/n and Ot = p,i - p,. The identifiability constraint 
is then 2:i JiO i = O. Although introducing all these parameterizations is not 
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particularly helpful in the context of the one-way classification, the idea is im­
portant for more complex models such as the two-way classification discussed 
later. 

Finally, we note that the model with the design matrix (8.2) can also be 
expressed in the form 

(r == 1,2, ... ,n), 

where Z = Y and dri is the rth observation on the ith dummy variable d i 

(i = 1,2, ... ,1); that is, di = +1 when Zr is an observation from the ith 
population, and zero otherwise. 

EXAMPLE 8.2 In this example we illustrate how orthogonal contrasts can 
be utilized in some situations. Suppose that I = 3, Ji = J for i = 1,2,3, 
with the first treatment being a placebo (dummy drug) and the other two 
being different doses of the same drug. We are interested in testing for no 
differences in the three treatments (Le. H : J-L1 = p,2 = P,3). However, if we 
suspect that the hypothesis will be rejected, we will be interested in contrasts 
such as HP,2 + P,3) - P,1 (comparing the drug with the placebo) and P,2 - P,3 
(comparing the two dosages). Let 

'Y1 = .)s(P,1 + p,2 + P,3), 'Y2 = ~(P,2 - P,3) and 'Y3 = ~(P,2 + P,3 - 2p,1). 

Then 

( 

1 
v'3 

"y == 0 
-2 
v'6 

1 
.;3 
1 

../2 
1 

v'6 
where B is an orthogonal matrix (known as Helmert's transformation). Now, 
7 = Bj£, where j£ = (Y1., Y 2., Y3.)', so that 

"""'-2 -,- -'B'B- -,- """'-2 y2 y2 y2 ~ 'Yi = "Y , = J.£ J.£ = J.£ J.£ = ~ P,i = 1· + 2· + 3·' 
i i 

21- - -2 -2 Since i1 = 3(Y1. + Y 2 . + Yd = 3Y .. , we have 

Jii + Ji~ = J(LY~. - 3Y~.) = L L(Yi. - y .. )2 = RSSH - RSS. 
i i j 

Also, from 

Var[7] = B Var[iL]B' = Ba2 (~) B' = ~13 , 
it follows that COV[i2' 73] = 0, so that i2 and 73 are independent (Theorem 
2.5) under normality assumptions. We thus have a decomposition of RSSH­
RSS into two independent components, Jii and Ji~, which can be tested 
independently. This decomposition into orthogonal components is an option 
in~~. . 0 
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Computations 

With a less-than-full-rank design such as X 2 , a variety of computational 
procedures are possible. Software packages such as S-PLUS effectively operate 
on the linearly independent columns of the design matrix. 

It is standard practice for software packages to set out the various sums 
of squares in the form of a table (Table 8.1). The terminology used for the 
column labeled "source" varies in the literature. Instead of "between popula­
tions" , one encounters "between groups" or "treatments." The "error" sum of 
squares, variously called "within groups," "within populations," or "residual" 
sum of squares, provides a pooled estimate of 0-2 • 

Table B.1 Analysis-of-variance table for a one-way classification 

Sum of squares 
Source (SS) 

Between populations "'- - 2 J L...-(Yi. - Y .. ) 
i 

Error LL(Yij - Yd 2 

i j 

Corrected total LL(Yij - Yd 2 

i j 

8.2.2 Confidence Intervals 

Degrees of 
freedom (df) 

I-I 

IJ-I 

IJ-l 

SS 
df 

The literature on confidence intervals for a one-way classification (cf. Hsu 
[1996] and Hochberg and Tamhane [1987] for references) is very extensive and 
rather daunting. Some statistics packages (e.g., SAS) present a bewildering 
array of options. We shall therefore confine ourselves to a few basic methods 
that have good properties and which illustrate the general methodology. 

Along with the F-test of (8.4), we are interested in seeing how the /-ti 
differ from one another; this leads to looking at contrasts. There may be 
one contrast () = L:i CiJ-Li of particular interest, and we can estimate it by 
(j = L:iCiYi. (= L:icdJ,i = e/fJ,). This has variance 0-

2 L:icUJi, where 0-
2 is 

estimated by 8 2 = L:i L:/Yij - Yd 2 /(n - I). Then, from Example 4.7, a 
100(1 - a)% confidence interval for (J is given by 
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If we are interested in several contrasts (or the individual /-ti), chosen prior 
to seeing the data, then we can use one of the three conservative methods de­
scribed in Chapter 5: namely, the Bonferroni, Studentized maximum-modulus 
(SMM), and Scheffe methods. If we are interested in just the /-ti, then SSM 
should be used. However, if the upper quantiles of the SMM distribution are 
not available, then a conservative approximation (Hsu [1996: pp. 10-11]) is 

given by the t-distribution with upper quantile t~"}i, where 

a* = 1 - (1 _ a)l/k. 

The Bonferroni intervals using t~~(Jk) are wider, as (1 - a)l/k < 1 - a/k 
implies that 1 - a* < 1 - a/k, but the difference is small. There is therefore 
little advantage is using the approximation. 

If we are interested in all possible contrasts, then Scheffe's method is appro­
priate. Since H can be expressed in the form ¢i = /-ti - /-tl = 0 (i = 1, ... , I-I), 
we know from Example 5.3 in Section 5.1.4 that the set of all possible linear 
combinations of the ¢i is the same as the set of all possible contrasts in the 
/-ti. Hence for every c such that C'll = 0, it follows from (5.13) that e'M lies 
in the interval 

(8.5) 
i i 

with an overall probability of 1 - a. From Section 5.1.4 we see that H will 
be rejected if and only if at least one of these confidence intervals does not 
contain zero. 

As already noted in Chapter 5, some of the conservative intervals can be 
quite wide. However, if we are interested in just the set of pairwise contrasts 
/-tr - /-ts (for all rand s with r "I- s), then we can do better. Thkey [1953] and 
Kramer [1956] independently proposed the intervals 

(8.6) 

where qt2 is th,e upper 100a% point of the Studentized range distribution with 
parameters k and v [Le., the distribution ofthe range of k independent N(O, 1) 
random variables divided by (V/V)1/2, where V is independently distributed 
as x~]. Thkey conjectured that the overall confidence probability for these 
intervals is at least 1 - a with equality when the J i are equal. This conjecture 
was proved by Hayter [1984], who showed that equality occurs if and only 
if the Ji are all equaL He also gave similar conservative intervals for all 
contrasts. Hsu [1996: Section 5.2.1] gives a helpful discussion on graphical 
ways of displaying the Thkey-Kramer (TK) intervals. 

There are number of other procedures available. However, it appears that 
the TK intervals are to be preferred, as they are less conservative (Le., not 
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. r~ h 
:C: . .i i:am ane pp. 9:~-;5]; Hsu [1996: pp. 146, 

Balanced Desigr. ,. 

If the sample sizes are all equal (Le., J i = J for all i), then other sets of 
confidence intervals are available. For example, Tukey [1953] proposed the 
following intervals for all contrasts L:{=1 Ci/-ti, namely, 

(8.7) 

which have an exact overall probability of (1 - a). If we are interested in just 
the pairwise contrasts /-tr - /-ts, we can use [ef. (8.6) with Ji = Jj 

or 

(0<) S 
Y _ Y ± qI,IJ-I 
. r. s. VJ 

Yr. - Ys. ±d, 

(8.8) 

say. Since any difference Yr. - Y 8. greater than d suggests that /-tr - /-ts f::. 0, 
we can sort the /-ti into groups which contain means that are not significantly 
different from one another. For example, if d = 10.4 and the ranked sample 
means are given as follows: 

5 
25.4 

1 
32.6 

3 
39.2 

2 
40.8 

4 
52.1 

then /-t5 < /-t3, /-t2, /-t4; /-t1 < /-t4; /-t3 < /-t4; /-t2 < /-t4; and the appropriate 
groups of means are (/-t5,/-tI), (/-t1,/-t3,/-t2), and /-t4' It is common practice to 
underline the groups as we have done above. However, when the design is 
unbalanced, Hsu [1996: p. 1471 notes two situations where underlining is not 
helpful. For example, suppose that Y 1. < Y 2· < Y 3. but J1 < J3 < J2, 
so that the estimated standard deviation of Y 3. - Y 2. is greater that the 
estimated standard deviation of Y 3. - Y 1.' Then the Tukey-Kramer method 
may find /-t2 and /-t3 significantly different, but not /-t1 and /-t3; this cannot 
be described by underlining. Furthermore, underlining will not distinguish 
between a confidence interval for /-t1 - /-t2 that is tight around zero, thus 
indicating practical equivalence of /-t1 and /-t2, and a wide interval around 
zero, which is somewhat inconclusive. 

When we use a pairwise comparison, we find that L:i ICil/2 = 1 and (8.7) 
is the same as (8.8). The reason for this is that the pairwise contrast vectors 
form a basis for the set of all contrast vectors. 
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8.2.3 Underlying Assumptions 

In Section 9.5 we will find that quadratically balanced F-tests are robust with 
regard to departures from the assumption of normality. Now it is easy to 
check for quadratic balance once we have derived the F -statistic; we simply 
check both the numerator and the denominator to see if, in each case, the 
coefficient of Y;s is the same for all r, s. From (8.4) we see that this will be 
the case when all the samples are the same size [i.e., Ji = J, (i = 1, ... , I)], 
and we say then that the model is balanced. Clearly, the experimenter should 
generally aim for balance as closely as possible; although balance is not always 
achievable, as we saw in Example 8.1. 

Another assumption is that 0-
2 is the same for all the populations. Scheffe 

[1959: Chapter 10] concluded that any heterogeneity of variance does not 
affect the F-test if the design is approximately balanced. Then a usually 
conservative rule of thumb is that heterogeneity is unlikely to do much harm 
if the ratio of the largest to the smallest sample standard deviation is no 
more than 2. However, the confidence intervals are not so robust against 
variance differences. If the variance differences are substantial, then a number 
of alternative procedures are available. For two samples there is the well 
known Welch procedure, which does not assume equal variances; this is usually 
available from statistics packages. Welch and others have generalized this 
method to more than two samples (see Roth [1988] for details). 

There are a number of standard tests for the equality of population (group) 
variances based on sample standard deviations. Unfortunately, these tests are 
very sensitive to any nonnormality of the data and are therefore suspect as a 
preliminary test (cf. Markowski and Markowski [1990]). There are, however, 
several robust tests that are based on calculating a dispersion variable Zij 
and then performing a one-way analysis on the Z-data. The statistics package 
SAS, for example, provides a number of homogeneity of variance tests using 
the HOVTEST option in its GLM procedure. The best-known of these is 
Levene's test (Levene [1960]), which uses the absolute deviations and involves 
calculating for the ith group (sample) 

One can also use Z'h instead of Zij. A robust version of this test, due to 
Brown and Forsythe [1974], uses sample medians instead of sample means 
when calculating the Zij data (see also Glaser [1983]). Simulation studies 
(Conover et al. [1981]; Olejnik and Algina [1987]) indicate that this last test 
seems to be the most powerful at detecting variance differences, while pro­
tecting the type I error probability. Although the test is not very powerful, 
we can rely on the fact that unless the group variances are very different or 
the number of groups (1) is large, the test is reasonably robust to variance 
heterogeneity when the Ji are approximately equal. If the group variances 
are very different, we should use a Welch-type procedure. 
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If the assumptions of normality and equal variances are seriously violated, 
then one can perhaps transform the data or use a nonparametric test such 
as the Kruskal-Wallis test. Such robust procedures are generally available in 
statistics packages. 

With regard to confidence intervals, if the population variances are unequal, 
a number of methods are available. For example, if we are interested in just 
a single confidence interval for, say, 2: ai/.Li, then we can use the approximate 
N(0,1) statistic (Scott and Smith [1971]) 

(each Ji > 3), 

-2 J - 2 where Si = 2:j~l (Yij - Yd j(Ji - 3). A number of methods for computing 
simultaneous intervals are described by Hochberg and Tamhane [1987: Chap­
ter 7]. Unfortunately, the upper quantiles of the various distributions used 
are difficult to obtain and one must resort to approximations. 

We note that the F-statistic is not robust with respect to the presence of 
intraclass correlation, that is, when cov[Yir> Yis] = (j2p (r:l s,p:l 0). 

In conclusion, it should be emphasized that the diagnostic methods of 
Chapter 10 using residuals can be applied to ANOVA models. 

EXERCISES 8a 

1. Express H : ILl = ... = ILl in the form AIL = o. What is the rank of A? 
As this matrix is not unique, find another matrix, Al say, also satisfying 
H: AIIL = o. What would be the relationship between A and AI? 

2. Obtain the identity indicated by (8.3), namely, 

"""' - 2 "" - 2 "" - - 2 L..,. L.... (Yij - Y .. ) = L.... L..,. (Yij - Y;.) + L...- L..,. (Y i· - Y .. ) . 
i j iii j 

3. Obtain the least squares estimates of the ILi using 13 = (X/X)-l X'V 
directly, where X is given by (8.2). 

4. Prove that 

"'''' - - 2 '" Y? Y? L..,. L..,.(Yi . - Y .. ) = L..,. T - -:;;:. 
. . . ~ 

• J • 

5. Find (a) E[2:i 2:/Y i. - y'.)2] and (b) E[2:i 2:j (Yij - y;.)2]. Hint: Use 
Theorem 4.1(ii) for the first expression. 
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8.3 TWO-WAY CLASSIFICATION (UNBALANCED) 

8.3.1 Representation as a Regression Model 

Consider an experiment in which two factors A and B are allowed to vary: 
for example, type of drug and dosage. Suppose that there are I levels of A 
and J levels of B so that there are I J different combinations of the levels. 
Let Yijk be the kth experimental observation (k = 1,2, . .. , Kij : Kij > 1) on 
the combination of the ith level of A with the jth level of B so that there are 
n = L:;=I L:f=1 Kij = K.. observations altogether. The data can be regarded 
as providing I J independent samples, each from a different population. We 
shall assume that the Yijk are independently distributed as N (ltij, 0-2), so that 

Yijk = Itij + Cijk (i = 1, . .. , I; j = 1, ... , J; k = 1, . .. , Kij), (8.9) 

where the Cijk are LLd. N(O,0-2). 
Let Y ij = (YijI, ... , YijKi;)' be the ijth sample vector, and suppose that 

we stack these vectors to get 

with mean 
(J = (ltlll~11,ltI21~12'··· ,ltIJl~lJ)'· 

If we stack the Cijk in the same way as the Yijk to get e, then e ,..., Nn(O, 0-2In). 
As in the one-way classification, we can find an n X I J matrix X of rank 

p = I J just like (8.2) such that (J = XIL, where IL = (ltll, 1t12, ... , 1t[J )'. 
The least squares estimates of the Itij can then be found by minimizing 
L:i L: j L:k(Yijk - ltij)2 with respect to Itij. This leads to fi,ij = Y ij . and 

RSS = L:i L: j L:k (Yijk - Y ij.)2 with n - p = n - I J degrees of freedom. 

8.3.2 Hypothesis Testing 

The next question to consider is: What hypotheses are of interest? The 
first hypothesis to test would be to see if the factors make any difference 
at all (Le., H : Itij = It for all i, j). The test statistic for this hypothesis 
is straightforward, as it follows immediately from the one-way classification 
with I J means instead of I means. Thus from (8.4) we have 

which has an FIJ-1,n-IJ distribution when H is true. We would generally 
expect the test to be significant if the experiment is a meaningful one. 

Our next question is: Do the two factors interact in any way; that is, does 
the effect of factor A at level i, say, depend on the level of factor B? If not, 
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then we could ignore the presence of factor B a:r.d treat the experiment as 
a one-way classification for A with K i . = "L-f=l Kij observations on the ith 
level of A. By the same token, we could ignore the presence of factor A and 
treat the experiment as a one-way classification for B with K. j = "L-;=1 Kij 

observations on the jth level of B. With no interactions we essentially get 
two one-way classifications as a bonus. We now wish to pin down this concept 
of interaction mathematically. 

If there were no interaction between the factors, we would expect the dif­
ference in means Midl - Mi2j, to depend only on i1 and i2 and not on the level 
iI of B. Mathematically, this means that 

(8.10) 

and the hypothesis of no interactions is then 

. . . . 
t1, t2, J1 , J2· 

Another way of expressing this hypothesis is to use Ml J as a baseline (i.e., set 
i2 = I and h = J) and wr'ite 

HAB1 : Mij - Mlj - MiJ + M[J = 0 all t,J. 

If we use Mu as our baseline instead of MlJ, we get 

HAB2 : Mij - M1j - Mil + MIl = 0 all i,j. 

There is yet one more common method of specifying the no-interaction hy­
pothesis. From (8.10) 

f/J(i 1 ,i2 ), say 

t.f/J(i1 ,h) 
j=l J 

- Mil. - Mi2. for all i 1, h 

or 
Mid - Mi,. = Mi2j - Mi2.· 

This equation implies that Mij - Mi. does not depend on i, so that 

or 

Mij - Mi. iJ!(j), say 

t iJ!(j) 

i=l I 

M.j - M .. ' 

HAB3 : Mij - Mi. - M.j + M .. = 0 for all i, j. (8.11) 
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We note that this expression is symmetric in i and j, so that we would arrive 
at the same result if we assumed the difference J-Lij, - J-Lih to depend only on 
il and h and not on i. 

All the sets of hypothesis contrasts on the J-Lij above are equivalent, as they 
all lead to the same vector subspace defining the linear model corresponding 
to HAB. This is effectively the means model approach. However, we might 
ask what this model looks like? Instead of using a constraint equation specifi­
cation where the J-Lij'S are constrained, we can also use a "freedom equation" 
specification, in which we express the J-Lij in terms of other parameters. For 
example, all the forms of HAB are equivalent to J-Lij = J-L + ai + fJj (Exer­
cises 8b, No.1), and this will specify IL as belonging to the column space of 
a particular matrix. To incorporate this matrix into the general model with 
column space C(IIJ) (as it = IIJIL) , we simply write 

(8.12) 

where the (afJ)ij are usually referred to as the interaction parameters. In 
vector form this model is given by 

IL = L(J-L, 0/ ,(3', (0.(3)')' = Vy, 

say, where 

• 
0. = (al, ... ,aJ)', (3 = (fJl, ... ,fJJ)', and (0.(3) = ((afJ) 11 , •.. , (afJ)IJ)'. 

To get some idea of what L looks like, suppose that I = 2 and J = 2. Then 

J-Lll 
J-L12 
J-L21 
J-L22 

1 
1 
1 
1 

1 0 
1 0 
o 1 
o 1 

1 0 
o 1 
1 0 
o 1 

1 0 0 0 
o 1 0 0 
o 0 1 0 
000 1 

J-L 
a1 
a2 
fJ1 
fJ2 

(afJ) 11 

(afJh2 
(afJhl 
(afJh2 

(8.13) 

say. We note that L does not have full rank; in fact, it has four linearly 
independent columns (as the rows are linearly independent). However, C(L) = 
C(14), so that C(L) also represents the general model. Since HAB is obtained 
by setting (0.(3) = 0, the model corresponding to HAB is obtained from L 
simply by leaving out A 12 • Before discussing the fitting of such less-than-full­
rank models, we now consider two further hypotheses of interest. 

If there are no interactions, then, as we noted above, we can treat the two 
factors separately and test, for example, the hypothesis that all the levels 
of A have the same effect. There are several other ways of expressing this 
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hypothesis. For example, if J-Lij does not vary with i, then J-Lij == J-Llj, which 
combined with HABl leads to 

HA1:J-LiJ-J-LIJ==0, i==1, ..• ,/-1. 

Alternatively, combining J-Lij == J-Llj with HAB2 leads to 

HA2 : J-Lil - J-Lll == 0, i == 2, .. , , I. 

Also, if J-Lij == A(j) == J-L.j' then combining this with HAB3 gives us 

HA3 : J-Li. - J-L .. == 0, i == 1, ... , I. 

This hypothesis can also be expressed in the form 

HA : J-Ll. == J-L2. == ... == J-LI. or J-Li == J-LI. (i == 1, .. . ,1 - 1). 

In a similar fashion, we have 

HB : J-L.l == J-L.2 == ... == J-L.J, 

with its alternative forms HBl : J-Llj - J-LIJ == 0, HB2 : J-Llj - J-Lll == 0, and 
HB3 : J-L.j - J-L .. == O. 

We note that if we combine with H AB the hypothesis that the J-Lij do not 
vary with i, we get the model J-Lij == J-L + fJj (i == 1, ... ,1). To obtain this 
model, we simply omit A12 and Al from L. 

If we use the model (8.12), then since L does not have full rank, the indi­
vidual parameters are not identifiable and are therefore not estimable. Only 
certain functions of them, which are also linear functions of the J-Lij, are es­
timable. Estimability is determined by the model, not the method of spec­
ifying the parameters. It is common practice in textbooks (including the 
first edition of this book) to introduce constraints on the parameters so as to 
make them all identifiable and therefore estimable. However, as NeIder [1994] 
cogently argues, this is not necessary. All estimable functions have the same 
estimates, irrespective of the constraints imposed, but nonestimable functions 
will have differ~nt estimates under different constraints. 

One reason for the introduction of constraints in statistics packages is to 
avoid the use of generalized inverses in fitting less-than-full-rank models. We 
briefly consider some of these constraints by referring to Labove. 

Suppose that we consider the group of hypotheses HAB3, HA3, and HB3, 
and define (afJ) ij := J-Lij - J-Li. - J-L.j + J-L .. , ai == J-Li. - J-L .. , and fJ; == J-L.j - J-L ... These 
parameters then satisfy (8.12) and also satisfy the symmetric constraints a; == 
0, fJ.' == 0, (afJ)i. == 0 (i == 1, ... ,1 - 1), (afJ):j == 0 (j == 1, ... , J - 1), and 
(afJ):. == O. This means that there are only 

IJ - (I - 1) - (J - 1) - 1 == (I - l)(J - 1) 

mathematically independent (afJ)ij , 1 - 1 independent ai, and J - 1 inde­
pendent fJ;. Thus on the right-hand side of (8.12), we have 1 + (I - 1) + 
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(J - 1) + (I -1)(J -1) = IJ independent parameters, the same number as 
the J-Lij, so that the transformation is one-to-one. Therefore, if we proceed in 
a reverse direction and start with the symmetric constraints, the parameters 
are uniquely defined and have the definitions above (cf. Exercises 8b, No.2). 
The matrix L can then be reduced to one of full rank br: using the constraints 
to eliminate some of the parameters (e.g., aj == - Li::11 a;, etc). However, 
computationally, such an approach is not so helpful. 

If we use the group of hypotheses H AB2, etc. and set ,ij = /-tij - /-tlj -
/-til - Mil + /-tll, ai == J-LiI - J-L1I, and (3j = J-LIj - J-Lll' we end up with a different 
set of constraints, namely, al == 0, (31 = 0, (af3)i1 = ° (i = 2, ... ,1), and 
(af3hj = 0 (j = 1, ... J). These constraints are the ones used by GLIM, 
S-PLUS, and R, for example. However, if we use the hypotheses HABl, etc. 
and set ,ij = /-tij - J-Llj - /-tiJ + /-t[J, ai = /-tiJ - J-LIJ, and f3j == /-tlj - /-tIJ, 
we get the constraints aIJ = 0, f3IJ == 0, (af3)iJ = 0 (i = 1, ... ,1), and 
(a(3)rj = 0 (j == 1, ... , J - 1). These constraints are used by the package 
SAS, for example, and we can see what is happening if we consider L given 
by (8.13). Since we have a2 = f32 ::: (af3h2 = (af3b = (a(3h2 = 0, we are 
effectively omitting columns 2, 4, 6, 7, and 8 from L. This corresponds to 
examining the columns of L one a time from left to right and omitting any 
linearly dependent columns. 

Clearly, it is preferable to work with the unambiguous means model and 
the hypotheses HAB, HA, and HB. However, the parameters /-t, a, etc., 
are introduced for computational convenience but at the expense of possible 
ambiguity, as we shall see below. The first hypothesis that should be tested 
is HAB (or its equivalents), and if this is rejected, then HA and HB become 
problematical. For example, if constraints on the parameters are used, the 
hypotheses HA, HAl, HA2, and HA3 (without HAB being true as well) are 
different from one another and will produce different residual sums of squares. 
This means that different statistics packages can produce different answers. 
Clearly, it is preferable not to impose any constraints on the parameters when 
using (8.12), which is equivalent to working with the underlying vector spaces 
specified by the hypotheses. This will be our approach. 

In what follows we shall use the model (8.12), but without imposing any 
constraints on the parameters /-tij' In this case, HA, for example, is no longer 
equivalent to /-tij - /-t.j == 0 (all i, j), the hypothesis originally intended. There 
is not much'point in testing whether the average effects of A are zero when 
some of the individual effects /-tij - /-t'j are not zero. 

8.3.3 Procedures for Testing the Hypotheses 

We begin with the general model E[Y] = X/.l. = XL" which we shall call G. 
The models of interest to us are 

H 123 : /-tij - /-t 

H I3 : J-Lij - /-t + (3j 
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El·. ~ . 11. •• 
-.:,.:.!i • ,....,~J p, -+ CY.i 

p,-+a.i+(3jo 

with no constraints on the parameters. The ranks of the underlying regression 
matrices are the same as the number of free parameters when the symmetric 
constraints are applied, namely, 1, J -1,1 -1, and 1+1 -1+J -1 = 1 + J -1, 
respectively. These models are all subsets of the columns of Lj here HI is the 
same as HAB (we use a different notation later to illustrate the nesting effect 
of the models above). The residual sum of squares for each model can be 
computed by imposing constraints on the parameters to reduce each regression 
matrix to one of full rank. 

The model corresponding to a = 0 without HAB being true is 

which, looking at L, for example, is still G, our unconstrained general model. 
Therefore, if we tested a =" 0 against G, we would get a zero hypothesis sum 
of squares in the numerator of the F-test. However, if constraints are applied 
to all the parameters, then the hypothesis sum of squares will be nonzero. 

Several procedures for testing the hypothesis sequence have been proposed, 
and they all begin with testing HI versus G. Let RSSI 23, RSS I 3, etc. be 
the corresponding residual sums of squares obtained by fitting the models 
H 123 , H 13 , and so onj RSS is the usual residual sum of squares from fitting 
G. The degrees of freedom associated with each residual sum of squares is 
n minus the rank of the regression matrix. Before proceeding further, we 
introduce an alternative R-notation for RSSH - RSS which is often used in 
the literature. Suppose that I' = (,~' I~) and we wish to test H : 11 = 0 given 
12 i= O. Let RSSH - RSS for this hypothesis be denoted by RCTlb2)' Then 
the numerator sum of squares of the F-statistic for testing HI is RSS1 - RSS = 
R((a,B)\p"a,,B). The degrees of freedom associated with the difference of two 
residual sums of squares is simply the difference in the two degrees of freedom. 
For example, RSS 1 - RSS has degrees of freedom 

n - (I + J - 1) - (n - IJ) = IJ - 1 - J + 1 = (I - 1)(J - 1). 

We now give three different procedures that can be used after testing HI 

versus G, and we shall use the nomenclature given in the statistics package 
SAS. 

Type 1 Procedure 

After testing H!, this procedure consists of the following sequence: (1) Test 
,B = 0 by testing H12 versus HI using RSS I2 -RSSI = R(,BIp"a)j then (2) test 
a = 0 by testing H I23 versus H12 using RSSI 23 - RSS12 = R(aIJL). We now 
show that these sums of squares, along with RSS1 - RSS = R((a,B)IJL,a,,B), 
are mutually independent. 
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Let G, HI, H 12 , and HI23 specify that (J:::: E[Y) belongs to n, Wl, w12, and 
WI23, respectively. If P w represents the orthogonal projection onto w, then 
consider the decomposition 

Since WI23 C WI2 C WI C n, it follows from B.3.1 and B.3.2 that all the 
matrices in parentheses in (8.14) are symmetric and idempotent, and mutually 
orthogonal. For example, 

- PnPI - PnPI2 - P~ + P IP I2 

• - PI - P I2 - PI + P I2 
- o. 

The matrices in parentheses therefore represent orthogonal projections onto 
the mutually orthogonal subspaces n.L, wt n n, wfz n WI, Wi23 n W12, and WI23 
respectively (by B.3.2). Therefore, if we multiply (8.14) on the right by Y, we 
will obtain an orthogonal decomposition of Y on the right-hand side, namely, 

Y = (In-Pn)Y +(Pn-Pl)Y +(PI-PdY +(P12-PI23)Y +(PI23)Y' 
(8.15) 

We also have from (8.15) that 

Y'(In - PI23)Y - Y'(In - Pn)Y + Y'(Pn - PI)Y + Y'(PI - P I2)Y 

+ Y'(PI2 - P I23 )Y 

or 

RSS I23 - RSS + (RSSI - RSS) + (RSSI2 - RSSd 

+ (RSSI23 - RSSI2) 

- RSS + R«a,8)IJ.", a,,8) + R(.BIM, a) + R(aIM)' (8.16) 

Now, from Theorem 1.3 and P I2PI = P 12, 

In a similar fashion we can show that the pairwise covariances of all the 
vectors on the right-hand side of (8.15) are zero (a property of the orthogonal 
structure). FUrthermore, from results such as Y'(In - PI),(In - PI)Y = 
Y'(In - PdY, it follows from Theorem 2.5 that the sums of squares on the 
right-hand side of (8.16) are mutually independent. Hence the sums of squares 
used for testing our nested sequence of hypotheses are independent of each 
other and of RSS. It is usual to use RSS in the denominator of each test. We 
note that since 8 E WI23 if and only if (J :::: J."ln, P I23 :::: In(1~ln)-11~ = 
n-Ilnl~, and RSSl23 = Li(Yi - y.)2. The four sums of squares then add up 
to the (corrected) total sum of squares RSS I23 , which are expressed this way 
in computer printouts. 



204 ANAL YSIS OF VARIANCE 

We note that two orderings are possible, as we can interchange the roles of 
the two factors; this amounts to using Hl3 instead of H 12 , and interchanging 
the subscripts 2 and 3 in the theory above. These two orders will lead to 
different breakdowns of L:i(Yi - y.)2, which may lead to conflicting models 
and the need for a model selection method. The type 1 method is also used 
by S-PLUS and GLIM. 

Type 2 Procedure 

In addition to testing HI, this procedure consists of the following sequence: 
(1) Test [3 = 0 by testing H12 versus HI using RSS12 - RSS1 = R([3IIL, a); 
then (2) test a = 0 by testing HI3 versus HI using RSSIS-RSS I = R(a I 1-', [3). 
This method treats the two factors symmetrically and effectively combines the 
two orderings used in the type 1 method. Clearly, the various sums of squares 
no longer add to 2:i(Yi - y.)2 in the unbalanced case. This method does not 
have the nice independence properties enjoyed by the type 1 procedure. Also, 
one questions the appropriateness of moving outside a nested framework; a 
point considered by NeIder [1994J under the title of marginality. 

Type 3 Procedure 
In addition to testing HI (HAB), this procedure consists of testing two 

marginal means hypotheses, namely, HA : ILl. = IL2. = ... = ILl., and 
HB : IL.I = 1-'.2 = ... = IL.J versus G. Using the model (8.12) (without restric­
tions), we see that H A, for example, is equivalent to testing that ai + (a,B)i. is 
constant for all i, which is not a very meaningful hypothesis when the (a(3)ij 
are not zero. This hypothesis can be tested formally by imposing, for com­
putational purposes, the symmetric constraints on the parameters and then 
testing HA3 : ai = ILi. - IL .. = O. Then RSSHA3 - RSS can be expressed as 
R(a*II-''', [3*, (a[3)*), which is the starred notation used by Speed and Hocking 
[1976} and Speed et al. [1978}. Using * indicates that the value of R depends 
on the constraints used; alternative constraints will lead to a different value. 
Without the constraints we saw that R(all-',[3, (a[3» = 0, which highlights a 
problem with the R-notationj computer packages don't always clarify which 
one is being used. 

When one or more cell frequencies Kij are zero, the procedures above can 
be adapted accordingly in statistical packagesj in SAS there is then a further 
procedure referred to as a type 4 procedure. When there are no missing cells, 
types 3 and 4 sums of squares are identical. 

In conclusion, we note that there is considerable controversy and confusion 
over which is the appropriate procedure (cf. Hocking [1996: Section 13.2]). 
However, if HI is rejected, there are problems with all three methods. 

8.3.4 Confidence Intervals 

As we can regard a two-way classification as a one-way classification with I J 
populations (groups), we can use the methods of Section 8.2.3 to construct 
confidence intervals for one or several contrasts in the {I-'ij}. If we use the 
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symmetric constraints, we can also construct simultaneous confidence intervals 
for contrasts in {an, {.Bj}, and the {( a.B)ij}' For example, expressing H A in 
the form 4J = AIL = 0 [4J1 = (a;:, a2" .. ,aj_l))' where ai = /-ti. - /-tOo' we can 
use Scheffe's method [cf. (5.13)) as follows. 

We note that 

I-I I-I 
Lhia: L hi (/-ti. - /-tJ 
i=1 i=1 

~ (hi - ~ ~ hi) /-ti. + (- ~ ~ hi) /-tI . 
• =1 .=1 .=1 

I 

L Ci/-ti. 
i=1 

(8.17) 

where L: Ci = O. Conversely, by writing aj = - L:[~11 ai, we see that (8.17) 
is expressible in the form L:[~; hia;. These two statements imply that the 
set of all linear combinations h' 4J is the set of all contrasts in ai, a2, ... , aj. 
Now 

"" c,&~ = "" ro,(Y' - Y ) = "" c· Y· ~ t t ~ ......,. too ... ~ t t .. , 

i i 

so that 

where K i . = L: j K ij • Hence 

I-a [
"" "" - 1/2 ("" c~ ) 1/2 pr L-- Ci/-ti· E L-- CiYi .. ± [(I - 1)FI- 1 ,n-IJ) S L-- K. ' . , . • 

for all contrasts ] , 

where 

i j k i j 

Similar methods can be applied using HB and HAB. 

EXERCISES 8b 

1. Prove that HAB, HABl, HAB2, and HAB3 are all equivalent to /-tij 
/-t + ai + .Bj. 
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2 USI·v,,,. ,C} s s·r····'·'~tr' .. constr~;~~" expre"" ti-,,,, uarameters I/. ~. etc In , '"c. L.cC; . ) " ... ,'."~ "'" Coc"'"~, "0 u.b " ,.-, u.., . 
terms of the ,tii"'. 

3. Obtain an F-test statistic for testing H : P,ij = p, in a two-way classi­
fication. Find the expected value of the numerator sum of squares of 
your test statistics. 

8.4 TWO-WAY CLASSIFICATION (BALANCED) 

When Kij = K for all i and j, the model is said to be balanced. In this case 
we find that the various sums of squares have some nice properties. To begin 
with, all three procedures are identical, as we shall show below that 

R(a* Ip,*) = R(a* Ip,*, 13*) = R(a* I, p,*, 13*, (af3t), (8.18) 

and 
R(a*Ip,*) = R(alp,), and R(a*Ip,*,f3*) = R(alp"f3)· (8.19) 

We recall, however, that R(a*I,p,*,f3*,(af3)*) =f. R(al,p"f3,(af3)) (= 0). 
Similar results can be obtained by interchanging the roles of a and 13. 

To find RSSH for HAB, HA, and HB, we can use the symmetric constraints 
which are based on the decomposition 

l/.iJ· - - +(- - )+(- -- )+( .. - - +-) ,.- - P,.. P,i. - It.. P,.j It.. P,'J - Iti. - P,.j P, .. 

- p,* + oi + (3; + (o(3)ij 

with a corresponding decomposition of Cijk> namely, 

Cijk = g ... + (gi .. - g .. .) + (g.j. - g .. .) 

+ (gij. - gi .. - g.j. + g .. .) + (cijk - gij.)'· 

(8.20) 

(8.21) 

Squaring, and summing on i, j, and k, we find that the cross-product terms 
vanish (because the elements come from mutually orthogonal vectors) and 

(8.22) 

Setting Cijk = Yijk - p,* - oi - (3; - (o(3);j' and using o~ = 0, etc., we obtain 

(8.23) 
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By inspection, the right side of (8.23) is minimized (subject to a* = 0, etc.) 
when the unknown parameters take the values 

p,. = Y ... , . ai = Y i .. - Y ... , Pj = Y. j. - Y .. ., 

and - - - - -(af3)';j = Y ij. - Y i .. - Y. j. + Y .... 

Because of our previous discussion, we won't refer to these quantities as esti­
mates because they depend on which constraints are used. Rather, they are 
intermediate quantities which assist us in finding each residual sum of squares. 

, - -
By substitution we get P,ij = p,. + a; + f3; + (af3)ij = Yij. and 

as before. This estimate of !1-ij and the residual sum of squares will be the 
same irrespective of the method of reparameterization. 

To find RSSHAB' we must minimize (8.23) subject to (af3)ij = 0 for all i, j. 
By inspection this minimum occurs at p,* , at, and Pj, so that 

and 

_ " '" "(Y .. _ y. _ Y . + Y )2 
~~~ ". >.. .J. . .. 

- KLL(~)iJ· 
i j 

The F-statistic for testing HAB is therefore 

-_ K L:i L: j (af3)tJ I(I - 1)(J - 1) 
F - RSSI(IJK _ IJ) (8.24) 

say, which has an F-distribution with (I - 1)(J - 1) and I JK - I J degrees 
of freedom, respectively, when HAB is true. 

Test statistics for HA and HB are obtained in a similar fashion. Setting 
ai = 0, for example, in (8.23), we find that the minimum of (8.23) now occurs 

, -
at p,* , f3;, and (af3)ij. Thus 

and 

RSSHA = L L L(Y i .. - Y .. Y + L L L(Yijk - Yij.)2, 

RSSHA - RSS = LLL(Yi .. - Y .. J2 = J K L ai2, 

F = J K L:i a;2 1 (I - 1) = 8~ 
RSSI(IJK - IJ) 8 2 ' 

i 

(8.25) 
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say, is the F-statistic for testing HA. The corresponding statistic for HB is 

IKL- j Jr/(J-1) 8'h 
F = RSS/(IJK _ IJ) = 82' (8.26) 

In all the derivations above we see that the minimizing values of the pa­
rameters are always the same, irrespective of which ones are set equal to zero. 
Using the fact that RSSH - RSS = IIY - Y HW for any pair of hypotheses 
with one nested within the other, we have 

R(a*IJ1:) 
ijk 

ijk 

ijk 

thus proving (8.18). Equation (8.19) follows from the fact that when we 
have the model J-tij = J.t + O:i + (3j and any submodels of it, the symmetric 
constraints do not change the subs paces represented by the design matrices; 
the only change is that the matrices are changed to full rank, and this does 
not affect the residual sum of squares. Although the number of degrees of 
freedom for each RSSH is given above, they can also be obtained from the 
coefficient of (j2 in E[RSS H 1 (these expected values are given in Exercises 8c, 
No.1). 

Analysis-of-Variance Table 

As in the one-way classification, the various sums of squares are normally 
set out in the form of a table (Table 8.2). The various sums of squares in 
Table 8.2 add up to L- L- L-(Yijk - Yij.)2; this follows either from (8.16), 
which also shows that they are independent, or from the fact that (8.22) is an 
identity in the Cijk and therefore also holds for the Yijk. Since 

LLL(Yi .. - Y .. Y = JKLQ;2, 
i 

this sum of squares is usually called the sum of squares due to the A main 
effects, although some textbooks use the term row sum of squares. Similar 
designations apply to the next two sums of squares in Table 8.2, as they are 

~ -
I K L-j (3r and K L- L-ij (o:(3)";J, respectively. The sum of squares labeled 
"error" gives a pooled estimate of (j2 based on all I J normal populations; this 
term is a.lso called the within populations sum of squares or the residual sum 
of squares. As in the unbalanced case, we need to look first at HAB. 
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Table 8.2 Analysis-of-variance table for a two-way classification with K(K > 1) 
observations per population mean 

Sum of squares Degrees of 
Source (SS) freedom (df) 

A main effects I-I 
i 

B main effects J-l 

AB interactions KLL(~)rJ (I - l)(J - 1) 
i j 

Error L L L(Yijk - y ij .)2 IJ(K - 1) 
i j k 

Corrected total L L L(Yijk - Y .. Y IJK-l 
i j k 

EXERCISES 8e 

1. ( a) Prove that 

I' J K _ _ I y.2 y2 
'"' '"' '"'('V 'V)2 '"' .,. .,. L..J L..J L..J ii,· - i '.. = L..J J K - I J K . 
i=1 j=1 k=1 i=1 

Obtain a similar expression for 

I J K 

'"' '"' '"' - -." - - 2 L..J L..J L..J(Y ij ' - l' i·· - Y-j. + Y ... ) . 
i=1 j=1 k=1 

(b) Using Table 8.2, prove the following: 

E[(I - 1)8~] - a2(I - 1) + JKL:>~r2 
i 

E[(J - 1)81] - a2(J - 1) + IK L /3;2 
j 

SS 
df 

8~ 

81 

8~B 

8 2 

E[(I - 1)8~B] - a2(I - l)(J - 1) + K L L(a/3)rr 
i j 



2. Given thE; pop:.:.L-cion means ;:J,ij (i = 1,2, ... , I;j = 1,2, ... , J), let 

.4i - E Vjf,tij (~Vj=} 
j 

Bi - 2: Uif,tij (~Uj=} 
i 

awl 

f,t = 2: UiAi = 2: vjBj = 2: 2: UiVjf,tij. 

i .i i j 

(a) Show that I:i UiO:i == I:j Vj{3j = 0, I:i Ui(o:t1)ij = 0 (all j), and 
I:j Vj (o:{3)ij = 0 (all i). 

(b) Conversely, given 

show that the parameters in the equation above are uniquely de­
termined by the constraints in (a). 

(c) Prove that if the interactions {(o:{3)ij} are all zero for some system 
of weights {Ui} and {Vi}, then they are zero for every system of 
weights. In that case show that every contrast in the {O:i}, or {{3i}, 

has a value that does not depend on the system of weights. 

(Scheffe (1959: Section 4.11) 

3. Let Yijk = f,t + O:i + {3j + (o:{3)ij + Cijk, where i = 1,2, ... ,1; j = 
1,2, ... , J; k = 1,2, ... , Kij; and the Cijk are independently distributed 
as N(O, (12). Given Kij = Ki.K.j/ K.. for all i,j, find a test statistic for 
testing the hypothesis H : (o:{3)ij = 0 (all i, j). Hint: By Exercise 2, the 
validity of H does not depend on the weights used in the identifiability 
constraints I:i UiO:i = I:j Vj {3j = O. We can therefore use Ui = Ki./ K .. 
and Vj = K.jf K .. and find the least squares estimates of 0:; and {3j when 
H is true. 

(Scheffe [1959: p. 119]) 
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8.5 TWO-WAY CLASSIFICATION (ONE OBSERVATION PER MEAN) 

Suppose that in a two-way classification there is only one observation per 
mean, so that the model becomes 

Yij = JLij + Cij (i==1,2,_ .. ,I; i=1,2, ... ,J), (8.27) 

where the Cij are Li.d. N(O, (J2). We now have I J observations but I J + 1 
unknown parameters {JLij} and (J2, so that we cannot estimate all the pa­
rameters without imposing at least one constraint to reduce the number of 
"free" parameters. However, typically, such data come from a randomized 
block design with I treatments and J blocks. Here each block has I sam­
pling units and the I treatments are applied to the units in random order so 
that we would expect the interaction between treatment and block number 
to be small. A reasonable assumption would then be that our model for this 
experiment is the additive model 

G : JLij == JL + ai + (3j, 

where there are no constraints on the parameters. In Section 8.4 we saw that 
to compute residual sums of squares, we can reduce the model to one of full 
rank using, for example, the symmetric constraints (but we now drop the * 
label, for convenience). Since we have ai == JLi. - JL .. , and similarly for (3j, we 
find that the additive model is equivalent to 

JLij - JLi· - JL.j + JL .. = 0 

We can therefore express G in the form 

for all i,j. 

JLij == JL .. + (JLi. - JL .. ) + (JL.j - JL .. ) + (JLij - JLi. - JL.j + JL .. ), 

which suggests, as in Section 8.4, the corresponding decomposition 

C·· == E + (E' - E ) + (E . - E ) + (E" - E· - E . + E ). 'J .. •. .. .J .. 'J '. ·3 .. 

Algebra similar to that used in Section 8.4 leads to 

2: 2>~. + 2: 2:(Ei. - E.Y 

(8.28) 

+ 2:2:(E.j _E..)2 + 2: 2: (cij -Ei. -E.j +E.Y· 

Setting Cij = Yij - JL - ai - (3j and applying the constraints a. and (3. to the 
model, we have 

2: 2:(Y .. - JL)2 + 2: 2:(Yi. - Y .. - ai)2 

+ 2:2:(Y.j - Y .. - (3j)2 

+ 2: 2:(Yij - Y i. - Y. j + Y.Y· (8.29) 
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The left-hand side of (8.29) is minimized when /-L = Y .. (= p,), O:i = Y i . - Y .. 
(= ai), and (3j = Y. j - Y .. (= ~j), so that Pij = P + Qi + ~j = Yi. + Y. j - Y .. 
and 

say, with degrees of freedom I J - (I + J - 1) = (1 - I)(J - 1). Since the 
interactions are zero, we see from the equation above that the "interaction" 
sum of squares takes over the role of the error sum of squares, and an unbiased 
estimate of (72 is RSS/(I - 1)(J - 1). However, it should be pointed out that 
an estimate of (72 can be found by making much weaker assumptions; not all 
the interactions need to be zero (Johnson and Graybill [1972a,b)). 

Setting O:i = 0, we see, by inspection, that the left side of (8.29) is mini­
mized when /-L = P and (3j = ~j so that 

RSSH ="'"' ",",(y. _ Y )2 + "'"' ",",(yo;. _ y. _ Y . + Y )2 
A L...J L...J t. .. ~ L.J 1,3 t.. ·3 .. 

and 
RSSHA -RSS= LL(Yi. -y.y. 

Hence the F-statistic for testing HA is 

F = l: l:(Yij - Y i . - Y. j + Y.Y 1(1 - I)(J - 1) 

J l:i a:l(I - 1) 

The test statistic for HB follows by interchanging i and j, namely, 

(8.30) 

(8.31) 

The entire procedure can be summarized as in Table 8.3. We note that with 
the interactions zero, HA is equivalent to /-Lij - /-L.j = 0; that is, /-Lij does not 
depend on i for every j. In a similar fashion we see that H B is equivalent to 
/-Lij not depending on j for every i. 

8.5.1 Underlying Assumptions· 

A key assumption in the analysis above is (8.28). We shall call the quantities 
(o:(3)ij = J.lij - J.li. - J.lj + /-L .. , the interactions. Because we cannot estimate 
all the parameters in (8.27), we cannot test that (o:(3)ij = 0 for all i,j against 
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Table 8.3 Analysis-of-variance table for a two-way classification with one observation 
per population mean 

Source 

A main effects 
(treatments) 

B main effects 
(blocks) 

Error 

Corrected total 

Sum of squares 
(SS) 

i 

j 

LL(~);j 
i j 

LL(Yij -Y.Y 
i j 

Degrees of SS 
freedom (df) df 

1-1 8 2 
A 

J-1 8~ 

(I - l)(J - 1) 8 2 

IJ -1 

a general class of alternatives (a(3)ij =f 0 [for at least one pair (i,j)]. We 
therefore have to resort to carrying out our test against a suitably restricted 
class of alternatives; several such classes have been considered. For example, 
if we assume that (a(3)ij = 'Yai(3j, then Tukey's [1949] well-known test for 
additivity is equivalent to testing the null hypothesis H"( : 'Y = 0 against the 
alternative 'Y =J 0 (Scheffe [1959: pp. 129-137]). Tukey's test statistic is 

F= 88"( 
(RSS - SS,,()/[(I - l)(J - 1) - 1]' 

(8.32) 

where 

and 
RSS = LL(~);j' 

i j 

Then F has an F-distribution with 1 and 1 J - 1 - J degrees of freedom, 
respectively, when the underlying model is 

It is instructive to derive (8.32) from the following lemma due to Scheffe [1959: 
p. 144, Example 4.19]. 

LEMMA Suppose that Y ~ NnCX{3, u2In), where X is n x p of rank p, 
and define 8 = xj3, where j3 is the least squares estimate of (3. Let Z = r(8) 
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be a continuous function of 8 (chosen before the outcome of Y is inspected), 
and let ¢ be the same linear function of Z that 8 is of Y. Define R = IIY - 811 2 

and 
R = Z'(Y - 8) 

1 {(Z _ ¢)'(Z _ ¢)}1/2 

Then 
R2 

Fo = (R _ Ri)f(~ _ p _ 1) '" F1,n-p-l. 

Proof. 8 = X(X'X)-lX'Y = PY, so that ¢ = PZ and 

Z'(In - P)Y 
Rl = {Z'(In _ P)ZP/2 [= Z'(In - P)Y fcz, say]. 

Consider the distributions of Rand Rl conditional on Z = z. Since R is 
independent of fJ [Theorem 3.5(iii), Section 3.4], and therefore of Z, the 
conditional distribution of R/ (J"2 is the same as the unconditional distribu­
tion, namely, X~-p [Theorem 3.5(iv)]. Also, from (In - P)X = 0, Rl = 

Z'(In - P)(Y - XfJ)/cz , where Y - XfJ is independent of 8 and therefore of 
Z. Hence 

and 

E[RdZ = z] = z'(In - P)E[Y - XfJ]/cz = 0 

var[R1lZ = z] 
z'(In - P) Var[Y - XfJ](In - P)'z 

c2 
z 

2z'(In - P)(In - P)(In - P)z 2 
- (J" = (J" 

c2 
z 

imply that Rl is conditionally N(O, (J"2). As this does not involve z, it is also 
the unconditional distribution. Now setting u = (In - P)Y and V = (In - P)z 
and invoking the Cauchy-Schwartz inequality (A.4.l1), we have 

R-Rr _ Y'(In _ P)Y _ {z'(In - P)Yp 
z'(In - P)z 

(U'V)2 
- u' U - ..:..--,,..:­

v'v 
(u'u)(v'v) - (u'v? 

- v'v 
> O. 

Then, since R/ (J"2 '" X~- and RU (J"2 '" xf, we have, by Example 2.13 in Sec­
tion 2.4, that (R- Ri)/(J"~ and RUa2 are independently distributed as X~-P-l 
and xf, respectively. Thus Fo '" F1,n-p-l, and because the F-distribution 
does not depend on z, it is also the unconditional distribution of Fo. 0 



TWO-WAY CLASSIFICATION (ONE OBSERVATION PER MEAN) 215 

To apply this Lemma to (8.32), we simply define Z =f(8) by Zij = e;j' 
where 9ij = {L + &i + ~j. Then 

and 

{[(In - P)Z]'Y}2 
Z/(In - P)Z 

{"''''(Z'' - Z· - Z . + Z )Y,Oo}2 L..J L..J'3 •. .J "'J 

"''''(ZOo - z· - Z . + Z )2 L..J L..J'J o. .J .. 

Using &. = ~. = 0, we have after some algebra that 

ZOo - Z· - Z . + Z = 2&·(Jh. 03 •• .J .. • J 

so that 
R2 _ {2: 2: &i~j Yij }2 

1 - 2: 2: &~ ~J ' (8.33) 

and we have derived (8.32). A similar method can be used for deriving a 
test for interaction for other experimental designs which assume additivity, 
for example, the Latin square. 

Tukey's test, originally proposed without specifying any particular form for 
(a(J)ij, seems to have reasonably good power for the alternatives 'Y i= 0 (Ghosh 
and Sharma [1963]), and the effect of nonnormality on the test is examined 
empirically by Yates [1972J. Several generalizations of the procedure have 
been proposed (cf. Johnson and Graybill [1972a,b] for references), and an 
these tests would appear to have reasonably good power when (a(J)ij is a 
function of the ai or (Jj. Johnson and Graybill [1972b] also proposed a test 
for interaction that would have a reasonable power when the underlying model 
is 

Yij = J.t + ai + (Jj + A'Yi8j + Cij, 

where a = (J = 'V = 8 = 0 and "'. 'V? = '" . 8~ = 1. • • I·. L..J. to L..JJ J -
(8.34) 

Residual plots based on the residuals (a(J)ij must be interpreted with cau-
tion. Any irregularities could be due to either departures from the usual nor­
mality assumptions or to the presence of nonzero interactions (Le., E[(~)ijJ i= 
o for some i,j). Because the F-tests (8.30) and (8.31) are quadratically bal­
anced (cf. Section 9.5.2), we would expect the test statistics to be robust 
with regard to nonnormality. As a bonus, the effect of randomizing the treat­
ments in the blocks induces a randomization distribution for the data which 
is approximately normal. Any heterogeneity of variance or error correlations 
within blocks could be tested using, for example, the methods of Han [1969]. 
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8.6 HIGHER-WAY CLASSIFICATIONS WITH EQUAL NUMBERS 
PER MEAN 

8.6.1 Definition of Interactions 

The extension of the theory in Section 8.4 to higher-way classifications with 
equal numbers of observations per mean is fairly straightforward and is demon­
strated briefly by considering the three-way classification: 

1'ijkm = Itijk + Cijkm, (8.35) 

where i = 1,2, ... ,1; j = 1,2, ... , J; k = 1,2, ... , K; m = 1,2, ... , M, and 
the Cijkm are Li.d. N(O, a2). Here we have three factors: A at I levels, B at 
J levels, Cat K levels; and there are M(M > 1) observations per population 
mean for each of the I J K means. In addition to the (first-order) interactions 
between A and B, B and C, and A and C, we now have the possibility 
of a (second-order) interaction between all three factors. If, however, the 
factors interact only in' pairs, so that, for example, the AB interactions are 
not affected by C, then an AB interaction would be the same for all levels of 
C. Mathematically, this means that 

or 

J.LiJ·k - It· k - It 'k + II. k t. .J ~ .. 1j;(i,j) 
K 

E 1j;(i,j)/K 
k=l 

- J.1ij. - J.1.i .. - l1.j. + J.1. ... 

(a(3'Y)ijk - Itijk - Itij. - It.jk - Iti.k + Iti.. + It.j. + It .. k - It ... 

- O. 

(A numerical example demonstrating this is given in Exercises 8d, No.2, at 
the end of Section 8.6.3.) Since (a(3'Y)ijk is symmetric in i, j, k, we see that we 
would have arrived at the same result if we considered the BC interaction at 
different levels of A, or the AC interaction at different levels of B. It therefore 
seems appropriate to define (a(3'Y)ijk as the second-order interaction between 
the ith level of A, the jth level of B, and the kth level of C. We refer to these 
interactions simply as ABC interactions. 

Our two-factor concepts of Section 8.4 can be carried over to this situation 
by considering a two-way table for each level of C. For example, the interac­
tion of the ith level of A with the jth level of B, given that C is at level k, 
is 

J.Lijk - Iti.k - It.jk + ltoOk· 

The average of these over the levels of C, namely, 

(a(3) i' = II... - 11.. - II. . + II. 
J ~'J. "'t.. "'.J. "'oO.' 

(8.36) 
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we call the interaction of the ith level of A with the jth level of B. We 
similarly define the BO and AO interactions to be 

U3!)jk = J.L.jk - J.L.j. - J.L .. k + J.L ... 

and 
(O:"Y)ik = J.Li.k - J.Li .. - J.L .. k + J.L .... 

By analogy with Section 8.4, we also define the following parameters, which in 
the context of balanced designs, are usually referred to as main effects. Thus 

A main effects: O:i - J.Li.. - J.L ... , 

B main effects: (3j - J.L.j. - J.L ... , and 

o main effects: "Yk - J.L .. k - J.L .... 

We stated in Section 8.3 that in the unbalanced design it is not appropriate 
to put constraints on the parameters. Also, there were then three methods 
of testing the hypothesis sequence. However, when the design is balanced, 
we saw in Section 8.4 that there is an orthogonal structure so that the three 
methods are the same and the various sums of squares can be obtained by 
applying the symmetric constraints. The same thing applies to all higher-way 
balanced designs, as we shall see in the next section. 

8.6.2 Hypothesis Testing 

With the definitions above, and defining J.L = J.L ... , we have the reparametriza­
tion 

(8.37) 

where 

0:. = (3. - "Y. = 0, 

(o:(3k = (O:(3).j = ((3"Y)j. ((3"Y).k = (O:"Yk = (O:"Y).k = 0, 

and 
(o:(3"Y)ij. = (o:(3"Y).jk = (o:(3"Ykk = 0, (8.38) 

these conditions holding for all values of the subscripts i, j, and k. 
The appropriate order for hypothesis testing is as follows: second-order 

interactions zero (HABC : (o:(3"Y)ijk = 0, all i,j, k]j first-order interactions zerO 
(HAB : (o:(3)ij = 0, all i,jj HBc : ((3"Y)jk = 0, all j, kj HAC: (O:"Y)ik = 0, 
all i, k]j and main effects zero (HA : O:i = 0, all ij HB : (3j = 0, all jj Hc : 
"Yk = 0, all k). When HABC is true, the three-factor experiment becomes 
equivalent to three independent two-factor experiments, one for each pair of 
factors, and the first-order interactions are readily interpreted. For example, 
(8.36) is now the same for all k, so it is equal to the average over k (which 



is (a,B)ijj. Sir!rila:ly, wheT" HAB is &lso true, tfce .hree-factor experiment 
becomes equivalent to two independent one-factor experiments for A and B, 
respectively, and the main effects ai and (3j have a simple interpretation (e.g., 
ai = J.Li .. - J.L ... = J.Lij. - J.L.j. = J.Lijk - f-t.jk)· As in the two-way classification, 
the general regression theory can be applied here. For example, writing 

y' = (Yuu , YU12 ,"" YIJKM) , 

(8.35) can be expressed in the form Y = Xp, + c, where X is n x p of rank 
p, n = I J K M, and p = I J K. Minimizing Eijkm (Yij km - J.Lij k)2 with respect 

to J.Lijk> we obtain Pijk = Y ... and 

'" -.,. 2 RSS = ~ (Yikjm - l' ijk.) , (8.39) 
ijkm 

with (n - p) degrees of freedom. To find RSSH for each hypothesis, we split 
up Cijkm in a manner suggested by (8.37), namely, 

Cijkm - e .... + (ei ... - e .. ..) + (e.j .. - e .. ..) + (e .. k. - e .. ..) 

+(e" -E' -e' +e )+(e'k -e' -ek +e ) 'J.. .... .J.. .... •.. •... .., .... 

+ (e.jk. - e.j .. - e .. k. + e .... ) 

+ (eijk. - eij .. - e.jk. - ei.k. + ei ... + e.j .. + e .. k. - e .. ..) 

+ (cijkm -eijk.). 

Squaring and summing on i,j, k, and m, we find that the cross-product terms 
vanish, so that 

2: C;jkm = 2: e~ ... + ... + 2: (cijkm - eijkY. 
ijkm ijkm ijkm 

Setting Cijkm = Yijkm - J.Lijk, and using equations (8.37) and (8.38), we find 
that 

2: (Yijkm - J.L - ai - ... - (a(3'Y)ijk)2 
ijkm 

"'- 2 "'- - 2 = ~ (y .... - J.L) + ~ (Yi ... - Y .... - ai) 
ijkm ijkm 

'" - 2 + '" + ~ (Yijkm - Y ijk .) . 
ijkm 

(8.40) 

By inspection, the left side of (8.40) is minimized when the unknown param­
eters take the values 

(~)ij 
(a(3;)ijk 

Y .... , 
y. _Y (3A._ y . -Y 

t... . ... , 3 - ·3·· .... , 
A _Y _Y 'Yk - .. k. .. .. , 

Y" - y. - y. + Y etc 1.3·· t.. ,. .3.. . ... , ., 

Y"k - Y" - Y 'k - y. k + y. + y. + Y k - Y 'J . 'J.. .J . •. . .... .J.. .. . .. .. , 
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and the minimum value is, of course, RSS of (8.39). Testing any particular 
hypothesis is now very straightforward. For example, if we wish to test HA, 
we set (}:i = 0 in (8.40) and minimize with respect to the other parameters. 
We see, by inspection, that the minimum occurs at the same values of the 
remaining parameters, so that 

'"' - -.,. 2 "" - -.,. 2 RSSHA = L..J (Yi... - l' .... ) + L..J (Y ijkm - l' ijk.) . 

ijkm ijkm 

Hence 

RSSHA - RSS - 2: (Y i ... - Y ... Y 
ijkm 

JKM2:&t, 
i 

with (I - 1) degrees of freedom, and the appropriate F-statistic is 

J K M L,i &2/ (I - 1) 8~ 
F = RSS/[IJK(M -1)] = 82' 

say. This statistic has an F -distribution with 1 - 1 and 1 J K (M - 1) degrees 
of freedom when HA is true. The various quadratic forms, together with their 
degrees of freedom, are listed in Table 8.4. The numbers of degrees of freedom 
can be obtained from the ranks of the underlying design (regression) matrices, 
from the numbers of free parameters in each case, or from the trace of the 
appropriate quadratic form. For example, 

L - .- - - 2 y .. _yo _y. Y (.,.. •... ., .. + .... ) 
ijkm 

(y;. )2 (Y,. )2 (y.)2 (y)2 = '"' '"' .,.. _ "" •... _ '"' . .,.. + .... 
~~ KM ~ JKM ~ IKM IJKM' . , · , 

and the trace of the symmetric matrix underlying this quadratic is the sum 
of the coefficients of the terms ~;km' namely, 

1 1 1 
' KM L2: KM - JKMLJKM- IKMLIKM 

i j i j 

- IJ-I-J+1 
(I - l)(J - 1). 

1 
+IJKM ·IJKM 

It should be noted that if the test of a particular higher-order interaction is 
significant, then we need to include lower-order interactions and related main 
effects in the model, thus maintaining a hierarchical structure. 
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Table 8.4 Analysis-of-variance table for a three-way classification with M observa­
tions per population mean 

Sum of squares Degrees of SS 
Source (SS) freedom (df) df 

A main effects JKM~&; I-I 8~ 
i 

B main effects IKM~~J J-I 81 
j 

C main effects IJM~i~ K-I 8 2 
c 

k 

AB interactions KM~~(~);j (I - I)(J - 1) 8~B 
i j 

BC interactions 1M 2: ~)Jh);k (J -I)(K - 1) 81c 
j k 

AC interactions JM~~(&r);k (I -I)(K - 1) 8~c 
i k 

ABC interactions M 2: ~ ~(;;;Fy):jk (I -I)(J -"I)(K -1)8~Bc 
i j k 

Error ~ ~ ~ ~(1'ijkm - YijkY I JKM - I JK 
i j k m 

Corrected total ~ 2: 2: 2:(1'ijkm - Y ... Y IJKM - 1 
i j k m 

8.6.3 Missing Observations 

We saw in Example S.I that an experimenter may set out to use a balanced 
design, but one or more of the observations may get destroyed. Since unbal­
anced designs are problematical in their analysis, a sensible approach might 
be to use a balanced design with some missing observations. The idea would 
be to put in suitable estimates of the missing values, which have the prop­
erty that if a balanced analysis is carried out using the completed data, the 
least squares estimates of the unknown parameters and the residual sum of 
squares are correct for the original unbalanced design. This will mean that 
any residuals corresponding to the estimated values are zero (see Exercises Sd, 
No.3). For example, if there was just one missing value, we could guess it, 
find its residual, and then adjust the value to make the residual zero, giving 
us a second iteration. We note that care is needed with standard errors, as 
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those derived from the completed data will not be correct. For references and 
further details, see Jarrett [1978] and Hunt and Triggs [1989]. 

EXERCISES 8d 

1. Verify (8.28). 

2. A three-factor experiment has population means /-Lijk (i=1,2,3;j= 
1,2,3; k = 1,2), given by the following tables: 

Cl Bl B2 B3 Mean C2 Bl B2 B3 Mean 

Al 5 6 10 7 Al 9 7 14 10 
A2 7 7 1 5 A2 9 6 3 6 
A3 6 5 7 6 A3 9 5 10 8 

Mean 6 6 6 6 Mean 9 6 9 8 

Show that the ABC interactions are zero. 

3. Let 

y = ( ~ ~ ) = ( i~ ) /3 + e = X/3 + e, 

where X has full rank. Suppose that the observations Y 2 are miss­
ing. For the data observed, the least squares estimate of /3 is {:3 = 
(X~Xd-1X\Yl' Let Y2 = X 2{:3. Show that {:3 can be obtained by 
applying least squares to the observed data augmented by Y 2 and the 
regression matrix X. 

4. Suppose that we have a one-way classification 

E[Y'ij] = /-Li (i = 1,2, ... ,1; j = 1,2, ... , J), 

and suppose that Y1 J is missing. Prove that the appropriate estimate 
of Y1 J is the mean of the remaining observations on the mean /-LI. 

8.7 DESIGNS WITH SIMPLE BLOCK STRUCTURE 

In addition to the cross-classification designs considered above, there are also 
the hierarchical or nested designs. For example, suppose that we have I 
cities, J factories within each city, and a sample of size K is taken from each 
factory, giving the model Y'ijk = ()ijk + eijk (i == 1,2, .. . ,1; j = 1,2, ... , J; k = 
1,2, ... , K). Then the appropriate reparametrization of the model is 

()"k = 0 + (0· - 0 ) + (0·· - 0· ) + (O"k -0·· ) >J .oO 0.. ... OJ. >oO >J >J. (8.41) 
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or, since ()ijk == f-lij (k ,-= 1,2, ... ,K), 

f-lij = f-l -:- Q:i + (3ij (8.42) 

with identifiability constraints Q:. = a and (3i. = a (all i). The hypotheses of 
interest are Hi : (3ij = a (no variation within each city) and Hz : Q:i = a (no 
variation between cities), and the appropriate decomposition of Cijk is 

C··k = E + (E· - E ) + (E·· - E· ) + (E··k - E··). <J ••• <.. ... <J. z.. <J <J. (8.43) 

Once again we have an orthogonal decomposition of c, and F-statistics are 
readily obtained for testing Hi and Hz; the details are left as an exercise 
(Miscellaneous Exercises 8, No.3, at the end of this chapter). 

Many of the designs currently used are a mixture of both crossing and 
nesting. When every nesting elassification used has equal numbers of subunits 
nested in each unit, then the experimental units are said to have a simple 
block structure and there is an elegant theory for handling such designs (due 
to NeIder [1965a,b]). 

8.8 ANALYSIS OF COVARIANCE 

In Section 8.1 we referred briefly to analysis-of-covariance (ANCOVA) models 
and we now wish to focus on these models, which combine both qualitative 
and quantitative variables in one regression matrix. Such a situation can 
arise in an experiment where a particular "factor" may be involved either 
quantitatively or qualitatively. 

EXAMPLE 8.3 Suppose that we wish to compare the effects of three dif­
ferent drugs on people by measuring some response Y. If Yij is the response 
from the jth patient taking the ith drug, then a one-way analysis of variance 
(one factor at three levels) can be carried out using the model E[Yij] = f-li 

(i = 1,2,3; j = 1,2, ... , J), or E[Y] = Xf3. However, it transpires that the 
effect of a drug may depend on the age of the patient, so that one model might 
be 

where Zij is the age of the jth patient taking drug i. This model can be 
expressed in the form 

E[Y] = Xf3 + Z,,"{, 
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where 
Zll 0 0 2 

zll 0 0 
Z12 0 0 2 

Z12 0 0 

ZlJ 0 0 2 
zlJ 0 0 'I'll 

0 Z21 0 0 2 
Z21 0 1'21 

0 Z22 0 0 2 0 1'31 Z",/ = Z22 

1'12 

0 Z2J 0 0 2 
Z2J 0 1'22 

0 0 Z31 0 0 2 
Z31 1'32 

0 0 Z32 0 0 2 
Z32 

0 0 Z3J 0 0 2 
Z3J 

If there is no interaction between age and type of drug, that is, the effect of 
age is the same for each drug, then the model can be simplified to 

or 
Zll 

2 
Zll 

Z12 
2 

Z",/ = Z12 

Z3J 
2 

Z3J 

In addition to age, there may be a body weight effect which also does not 
interact with drug type. A suitable model might now be 

where Wij is the weight of the jth patient taking the ith drug; if the drugs 
change the weight, then Wij could refer to the initial body weight. The three 
quantities age, (age)z, and weight are commonly called concomitant variables, 
and frequently they are random variables rather than variables controlled by 
the experimenter. Random explanatory variables are discussed in Chapter 9. 
However, if the variables are measured accurately it transpires that we can 
treat the variables as (conditionally) fixed. 0 

If, in Example 8.3, age and weight are likely to have a considerable effect on 
the drug action and we are particularly interested in this effect, then it might 
be more appropriate to design a three-way layout with three factors treated 
qualitatively: drug, age, and weight. This model would be more robust than 
the ANCOVA model. 

A general analysis-of-covariance model takes the form 

G: E[Y] = X,B + Z",/ = (X, Z) ( ~ ) = WIS, (8.44) 
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say, where X is n x p, Z is n x t of rank t and the columns of Z are linearly 
independent of the columns of X. Thus G can be analyzed as one large 
regression model and hypothesis tests carried out using the general theory of 
Chapter 4. We emphasize the important assumption that the variables in Z 
should not affected by the "treatments" in X. For example, as we pointed out 
in Example 8.3, if a particular drug causes a weight change, then Wij should 
refer to the initial weight, which is, of course, unaffected by the drug. 

EXAMPLE 8.4 We have already considered an ANCOVA model in Section 
6.4. It is instructive to look again at Example 6.2 using a different notation. 

Let 

(i = 1,2, ... ,1; j = 1,2, ... ,J), 

where the E.ij are independently and identically distributed as N(O,(J2), be I 
regression lines with J observations per line. Suppose we wish to test that 
the lines are parallel, namely, H : '1'1 = '1'2 = ... = '1'1 (= '1', say). Then we 
can find RSS for the model G and RSSH for model H, where 

H : Yij = /-Li + 'YZij 

and construct an F-test accordingly. 

EXERCISES Be 

o 

1. Exercises 3f, No.2, in Section 3.7 gave the following two-stage method 
for finding least squares estimates for a general ANCOVA model G, 
say. First, we find the least squares estimate j; of (3 for the model 
ElY] = X(3 and the residual sum of squares Y'RY. Second, "Ya is found 
by replacing Y by Y - Z, in Y'RY and minimizing with respect to ,. 
This minimum value is the correct residual sum of squares for the model 
G. Third, referring to Theorem 3.6, we see that l:Ja is obtained from l:J 
by replacing Y by Y - X"Y. This technique can be applied to the model 
for H as well as G. Now apply this method to the following problem. 
Consider the model Yij = J.Li + 'YiXj + Cij, where i = 1,2; j = 1,2, ... , J; 
and the Cij are independently distributed as N(O, (J2). Derive an F­
statistic for testing the hypothesis that '1'1 = '1'2 and show that this 
statistic is the square of the usual t-statistic for testing whether two 
lines are parallel. 

2. Let Yij = /-Li + 'Y1Zij + 'Y2Wij + Cij, where i = 1,2, ... , I; j = 1,2, ... , J; 
and the Cij are independently distributed as N(O, (J2). 

(a) Derive the least squares estimate of '1'1 and show that it is an un­
biased estimate of '1'1. 

(b) Find the variance matrix of the least squares estimates 1'i of 'Yi 
(i = 1,2). 



ANALYSIS OF COVARIANCE 225 

(c) Under what conditions are "h and 1'2 statistically independent? 

3. Let Yijk = P,ij +'YijZijk +cijk, where i = 1,2, ... ,1; i = 1,2, ... ,J; 
k = 1,2, ... ,K; and the Cijk are independently distributed as N(0,a 2 ). 

Obtain a test statistic for testing the hypothesis 

H : 'Yij = "I (all i,j). 

MISCELLANEOUS EXERCISES 8 

1. If the Cij (i = 1,2, ... , I; j = 1,2, ... , J) are independently distributed 
as N(O, ( 2 ), prove that 

and ~~(C" -E:' -E:' +E: )2 ~~ oJ o. .J oo 

i j i j 

are statistically independent. 

2. Let Yij = J.t+ai+cij (i = 1,2, ... ,I;j = 1,2, ... ,J), where L:idiai = 0 
(L:idi f:. 0) and E[cij] = 0 for all i,j. Using the method of Lagrange 
multipliers, find the least squares estimates of p, and ai. Hint: Show 
that the Lagrange multiplier is zero. 

3. Let Yijk = J.tij + Cijk, where 

P,ij - J.too + (J.ti. - J.tJ + (P,ij - p,d 

J.t + ai + (3ij, 

say, i 1,2, ... ,I;j = 1,2, ... ,J;k = 1,2, ... ,K, and the Cijk are 
independently distributed as N(O, ( 2 ). 

(a) Find the least squares estimates of p" ai, and (3ij, and show that 
they are statistically independent. 

(b) Obtain test statistics for testing the hypotheses HI : (3ij = 0 (all 
i,j)and H2 : ai = 0 (all i). 

4. Let Yij = P,i + Cij (i = 1,2, ... , I; j 1,2, ... , J), where the Cij are 
independently distributed as N(O, ( 2 ). 

(a) When I = 4, obtain an F-statistic for testing the hypothesis that 
J.t1 = 2p,2 ::: 3p,3' 

(b) When I = 2, show that the F-statistic for testing J.t1 = J.t2 is the 
square of the usual t-test for testing the hypothesis that the means 
of two normally distributed populations are equal, given that their 
variances are equal. 
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V·· k = u·L ,.", .L pf-l, + ~vk .,,- c .. k ... ';.) ,,'--<·'t· I J ' . L-l,J , 

where i = 1,2, .. ,,Ijj == 1,2" .. ,J;k = 1,2,.,.,K, I:iQi = '2:;j{3j == 
I:k "tk = 0, and the Cijk are independently distributed as N(O, (72). 

(a) Express /-L, Qi, {3j, and "tk in terms of the parameters /Lijk = E[YijkJ. 

(b) Obtain a test statistic for testing the hypothesis H : Qi = 0 (all i). 

(c) Prove that 

2: 2: 2)€ij, - €i,. - €,j. + €,.,)2 /(72", XCI-l)(J-l)' 
i j k 

Hint: Split up I:i I:j I:k(€ij. - €i.Y into two sums of squares. 

6. Consider the linear model Yijk == /Lijk + CijkJ where i = 1,2, .. . ,1; j == 
1,2, ... , J; k = 1,2, .. '., Kj and the eijk are independently distributed 
as N(O, (72). Let 

/-Lijk - /-L ... + (/-Li .. - /-L.J + (/-Lij. - /-LiJ + (/-L .. k - /-L.J + D.ijk 

say, where D.ijk = 0 (all i,j, k). 

(a) Find the least squares estimates of /L, Qi, {3ij, and "tk· 

(b) Obtain an F-statistic for testing H : Qi = 0 (all i). 



9 
Departures from Underlying 

Assumptions 

9.1 INTRODUCTION 

The basic multiple regression model that we have been studying thus far is 
Y = X(3 + e, where X is n x p of rank p. We assume that the elements of e 

(1) are unbiased; 

(2) have constant variance; 

(3) are uncorrelated, and 

(4) are normally distributed. 

Assumption (1) implies that E[e] = 0, which implies that X is the COr­
rect design matrix (i.e., E[Y] = X(3). Assumptions (2) and (3) imply that 
Var[e] = u2In, and (3) and (4) imply the independence of the Ci. It is also 
assumed, implicitly, that the regressor variables Xj are not random variables 
but are predetermined constants. If the explanatory variables are random 
and are measured without error, then the regression can be regarded as being 
conditional on the observed values of the explanatory variables, a problem 
discussed in Section 9.6.1. In this chapter we examine each of the foregoing 
assumptions in detail. 

It should be noted that there is a tendency for errors that occur in many 
real situations to be normally distributed owing to the central limit theorem. 
If C is a sum of n errors from different sources, then, as n increases, c tends to 
normality irrespective of the probability distributions of the individual errors. 

227 
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This argument applies to small errors di, say, in a nonlinear system since 

and to is once again a (weighted) sum of errors. 
In the next section we examine the effect of misspecifying the design matrix. 

If X is "underfitted", we will find that i3 is biased, 8 2 is an overestimate of 
(52, but Var[i3) is correct. The residual vector is also biased, but its variance­
covariance matrix is not. If X is "overfitted", then i3 is essentially unbiased, 
8 2 is unbiased, but Var[l3J is inflated. Also, the residual vector is unbiased, 
but its variance-covariance matrix is inflated. In both cases there are similar 
problems with fitted values and predictions. 

9.2 BIAS 

9.2.1 Bias Due to Underfitting 

If E[c:) = 0, then E[Y) = X(3 and the least squares estimate i3 = (X'X)-l X'Y 
is an unbiased estimate of (3. However, if the model is underfitted, so that 
the true model is actually 

E[Y) = X(3 + Z'Y, (9.1) 

where the columns of the n x t matrix Z are linearly independent of the 
columns of X, then c: is biased and 

E[i3) (X'X)-lX'(X(3 + Z'Y) 
- (3 + (X'X)-lX'Z'Y 

(3 + L'Y, (9.2) 

say. Thus i3 is now a biased estimate of f3 with bias L'Y. This bias term 
depends on both the postulated and the true models, and L can be interpreted 
as the matrix of regression coefficients of the omitted variables regressed on 
the x-variables actually included in the model. A good choice of design may 
keep the bias to a minimum even if the wrong model has been postulated and 
fitted. For example, if the columns of Z are orthogonal to the columns of X, 
then X'Z = 0, L = 0, and i3 is unbiased. Under some circumstances the 
orthogonality of the columns of X and ° may be described as zero correlation 
between a pair of x and z explanatory variables (Malinvaud [1970]). In this 
case, inadvertently omitting an uncorrelated regressor may not be serious. 

EXAMPLE 9.1 Suppose that we postulate the model E[Y] = (30 + (3lx 
when the true model is E[Y) = (30 + (31 X + (32x2. If we use observations of Y 
at Xl = -1, X2 = 0, and X3 = 1 to estimate (30 and (31 in the model postulated, 
then we can find the biases as follows. 
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The true model is 

E(~) ( 1 Xl Xl)(P') (' -1 DUn - 1 X2 x~ f31 = 1 0 
1 X3 x~ f32 1 1 

- (l -~ ) ( ~: ) + ( ~ ) p, = X~ + Zp,. 

Now 

(X'X)-l = (& ~), 

X'Z = (_: ~ ;) ( ~ ) = ( ~ ) 

and from equation (9.2), the bias of [3 is 

Thus (30 has bias if32, and (31 is unbiased. o 

If equation (9.1) represents the true model, then provided that Var[c:] = 
(7'2In, we still have Var[[3] = (7'2(X'X)-1. However, given P = X(X'X)-lX' 
with trace p, and S2 = Y'(In - P)Y I(n - p), then (Theorem 1.5 in Section 
1.5) 

E[s2] 2 "Y'Z'(In-P)Z"Y 2 =(7'+ >(7'. 
n-p 

This follows from the fact that (In - P) is idempotent and therefore positive­
semidefinite, and when "Y =1= 0, we have (In - P)Z"Y =1= 0 [as Z"Y rt C(X) 
implies that its projection perpendicular to C(X) is not zero]. Hence S2 is an 
overestimate of (7'2 . 

To examine the effect of underfitting on the fitted model, we note that 
Y = PY and 

E[Y] - PE[Y] 
- P(X/3 + Z"Y) 

- X/3 + PZ"Y' (9.3) 

The effect, therefore, of ignoring Z"Y in the regression amounts to using PZ 
instead of Z. 

As far as the residuals are concerned, we see that 

E[e] - E[Y] - E[X[3] 
- X(3 + Z"Y - (X/3 + XLI') [by (9.2)] 

- (In - P)Z"Y (9.4) 
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and 
Var[e] = Var[(In - P)Y] = (7"2(In - p)2 = u 2 (In - P). 

The effect of misspecification is to bias e but leave Var[e] unchanged. Ramsey 
[1969] makes use of this fact to provide several tests for this kind of misspec­
ification. 

We now examine the effect of the underfitting on prediction. Suppose that 
we wish to predict the value of Y at Wo = (x~, z~)', although only Xo is 
observed. Then the prediction using Xo only is Yo = x~fJ, whereas the correct 
prediction is Yoa = wbJ, where (from Section 3.7) 

is the least squares estimate of t5 for the model W t5 = X(3 + Z'Y. Now,from 
(9.2), 

which may be compared to the "true" expectation 

Also, from equation (3.25), 

var[Yoa] (x~, zb) Var[§G](x~, z~)' 

(7"2 (x~, z~)(W'W)-1 (x~, z~)' 

2(' ') ( (X'X)-l + LML' 
(7" xO' Zo -ML' -LM)(, ')' M xo,zo 

> 
(7"2X~(X'X)-IXO + (7"2 (L'xo - zo)'M(L'xo -zo) 

var[Yo], (9.5) 

since M = [Z'(In - P)Z]-1 is positive-definite because, by (3.25), it is the 
variance-covariance matrix of'1a. Hence the "apparent" prediction variance 
var[Yo] will tend to be smaller than the "true" variance. 

9.2.2 Bias Due to OverfiUing 

Suppose that the true model is E[Y] = XI(3I, where Xl consists of the first 
k columns of X; thus X = (Xl, X 2), say. Then 

E[fJl - (X' X) -1 X' Xl (31 

(X'X)-IX'X ( ~l ) 

- (r:;), (9.6) 
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and /31, consisting of the first k elements of /3, is an unbiased estimate of {3l' 
Also, 

E[Y] = E[X/3] = X ( ~ ) = X l{3l, (9.7) 

so that the fitted model is an unbiased estimate of the true model. However, 
as we shall now show, the familiar formula u 2 (X'X)-1 leads to inflated ex­
pressions for the variances of the elements of /31' From equation (3.25) in 
Section 3.7, with X and Z set equal to Xl and X 2 , respectively, we have 

-LM) 
M ' 

where M, and therefore LML', is positive-definite (A.4.5). Hence, by A.4.8, 

"apparent" var[,Bd "true" 
. , 

var[,Bi] + (LML )ii 

> "true" var[,Bd, 

where,Bi is an element of (31' Since (In - P)(Xl ,X2 ) = 0 [Theorem 3.1(iii)]' 
we note that 

E[Y' (In - P)Y] = (n - p)(]"2 + {3~ X~ (In - P)Xl {31 = (n _ p) (]"2 , 

and 8 2 is still an unbiased estimate of (]"2. 

Additional effects are explored in the following exercises. 

EXERCISES 9a 

1. Suppose in Example 9.1 that the roles of the postulated model and the 
true model are exchanged. Find the biases of the least squares estimates. 

2. In Section 9.2.2 the observed residual is Y - x/3. Find its true mean 
and variance-covariance matrix. 

3. In Section 9.2.2 suppose that Xb = (x~o, x~o), where Xo is p x 1 and 
XlO is k x 1. The prediction at Xo is Yo = xb/3, whereas the correct 
prediction is YlO = X~0/31' Compare Yo and YlO with respect to their 
means and variances. 

9.3 INCORRECT VARIANCE MATRIX 

If we assume that Var[e:] = (]"2In when in fact Var[e:] = (]"2V, then /3 is still 
an unbiased estimate of {3. However, 
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is, in general, not equal to (7"2 (X'X)-l . Then (cf. Theorem 1.5 in Section 1.5) 

2 
(7" E[Y'(In - P)YJ 

n -p 
(7"2 
-- tr[V(In - P»), 
n-p 

and S2 is generally a biased estimate of (7"2. It follows that 

will normally be a biased estimate of 

var[a'.Bl = (7"2a '(X'X)-IX'VX(X'X)-la. 

In fact, SWill del [1968) has shown that if 

E[v) = var[a'.B) + b, 

then 

{mean of (n - p) least eigenvalues of V} - (greatest eigenvalue of V) 
(greatest eigenvalue of V) 

b < ---;0-

var[a'.Bl 

(9.8) 

(9.9) 

(9.10) 

< {mean of (n - p) greatest eigenvalues of V} - (least eigenvalue of V) 
- (least eigenvalue of V) 

and the bounds are attainable. 

EXERCISES 9b 

1. If the first column of X is In and 

V = (1 - p)In + plnI~ (0 < P < 1), 

use (9.8) to show that 

Hint: Consider PIn. 

2. When Var[c:J = (7"2V, the appropriate estimate of f3 is the generalized 
least squares estimate (3* = (X'V-I X)-I X'V-I Y. If C(V-I X) = 
C(X), show that (3* and.B are identical. Hint: V-IX == XW, where 
W is nonsingular. 

(McElroy [1967]) 
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9.4 EFFECT OF OUTLIERS 

In fitting the regression model Yi = x~(3 + c (i = 1, ... , n), where Xi is the 
ith row of the design matrix X, we can think of the data point (x~, Yi)' as a 
point in p-dimensional space. Some of these points may arouse suspicions, as 
they are "discordant" with the other points. Such points are usually referred 
to vaguely as outliers, and they mayor may not have an effect on estimation 
and inference using the prescribed regression model. It is generally accepted 
that several percent of even (supposedly) high-quality data can be erroneous 
through such things as wrong measurements, wrong decimal points, and wrong 
copying, for example. Some fraction of the erroneous data may be sufficiently 
different from the other data to warrant the label outlier. Also, if Ci comes 
from a long-tailed distribution rather than our postulated normal distribution, 
then a Yi that is more extreme than usual can arise and become a candidate 
for outlier status. 

We shall be interested in two kinds of points: those points whose error Ci is 
large, and those points whose Xi value is far from the bulk of the data. There 
is no standard terminology for these points; the former is variously labeled 
outlier, error outlier, outlier in the y-direction, and regression outlier, and the 
latter variously called an extreme point, outlier in the x-direction, x-outlier, 
leverage point and high-leverage point. We shall use the terms outlier and 
high-leverage point, respectively. To demonstrate these terms, suppose that 
our (true) underlying model isa straight line, as in Figure 9.1, with data 
points scattered around it. 

x 

Fig. 9.1 Outliers and high-leverage points. 
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Here the points ii, B, and C, are of particul2.T interest, with A and C 
being outliers (Le., a big vertical displacement froE~ the true line), and B and 
C being high-leverage points (since their x-values are distant from the average 
x-value). We now consider what would happen if just one of these points were 
present and the other three absent. If just A were present, we would expect 
A to have a modest effect on the least squares fit of the line to the data, 
moving it up. The point B would have a negligible effect on the fit, but C, 
which is both an outlier and a high-leverage point, will have a considerable 
effect, much greater than that of A. (See Section 10.6 for more discussion.) 
Points like C are often referred to as influential points, since they exert a big 
influence on the position of the fitted line. 

We note that, in general, the fitted model takes the form Y = PY, or 

Pi = LPijYj = PiiYi + LPijYj , (9.11) 
j #i 

where P = (Pij). Since P = p2, we have 
n 

Pii = LP~j = P~i + LP~j' (9.12) 
j=l j;ii 

which implies that Pii > pri' or Pii < 1. Furthermore, from (3.53), the non­
negative distance MDi implies that Pii > lin, so that 

1 - < p .. < 1. n - tl_ 
(9.13) 

We note from (9.12) that when Pii is close to I, Pij (j =f. i) will be close to 
zero, and from (9.11) this means that Yi will be determined largely by the 
value of Yi. Thus if Yi is both an outlier and a high-leverage point, MDi will 
be large, Pii will be close to I, and Pi will be affected by Yi. This supports 
our contention that a point like C above can have a serious affect on the fitted 
line. 

Suppose that the ith point is an outlier, so that Yi = x~{3 + Ai + Ci, where 
Ai is a positive constant. Let a be the vector with ith element Ai and the 
remaining elements be zero. Then 

and since PX = P, 

which leads to 

Y = X{3 + a + c:, 

E[Y] PE[Y] 

P(X{3 + a) 
X{3 + pa, 

(9.14) 

Once again this emphasizes that the effect of Ai on the fitted surface depends 
on the magnitude of Pii. 
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9.5 ROBUSTNESS OF THE F -TEST TO NONNORMAUTY 

9.5.1 Effect of the Regressor Variables 

Box and Watson [1962] showed that the sensitivity of the F-test to normal­
ity depends very much on the numerical values of the regression variables. In 
terms of the experimental design situation in which the elements of the design 
matrix X are 0 or 1, this means that some designs will have more robust tests 
associated with them. For example, Box and Watson show, by an appropriate 
choice of X, that almost the same regression model can be made to reproduce, 
on the one hand, a test to compare means which is little affected by nonnor­
mality, and on the other, a comparison of variances test which is notoriously 
sensitive to nonnormality. Let Yi ::::: {:30 + {:31xi1 + ... + {:3kxi;p-l + Ci, and 
consider H: {:31 ::::: {:32 ::::: '" ::::: (3p-l ::::: O. When H is true and the regression 
assumptions are valid, then 

F ::::: n - p . RSSH - RSS ~ F 
p - 1 RSS k,n-p-

However, if we now relax the distributional assumptions and assume that 
the Ci are independently distributed with some common-not necessarily 
normal-distribution, then Box and Watson [1962: p. 101] show that when 
H is true, F is approximately distributed as FV" v2l with VI = 6(p - 1), 
V2 ::::: 6(n - p), and 

where 

or (to order n-1) 

6-1 _ 1 + (n + 1)a2 
- n -1- 2az' 

n-3 
Q2 = 2n(n -1) . CXr'Yi 

6-1 ::::: 1+ cxr'Y. 
2n 

(9.15) 

Here r'Y ::::: E[k4/k~1, where k2 and k4 are the sample cumulants for the n 
values of Y, and Cx is a multivariate analog of k4/k~ for the x variables. 
When c:, and therefore Y, has a normal distribution, then r'Y = 0, 6 = 1, and 
F V" V2 = Fk,n-p. We see that the effect of any nonnormality in Y depends on 
Cx in the term 6. Box and Watson show that 

n-3 
-2 < 1 ex < n - 1, 

n-
(9.16) 

where the lower bound is obtainable but the upper bound, although ap­
proached, cannot be attained in finite samples. When the explanatory vari­
ables can be regarded as being approximately "normal," then Cx R::: 0 and 
the F -test is insensitive to nonnormality. Thus we may sum up by saying 
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that it is the extent of nonnormality in the explanatory variables which de­
termines the sensitivity of F to nonnormality in the Y observations. Let 
Xij = Xij - Xj (i = 1,2, ... ,n; j = 1,2, ... ,p - 1) and let X = (Xij). If 
M = (mrs) = X(X'X)-lX' and m = L:~=1 m;r, Box and Watson show that 

Cx = n(n
2 

- 1) {m _ (p - 1)2 _ 2(P - l)(n - p)} (9.17) 
(p-l)(n-p)(n-3) n n(n+l)' 

Now, applying Theorem 3.1(ii) to the n x n matrix M yields tr(M) = p - 1. 
If the diagonal elements of M are all equal, we have mrr = (p - 1)/n (r = 
1,2, ... ,n), m = (p_1)2/n, and 

Cx 
n(n2 

- 1) {2(P - 1)(n - p) } 
(p - 1)(n - p)(n - 3) n(n + 1) 

2(n - 1) 
n - 3 . 

Hence, in this case, the lower bound of (9.16) is attained, 6-1 = 1-(r 'Y/n) ~ 1, 
and for large n the F-test is insensitive to nonnormality. From symmetry con­
ditions it is not hard to show that many analysis-of-variance models, such as 
any cross-classification with equal cell frequencies in every cell or any hierar­
chical classification with equal cell frequencies at each stage of the hierarchy, 
have equal elements m rr . 

This theory refers only to the case H: (31 = ... = (3p-l = O. However, an 
alternative approach, which allows a more general hypothesis, has been given 
by Atiqullah [1962]. We now consider his method in detail. 

9.5.2 Quadratically Balanced F -Tests 

Let Y1 , Y2 , ••. , Yn be independent random variables with means 91 ,92, ... , 9n , 

respectively, common variance 0"2, and common third and fourth moments 
about their means; let "/2 = (11-4 - 30"4)/0"4 be their common kurtosis. Then 
from Atiqullah [1962] we have the following theorems. 

THEOREM 9.1 Let Pi (i = 1,2) be a symmetric idempotent matrix of rank 
Ii such that E[Y'P i Y] = 0"2 j;, and let PIP 2 = O. If Pi is the column vector 
of the diagonal elements of Pi then: 

(i) var[Y'PiY] = 20"4Ui + h2p~Pi). 

(ii) cov[Y'P1 Y, Y'P2 Y] = 0"4"/2P~P2' 

Proof. (i) Since Pi is symmetric and idempotent, tr(P i) = rank(P i) = Ii 
(A.6.2). Also, E[Y'P i Y] = 0"2 tr(P i) + (}'P i() . 0"2 Ii (Theorem 1.5, Section 
1.5), so that (}'PI() = (}'Pi () = 0 for all (); that is, Pi(} = 0 for all (). Therefore, 
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substituting A = Pi in Theorem 1.6, we have 

var[Y'PiY] 20.4tr(P~)+ (/-L4 - 30.4)p~Pi 

20.4 [tr(P i) + h2p~Pi] 
- 2cr4 (fi + h2p~Pi). 

(ii) Given P l P 2 = 0, we have 

pi + P l P 2 + P2P l + P~ 
PI + PlP2 + (Pl P 2), + P2 

- PI +P2· 

Therefore, PI + P 2 is idempotent and, by (i), 

var[Y'Pl Y + Y'P2 Y] var[Y'(Pl + P2)Y] 

- 2cr4[tr(Pl + P 2) + h2(Pl + P2)'(PI + P2)] 

- 2cr4 [fI + h + h2(piPl + 2PiP2 + p~p2)] 
var[Y'Pl Y] + var[Y'P2 Y] + 2cr4'Y2P~P2' 

Hence cov[Y'Pl Y, Y'P2 Y] = cr4'Y2PiP2' o 

THEOREM 9.2 Suppose that PI and P 2 satisfy the conditions of Theorem 
9.1, and let Z = ~ log F, where 

Y'P1Y//l (Sf ) 
F = Y'P2Y/h = s~' say. 

Then for large fI and h we have, asymptotically, 

E[Z] '" ~(f2l - 111) 

x [1 + h2(fIp2 - hpd(fIp2 + hPl){fIh(/l- h)}-l] (9.18) 

and 

Proof. Using a Taylor expansion of log S; about log cr2 , we have 

(9.20) 

Taking expected values, and using E[Sn = cr2 , we have 

2 2 1 [2] E[log Si] ,...., log cr - 2cr4 var Si , 
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where, from Theoren 9.1, \ 

[ 2] var[Y'PiY] _ 4( -1 ,: -2' 
var Si = If - 2(j Ii T 21zfi PiPi). 

Substituting in 
E[Z] = ! {E[log sl) - E[log S~]} 

leads to equation (9.18). 
To find an asymptotic expression for var[Z], we note first that 

var[Z] = t { var[log S~] + var[log Si] - 2 cov[log S~, log S~]} . (9.21) 

Then, ignoring the third term in (9.20), we have E[logSll ~ log(j2 and 

var[log sll ~ E [(log S; -log (j2)2J 

E[(S; - (j2)2] 

Similarly, 

cov[log S~, log Si] ~ E [(log S~ -log (j2)(log si -log (j2)] 

E[eSi - (j2)(S~ - (j2)] 
(j4 

cov[Si, S~l 
(j4 

Finally, substituting in 

1 
var[ Z) ,..., 4(j4 { var[ S~l + var[ sil - 2 cov[ S~ , S~]} 

and using Theorem 9.1 leads to equation (9.19). o 
We can now apply the theory above to the usual F-statistic for testing 

H: A{3 = o. From Theorem 4.1(iv) in Section 4.3, we have 

F = Y'(P-PH)Ylq 
Y'(In - P)Y I(n - p) 

Y'P 1Ylq 
Y'P2 Y I(n - p) 

Si 
Si' (9.22) 

say, where P 1 P 2 = (P - PH)(In - P) = PH - PHP = o. Suppose that we 
now relax the distributional assumptions underlying F and assume only that 
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the Ci are independently and identically distributed; in particular, E[c] = 0 
and Var[c] = (72In. Then E[Si] = E[S2] = (72 (Theorem 3.3 in Section 3.3) 
and, when H is true, E[Sf] = (72 [by Theorem 4.1(ii) with A{3 =: c = OJ the 
assumption of normality is not used in the proof]. Also, the Yi satisfy the 
conditions stated at the beginning of this section [with (fh) = () = X(3), so 
that when H is true, Theorem 9.2 can be applied directly to the F-statistic 
(9.22) with II = q and h = n - p. When the Ci, and therefore the Yi, are 
normally distributed, it is known that for large II and 12, Z =: ~ log F is 
approximately normally distributed with mean and variance given by setting 
"12 = 0 in equations (9.18) and (9.19) when H is true. As this approximation 
is evidently quite good even when II and h are as small as four, it is not 
unreasonable to accept Atiqullah's proposition that for a moderate amount 
of nonnormality, Z is still approximately normal with mean and variance 
given by (9.18) and (9.19). On this assumption Z, and therefore F, will be 
approximately independent of "12 if the coefficient of 1'2 in (9.18) and (9.19) is 
zerOj that is, if 

/IP2 = !2P1. (9.23) 

Now, using Atiqullah's terminology, we say that F is quadratically balanced 
if the diagonal elements of Pi (i = 1,2) are equal; most of the usual F-tests 
for balanced experimental designs belong to this category. In this case, since 
tr(P i) =/i, we have 

/i 
Pi = -In 

n 
and f 1I!2 

1P2 = --In = f2P1. 
n 

Thus a sufficient condition for (9.23) to hold is that F is quadratically bal­
anced. 

Atiqullah [1962: p. 88] also states that even if "12 varies among the Yi, 
quadratic balance is still sufficient for E[Z] and var[Z] to be independent of 
kurtosis effects, to the order involved in Theorem 9.2. Finally, we note that 
if "12 can be estimated, equations (9.18) and (9.19) can be used to modify the 
degrees of freedom and improve the correspondence between the distribution 
of the F-ratio and an F-distribution (Prentice [1974]). 

EXERCISES 9c 

1. Fill in the details of the proof of Theorem 9.2. 

2. Show that the theory of Section 9.5.2 can also be applied to the case 
H: A{3 = c, where c =I- 0 [ef. (9.22)]. 

3. Consider the full-rank regression model 

(i = 1,2, ... ,n), 

where the Ci are independently and identically distributed as N (0, (J2), 
and suppose that we wish to test H: (31 = (32 = '" = (3p-1 = o. 
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Assuming that H is true, find an approximate expression for E[Z], where 
Z = ~ log F, in terms of the diagonal elements of X(X'X)-lX'. 

9.6 EFFECT OF RANDOM EXPLANATORY VARIABLES 

We shall consider four different scenarios: random explanatory variables mea­
sured without error, fixed explanatory variables measured with error, random 
explanatory variables measured with error, and controlled explanatory vari­
ables (commonly called Berkson's model). 

9.6.1 Random Explanatory Variables Measured without Error 

Suppose that we have a lawlike relationship 

V = {30 + {31U1 + ... + {3p- 1 Up- 1 (9.24) 

between the random variables V and {Uj }. This relationship is typically called 
a structural relationship with the Uj being observed exactly but V unknown 
(due, for example, to experimental error), so that Y (= V + 0:) is actually 
observed. The appropriate model is now 

(9.25) 

or 
(9.26) 

The simplest and most popular method of fitting this model is to carry out 
a standard regression analysis conditionally on the values observed for the 
explanatory variables; we simply proceed as though the explanatory variables 
were fixed. Such an approach now requires the usual assumptions of normality, 
constant variance, and independence to hold conditionally on the Uj's. The 
problems of bias, etc. due to model misspecification, as discussed above, will 
be the same as for fixed explanatory variables. 

A different approach to the problem is the following. Suppose that the true 
model is 

(r < s). 

where the Uj (j = 1,2, ... , s) are random variables with E[Uj] = 6j . Here 
the "error" (j is assumed to be due to further "hidden" variables Ur+1, ... , Us. 
Now 

8 

Y ({30 + {3r+1 6r+l + ... + (3s6s) + {31U1 + ... + {3rUr + L (3j(Uj - 6j ) 

j=r+l 
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where E[c:] = O. This is the same model as (9.25). However, since r is 
arbitrary, we will always have E[c:] == 0 irrespective of the number of regressor 
variables we include in the model. In this case there is no question of finding 
the "true" model. What we are looking for is an adequate model, that is, one 
which reduces c: to a reasonable level. For this type of model it can be argued, 
therefore, that the question of bias due to overfitting or underfitting does not· 
arise. 

9.6.2 Fixed Explanatory Variables Measured with Error 

Least Squares Estimation 

Suppose that the relationship (9.24) is now between the expected values 
rather than the random variables, that is, 

v = E[Y] {30 + {31E[X1] + ... + {3p-1E[Xp- 1] 

{30 + {31 U1 + ... + {3p-1 Up-I. (9.27) 

This lawlike relationship between the expected values is usually called a func­
tional relationship. Fuller [1987: p. 2] gives the helpful mnemonic "F" for fixed 
and functional and "S" for stochastic and structural. Here v and the Uj'S are 
unknown, and are all measured with error. Sometimes the relationship comes 
from a physical law (perhaps suitably transformed to achieve linearity), with 
the randomness in the model arising from experimental errors in measuring 
the mathematical variables v and Uj. For this reason the model is sometimes 
called the errors-in-variables model or, in the straight-line case, the model for 
regression with both variables subject to error. Here the appropriate model is 
now 

(9.28) 

where c: is assumed to be independent of the {Xj }. IT we have n measurements 
on the model above, then 

say, or 

{30 + {3IUil + ... + {3p-IUi,p-1 + C:i 

u~(3 + C:i, 

Y = U(3 +C:, (9.29) 

where U = (UI, U2, ... , un)'. Suppose that the data point Ui is measured 
with an unbiased error of 8i so that we actually observe Xi = Ui + 8i , that 
is, observe X = U +~, where X = (XI,X2, ... ,Xn ], ~ :::: (81 ,82 , ... ,8n )" 

and E[~] = O. It is assumed that the 8i are uncorrelated and have the same 
variance matrix; thus 

E[8 i8j] = { 
D, 
0, 

t =], 
i =f j. 
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Since the first element of each Ui aI'.d Xi is unity, the first element of Di is 
zero, and the first row and colum:c. of D consists of zeros. We also assume 
that ~ is independent of c. The usual least squares estimate of {3 is now 

instead of fJ = (U'U)-l U'Y, so that fJ::,. is no longer unbiased. The properties 
of fJ::,. were discussed in detail by Hodges and Moore [1972] for the common 
special case of D = diag(O, CTr, CT~, ... , CT~_l). However, using a more rigorous 
approximation theory, Davies and Hutton [1975] extended this work to the 
case of a general matrix D (in their notation, U -+ X', X -+ W', D -+ S, 
and ~ -+ ~'). We now consider their results below. 

Bias 

Since ~ is independent of c (and Y), 

E[fJ::,.] - E::,.E[fJ::,. I ~] 
- E::,.[(X'X)-lX'U{3] [from (9.29)] 

- E::,.[(X'X)-lX'(X - ~){3] 

- {3 - E::,.[(X'X)-lX' ~{3] 

- {3 - b, (9.30) 

say. When n is large, Davies and Hutton [1975: Theorem 4.1] show that 

b ~ (~U'U +D) -1 D{3 

- n(U'U + nD)-lD{3. (9.31) 

[In fact, if limn .... 00 {(l/n)X'X} = A, say, then fJ::,. is a consistent estimate of 
(A + D)-l A{3 = {3 - (A + D)-lD{3).] Since 

E[X'X] - E[U'U + ~'U + U' ~ + Jl..' ~] 

- U'U + E[~'~] 

U'U + E l~ DiD~1 
U'U +nD, 

an obvious estimate of the bias b is 

b = n(X'X)-lnfJ, 

(9.32) 

where n is a rough estimate of D available, we hope, from other experiments. 
When D = diag(O, CT?, . .. ,CT~_d, the approximations used by Hodges and 
Moore lead to a similar estimate of b (with n - p - 1 instead of n). Davies 
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and Hutton show that the magnitude of b is related to how close XiX is to 
being singular. If the errors are such that they may bring XIX close to being 
singular, then the bias could be large. Using the central limit theorem they 
also show that VTifh is asymptotically normal. 

EXAMPLE 9.2 We now apply the theory above to the straight-line model. 
Here we have 

Yi = {:30 + {:31ui + Ci and Xi = Ui + di. 

The pairs (di' ci) are generally assumed to be a random sample from a bivariate 
normal distribution. If we assume further that di and Ci are independently 
distributed with zero means and respective unknown variances O'g and 0';, we 
haven pairs (Xi, Yi) of data but n+4 unknowns ,80, ,81, d, 0';, and Ul, .. · ,Un. 

Applying (9.31) with D = diag(O, O'~) yields 

~ u{:31nO'~ 
E[.Bo.o.] :::::: {:30 + 2: ( )2 + 2 

i Ui - U nO' Ii 

and 

We note that 

n 

" -2 L..,.(Xi - X) 
i=l i 

i i i 

so that 

E [~(Xi - X)2] = ~(Ui - til + (n -l)O'~. 
We then see that the relative bias in ~1D. is approximately 

which will generally be small if 2:i (Xi - X)2 In > > O'r This will be the case if 
the variation among the Xi is much greater than the error in a single Xi; a not 
unexpected result. When this is not the case, we find that certain maximum 
likelihood estimates are no longer consistent (Sprent [1969: Chapter 3]; see 
also Moran [1970, 1971]. The inconsistency is related to the fact that the 
number of unknowns Ui increases with n. 0 

Expressions for the exact values of E[~lD.] and E[(~lD. - {:31)2], along with 
more accurate large sample approximations, are given by Richardson and Wu 
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[1970). Their results are generalized by Halperin and Gurian [1971) to the 
case where di and Ci are correlated. Alternative methods of estimation are 
available under certain restrictions (e.g., when the ratio a-;/a-~ is known; see 
Fuller [1987) for details). 

Standard Errors 

Davies and Hutton [1975: equation 4.2) show that when D is close to the 
zero matrix, 

1 {( 1 ) -1 }. Var[.BA] ~ n n U'U + D (a-2 + (3' 1l.(3) + O(D2) . 

The usual estimate of this variance-covariance matrix is V = S2(X'X)-1, 
where 

(n - p)S2 - (Y - X.BA)'(Y - X.BA) 
Y' (In - X(X'X)-1X') Y 

- Y'(In - Px)Y, 

say. The question now is: Does V still provide an unbiased estimate of 
Var[.BA)? Since Il. is independent of e, X'(In - Px) = 0, and tr(In - Px) = 
n - p, we have (Theorem 1.5) 

E [en - p)S21 Il.] - E [en - p)cr2 + {3'U'(In - Px)U{31 Il.] 

= E [en - p)cr2 + {3'(X' - 1l.')(In - Px)(X - Il.)B I 1l.1 

= E [en - p )a-2 + {3' Il.' (In - P X )1l.{3 Ill.] . (9.33) 

Now for any matrix C, 

i j 

i 

- Dtr(C), 

so that from (9.33) it transpires that 

E[V) - EAE [S2(X'X)-1 Ill.] 

- EA [{ a-2 + n ~ p{3' 1l.'(In - Px)Il.{3} {(X'X)-1}] 

~ {a-2 + 1 {3' E [Il.' (In - P X )Il.] {3} {E[X'X)}-1 
n-p 

~ (0"2 + (3'D(3) (U'U + nD)-1 

~ Var[{3A]. (9.34) 

Hence, for large n and small D, V is still approximately unbiased. 
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9.6.3 Round-otT Errors 

Using the notation above, we suppose, once again, that U is the correct 
data matrix (Le., E[Y] = U,6), and we observe X = U +.6.. However, 
following Swindel and Bower [1972], we now assume that the measurements 
are accurate but they are rounded off according to some consistent rule to 
give Xij = Uij + Aij. In this case the rounding error Aij can be regarded as 
an (unknown) constant, not a random variablej Aij is determined solely by 
the Uij and the rounding rule. The matrix X is now a matrix of constants 
rather than a random matrix as in the preceding section. The bias of ~6. = 
(X'X)-lX'y is 

E[~6. -,6] (X'X)-lX'(U - X),6 

-(X'X)-lX'.6.,6. (9.35) 

By writing .6.,6 = L:~:~ .6.j{3j, where the .6.j are columns of .6., we see that 
the bias does not depend on {3j if .6.j = OJ the bias depends only on the 
explanatory variables containing rounding errors. We see from 

2 ,6'U'(In - Px)U,6 (J" + '---~-----'----'-
n-p 

_ (J"2 + ,6'(X - .6.)'(In - Px)(X - .6.),6 
n-p 

2 ,6' .6.' (In - P X ).6.,6 - (J" + '---:"':':'-~~--'-
n-p 

> (J"2 (9.36) 

(since In - Px is positive-semidefinite), that 8 2 will tend to overestimate (J"2. 

However, (J"2 (X'X)-l is the correCt dispersion matrix of ~6.. Using eigenval­
ues, Swindel and Bower [1972] prove that for any a the estimate a' fJ6. of a',6 
has the property that 

o <RB(a'fJA)< !..(,6'.6.'.6.,6)1/2, (J" 

where RB is the relative bias, that is, Ibiasl/standard deviation. 

9.6.4 Some Working Rules 

Davies and Hutton [1975: p. 390] consider both random and round-off error in 
their analysis and give the following working rules. For the round-off situation, 
define rj to be the square root of the jth diagonal element of .6.' .6./n and 
suppose that ml of the rj's are nonzero. We first compute 

(9.37) 
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If PI is not somewhat larger than (mln)I/2, or possibly n l /2 if n is large, 
then at least some of the elements of (36. are likely to have little meaning. (In 
practice, rj will not be known exactly and will be replaced by, say, an upper 
bound.) If this test is passed, then (Davies and Hutton [1975], correction) 

n 1
/

2 L:j rjl,Bj,6.1 

S 

should be evaluated. If this quantity is markedly less than 1, then the errors 
in U can be ignored. However, if this test is failed and the situation of Section 
9.6.1 prevails (with random ~ij), then the next step is to compute 

where in the formula above and the definition of PI in (9.37), rj is now the 
square root of the jth diagonal element ofD. If the quantity above is markedly 
less than 1, then the effects of the errors are probably negligible, particularly 
if n is large. On the other hand, if this term is larger than 1, then the bias is 
likely to constitute a major part in the error of at least some of the estimates. 
The authors also suggest that the diagonal elements of P x be calculated in 
order to check whether any single regressor observation has an undue effect on 
the estimates. In particular, if any diagonal element is greater than about 0.2, 
it is possible for a moderate error in the corresponding regressor to affect the 
estimates significantly and yet go undetected when the residuals are checked 
(Chapter 10). 

9.6.5 Random Explanatory Variables Measured with Error 

Suppose that we have the structural model (9.25), but the random explanatory 
variables Uj are now measured with (unbiased) errors so that X.i is observed 
instead of Uj . Then Xj = Uj + 'Yj, where E['Yj I Uj ] = 0, and our model 
becomes 

E[YI{Uj }] {30 + {31 U1 + ... + {3p-1 Up- 1 

{30 + {31 E [X1 I Ud + ... + {3P-I E [Xp- 1 I Up-I]' (9.38) 

By treating the {Uj } as though they are (conditionally) constant, we see that 
the model above is analogous to (9.28), so that the discussion in the preceding 
section can be applied here, conditional on the {Uj }. Since E[Xj] = E[Uj ], 
we note that the structural model (9.38) can also be written in the form 

p-l 

Y {30 + {3IE[U1] + ... + {3p-l E [Up-l] + c + L: (3j(Uj - E[Uj ]) 
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where E[e/] = 0. This looks like (9.27), but there is a difference: 0:
1 is not 

independent of the {Ui }. 

EXAMPLE 9.3 As in the functional model, we shall demonstrate some of 
the estimation problems that arise by considering the special case of a straight 
line. Here Vi = /30 + /31Ui (i = 1, ... , n) and we observe Yi = Vi + €i and 
Xi = Ui + h We now assume that the vectors (Ui, ei, §i) are independently 
and identically distributed as Na ((J.l.u,O,O)/,diag(CTl"CT;,CTD). If we use the 
usual least squares estimate tiI = 2:i Yi(Xi - X) / 2: (Xi - X)2, which ignores 
the fact that we should use the true values {Ui} instead of the observed values 
{Xd, we have from Richardson and Wu [1970: p. 732] 

• ] (CTl, /CT~) 
E[/31 = /311 + (CTl,/CT~) 

and 

var[/3d = n ~ 2 [CTl,
CT! CT~ + /3~ (CTi'~CT!~)2] . 

We see that /31 is biased toward zero, and one way of describing this is to say 
that the regression coefficient has been attenuated by the measurement error. 
If var[X] :::: CT~ = CTl, + CT~, then the coefficient of /31 in the first equation is 
CTl, / CT~. This ratio measures, in some sense, the reliability of Xi' 

We note from Miscellaneous Exercises 9, No.4, at the end of the chapter, 
that (Xi, YiY has a bivariate normal distribution with mean (J.l.u, /30 + /31J.1.U)1 
and variance-covariance matrix 

There are six unknown parameters, J.l.u, CTl" /30, /31, CT~, and CTe , but they can­
not all be estimated, as the bivariate normal above has only five parameters. 
In fact, only J.l.u can be estimated; the remaining parameters are not identi­
fiable and the structural relation V = /30 + /31 U cannot be estimated. If the 
distribution of V is other than normal, it may be possible to devise methods 
that will identify all the parameters. However, in practice, we never know the 
distributiop of U, and the nearer the distribution is to normality, the worse 
the estimates. 0 

We see from this simple example that a key issue in structural models is 
the identifiability of the parameters. One obvious approach to the straight­
line problem is to impose some constraint on the parameters, thus effectively 
reducing the number of unknown parameters by one. Three types of constraint 
have been studied: 

1. CT~ or CT; is known: All the parameters are now identifiable and can be 
estimated. 
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2. aa/a" (= k, say) is known: All the parameters can be estimated consis­
tently. This is perhaps the most common constraint. 

3. a'[; / a'i is known. 

4. Both aa and a" are known: This leads to "overidentification" of the 
model so that this simplification is of limited practical use. 

In practice, "known" usually means estimated accurately using an indepen­
dent method. Fuller [1987] provides the theory of the straight line for cases 
(1)-(3) as well as the theory for several explanatory variables, nonlinear mod­
els, and multivariate models. Another way around the identification problem 
is to use replication (see, e.g., Seber and Wild [1989: Chapter 10] for the more 
general nonlinear case). 

9.6.6 Controlled Variables Model 

In this model, usually called Berkson's model, the explanatory variables are 
random but their observed values are controlled, a common situation when 
investigating lawlike relationships in the physical sciences. We demonstrate 
the idea with the following simple example. . 

EXAMPLE 9.4 Suppose that we wish to study Ohm's law 

v = (:Ju, 

where v is the voltage in volts, u is the current in amperes, and (:J is the resis­
tance in ohms. Then, for a given resistance, a natural experimental procedure 
would be to adjust the current through the circuit so that the ammeter reads 
a certain prescribed or "target" value Xi, for example, Xi =.1 A, and then 
measure the voltage Yi with a voltmeter. The ammeter will have a random 
error so that the current actually flowing through the circuit is an unknown 
random variable Ui, say. Similarly, the true voltage will also be an unknown 
random variable Vi so that our model for this experiment is now 

which is of the form (9.25). However, the model above reduces to a "standard" 
least squares model 

(:JXi + Ci + (:J(Ui - Xi) 

(:JXi + c~, 

where the error or fluctuation term is now c~ instead of Ci. What the discussion 
above implies is that in the controlled explanatory variables situation, the 
model may be analyzed as though the explanatory variables are nonrandom 
and error free. 0 
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9.7 COLLINEARITY 

One important assumption that we have not yet mentioned is that the re­
gression matrix X is assumed to be of full rank. In practice, the columns of 
X could be almost linearly dependent or collinear, which leads to X'X being 
close to singular. Since 

(9.39) 

near collinearity will have a considerable effect on the precision with which 
(3 can be estimated. When the estimated regression coefficients have large 
variances, tests will have low power, and confidence intervals will be very wide. 
It will be difficult to decide if a variable makes a significant contribution to 
the regression. 

In this section we examine in more detail the effect that almost collinear 
columns have on the variances of the estimated coefficients and show how the 
resulting fitted regressions can be unstable. In Section 10.7, we discuss how 
we can detect the presence of almost collinear columns and what action we 
can take to improve the precision of our estimates. 

9.7.1 Effect on the Variances of the Estimated Coefficients 

In this section we develop more detailed expressions for the variances of the 
estimated regression coefficients and identify patterns in X that lead to large 
variances. We begin by considering the case of the straight line. 

Straight-Line Regression 

The straight-line regression model 

Yi = (:30 + (:31xi + Ci (i = 1, ... ,n), (9.40) 

was considered in Section 6.1. The variances of the regression coefficients are 
2 ",n 2 

[(:JA 1 CT L.Ji-l Xi var 0 = --==-="'-..:... 
ns",,,, 

(9.41) 

and 

(9.42) 

where s",,,, = L~=l (Xi - X)2. Define the coefficient of variation of the x's by 

CV = (s",,,,/n)1/2 
'" Ixl 

The quantity CV", measures the variability of the x's relative to their average 
size, and is independent of the units used to measure x. Using the identity 

n n 

2)Xi - x)2 = LX; - nx2, 
i=l i=1 
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we can write (9.41) as 

var[.Bol 
u2 {s",,,, + nx2

} 

ns",,,, 

If CV", is small, then var[,Bol will be large. 
In contrast, var[,Bd depends only on s",,,, (Le., on the absolute rather than 

relative variability of the x's). We note that unlike var[.B11 , var[.Bol does not 
depend on the scale with which the x's are measured. 

We can avoid estimating (:30 altogether by considering the centered model 

(9.43) 

The parameter ao represents the height of the true regression line at x = x 
rather than at x = O. The true regression line is the same in both models, 
but it now has a different· mathematical description. Comparing (9.40) with 
(9.43), we see that ao = (:30 - (:31X. From Section 3.11.1, the estimate of ao is 
&0 = Y with variance (1'2 In. The estimate of (:31 is unchanged. 

The magnitude of (:31 depends on the units in which the x's are measured. 
If the x's are multiplied by a constant factor, for example, if different units are 
used, then (:31 is reduced by the same factor, as are its estimate and standard 
error. Thus the absolute size of the estimate and its variance have meaning 
only when referred to a particular set of units. 

It is common practice to center and scale the explanatory variable by trans­
forming the x's to the quantities 

so that L:i xi = 0 and L:i X;2 = 1. This produces a scale-invariant explana­
tory variable, which is dimensionless (Le., has no units). The model becomes 
(see Section 3.11.2) 

Yi=a:O+'YX~+€i (i=l, ... ,n). (9.44) 

The regression coefficients ao and 'Y now are measured in the same units 
(that of the response variable Y) and will typically have the same order of 
magnitude. The estimate of ao is the same as before, but the estimate of'Y is 

n 

i=l 
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with variance 

var[i] var [tXiYi] 
.=1 

n 

L: xi2 var[Yi] 
i=1 

_ (1'2. 

In terms of the original data, we have 

A _ L:~-1 (Xi - x)(Yi - y) _ L:~-1 (Xi - x)Yi 
'Y - . 1/2 - 1/2 

Sxx Sxx 
(9.45) 

The estimates are different because the parameters describing the true regres­
sion line are different. However, the fitted values Yi remain the same. 

Two Explanatory Variables 

We now consider the case of two explanatory variables, with model 

(9.46) 

or, in matrix notation, Y ::::: X,B+e, where,B ::::: ({30,(31, {32)' and X == (1, x, z). 
Now let w ::::: (x, '2)', and let X ::::: (x, z) be the centered version of (x, z), as in 
Section 3.11.1. Then 

( n~ 
nx nz ) X'X L:i x; L:i XiZi 

nz L:i XiZi L:. z~ • • 
n( ! w' ), S+ww' 

where S ::::: n-1 X'X. Using A.9.1, we see that 

so that 

and 

(X'X)-1 ::::: n-1 ( 1 ~;~~~w -W'S-1 
S-1 

var[ffio1 ::::: (1'2 (1 + w'S-lw) In, 
var[.B1] ::::: (1'2 l{sxx(1- r2)}, 

var[.B2] ::::: (1'2 /{szz(l- r2)}, 

), 

where Szz ::::: 2:~=1 (Zi ~ z? and r is the correlation between x and z. 
Also, after some algebra (see Exercises 9d, No.1), we get 

A (1'2 [ 1 (1 2r 1 ) ] 
var[{3o] ::::: -:;:;- 1 + 1 _ r2 CV; - CV xCV z + CV; , 
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so that the variance of ffio does not depend on the scale used to measure x 
and z. 

As with straight-line regression, we can center and scale the x's and the 
z's, and use the model 

(i = 1, ... , n), (9.47) 

where xi = (Xi - x)! S~~2 and zi = (Zi - z)/ S!~2. Setting Xs = (1, x*, z*), we 
get 

where 

. is the correlation matrix of x and z. Inverting, we get 

and 

(1'2 

var[ao) = -, 
n 

(1'2 

var ["h) = -:----::-
1- r 2 ' 

(1'2 

var['h) = 1 _ r2 . 

Thus, given the model (9.47), the accuracy of the scaled regression coefficients 
depends only on the error variance (1'2 and the correlation between x and z. 
In particular, the scaled coefficients cannot be estimated accurately if the 
correlation is close to 1, or, alternatively, when the explanatory variables 
cluster about a straight line in the (x, z) plane. Intuitively, when the data are 
well spread over the (x, z) plane, the fitted regression plane is well supported 
by the data. When the correlation is high, and x and z are almost linearly 
dependent, the regression plane is supported by a narrow ridge of points, and 
is consequently unstable, with a small change in the data resulting in a big 
change in the fitted plane. Hocking and Pendleton [1983) and Hocking [1996: 
p. 262) discuss this "picket fence" analogy in more detail. 

General Case 

We now consider the general regression model 

Yi = fh + fhxil + (:J2Xi2 + ... + (:Jp-lXi,p-l + Ci (i = 1, ... , n), (9.48) 

with p - 1 explanatory variables and a constant term. In centered and scaled 
form, the model becomes (see Section 3.11.2) 

(9.49) 
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or in matrix terms 

where X. = (1, X*). Thus 

X~X. = ( no 0' 
R",,,, 

(9.50) 

where R",,,, is the correlation matrix of the explanatory variables Xl, ... ,Xp-1. 

We partition R",,,, as 

R",,,,= (! r' ) 
R22 ' 

where r:::: (r12,r13, ... ,r1,p-d' and R22 is the matrix formed by deleting the 
first row and column from R",,,,. Here r1j = x·(1)'x·(j) (j :::: 2, ... ,p-1) is the 
correlation between the variables Xl and Xj. Then, by A.9.1, the 1,1 element 
of R;; is given by (1 - r'R2"ir)-l, so that 

[
A 1 2(1 'R-1 )-1 var 71 :::: (J' - r 22 r . (9.51) 

For an alternative interpretation of (9.51), let x·(j) be the jth column of X', 
and let X·(j) be X· with the jth column removed. Consider the formal regres­
sion of the vector x·(j) on the columns of X·(j), including a constant term. 
We will now evaluate the coefficient of determination R; for this regression. 
Substituting xij for Yi, and using the equations 2:i Xij :::: 0 and 2: i xij 2 = 1, 
we get 

n 

Z)Yi - y)2 
i=l 

Hence, from Theorem 4.2(ii), it follows that 

n 

"" X!.2 L..J <3 
i=1 

1. 

R~ _ 1- RSSj 
3 2:7=1 (Yi - Y)2 

1- RSS· 3 , (9.52) 

where RSSj is the residual sum of squares for the formal regression. By (3.52), 
the residual sum of squares for the regression of Y on X is 

n 

2:CYi - Y)2 - Y'X(X'X)-1X'Y. 
i=1 

Making the substitutions of x·(j) for Y and X·(j) for X, and using the facts 
that for this substitution 2:i(Yi - y)2 :::: 1 and that centering X·(j) has no 
effect, we get 

1- x·(j)'X·(j) (X·(j)'X·(j)-1X*(j)'x·(j) 

1 - x·(j),p ·x*(j) 3 , (9.53) 
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where P j = X"U) (X~(j)'X*(j) )-1 X*(j)J is the projection onto C(X·(j). When 
j = 1, X·(1)'X*(1) = r and X·(1)'X',(1) = R 22 , so that 

RSS1 = 1 - r'R2"lr. 

Hence, from (9.52), Rr = r'R2"lr and 

var["hl = (1'2/(1 - R~). 

Similar formulas hold for the other coefficients, namely, 

Since x·(j) 'x·(j) = 1 and (In - P j) is symmetric and idempotent, it follows 
from (9.52) and (9.53) that 

(9.54) 

Therefore, geometrically, 1 - R; measures how close x·(j) is to the subsp?£e 
C(X·(j), since it is the squared length of the residual vector when x·(j) is 
projected onto C(X·(j). In other words, 1- R; measures how near x·(j) is to 
being a linear combination of the other explanatory variables. Thus, when the 
columns of the centered and scaled regression matrix are "almost collinear" 
in this sense, we can expect at least some of the regression coefficients to have 
large variances. 

9.7.2 Variance Inflation Factors 

The formula 
varl?j) = (1'2/(1 - R;) 

given above expresses the variance of the scaled regression coefficient in terms 
of a coefficient of determination. Since R; is a squared correlation, we must 
have 0 < R; < 1, so it follows that 

with equality if and only if R; = O. By Exercises 9d, No.2, this occurs when 
x·(j) is orthogonal to the other columns of X·. 

The term (1 - R;)-1 is called the jth variance inflation factor or VIF j . 

From the discussion above, we have 

and 
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In terms of the original variables X, and using the relationship ij = ~jSj (d. 
Section 3.11.2), we have 

VIFj Var[o)'j]/0-2 

Var[~jsj]/0-2 
s~[(X'X)-l]i+l,j+1. 

9.7.3 Variances and Eigenvalues 

Another expression for the variance of the estimated regression coefficient 'Yi 
can be derived from the spectral representation A.1.4 of the correlation matrix 
R",,,,. Since R",,,, is positive-definite (see Exercises 9d, NO.3), we can write its 
spectral representation as 

R",,,, = TAT', (9.55) 

where T = (tij) is orthogonal, A = diag(>'l, ... , >'p-l) and the A's are the 
eigenvalues of R",,,,, which are positive by A.4.l. From (9.55), we get R;.} = 
TA-1T', so that 

(9.56) 

Now, since the rows of T are orthonormal, we must have L:f.=} tJI = 1, so 
that Itjd < 1 for all j and l. Thus, if any eigenvalue Al is close to zero and 
the element til is not close to zero, then var['Yj] must be large. 

Thus, we have two ways of recognising when the variances of the regression 
coefficients in the centered and scaled model are large: (1) when one or more 
columns are "almost collinear" with the others, as measured by a large VIF, 
or, equivalently, when the projection of one column on the space spanned 
by the others has a small residual, and (2) one or more eigenvalues of the 
correlation matrix are small. 

9.7.4 Perturbation Theory 

Ideally, a small change in the regression data should cause only a small change 
in the regression coefficients. Statistically, the variance of (:J measures the 
change expected in (:J when the responses Yo are subjected to changes, whose 
magnitudes are described by the error variance 0-2 • 

A more direct method is to examine the relative change in the estimated 
regression coefficients when the data are SUbjected to small changes or per­
turbations. Below, we derive some bounds on these changes. First, we review 
the concepts of matrix norm and the condition number of a matrix. 
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Definition 9.1 If X is an n x p matrix, then the 2-norm of X is defined by 

IIXall 
IIXII2 = m:x lIall (liall ;;fi 0), (9.57) 

where the maximum is taken over all nonzero p-vectors a, and lIall = (a/a)1/2 
is the norm of a. 

Note that many definitions of matrix norm are possible; see, for example 
Higham [1996: Chapter 6], Bjorck [1996: p. 24], Golub and van Loan [1996: p. 
52], and Trefethen and Bau [1997: p. 17]. It can be shown that a consequence 
of (9.57) is that 

(9.58) 

where O"MAX is the largest singular value of X, the square root of the largest 
eigenvalue of X'X (see A.12). Also, note the inequality 

(9.59) 

which follows directly from (9.57). 

EXAMPLE 9.5 Let P be a projection matrix. Then, since P is symmetric 
and PP = P, the eigenvalues of P are zero or 1 (A.6.1). The largest eigenvalue 
of pIp = P is therefore 1, so IIPI12 = 1. Note also from (9.59) that IIPal1 < 
lIall. 0 

Definition 9.2 The condition number of the matrix X is the ratio of the 
largest and smallest singular valu~s of X, and is written ",(X). 

For matrices that are almost rank-deficient, the condition number is large 
and is theoretically infinite for matrices of less than full rank. The minimum 
value of the condition number is unity; this occurs when the matrix has or­
thonormal columns. If X has full rank, then the condition number can also 
be written as 

(9.60) 

where AMAx and AMIN are the largest and smallest eigenvalues of X'X. 

EXAMPLE 9.6 (Straight-line regression) Let 

1 Xn - x 

Then 

X~Xc = (no 0), s.,., 
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with eigenvalues nand s",,,, == L~l (Xi _X)2. If fr2 == (l/n)s",,,,, then assuming 
that fr < 1 (or s",,,, < n), we have IIXclb == n1/2 and K.(Xc) == l/er. 0 

Let us now derive a bound for changes in the regression coefficient i in 
the centered and scaled straight-line regression model (9.44). Suppose that 
the original noncentered and unsealed Xi'S are changed by small amounts Oi, 

where 10il < e, and assume that 0 < e < fr < 1. Then Li or < m 2
, so that 

11011 < n 1/ 2 e. Also consider the projection P ==In - n-11n1n', so that 

Px == (Xl - X,X2 - x, ... ,Xn - x)', 

(9.61) 

and 
x* == Px/IIPxll. 

Using (9.45), we can now write i in terms of P as 

A Y'Px 
'Y == IIPxll' 

Now suppose that the Xi'S are perturbed as described above, and let 0 == 
(01, ... , On)'. The new estimate of'Y is 

Y'P(x + 0) 
IIP(x + 0)11 
illPxl1 + Y'Po 

IIP(x + 0)11 . 

Thus the relative change in i is 

i - i, IIP(x + o)II-IIPxll- Y'Po/i' 
- IIP(x + 0)11 

so that 

\
i - i'\ \IIP(x + o)II-IIPxll\ + \Y'Po/i\ 

i < IIP(x + 0)11 . 
Now consider the inequality (cf. A.11.4) 

\llall-lIbll\ < Iia - bl\, 

(9.62) 

(9.63) 

(9.64) 

which is valid for all vectors a and b. Putting a == P(x + 0) and b == Px, we 
get 

\IIP(x + o)II-IIPxll\ < IIPoll 
< 11011, 
< n 1

/
2 e, (9.65) 
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using Example 9.5. ALso,. since IIPol: < nl/2E, we hp-Ne from (9.61) that 

!iPxl! -lIpoll > IIPxl1 - n 1
/

2
€ 

n 1 / 2 (o--c) 

> O. 

Putting a = Px and b = -PO in (9.64), we get from the equation above 

IIP(x + 0)11 > IIIPxll - IIPoll1 

IIPxll-IIPoll 
> n 1/ 2 (a _ e). 

Now the estimate of ao is Y, so that 

and thus 
PY = i'Px/IIPxll + e. 

Using this and the Cauchy-Schwartz inequality (A.4.11), we can write 

10'PYI/Ii'1 < 10'Pxl/IIPxll + lo'el/li'l 

< 11011(1 + Ilell/Ii'I)· 

Combining (9.63), (9.65), (9.66), and (9.67), we have 

< 

< 

n l
/

2
€ + IY'Po/i'1 

n 1/ 2 (a - E) 

n l
/

2 E(2 + lI e ll/Ii'1) 
n l / 2 (a - €) 

(9.66) 

(9.67) 

Using the formula K(Xc) = a-I from Example 9.6 and the assumption that 
a < 1, we get 

This shows that provided the condition number is not too large and Ii'\ is not 
too small, a small change in the Xi'S will not cause too great a change in the 
estimate. 

What if the condition number is large? Then, under some circumstances, 
a small change in the Xi'S can cause a large relative change in the estimate. 

EXAMPLE 9.7 Suppose that the sample correlation of ° with both x and 
y is zero and that ° has its elements summing to zero. Since 

L(Yi - Y)(Oi - 6) = L Yi(Oi - 6) = L YiOi, (9.68) 
Iii 
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we have Y'O = 0 and x'o = O. Then, from 1~0 = 0, we have PO = 0, 
Y'Po = Y'o = 0, and (Po)'Px = o'Px = o'x = O. Thus, Px and Po are 
orthogonal, so that 

\lP(x + 0) \1 2 \lPx\l2 + \\PO\\2 

\lPx\l2 + \\0\\2. 

Substituting into (9.62), and using Y'Po = 0, the relative change is 

1-

from (9.61), since K(Xc)2 = 1/&2 = n/\\Px\\2. Thus, for a fixed but arbitrarily 
small change in the x's, the relative change in i can be as much as 100% if 
the condition number is large enough. 0 

The arguments above show that the condition number K(Xc) is a good 
diagnostic for instability. On the other hand, the variance of i is always 0'2, 

no matter what the x/s, so can give us no information about any possible 
instability of the estimate when there are small changes in the Xi'S. 

We can also look at the relative change in i compared to the relative 
change in a single Xi. Suppose that Xi changes to Xi + .6oXi where .6oXi is 
small, resulting in a change .6oi in i. The ratio of relative changes is 

I ~i I II ~:i I = I ~:J . I ~ I . 
Letting .60 -t 0, the right-hand side of this expression approaches 

Ei = I ::J . I ~ I . (9.69) 

The quantity (9.69), called the ith elasticity, measures the sensitivity of the 
estimate to small relative changes in the original data. To evaluate the Ei'S, 
we make use of the results (see Exercises 9d, No.5) 

a ~ --
- L..,.,(Xi - x)(Yi - Y) = Yi - Y 
aXi i=l 

and a n 
-a . L(Xi - x)2 = 2(Xi - x). 

X. i=l 

Using these results and formula (9.45), we get 

Yi - 17 - ixi 
1/2 s",,,, 
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where ei is the ith residual. Thus 

(9.70) 

Since le'xl < lIellllxll (A.4.11), the sum of the elasticities is bounded by 

Ilellllxll 
1i'ls~~2 . 

Using the relationship E~=l (Xi - x)2 = L:~=1 xr - nx2, we have 

(9.71) 

Thus, if the CV of the XiS is small, all the elasticities will also be small, 
provided that Ii'I is not too close to zero. 

In summary, if the condition number of the centered matrix is not too 
large, the regression will be. stable with respect to changes in the original x­
data. If CV", is not too large, the elasticities (where the relative change in 
the coefficient is compared to the relative change in the xi's) will not he too 
large. See Belsley [1991] for more information on elasticities. 

General Case 

A more general perturbation result can also be proved, which allows for 
changes in both the explanatory variables and the response. Consider the 
regression 

Y = X(3 + e, 

which we can take to be either centered or uncentered. Suppose that the data 
is subject to small changes, resulting in new data X + oX and Y + OY, where 
lIoXI12 < E IIXI12, IloY11 < EIIYII, and K(X)E < 1. Let (3. be the new least 
squares estimate after these changes. Then (see e.g., Higham [1996: p. 392}) 

11.8 - .8ell < K(X)E (2 + 1 + K X) lIell ) 
\\,8\\ - 1 - K(X)E ( () \\X\b 11.811 . 

(9.72) 

Thus, as in the case of simple linear regression, if the condition number of 
the regression matrix is not too large, the regression coefficients will be stable 
with respect to small relative changes in the regression matrix. 

The idea of stability of regression coefficients is another way of approaching 
the concept of multicollinearity. Note that if the smallest eigenvalue of X'X 
is not too small, then the condition number of X cannot be too large, at least 
relative to the size of the elements of X, so the regression will be stable. On 
the other hand, if the smallest eigenvalue is not too small, then the variances 
of the regression coefficients cannot be too large; so the ideas of stability and 
small variance are connected. 
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9.7.5 Collinearity and Prediction 

Collinearity affects the estimation of regression coefficients much more than 
prediction. To demonstrate· this, suppose that we want to predict the response 
at Xo = (XOl, ... ,XO,P-l)', using the predictor Y = So +,8~xo, where {Jc = 
(Sl, ... , SP-l)' Then from Section 3.11, we have 

Y= Y + (J~(xo - x), 

where x = (Xl, .. " Xp-l)'. Also, we recall from Section 3.11 the estimate 
{Jc = CX'X)-l X'Y, where X is the centered version of X (without In). 

From Theorem 1.3 and Section 3.11, we get 

Cov[Y, {Jcj Cov[n- l 1'Y, (X'X)-lX'Yj 

since 1'X = O. Thus 

var[Yj 

_ n- l 1' Var[YjX(X'X)-l 

(12 n - l 1'X(X'X)-l 

0, 

var[Y + {J~(xo - x)j 

var[Yj + var[{J~(xo - x)j 

(12n- l + (xo - x)' Var[{Jcj(xo - x) 

(12 {n-l + (xo - x),(X'X)-l(XO - x)}. (9.73) 

Up to the factor (12, the second term in (9.73) is just the Mahalanobis distance 
between Xo and X. Thus, if we are. predicting the response at xo, the variance 
of the predictor depend's on how outlying Xo is: Predictions at points close to 
x have a small error. 

Conversely, predictions made at outlying points have large errors. This is 
not of much consequence, as it is unwise to make a prediction at an outlying 
point. We cannot be sure that the model holds at points remote from the 
observed data. 

If the data are collinear, then points close in the sense of Mahalanobis 
distance to xo will lie almost in a subspace of lower dimension. For example, 
in the case p = 2, points close to x will cluster about a line. Despite the 
collinearity, predictions made at points close to this line will have small errors, 
provided that they are not too far from Xo. 

EXERCISES 9d 

1. Prove that in a regression with two explanatory variables X and z, 

A (12 [ 1 (1 2r 1 ) ] 
var[,Boj = -;;;: 1 + 1 _ r2 CV; - CV xCV z + CV; . 
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2. Prove chat R~ = 0 if and only if x'(jj is orthogonal to the columns of 
J 

X·(j). 

3. Show that R:z::z: is positive-definite provided that X has full rank and 
contains a column of l's. 

4. Show that the eigenvalues Aj of R:z::z: satisfy 

1 < Aj < p - 1. 

Hence prove that VIFj < 1'>,2, where I'>, is the condition number of R:z::z: . 

5. Prove that 

and 

a ~ --
- L..,.(Xi - x)(Yi - Y) = Yi - Y 
aXi . 1 .= 

MISCELLANEOUS EXERCISES 9 

1. Suppose that the regression model postulated is 

E[Y] = (30 + (31 X 

when, in fact, the true model is 

If we use observations of Y at x = -3, -2, -1, 0, 1, 2, 3 to estimate (30 
and (31 in the postulated model, what bias will be introduced in these 
estimates? 

2. Suppose that the model 

is fitted when the true model is actually 

If ei is the residual from the fitted model, prove that 

where 9 and h are functions of the Xij. 
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3. Suppose we wish to test the hypothesis H that the means of two popula­
tions are equal, given ni observations from the ith population (i = 1,2). 
Assuming that the populations have the same variance and kurtosis (')'2) 
find approximate expressions for E[Z] and var[Z] on the assumption 
that H is true (cf. Theorem 9.2). Show that to the order of approxima­
tion used, these expressions are independent of ')'2 if nl = n2. 

4. Prove that (Xi, Yi) in Example 9.3 of Section 9.6.5 has the bivariate 
normal distribution stated. 





10 
Departures from Assumptions: 

Diagnosis and Remedies 

10.1 INTRODUCTION 

In Chapter 9, we described what happens when the standard regression as­
sumptions are not met. In this chapter. we consider how departures from 
these assumptions may be detected and how their effects may be overcome by 
suitable transformations of the variables and weighting of the cases. 

Most diagnostic techniques make use of various kinds of residuals as well as 
measures such as hat matrix diagonals that measure how "outlying" are the 
rows of the regression matrix. These measures are discussed in Section 10.2. 

The most serious form of model misspecification occurs when we use a 
model that is linear in the explanatory variables when in fact the condi­
tional mean of the responses is a nonlinear function of the x-variables. 
More precisely, suppose that we have a set of explanatory variables x = 
(xo, Xl , ... , Xp-l)' (with Xo = 1, say) and we attempt to model the response 
Yas 

Y = x ' f3 + c. 

Then the leq,st squares estimate of f3 will not be estimating anything very 
meaningful if the true model has E[Ylx] = J-L(x), where J-L is a nonlinear 
function of x. We need ways of visualizing the true nature of J-L, and of 
deciding if a linear form J-L(x) = x' f3 is at least approximately satisfied. If it 
is not, we will want to transform the x's in order to achieve a better fit. In 
Section 10.3 we discuss ways of visualizing the form of J-L, deciding if the linear 
assumption is adequate, and choosing a transformation if it is not. 

The standard regression model assumes that the variance function var[Ylx] 
does not depend functionally on the explanatory variables. If, in fact, we 
have var[Ylx] = w(x), where w(x) is not constant, then (see Section 9.3) 

265 
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the least squares es"ti:mates will stillta unbiased estimates of the regression 
coefficients but will not be efficient. If w(x) is known, we can use weighted 
least squares as described in Section 3.10. If w(x) is not known, we must 
decide if it can be assumed constant. If we cannot assume this, we must 
estimate w(x) and incorporate the estimate into a new estimation procedure 
for the regression coefficients. Alternatively, we can transform the response 
in the hope of making the errors more homoscedastic. The details are given 
in Sections 10.4.1 to 10.4.3. 

Even if the variance function is constant, the errors € may fail to be inde­
pendent. For example, if the data have been collected sequentially, successive 
observations may be serially correlated. This can be detected by the Durbin­
Watson test, which is discussed in Section 10.4.4. 

If the errors are not normally distributed, then not too much goes wrong 
provided that the joint distribution of the explanatory variables is approx­
imately normal. If this is not the case, we can often use transformation 
methods to improve the situation, either transforming the response alone or 
using the transform both sides technique. Such transformations to normality 
are discussed in Section 10.5. 

Outliers in the data can "attract" the fitted line or plane, resulting in a 
poor fit to the remaining observations. This can be particularly pronounced if 
a case has extreme values of the explanatory variables. We have two options 
here; either identify the outliers and downweight or delete them before fitting 
the model, or use a robust fitting method that is resistant to the outliers. We 
discuss both these approaches in Section 10.6. 

Finally, in Section 10.7 we discuss how to detect collinear columns in the 
regression matrix and suggest some possible remedies for collinearity. 

10.2 RESIDUALS AND HAT MATRIX DIAGONALS 

We begin with the usual model Y = X(3 + €, where X is n x p of rank 
p. The major tools for diagnosing model faults are the residuals, which were 
introduced in Section 3.1. In terms ofthe projection matrix P, which projects 
onto C(X), they are given by 

e (In - P)Y 

(In - P)€, 

since (In - P)X = 0 [by Theorem 3.1(iii»). 
The elements of the fitted regression Y = xiJ are called the fitted values 

and satisfy Y = PY. In much of the literature on regression diagnostics, the 
projection matrix P is called the hat matrix, since it transforms the responses 
(the Yi's) into the fitted values (the Pi's). For this reason, it is often denoted 
by H rather than P. We use H in this chapter. 
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Using the theorems of of Chapter 1 and the idempotence of H, we get 

and 

Moreover, 

E[e] = (In - H)E[Y] = (In - H)X,B = 0, 

Var(e] - Var[(In - H)Y] 

- (In - H) Var(Y] (In - H)' 

(In - H)(7"2In(In - H) 

- (7"2(In - H), 

E[Y] = HE[Y] = HX,B = X,B, 

Var[Y] = H Var[Y]H' = (7"2H. 

Cov[e, Y] = Cov[(In - H)Y, H Y] = (7"2(In - H)H = 0, 

(10.1) 

(10.2) 

which implies the independence of e and Y under normality assumptions (by 
Theorem 2.5). If H = (h ij ), the diagonal elements hii of H are called the hat 
matrix diagonals and following general practice, we denote them by hi rather 
than hii. We note from (10.1) that var(e;] = (7"2(1 - hi). 

The results above show that, when the model is correct, the variances of the 
residuals depend on the hat matrix diagonals. For this reason the residuals 
are sometimes scaled to have approximately unit variance; this leads to the 
internally Studentized residual 

ri = 8(1 - h i )1/2 ' (10.3) 

where 8 2 = e' ej (n - p) is the usual estimate of (7"2. It can be shown that (see 
Cook and Weisberg (1982: p. 18] and the references cited there; also Exercises 
lOa, No.3) that r; j(n - p) has a beta[t, t(n - p - 1)] distribution (A.13.6), 
so that the internally Studentized residuals are identically distributed. 

Since the residuals (and hence the estimate 8 2 of (7"2) can be affected by 
outliers, some writers favor using the externally Studentized residual 

(lOA) 

The estimate 8 is replaced by the estimate 8(i) which is calculated in the 
usual way from the n - 1 data points that remain after deleting the ith case. 
This results in an estimate of (7" that will not be affected if the ith case is an 
outlier. 

To derive the distribution of ti, we first prove a theorem that we need to 
establish the relationship between 8(i)2 and 8 2. 
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THEOREM 10.1 Let i:J and i:J(i) denote the least squares estimate of (3 
with and without the ith case included in the data. Then 

(10.5) 

Proof. Let X(i) denote the regression matrix with the ith row deleted. Since 
X(i)'X(i) = X'X - XiX~, we have from A.9.4 that 

(X(i)'X(i))-l - (X'X - xixD-1 

_ (X'X)-l + (X'X)-lXiX~(X'X)-l 
1 - xHX'X)-lXi 

_ (X'X)-l + (X'X)-l XiXHX'X)-l . (10.6) 
1- hi 

Hence 

i:J(i) -

, (X'X)-l x ·e · 
- fJ - • '. 

1 - hi 
(10.7) 

o 
Using Theorem 10.1, we have 

(n - p - 1)S(i)2 == 

"" ( hUei ) 2 
- ~ el + 1- h. 

l#i • 

~ ( huei )2 
- ~ el + 1- h. 

1=1 • 

e~ • (10.8) 

Since H is symmetric and satisfies He == 0 and H2 = H, it follows that 
El hUel == 0 and El htl = hi. Using these expressions in the right-hand side 
of (10.8) leads to 

e~ 
(n - p - 1)S(i)2 == (n - p)S2 - 1 _' hi· (10.9) 
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t~ • (n - P -1)8(i)2(1- hi) 

e;(n - p - 1) 
[(n - p)82 - er 1(1 - hi)] (1 - hi) 

er n - p-1 
8 2 (1 - hi) n - p - r; 
rt(n - p - 1) 

n - p - r; 
B 

1 _ B (n - p - 1), (10.10) 

say, where, by Exercises lOa, No.3, the random variable B = rt(n _ p)-l 
has a beta[~, Hn - p - 1)] distribution (see A.13.6). We now use the fact 
(see Exercises lOa, No.2) that if B has a beta(~a, ~.B) distribution, then 
.BB {a(l - Bn -1 has an Fo:,{3 distribution. Setting a = 1 and .B = n - p - 1, 
we see that t; has an F1,(n-p-1) distribution, or equivalently, that ti has a 
t n - p -1 distribution. 

The hat matrix diagonals can be interpreted as a measure of distance in 
(p - I)-dimensional space. To see this, we recall from (3.53) that 

(10.11) 

where MDi is the Mahalanobis distance 

between Xi (now interpreted as the "reduced" ith row of X without the initial 
element of 1) and the average reduced row. Thus, the hat matrix diagonal 
is a measure of how "outlying" the ith data point is, at least as far as the 
explanatory variables are concerned. This measure, however, is based on the 
sample covariance matrix S and the mean vector x, which are not resistant 
to outliers. More robust measures are considered in Section 10.6.2. 

Assumingthat the regression model has a constant term, so that X contains 
a column 1':, it follows from (9.13) that 

(10.12) 

The upper bound is attained in the limit as Xi moves farther and farther away 
from x. Finally, from the proof of Theorem 3.1(ii), 

L hi = tr(H) = p, (10.13) 
i 

so that the average hat matrix diagonal is pin. 
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EXAMPLE :J.0.1 Cc,:-Lsider the regression through the origin model 

Since X = (Xl, X2, . .. , Xn)' = x, the hat matrix is 

o 

EXAMPLE 10.2 In the simple linear regre,ssion model, 

the hat matrix diagonals are, from Section 4.3.4, 

(10.14) 

o 

EXERCISES lOa 

1. Prove (10.14). 

2. Show that if the random variable B has a beta( ~a, ~(3) distribution, 
then F = {3B{a(l - B)}-l has an FO:.{3 distribution. Express B in 
terms of F. 

3. (a) Express ei in the form ei = c~(In - H)c: for a suitable vector Ci. 

(b) Show that (n - p)-lr; can be written as 

( )
-1 2 Z/QZ 

n - P ri = Z/(I
n 

_ H)Z' 

where Q = (1 - hi)-l(In - H)CiCi(In - H) and Z ~ Nn(O, In). 

(c) Prove that Q is a projection matrix (Le., show that Q2 = Q and 
QI = Q). 

(d) Show that (In - H) - Q is a projection matrix and prove that 
Z/QZ and Z/(In - H) - Q)Z are independent. Hence prove that 
(n - p)-lr; has a beta[~, ten - p - 1)] distribution. 

4. Show that (1 -'- hi )2 + E#i h;j = (1 - hi). 
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10.3 DEALING WITH CURVATURE 

Let E[Ylx] denote the conditional mean of the response Y given the ex­
planatory variables x. In order to assess the suitability of the linear model 
E[Ylx] = (3'x, we need to be able to visualize the true regression surface 
E[Ylx] = p,(x) and decide if it can be adequately represented by a linear 
function of x. 

10.3.1 Visualizing Regression Surfaces 

In the case of a single explanatory variable x, a simple plot of Y versus x will 
reveal the relationship between the variables. The relationship can be made 
more apparent by smoothing the plot using a readily available smoother such 
as loess (end of Section 6.6) and smoothing splines (Section 7.2.3). Figure 
10.1 illustrates the results of smoothing. 

If the relationship appears linear, we can proceed to fit a linear model. If 
not, we can transform the response variable using a power transformation as 
described in Section 10.3.2, and replot. Alternatively, we can fit a polynomial 
model as described in Chapter 7. 

In the case of two explanatory variables Xl and X2, we can plot the re­
sponse Y versus x = (Xl, X2)' using a three-dimensional plot. Such plots are 
enhanced by dynamic rotation (spinning) and are available in standard com­
puter packages. For more detail on the construction of such plots, see, for 

• 

•• 

x 

Fig. 10.1 Smoothing a plot of Y versus x. 
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example, Bekker et al. [1988], Cook and Weisberg [1994: p. 57; 1999: p. 185]. 
Interactive inspection of the plot will reveal if the regression surface is planar 
or curved. Once again, if the surface is not planar, we can either transform 
or fit a polynomial model. 

When we have more than two explanatory variables, we can no longer 
visualize the surface directly, and our task is much harder. A useful plot 
is to plot residuals versus fitted values, which, as we saw in Section 10.2, 
are independent under normality assumptions. Thus, if the linear model is 
correct, the plot should display no pattern but should appear as a horizontal 
band of points, as shown in Figure 10.2. 

A curved regression surface reveals itself as a curved plot; once again, in­
terpretation of the plot is enhanced by smoothing. However, a disadvantage 
of the residuals versus fitted value plot is that the nature of the curvature is 
not revealed. Even more seriously, it is possible for the regression surface to 
be curved without the residuals versus fitted value plot revealing the curva­
ture. Cook [1994: Example 7.1] gives an example of a regression where the 
regression surface is highly non planar , but the plot of residuals versus fitted 
values reveals no problems. 

To reveal the nature of the curvature, we can use various forms of par­
tial residual plots. These are plots of suitably modified residuals versus the 
explanatory variables. Suppose that the true regression surface is of the form 

(10.15) 

• 
• • • • • • • • • • • • • ., • • I· -, • • • • •• • • -. .. • • • • '" • • •• 

'" 
... • • • ::> • .. • • • • -0 • • • .. • •• • ·iii • • • .. 

Q) • • • • • • •• a: • • • • • • • • • • • • • 

• • 
• 

Fitted values 

Fig. 10.2 Plotting residuals versus fitted values. 
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where x = (Xl, x~y and 9 is an unknown function. If we could discover the 
nature of g, we could replace Xl with the transformed variable xi = g(X1) and 
fit the model 

E[Ylx] = (30 + (31 x i + .8~X2' 

which would now be correct. Partial residual plots are designed to reveal 
the form of g. This type of plot was first considered by Ezekiel [1924] and 
subsequently by Ezekiel and Fox [1959] and Larsen and McCleary [1972]' and 
is based on the following heuristic justification. 

Suppose that we fit the linear model E[Ylx] = (30 + (31X1 + .82X2 when in 
fact (10.15) is the true model. Writing 

Y 

~ fio + fi1 X1 + (32X2 + e, 

we might expect that the residual e from the linear fit would approximate 
(31[g(X1) - Xl] ~ fi1[g(X1) - Xl]' This suggests that a plot of e! = ei + fi1Xil 
[~ fi1g(Xil)] versus Xil might reveal the shape of g. The modified residuals e! 
are called partial residuals. 

This plot has several interesting features. To begin with, a least squares 
line fitted through the origin of the plot will have slope fi1, since the slope is 

Ei Xil (fi1 Xil + ei) , Ei Xil ei ' 
'" .2 = (31 + '" 2 = (31, 
~iXil ~i~l 

(10.16) 

from Xe = X(Ip - H)Y = O. Also, the residuals from this fit are just the 
ordinary residuals, since the former are just ei-fi1xi1 = ei+fi1xil -fi1Xil = ei. 

Unfortunately, partial residual plots suffer from two drawbacks. First, the 
appearance of the plot may overemphasize the importance of the explanatory 
variable Xl in the fit in the sense that the points in the plot are "overly 
close" to the fitted line. This point is developed further in Section 10.3.3, and 
an alternative plot is described. Second, and more important, if 9 is highly 
nonlinear, then the least squares estimates of the coefficients .82 are not very 
good estimates and the heuristic argument sketched above breaks down. 

We now examine this effect by using the formulas given in Example 3.10 
in Section 3.11.2. For simplicity we shall assume that p = 3 and that the 
x-variables have been standardized to x*-variables with zero means and unit 
lengths; for the general case, see Mansfield and Conerly [1987]. To reflect this 
change we use 'Y instead of .8, and we apply the theory from Examplp 3.10. 
Thus 

where x*(l) = (xi1'"'' X~l)" X*(2) = (xh, ... , X~2)' and r = X*(1)'x*(2) is 
the correlation between the columns. Using (3.52), after some algebra we get 

H = n-11nl~ + x*(2)x*(2)' + 1 1 2 (X*(l) - rx*(2»)(x*(1) - rx*(2»),. (10.17) 
-r 
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Now suppose that 

where g == (g(Xil)"'" g(xin))'. Then, since H is the projection onto X. == 
(In,x·(I),x*(2)), we have (In - H)X. = 0, 

E[eJ 

E['YIJ 

It follows from (10.17) that 

E[(In - H)YJ 
(In - H) ('Yo In + 'YIg + 'Y2X·(2») 

'YI(In - H)g 

E[eJ + X·(I) E['YIJ 

This indicates that the plot does not reveal the shape of g, but rather the 
shape contaminated by additional terms. In particular, the plot will suffer 
from a large amount of contamination if the correlation between the columns 
is large (see also Berk and Booth [1995J and Mansfield and Conerly [1987]). 
On the other hand, if the correlation is small, then (apart from a constant, 
which is not important), the contamination is approximately (X·(2)' g)x*(2). 
This will be small if the correlation between g and x*(2) is small, as will most 
likely be the case, as the correlation between X·(I) and x·(2) is small. This 
analysis shows that the plot will do a good job of revealing the shape of g if 
the columns of the regression matrix are un correlated. 

In an interesting paper, Cook [1993J describes other circumstances when 
partial residual plots will be effective. He assumes that the data (Xi, Yi), i = 
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1, ... ,n are a random sample from a p-variate distribution and that the con­
ditional distribution of Y given x is of the form 

(10.18) 

where E[clxl' X2] = O. 
Suppose that we fit a linear model 

Y = {3o + {3lxI + f3~x2 + c 

to the data. What now does the least squares estimate 13 of f3 = ({3o, (31 , f3~)' 
actually estimate? It can be shown that 13 converges to 

0= {E[xx']}-IE[xY]. 

Since the partial residual plot for variable Xl is a plot of e! versus XI,i, and 

et = Vi - So - j3~xi2 = (ao - So) + aly(xil) + (0:2 - j32)'Xi2 + Ci, 

we cannot expect the plot to reveal the shape of Y unless 132 is a good estimate 
of 0:2. Cook [1993] proves that this will be the case if E[X21xIJ is a linear func­
tion of Xl, which can be checked by plotting the other explanatory variables 
against Xl. However, if E[X2IxI] = m(xI), say, where m is not linear, then 
the partial residual plot must be modified. Suppose now that we transform 
Xl using m, and fit a linear model using the transformed Xl and X2, obtaining 
residuals ei. If we form the modified residuals e! = Slm(xil) + ei, then the 
partjal residual plot will reveal the shape of y. Plots modified in this way are 
called CERES plots (combine conditional expectations and residuals). The 
function m is not usually known but can be estimated by smoothing. For fur­
ther details, see Cook [1993] and Cook and Weisberg [1994, 1999]. An earlier 
version of this modification is due to Mallows [1986], who assumed that the 
conditional expectation was a quadratic function. 

In the-case of just two explanatory variables, Berk and Booth [1995] show 
that the unmodified parthu residual plot is just a two-dimensional view of the 
thre~dimensional plot: if we rotate a thre~dimensional plot of the data so 
that we are looking parallel to the fitted least squares plane and also parallel 
to the X2, Y plane, the resulting view is exactly the partial residual plot, apart 
from a shift in the e t direction. This characterisation helps us to understand 
how partial plots can fail to reveal the true curvature and why CERES plots 
are necessary - see the interesting examples in the Berk and Booth article. 

10.3.2 Transforming to Remove Curvature 

If the plots described in the preceding section suggest that the regression 
surface is curved, we can modify the model by considering a surface of the 
form 

E[Ylx] = {3o + (31YI(X) + ... + (3rYr(x) , 
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where gl, ... , gr are functions chosen to linearize the regression surface. Very 
often, we will have r = p -1 and gj(x) = gj(Xj), so that the original explana­
tory variables are each subjected to a transformation before refitting. 

In the simple case p = 2, with just one explanatory variable, we fit the 
model 

E[Ylx] = (30 + (31g1(X), 

where g is a suitable transformation. Possible transformations include powers, 
polynomials, or logarithms. A fiexible family of transformations, suitable 
when the values of the explanatory variable are all positive, is the family 
(Box and Cox [1964]) 

g(X, A) = { (XA -l)/A, A of. 0, (10.19) 
logx, A = 0, 

which is discussed further in Section 10.5.2. If this family is used, we can 
try different powers and repeatedly plot y versus g(x, A) until the plot is lin­
ear. Suitable interactive software, as described by Cook and Weisberg [1999], 
makes this easy. Alternatively, we can fit a polynomial in x, as described in 
Chapter 7. . 

For p > 2, we can use the CERES plots described in Section 10.3.1 to guide 
us in the choice of the functions gj. For a more automatic guide, we can fit a 
generalized additive model. 

Generalized Additive Models 

These are discussed by Tibshirani and Hastie [1990] and allow us to fit the 
model 

(10.20) 

The functions gj are required to be smooth but are otherwise unspecified. 
Tibshirani and Hastie [1990] describe a method known as back fitting to obtain 
estimates of the gj. The algorithm is described below. 

Algorithm 10.1 

Step 1: Fit a linear model by least squares, and estimate (30 by its least 
squares estimate and gj(Xj) by 9j(Xj) = SjXj. 

Step 2: For j = 1,2, ... ,p - 1, compute the residuals 

eij = }Ii - So - L 9t(x il) 
I#j 

and then smooth the plot of eij versus Xij using one of the smoothers 
described in Section 7.2.3. The reSUlting smooth function is taken to be 
9j· 

Step 3: Repeat step 2 until there is no further change. 
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By plotting the estimate of gj (Xij) versus Xij, we can get an idea of the 
form of gj. This will help us select an appropriate power or polynomial trans­
formation. 

10.3.3 Adding and Deleting Variables 

In Section 10.3.2 we mentioned that partial residual plots can "oversell" the 
importance of an explanatory variable. In this section we explain how this can 
happen and describe an alternative type of plot, the added variable plot, which 
gives a better indication of the contribution that each explanatory variable 
makes to the fit. We assume, once again, that a constant term has been 
included in the model. 

Suppose that there is a reasonable straight-line relationship in the partial 
residual plot for Xj. The strength of the relationship is measured by the 
correlation rj between Xij and the partial residuals eL = ei + ~jXij. By 
Exercises lOb, No.1, 

(10.21) 

n 

VIFj = rr- 2 Var[~j] x ~)Xij - Xj)2, 

i=l 

which were introduced in Section 9.7.2. We saw there that VIFj will be large 
if Xj can be predicted accurately from the other explanatory variables. If Pj 

is the F-statistic [cf. (4.13)] for testing the hypothesis that (3j = 0, then 

8 2 (X'X) j';l,J+l 

'2 n - 2 
(3j Ei=l (Xij - Xj) 

8 2 x VIFj 

Hence from (10.21), with RSS = (n - p)82 , 

-2 Fj x VIFj 
r· = 

3 (n - p) + Fj x VIFj 
(10.22) 

This shows that even if the variable Xj makes very little contribution to the 
fit (in the sense of having a small value of Fj ), the correlation can be close to 
1 if the VIF is sufficiently large. Put another way, if Xj can be well predicted 
from the other explanatory variables, then the partial residual plot may show 
a strong linear relationship indicated by a large rj, and mislead us as to the 
importance of including the variable, even if the contribution of Xj to the fit 
is negligible. This is illustrated numerically in Exercises lOb, No.3. 
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We can get a better picture of the value of adding the variable Xj to the 
regression by examining the relationship between Xj, on the one hand, and 
the residuals from a fit excluding the variable xi> on the other. If X = 
(In, X(l), ... , X(V-l), and X(j) is X with x(j) omitted, then these residuals, 
eei) say, are given by 

e(j) = (In - PJY, 

where P j == X(j)(X(j)/X(j)-lX(j)/. When considering whether to add X· 

to the regression, we must assess how well we can predict the residuals e(j) 

by using Xj. However, since Xj can be predicted partly by the other ex­
planatory variables, we are really interested in how well the residuals e(j) 
can be predicted by the part of Xj that is not predicted by the other ex­
planatory variables. This suggests looking at the relationship between e(j) 

and the "Xj residual" (In - P j )x(j). The relationship is assessed by plotting 
e(j) = (In - P j)Y versus (In - P j )x(j), with a strong linear relationship indi­
cating that the variable should be included in the regression. This plot, called 
an added variable plot, has 1;>een discussed by many authors: see Cook [1998: 
p. 136] for some history and references. 

These plots share some of the properties of the partial residual plot. First, 
assuming that a constant term is fitted in the original model, t.he least squares 
line through the origin and fitted to the plot has slope $j. To see this, we 
first note that by Section 6.2, the least squares estimate of the slope of a line 
through the origin for data points (Xi, Yi) is y/X/X/X. Setting y = e(j) and 
x = (In - P j )x(j), the slope of the least squares line through the plot can be 
written as 

e(j) I (In - P j )x(j) Y' (In - P j )x(j) 

x(j) I (In - P j )xU) 

- {3j, (10.23) 

by (3.32). Also, from (3.28) with (X, Z) --t X, Z --t XU) and ;Ya --t Sj, we 
see that the vector of residuals e from the full model is given by 

e (In - P)Y 

(In - Pj)Y - (In - Pj)x(j)$j 

e(j) - (In - P j )x(j) Sj (10.24) 

(or in terms of y and x, e = y - x$j) and the residuals from the full fit are 
exactly the residuals from fitting a least squares line through the origin. 

Now let us calculate the squared correlation, Pl say, between the quantities 
in the added variable plot. We first note that when fitting a model with a 
constant term, the sum (and therefore the mean) of the residuals is zero [cf. 
(4.29)]. Applying this to the residual vectors x and y, we have X == Y = 0, 
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and using the fact that In - P j is symmetric and idempotent, we have 

(Y'X)2 
(Y'y) (x'x) 

[e(j)'(In - P j )x(j)j2 
- .[e(j)'e(j)][x(j)'(In - Pj)x(j)] 

[Y'(In - P j )x(j)j2 
[Y'(In - Pj)Y][x(j)'(In - Pj)x(j)] 

.8J [x(j), (In - P j )x(j)] 

Y'{In - Pj)Y 

by (10.23). Premultiplying (10.24) by Y', we can write the denominator as 

Y'(In - Pj)Y - Y'(In - P)Y + Y'(In - Pj)x(j),Bj 

- Y'(In - P)Y + .8J[x(j)'(In - Pj)x(j)]. (10.25) 

Also, by A.9.2, 
(X'X)j~l,j+1 = [x(j)'(Ip - Pj)X(j)]-l 

(with j + 1 instead of j because of (30), so that the F-statistic for testing 
(3j = 0 can be written 

,B~x(j)' (Ip - P j )x(j) 
F - -,,-' ---,=::--~-­j - 8 2 . 

Using this and (10.25), we find that 

F· 
p~ :: ' , n-p+Fj 

(10.26) 

Thus, the linear relationship displayed in an added variable plot will be strong 
only if the F-statistic is large (Le., only if the variable Xj makes a Significant 
contribution to the regression). This is in marked contrast to the partial 
residual plot, as may be seen by comparing (10.22) and (10.26). 

Variables such as time order that are implicitly rather than explicitly 
recorded in the data often have a strong effect on regression analyses. Joiner 
[1981] gives some sobering examples of this. The effect of such "lurking vari­
ables" (variables that are not included in the fit) should always be examined, 
and added variable plots are a good way to do this. 

EXERCISES lOb 

1. (a) Show that provided that the regression matrix X contains a column 
of l's, :E~=l (Xij - Xj)ei :: 0 for each j. 

(b) Use part (a) to prove (10.21). 
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The following exercises require familiarity with a computing package such 
as S-PLUS, R, or Matlab. We provide some R code to assist readers. 

2. (a) Generate a set of regression data according to the model 

}Ii = 1 + XiI + 2 sign(xi2)lxi211/3 + ci (i = 1, ... ,100), 

where XiI and Xi2 are sampled from independent N(O, 1) distribu­
tions, and the errors Ci are sampled from N(O, (72), where (7 = 0.25. 
This may be done in S-PLUS or R by the code fragment 

eps<-rnorm(100,sd=O.25) 
x1<-rnorm(100) 
x2<-rnorm(100) 
y<- 1 + x1 +2*sign(x2)*abs(x2)~(1/3) + eps 

(b) Construct the partial residual plot for X2. How well does the curve 
in the plot reveal the transformation required to linearize the re­
gression surface? Use the code 

reg.stuff<-lm(y-x1+x2) 
betahat2<-coef (reg. stuff) [3] 
estar2<-betahat2*x2 + residuals(reg.stuff) 
plot(x2,estar2) 

(c) Now construct another set of data, the same as before but with X2 

having correlation p = 0.95 with Xl. Use the same code, but define 
X2 with the lines 

rho<-O.95 
x2<-rho*x1 + sqrt(1-rho~2)*rnorm(100) 

(d) Construct the partial residual plot for the new X2. What do you 
notice? 

3. Construct a set of data as in Exercise 2 but with 

}Ii = l+Xil +ci (i = 1, ... ,100), 

so that the coefficient (32 is zero. Set the correlation p between Xl and 
X2 at 0.999. What does the partial residual plot suggest about the 
importance of X2 in the model? Generate a new set with p = O. What 
does the plot now suggest? What does this example teach you about 
using partial residual plots to assess the importance of adding variables? 

4. Repeat Exercise 3 using added variable plots instead of partial residual 
plots. Do added variable plots have a problem with correlated data? 
Use the R code 

resy<-residuals(lm(y-x1» 
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resx2<-residuals(lm(x2-xl)) 
plot (resy,resx2) 

to draw the added variable plot. 

5. Construct a set of data as in Exercise 2(a) but with X2 being generated 
by 

Xi2 = X;l + Ui (i = 1, ... ,100), 

where the Ui'S are N(O, 0.1) This will create a situation where the partial 
residual plot would be expected to fail, according to the arguments of 
Cook [1993J since E[X2IxIJ = xi, which is far from linear. Does the plot, 
in fact, fail? Repeat with X2 a linear function of Xl. What happens now? 

10.4 NONCONSTANT VARIANCE AND SERIAL CORRELATION 

10.4.1 Detecting Nonconstant Variance 

We will assume that the usual mbdel 

holds, with the errors Ci being independent and normally distributed with 
zero mean. However, suppose that in place of the standard assumption 

var[ciJ = (7"2 (i = 1, ... , n), 

we have, instead, 
var[cd = (7";, 

where the variances (7"; may depend either on the mean E[YiJ = x~(3, and 
possibly other parameters, or on a vector of (possibly additional) explanatory 
variables Zi. As discussed at the end of Section 3.10, the least squares esti­
mates of (3 may not be efficient if the variances (7"; are not equal. We need to 
check the variances for equality and, if necessary, use more efficient estimation 
methods. 

In this section we assume that 

(10.27) 

where Zi is a vector of known explanatory variables for the ith observation 
and w is a variance function with the property that for some Ao, w(z, Ao) 
does not depend on z. In (10.27), the form of w is known, but the value of A 
is not. For example, a popular choice is 

w(z, A) = exp(z' A), 
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where z = (l,z:'j ... ,Z!:), In this case AD = (Ao,O, ... ,0)' and, for this value, 

say. It should be noted that the form (10.27) does not include the case where 
the variance function is a function of the mean. This case is considered in 
Section 10.4.2. 

The assumptions made above completely specify the distribution of the 
responses, so we can test if the variances are homogeneous by testing the 
parametric hypothesis Ho : A = AO. In this section we discuss some ways of 
doing this, along with some informal graphical methods that can be used to 
detect nonconstant variances. 

The residuals e from a least squares fit contain information about the 
variances. If ~ = diag(cr;, ... , cr;), then 

Var[e) Var[(In - H)e) 
(In - H)~(In - H), 

so that 
var[ei) = (1 - hi )2crt + L h;kcr~. (10.28) 

k;k#i 

Usually, hik « hi for k i=- i, so that very often large variances are indicated 
by large residuals, although this will not be the case for high leverage points. 
We note that E[eil = 0, so that var[eil = E[et). 

The quantities 
2 

b. _ ei 
• - 1- hi 

are useful when making various kinds of graphics displays. When the variances 
are all equal to cr2 , say, then 

since the idem potence of In - H implies that 

(1 - h i )2 + L htk = 1 - hi. (10.29) 
k:k#i 

Thus, when the variances are in fact constant, the b/s have constant expec­
tation. 

We note that even if the variances are unequal, the fitted values Yi = xi{J 
still have expectation E[Yi]. However, observations with large means often 
have large variances also. Thus, plotting the bi's (or equivalently, the squared 
internally Studentized residuals) against the fitted values should result in a 
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wedge-shaped display if the variances increase with the means, A typical 
display is shown in Figure 10.3(a). Another popular plot involves plotting 
the bi'S versus the explanatory variables; this is interpreted in the same way. 
A smoother passed through the plot may reveal the relationship between 
the means and the variances, Alternatively, the raw residuals may be plotted 
versus the fitted values. In this case, a fan-shaped pattern, as shown in Figure 
1O.3(b), indicates variances increasing with the means. 

Other plots have been proposed based on particular choices of the function 
w, Expanding W in a Taylor series, we get 

W(Zi' A) Rj W(Zi' Ao) + (A - Ao)'W(Zi' Ao), 

where W = 8w/8A, Then, using (10.28) and (10,29), we obtain 

(1 - hi)w(Zi, A) + 2: htk;~Z~',A) 
k:k,oi ' 

( A) (' )/{( h)'( ) ~ htkW(Zi,A)} W Zi, 0 + A - Ao 1 - i W Zi, A + L.J 1 _ h' ' 
k:k,oi ' 

Cook and Weisberg (19831 suggest plotting bi versus the quantit.ies in the 
braces {}, Departures from a constant variance show up as an approximately 
linear trend. A disadvantage of this plot is that the bi do not have constant 

(J) 
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Fig, 10.3 Patterns resulting from the variances being a function of the means, 
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variance. Verbyla [1993] observes that the quantities log[bi/(l-hi)] do have an 
approximately constant variance, and moreover, have approximately a linear 
regression on Zi if the variances r:r; are constant. The added variable plots 
described in Section 10.3.3 can therefore be used to assess the linearity of this 
relationship. If all plots are linear, the variances are constant. 

These graphical methods can be backed up by formal tests of the hypoth­
esis that>. = >'0, based on standard asymptotic tests. Under the normal 
distributional assumptions outlined above, the log likelihood l([3, >.) is 

l«(3,>') c - Hlog det(~) + (y - X(3)'~-l (y - X(3)} 

{ 

n n ( . _ x'.(3)2 } 
C - ~ £; log Wi + £; y. Wi" , (10.30) 

where Wi = W(Zi' >.) and c is a constant. Using A.8.l, the score function is 
given by 

and 

at 
8>. 

_~ [~{~ _ (Yi - X~(3)2} 8Wi] . 
2 L.J W· w~ 8>' 

i=l 1. t 

(10.31) 

(10.32) 

The maximum likelihood estimates can be obtained by the following algo­
rithm. 

Algorithm 10.2 

Step 1: Put>' = >'0' 

Step 2: Computei:J as (X'~-lX)-lX'~-ly, using a weighted least squares 
program. 

Step 3: Solve at/8>'1f3=13 = 0 for >.. 

Step 4: Repeat steps 2 and 3 until convergence. 

EXAMPLE 10.3 In the special case w(z, >.) = exp(z' >.), where z is the 
vector (1, Zl, ... ,Zk), step 3 can be implemented as a least squares calculation. 
For this w, 8wd8>' = WiZi so that 

(10.33) 
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Let di = eUWi, d = (d1 , .•. ,dn )" and let Z be the matrix whose ith row is 
Zi. Then (10.33) can be written 

!!i = lZ'(d -1 ) 8)" 2 n . 

To calculate the information matrix, note that 

Var [:~] - Var[X'~-l c) 

- X'~-l Var[el~-lX 

- X'~-lX 

and 

Var [:~] - Var[~Z'(d -In)] 

- tZ'Var[d]Z. 

Since ei has variance Wi, the elements of d are independently and identi­
cally distributed as xi with variance 2, so that Var[d) = 21n, and hence 
Var[at/8)"] = ~Z'Z. Moreover, since E[eie~) = 0 ( i =f:. j) and E[e;1 = 0, we 
have COV[e, d] = 0 and 

(at at] 
Cov 8(3' 8)" ~X'~-l Cov[e, d]Z 

- o. 

Thus, from (3.19) the (expected) information matrix is 

1«(3,)..) = (X'~;lX ~~'z). 

To solve the likelihood equations we can use Fisher scoring (cf. A.14). The 
updating equations are (m denotes the iteration) 

{J(m+l) (X'~-l X)-lX'~-l Y 
(m) (m) , 

- )..(m) + (Z'Z)-lZ'(d -In), 

- diag[w(zl, )..(m», ... , W(Zn, )..(m»]· 

We note that (10.34) can be written as 

Z'Z)..(m+l) = Z'(d - In + Z)..(m», 

(10.34) 

which are the normal equations for a formal regression of d -In + Z)..(m) on Z, 
and so can be solved using a least squares program. This form of Algorithm 
10.2 is due to Aitkin [1987]. 0 
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Testing A = Ao 

We can test this hypothesis using a likelihood ratio (LR) test or a score test, 
as described, for example, in Cox ar.d Hinkley [1974]. For the LR test, consider 
maximizing the log-likelihood (10.30) under the ziypothesis Ho : >. = >'0. 
Then Wi(Z, >'0) = (7"2, and the likelihood is just the usual regression likelihood 
discussed in Section 3.5, which is maximized when (3 is the ordinary least 
squares estimate j30LS and fr2 = (lin) E~=l et. The maximum value of the 
log-likelihood (10.30) under the null hypothesis is, from (4.1), 

l(j3oLs, fr2) = C - Hn logfr2 + n], 

while the unrestricted maximum is 1(13, oX), where 13 and oX are calculated using 
Algorithm 10.2. The LR test statistic is then 

LR = -2[I(j3oLs, fr2) -1([3, ).)], 

which, asymptotically, has. a :d distribution under Ho· 
Alternatively, we can use a score test. This has the advantage that we do 

not have to calculate the unrestricted maximum likelihood estimates. For a 
general weight function w, we have from (10.32) that 

~ = _~ t (2- _ c~) 8Wi. 
8>' 2 i=l Wi Wi 8>' 

(10.35) 

Writing D for the matrix whose ith row is 8wi/ 8>., setting u = (Ul, ... , un), 
where Ui = et I fr2 and noting that Wi = fr2, we get 

at 
8>' Ho 

(10.36) 

Differentiating and taking expectations (see Exercises lOc, No.1, at the end 
of Section 10.4.4) we see that the information matrix under the hypothesis is 

I(Ho) (I:: 0 ) - I,\.). 

( fr- 2X'X 0 ). (10.37) - 0 lfr-4D'D 
2 

The score test statistic is 

(:~\HO)' {h~}-l (:~ HJ· 
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By substituting (10.36) and (10.37), the score statistic can be written 

~(u - In)/D(D/D)-lD/ (u - In). 

We note that apart from the factor 1/2, the expression above is the regression 
sum of squares for the formal regression of u -In on D, so it can be calculated 
easily with a regression program. This result is due to Cook and Weisberg 
[1983]. If w(z,'\) = exp(z/'\) (see Example 10.3), then D = 0-2Z under Ho, 
so that the test statistic is ~(u - In)'Z(Z/Z)-lZ/(u - In). 

Alternatives to these tests can be based on the restricted likelihood, which is 
obtained by considering the marginal distribution of a set of linear contrasts 
Q/Y that are orthogonal to C(X) and thus do not involve (3. If we take 
Q to be a n by n - p matrix whose columns form an orthonormal basis 
for C(X)l., the orthogonal complement of C(X), then (by B.1.3), Q/Q = In 
and QQ/ = In - X(X/X)-lX/. Using (1.7) and Theorem 2.2, we see that 
Q/Y is multivariate normal with mean 0 and covariance matrix Q/EQ (since 
Q/X(3 == 0). The marginal (restricted) log likelihood based on this density is 
therefore 

c - Hlogdet(Q/EQ) + y/Q(Q/EQ)-lQ/y}, 

which depends on'\ but not on (3 [since Q/(y-X(3) == Q/y]. Using Exercises 
lOc, No.2, at the end of Section 10.4.4, we get 

and 
det(Q'EQ) == det(E) det(X'E-1X)/ det(X/X), 

so that. we can write the restricted log likelihood as 

(10.38) 

(10.39) 

lR('\) == c - Hlogdet(E) + 10gdet(X/}J-IX) -log det(X/X) 

+ y/[}J-l - E-1X(X'E-1X)-lX'E-1]y}. (WAD) 

In the case where w(z,'\) == exp(z' '\), Verbyla [1993] shows that the score 
function corresponding to this likelihood is ~Z/(E-ld - In + g) and the in­
formation matrix is ~Z'YZ. In these formulas, the elements of the vector g 
are the diagonal elements of the hat matrix 

G = E-1/2X(X'}J-IX)-lX/E-1 / 2 

corresponding to the weighted regression, and Y has elements Vij = gij for 
i i= j and Vii == (1 - gii)2. The restricted maximum likelihood (REML) 
estimate ,\ of,\ is also obtained by Fisher scoring (A.14), using the updating 
equation 

A(m+l) == '\(m) + (Z'YZ)-lZ'(E-1d - In + g). 

Under the null hypothesis ,\ == '\0, we have}J == (721n and the estimates reduce 
to those for ordinary least squares. The REML estimate of ,\ is therefore 
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AO = (log a2 ,0, ... ,0)', and the restricted likelihood has maximum value 

lR(Ao) - c - t[nloga2 + logdet(a-2 X'X)-logdet(X'X) 

+ a-2 y' (In - X(X'X)-IX')y] 

c - H(n - p) loga2 + n]. 

The LR test statistic is -2[lR(Ao) - lR(A)] and is asymptotically X~ under 
the null hypothesis [k degrees of freedom because z = (1, ZI, ... , Zk)']. 

The score test based on the restricted likelihood uses the statistic 

teu - In - h)'Z(Z'VOZ)-IZ'(U -In - h), 

where h is the vector of ordinary hat matrix diagonals and Vo is defined like 
V except that the elements of H are used instead of G. This is because G 
reduces to H under the null hypothesis of equal variances. 

Restricted likelihoods were introduced by Patterson and Thompson [1971] 
in the context of of variance component models. Several other variations 
of these tests have been proposed, and Lyon and Tsai [1996] describe and 
compare these. They found that the score test based on the full likelihood 
is better than the LR test, but the former is sensitive to departures from 
normality. The LR test is anticonservative even for normal errors. The score 
test based on the restricted likelihood has better power than that based on 
the full likelihood, at least for the cases considered by Lyon and Tsai. 

10.4.2 Estimating Variance Functions 

We saw in the preceding section how to use variance functions to construct 
tests for variance homogeneity using likelihood techniques. In this section we 
concentrate on how to allow for heterogeneity when estimating the regression 
coefficients. 

If the weights are known, we saw in Section 3.10 that the optimal estimate 
is the weighted least squares (WLS) estimate 

(:JWLS =: (X'~-lX)-lX'~-ly, (10.41) 

where ~ = diag(ar, ... , a~). In practice, the weights are unknown, but the 
estimate (10.41) serves as a useful benchmark. If the variances are known 
functions of unknown parameters, say 

a~=w(zi,)..,(3), (10.42) 

we can use methods similar to those in the preceding section. These variances, 
however, are a little more general than those in the preceding section, since 
they can now depend on the regression coefficients as well. This is to allow 
for the possibility that the variance depends on the mean, and possibly on 
other parameters, as in the power relationship 

a~ = )..1 (X~(3)A2, 
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where the variance is proportional to a power of the mean. This, of course, 
assumes that the means are all positive. 

Given (10.42), equation (10.41) suggests the following general alp.;orithm 
for computing an estimate of (3. 

Algorithm 10.3 

Step 1: Obtain an estimate (3* of (3: for example, by using the ordinary least 
squares estimate. 

Step 2: With (3 fixed at (3*, obtain an estimate A* of A. 

Step 3: Compute f:J as (X't-1 X)-l x't-1 Y, where 

t = diag[w(zl,A*,(3*), ... ,W(Zn,A*,(3*)], 

using a weighted least squares program. 

Step 4: Repeat steps 2 and 3 until convergence. 

To describe the algorithm fully, we need to give more detail for step 2. 
Carroll and Ruppert [1988} and Carroll and Davidian [1987} have several sug­
gestions, which we discuss below. 

Pseudolikelihood 

This involves applying the likelihood methods of the preceding section, 
treating (3* as fixed. The term pseudolikelihood refers to the fact that (3* is 
not the maximum likelihood estimate (MLE), so that this process is not the 
same as a full likelihood analysis. However, Carroll and Davidian show that if 
the variance does not depend on the mean, then the algorithm will converge 
to the MLE, so that the method is exactly equivalent to the method described 
in the preceding section. 

Regressing Residuals 

Treating ei ~ ci, then E[e;) ~ var[ci} = W(Zi, A, (3*), and we can obtain 
an estimi!te of A by solving the nonlinear least squares problem 

n 

mln 2: [e~ - w(z;, A, (3*)] 2. 
i=l 

Since varlet} ~ var[et] = 2W(Zi, A, (3)2 (by A.13.2) when the data are nor­
mally distributed, an alternative method is to solve the weighted least squares 
problem 

. 2:n 
[e~ - w(z;, A,(3*)]2 

mm 
A w(z· A (3*)2 

i=l 'Z" 
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Using squared residu.ils makes this rather' nonrobust, so alternatives using the 
absolute values of thu l'esiduals (o!' even other transformations of the residuals) 
can be used. CarrOl) and Davidian (1987) give further details. 

'. 

Methods Based on Replication 

Suppose that for each distinct vector observation Xi of the explanatory 
variables, there are several independent responses, so that we can write the 
model as 

Yij=X~(3+cij (j=l, ... ,ni, i=l, ... m), (10.43) 

where the Cij are independent N(O, aD errors. An obvious approach is to 
estimate the error variances (/f by the sample variances 

n, 
2 -1 ~ - 2 Si = (ni - 1) L.)Yij - Yd . 

j=l 

However, as pointed out by Carroll and Cline [1988], this is very inaccurate 
unless the n/s are quite large. If /3sv denotes the estimate of (3 obtained by 
using the inverses of the sample variances as weights, Carroll and Cline show 
that /3sv has variance approximately (no - 3)/(no - 5) times that of /3WLS 
in the case where ni = no for all i, provided that no > 6. For no = 10, the 
increase in variance is 40%. For small no, the situation is even worse: For 
no < 6 and normally distributed data, the relative efficiency of /3sv compared 
with /3WLS is zero. 

A b3tter method is to estimate the variances by 

where eij is the ordinary least squares reSidual, and then calculate the weighted 
estimate with these weights. For no > 3, the relative efficiency is positive 
(Fuller and Rao [1978); Carroll and Cline [1988)). We can also consider the 
estimate obtained by iterating this process. If the ordinary least squares 
(OLS) estimate is sufficiently inefficient compared with the WLS estimate, 
then iterating will produce a better estimate. 

Variance is a Function of the Mean 

If the variance is a smooth function of the mean, we can do better. Suppose 
that 

where the function w is known. Then apply the following: 
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Algorithm 10.4 

Step 1: Obtain an estimate /3 of (3: for example, by using the ordinary least 
squares estimate. 

Step 2: Calculate t == diag[w(x~/3), ... , w(x~/3)] using the current estimate 
of {3. 

Step 3: Recompute /3 as (X/t-1 X)-l x/t-1 Y using a weighted least squares 
program. 

Step 4: Repeat steps 2 and 3 until convergence. 

Carroll and Ruppert [1982] show that the estimate produced by this algo­
rithm has the same asymptotic efficiency as /3WLS, which means that in this 
case there is no cost in not knowing the weights, provided that w is known. 
Remarkably, the same is true if w is unknown but smooth. Carroll [1982aJ 
shows that if we plot the squared residuals from a least squares fit versus the 
OLS fitted values and smooth the plot, we can do just as well. Let Wi be 
the smoothed value of e~. Then if we use weighted least squares with weights 
equal to l/wi, we obtain an estimate whose asymptotic efficiency relative to 
/3WLS is 100%. 

10.4.3 Transforming to Equalize Variances 

As an alternative to explicitly modeling the variance function, we can trans­
form the response in order to make the variances more homogeneous. We 
want to find an increasing transformation f such that 

f(y;') == x~{3 + Ci, 

where the Ci have equal variance. If the variances in the untransformed model 
are increasing functions of the mean, this will often be successful. Suppos~ 
that 

var[Y;,] == W(P,i), 

where P,i == x~{3. Assuming that w is known, we get from A.13.4 that 

var[f(Y)] ~ (!) 2 var[Y] 

(
df )2 
dp, w(p,). 

It follows that the variances of the transformed responses f (Y;) will be ap­
proximately constant if we choose f so that (df / dp) 2 W (p,) is constant or, 
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equivalently, if we choose 

! dl-£ 
f(l-£) = W(I-£)1/2 . 

EXAMPLE 10.4 Suppose that the responses Yi follow Poisson distributions 
with means J.Li, so that w(l-£) = J.L. Then 

! dJ.L 
f(l-£) = 1-£1/2 

We expect y//2, .. . , y~/2 to have approximately equal variances. o 

EXAMPLE 10.5 Suppose that the responses Yi follow binomial(mi, Pi) dis­
tributions with means J.Li = miPi, so that w(J.L) = 1-£(1 - J.Llm). Then 

so that sin-1 {(Yl/ml)1/2}, '" ,sin-l{(Ynlmn)1/2} have approximately equal 
variances. 0 

We note that these two transformations provide a way of handling count 
data, provided that the counts are not too close to zero [or too close to m in 
the case of binomial(m,p) data). 

If W is not known, we can experiment by transforming the responses Yi 
using a power transformation of the form (10.19). We can transform with 
a suitable power less than 1, and then use the diagnostic plots described in 
Section 10.4.1 to see if the variances have been made equal. We proceed by 
reducing the power until the wedge effect in the plot of squared residuals 
versus fitted values disappears. 

10.4.4 Serial Correlation and the Durbin-Watson Test 

If the data are collected sequentially in time, then successive errors may be 
correlated. If this is the case, a time sequence plot of ei against time order, 
which is often the same as a plot of ei versus i, may show up the presence 
of any correlation between time consecutive Ci. The two plots in Figure 10.4 
show the patterns due to positive and negative correlations, respectively. For 
positively correlated errors, a residual tends to have the same sign as its 
predecessor, while for negatively correlated errors, the signs of the residuals 
tend to alternate. One other useful plot consists of dividing up time-ordered 
residuals into consecutive pairs and plotting one member of the pair against 
the other. Serially correlated data show up as a linear trend in the plot. 

There are a number of ways to test for correlation in a time series. For 
example, the simplest test is the runs test based on the sequence of signs of the 
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Positive correlation 

Time order 

Negative correlation 

Time order 

Fig. 10.4 Plots of residuals against time for positive and negatively correlated errors. 
Negatively correlated errors give a more jagged plot. 

time-ordered residuals (see Brunk [1965: p. 354] for an excellent discussion), 
although this test is only approximate, as the residuals are slightly correlated 
even when the errors are uncorrelated. However, perhaps the most popular 
test for serial correlation is the d-test proposed by Durbin and Watson [1950, 
1951, 1971]; this test is described below. 

Suppose that the errors ci follow a first-order autoregressive model; that 
is, ci = ptri-I + c5i , where the c5i are independently and identically distributed 
as N(O, (12). Let 

D 
_ L::~=2 (ei - ei-I )2 _ e' Ae 
- n 2 - , 

L::i=1 e i e' e 
(10.44) 

say. Then Durbin and Watson [1971] showed that the critical region D < doc 
for testing the null hypothesis Ho: p == 0 against the one-sided alternative 
HI: p > 0 has certain optimal properties; for example, it is the locally most 
powerful invariant critical region. Unfortunately, when Ho is true, the null 
distribution of D depends on the data matrix X, so that do< has to be specially 
computed for each X. 
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However, :C:·:,rb~,; ,,:H:2 Watson give'. 3c:versl ap,)::oximate procedures that 
seem to work very wC)l in practice. In the first instance, they proved in their 
1950 paper that DD < D < Du, where the distributions of Du and DL do not 
depend on X; the significance points of these distributions are tabulated in 
their 1951 paperfor different n and k' (= p-1), and in Koerts and Abrahamse 
[1969: pp. 176-178]. They also showed that when 

Ho is true, R = iD can be approximated satisfactorily by a beta random 
variable with the same mean and variance; that is, the null density function 
of R is approximately beta(po, qo) (d. A.13.6), where 

E[D){ 4 - E[D]} _ 1 
var[D] , 

Po - i(Po + qo)E[D], 

and E[D] and var[D] are given by equations 3.1 to 3.4 in their 1971 paper. 
On the basis of these approximations they suggest the following procedure: 
Let d be the observed value of D, let 0 be the size of the test, and let dLa 
and dUa be the lower tail 0 significance points for the distributions of DL 
and Du, respectively. If d < dLa , reject Ho; if d > dUa, accept Ho; and if 
dLa < d < dUa, evaluate 

ld f(r) dr 

numerically and accept or reject Ho according as this integral is greater or less 
than Q. (Package computer programs are generally available for computing 
the beta distribution function.) 

To test for negative correlation, that is, use the alternative hypothesis 
HI : P < 0, we simply use the statistic 4 - D; the quantity 4 --' d may now 
be treated as though it is the observed value of a D statistic to be tested for 
positive correlation. Two-sided tests for HI: P :I 0 are obtained by combining 
the two one-sided tests and using a significance level of to in each case. 

Durbin and Watson [1971: p. 18] give one other approximate test procedure 
based on the critical value da = a + bdva , where a and b are calculated so 
that D and a + bDu have the same mean and variance. 

Chatfield [1998] notes that in addition to the inconclusive nature of the 
d-test, the x-variables may, in practice, include lagged y-values. When n is 
large and p is small, he suggests using an estimate of p, namely, 

which is approximately N(O, 1) when p = o. 
EXERCISES lOc 

1. Differentiate (10.35) and take expectations to derive (10.37). 
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2. (a) Let G = l:-1 X(X'l:-l X)-l, and let Q be an orthonormal basis for 
C(X).L, so that QQ' = In - X(X'X)-lX'. Verify that G'l:Q = 0 
and that G'l:G = (X'l:-l X)-l. 

(b) Let M = (l:1/2Q, l:1/2G). Show that M is of full rank, so that 
M(M'M)-l M' = In. 

(c) Use (b) to prove (10.38). 

(d) Use the fact that [det(M)]2 = det(M'M) to prove (10.39). 

3. (a) Suppose that Y = (Y1, ... , Yn )', where the Y/s are independently 
and identically distributed as N (/1-, (12). Find the restricted likeli­
hood for Q'Y. 

(b) Show that for this example the REML estimate of (12 is the usual 
unbiased estimate 8 2 = (n _1)-1 :L~-l (Yi - y)2. Thus in this case 
the REML estimate is unbiased but the MLE is not. 

4. Suppose that Y1 , ••• ,Yn are gamma random variables with density func­
tions 

so that E[Yi] = r Ai = /1-i, say, and var[Yi] = r-1I-£t. Find a transforma­
tion that will make the variances of the Yo's approximately equal. 

10.5 DEPARTURES FROM NORMALITY 

10.5.1 Normal Plotting 

We saw in Section 9.5 that the robustness of the F-test against departures 
from normality depends very much on the distribution of the explanatory vari­
ables, with the test being very robust if the explanatory variables are approxi­
mately normally distributed. F-tests can, however, sometimes be misleading, 
although the effects of nonnormality are not as a rule as great as those caused 
by inhomogeneity of variance or serial correlation. Still, nonnormality can 
often be an issue. 

Nonnormal errors are detected by a normal plot of residuals, as shown 
in Figure 10.5. The normal plot is constructed by first ordering the least 
squares residuals, obtaining the order statistics e(l) < ... < e(n) and then 
plotting these against selected quantiles of the standard normal distribution. 
If the regression assumptions are satisfied, then, by (10.1), e has a singular 
distribution Nn(O,cr2 (In - H)), which is approximately Nn(O,cr2In). Hence 
the residuals are approximately a random sample from a N(O, (12) distribution, 
so that (see, e.g., Chambers et al. [1983)), 

E[e(i)] ~ cr~(Qi)' 
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Fig. 10.5 Normal plots of residuals: (a) No indication of non-normality. (b) Skewed 
errors. (c) Heavy-tailed errors. (d) Outliers. 

where ai = (i - 0.5)/n and ~(a) is the a-quantile of the standard normal 
distribution [with density ¢(z)] defined by 

r~(O!) 
i-

oo 
¢(z) dz = a. 

If follows that if we plot the normal quantiles versus the ordered residuals, 
normal errors will show up as a roughly straight plot. As illustrated in Figure 
10.5, skewed errors show up as a curve, heavy-tailed errors as an S-shape, and 
outliers as isolated points at the end of the plot. Of course, the residuals are 
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not exactly a random sample from a normal distribution, but this seems not 
to matter in practice. Studentized residuals can be used if desired. 

10.5.2 Transforming the Response 

If the normal plot reveals evidence of nonnormality, the standard remedy is to 
transform the response. A popular family of transformations is the Box-Cox 
family (10.19) introduced in Section 10.3.2. We note that this family assumes 
that the response variables have positive values. Box and Cox introduced 
the transformations to remedy several types of regression problems, so that 
all the regression assumptions (means linear in the explanatory variables, 
homogeneous variances, and normal errors) would be satisfied. Therefore, 
their method assumes that there is a transformation parameter). such that 

Y;,(A) = g(Yi,).) = x~(3 + Ci, 

where g(Y,).) is given by (10.19). Under this assumption, the likelihood func­
tion for the original observations Y is 

where for each Yi > 0, 

n d (A) 

IJI = II Yi 
dy· 

i=1 • 

(10.45) 

n 

II A-I = Yi , 
i=1 

is the absolute value of the Jacobian. For)' fixed, (10.45) is the likelihood 
corresponding to a standard least squares problem, except for the constant 
factor J. From (3.18), the maximum value of this likelihood function is 
(21r&2)-(1/2)ne-(1/2)nIJI, where 

n&2 = y(A)'(In - X(X'X)-IX')y(A) = RSS()';y), 

say. Hence, apart from a constant, the maximum log likelihood is 

n 

Lmax(>') = -~nlog{RSS()';y)} + (). -1) 2:)OgYi. (10.46) 
i=l 

Box and Cox suggest plotting Lmax(>') against). for a trial series of values and 
reading off the maximizing value A. The transformation using this ). is then 
applied to the responses and the data are replotted to check the normality. 

A more accurate value of A can be obtained by solving the equations 
dLmax().)/d). = 0 (see equation (12) in their 1964 paper, or equation (9) 
in Schlesselman [1971]); some properties of A are discussed further in Draper 
and Cox [1969). Box and Cox also discuss the estimation of ). from a Bayesian 
viewpoint. 
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There is ~L ODViOC:S difficulty associated withcr"ese transformations. For 
the transformS';clon ':0 make sense, -Chat is, ,to be monotone and be defined 
for all A, the :C6spon:;e data must come from a distribution supported on the 
positive half-axis. The only transformation of the form (10.19) that maps onto 
the whole real line is that with A = 0 (Le., the log transformation). Thus, if 
A =1= 0, we cannot possibly achieve exact normality. The best we can do is to 
pick a transformation parameter A to make the transformed distribution as 
close to normal as possible. 

A justification for the Box-Cox procedure along these lines has been given 
by Hernandez and Johnson [1980]. Suppose that the transformed data have 
joint density h>.(y), and define fey; (3, a) to be the density of a multivariate 
normal with mean vector X(3 and variance-covariance matrix a2In. A conve­
nient measure of the difference between h>.(y) and fey; (3, a) is given by the 
Kullback-Leibler discrepancy 

I(f,h) = / h>.(y){logh>.(y) -logf(y,(3,a)}dy, (10.47) 

described ~ore fully in Section 12.3.3. If we select A., 13., and a~ to mini­
mize this discrepancy, then Hernandez and Johnson show that the minimizing 
values for (3. and a~ are given by 

(X'X)-lX' E>.. [Y] 
- n-1{E>.. [y/(In - P)Y) + tr( Var>.. [Y)P)} , 

where P = X(X/X)-l X'. The value of A. cannot be established unless g>. 
is known. However, Hernandez and Johnson show that the estimate of A 
obtained by maximizing (10.46) is a consistent estimate of A., thus providing 
an asymptotic justification of the Box-Cox procedure. 

Other families of transformations can be used. John and Draper [1980) 
suggest the family 

( A) _ { sign(y){(\y\ + 1)>' -l}/A, 
9 y, - sign(y) log(ly\ + 1), 

A =1= 0, 
A = O. 

This is well defined for all values of y, and for each A we see that 9 is a 
one-to-one monotone transformation of the real line onto itself. These trans­
formations seem to work well on data that are symmetrically distributed but 
with long tails, whereas the Box-Cox transformation is better at dealing with 
skewed data. John and Draper give examples where the Box-Cox transfor­
mation fails to induce normality, but the John-Draper transformation works 
very well. A further family is discussed by Yeo and Johnson [2000]. 

A feature of the Box-Cox technique is that the need to estimate the trans­
formation parameter A inflates the variances of the elements of jJ consider­
ably, compared to when (3 is estimated on a known scale. This has been 
established by Bickel and Doksum [1981]. Carroll [1980, 1982b) came to the 
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same conclusion, and noted that, in addition, the estimate of the transforma­
tion parameter can be very badly affected by outliers. Cook and Wang [1983} 
suggested a diagnostic for this problem, and Carroll [1980] and Carroll and 
Ruppert [1985] give robust methods of estimating >.. 

Box and Cox [1982] and Hinkley and Runger [1984] vigorously disputed the 
criticism of Bickel and Doksum, arguing that since (3 is specific to an estimated 
scale, its unconditional properties have little scientific relevance. Rather, a 
scale should be selected, and then the analysis should be carried out assuming 
the scale is the true one, so that (3 can be interpreted with respect to a fixed 
scale. In other words, the analysis should be performed conditionally on t 
Carroll and Ruppert [1981] observe that in the case of prediction, the pre­
dicted response can be expressed in the original scale by back-transforming a 
prediction made in the transformed scale. In this case no question of scien­
tific irrelevance arises, and there is indeed a small cost (in terms of increased 
prediction error) in not knowing the correct scale. Atkinson [1985] discusses 
this issue further and considers other families of transformations. 

10.5.3 Transforming Both Sides 

If E[Yi] = x~(3, but the errors are nonnormal and/or heteroscedastic, then 
transforming the response will destroy the linear form for the mean. To avoid 
this problem, Carroll and Ruppert [1984, 1988] introduced the transform-both­
sides model, which takes the form 

g(Yi, >.) = g(x~(3, >.) + Ci, 

where for some transformation family g(y, >.) and some value of >., the errors 
Ci are normally distributed with constant variance u 2 • Carroll and Ruppert 
consider more general mean structures than the one considered here, but the 
results are similar. 

If g(y, >.) is the Box-Cox family, the parameters can be estimated easily 
by maximum likelihood, as when the response alone is transformed. In the 
present case, the log likelihood takes the form 

l«(3,u2,>.~ =c-! {nlog u
2 
+u-

2
t[9(Yi'>') -g(x~(3)j2 }+(>.-1) tlOgYi. 

Differentiating with respect to (72 and equating the derivative to zero, we see 
that for fixed (3 and >. the log likelihood is maximized by 

1 n 

a-2 «(3, >.) = - 'E[9(Yi, >.) - g(x~(3)]2, 
n i=1 

and the maximum value of the log likelihood for fixed (3 and >. is 
n 

lMAX«(3, >.) = c - ~nloga-2«(3, >.) + n + (>' -1) 'ElogYi. 
i=l 
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This can be maximized by Fisher scoring (A.14) to obtain estimates of (3 and 

the transformation parameter A. Alternatively, if we put iJ = (rr~=1 Yi)1/n, 
we see that the log likelihood, up to a constant, can be written as 

which is maximized by minimizing 

This can be done using a nonlinear least squares program. Standard errors can 
be calculated from the information matrix in the usual way. Unlike transform­
ing the response alone, when estimating (3 there does not seem to be much, if 
any, cost in accuracy in having to estimate the transformation parameter A. 

This technique can be used to make the error distribution closer to normal 
and also to stabilize the variances. However, it is not necessarily true that the 
same transformation will achieve both these objectives. If the transformation 
that makes the error distribution closer to normal does not also make the vari­
ances more homogeneous, it may be necessary to use weighting to achieve the 
latter objective. Carroll and Ruppert [1988: Chapter 5] give further details. 

EXERCISES lOd 

1. Let Z(1), .•. ,Z(n) be the order statistics calculated from a random sam­
ple from a N(O, 1) distribution. Then (see, e.g., David [1981], Azzalini 
[1996: p. 301]) the density of Z(i) is 

(i _ l)~~n _ i)! <1>(z)i-1[1- <1>(z)t- i if>(z), 

where <1> and if> are, respectively, the distribution and density functions 
of the standard normal distribution. 

(a) By making a transformation, show that 

where B(i,n - i + 1) is the beta function (A.13.6). 

(b) Using the definition of the integral, show that 

n 

E[Z(i)] ~ L <1>-1 [(j - 0.5) In] Wij, 

j=1 
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where 

l
j / n 

Wij = B(i, n - i + 1)-1 y i - 1 (1 - y)n-i dy. 
(j-1)/n 

(c) Explain why the weights Wij sum to 1. 

(d) Comment on the accuracy of the approximation 

E[Z(i)] ~ <I>-1[(i - 0.5)/n]. 

2. Suppose that g(y, A) is a family of monotone-increasing transformations 
such that g(Yi, >.) is N(x~f3, 0-2 ). 

(a) Show that the log likelihood for Y1 , ••• , Yn is 

n 2 1 ~[ ']2 ~ jB9(Yi,>') c - -logO' - -2 L...J g(Yi' A) - xd3 + L...J log 
2 20- i=1 i=1 BYi 

(b) Show that in the case of the John-Draper transformation, the log 
likelihood is 

3. Show that for fixed A, the values of f3 and 0'2 that minimize (10.47) are 

and 
o-~ = n-1 {E>..[Y' (In - P)Y] + tr(Var>..[Y]P)}, 

where E>. denotes expectation with respect to h>. and P = X(X'X) -1 X'. 

10.6 DETECTING AND DEALING WITH OUTLIERS 

10.6.1 Types of Outliers 

In Section 9.4 we identified two kinds of outlier in regression data. First, 
there may be a big difference between the explanatory vector Xi for the ith 
case and the center of the x-data. In other words, Xi may be an outlier in 
the ~dimensional space occupied by the rows of the regression matrix; we 
referred to such a point as a a high-leverage point. Second, there may be a 
large difference between the response Yi and the mean x~f3 predicted by the 
model, and we called such a point an outlier. 
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We shall S8e tb2.;. outliers that are not high-leverage points do not have a 
very strong influence on the fitted regression plane unless they are very large. 
The situation is very different when outliers are also high-leverage points. For 
this reason, it is important to identify the high-leverage points and determine 
if they are having an undue influence on the fit. 

Since Yi = x~f3 + Ci, Pi = x~j3 + ei, and j3 estimates 13, it is reasonable to 
treat the residual ei as an estimate of the error ci and examine the residuals 
for extreme values. We can either use the raw residuals ei, or the Studentized 
residuals Ti or ti, which are adjusted to be identically distributed. Standard 
graphical plots for examining univariate data such as normal plots or box 
plots can be used to check the residuals for extreme values. We then identify 
as outliers the points having large residuals. Since the externally Studentized 
residuals have tn-p-l distributions in the absence of outliers, a reasonable 
definition of "large" is a point for which Itil > 2. 

The diagnostic approach described above works well provided that the data 
point in question does not have high leverage. If it does, we cannot expect 
the corresponding residual to reveal the presence of an outlier. To see this, 
suppose that the ith resp'onse is recorded as Yi - 6 i rather than Yi, so that 
Yi = xif3 + 6 i + Ci, which we can interpret as the error being changed by an 
amount 6 i • Let.6. be the vector that has ith element 6i and the rest zero. 
Then, since HX = X, 

E[e] E[(Ip - H)Y] 
(Ip - H)E[Y] 

(Ip - H)(Xf3 + .6.) 

(Ip - H).6., 

so that E[ei] = (1 - hi )6i. Thus if the Xi is close to x [cf. (10.11)] so that hi 
is small, we can expect the residual to reflect the outlier quite well, as E[ei] 
will be close to 6 i . On the other hand, if the data point has high leverage, 
then, as explained in Section 10.2, the hat matrix diagonal will be close to 1, 
and the residual will tend to be smaller than 6 i • 

If least squares residuals cannot reveal outliers for high-leverage points, 
what can be done? First, we need a reliable means of identifying high-leverage 
points. The hat matrix diagonals are reasonable measures of leverage, since 
they can be interpreted in terms of Mahalanobis distances, as explained in 
Section 10.2. Since the average hat matrix diagonal is pin, an arbitrary but 
reasonable definition of a high-leverage point is one satisfying hi > 2pln (see 
Belsley et al. [1980], Atkinson [1985]). 

Whether or not a point has high leverage depends on the explanatory 
variables included in the regression. For example, if a particular case has 
an extreme value for one explanatory variable, say Xl, but not for the other 
variables, then the case will have high leverage. However, if variable Xl is 
dropped from the model, then the case will no longer have high leverage 
(cf. Miscellaneous Exercises 10, No.2). Unfortunately, hat matrix diagonals 
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are themselves subject to the effects of high-leverage pOints and do not always 
give a reliable indication of leverage. This point is discussed further in Section 
10.6.2. 

Having identified a point as having high leverage, how can we tell if the 
point is an outlier? There are two standard solutions. The first involves 
assessing the effect that a data point has on the regression by deleting the point 
and refitting the regression. If the regression quantities (estimated coefficients, 
fitted values, standard errors, and so on) change markedly, then the point is 
called a high-influence point, and is probably an outlier. In Figure 10.6(a), 
where the point A is not an outlier, it is clear that deleting A and refitting 
will cause little change in the fitted regression. In Figure 1O.6(b), where 
A is an outlier, the reverse is true; deleting A and refitting will cause a 
large change. Motivated by this example, we can consider calculating key 
regression quantities, such as regression coefficients and fitted values, but 
leaving out each data point in turn and noting the resulting change. Leave­
one-out diagnostics are discussed further in Section 10.6.3. 

The second solution uses a robust fitting method that is not affected by the 
high-leverage points, resulting in residuals that better identify outliers, and is 
described in Section 10.6.5. 

Having tentatively identified the outliers, what action should we take? ·If 
the outliers are due to mistakes in recording data, clearly the mistakes should 
be corrected if possible, or else the points put aside. If the outlying data 
are genuine, they should not just be ignored, as they represent unexpected 

• • 

x x 

(a) (b) 

Fig. 10.6 Effect of high-leverage points on least squares fits. 
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and possibly important information on the relationship between explanatory 
variables and the response. Sometimes outliers are due to model failure and 
disappear when a more appropriate model is fitted. On the other hand, we 
do not want to fit models whose characteristics are determined by one or two 
points. If we are going to fit the model by least squares, we will want to 
remove high-influence points before fitting. This does not mean that they 
should be discarded from consideration. 

We can, of course, use robust methods. However, there is considerable 
evidence that residuals from robust fits can be misleading when we are trying 
to detect curvature in the regression surface (cf. Cook et al. [1992]; McKean 
et al. [1993]). 

10.6.2 Identifying High-Leverage Points 

As discussed in Section 10.6.1, the hat matrix diagonals can be written in 
terms of Mahalanobis distances, which are in turn functions of the sample 
mean and covariance matrix. These two measures are very nonrobust and 
will be affected badly by high-leverage points. We have a situation where 
the diagnostics used to identify the high-leverage points are undermined by 
the very points they are designed to detect. The effect of a high-leverage 
point is to increase the elements of the covariance matrix, and this reduces 
the value of the Mahalanobis distance between a "reduced" row Xi and the 
mean row of the regression matrix. This is illustrated in Figure 10.7. The 
ellipse shows a contour of points having the same Mahalanobis distance from 
the average row x. The points in the upper right corner of the plot distort 
the distances so that points A and B seem to be equally outlying, so that A is 
not identified as a high-leverage point. The effect of this is that high-leverage 
points are not identified as such, due to the influence of other high-leverage 
points. This phenomenon is known as masking (Rousseeuw and van Zomeren 
[1990]). To combat this, Rousseeuw and van Zomeren suggest using a modified 
Mahalanobis distance 

(10.48) 

where T(X) and C(X) are robust estimates of location and covariance for 
the reduced rows (minus the first unit element) of X. They suggest using the 
minimum volume ellipsoid (MVE) , which is defined (Rousseeuw and Leroy 
[1987]) as the p-dimensional ellipsoid of minimum volume that contains 50% 
of the n reduced points. T(X) is taken as the center of the ellipsoid. 

The MVE is calculated using the method of elemental regressions (cf. Sec­
tion 11.12.3). For a (p + l)-subset J of cases (data points), we calculate the 
mean vector XJ and the sample variance-covariance matrix C J . We then 
consider the ellipsoid 
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A 

• • • • • 

Fig. 10.7 Effect of high-leverage points on hat matrix diagonals. 

where m is chosen to make the ellipsoid include 50% of the observations. 
Clearly, we must take m = m~, where 

2 d· ( - )'C-1 ( - ) m J = me 1ani Xi - XJ J Xi - XJ . 

By Example 5.1 (Section 5.1.3), the resulting ellipsoid has volume equal to 
kpmj det(CJ )1/2, where kp depends only on p. We repeatedly sample subsets 
J of observations and calculate the resulting volume. The MVE is taken to 
be the ellipsoid having the smallest volume of all those sampled. 

The n quantities (Xi - xJ ),C:J1 (Xi - xJ) would be approximately indepen­
dent X~ if the (reduced) x's were multivariate normal. . It follows that mJ is 
approximately the median of independent X; variables and is therefore a con­
sistent estimate of X~.O.50' Thus, to achieve consistency under the assumption 
of multivariate normality, we estimate C(X) by m~CJ /X~.O.50' 

An alternative to the use of the MVE is the minimum covariance deter­
minant estimate (MCD). This is based on an ellipsoid using the mean and 
covariance matrix calculated from an (n - h)-subset of the data, where h is the 
number of outliers. The subset chosen is the one for which the determinant of 
the resulting covariance matrix is a minimum. In practice, h is unknown. It 
is important not to underestimate h, so that the choice h = n - [en + p + 1)/2] 
is often used. Hawkins [1994b] gives an algorithm to compute the MCD esti­
mate. 
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10.6.3 

The c,c-,oCiu::rc d' c:orq:._,:s,ticn required~:::; calculate the changes in the regression 
quantities wLee} POi2.ci are deleted is greatly reduced by exploiting Theorem 
10.1 in Section 10.2 . We now describe a number of diagnostics. 

Change in Estimated Regression Coefficients 

If {JCi) is the least squares estimate of (3 calculated with the ith case deleted, 
then (Theorem 10.1) 

(10.49) 

We note that the change is proportional to the size of the residual but is 
greatly inflated if hi is close to 1, showing how high-leverage points can have 
a big influence on the estimated regression coefficients. 

The measure (10.49), called DFBETA, was introduced by Belsley et al. 
[1980] and is often "standardized" to aid interpretation. Let C = (X1X)-lX; 
then C is called the catcher matrix (Velleman and Welsch [1981]). The j,i 
element of C is Cji = [(X1X)-lxi]j, so that the jth element of DFBETA is 
cjiei/(1 - hi). Also, 

i 

i 

i 

[(X1X)-lX1X(X1X)-1]jj 

(X1X)jjl. 

We can standardize the (j + l)th element DFBETA by dividing by an estimate 
of the standard error of ~j, namely, S(i)[(XIX)-1]}~21,j+l = SCi) (:Ei Cl+l,i)1/2, 
resulting in a standardized difference 

S(i)(:Ei Cl+1,i)l/Z· 
(10.50) 

This measure is called DFBETAS by Belsley et al. [1980]. In terms of the 
Studentized residual ti, it can be written as 

DFBETASij 
S(i)(:Ei cl+1,i)l/2 

Cj+l,iei 
S (i) (L:i C;+l,i)l/2 (1 - hi) 

Cj+l,i ti 
(:E i C;+l,i)l/z (1 - hi)1/2 . 

(10.51) 
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If the ith data point is not an outlier and does not have high leverage, we 
expect that the Studentized residual will satisfy Itil < 2 and that Yi will hot 
have a large effect on the value of !Jj. Since!Jj = L~=l CHl,iYi, this means 
that CHl,i is small in relation to (L~=l cl+l,i)1/2 or, very approximately, to 
n -1/2. This suggests that a suitable cutoff value for detecting large residuals 
using DFBETASij is 21 Vii. 
Change in Fitted Values 

The change in the ith fitted value is 

I ,.. I '" 
xd3 - xd3(i) 

Xi(X'X)-lXiei 
1- hi 

and is called DFFITS. Standardized by the estimated standard deviation 
8(i)h~/2 of xi[3, it becomes 

DFFITSSi -

(10.52) 

by (10.4). For pOints that are not outliers and do not have high leverage, with 
high probability Itil < 2 and hi will not be too far from the average value pin 
Then (10.52) suggests using the cutoff 2vpI(n - p) or even 2Vp/n. 

Covariance Ratio 

The estimated variance-covariance matrix of [3 is 8 2 (X'X)-l, and its leave­
one-out version is 8(i)2(X(i)'X(i)]-1. A convenient scalar measure of the 
change is the ratio 

det{8(i)Z(X(i)'X(i)]-1} 
det(82(X'X)-1] 

which is called the COVRATIO. To simplify this formula, we can use the 
result (10.9) to get 

8 2 n - p -1 t~ 
- + ' 8(i)2 n - p n - p 

(10.53) 

Also, using A.9.7, we get 

det(X(i)'X(i)] - det(X'X - xixD 

- det(X'X)(l - xi(X'X)-lXi] 

- det(X'X)(l - hi), (10.54) 
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so that 

COVRATIO -

by (10.53). 

det{8(i)2[X(i)'X(i)]-1} 
det[82 (X'X)-l] 

(
8(i)2) p det{[X(i)'X(i)]-l} 

8 2 det[(X'X)-l] 

n - p - 1 + ti (1 _ hd-1, 
( 

2 )-P 
n-p n-p 

To calibrate this measure, Helsley et al. [1980] consider two extreme cases. 
The first is when the externally Studentized residual is large, say Itil > 2, 
but the case has minimum leverage, with hi = n-1. [Recall that when the 
regression contains a constant term, then hi > n-1 by (10.12).] Then, for this 
case, 

COVRATIO _ n (1 + tr - 1)-P 
n-1 n-p 

::::: 1 _ p(tr - 1) 
n 

when n is large and much greater than p. Therefore if Itil > 2, 

COVRATIO ::::: 1 _ p(tr - 1) 

< 
n 

1- 3P. 
n 

The second is the opposite situation where the Studentized residual is small 
but the case has high leverage. Taking the extreme case ti = 0 and hi > 2pln, 
then 

COVRATIO - 1 - (1 - hi)-l ( 
1 )-P 

n-p 

( 
1 )-P ( 2P )-1 > 1- 1--

n-p n 

( 
2 )-1 ::::: (1+~) 1-: 

::::: 1 + 3p 
n' 

ignoring higher-order termS. Thus, cases having ICOVRATIO -11 > 3pln are 
considered to have high infiuence. 
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Cook's D 

From (5.18) we see that a 100(1 - a)% confidence ellipsoid for (3 is 

Cook [1977] suggested measuring the distance of fJ(i) from 13 by using the 
measure 

D. _ (fJ(i) - fJYX'X(fJ(i) - 13) 
1 - pS2 (10.55) 

based on the confidence ellipsoid. He suggested flagging as suspicious those 
points for which Di > Fg:~r:p. 

Using (10.7), we can write Cook's D as [ef. (10.3)] 

where Ti is the ith internally Studentized residual. Thus a point will have a 
large Cook's D if it has a large Studentized residual or is a high-leverage point. 
We note that apart from the constant divisor p, Cook's D is very similar to 
the square of DFITTS, differing only in the use of an internally rather than 
externally Studentized residual. For another interpretation of Cook's D in 
terms of influence functions, see Cook and Weisberg [1982: Chapter 3], and 
Exercises 10e, No.5, at the end of Section 10.6.5. 

Andrews and Pregibon Statistic 

Consider the augmented matrix XA = (X, V). Then 

( 
X'X X'Y) 

det(XA'XA) - det Y'X y'y 

det(X'X) detty' (In - H)Y] 

- det(X'X) X RSS, 

by A.9.5. Now consider deleting the ith row of XA. Using the same argument, 
we get 

det[XA(i)'XA(i)] = det[X(i)'X(i)] x RSS(i), 

where RSS'(i) is the residual sum of squares computed from the n - 1 cases, 
excluding the ith. By (10.9), 

2 

RSS(i) = RSS - 1 ~i hi 

and from (10.54), det[X(iYX(i)] = det(X'X)(l-hi). The Andrews-Pregibon 
statistic (Andrews and Pregibon [1978]) is the ratio 
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which, using the arguments above, can be written as 

RSS(i) det[X(iYX(i)] = [1 _ e; ] (1 _ h
o

) 

RSS x det(X'X) RSS(l - hi) , . 

In terms of the internally Studentized residuals ri, we have 

AP(i) = (1 - r; ) (1 - hi). 
n-p 

(10.56) 

Note that since (n-p)-lr; has a betaa, t(n-p-1)] distribution [cf. (10.10) 
and the following discussion], the first factor of AP(i) is beta[Hn - p - 1), t]. 

The Andrews-Pregibon statistic also has an interpretation as a hat matrix 
diagonal. Let hi,A be the ith diagonal element of the hat matrix based on XA 
rather than X. Then (see Exercises 10e, No.4) AP(i) = 1 - hi,A. 

10.6.4 Test for Outliers 

Suppose that we wish to test if a fixed set of k observations contain outliers, 
assuming that the remaining n - k cases are "clean." Arrange the data so 
that the clean observations come first, followed by the k possibly outlying 
observations. We will use the outlier shift model 

Y = X(3 + Z, + c:, (10.57) 

where Z is a matrix of the form 

and , is a k-vector containing the shifts for the possibly outlying observations. 
We use the theory of Section 3.7.1 to test, = o. Let H be the hat matrix 

for the regression 
Y = X(3 + c: 

corresponding to , = 0, and let 

H = ( Hu 
H21 

(10.58) 

where Hll is n-k by n-k. Partition the residuals e = (In -H)Y conformably 
with H as e = (e~, ez),. By Theorem 3.6, the least squares estimate of , is 

[Z'(ln - H)Z]-lZ'(ln - H)Y 

[(0, Ik)(ln - H) ( ~k) r1 

(0, Ik) ( :~ ) 

(Ik - H 22)-le2. 
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Further, from Theorem 3.6(iii), the numerator of the F-test for testing '/ = 0 
is 

'1"Z' (In - H)Y - '1" (0, Ik)e 

- '1"e2 
e~(lk - H22)-l e2 . 

Hence the F-test for '/ = 0 is 

F = e~(lk - H 22 )-l e2 /k 
[RSS - e~(lk - H 22 )-l e2]/(n - p - k)' 

where RSS is the residual sum of squares for model (10.58). 
When k = 1, we can test if the ith observation is an outlier. Then 

2 
'(I H )-1 ei e2 k - 22 e2 = h 

1- i 

and the F-test reduces to [cf. (10.10)] 

(n - p - l)er 
(1 - hi)RSS - er ' 

(10.59) 

which is distributed as F1,n-p-1 when the ith observation is not an outlier; a 
significant value suggests otherwise, as e; is large. 

We can also write (10.59) in terms of Studentized residuals. Using the 
relationship 

2 
2 e· 

ri . 82(1 ~ hi)' 

we see that (10.59) can be written as [ef. (10.10)] 

which is increasing in Iril. 

10.6.5 Other Methods 

Masking and Swamping 

(n - p- l)rr 
n-p-rr 

Hat matrix diagonals and the leave-one-out diagnostics described above 
are useful tools but can sometimes fail to identify outliers and high-leverage 
points. Consider the situation depicted in Figure 10.8(a). Taken singly, points 
A and B are not infiuential, since removing either will have little effect on 
the fitted line, because the remaining point continues to attract the line. 
However, taken as a pair, they are influential, since deleting both will have 
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a marked effect on the fitted line. In this case we say that points A and 
B mask each other. Single-case diagnostics cannot identify infiuential pOints 
occurring in clusters, where a point in the cluster is masked by the others. 
Possible remedies for masking are to use a robust fit such as least median 
squares to identify the cluster, or to use leave-many-out diagnostics. Both 
these remedies are discussed further below. 

Another phenomenon is swamping, where points that are not outlying can 
be mistaken as such. Consider the situation shown in Figure lO.8(b). Point 
A will have a large residual, since B is attracting the line away from A. 
Deleting point A also has a big impact on the line. However, A is not an 
outlier. Swamping does not occur when robust fitting methods are used. 

Leave-Many-Out 

As we have seen, diagnostics based on the deletion of single cases will 
not identify a point as an outlier when it is masked by others. The obvious 
solution to this problem is to calculate leave-d-out diagnostics, but these have 
some drawbacks. Although this idea is practical for small values of d, the 

computational burden quickly becomes excessive, since we must calculate (~) 
separate diagnostics for each regression quantity examined. Also, they will 
be effective in identifying the situation shown in Figure 10.8 only if all the 
points in a cluster are deleted. Thus, if the cluster contains d points, we 
must calculate leave-d-out diagnostics. This is a problem since 1, is not known 

• 
• • • • • • • • • B· A • 

• • • • • • I 

• • ,. 
• • • 

• 

• • 
• A· 

x x 

(a) (b) 

Fig. 10.8 Masking and swamping. 
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in advance. In any event, the procedure is computationally feasible only for 
small values of d. 

Let D be a d-subset of cases, and let XeD) be the (n - d) x p submatrix of 
X corresponding to the rows of the cases not in D, and let XD be the d x p 
submatrix corresponding to the rows of the cases in D. Then, using A.9.3 
with B = Id, we get 

[(X(D)'X(D)]-l (X'X - X'oXD)-l 

(X'X)-l - (X'X)-lX'o(Id - HD)-lXn(X'X)-l, 

where HD = XD(X'X)-l X'o. If fJ(D) denotes the vector of least squares 
estimates computed from the data with the cases in D deleted, then (Exercises 
10e, No.2) 

(10.60) 

where eD are the elements of e from the cases in D. 
Similarly, the difference in the fitted values for the cases in D is 

YD - YD(D) XDfJ - XDfJ(D) 
- HD(Id- HD)-leD. 

Also, the analog of the COVRATIO can be shown to be 

{ [
n - p - d + e'o(Id - HD)-leD] det(I

p 
_ HD)}-l 

n-p n·-p 

For the leave-d-out analog of the Andrews-Pregibon statistic, see Exercises 
10e, No.3. Further details on these diagnostics may be found in Belsley et 
al. [1980]. 

Using Residuals from Robust Fits 

We remarked in Section 10.6.1 that when a point has high leverage, outliers 
cannot be diagnosed by examining the corresponding least squares residuals. 
However, this will not be the case if we use a fitting method such as least 
median squares (LMS) that resists the effect of outliers at high-leverage points. 
For these fitting methods, the size of the errors will be reflected in the size 
of the residuals. However, due to the problems with LMS regression noted 
in Section 3.13.2, points having large residuals should be classed as outliers 
only provisionally and should be subject to further checks. Atkinson [1986] 
advocates this approach. Once the outliers (say, k in all) corresponding to 
the large LMS residuals have been identified, we can apply an outlier test as 
described in Section 10.6.4 to check if any of the k points are real outliers. 
Atkinson also advocates examining the suspect points using add-one-back 
diagnostics, which look at the change in the regression based on the "good" 
points, as the suspect points are added back one at a time. A simple one-at­
a-time test can also be used as follows. 
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Suppose that (:Ja an.d S~ are the usual estimates of (3 and a2, calculated 
from the "good" data. If X is the corresponding (n - k) x p regression matrix, 
and (Xi, Yi) one ofthe suspect data points, then the statistic (cf. Section 5.3.1) 

Sa(1 + xi(X'X)-lxi)1/2 

has a tn-k-p distribution when (Xi, Yi) is not an outlier. Since this test is 
repeated k times, some adjustment of the significance level should be made, 
for example by using a Bonferroni adjustment with a significance level of a/k. 

Several other authors describe systematic ways of examining a set of suspect 
observations to identify outliers. Dempster and Gaska-Green [1981] suggest 
ordering the observations according to the criteria discussed above, and delet­
ing observations sequentially. They give two rules which indicate when to stop 
deleting points. Hadi and Simonoff [1993] describe a sequential procedure that 
modifies an initial set of suspect observations. 

Hawkins et al. [1984] describe a method for identifying outliers using ele­
mental regressions (cf. Section 11.12.3). Their method relies on the fact that 
residuals eiJ = Yi - xi(:JJ from elemental regressions based on clean subsets J 
will be good estimates of "ti in the outlier-shift model (10.57). On the other 
hand, residuals from regressions based on sets J containing outliers will not. 
Taking a median of all the eiJ over all elemental sets J should provide a good 
estimate of "ti, since the median should resist the effects of the contaminated 
eiJ corresponding to the sets J containing outliers. Hawkins et al. [1984] also 
consider a form of weighted median, and their paper should be consulted for 
details. 

EXERCISES IOe 

1. Consider a linear function d' (3 of (3. Show that the change in the esti­
mate d'i:J when the i th observation is deleted is 

d'(:J(i) - d'(:J = (C'd)iei/(l- hi), 

where C is the catcher matrix (X'X)-lX'. 

2. Show that 

y D - XD(:J(D) = (I - HD)-l[y D - XD(:J(D)]. 

3. Suppose that we delete a set D of observations. Show that the "delete 
d" version 

det[XA(D)'XA(D)] 
det(XAXA) 

of the Andrews-Pregibon statistic can be written as 

det(ld - HD) [1 _ eD(ld ~~:)-leD] . 
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4. Let hi,A be the ith diagonal element of the hat matrix based on (X, Y) 
rather than X. Show that AP(i) = 1 - hi,A. Hint: Use the results of 
Section 10.6.3. 

5. The influence curve of the least squares estimate fJ was derived in Exam­
ple 3.22. A sample version of the IC (cf. Section 3.13.3) can be defined 
by taking Zo = (Xi, Yi), t = -1/(n - 1), F as the e.d.f. Fn, and by 
considering the difference [T(Ft) - T(F)]/t rather than the derivative. 
This leads to the sample influence curve SICi, given by 

SICi = -(n - 1) {T [(n -1)-l(nFn - Oi)] - T(Fn)}, 

where Oi puts mass 1 at (Xi, Yi). 

(a) Show that (n - 1)-1 (nFn - Oi) is the empirical distribution func­
tion calculated from the remaining (n - 1) points when the ith 
observation has been deleted from the sample. 

(b) Hence show that for the least squares estimate functional T, 

SICi = (n - l)(fJ(i) - fJ). 

(c) The quantity SICi is a vector. We can obtain an overall scalar 
measure by considering the quantity 

Di(M, c) = c-1 (SICdM(SICi), 

where M is a positive-definite matrix and c is a positive constant. 
Show that if we choose M = X'X and c = pS2/(n-l)2, we obtain 
Cook's D. 

For more details on the influence function approach to outlier detection, 
see Cook and· Weisberg [1982, Chapter 3] and Chatterjee and Hadi [1988, 
Chapter 5]. 

10.7 DIAGNOSING COLLINEARITY 

We saw in Section 9.7.3 that the existence of an almost linear relationship 
between the columns of the regression matrix is equivalent to R"':t having 
one or more small eigenvalues. This is also equivalent to at least one of the 
variance inflation factors being large. Thus, we can detect collinearity by 
examining the eigenvalues and the variance inflation factors. If we have a 
collinearity problem, some of the eigenvalues will be small, and some of the 
variance inflation. factors will be large. 

The condition number ~(X*) of the centered and scaled regression matrix 
X* is a single diagnostic that will allow us to screen the data for large VIFs 
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and small eigenvalues. The square of the condition number is an upper bound 
for the VIFs, and for the reciprocal of the smallest eigenvalue. To see this, let 
Ci be a vector whose ith element is 1 and the rest are zero. Then, from A.7.2, 

1 ::::: C~R",,,,Ci < max c'R",,,,c = AMAX. (10.61) 
I/cl/=1 

Let T = (tij) be the matrix that diagonalizes R",,,, (= X*'X*). Then, by 
(9.56) and (10.61), since ~I tJI = 1 for all j, it follows that 

VIFj - var[ij]/a2 

L tJIA11 
I 

< L tJIAM~N 
I 

< \ -1 
AMIN 

< AMAXAM~N 
~(X*)2 , 

by (9.60). Thus, if the condition number is small, there will be no estimated 
regression coefficients with large variances. On the other hand, if the condition 
number is large, at least one eigenvalue must be small, since by Exercises 9d, 
No.4 at the end of Section 9.7.5, the largest eigenvalue of R",,,, is less than 
p - 1. In this case we should examine the eigenvalues. The eigenvectors 
corresponding to the small eigenvalues should also be examined to determine 
the linear combinations that are causing the trouble. 

We can also calculate the variance proportions (Belsley et al. [1980: p. 
106]), which are the proportions of each variance due to each eigenvalue. The 
variance proportion for variable j and eigenvalue AT is the quantity 

t~ A-1 
JT T 

~p-1t2 \-1' 
L...,1=1 jl Al 

Proportions near unity indicate that most of the variance of a particular 
estimated coefficient is due to a single small eigenvalue. 

10.7.1 Drawbacks of Centering 

As discussed in Section 9.7.4, the condition number of X* gives an indication 
of how small changes in X* will affect the regression coefficients. If the condi­
tion number is small, a small change in X* will result in only a small change 
in i. However, we may be more interested in how a small change in the orig­
inal data affects the regression coefficients. Under certain circumstances, a 
small change in the original regression matrix X may cause a large change in 
the centered and scaled regression matrix X*. This in turn will cause a large 
change in i. The diagnostics based on R",,,, cannot detect this. 
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We will see in Section 11.7 that the matrix X.'X may not be computed 
accurately if the coefficient of variation of one or more of the columns of X 
is small. A similar kind of instability applies here. If the elements in the jth 
column have a small coefficient of variation, CV j, a small change in the jth 
column of X can produce a large change in s1 = Li(Xij - Xj)2 and hence 
in R",,,,. This, in turn, can produce large changes in the estimated regression 
coefficients. 

To demonstrate this effect, let P = In - n-lInI~, and suppose that the 
jth column x(j) of the original regression matrix is perturbed by a small 
vector 8(j) = (Olj, ... ,Onj)', where 11811 < Ellx(j)II. Then, using the same 
arguments and notation as in Section 9.7.4, and noting that 8U)'P8(j) = 
IIP8(j)W < 118(j)112 (by Example 9.5 in Section 9.7.4), the relative change in 
S] (= IIPx(j)W) is 

\IIP(x(j) + 8(j))11 2 -IIPx(j)W\ 

IIPxU) 112 

< 

\2o(j)'Px(j) + 8(j)'P8(j) \ 

IIPxU) 112 

2118U) 1IIIPx(j) II + 118(j) 112 
IIPxU) 112 (by A.4.11) 

2118(j) II 118U) 112 
IIPxU) II + IIPxU) 112 

2EllxU) II E211xU) 112 ----'-'-----"'- + 2 
Sj Sj 

210(1 + CV j 2)1/2 + 102(1 + CVj 2), 

(10.62) 

by (9.71), where CV j = sj/(n1/ 2IxjJ). This bound shows that provided CVj is 
not too small, small changes in the original data will not produce much relative 
change in R",,,,. However, if the perturbations are such that 8(j)'I n = 0 and 
8U)'xU) = 0, then P8Ul = 8(j), 8(j)'xU) = 0 and the second term in (10.62) 
is attained. This shows that if the data in a column have a small CV, then 
small changes in the column can result in very large relative changes in S], 
and hence in R",,,,. 

The inability of diagnostics based on R",,,, to detect instabilities due to 
small values of the CVj's has been pointed out by Belsley [1984], who gives 
an example in which the centered and scaled data has condition number 1 
(i.e., the columns of the regression matrix are perfectly orthogonal) but the 
CV j's are small. Using this example, he shows how a small perturbation in 
the original data causes a large change in the centered data and hence a large 
change in the regression coefficients. 

Belsley advocates using the condition number of a scaled, but not centered, 
version of X as a composite diagnostic that will reveal both small eigenvalues 
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inR:z;:z; and small CV j 'So To see why this is so, consider the scaling 

v Xij 

Xij = {~. X~.}1/2 
L..",=l 'J 

(j = 0, ... ,p - 1), 

so that the columns of X, including the first corresponding to the constant 
term, have all been scaled to have unit length. Let the resulting matrix be 
X = (n- l / 2 1 n ,x(1), ... ,x(p-l)). Also let ).MIN and ).MAX be the minimum 
and maximum eigenvalues of the scaled (but not centered) matrix X'X. Note 
that, by the scaling and the Cauchy-Schwartz inequality, all the elements of 
X'X are less than 1 in ma~ni~ude. 

For the eigenvalues of X'X to be an effective diagnostic tool, they need 
to reflect both causes of instability: namely, small values of CV j and small 
eigenvalues of R:z;:z;. We will show that if any of the CV j 's or eigenvalues of 
R:z;:z; are small, then X'X must have a small eigenvalue, which we need to 
check for. 

We begin by showing that AMIN > ).MIN, where AMIN is the smallest eigen­
values of R:z;:z; and ).MIN is the smallest eigenvalue of X'X. This will prove 
that if R:z;:z; has a small eigenvalue, so must X'X. Now any linear combina­
tion of the columns of the centered and scaled regression matrix X* can be 
expressed as a linear combination of the columns of X, since 

X*c ClX*(1) + ... + Cp_lX*(P-l) 

say, where 

and 

Cl(X(l) - x l l n )/Sl + ... + Cp_l(X(P-l) - x p- l l n )/Sp-l 

-(ClXI/Sl + ... + Cp-lXp-l/Sp-l)ln 

+ ClX(1) /Sl + ... + Cp_lX(P-l) /Sp-l 

con- l
/

2 1n + CIXI + ... + Cp-lXp-l 

Xc, (10.63) 

Now let c = (el, ... ,cp-d' be the eigenvector having unit length correspond­
ing to AMIN, and c be the p + 1 vector calculated from c as described above. 
Then, by A.7.2, 

AMIN c/R:z;:z;c 

C/X"X*C 

C'X/Xc 
> ).MINllcI1 2

. 
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But 

n(C1x!/sl + ... + Cp_1 Xp_!/Sp_1)2 

+ cf IIx(1) W / sf + ... + c;_1I1x (P-1) W / S;_l 

> 2 2 C1 + ... + cp _ 1 

1, 

since Ilx(j) W / s; = 1 + CV j 2 > 1. Thus A.MIN > XMIN . 

Next we show that if CV j is small for some j, then X'X has a small 
eigenvalue. Let Cj be a vector with first element equal to _xjn1/

2
, jth element 

equal to Ilx(j)II, and the other elements zero. Then, by A.7.2, 

< 

C'X'XC 
min ---:--

c c'c 

cjXIXCj 

I 
CjCj 

IIXcjW 
cjCj 

Li(Xij - Xj)2 

Ilx(j) 112 + nx; 

Li(Xij - Xj)2 

Li Xfj - nx; + 2nx; 

CV~ 
J 

CV; + 2' 

so that if CV j is small, so is the smallest eigenvalue XMIN . 

Since the largest eigenvalue of X'X is greater than 1 (see Exercises 10f, 
No.1), then a small CV j or small eigenvalue of Rxx must necessarily result in 
a large condition number for X. For this reason, ~CX) is a better diagnostic 
than ~(X·). 

10.7.2 Detection of Points Influencing Collinearity 

The collinearity diagnostics introduced in Section 10.7, like many other as­
pects of regression, are vunerable to the effects of high-leverage points. We 
illustrate the problems that can arise with a simple example. 

Suppose that we have a regression with p = 3 and two centered and scaled 
explanatory variables xi and x2. Figure 10.9(a) shows a plot of x2 versus xi. 
Due to the high-leverage point A, the correlation between the two explana­
tory variables will not be large, so the diagnostics discussed in the previous 
sections will not reveal any problems. However, if the point A is removed, 
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the correlation will increase dramatically. Consequently, the VIFs and the 
condition number of X* will become large. 

A reverse situation can also occur: Consider the plot in Figure 10.9(b). The 
correlation is high but is reduced to almost zero if the high-leverage point A 
is removed. These two examples indicate how high-leverage points can have a 
strong effect on collinearity, as well as other aspects of the regression. Indeed, 
as Gunst and Mason [1985) point out, the effects can be arbitrarily large. We 
need to be able to detect situations where the collinearity is influenced by a 
single point. 

The ordinary regression influence diagnostics (in particular, the hat matrix 
diagonals) will give an indication of possible trouble. A more focused diag­
nostic is to compute the condition number />,( -i) of the regression matrix with 
the ith row deleted. Comparison of />,( -i) with the condition number of the 
full matrix will indicate any points causing a marked change in the condition 
number. Note that it is absolute rather than relative change that is impor­
tant; a 50% change in a small condition number is not as relevant as a 50% 
change in a large one. 

10.7.3 Remedies for Collinearity 

We begin by emphasizing that centering and scaling do not "cure" collinear­
ity. Scaling merely changes the units of measurement and leads to measuring 
variability on a different scale. Centering merely reparameterizes the regres-

• • . ,' J • 
• ... .. 

• • 

r=-0.28 
(=-0.98 

(a) (b) 

Fig. 10.9 Effect of outliers on collinearity diagnostics 
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sion surface, substituting a parameter that can be estimated accurately for 
one that cannot, while the estimated surface (i.e., the set of fitted values) 
remains the same. (An overall measure of the accuracy of the fitted values is 
EIIX.8 - X.B112, which is just the ME considered in Chapter 12. This is in­
variant under centering and scaling, and under II,lore general transformations; 
see Smith and Campbell [1980] and Exercises 10f, No.2.) 

Centering and scaling lead to simple formulas, and allow us to measure 
regression coefficients on a common scale, that of the units of the response. 
Note that we have not advocated centering and scaling the response: There 
is no advantage in doing so and the usual distribution theory does not apply 
to the centered and scaled Y. 

There are three ways to overcome the effects of collinearity. Since collinear­
ity arises when the data are deficient, an obvious solution is to collect fresh 
data to repair the deficiencies in the regression matrix. Obviously, this is 
not always possible, for example when the explanatory variables are strongly 
correlated in the population from which the data are drawn. 

Another re~edy is simply to discard variables until the remaining set is 
not collinear. For example, if there is a single approximatp linear relationship 
between the variables, discarding a single variable will solve the problem. 
However, Belsley [1991: p. 301] disparages this approach, on the grounds 
that the variable deleted may well have a relationship with the response. He 
points out that collinearity is a property of the observed data, and not of 
the underlying relationship between the variables. For more on the general 
problem of selecting which variables to include in a regression, see Chapter 
12. 

A final remedy, which we will see in Chapter 12 can greatly aid prediction, 
is to abandon the use of least squares and use a biased estimation method 
such as ridge regression. 

Ridge Regression 

Ridge regression was introduced by Hoerl and Kennard [1970a,b] as a way of 
dealing with collinear data in an estimation context rather than in prediction. 
Consider the centered and scaled regression model (9.49). The ridge estimate 
of , is defined as 

i(k) = (X·'X· + kI)-IX*'Y, (10.64) 

where k is a positive parameter, whose value must be specified. When k = 0, 
the ridge estimate reduces to the least squares estimate. 

The ridge estimate has an interpretation as a Bayes estimate. We first 
write the centered and scaled model as [cf. (9.50)] 

y = X s 8 + c, 

where Xs = (1, X*) and 8 = (ao, ,')'. In Section 3.12 we saw that if 8 has a 
Np(rn, (12V) prior distribution, then the posterior mean of 8 is 

(X~Xs + V-I) -1 (v-1 rn + X~ Y). 
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If we choose In = 0 and 

then from Exercises 10f, No.3) the posterior mean (the Bayes estimate) of, 
is exactly the ridge estimate (10.64). 

We can also interpret the ridge estimate as the least squares estimate that 
results if the data are augmented. As we saw above, one way to remedy the 
effect of collinearity is to collect new data. Imagine augmenting the observed 
data (X*, Y) with new data (kIp_I, 0). Then the least squares estimate cal­
culated from the augmented data 

( 
X* Yo) 

kIp - 1 

is just the ridge estimate (10.64). 
Thus the ideas of biased estimation (at least in the case of ridge estimation) 

are connected with the idea of observing extra (notional) data and with Bayes 
estimation. It follows that the ridge approach will be a good method if the 
N p - 1 (0,0"2 k- 1 Ip - 1 ) prior for, is appropriate, but not otherwise. This is 
considered in more detail by Smith and Campbell [1980], Draper and Smith 
[1998: p. 391], and in Section 12.9.2. 

We have defined the ridge estimate in terms of the centered and scaled re­
gression model. Some writers do not assume that the data have been centered 
and scaled, and define the estimate in terms of the original regression matrix 
X rather than the centered and scaled matrix X*. However, this leads to 
estimates that are not scale invariant, unlike the least squares estimate (cf. 
Brown [1977] and Smith and Campbell [1980] for a discussion). 

The ridge estimate can be written (using the notation X*X* = Rxx) as 

i(k) (Rxx + klp_d-1X*'Y 

(Rxx + kIp_d-lRxxR;;X*'Y 

(Rxx + klp_d-1Rxxi 
(Ip- 1 + kR;;)-li 

Ci, 

say. Thus, the ridge estimate is clearly biased, as C f= Ip - 1 . We can study its 
accuracy for different values of k by examining its mean-squared error (MSE), 
given by 

MSE E[lli(k) - ,I1 2 J 

E[IICi -,11 2
] 

E[lICCi -,) + (C - Ip_d,112] 

E[lICCi -,)11 2
] + II(C - Ip_d,11 2

. (10.65) 
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Since .:y - , has mean zero and variance-covariance matrix /72R;;, it follows 
by Theorem 1.5 that the first term in (10.65) is /72 tr(R;;C'C). To simplifY 
this, we use the spectral decomposition R",,,, = TAT' (A.1.4). Then R;; = 
T A-I T', In = TT' and C = TDT', where D is also diagonal with diagonal 
elements Aj/(k + Aj). Thus the first term of (10.65) is 

/72 tr(R;;C'C) /72 tr(TA -IT'TDT'TDT') 

/72 tr(TA-1 D 2T') 

/72 tr(A -1 D 2T'T) 

/72 tr(A -ID2) 
p-1 

2 ""' Aj 
/7 ~ (k A.)2· 

j=1 + J 

If we set 0: = T'" then the second term in (10.65) is 

so that the MSE is 
p-1 a? k2 + /72 Aj 

MSE = L J(k A .)2 . 
j=1 + J 

The derivative of this with respect to k is 

(10.66) 

which is negative for small positive values of k, so that for k sufficiently small, 
MSE decreases as k increases. 

In principle, to find the value of k leading to the smallest MSE, we need 
only solve 

~ 2Aj(a;k - /72
) _ 

~ (k A.)3 - O. 
j=1 + J 

However, the minimizing value obviously depends on the unknown parame­
ters 0: and /72 . We can substitute the estimates 0: = T'.:y and 8 2 from a 
least squares fit and solve the resulting equation. Unfortunately, there is no 
guarantee that the resulting estimate of k will lead to a smaller MSE than 
least squares. However, in a simulation study, Dempster et al. [1977] reported 
that this method, which they call SRIDG, performed well. 

They also advocated using another method, called RIDGM, which uses the 
fact (cf. Exercises 10f, No.4) that the &/s have independent N(O, /72(k- 1 + 
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Ajl» distributions when '/ has the N p - l (0, /72 k- l Ip-d prior discussed above. 
The quantities a; kAj / {/72 (k+Aj)} then all have independent xi distributions, 
with expectation 1, which implies that 

(10.67) 

has expectation p - 1. Thus, substituting 8 2 for /72 in (10.67), and equating 
to p - 1, gives an equation that can be solved for k. This yields the estimate 
RlDGM, which was found to be slightly better then SRIDG in the study by 
Dempster et al. 

If the centered and scaled explanatory variables are orthogonal, then the 
matrix Rxx is an identity matrix and the eigenvalues are all 1. In this case 
the SRIDG method reduces to solving the equation 

2 "P-l(a~k - S2) 
L..."J=l J 

(k + 1)3 = 0, 

which has solution 

(10.68) 

The last expression follows from the fact that 0: = T'..y and T is orthogonal 
and consequently preserves the lengths of vectors. The estimate (10.68) is 
due to Hoerl et al. [1975]. In another simulation study, Hoerl et al. [1986] 
report that it gives good results even in non-orthogonal regressions, being 
much superior to least squares. 

In their original paper, Hoerl and Kennard proposed a graphical method 
for choosing k. They recommended plotting the components of the vector 
..y(k) against k and choosing a value of k for which the coefficients are not 
changing rapidly and have "sensible" signs. This plot, called the ridge trace, 
has no objective basis and has been disparaged by most subsequent writers 
on ridge regression. 

Many other estimates of k have been proposed in the literature, and many 
published studies compare the estimates using simulation. Some of these 
studies have been criticized as favoring one estimate or the other, so no clear 
estimate has emerged as superior (cf. Draper and Van Nostrand [1979]). It 
should be noted that some of these studies use a different criterion from MSE. 
We discuss how to estimate k using prediction error as a criterion in Section 
12.9.2. 
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Principal Component Regression 

Principal component (PC) regression is another biased estimation method, 
based on the spectral decomposition of Rxx. Let t 1 , ... ,tp-l be the columns 
of the orthogonal matrix T in the spectral decomposition of Rxx. Then for 
the centered and scaled model (9.49), we can write the least squares estimate 
(LSE) as 

R- 1X·'y xx 
TA -IT'X·'y 
p-l 

LtlZI 
1=1 

(10.69) 

where Z = (ZI, ... ,Zp-l)' is the vector Z = A-1 T'X·'y. The name princi­
pal component regression comes from the fact that Z is the LSE when Y is 
regressed on the principal components X*T of X·. This follows from the fact 
that 

(T'X*'X*T)-IT'X·'Y = (T'Rxx T)-IT'X·'Y = A -IT'X*'y = Z. 

Hence 

and 

E[Z] A -IT'X·' E[Y] 
A-1 T'X*'(aol n + X*,) 

A -IT'TAT', 

Var[Z] 

T', 
a 

A -IT'X*' Var[Y]X*TA- 1 

A-1T'X·' (72 In X*TA- 1 

(72 A -1 AA-1 

2A-1 (7 . 

From (10.69) we have 

p-l 
Var[i] = (72R;; = (72T' A -IT = (72 L tlt;All. 

1=1 

(10.70) 

Assuming that Al > A2 > ... > Ap-l' this suggests dropping the terms in the 
sum (10.70) corresponding to small eigenvalues, and considering an estimate 
of the form 

T 

i(r) = LtlZl, (10.71) 
1=1 
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where the integer r is chosen so that the eigenvalues Ar+l, ... , Ap are all 
"small" (i.e., of a smaller order of magnitude than the others). 

To calculate the MSE, we write 

p-l 

1 = Tn = Ltlal, 
1=1 

so that 
r p 

i'(r) - 1 = L tl(ZI - at) - L tlal· 
1=1 l=r+1 

Exploiting the fact that the vectors tl are orthogonal, we get 

r p-1 

11i'(r) - 1112 = L(ZI - at)2 + L aT, 
1=1 l=r+l 

so 
r p 

E[IIi'(r) _,11 2] = (72 L All + L 
2 

al· 
1=1 l=r+1 

The estimate relies on the trade-off between the sizes of the small eigenvalues, 
which are known, and the corresponding a/s, which are not. Estimating aj 
with aj is not very accurate for the aj corresponding to the small eigenvalues, 
since Var[aj] = (72 Ail. Several authors (e.g., Dempster et al. [1977], Hoerl 
et al. [19S6] ) have reported simulations comparing PC regression with ridge 
and have found it inferior. Gunst and Mason [1977] describe a study where 
PC regression performed well but under restrictive circumstances that unduly 
favored PC over ridge. 

Another drawback of PC regression is that it is quite possible for the dis­
carded components to be the ones having the strongest relationship with the 
response. In an extreme case we might have a1 = a2 = ... = a r == 0, so that 
in forming the PC estimate, we discard all the principal components that are 
related to the mean response and retain only variables that contribute nothing 
to the regression. Further discussion of this point may be found in Hadi and 
Ling [199S]. A comparison of ridge and PC regression may be found in Frank 
and Friedman [1993]. 

EXERCISES lOf 

1. Show that the largest eigenvalue ).MAX of XIX satisfies 

1 < ).MAX < p. 

2. Show that 
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3. Prove that with the priors of Section 10.7.3, the posterior mean of '/ is 
just the ridge estimate (10.64). 

4. Prove that with the priors of Section 10.7.3, the prior distribution of 0: 
is N p _ 1 [O,u2 (A- 1 + k-1Ip _ 1)]' 

MISCELLANEOUS EXERCISES 10 

1. Consider a regression with regression matrix X and LSE /:1. Suppose 
that a new case with data (x, Y) is added. Show that the residual 
sum of squares is increased by an amount e2 /(1 + x'(X'X)-lX), where 
e = Y - x'j3. 

2. Consider deleting a variable Xj from a regression. Let Hand H j be the 
hat matrices with and without the corresponding column x(j) included. 

(a) Show that 

(b) Let'TJij = [(In - H j )x(j)k Show that if hi and h~j) are the diagonal 
elements of Hand H j , then 

2 

h . - hU) + 'TJij 
'l. - i 2 . 

Lk'TJkj 
(10.72) 

(c) Explain how the second term on the right of (10.72) can be inter­
preted as the leverage of the ith case in the added variable plot 
for variable j. How can you use added variable plots to determine 
which variables contribute to the leverage of observation j? 

3. The correlation that exists between the residuals in a regression compli­
cates the detection of departures from the standard regression model. 
For this reason, various proposals for independent and identically dis­
tributed "residual-like" quantities have been proposed. For example, 
Theil [1965, 1968] (see also Grossman and Styan [1972]) introduced 
BLDS residuals e having the following properties: 

(i) e = AY for some (n - p) x n matrix A (Le., linear). 

(ii) Var[e] = u2In_p (Le., scalar). 

(iii) E[e] = 0 (Le., unbiased). 

(iv) A is chosen to minimize ElIIe-e:l!!2], where e:l is some fixed (n-p)­
dimensional su bvector of e: (i.e., best). 
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Thus, the BLUS residuals are the Nn_p(O, u2In_p) linear combination 
of Y that best approximates some (n - p)-subset of the errors. 

(a) Assume that X is of full rank p. Let Q = (Ql, Q2) be an n x n 
orthogonal matrix such that the columns of Ql are an orthonormal 
basis for C(X). (For example, Q could be the matrix arising in the 
QR decomposition discussed in Section 11.3.) 

Show that any matrix A that satisfies (ii) and (iii) above must be 
of the form TQ~ for some (n - p) x (n - p) orthogonal matrix T. 

(b) Let J be an (n - p) x n submatrix of In such that Cl = Jc. Show 
that 

(c) Let Q~J' = UAV' be the singular value decomposition of QP'. 
(cf. A.12). Show that 

tr(TQ~J') < tr(A) 

with equality if and only if T = VU'. Hence show that A = 
VU'Q~. Hint: Show that tr[(V - TU)A(V - TU)'] = 2[tr(A) -
tr(TQp')]. 



11 
Computational Algorithms for Fitting 

a Regression 

11.1 INTRODUCTION 

In this chapter we describe the algorithms that are commonly used to fit a 
linear regression model to a set of data. Fitting the model involves calculating 
the following quantities: 

• The regression coefficients {J 

• The residual sum of squares and the estimate S2 of the error variance 

• The estimated variance-covariance matrix of {J 

• The fitted values and residuals 

• The hat matrix diagonals 

• Test statistics for various hypothesis tests. 

We also discuss algorithms for adding and removing variables in a regression 
model. Most of the discussion deals with fitting by least squares, but we also 
briefly discuss methods for fitting robust regressions. 

11.1.1 Basic Methods 

Three basic methods are used to calculate least-squares regression fits. The 
first forms the sum of squares and cross-products (SSCP) matrix X'X and 
bases most of the calculations on this matrix. Then either Gaussian elimi­
nation, the sweep operator, or the Cholesky decomposition is used to solve 
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the normal equations. Related regression quantities can be generated at the 
same time by suitably augmenting the SSCP matrix before applying these 
algorithms. 

Alternatively, we can avoid ever forming X'X and work directly with X. 
The s~cond method uses the QR decomposition of X to obtain a Cholesky 
factor directly without ever forming X'X. The QR decomposition can be cal­
culated by one of three algorithms, the modified Gram-Schmidt algorithm, 
Householder reflections, or Givens rotations. We describe these in detail be­
low. 

The third method uses the singular value decomposition (SVD). This is 
the most computationally expensive approach, but also the most numerically 
stable. 

11.2 DIRECT SOLUTION OF THE NORMAL EQUATIONS 

In this section we examine methods for direct solution ofthe normal equations. 
These must first be formed by calculating X/Y and the sum of squares and 
cross products (SSCP) matrix X'X. 

11.2.1 Calculation of the Matrix X'X 

We will assume that our model has a constant term so that the first column of 
X consists of 1 'so Then, assuming that there are n cases and p - 1 variables, 
the SSCP matrix is 

n :EXil :E Xi,p-I 

X/X= :EXil :Ex;1 2:= XiI Xi,p-I (11.1) 

:E Xi,p-I :E Xi,p-IXil :E X;,p_1 

Calculating this matrix requires approximately np2 arithmetic operations, so 
is quite computationally expensive. We make about a 50% saving in com­
putation by exploiting the symmetry of X'X. Note that it is customary to 
count floating-point operations (additions, subtractions, multiplications, and 
divisions) or flops when assessing the cost of a computation; see Section 11.8.2 
for more details. 

The calculation should be done in double precision, since round-off error 
in formation of the SSCP matrix can result in unacceptable loss of accuracy 
when calculating the solution to the normal equations. For more detail on 
this point, see Section 11.7. 
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11.2.2 Solving the Normal Equations 

Assuming that we have accurately formed XIX and Xly, we now need to 
solve the normal equations 

X/Xb = X/y. 

(We use b instead of fJ to avoid notational problems because of f3o.) 

Gaussian Elimination 

Consider a square nonsingular p x p matrix A. Gaussian elimination (GE) 
is a scheme for reducing A to upper triangular form (Le., all entries below the 
diagonal are zero) by repeated application of the following operation: 

Transform row i by subtracting a multiple of row k from row i. 

We illustrate fer the case when p = 4. The reduction can be achieved in 
three (= p - 1) steps, where each step consists of a series of operations of the 
type above .. The algorithm follows. 

Algorithm 11.1 

Step 1: For i = 2,3,4, subtract ail/a11 times row 1 from row i. This results 
in a matrix A (1) that has all its sub diagonal elements in column 1 equal 
to zero. 

Step 2: For i = 3,4, subtract ag) /a~~ times row 2 from row i. This results 
in A(2), which has its sub diagonal elements in columns 1 and 2 equal to 
zero. 

Step 3: For i = 4, subtract ag) laW times row 3 from row i. This results in 
A (3), which has all its sub diagonal elements equal to zero. A (3) is the 
desired upper triangular matrix. 

Note that this requires that a11, a~~, and a~;) all be nonzero. This will be 
the case if A is nonsingular. 

The steps above can be described in terms of matrix multiplication. Step 
1 is equivalent to pre multiplication by the matrix 

1 0 o 0 

M1 = 
-a2l/a11 1 
-a3l/a11 0 

o 0 
1 0 

-a41/a11 0 o 1 
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step 2 to premultiplication by 

1 0 
o 1 

O (1)/ (1) -a32 a22 

O (1)/ (1) -a42 a22 

o 
o 
1 

o 

and step 3 to premultiplication by 

• 1 
o 
o 
o 

We can express this process as 

o 0 
1 0 
o 1 

O (2)/ (2) -a43 a33 

o 
o 
o 
1 

o 
o 
o 
1 

where U is an upper triangular matrix. The product M = M3M2M1 of lower 
triangular matrices with unit diagonal elements is again a lower triangular 
matrix with unit diagonals. 

In general, to solve the normal equations, we apply p - 1 GE steps to the 
matrix X'X and the same steps to the right-hand side, X'Y. This amounts to 
multiplying both sides of the normal equations by a lower triangular matrix 
M which is the product of matrices such as M 1, M 2, M3 above. The result 
is 

Ub=c, 

where U is upper triangular. Upper triangular systems of linear equations 
can be solved easily by back-substitution using the equations 

and 
bp _ j = (cp_j - Up-j,p-j+1bp-j+1 - ... - up_j,pbp)/up_j,p_j 

for j = 1,2, ... ,p - 1. From a computational point of view, it is convenient 
to produce U and c together by joining X'Y to X'X and applying the p - 1 
Gaussian elimination steps to (X'X, X'Y). We note that MX'X = U, or 

(11.2) 

say, where L is lower triangular. This is called the LU decomposition of X'X. 
The GE algorithm can also be used to compute the residual sum of squares. 

If we apply the algorithm to the augmented matrix 

(
XIX 

X~XA = ylX 
XIY) 
Y'Y , (11.3) 
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where XA = (X, Y), we get 

(~ ~) ( X'X 
Y'X (11.4) 

say. The matrix on the left is lower triangular with unit diagonals and the 
matrix on the right is upper triangular. Multiplying the matrices and equating 
blocks gives 

MX'X U, (11.5) 

MX'Y c, (11.6) 

Ill'X'y + y'y d, (11. 7) 

Ill'X'X + y'X 0'. (11.8) 

Thus from (11.5) and (11.6), the matrix U and c are the same as those 
resulting from the previous calculation using (X'X, X'Y). Solving the last 
two equations, (11.7) and (11.8), gives 

III = -(X'X)-lX'Y = -[3 

and 
d = y'y - [3'X'Y, 

so that d is the residual sum of squares. Note also that augmenting the matrix 
effectively performs the back-substitution, as we get the regression coefficients 
as a bonus. 

The accuracy of the Gaussian elimination algorithm can be improved by 
pivoting. If at any stage of the algorithm the divisors a~;), ag), ... , etc. (which 
are called pivots) are small, then very large elements can be introduced into 
the upper triangle U. These large elements will lead to inaccuracies when the 
solution is computed by back-substitution. Golub and Van Loan [1996: p. 107] 
give a simple example of this phenomenon, and Parlett [1980: p. 44] provides 
some interesting comments. An effective solution is to interchange rows at 
the beginning of each stage of the computation, so that the largest possible 
pivot is used. Specifically, at the beginning of the jth stage, we interchange 
row j with row j', where 

This strategy, known as partial pivoting, is usually enough to avoid the prob­
lem of large elements in the upper triangle U. A more elaborate strategy 
which involves interchanging columns as well as rows is described in Golub 
and Van Loan [1996]. If no pivot is sufficiently large, the matrix X is probably 
rank deficient. 

The GE algorithm is not much used in fitting single regressions, since the 
Cholesky decomposition provides a more efficient method that exploits the 
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fact that the SSCP matrix is positive-definite. However, GE plays a role in 
the Furnival and Wilson method for fitting all possible regressions, which is 
discussed in Section 12.8.2. In this method, the GE algorithm is used to 
fit a submodel in the following way: Suppose that we partition X as X = 
(XI ,X2,X3 ) and we want to fit the model (XI ,X3 ). We can, of course, fit 
the submodel by applying the GE algorithm to (Xl, X 3 ) instead of X. We 
will show that this is equivalent to applying the GE algorithm to the whole 
of X, but skipping the GE steps corresponding to the variables in X 2. 

Assuming that Xl has TI columns, apply TI GE steps to (X, Y)'(X, Y). 
Schematically, we get 

M(1) 0 0 0 X~XI X~X2 X~X3 X'y I 
"M(2) 1 0 0 X~XI X~X2 X~X3 X~Y 
M(3) 0 1 0 X~XI X~X2 X~X3 X'Y 3 
M(4) 0 0 1 Y'XI Y'X2 Y'X3 Y'Y 

* * * * 
0 * * * (11.9) 
0 * * * 
0 * * * 

Here M(l) is a product of (TI - 1) Mi-type matrices which reduces X~ Xl 
to upper triangular form. Multiples of the rows of X~ Xl have also been 
subtracted successively from X~XI' X~XI' and Y'XI to reduce these matrices 
to zero. For example, M(2)X~ Xl + X~XI = o. Therefore, equating blocks, 
we see that 

M(j) = -XjXI(X~XI)-1 (j = 2,3,4), (X4 = Y). 

Thus, the right-hand side of (11.9) is of the form 

* * o X~(I - PdX2 
o * 
o * 

* 
* 

X~(I - P I )X3 
Y'(I - P I )X3 

* 
* 

X~(I - PdY 
Y'(I - PI)Y 

where PI ...,.. Xl (X~ XI)-l X~, so that after TI steps, the bottom-right element 
Y' (I - PI)Y is the RSS from fitting the model Xl. Now skip the GE steps 
for the variables in X 2, resuming the GE steps for the variables in X 3 . These 
steps do not involve the rows and columns corresponding to X 2 in any way, 
so the result is exactly the same as if we applied the full GE algorithm to 
(Xl, X 3) rather than X. The same argument applies if we partition X into 
more parts. 

It follows that any submodel can be fitted by successively pivoting out the 
variables present in the submodel, simply omitting the steps corresponding to 
the absent variables. For example, if we have four variables and we want to 
fit the model corresponding to the first and third variables, we simply pivot 
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out the first variable in step 1, skip step 2, pivot out the third variable in step 
3, and skip step 4. The RSS for this fit will be the bottom right element in 
the result. 

Sweeping 

Sweeping (Goodnight [1979]) is a variation of Gaussian elimination that 
allows for the simultaneous computation of /:3, (X'X)-l and the residual sum 
of squares. Sweeping also provides an efficient way to add or delete variables 
from a regression fit and is discussed further in Sections 11.6.2 and 12.8. 

The sweep operator is applied to a specific row (or column) of a square 
matrix A. A sweep on row (or column) r is the transformation of A to A*, 
where A * = (arj) is defined by 

1 

(i "I- r), 

(i"l- r,j"l- r). 

It follows directly from the definition that: 

(a) Sweeping is reversible (Le., sweeping twice on row r is equivalent to no 
sweep). 

(b) Sweeping is commutative (Le., sweeping on row r and then on row s is 
equivalent to sweeping on s and then sweeping on r). 

The relevance of the sweep operator to regression calculations is that sweeping 
the augmented (p + 1) x (p + 1) matrix 

( 
X'X 
Y'X 

X'Y) 
Y'Y 

successively on columns 1,2, ... ,p yields the matrix 

( 
(X'X)-l /:3 ) 

-(3 RSS . 

This result is proved in Section 11.6.2. 

Cholesky Decomposition 

If A is a p x p positive-definite matrix, there exists a unique upper triangular 
matrix R with positive diagonal elements such that (A.4.10) 

A=R'R. (11.10) 
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The decomposition (11.10) is called the Cholesky decomposition of A, and R 
is called the Cholesky factor of A. Equating coefficients in (11.10) leads to 
the following algorithm. 

Algorithm 11.2 

Step 1: Set 

(j = 2,3, ... ,p). 

Step 2: For i = 2,3, ... ,p-1, set 
• 

Step 3: Set 

o (j = 1, ... , i-I), 

(
au _ ~ r?i) 1/2 

1=1 

"i-1 aij - L.,1=1 rlirlj (j=i+1, ... ,p). 

( 

P-1) 1/2 
app - L::rfi 

1=1 

(11.11) 

(11.12) 

(11.13) 

(11.14) 

The diagonal elements are positive if we take the positive square root in 
(11.11), (11.13) and (11.14). 

To apply this decomposition to regression calculations, we first calculate 
the Cholesky decomposition R'R of X'X, which, by A.4.6, is positive-definite 
provided that X has full column rank. Once we have calculated R, we write 
the normal equations as 

R'Rb - X'y - , 
and then solve 

R'z = X'y 

for z and 
Rb=z 

for b. Since R is upper triangular, these equations are easily solved by back­
substitution. The RES is given by 

RSS y'y - {J'X'X{J 
y'y - (R{J)'R{J 
y'y - z'z. 
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This calculation can be done efficiently by calculating the Cholesky decom­
position of the augmented matrix 

XIY) 
Y'Y . 

The Cholesky factor is of the form 

(11.15) 

where d = .JRSS (by Exercises Ha, No.4). To obtain (X'X)-l, we use 

where (t ij ) = R -1 is calculated by back-substitution using the formulas 

t· . 
'J 

EXERCISES lla 

1 

o 

(i = 1, ... ,p), 

(i > j), 

(i < j). 

1. Calculate algebraically the solution to the system of linear equations 
corresponding to the matrix 

1 1 213) l+E 2 
2 1 

using Gaussian elimination with and without partial pivoting. Show 
that if partial pivoting is not used, the solution X3 is computed as 

2 - liE 

liE 

and as 1 - 2E if partial pivoting is used. Comment on the accuracy of 
these two methods if E is very small. 

2. Show that applying one Gaussian elimination step to the matrix X'X 
yields the matrix 

( ~ nx ), X'X 

where X is the centered version of X. 



338 COMPUTATIONAL ALGORITHMS FOR FITTING A REGRESSION 

3. Verify (11.15) and hence show that .JRSS is given by the (p+ l,p+ l)th 
element of R A . 

4. If R'R is the Cholesky decomposition of X'X, show that 

P 

det(X'X) = II r;i· 
i=l 

11.3 QR DECOMPOSITION 

Consider an n x p matrix A of rank p with columns a(1), a (2) , ... ,aCp). We can 
construct an orthonormal basis q1, q2, ... ,qp using the following algorithm. 

Algorithm 11.3 
! 

Step 1: Set q1 = a(1 ) Illa(1 )11 and j = 2. 

Step 2: Set 

aU) - (a(j)l q1 )q1 _ ... - (aU )ICJj_1)CJj_1, 

Wj 

Ilwjll· 

Step 3: Repeat step 2 for j = 3, ... ,p. 

Using induction, it is easy to prove that for j = 2,3, ... ,p, CJj is orthogo­
nal to q1, q2, ... , CJj -1 and that Q1, Q2, ... ,CJj form an orthonormal basis for 
C(a(1), ... , aU)). 

Note that at any stage, Wj cannot be. a zero vector. If it were, then aU) 
could be expressed as a linear combination of Q1, Q2, ... , CJj -1 and hence of 
a(1), ... ,a(j-I). This would contradict the assumption that the rank of A was 
p. 

This method of constructing an orthonormal basis is called the Gram­
Schmidt algorithm. If we put R = (rlj) where 

(l < j), 
(l = j), 
(l > j) 

and Qp = (Q1, ... ,Qp), an n x p matrix, then 

(11.16) 
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Equation (11.16) is called the QR decomposition and expresses A as the prod­
uct of a matrix Qp with orthonormal columns and a p x p upper triangular 
matrix R with positive diagonal elements. Moreover, from (11.16) we get 

A'A=R'Q~QpR=R'R, 

since Q~ Qp = Ip. Hence R is the unique Cholesky factor of A' A. Since R is 
nonsingular, being upper triangular with positive diagonal elements, we have 
Qp = AR -1, so Qp is unique as well. 

The QR decomposition as described above involves the calculation of square 
roots, which are required to convert the orthogonal vectors Zj into the or­
thonormal vectors <lj. To avoid the square roots, we can use the following 
modified algorithm. 

Algorithm 11.4 

Step 1: Set WI = a(1) and j = 2. 

Step 2: Set 

Step 3: Repeat step 2 for j = 3,4, ... ,p. 

The same argument used in proving the Gram-Schmidt algorithm shows 
that for j = 1, ... ,p, WI, ... , W j form an orthogonal basis for C(a(I), ... ,aU»). 
Thus if we define an upper triangular matrix U = (Ulj) by 

(l < j), 
(l = j), 
(l > j), 

and put Wp = (WI, ... , w p), then 

A=WpU. 

To see the relationship between W pU and QpR, we first note that 

D = W~ Wp = diag(I!wIW, ... , I!wp W) 

and, for 1 < j, 
_ a(j)'wl _ aU)'<lj _ rlj 

Ulj - - --
IIwdl 2 Ilwdl ru 

Then U = D-l/2R or R = D 1/ 2U, and Qp = W pD-l/2, so that QpR = 
W p U. Finally, we note that if A = X, then 

X'X = U'W~WpU = U'DU. (11.17) 
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11.3.1 Calculation of Regression Quantities 

We can obtain the quantities needed for a regression analysis very conveniently 
from a QR (or WU) decomposition of the augmented matrix (X, Y). In some 
computer implementations of the QR decomposition, the matrix Qp is written 
over the matrix X, so it is convenient to express the regression quantities in 
terms of Qp and R. 

Writing the decomposition in partitioned form, 

and multiplying the partitioned matrices on the right, we get 

X 

Y 

(11.18) 

(11.19) 

(11.20) 

Premultiplying (11.20) by Q~ gives Q~ Y = Q~Qpr + dQ~q = r, since Qp and 
q are orthogonal. Similarly, pre multiplying (11.20) by q' gives d = q'Y. 

To compute 13, we note that 

13 (X'X)-lX'Y 

(R'R)-lR'Q'Y 

R - 1 r. 

Thus we get 13 by solving the triangular system Rb = r. The fitted values 
are 

, -1 
X/3 = (QpR)(R r) = Qpr, 

and from (11.19), the residuals are 

e = Y - xj3 = Y - Qpr = dq. 
I 

The residual sum of squares is 

RSS = e'e = d2 q'q = d 2
• 

Retaining Y allows the fitted values to be calculated as Y - dq. 
One advantage of algorithms that explicitly form Qp is that calculation of 

the hat matrix diagonals is simple. We have 

X(X'X)-lX' = QpR(R'Q~QpR)-lR'Q~ = QpRR-l(R')-lR'Q~ = QpQ~, 

so the hat matrix diagonals are just the squared lengths of the rows of Qp. 
Similar formulas apply if we calculate the square-root-free WU decompo­

sition. If we decompose (X, Y) as 

( 
U u

1
) (X,Y) == (W,w) 0 (11.21) 



QR DECOMPOSITION 341 

and multiply out the blocks, we get 

x=wu 

and (see Exercises 11b, No.3) 

u[3 = u. 

The fitted values and residuals are 

x[3 Y-w, 

e w, 

so that the residual sum of squares is IleW = IlwW· 

11.3.2 Algorithms for the QR and WU Decompositions 

(11.22) 

(11.23) 

(11.24) 

(11.25) 

We now describe. in some detail the three commonly used algorithms for cal­
culation of the QR and WU decompositions. 

Modified Gram-Schmidt Algorithm 

It is tempting to use (11.16) to calculate the QR decomposition. However, 
it has been well demonstrated (see, e.g., Bjorck [1996: p. 63]) that the Gram­
Schmidt algorithm is not numerically accurate, and the vectors Q computed 
using it are·far from orthogonal, due to the accumulation of round-off error. 
Although the Gram-Schmidt algorithm remains of theoretical importance, 
and serves to demonstrate the existence of the QR decomposition, it is not a 
practical recipe for calculation. However, a variation of the method [the mod­
ified Gram-Schmidt algorithm (MGSA)] has excellent numerical properties. 
We will describe a square-root-free version of the algorithm that calculates 
the WU decomposition. 

The square-root-free version of the MGSA converts an n x p matrix A of 
rank p into a set of orthogonal vectors in p - 1 stages. At the jth stage, the 
columns 1, ... ,j are left alone and the columns j + 1, ... ,p are transformed. 
The algorithm is as follows. 

Algorithm 11.5 

Step 1: Set j = 1. 

Step 2: For 1 = j + 1, ... ,p, replace a(l) by all) + VjlaU) , where Vjl 

-a(l)'aU) IllaU) 112. 

Step 3: Repeat step 2 for j = 2, ... ,p - 1. 
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In this algorithm we begin with a(1), and then multiples of a(1) are added 
to each of a(2), a(3), ... , a(p) so that the new vectors, a*(2), a*(3), ... , a*(p), 

say, are perpendicular to a(1). Then multiples of a*(2) are added to each of 
a*(3), ... , a*(p) so that the new vectors a**(3), ... , a**(p) are perpendicular to 
a*(2). Since a**(3) is a linear combination of a*(2) and a*(3), it will also be 
perpendicular to a(1). Thus at the end of the jth stage, the first j columns are 
mutually orthogonal, are a basis for the first j columns of the original matrix 
A, and are orthogonal to columns j + l, ... ,p (cf. Exercises 11b, No.4). 

The jth stage is equivalent to postmultiplication by the matrix 

1 
1 

1 

1 Vj,HI 

1 

Thus, we can represent the MGSA as 

AV I ." .. V p - l = W, 

1 

where W is the result of applying the p - 1 steps of the algorithm to A. Now 
put 

v = VI ... V p - l , 

so that AV = W. By direct multiplication, the matrix V is 

V= 

Vp-l,p 

1 

Since V is an upper triangular matrix with unit diagonal elements, it is non­
singular and V-I = U must also be upper triangular with unit diagonal 
elements (see Exercises 11b, No.2). Thus A = WU, which must be the 
unique WU decomposition of A. Note that the MGSA computes W directly, 
but U only indirectly by computing its inverse V. 

Applying the algorithm to the augmented matrix (X, Y) gives 

(X,Y) (~ ~) = (W,w). (11.26) 

Comparing (11.26) and (11.21), we see that 
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so that V = V-I, as expected, and Vu + v = o. From (11.23) we get 

[3 V-Iu 

Vu 

-v. 

As before, the residuals e are just the vector w. 
By augmenting the matrix (X, Y) further, we obtain a very compact algo­

rithm. Consider the augmented matrix 

(11.27) 

then 

( ~p !) (~ ~) (11.28) 

This yields the regression coefficients and residuals directly. The covariance 
matrix of [3 is computed using the equations D = W'W and (X1X)-I = 
V-ID-IV-I " which follows from (11.17). 

Now consider the p stages of the MGSA that were applied to (X, V). [There 
are p stages since (X, Y) has p + 1 columns.] The multiplication in (11.28) 
is the result of applying the same p stages to the augmented matrix (11.27). 
Note, however, that the multipliers Vjl are those from the MGSA applied to 
(X, V), not (11.27). In other words, when calculating the Vjl'S in step 2, we 
use only the columns of (X, Y) to compute the inner products. 

Approximately 2np2 + 2p3 flops are required to compute the decomposition 
(11.28), which makes it roughly twice as expensive as the methods based on 
forming the SSCP matrix. The decomposition (11.26) takes about 2np2 flops. 

Using Householder Transformations 

A Householder transformation is a matrix of the form 

1 , 
H = I - -uu, 

'Y 
(11.29) 

where 'Y = ! IluJl2. It follows immediately that H is symmetric and orthog­
onal (siQce H2 = I) and represents a reflection [as det(H) = -1, by A.9.7]. 
These matrices, introduced by Householder [1958], have a variety of uses in 
numerical linear algebra and provide an efficient way of computing the QR 
decomposition. Their key property in this regard is the following: Given two 
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vectors x and y of equal length, the Householder matrix H corresponding to 
u = x - y satisfies 

This is because when Ilxll = Ilyll, 

1 
-U/x 

'Y 

so that 

Hx=y. 

2(x - y)/X 

Ilx- YI12 

211xW - 2y/x 
Ilx - Yl12 

IIxl12 - 2y/x + IlyW 
Ilx - Yl12 

Ilx - Yl12 
Ilx-yl12 
1, 

1 
Hx = x - -UU/x = x - u = y. 

'Y 

(11.30) 

(11.31 ) 

In particular, ify = (1Ixll,O,O, ... ,O)/, then the Householder matrix corre­
sponding to u = x - y satisfies 

Hx= 

Ilxll 
o 

° 
so we can choose H to "zero out" the elemertts of x other than the first. Note 
that when calculating the first element, Xl -llxll, of the Householder vector u, 
we have to be careful not to lose significant digits in the subtraction. If Xl < 0, 
there is no problem, and we can compute UI as Xl - Ilxll. However, if Xl is 
positive and large compared with the other elements of x, then computing Ul 

as Xl - Ilxll may lead to loss of significant figures. In this case we compute 

UI =-

since 

Xl -llxll 

X~ + ... + x; 
Xl + Ilxll 

xi -llxW 
Xl + Ilxll 
x~ + ... + X; 

Xl + Ilxll 

The quantity 'Y is calculated as ~(ui + x~ + ... + x;). 
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Multiplying a vector x by a Householder matrix H corresponding to a 
vector u is easy, since 

Hx = (In - ,-luu')X = X - ku, 

where k = (u'x)/!. 
Now consider an n x p matrix A of rank p with columns a(1), a(2), ... , a(p). 

If we choose HI to zero out all but the first element of a(I), premultiplying 
A by HI gives 

Tn TI2 TIp 

0 
HIA= 

Al 
0 

say, where Tn = jja(1)jj. Here, jja(1)jj =P 0, for otherwise A would have a zero 
column and hence not be of rank p. Next consider a matrix of the form 

1 0 0 
0 

H 2 = 
K2 

0 

where K2 is an (n - 1) x (n - 1) Householder matrix chosen to zero out all 
but the first element of the first column of AI. We get 

T11 TI2 TI3 TIp 

0 T22 T23 T2p 

H2HIA = 0 0 

A2 
0 0 

Once again T22 =P O. If this is not the case, then the second column of H2HIA 
would be linearly dependent on the first. This would contradict the fact that 
rank(H2H IA) = rank(A) = p (by A.2.2). 

Continuing on in this way, we get 

HpHp_l·· .HIA = ( ~ ) , 

where R is p x p upper triangular with positive diagonal elements. Setting 
Q = (HpHp_I ... HI)' = HIH2 ... Hp yields the QR decomposition 

(11.32) 

since Q is orthogonal, being a product of orthogonal matrices. We see that 
in contrast to the QR decomposition calculated by the MGSA, the matrix Q 
is n x n. Writing 
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where Qn-p is n x (n - p), gives 

(11.33) 

which is the decomposition produced by the MGSA. The version (11.33) is 
sometimes called the thin QR decomposition (see, e.g., Golub and Van Loan 
[1996: p. 230]). In the fat version (11.32), we cannot say that the last n - p 
columns Qn-p of Q are unique. 

In contrast to the MGSA, when using Householder transformations the 
matrix Q (or W) is not formed explicitly. Rather, if we need to multiply a 
vector a by Q, we use 

(11.34) 

When using Householder transformations, the p Householder vectors must 
be stored. This is usually done by overwriting A with R and storing the 
Householder vectors (minus their first elements, which will not fit) in the 
locations in 

(11.35) 

that are zero. The initial elements need to be stored separately. 
The Householder algorithm requires around 2np2 - ~p3 flops, a bit less 

than the MGSA. A proof may be found in Trefethen and Bau [1997: p. 74]. 
The regression quantities are computed differently when using Householder 

transformations, reflecting the fact that it is R that is stored rather than Qp 
as in the MGSA. 

Algorithm 11.6 

Step 1: Set j = 1 and put A = (X, V). 

Step 2: (Calculate the Householder vector.) Put u = (0,0, ... ,0, ajj, aj+l,j, 

... , an,j)', and recalculate Uj as Uj -Ilull if Uj < 0 and as -(u; + ... + 
u;,J/(Uj + Ilull) ifuj > O. Calculate I as ~lluW using the updated value 
of Uj. 

Step 3: (Update A.) Multiply columns j, ... ,p+ 1 of A by the Householder 
matrix corresponding to the vector u computed in step 2. That is, for 
1 = j, ... ,p + 1, replace the lth column a{l) of A by a{l) - ku, where 
k = (a{l)'u)h. 

Step 4: Repeat steps 2 and 3 for j = 2, ... ,p + 1. 

This yields the matrix 
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in the decomposition 

(11.36) 

where rl and r2 have p and n-p elements, respectively, and r2 = (d, 0, ... ,oy. 
The algorithm also calculates the Householder vectors needed to compute 
(11.34). Multiplying out and equating blocks gives 

X QpR, 

Y Qprl + Qn-pr2. 

To calculate iJ, we note that 

(11.37) 

so that iJ is the solution of RiJ = rl, which can be solved by back-substitution. 
The residuals are 

e Y - xiJ 
Qprl + Qn-pr2 - QpRR -lrl 

Qn-pr 2 

(Qp, Qn-p) ( ~2 ) . (11.38) 

Thus the residuals are computed by pre multiplying (0', r~y by Q using (11.34). 
If Y is retained, the fitted values are best calculated by y- = Y - e. Otherwise, 
they can be calculated (cf. Exercises 11b, No.6) by multiplying (ri,O')' by 
Q. The residual sum of squares is given by 

RSS IIel1 2 

(0', r~)Q'Q(O', r~)' 

(0', r~)(O', r~)' 
_ d2 • (11.39) 
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Using Givens Transformations 

A Givens transformation is a matrix of the form 

1 o o o 

o C S o row h 

(11.40) 

o -S C o row ~, 

o o o 1 

where 
c2 + S2 = 1. 

If () satisfies cos () c and sin () = s, then multiplication of a vector x by 
G ih rotates x clockwise through an angle () in the h, i coordinate plane. We 
note that Gih is an orthogonal matrix and G~h is a rotation in the opposite 
direction. For this reason, Givens transformations are sometimes called planar 
rotations. 

Transforming a vector x by G ih changes only the hth and ith elements of 
x. If v = GihX, these are given by 

CXh + SXi, 

-SXh + CXi. 

(11.41) 

(11.42) 

Clearly, we can choose C and S to make Vi zero. This happens if we choose 

In this case we have 
S 

(11.43) 
C Xh 

If Xh = 0 and Xi > 0, () = ~7r and Gih simply interchanges these two elements. 
The sign of the new hth element is also changed if Xi < O. In summary, if S 

and C are defined as described above, the net effect of multiplying by G ih is 
to reduce the ith element of x to zero. 

Now let A be n x p of rank p, and consider multiplying A by a sequence of 
Givens transformations G 21 , G 31 , ... , G n ,l, choosing C and S each time to zero 
out the second, third, ... , nth elements of the first column of A. Multiplying 
further by the sequence G 32 , G 42 , ... , G n ,2 will zero out the third, fourth, ... , 
nth elements of the second column, leaving the first column unchanged. Con­
tinuing in this way, we eventually reduce A to the form 
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An alternative (see Gentleman [1973]) is to zero out the 2,1 element, then the 
3,1 and 3,2 elements and so on, thus operating on A row by row rather than 
column by column. 

Each Givens transformation is represented by the corresponding values of 
c and s. Using a clever device due to Stewart [1976] (see also Bj6rck [1996: p. 
55]), these can be coded as a single number. These numbers can be stored by 
overwriting A by R and storing the coded numbers in the locations of (11.35) 
occupied by zeros. 

We see that Givens rotations provide an alternative to using Householder 
reflections. The relative merits of the two approaches are discussed below and 
also in Section 11.8. 

Fast Rotators 
If we use the Givens method to reduce an n x p matrix to upper triangu­

lar form, the formulas (11.41) and (11.42) must be evaluated approximately 
~np2 - ~p3 times. Since four multiplications and two additions are required 
each time the formulas are evaluated, this is a total of about 3np2 - p3 flops, 
so that the Givens method as described above requires about 50% more oper­
ations than the MGSA and Householder algorithms. However, we can use a 
modified Givens transformation, called a fast rotator, which requires only two 
multiplications and two additions per evaluation. A fast rotator is a matrix 
having one of the forms 

1 o o o 

0 1 a 0 row h 

(11.44) 

0 -r] 1 0 row t 

0 0 0 1 

or 
1 0 0 0 

o 1 o row h 

(11.45) 

o -1 o row t. 

o o o 1 

Such transformations change only two entries when multiplying a vector, as do 
Givens rotations, but require only two multiplications instead of four. They 
are related to Givens rotations in the following way. Let:5 = diag(d1 , ... , dn ) 

be a given diagonal matrix, and let G ih be the Givens transformation (11.40). 
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Then there is a fast rotator M of type (11.44) and a diagonal matrix D = 
diag( d1 , ... , dn ) such that 

Direct calculation shows that 

dl (l =1= i, l =1= h), 

cdi , 

cdh , 

tlr, 

rt, 

(11.46) 

(11.47) 

(11.48) 

(11.49) 

(11.50) 

(11.51) 

where t = sic and r = dhldi . A similar result holds for fast rotators (11.45); 
for the corresponding equations, see Exercises l1b, No.7. 

Next, we show how the regression quantities can be calculated using a 
sequence of fast rotators, which use half the number of multiplications and no 
square roots. Let G 1 , ... , Grn be the sequence of Givens rotations used to 
reduce (X, Y) to the form 

(~ 
We are using a single index for the Givens transformations for notational 
simplicity. 

Now define a sequence of fast rotators as follows: Let Do = In and G l = 
DlMlDi=-\, l = 1,2, ... , m, where Dl and Ml are derived from G l and D l - 1 

as described above. Then for l = 1,2, ... , m, 

(DlMlDi=-\)(Dl-IMl-IDI':2) x ... 

X (DIMIDol)(X, Y) 

DlMlMl- I ... MI (X, Y) 

DlBl , 

say, where Bl = MIMl - I ·· ·MI(X, Y). We note that 

and 

DrnBm = (~ :~). 
Now partition Bm and Drn conformably as 

(11.52) 

(11.53) 

(11.54) 
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and 

). (11.55) 

Equating blocks in (11.53), we see that D(I)B = R, D(I)bl = rl, and 
D(2)b2 = r2. From these relations and (11.37), it follows that /:J satisfies 

the equation D(1)B/:J = D(1) b l , which is equivalent to 

By (11.39), the residual sum of squares is 

RSS IIr2112 

b~Dbb2' 

The matrix Q of the QR decomposition is Q = G~ ... G~ = M~ ... M~Dm, 
so that the vector of residuals is 

I I ( 0.) MI···Mm D2 b . 
(2) 2 

These results show that to compute the regression quantities, we need only 
know the matrices B!, M!, and Df. We now describe an algorithm for com­
puting these. 

To compute Ml using (11.47)-(11.51), we require Gl and D!-I. The ma­
trix GI is determined by the elements of the matrix GI-I ... G I (X, Y) = 
DI-IB1- I . Put D l - I = diag(£II , ... ,£In), and B 1- I = (bkj ), so that the k,j 
element of D1-IBI-I is £Ikbkj. Suppose that G 1 reduces the i, h element of 
DI-IBI-I to zero. Then, from (11.43), we must have 

_ s _ dibih t--- __ . 
C dhbhh 

The elements of MI are calculated using (11.50) and (11.51), and 
diag(di, ... , d~) is calculated from (11.47)-(11.49) using the formulas 

£If (l =F i, l =F j), 
£IU(l + t2

), 

~/(1 + t 2
). 

Finally, since BI = MIBI-I, Bl = (bij ) is calculated by 

- -
bhj + abij 
- -
bij - TJbhj 

O. 

(j = h, h + 1, ... ,p), 

(j=h+1, ... ,p), 
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The other elements of Bl are the same as the corresponding elements of B I - 1. 
These calculations have exact parallels using fast rotators of the form (11.45). 
At each update we have the option of using either form of fast rotator. As we 
saw above, the update using the rotator (11.44) involves updating the diagonal 
matrix by multiplying by c, which could be small. A sequence of updates using 
a small factor may eventually result in underflow in the calculation. 

If the fast rotator (11.45) is used, the corresponding factor is 8, so a good 
method for avoiding underflow is to use (11.44) if c2 > 8 2 and (11.45) oth­
erwise. There may still be a problem with underflow if too many updates 
are done. Tests should be done to detect this, and rescaling performed if 
necessary; this simply involves multiplying Dl by a suitable scale factor to 
increase its size, and dividing Bl by the same factor. The need to check for 
underflow diminishes to some extent the gains made in using fast rotators. 
Bj6rck [1996: p. 57] suggests that the overall gain in multiplications may be a 
factor of 1.4 to 1.6 rather than the theoretical 2. A variation on .fast rotators 
which removes the need to rescale is described in Anda and Park [1994]. 

EXERCISES lIb 

1. Let q1,"" qp be the vectors constructed in Algorithm 11.3. Show that 
. h lb' f C( (1) (j)) f . - 1 2 ql, ... , Q,j IS an ort onorma asiS or a , ... , a or J - , , ... , p. 

2. Show that an upper triangular matrix with positive diagonal elements is 
nonsingular. Also, prove that the inverse of an upper triangular matrix 
with unit diagonal elements is also upper triangular with unit diagonal 
elements. 

3. Derive formulas (11.23), (11.24), and (11.25). 

4. Prove that at the beginning of stage j of the MGSA, the columns 
a(I), ... ,aU) are orthogonal, are orthogonal to a(j+1) , ... ,a(p), and span 
the first j columns of the original matrix. 

5. Show that a product of orthogonal matrices is orthogonal. 

6. Show that if Qp, Qn-p and r1 are as defined in (11.36), the fitted values 
Yare given by 

7. Let G ih be given by (11.40) and D = diag(dl,' .. , dn ). Show that there 
is a diagonal matrix D = diag( d1 , ... ,dn ) and a fast rotator of the form 
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(11.45) such that Gih = DMfi-1 . Show that 

d l d l (I i- i,l i- h), 

d i sdh , 

dh sdi , 

a rlt, 
TJ l/rt, 

where t = sic and r = dhldi . 

11.4 SINGULAR VALUE DECOMPOSITION 

Suppose that X is n x p ofrank r. Then (see A.12) there is an n x n orthogonal 
matrix U and a p x p orthogonal matrix V such that 

U'XV = ( ~ ) o ' 

where 

~= 

o 

The quantities (7j are the singular values of X. They satisfy 

and are unique. The equation 

(11.57) 

is called the singular value decomposition (SVD). It is sometimes written in 
the thin form 

X = Up~V', 

where Up is the first p columns of U. 

11.4.1 Regression Calculations Using the SVD 

Assume that rank(X) = p, so that the diagonal elements of ~ are all positive. 
(The case where X is possibly rank deficient is discussed in Section 11.9.2.) 
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The regression quantities can be calculated in terms ofthe thin SVD as follows. 
Substituting X == Up'EV' into the normal equations and using U~ Up = Ip, 
we get 

which reduces to 

since V and 'E are nonsingular. To calculate the RSS, we partition U = 
(Up, U n - p ) and use the identity UU' == In. Then In - UpU~ = Un_pU~_p, 
and direct substitution shows that the projection onto C(X) is 

Finally, 

P = X(X'X)-lX' = UpU~. 

RSS Y'(In-P)Y 

Y'(In - UpU~)Y 

Y'(Un_pU~_p)Y 

IIU~_pYI12. 

11.4.2 Computing the SVD 

Computation of the SVD consists of two phases. First reduce X to the form 

where B is a bidiagonal matrix of the form 

* * 0 0 
0 * * 0 
0 0 * * B= 

0 
0 

o 
o 
o 

* * 
o * 

by a series of Householder transformations. Then use the fact that if 0"1, •.• ,O"p 

are the singular values of B, the eigenvalues of the symmetric matrices B'B 
and BB' are just O"f, ... , O"~, and the eigenvectors are the columns of the 
orthogonal matrices in the SVD. 

There are many excellent algorithms for finding the eigenvalues and eigen­
vectors of symmetric tridiagonal matrices such as B'B and BB'. Discussion 
of these is beyond our scope but excellent accounts can be found in Bj6rck 
[1996], Golub and Van Loan [1996], Parlett [1980], and Watkins [1991]. These 
algorithms are adapted to the SVD case to avoid explicitly forming B'B and 
BB'. 
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The reduction of X to the required form proceeds as follows. First, premul­
tiply X by a Householder transformation chosen to zero out the first row of 
X, except the first element. Then postmultiply the result by another House­
holder transformation, which leaves the first element of row 1 unchanged, and 
zeros out the first row except for the first two elements. 

Next, premultiply by a further Householder transformation to zero out 
the second column below the diagonal, then postmultiply to zero out the 
second row, starting at the third element. This leaves the first row unchanged. 
Proceeding in this way, after 2p - 2 transformations X is reduced to the 
desired form, and we obtain 

X =HI (~) H~, 
where HI and H2 are products of Householder transformations. From the 
eigenvalue analysis, we obtain the SVD B = U':EV. Combining these gives 
the thin SVD of X. 

If n is much bigger than p, it is more efficient to carry out a QR decom­
position of X aria then calculate the SVD of the resulting R according to the 
recipe above. This produces either the fat or thin SVD according as we start 
with the fat or thin QR. 

11.5 WEIGHTED LEAST SQUARES 

Consider calculating the estimate/:Jw that minimizes the weighted least squares 
criterion 

(Y - Xb)'W(Y - Xb), (11.58) 

where W is a diagonal matrix whose diagonal elements are positive. By the 
results of Section 3.10, the weighted least squares estimate is the solution of 
the equations 

X'WXb = X'WY. (11.59) 

The simplest method of solving (11.59) is to introduce the matrix Xw = 
WI/2X and the corresponding vector Y w = WI/2y. Then (11.59) reduces 
to 

X:UXwb = X:U Y w, (11.60) 

which can be solved by the methods described in previous sections of this 
chapter. 

This simple method works well, provided that the diagonal elements of W 
do not vary too much in magnitude. If they do, the standard methods of 
solution may not be accurate, as the matrix Xw can be ill-conditioned. (The 
condition of a matrix is discussed in Sections 9.7.4 and 11.8.3.) We note that 
the condition number of Xw (see Exercises llc, No.1, at the end of Section 
11.8.5) satisfies 

(11.61) 
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so that if the elements of W differ markedly in magnitude, the condition 
number of Xw may be very much bigger than that of X. The standard 
methods of calculating the ordinary least squares estimate can be modified to 
give better accuracy in this case. For more details, see Bj6rck [1996: p. 165] 
and the references cited there. 

11.6 ADDING AND DELETING CASES AND VARIABLES 

Often, we need to modify a fitted regression by adding or deleting cases or 
variables. We may want to delete cases as part of the diagnostic techniques 
discussed in Chapter 10, for example, if some cases are identified as outliers. 
Alternatively, we may want to add cases (or blocks of cases) if new data 
become available, or if data are arriving sequentially. Most times, we will just 
refit the model after adjusting the input data. However, in some cases we 
may wish to modify an existing fit. We discuss methods for doing this below. 

In the context of model selection, we often want to fit a large number of 
different models, and this needs to be done efficiently if the number of models 
is large. Efficient ways of adding and deleting variables by modifying an exist­
ing fit are also discussed below. We begin by looking at theoretical updating 
formulas, based on the partitioned inverse formula and the Sherman-Morrison 
formula. We then discuss updating methods based on these formulas. These 
methods may not be accurate if the problems are ill-conditioned, so we close 
the section with a description of how the more accurate methods based on 
the QR decomposition can be used to modify regressions. 

11.6.1 Updating Formulas 

Adding and Deleting Cases 

Suppose that we add a new row to the data matrix (X, Y) to obtain a new 
data matrix 

The new SSCP matrix is (X'X + xx'), a rank 1 update of the original. From 
A.9.4, its inverse is given by 

(X'X + XX,)-l = (X/X)-l _ (X'X)-lXX'(X/X)-l 
1 + x'(X'X)-lX 

Using this result we find that the new vector of estimated regression coeffi­
cients is (cf. Theorem 10.1 in Section 10.2) 

{3NEW (XIX + XX')-l(X/y + yx) 

{3
' (X'X)-lx(y - x l /30LD) 

OLD + 1 + x'(X'X)-lx 
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This suggests the following algorithm. First solve the equation 

X'Xb=x 

for b, and then calculate 

- - bey - x' (30LD) 
f3NEw = f30LD + 1 + x'b . 

Deleting a case was discussed in Section 10.6.3. From (10.49) with the obvious 
sign changes, we get 

- - bey - x' (30LD) 
{3NEw = {30LD - 1 _ x'b ' 

where X is now the original data matrix from which a row x is removed. We 
note that x'b = x' (X'X)-lx is the hat matrix diagonal corresponding to the 
row x'. 

Adding and Deleting Variables 

The partitioned inverse formula A.9.1 provides a neat way of describing 
the effect of adding variables to a regression. Suppose that X is n x p of rank 
p and we want to add a new variable z. 

As in Section 3.7, let P = X(X'X)-lX', R = In - P, 1 = (X'X)-lX'Z, 
and m = (z'Rz)-l. Then, by Theorem 3.6, the new augmented vector of 
least squares estimates is of the form 

(3 = ((3-1Z'RYm) 
A z'RYm ' (11.62) 

and the projection P A onto C(X, z) is 

P A =P+Rzz'Rm. (11.63) 

The ease with which variables can be added suggests that if a regression model 
has more than one variable, then the variables should be brought in one at a 
time, using (11.62). This is, in fact, exactly the basis of the sweep operation 
introduced in Section 11.2.2 and discussed further in Section 11.6.2. Using 
Theorem 3.6, these results can be easily generalized to the case where several 
columns are added at once. 

11.6.2 Connection with the Sweep Operator 

The formulas in the preceding section are the basis of the sweep algorithm 
introduced in Section 11.2.2. We now verify the claim made there: namely, 
that sweeping the augmented matrix 

( 
XIX 
Y'X 

X'Y) 
y'y 
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successively on columns 1,2, ... ,p yields the matrix 

( 
(X'X)-l /:J) 

-f3 RSS . 
(11.64) 

The proof is by induction on the number of sweeps. First, partition the 
data matrix as (x, X, Y), where x is the first variable. The corresponding 
SSCP matrix is 

( 

x'x x'X 
X'x X'X 
Y'x Y'X 

x'Y ) 
X/Y . 
Y/Y 

Now sweep on the first column. The result is 

(11.65) 

( 

l/x'x x'X/x'x x'Y /x'x ) 
-X/x/x'x X'X - (X'x)(x'X)/x'x X/Y - (X'x)(x'Y)/x/x . 
- Y'x/x'x Y/X - (Y'x)(X/X)/X/X Y/Y - (Y/x)(x'Y)/x'x 

(11.66) 
We recognize x'Y /x'x as the least squares estimate jJ of the regression coef­
ficient when a regression through the origin on a single explanatory variable 
x is fitted. The projection onto C(x) is 

I 

P ( , )-1 I xx 
1 = X X X X =-, 

x'x 

so that the residual sum of squares from this regression, RSS I say, is given by 

RSS
I 

= Y'(In - Pl)Y = y'y _ (Y/x)(x'Y). 
x'x 

Thus we can write the result of the first sweep as 

(11.67) 

We see that sweeping on the first column has produced all the regression 
quantities for the regression on x. Ignoring the middle row and column of 
(11.67), we get (11.64) for a single explanatory variable. 

Now let Xl represent the first r columns of the regression matrix, x the 
(r + l)th column, and X 2 the remaining columns r + 2 through p, so that the 
complete data matrix is (Xl, x, X 2, Y). Now assume that after sweeping the 
first r columns of the SSCP matrix derived from this data matrix, we get the 
matrix 

(X~Xl)-l 

-x'Xl(X~Xd-l 
-X~Xl(X~Xd-l 
- Y'X I (X~Xd-l 

(X~Xl)-lX~X 
x/(In - Pdx 
X~(In - Pdx 
y/(In - Pl)x 

(X~Xd-lX~X2 
x'(In - P l )X2 
X~(In - PdX2 
Y'(In - P l )X2 

(X~Xd-lX~Y 
x'(In - PdY 
X~(In - PdY 
y/(In - Pl)Y 

(11.68) 
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containing the regression quantities for the regression on Xl' We will show 
that a further sweep on the (1' + l)th column produces the regression on 
(Xl, x). This will show that if the result is true for l' sweeps, it must be true 
for (1' + 1) steps, which proves the induction step. 

To examine the effect of the (1' + l)th sweep on the upper left four blocks 
of (1l.68), we write these four blocks as 

). 
If we interchange the rows and then the columns of the matrix above we get 

which is now in the same format as (1l.65) (without its middle row and 
column, and apart from a sign change). Hence sweeping on the first column 
of the matrix above will give us [cf. (11.66)] 

-mi 
(X~Xd-l + mll' ). 

Interchanging the rows and then the columns back again finally gives the 
result of the (1' + l)th sweep, namely, 

( 
(X~Xd-l +mll' 

-mI' 
-mI) 

m ' 
(1l.69) 

where m = [x/(I - PdX]-l, 1 = (X~Xd-lX~X, and PI = Xl(X~Xd-lX~. 
By (3.25) (or A.9.1), this is exactly 

Xix )-1 
x'x 

Similar formulas apply to the other blocks. For example, arguing as in Section 
1l.6.1 [ef. (1l.63)], we see that the bottom-right block is transformed by the 
sweep to 

(1l.70) 

where PAis the projection onto C(XA), and XA = (Xl, x). The complete 
result of the sweep is 

(XAXA)-lXAX 2 

XA(In - P A)X2 

y/(In - P A)X2 
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Thus, by induction, we have proved that after sweeping successively on the 
first r columns, the matrix 

is reduced to the matrix 

( 

X~XI 
X~XI 
Y'X I 

(X~Xd-IXIX2 
X~ (I - PI)X2 
Y'(I - P I )X2 

X1Y ) X'Y 2 
Y'Y 

(11.72) 

(11. 73) 

Thus, after the rth sweep, the matrix (11. 73) contains the components of the 
regression of Y on the columns of the n x r matrix Xl. Ignoring the middle 
row and column, we get the equivalent of (11.64). 

Sweeping provides an efficient method for successively fitting a sequence of 
regressions, and is particularly useful in the calculation of all possible regres­
sions discussed in Section 12.8.1. However, the set of variables to be swept 
in has to be specified in advance. Also, as we discuss in Section 11.8.3, the 
sweep operator, along with Gaussian elimination, is somewhat vulnerable to 
round-off error. Next, we discuss a more accurate but less efficient method, 
based on the QR decomposition. 

11.6.3 Adding and Deleting Cases and Variables Using QR 

We have seen in Section 11.3 how, given the QR decomposition of (X, Y), we 
can easily and efficiently calculate the regression coefficients and the residual 
sum of squares. Thus, to modify a regression, we merely need to modify the 
QR decomposition. We show how in this section. 

Adding a Row 

Suppose that our data matrix is modified by the addition of m rows, cor­
responding to data on m new cases. Using a convenient change in notation, 
we want to modify the QR decomposition 

(X, Y) ~ Q (T ~n 
to get the decomposition of the new data matrix, 

( X ~=) . X= 
Consider 

Rn rl2 

( Q' 0 ).( X Y ) 0 r22 

0 1m Xm Ym 0 0 
Xm Ym 
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so that 

II( 
Q' 
o ) ( 

Rll 
o 
X", 
o 

where II is a permutation matrix (see A.5). Now using Givens transformations 
to zero out the first, second, ... , pth columns of X"" we get 

GII ( 
Q' 
o ) ( 

Rll 
o 
o 
o 

where G is the product of the Givens transformations. 

Deleting a Row 

Suppose thatour original data matrix is 

with QR decomposition 

and we want to delete the first row. Consider augmenting the data matrix 
with an initial column whose first element is 1 and the rest zero. Then 

x' 
X 

y) (ql R) 
Y q2 0 ' 

where (q~,q~) is the first row of Q. Now, starting at the bottom, apply 
Givens rotations to zero out the first column except for the first element; the 
second-to-last element is used to zero out the last element, and so on. The 
result is 

where R is upper triangular. Let G' be the product of these rotations, and 
put Q = QG. Then 

x' ~) w' ) 
~ , X 
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so that the first row of Q is (a,O'). Thus Q is of the form 

Now Q is is orthogonal, being the product of orthogonal matrices, so that 

Equating blocks, we see that a 2 

Moreover, 

( ~ x' 
X ~) 

so that 

is the required QR decomposition. 

Deleting a Column 

q' ) 
Q' 

1, q 0, and that Q is orthogonal. 

Suppose that we want to delete the column x from the decomposition 

Rl1 r12 R13 r14 

0 r22 R23 r24 

Q'(X1 ,X,X2 , Y) = 0 0 R33 r34 

0 0 0 r44 

0 0 0 0 

Deleting x gives 

Rl1 R13 r14 

0 R23 r24 

Q'(X1 ,X2 ,Y) = 0 R33 r34 

0 0 r44 

0 0 0 

We can then apply Householder or Givens transformations as required to zero 
out the appropriate elements to reduce the matrix above to upper triangular 
form. 
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Adding a Column 

Suppose that we have the decomposition 

( 

Rn 
(X,Y) = Q ~ 

and we want the decomposition of (X, x, V). 
tion of (X, Y,x). Let q = Q'x, so that 

First, consider the decomposi-

Q'(X, Y, x) [Q'(X,Y),q) 

(T ~~: 
say. If we interchange the last two columns, we get 

( 

Rll 
Q'(X,x,Y)= ~ ) 

Finally, we can apply Householder transformations to zero out q3. 

11.7 CENTERING THE DATA 

We saw in Section 9.7 how centering and scaling the regression data has 
certain benefits. In this section we describe some algorithms for calculating 
the centered sum of squares and cross-products matrix. To compute the 
elements 

n 

Cjj' = "l)Xij - Xj)(xij' - xi') (11. 74) 
i=l 

of the matrix X'X, several options are available. Chan et al. [1983] give a com­
prehensive discussion of the issues involved, and the following is a summary 
of their results. The algorithms available include the following. 

(a) The textbook algorithm. This computes the uncorrected sums of squares 
and cross products simultaneously and then calculates 

n 1 n n 

Cjj' = L XijXij' - - L Xij L Xij" 

i=l n i=l i=l 
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(b) The updating algorithm. Let 

Tk· ,) -
Mk . ,) -

Ck,j,jl -

k 

LXij, 

i=l 

Tk,j/k, 

k 

L(xij - Mk,j) (Xij' - Mk,j'), 

i=l 

so that Cjj' = Cn,j,j'. These quantities are computed using the formulas 

Mk-l,j + (Xkj - Mk-l,j)/k, 

k-1 
Ck-l,j,j' + k (Xkj - Mk-l,j)(Xkj' - Mk-1,j'). 

(c) The two-pass algorithm. This computes the means Xj on a first pass 
through the data, and then the Cjj' on a second pass, using (11.74). 

The first two algorithms require only one pass through the data. If the 
data are too numerous to fit into the high-speed memory of a computer, this 
can be an advantage. However, as we shall see below, these methods can be 
inaccurate, particularly the first. The two-pass algorithm is less efficient but 
more accurate. 

The accuracy of the algorithms depends on the condition number K-j of 
each column, defined by 

(11. 75) 

The condition number is related to the coefficient of variation of the column 
by the equation K-1 = 1 + CV j 2 (cf. Section 9.7.4). Thus, the condition 
number is large if the variation in a column is small relative to the mean. 

The relative errors (at least of the diagonals) of the computed elements Cjj 

satisfy 
c·· - c·· )) )) < C(n, K-)u, (11.76) 

Cjj 

where the quantities C(n, K-) are given in Table 11.1 and U is the unit round­
off of the computer, a measure of computational accuracy which is discussed 
further in Section 11.8.3. From Table 11.1, we see that the textbook method is 
unlikely to give accurate results if the condition number is large. The two-pass 
method, on the other hand, is very accurate, since u is very small. 

The condition of the columns can be improved by subtracting a constant 
dj from each column. This does not change the value of Cjj' but changes the 
condition from K-j to 
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Table 11.1 Quantities C(n,l>;) for various methods 

Method C (n, ".) 

Textbook 
Updating 
Two-pass 

n".2u 
n".u 
nu + n 2".2u2 

which will be much smaller than "'j if d j is close to Xj. Possibilities for d j 

for the one-pass algorithms include "eyeballing" the data or using the first 
observation (Le., putting d j = Xlj). 

If we use the two-pass algorithm, we can use the computed means as the 
d j . This results in a condition very close to 1 j it would be exactly 1 if the 
computations were exact. If we use the textbook algorithm with the data 
centered in this way, we get a very accurate algorithm, corresponding to a 
C(n,,,.) of nU(l + n 2".2 u 2), where". is the condition of the uncentered data. 

As a furtherf'efinement, we can replace the standard summations by pair­
wise summations, where the data are summed recursively. More detail on 
pairwise summation is given by Chan et al. [1983] and Higham [1996: p. 92]. 
The effect is to substitute logn for n in the quantities C(n, ".), resulting in 
more accurate calculations. 

To sum up, the two-pass algorithm is usually quite satisfactory for even ill­
conditioned data, and the textbook algorithm applied to the mean-centered 
data is very accurate indeed. If n is very large and the two-pass algorithm 
is deemed too expensive, a constant should be subtracted from each column, 
and if necessary, pairwise summation should be used. 

11.8 COMPARING METHODS 

When comparing methods for regression calculations, several factors are im­
portant. These are: 

Resources: How much memory does a method require? 

Efficiency: How much time does a method require? 

Accuracy: To what extent is the method affected by round-off error? How 
close are the computed regression quantities to the true quantities? 

We discuss each of these aspects in turn. 

11.8.1 Resources 

If the number of cases greatly exceeds the number of variables, then the 
methods based on the (p + 1) x (p + 1) augmented SSCP matrix will require 
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much less computer storage than those based on the QR decomposition. The 
data for each case can be read in from external storage and the SSCP matrix 
accumulated, requiring only (p + l)(p + 2)/2 storage locations. By contrast, 
working with the matrix (X, Y) and using the QR decomposition will require 
at least n(p + 1) storage locations. It is for this reason that some computer 
packages that are designed to handle large amounts of data (such as the 
SAS regression program PROC REG) base their calculations on the SSCP 
matrix. This involves some sacrifice, as we shall see below, since methods 
based on the SSCP matrix are less accurate than those which use the QR 
decomposition. On the other hand, packages designed for more intensive 
exploration of smaller data sets, such as R or S-PLUS, rely principally on QR 
methods. (The Householder method is the default in the S-PLUS function 
1m.) For smaller data sets, the requirement that X be stored is of course not 
a difficulty. 

11.8.2 Efficiency 

Traditionally, the time it takes to execute an algorithm has been measured 
by counting the number of arithmetic operations required. The drawbacks of 
this approach have been noted by several authors. For example, Golub and 
Van Loan [1996: p. 19] remark that 

Flop counting is a necessarily crude approach to the measuring of 
program efficency, since it ignores subscripting, memeory traffic, and 
the countless other overheads associated with program execution ... We 
must not infer too much from flop counts... Flop counting is just a 
"quick and dirty" accounting method that captures only one of the 
several dimensions of the efficiency issue. 

Nevertheless, counting flops continues to be common practice. The main 
disadvantage of using flop counts as a proxy for time seems to be that in most 
modern computers, floating-point operations are carried out using a floating­
point coprocessor. The main microprocessor has many other tasks to perform, 
including the integer arithmetic required to manage the loops inherent in the 
algorithms we have described. The net result is that the non-floating-point 
operations are, in terms of time, a significant part of the computational load, 
and most of the arithmetic will be done in parallel to these non-floating-point 
operations. 

However, it seems that the flop count remains a reasonable proxy for the 
time an algorithm takes. Part of the reason for this is that the flop count 
is proportional to the number of times the innermost loop in an algorithm 
is executed, which is in turn proportional to the time required. Most of 
the algorithms we have described require two floating-point operations (a 
multiplication and an addition) each time a loop is executed, plus the overhead 
required to manage the iteration. Thus, if the time is proportional to the 
flop count, the constant of proportionality will be roughly the same for each 
algorithm. 
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EXAMPLE 11.1 Imagine performing a regression by forming the SSCP 
matrix and then calculating its Cholesky decomposition. As stated in Section 
11.2.1, forming the SSCP matrix takes about np2 flops, and (see the discus­
sion later in this section) the Cholesky decomposition takes about ~p3 flops. 
Alternatively, we could use the Householder QR, which (Section 11.3.2) re­
quires 2np2 - ~p3 flops. We timed the implementation of these procedures 
in R, using the functions supplied which are coded in C and are based on 
the routines in LINPACK. In Figure 11.1 we plot the elapsed time versus the 
flop count for these two methods, for different regression problems of varying 
sizes. The figure reveals that the relationship between the flop count and the 
elapsed time is very strong for both methods, so that time is proportional to 
flop count for the two methods. The constants of proportionality are quite 
similar, being 1.24 for the Cholesky approach and 1.09 for Householder. It 
seems that at least for these two algorithms, the flop counts are a reasonable 
basis on which to compare the execution times. 0 

Encouraged by this, we now compare the flop counts for the various algo­
rithms. The GE algorithm has a flop count of about ~p3, ignoring terms in p2 
or smaller. Use of partial pivoting is essential for accuracy, but unfortunately 
this destroys the symmetry of the matrix. 

Once the upper triangle U in the LU decomposition of X'X has been 
computed [cf. (11.2)], the back-substitution takes only about tp2 flops, so that 
most of the work lies in the decomposition. Moreover, if n is much greater than 
p, as is typically the case in regression, the amount of computation required to 

Cholesky Householder 

0 

~ 

Slope= 1.24 
C\i 

LO 
~ 

Slope= 1.09 

Q) 0 Q) 

E 
i= 

E q 
i= ~ 
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ci 

0 
ci 

0.0 0.4 0.8 0.0 0.5 1.0 1.5 2.0 
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Fig. 11.1 Plot of elapsed time (seconds) versus flop count (108 flops) for two different 
regresssion algorithms. 
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solve the normal equations is small compared to the work involved in forming 
the SSCP matrix, which takes np2 flops. 

If we exploit the positive-definiteness of the SSCP matrix and use the 
Cholesky method of Section 11.2.2, the decomposition takes about tp3 flops, 
plus a smaller number of operations for the back-substitutions. This is about 
one half of the work required to solve the normal equations by Gaussian 
elimination with partial pivoting. Thus, for problems where n is consider­
ably greater than p, Cholesky is more efficient than Gaussian elimination and 
sweeping. The latter are more useful for fitting sequences of models. 

The Householder method requires about 2np2 - ~p3 flops to form the QR 
decomposition. The explicit formation of Q requires a further 4(n2p - np2 + 
t p3) flops, but this is not usually required. If we use the basic Givens method, 
the cost is about 50% more than that of Householder, while using fast Givens 
is somewhere in between. The MGSA is very slightly more expensive than 
Householder, taking about 2np2 + 2p3 flops. 

The cost of the SVD depends on how much of the decomposition is required. 
If U and V are explicitly required [ef. (11.57)], the cost is greater, because 
they must be assembled from the stored Householder vectors, just as in the 
QR decomposition. However, the basic regression calculations require only 
that we be able to calculate U'Y, so that U need not be formed. The cost 
also depends on whether a preliminary QR step is performed. If this is done, 
then the cost of a least squares calculation is about 2np2 + lIp3 flops, slightly 
more than the Householder QR. If the full thin SVD is required (Le., with Up 
explicitly formed), the cost rises to 6np2 + llp3. For more detail on SVD flop 
counts, see Golub and Van Loan [1996: p. 254]. 

We may summarize the discussion above by contrasting the Cholesky and 
GE methods (which have roughly equal efficiency) to the QR methods, which 
require roughly twice as much computation, with Householder requiring slightly 
less than fast Givens or the MGSA. Table 1l.2 summarizes the flop counts 
to calculate the regression coefficients and the residual sum of squares for the 
various methods. We should not make too much of these flop counts. For 
all but very large problems, the amount of time required to compute the re­
gression quantities is minute compared to the human work involved in fitting 

Table 11.2 Approximate flop counts for different regression methods 

Method 

Gaussian elimination 
Cholesky 
Householder 
Givens 
MGSA 
SVD 

Flop count 

np2 + ?"p3 
np2 + Ip3 
2np2 _ ~p3 
3np2 _ p3 
2np2 
2np2 + lIp3 
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models, examining plots and diagnostics, and refitting to obtain satisfactory 
fits. Questions of efficiency are only likely to have practical importance when 
problems are truly large. Of more importance for small to medium-sized 
problems is the accuracy of calculations, which we discuss next. 

11.8.3 Accuracy 

The analysis of accuracy is a much more complex question than merely count­
ing storage requirements or flops. We need to distinguish between difficult 
problems, where the data make accurate calculations difficult, and poor al­
gorithms, which can fail where better algorithms succeed. We begin by dis­
cussing the idea of condition, which is a measure of the difficulty of getting 
an accurate solution to the normal equations. 

Roughly speaking, a regression problem is well-conditioned if using per­
fectly accurate arithmetic, small changes in the input data X and Y cause 
only small changes in the regression coefficients. Conversely, a problem is 
ill-conditioned if.f!mall changes in inputs cause large changes in outputs. As 
we saw in Chapter 10, this happens when the condition number of the matrix 
X is large. 

The relative change in the regression coefficients when the data are subject 
to small perturbations was given by (9.63) in Section 9.7. The dominant terms 
in this equation are K, and K,

2 11ell, so if the fit is good and the residuals are 
very small, the perturbations are essentially bounded by the condition number 
of X. On the other hand, if the fit is not good, the bound is essentially the 
square of the condition number. 

Even if the data for a problem are exact, the way that numbers are stored 
in modern computers means that the data actually used in calculations will 
usually differ slightly from the input data. Modern computers use a floating 
point representation for numbers, of the form 

±m x 1/t-e, (11. 77) 

where 1/, t, m, and e are integers. The quantities 1/ and t are called the base 
and precision, respectively, and are fixed for a given computer. The quantities 
m and e are the mantissa and exponent. If we require that the representation 
be unique, we must have 

The exponent is fixed in the range emin < e < emax , where emax and emin are 
also fixed for a given computer. 

For any real number x that lies between two floating-point numbers of the 
form (11.77), there is a floating-point number Xl such that 

Ix - xII 
Ixl < u, 
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where u = ~1Jl-t. A proof of this result can be found in Higham [1996: p. 
42]. The quantity u, called the unit round-off, measures the relative accuracy 
with which numbers can be stored. 

The accuracy with which arithmetic operations can be carried out is ob­
viously crucial for least squares calculations. There is a numeric standard 
(IEEE 754) which prescribes that arithmetic operations be accurate to the unit 
round-off; that is, the relative error made in carrying out an arithmetic opera­
tion (+, -, x,";-, vi) on two floating-point numbers using computer arithmetic 
is less than the unit round-off. The IEEE standard also requires that the base 
1J be 2, and that for single precision, the precision t be 24 and the exponent 
range -125 to 128, while for double precision, t is 53 and the exponent range 
is -1021 to 1024. Computers adhering to the IEEE standard include those 
based on Pentium chips, DEC, Hewlett-Packard, and Sun. Most modern work 
on the effect of round-off error in algorithms assumes that the calculations are 
being performed according to the IEEE standard. 

It is clear from the discussion above that some perturbation of the data 
is to be expected. The condition number indicates the extent to which this 
will affect the accuracy of the estimated coefficients, if we could use accurate 
arithmetic. Of course, this is not possible. To assess the effect of round­
off, which will depend on the algorithm used, the primary tool is backward 
analysis. In backward analysis, the computed solution is represented as the 
exact solution of a perturbed problem. Thus, if b is the vector of regression 
coefficients computed using some algorithm, then a backward analysis of the 
algorithm seeks to represent b as the exact solution of a perturbed problem 
with data X + oX and Y + OY. For backward stable algorithms, these pertur­
bations will be small for well-conditioned problems. The perturbation result 
(9.63) can then be used to get a bound on the error in the computed solution. 
These bounds depend on the condition number and indicate that even a stable 
algorithm can give poor results if the problem is sufficiently ill-conditioned. 

Let band b be the exact and computed solutions to the normal equations. 
If the regression calculations are performed using the Cholesky decomposition, 
then it can be shown that the backward analysis leads approximately to the 
bound (Higham [1996: p. 398]) 

lib - bll 2 
Ilbll < CK, u, (11.78) 

where C depends on the dimensions of the problem, but not on the problem 
data. This bound allows for the rounding errors that occur in the formation 
of the SSCP matrix. The GE method has a similar bound, but the constant 
is very much greater, even when partial pivoting is used. Thus, Cholesky is 
more reliable than GE. Note, though, that partial pivoting is more accurate 
in practice than the large constant C would indicate (cf. Higham [1996: p. 
177] for a discussion). 

Conversely, if Householder transformations are used, the following can be 
proved. The computed solution b is the exact solution to a perturbed problem 
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with data (X + Ex, Y + Ey) such that [ef. (9.57)] 

and 

IIExl12 < (6n-3p+41)n3 / 2u (=t::x, say) 
IIXI12 -

IIEyl12 < (6n - 3p + 41)u ( ) IIYI12 - == Ey, say. 

These bounds will be small for all but enormous problems (ef. Lawson and 
Hanson [1995: p. 90ff], Bjorck [1996: p. 64], Bjorck and Paige [1994], and 
Higham [1996: p. 395]). Combining these bounds with the perturbation anal­
ysi~ (9.63), we find from the last reference that a bound on the relative error 
in b is given by 

lib - bl12 IW (t::yllYII Ilell ) 
IIbl12 < 1 - Kt::X EX + IIbllllXI12 + t::xKllbllllXI12 + t::xK, 

where e is the residual Y - Xb. The dominating parts of this bound are the 
terms proportional to K211ell and K, which contrasts with the term in K2 in 
the case of the Cholesky method. Thus provided the regression fit is good 
(i.e., Ilell is small), use of the Householder method should result in a more 
accurate calculaTion. These bounds can be very conservative and should be 
interpreted qualitatively rather than quantitatively. 

The Givens and MGSA methods give results that are broadly similar in 
accuracy to the Householder method. It is interesting to note that the MGSA 
can be interpreted as the Householder method applied to an augmented matrix 
and so shares the desirable properties of the Householder method as a way 
of computing the "R" part of the QR factorization (ef. Bj6rck and Paige 
[1992], and Higham [1996: p. 379] for details). However, it is not so stable 
for the computation of the Q matrix in the QR decomposition. In fact, the 
columns of Q may be quite far from orthogonal for ill-conditioned matrices 
(Bjorck [1996: p. 66]). Thus, when using the MGSA to solve the least squares 
problem, it should be implemented in the augmented form (11.18) to avoid 
having to multiply explicitly by Qp when computing r = Q~ Y as in (11.18). 
Implemented in this way, MGSA is roughly as accurate as Householder. 

The SVD has very desirable stability properties. A backward analysis 
(see Bj6rck [1996: p. 89]) shows that the SVD computed using the methods 
described above will be the exact SVD of a matrix X + E, where IIEII is a 
small multiple of the unit round-off. A characteristic of the SVD is that small 
changes in the matrix entries cause only small changes in the singular values. 
The Weilandt-Hoffman equality (see Golub and Van Loan [1966: p. 449]) 
implies that 

(11.79) 

for all the exact singular values O"k and the computed singular values (Jk. It 
follows that the SVD computes the singular values with very small absolute 
error. 
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The accuracy of the computed U and V [ef. (11.57)) is a more complex 
question. If the singular values are well separated, then small changes in X 
will not result in large changes in U and V. However, if two singular values 
are very close, even a small change in X can result in a large change in U and 
v. Despite this, in practice the SVD is the most accurate of all the methods 
we have discussed. 

11.8.4 Two Examples 

In this section we tryout the numerical methods described in the previous 
sections on two 'poorly conditioned regressions. The calculations were per­
formed in R, which uses routines based on those in LINPACK and LAPACK 
for its Cholesky, Householder, and SVD functions. The MGSA algorithm 
was programmed directly in R using the equations given in Algorithm 11.5 
in Section 11.3.2. R calculates in double precision, and the calculations were 
performed on a machine using IEEE arithmetic. 

EXAMPLE 11.2 The first data set tried was the well-known Longley data 
(Longley [1967]), which have been used by many writers to illustrate the 
effects of ill-conditioning. The data set consists of 16 observations on seven 
variables. The condition number of the X matrix (including the constant 
term) is 2.38 x 107 . Despite the bad reputation of the Longley data, with 
its very high condition number, the Cholesky, Householder, MGSA, and SVD 
methods all give identical answers to seven significant figures. 0 

EXAMPLE 11.3 The second data set is adapted from Trefethen and Bau 
[1997: p. 137) and involves fitting a function over the interval [0,1) using a 
polynomial of degree p - 1 fitted at equally spaced points 0 = Xl < X2 < ... < 
Xn = 1, with n = 100. The i, j element of the SSCP matrix is [ef. equation 
(7.2) with r = i-I and s = j - 1) 

so that the SSCP matrix is very close to a multiple of the p x p Hilbert matrix 
with i, j element l!(i + j - 1). This is known to be very badly conditioned, 
with condition number approximately e3 .5p for large p. Suppose that we want 
to fit the function 

J(t) = exp(sin4t) 

using the approximation 
p 

J(t) :::::: L bjtj , 
j=O 

with the coefficients estimated by least squares. Suppose that we use a poly­
nomial of degree p = 14. Table 11.3 shows the estimates of b14 calculated by 
the Cholesky, Householder, MGSA and SVD methods. 
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The correct answer to seven significant figures is 2.006787 x 103
, so that 

the MGSA and SVD are entirely correct. The Cholesky method has failed 
completely, and the Householder method is also unsatisfactory. 

If we repeat the calculations for polynomials of degree p, we get the co­
efficients of the term in tP , as shown in Table 11.4. The same pattern is 
apparent: Cholesky fails first, followed by Householder. The performance of 
the MGSA is remarkably good. This example may overstate the performance 
of the Cholesky method due to the special properties of the Hilbert matrix 
(see Higham [1996: p. 515] for a discussion). 0 

Table 11.3 Estimated coefficient of t 14 for various regression methods 

Method 

Cholesky 
Householder 
MGSA 
SVD 

Estimated coefficient 

-8.087709 X 102 

1.512535 X 103 

2.006787 X 103 

2.006787 X 103 

Table 11.4 Estimated coefficient of t P for various regression methods 

Method p = 10 p = 11 p = 12 p= 13 

Cholesky 8.302081 1174.053 492.9003 -848.3019 
Householder 9.570910 1296.930 -488.8949 460.9971 
MGSA 9.570910 1296.930 -488.8949 -2772.221 
SVD 9.570910 1296.930 -488.8949 -2772.221 
Condition 2.11 x 107 1.20 X 108 6.90 x 108 3.95 x 109 

number 

11.8.5 Summary 

Generally speaking, the more accurate the method, the more computation 
is required. Table 11.5 lists the methods in increasing order of accuracy, 
ranging from the Cholesky method (the least accurate) to the SVD (the most 
accurate). The table entry is the flop count, expressed as a percentage of the 
flop count for the SVD, for various values of the ratio nip. The table shows 
that there is a considerable difference between the QR and SVD methods for 
small values of nip, but that this difference disappears as nip gets large. The 
Cholesky method will be about half the cost of the QR methods but will be 
less accurate if the regression fit is good. 
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Table 11.5 Time required (as a % of SVD) by different methods for fitting regressions 

nip 2 3 5 10 20 30 

Cholesky 16 20 25 33 44 43 
Householder 22 31 44 62 77 84 
MGSA 27 35 48 65 78 85 
SVD 100 100 100 100 100 100 

As noted above, when choosing a method, there is a trade-off between 
speed and accuracy. For small to medium-sized problems, the speed of modern 
computers means that there is very little absolute time cost in using the SVD, 
even if it takes five times as long as the Cholesky method. For large problems, 
or when many regressions are being fitted (as in all possible regressions; see 
Section 12.8.1) time may become a factor, and less accurate but faster methods 
may be preferred. 

It should be stressed that if calculations are carried out in double precision 
according to the IEEE standard (which gives a unit round-off of about 10-16 ), 

even the Cholesky method will be accurate unless the condition of the problem 
is very bad. The statistical difficulties resulting from the collinear explanatory 
variables will be a problem long before the numerical difficulties become an 
issue. 

EXERCISES He 

1. Prove that the condition number of Xw is given by (11.61). 

2. Repeat the calculations in Example 11.3 using the function f(t) = cos4t 
in place of exp(sin 4t). Does the ranking of the methods still hold good? 
Sample R-code is given after Exercise 3 below. 

3. Modify the code given below to count the number of flops that are 
required to execute each algorithm. How accurate are the formulas 
given in Table 11.27 

##################################################### 

# MGSA function: calculates Q and R-{-l} of QR decomp 
mgsa<-function(A){ 
n<-dim(A) [1] 

p<-dim(A) [2J 
GG<-diag(p) 
for(i in l:(p-l)){ 

a<-A [, iJ 
denom<-sum(a*a) 
G<-numeric(p) 
for(j in (i+l):p){ 



num<-sum(A[,jJ*a) 
G[jJ<- -num/denom 
A[, jJ <-A[, jJ+a*G [jJ 
} 

GG<-GG + Quter(GG[,iJ ,G) 
} 

list (W=;A,G=GG) 
} 

################################# 
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#Householder function: calculates R of QR decomp of A 
house<-function(A){ 
n<-dim(A) [lJ 
p<-dim(A) [2J 
forCj in l:p){ 

indices<-j:n 
# construct Householder vector 

u<-numeric(n) 
u[indieesJ<-A[indices,jJ 
unorm1<-sqrt(sum(u[indicesJ~2)) 

unorm2<-sum(u[indices[-lJJ~2) 

uu<-u[jJ 
u[jJ<-if(uu<O)uu-unorm1 else 

-unorm2/(uu+unorm1) 
gamma<-O.5*(unorm2 + u[jJ~2) 

# multiply by householder matrix 
A[indices,jJ<-O 
A[j,jJ<-unorm1 

} 

A 

if (j==p) return (A) 
for(l in (j+1):p){ 

k<-sum(A[indices,lJ*u[indicesJ)/gamma 
A[indices,lJ<-A[indices,lJ - k*u[indicesJ 
} 

} 

################################################## 
# Givens function: calculates R of QR decomp of A 
givens<-function(A) { 
n<-dim(A) [lJ 
p<-dim(A) [2J 
for(j in 1:(p-1)){ 

indices<-j:p 
for(i in (j+1):n){ 

sqr<-sqrt(A[j,jJ~2+A[i,jJ~2) 

cc<-A[j ,jJ/sqr 
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ss<-A[i,j]/sqr 
temp<-cc*A[j,indices] + ss*A[i,indices] 
A[i,indices]<- -ss*A[j,indices] + cc*A[i,indices] 
A[j,indices]<-temp 

A 
} 

} 

} 

11.9 RANK-DEFICIENT CASE 

In this book we have mostly assumed that the design matrix X has full rank, 
which we can always achieve by deleting variables from the regression. How­
ever, in practice we may fail to realise that we have included variables that are 
linearly dependent on previous variables. We need to modify our algorithms 
to detect linear dependencies and to delete the offending variables from the 
regression. In this section we discuss how this may be done. 

11.9.1 Modifying the OR Decomposition 

The QR decomposition described in Section 11.3 can be carried out without 
modification if X is rank-deficient, but some of the diagonal elements of R 
will be zero. We can arrange to have the zeros occupy the end positions on 
the diagonal, and the positive diagonal elements be decreasing in size, if we 
modify the QR algorithm to incorporate column pivoting. If X is of rank 
r < p, the modification produces a decomposition of the form 

(11.80) 

where H is a product of Householder transformations, II is a product of 
permutation matrices that swaps columns (cf. A.5), Rll is an r x r upper 
triangular matrix with positive diagonal elements, and R12 is r x (p - r). 

Algorithm 11.7 

Step 1: Find the column of X having greatest norm and swap it with the 
first. Apply a Householder transformation to zero out the first column, 
leaving a positive first diagonal element. The result is 

(1) 
r ll 
o 

(11.81) 
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where TIl represents the column interchange, and rii) is 1 x 1 with a 
positive element. 

Step 8 + 1: Assume that we have carried out 8 steps, obtaining a decompo­
sition 

R(S) ) 12 
R(S) , 

22 

(11.82) 

where R~~) is 8 X 8 upper triangular with positive diagonal elements 

and R~~ is 8 X (p - 8). Now we describe how to carry out the next 

stage. If all the columns of R~~ have zero norm, then R~~ = 0, and 
X has the desired decomposition with r = 8. If at least one column 
is nonzero, find the column of R~~ with greatest norm and swap the 
corresponding column of the entire matrix (11.82) with the (8 + l)th 
column. This is equivalent to postmultiplication with a permutation 
matrix TIsH_. Reduce the first column of the resulting new R~~ (except 
the first element) to zero with a Householder transformation H s+l ' The 
result is 

(11.83) 

This is of the form desired since the (8 + 1) x (8 + 1) matrix Ri~+l) 
has positive diagonal elements, and because the product of permutation 
matrices is a permutation matrix. 

Note that this procedure also guarantees that the diagonal elements are 
nonincreasing. The algorithm either proceeds for p steps or else terminates 
after r < p steps. In the former case the result is 

and all the diagonal elements of the p x p matrix R~~) are positive, so that X 
is full rank. However, in the latter case, the result is 

( 

R(r) 
11 
o 

R(r) ) 12 
o ' 

where Ri~) is r x r, so that the first r diagonal elements are positive and the 
rest are zero. In this case, X is of rank r. 
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11.9.2 Solving the Least Squares Problem 

If IT is a permutation matrix and jJ minimizes IIY - XbW as a function of b, 
then IT' jJ minimizes IIY - XITbW. This follows because every permutation 
matrix is an orthogonal matrix. Hence we can work with the column-permuted 
version of X and then apply the permutation IT to the resulting solution to 
recover the solution jJ to the original problem. . 

Using the modified decomposition 

HXIT= (R~I 
we get 

R12 
o ), 

), 
where Q = H' is orthogonal. Now let b = (b~, b~)' and Q'Y = (d~,d~)'. 
Then, since (Y - a)'(Y - a) = (Y - a)'QQ'(Y - a), 

Y _ Q (R~I R~2) ( ~~ ) 2 

Q'Y _ (R~I R~2) ( ~: ) 2 

( :: ) _ ( Ru b i ~ RI2 b 2 ) 2 

Iidl - RUbl - R I2 b 2W + Ild2W· 
This is obviously minimized when 

Rllbl + R l2 b 2 = d i . (11.84) 

Equation (11.84) has infinitely many solutions; we choose the solution with 
b 2 = 0, corresponding to deleting the last p - r columns of the permuted 
matrix XIT from the regression. The solution is calculated by solving Rll b l = 
d l in the usual way. 

11.9.3 Calculating Rank in the Presence of Round-off Error 

Our description of the modified QR algorithm has been in terms of exact 
arithmetic. In practice, due to round-off error, at no stage we will find that 
the norms of the columns of R~~ are exactly zero. However, we can specify 
some small tolerance 8 and interpret R~~ as zero if the maximum norm is less 
than 8. If this happens for the first time when s = r + 1, it can be shown via a 
backward error analysis that the computed matrix R is the result of applying 
the QR algorithm using exact arithmetic to a matrix X + E, where 
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for some small constant Cl. Thus the computed QR decomposition is that of 
a matrix of rank r close to X. 

However, we cannot guarantee that if the original X is of rank r < p, 
then the computed R will also have rank r. Bjorck [1996: p. 105] or Golub 
and Van Loan [1996: p. 260] give an example of a matrix with a very high 
condition number for which the maximum norms of all the R~~ are not small. 
In practice, such behavior is rare, and the modified QR algorithm will usually 
(but not always) give an indication of rank deficiency. However, to be more 
certain, we should use the singular value decomposition. 

11.9.4 Using the Singular Value Decomposition 

We assume that rank(X) = r < p. As in Section 11.4, the regression quantities 
can be calculated in terms of the SVD as follows. Let a = V'b, and let Ui be 
the ith column of U. Then 

IIU:EV'b _ Yl12 
II:EV'b - U'YW 

r r 

~)uiai - (u~YW + 2)U~y)2 
i=l i=l 

is obviously minimized when ai = uil (uiY) for i = 1,2, ... , r. Moreover, 
since b = Va, the squared length of b is then 

IIbl1 2 IIVaW 
IlaW 

r p 

L ui2(u~y)2 + L a;, 
i=l i=r+l 

so that if we put ar+l = ... a p = 0, we get the solution to the least squares 
problem that has smallest norm. 

Since X is of rank r, Ui = 0 for i = r + 1, ... ,p and so by (11.79), IUil < 
CIIEI12 for i = r+1, ... ,p. Hence at leastp-r of the computed singular values 
are very small, and the rank deficiency will be detected. This is in contrast 
to the QR algorithm, which cannot guarantee detection of rank deficiency. 

11.10 COMPUTING THE HAT MATRIX DIAGONALS 

There are two approaches to computing the hat matrix diagonals: using a 
Cholesky factor of X'X or using the Qp matrix from a thin QR decomposition. 
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11.10.1 Using the Cholesky Factorization 

Suppose that we have the factorization X'X = R'R, from either a Cholesky 
decomposition, a QR decomposition or an SVD. (In the latter case R = :EV' 
is a factor but not a Cholesky factor.) If Xi is the ith row of X, then the ith 
hat matrix diagonal is 

Thus, to compute hi, we need to solve R'Zi = Xi for Zi and then calculate 
hi = IlziW. This requires about p2 flops to solve the equation and 2p flops 
for the squared norm, so that the calculation of all the hat matrix diagonals 
takes about np2 flops, ignoring terms of smaller order. 

11.10.2 Using the Thin QR Decomposition 

Let X = QpR be the thin QR decomposition of X. Then the hat matrix is 

H = X(X'X)-IX' = QpR(R'Q~QpR)-IR'Q~ = QpQ~, 

so that we can compute hi as the squared norm of the ith row of Qp. This 
takes 2np flops for all the hat matrix diagonals if Qp is available. Such is 
the case if the MGSA has been used for the regression calculations, but not if 
Householder or the SVD has been used. Computing a regression (at least the 
coefficients and the residual sum of squares) does not explicitly require the 
formation of Qp in the thin QR decomposition. If the Householder algorithm 
has been used, the explicit calculation of Qp takes about 4np2 - 2p3 extra 
flops, whereas if the SVD has been used, the explicit formation of Qp (which 
is just Up in the thin SVD X = Up:EV') costs an extra 4np2 flops. Both these 
options are computationally quite expensive. Thus the Cholesky method is 
preferred unless the MGSA has been used. 

The hat matrix diagonals should be calculated routinely in all regression 
analyses. The discussion above provides an additional argument in favor of 
using the MGSA in regression calculations. 

11.11 CALCULATING TEST STATISTICS 

We first discuss the simple case of testing that a subset of regression coeffi­
cients are zero. We can express this hypothesis as {32 = 0, where {3' = ({3~, (3~) 
and X = (Xl, X 2 ). From Section 4.3, the test statistic is 

F = RSS I - RSS 
qS2 ' 

where RSS I and RSS are the residual sums of squares from fitting the re­
gressions with design matrices Xl and X, respectively, q is the number of 



CALCULATING TEST STATISTICS 381 

columns in X 2 , and 8 2 = RSS/(n - p). This is most easily computed simply 
by fitting the two models separately. If a sequence of models is to be exam­
ined, the sweep operation can be used if the problem is not ill-conditioned, or 
alternatively, the QR techniques of Section 11.6.3 can be used. 

To test the general linear hypothesis Af3 = c, a more complicated approach 
is required. The test statistic is now 

F = RSSH -RSS 
q82 ' 

where q « p) is the rank of the q x p matrix A, and RSSH is the mini­
mum value of IIY - XbW, subject to the constraint Ab = c. This form of 
constrained least squares is a standard problem with a large literature; see 
for example, Lawson and Hanson [1995: Chapters 20-22], and Bjorck [1996: 
p. 187]. These authors discuss several methods for solving this minimization 
problem, including the method of direct elimination, the null space method, 
and the method of weighting. All of these methods transform the constrained 
problem into an .y.nconstrained least squares problem, which is then solved 
in the usual way. However, a more efficient method due to Golub and Sty an 
[1974] makes use of the representation 

RSSH - RSS = (Aj3 - c)' [A(X'X)-l A'] -1 (Aj3 - c) 

and does not require fitting another regression. Assuming that the full regres­
sion has been fitted, so that a Cholesky factor of X'X has been calculated, 
the algorithm is as follows. 

Algorithm 11.8 

Step 1: Retrieve the Cholesky factor R of X'X (i.e., X'X = R'R). This will 
have been formed no matter how the regression was fitted. 

Step 2: Put G = (AR- 1 )', so that 

A(X'X)-lA' A(R'R)-l A' 

AR-1(AR-1), 

G'G. 

Note that G can be computed cheaply by solving R'G = A' for G by 
back-substitution. 

Step 3: Calculate the thin QR decomposition G = Qq T of the p x q matrix 
G, where T is upper triangular (i.e., G'G = T'T). 

Step 4: Put g = A/3 - c. Then 
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RSSH -RSS (A!3 - C)' [A(X/X)-l A'] -1 (A!3 - C) 
g/T-1(T/)-lg 

h/h , 

say, where T/h = g. The vector h is obtained by back-substitution, and 
the numerator of the test statistic is computed as its squared length. 

If the constrained estimate!3H that minimizes IIY -XbW subject to Ab = 
c is required, it can be calculated using (3.38). We get 

f3H jJ - (X/X)-l A' [A(X/X)-l A'r1 (A!3 - c) 

!3 - R-1R- 11 A/T-1h 

!3 - R-1GT-1h 

!3 - R-1Qqh. 

11.12 ROBUST REGRESSION CALCULATIONS 

In this section we discuss some of the algorithms used to fit linear regression 
models using robust methods. 

11.12.1 Algorithms for Ll Regression 

We recall from Section 3.13 that the L1 estimate of f3 in the regression model 

is the vector b, which minimizes 

n 

L lei(b)I, (11.85) 
i=l 

where ei(b) = Yi - x~b. The minimization problem (11.85) is usually solved 
using linear programming (LP) techniques. Consider the LP problem 

(11.86) 

subject to the constraints 

p-1 p-1 

Ui - Vi = Yi - LXijCj + Lxijdj (i = 1, ... ,n), (11.87) 
j=O j=O 
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and 

Ui>O, Vi>O (i=l, ... ,n); Cj>O, dj>O (j==0, ... ,p-1). (11.88) 

This is a standard LP problem and can be solved by standard LP algorithms, 
such as the simplex method (d. Fletcher [1987: Chapter 8] for a full discus­
sion) . 

Next, we prove that any solution to the LP problem (11.86) minimizes the 
L1 criterion (11.85). We first show that without loss of generality, we can 
assume that UiVi = 0. Suppose that Ui, Vi, Cj, and dj are a solution to the 
LP problem. Let ui = Ui - min(ui,vi) and vi = Vi - min(ui,vi). Clearly, 
ui,Vi,Cj,dj satisfy the constraints (11.87) and (11.88), and 

so that 
n n n n 

LU~ + LV~ < LUi + LVi. (11.89) 
i=l i=l i=l i=l 

Since Ui, Vi, Cj, dj is a solution, the inequality (11.89) is in fact an equality, so 
that ui, v~, Cj, dj also minimize (11.86) and satisfy uivi = 0. 

Now suppose that Ui, Vi, Cj, dj are a solution of the LP with UiVi == 0. Let 
b = (bo, ... , bp - 1 )', where bj = Cj - dj . We will show that b minimizes 
(11.86). Let b* be any other p-vector, ei = Yi - xib*, ui = max(ei, 0), 
v; = max(-ei,O), cj = max(bj,O), and dj = max(-bj,O). Then ui,vi,cj,dj 
satisfy the constraints (11.87) and (11.88), and ui + vi = lei\. Also, since 
UiVi = 0, we have 

IYi - xibl = lUi - Vii = Ui + Vi. 

Hence, since Ui, Vi solve the LP, 

n 

LIYi - xibl 
i=l i=l 

n n 

LUi+ LVi 
i=l i=l 

n n 

< Lui + Lvi 
i=l i=l 

i=l 
n 

L IYi - x/b*l, 
i=l 

so that b minimizes (11.86). 
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In practice, the particular form of the LP (11.86) -(11.88) allows the stan­
dard simplex method to be modified to achieve greater computational effi­
ciency. Barrodale and Roberts [1974], Bartels et al. [1978] and Bloomfield 
and Steiger [1980] all describe algorithms that are modifications of the sim­
plex method. Bloomfield and Steiger [1983] make comparisons between the 
methods and recommend the Bloomfield-Steiger algorithm. 

11.12.2 Algorithms for M- and GM-Estimation 

We can calculate M- and GM-estimates by a suitable sequence of weighted 
least squares fits. We must solve the estimating equations 

n 

L wi(b )"p{ ei(b) I[s Wi (b)] }Xi 0, (11.90) 
i=l 

n 

L x[ei(b) Is] o. (11.91) 
i=l 

We have written the weights as Wi (b) to emphasis their dependence on the 
current fit, but in practice they will be functions of the current residuals and 
the regression matrix X. For M-estimates, we set Wi = 1. 

The algorithm is based on rewriting (11.90) by putting 

Then (11.90) becomes 
X'WXb = X'WY, (11.92) 

where W = diag(W1 , ... , W n ). If the weights were known, we could solve 
(11.92) using the weighted least squares algorithm described in Section 11.5. 
We can deal with the unknown weights by an iterative approach. Suppose 
that we have a preliminary estimate of (3, which could be an L1 estimate. We 
can then calculate weights on the basis of this preliminary fit, solve (11.92) for 
an updated estimate, and iterate to convergence. Specifically, the algorithm 
is as follows. 

Algorithm 11. g 

Step 1: Obtain a preliminary estimate jJ(O). Set m = O. 

Step 2 : Solve 
n 

Lx[ei(jJ(m))ls] = 0 
i=l 

for s, obtaining an estimate a(m) of u. 
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Step 3: Put 

Wi = Wi((3(m))1/J[e i ((3(m))/(a-(m)Wi(/3(m))]/ ei((3(m)) 

and w(m) = diag(W1' ... ' W n ). 

Step 4: Solve 

to obtain an updated estimate (3(m+1). 

Step 5: Repeat steps 2-4 until convergence. 

11.12.3 Elemental Regressions 

Let J be any subset of p observations, and let XJ and Y J be the corresponding 
submatrices of X and Y. An elemental regression (cf. Mayo and Gray [1997]) 
is a regression fit using just XJ and Y J. Assuming that each XJ has full rank, 
the estimated regression coefficients are (3J = X:J1'y J and the fit is exact. 

Elemental regressions are used to obtain approximate solutions in many 
kinds of robust regression problems. In principle, the solution is simple: All 

possible (;) elemental regressions are computed, and the one that optimizes 

the relevant criterion is taken as an approximate solution. Of course, in 
general, there is no guarantee that the true optimal solution corresponds to 

an elemental regression. Also, the calculation of all (;) regressions quickly 

becomes computationally prohibitive as nand p increase. 
It transpires that there is a solution to the L1 problem (11.85) that is 

an elemental regression (cf. Bloomfield and Steiger [1983: p. 7]), although 
searching through all the elemental regressions is not a practical algorithm. 
There is also a close connection between least squares and elemental regres­
Sions, as the usual LSE can be written as a weighted linear combination of 
the solutions (3J of the elemental regressions. We have 

(3 = L wJ(3J, 
J 

where WJ = det(X/XJ) / det(X'X). A proof may be found in Hawkins et al. 
[1984]. 

11.12.4 Algorithms for High-Breakdown Methods 

Algorithms for high-breakdown methods such as least median squares and 
least trimmed squares also make use of elemental regressions. The original 
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algorithm of Rousseeuw for LMS (Rousseeuw [1984]) was based on approx­
imating the solution using elemental regressions, as described above. In its 

simplest form, the algorithm computes all (;) elemental regressions and 

chooses the one that minimizes the LMS criterion. Note that unlike L1 regres­
sion, there is no guarantee that this will happen for any elemental regression. 
However, Hawkins [1993a] argues that this procedure will produce a minimum 
close to the true minimum, particularly when combined with intercept tuning 
(Hawkins [1993a]). 

Computing all elemental regressions is not practical when nand pare 
large. An alternative is to sample elemental regressions at random. However, 
Portnoy [1987] cautions against this unless the number of subsets sampled, J, 
is very large, since insufficient sampling will produce "solutions" that are far 
from optimal. 

The inadequacies of the elemental set method have motivated the search 
for exact algorithms. Stromberg [1993] presents a method that will produce 
an exact solution that is practical for small problems. Consider the modified 
LMS criterion 

(11.93) 

discussed in Section 3.13.2. It is clear that if b mmlmlzes (11.93), it will 
minimize the maximum squared residual for some h-subset of the data. The 
fit minimizing the maximum squared residual of a set of regression data is 
called the Chebyshev fit. As noted by Stromberg [1993], a key property of 
the Chebyshev fit to a set of data containing n cases is that it is also the 
Chebyshev fit to some (p+ I)-subset of the cases. It follows that by calculating 
the Chebyshev fit to every (p+ I)-subset of the original set of n cases, we must 
eventually calculate the solution to the LMS problem. 

The Chebyshev fit to a (p + I)-subset can be simply found. Cheney [1966] 
proves that the fit is given by 

/3c = /3 - KCS, 

where /3 is the LSE of the regression using the p + 1 cases, C is the catcher 
matrix (d. Section 10.6.3) for the p + 1 cases, 

and s = (sign[el (/3)], ... , sign[ei(/3)])'. Note that ail regression quantities in 
these formulas refer to the regression using a (p + I)-subset of cases, not the 
full regression. 

The Stromberg algorithm will calculate an exact solution to the LMS prob­
lem, but again is practical only for small problems. What is required is an 
algorithm that is more efficient than random selection of elemental sets but is 
also practical for medium-sized problems. A variety of algorithms have been 
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developed to improve on random searching. Most use a randomly chosen 
subset of cases as a starting point, which is then refined to produce a better 
solution. The algorithms then repeatedly res ample and refine subsets, using 
the best subset found after a fixed number of iterations to calculate the final 
estimate. The refining step makes these algorithms much more efficient than 
pure resampling. 

The refining step depends on the estimate being calculated. For example, 
Hawkins [1994a] proposed an algorithm for LTS regression based on repeated 
resampling of h-subsets of cases. Recall that the LTS estimate minimizes the 
criterion 

h 

Le(i)(b)2, 
i=l 

where h = [n/2] + [(p+ 1)/2]. It follows that the LTS estimate is the ordinary 
least squares estimate calculated from some h-subset of the n cases. The 
Hawkins algorithm selects h-subsets at random. The subset chosen is then 
refined by a series of pairwise swaps, where a case in the subset is replaced 
by a case not in the subset. The resulting change in the residual sum of 
squares can be be calculated easily; a formula is given in Exercises lld, No. 
1. All possible swaps are done and the swap making the biggest reduction 
in the RSS is recorded. The RSS of this subset is compared to the current 
best value of the criterion and becomes the current best value if it is smaller. 
This entire procedure is then repeated a fixed number of times and the best 
solution found is the approximate LTS estimate. 

A similar algorithm has been proposed for the LMS estimate (Hawkins 
[1993b]), using a refinement step based on the simplex method in linear pro­
gramming. The combination of a random choice of subset, followed by a 
refinement step, can also be used for the robust methods for estimating lo­
cation and covariance for multivariate point clouds when attempting to iden­
tify high-leverage points as described in Section 10.6.2. These algorithms are 
called feasible solution algorithms since the refined subsets satisfy certain nec­
essary conditions to be a minimum. More details may be found in Hawkins 
and Olive [1999]. Hawkins [1994b] describes an algorithm for the minimum 
covariance determinant estimate (cf. Section 10.6.2). 

Ruppert [1992] proposed a similar approach for calculating S-estimates, 
but used refinement of the estimated coefficients rather than refining subsets 
of cases. In Ruppert's method an elemental set of p cases is chosen, and the 
exact regression calculated, resulting in an estimate /'3, say. Suppose that /3 
is the current best estimate, which has resulted in the current smallest value 
of s [ef. (3.95)]. Then Ruppert suggests examining a series of trial values 
of the form t/3 + (1 - t)i3 for a set of t's equally spaced between 0 and 1. 
The estimate making the greatest reduction in the value of s is retained as 
the current best estimate, and the process is repeated. The algorithm can be 
made more efficient by a further refinement step once the current best value 
is found, and also by a clever trick that avoids having to calculate the value of 
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s for all the trial values. This algorithm can also be used for LMS and LTS, 
plus the robust covariance estimates used in outlier detection. More details 
can be found in Ruppert [1992]. 

The idea of concentration gives another way of refining estimates derived 
from randomly chosen subsets. In this method, a set of c cases is chosen 
at random. A regression fit using these cases is performed, and the cases 
corresponding to the c smallest residuals are identified. A further fit to these 
cases is performed, and the process is iterated until there is no change. The 
fit could be an L 1 , least squares or Chebyshev fit. Further discussion of 
concentration can be found in Hawkins and Olive [2002]' and Rousseeuw and 
van Driessen [1999] describe a concentration algorithm for the MCD estimate. 

Finally, we note that several of these methods rely on fits to subsets of 
cases. These may be difficult or impossible if the submatrices concerned have 
less than full rank. This is not usually a problem if all the variables in the 
regression are quantitative. However, if some of the columns of the regression 
matrix are indicator variables, as in analysis-of-covariance models, then this 
may not be the case. Hubert and Rousseeuw [1997] give a method applicable 
in this case. They use the minimum volume ellipsoid to identify the high­
leverage points and then fit a weighted L1 regression to all the data, using 
weights based on the robust Mahalanobis distance discussed in Section 10.6.2 
which downweight the high-influence points. This is essentially the same as 
using a GM-estimate. 

EXERCISES lld 

1. Suppose that we fit a least squares regression to a subset J of the n 
available cases. Let XJ be the submatrix of X corresponding to the 
cases in J, let ei be the ith residual from this fit, i = 1, ... , n, and let· 
hij = x~(X~XJ)-1Xj. Show that if we drop case i E J and add case 
j ¢c J, the change in the residual sum of squares is 

eJ(1 - h ii ) - et(1 + hjj) + 2eiejhij 

(1 - hii )(1 + hjj ) + htj 

(Atkinson and Weisberg [1991]) 

2. Using the result in Exercise 1 above, write an R function implementing 
Hawkins's method of calculating an approximation to the LTS estimate. 

3. Write an R function to implement Ruppert's algorithm to calculate an 
approximation to the LTS estimate. You will need to refer to Ruppert 
[1992] for the details of the algorithm. Devise a small simulation to 
compare Ruppert's algorithm to Hawkins's. 
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MISCELLANEOUS EXERCISES 11 

1. Write a program to implement the Gram-Schmidt algorithm (Algorithm 
11.3 in Section 11.3). Tryout your program on the Longley data and 
the polynomial approximations described in Example 11.3 in Section 
11.8.4. Compare your results with those in Examples 11.2 and 11.3. 

2. Verify the formulas for the updating algorithm in Section 11.7. 

3. Try some experiments to compare the execution time of a regression 
performed using the Cholesky method with one using the SVD. Do the 
flop counts given in the text give a reasonable indication of the relative 
speed of the two methods? 





12 
Prediction and Model Selection 

12.1 INTRODUCTION 

The aim of regression analysis is to discover the relationships, if any, between 
the response Y and the explanatory variables Xl, ..• , Xp-l. Ultimately, we 
may wish to use these relationships to make predictions about Y based on 
observing Xl, ... ,Xp-l. Alternatively, we may use the fitted model to better 
understand how particular variables are related to the response. In both 
cases, we need to choose a tentative model to fit to the data. Having fitted 
the model, we need to assess how well the model fits, and if necessary, modify 
the model to improve the fit, using the methods of Chapter 10. We can then 
use the fitted model to make predictions. 

An important part of this process is to decide which variables to include 
in the model and how to construct a predictor from the variables available. 
In the first part of this book we assumed that the set of variables was given. 
In this chapter we assume that a large number K of potential explanatory 
variables are available. We shall discuss ways of selecting which variables to 
include in order to get a good model, and how to use the available variables 
to construct a good predictor. 

If the main aim of the analysis is to make predictions, we might feel that 
nothing is lost by using every scrap of information available, and that we 
should use all the variables Xl, ... , X K in the construction of our predictor. 
However, as we show in Section 12.2, we can often do much better by discard­
ing a proportion of the variables, particularly if K is large compared to the 
number of cases n. This apparently paradoxical result means that, in practice, 
we need to select which variables to use. Alternatively, we may abandon the 

391 
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use of least squares and seek other methods of estimation that have better 
predictive accuracy. 

The literature on model selection and prediction sometimes makes the as­
sumption that the true model is one of the form 

(12.1) 

In this case a key issue is identifying the variables that are not related to the 
response, that is, identifying the fJ's that are zero. This is model selection in 
its pure form. Alternatively, and more realistically, it may be felt that truth 
cannot be so simple, and the task is then to build a model of the form (12.1) 
having the best possible predictive accuracy, using the available explanatory 
variables as raw material. In either case, we have several options: either using 
least squares, possibly discarding some variables, or using alternative methods 
of estimation such as ridge regression. 

If we want to select a subset of variables, there are two main approaches. 
In the first, known as all possible regressions (APR), we define a criterion 
of model goodness, evaluate the criterion for each possible subset of variables, 
and then choose the subset that optimizes the criterion. Criteria can be based 
on standard goodness-of-fit measures, on estimating the prediction error, on 
estimating the number of nonzero coefficients, or on estimating some measure 
of distance between the model based on the subset and the true model. These 
criteria, some of which make no sense if the true model is not of the form 
(12.1), are discussed in detail in Section 12.3. Evaluating the criteria for 
all possible subsets can be computationally intensive, even prohibitive, if the 
number of explanatory variables is large. 

The second approach is to apply a sequence of hypothesis tests to the 
problem and attempt to identify the nonzero fJ's in (12.1). These techniques, 
of which forward selection, backward elimination, and stepwise regression are 
the best known examples, obviously make the assumption that (12.1) is the 
true model. They are computationally much less demanding, but there is no 
guarantee that the models found will be optimal in terms of any of the criteria 
discussed in Section 12.3. These sequential testing techniques are described 
in Section 12.4. 

An alternative to subset selection and least squares is to fit the model using 
all the explanatory variables, but to use a biased estimation method such as 
ridge regression that "shrinks" the coefficients toward zero. Some of these 
methods, in particular the suggestively named garrote and lasso zero some 
coefficients as well. Shrinkage methods are the subject of Section 12.5. 

Bayesian methods of subset selection offer a different approach to the prob­
lem that has an attractive conceptual simplicity. These methods provide ways 
of selecting single models or, in the case of prediction, combining predictions 
from several models. This idea of model averaging can also be implemented 
in a non-Bayesian context, and these ideas are pursued in Section 12.6. 

Very often, the same data are used to both select the model to estimate 
the coefficients of the chosen model and to make predictions. The standard 
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methods of inference covered in earlier chapters do not apply when the model 
has been selected using the same data as those used for model fitting. They 
tend to overestimate the precision of estimates and the accuracy of predictions. 
In Section 12.7 we look briefly at ways that the standard inferences can be 
modified to incorporate the uncertainty induced by the model selection phase 
of the analysis. 

For a model with K possible explanatory variables, the APR methods for 
model selection mentioned above require the fitting of 2K possible regression 
models. Efficient ways of doing this, and of avoiding having to examine every 
subset, are discussed in Section 12.8. 

This chapter describes a large number of possibilities for subset selection 
and the construction of predictors. In the final section we compare and con­
trast these methods. 

12.2 WHY SELECT? 

:.::.-

We begin by considering a simple example that illustrates how discarding 
explanatory variables can improve prediction. The example is adapted from 
Linhart and Zucchini [1986: Section 6.3] and concerns the prediction of a 
simple exponential function. 

Suppose that we have a true model of the form 

Yi = exp(ax: + b) + Ci, (12.2) 

where the Ci are independent normal errors with mean zero and variance a 2 . 

The model is not known to the data analyst, who decides to fit a polynomial of 
degree seven to the available data, which consists of n = 100 pairs (Xi, Yi), i = 
1,2, ... , n, with the Xi equally spaced from 1 to 10. The true values of a, b, 
and a are a = 0.02, b = 0.1, and a = 1.5. 

Suppose that that the scientific objective is to predict the value of the 
function at X = 5. In theory, it should be possible to make a good prediction, 
because although the functional form chosen by the analyst is not correct, the 
true function 

f(x) = exp(ax2 + b) 
can be approximated very well by a seven-degree polynomial. The function 
f is plotted in Figure 12.1(a). Also shown in Figure 12.1(b) is the difference 
between the function and the best-fitting seven-degree polynomial. We see 
that the difference is very small. 

What the data analyst actually observes is a noisy version of f, described 
by the model (12.2). The data are plotted in Figure 12.1(c), together with 
the polynomial that best fits the actual data. Note that this is not the same 
polynomial as the one plotted in Figure 12.1(a). The polynomial fitted in 
Figure 12.1(c) appears to fit the current data reasonably well. 

How well does this seventh-degreee polynomial model predict future obser­
vations? We repeatedly generated sets of 100 further observations from the 
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exponential model and used the polynomial model to predict f(5). We also 
repeated the predictions using polynomials of smaller degree, so that for each 
simulated data set we have seven predictions, corresponding to using models 
of degree 1,2, ... ,7. The results are shown in Figure 12.1(d) in the form of 
box plots, one for each of the seven models. The horizontal bar in the middle 
of each box plot represents the average value of the prediction, so the distance 
between the bar and the horizontal line [which represents the true value of 
f(5), namely 1.822] represents the bias in the prediction. The variability of 
the predictions is represented by the heights of the boxes. We see that as the 
degree of the fitted polynomial increases, the bias decreases but the variance 
increases. The predictor based on a linear approximation (i.e., a polynomial 
of degree 1) is stable but has a large bias, since it cannot capture the curva­
ture ofthe true function f. On the other hand, the seventh-degree polynomial 
has negligible bias, but is highly variable. This is because the flexibility of 
the functional form being used to fit the model allows the model to track 
the noise in the data too closely, resulting in unstable predictions. In fact, if 
we calculate the mean-squared error of the predictions, we find that the best 
trade-off between bias and variance occurs when we use a cubic polynomial. 
Thus the optimal prediction does not use all seven possible power terms, but 
only three. 

The idea developed in this example - that basing a prediction on too few 
or too many variables can lead to poor predictions - can also be illustrated 
theoretically. We explore this in the next section. 

Prediction Error and Model Error 

In the prediction problem, we have an initial data set (Xi, Yi), i = 1, ... ,n, 
consisting of n (p + I)-dimensional multivariate observations, each consisting 
of a response Yi and a p-dimensional vector of explanatory variables Xi. We 
will assume that the initial element of each Xi is 1, corresponding to the 
constant term in the regression model. 

Suppose that we want to use this data set, often referred to as the training 
set, to predict the responses YOi , i = 1, ... , m, corresponding to m new vectors 
XOi· A related problem is to estimate the mean !-lOi of the response YOi . 

Let Y' = (YI , ... , Yn ) and Yb = (YOl , ... , YOm). We assume that Y and 
Yo have covariance matrices a2In and a2Im, respectively, and that Y and 
Yo are independent with the same probability structure; if Xi = XjO, then 
E[Yi] = E[Yoj]. Also, let 

[ 
X,bl 1 and Xo = 
xOm 

Suppose that we calculate the least squares estimate/:J = (X'X)-I X'y from 
the training set. The least squares predictor of Yo (and also the estimate of 
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Fig. 12.1 Performance of predictors for several models: (a) function being predicted; 
(b) error in approximating the function by a polynomial; (c) typical data and the fitted 
polynomial; (d) box plots of the prediction errors. 
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/-to = E[Yo]) is xoi:J. The sum of the squared prediction errors is 

i=1 

which we can write as 

, 2 
IIYo - /-to + 1-£0 - Xo.B11 IIYo - 1-£0112 + 111-£0 - Xo.B112 

(12.3) 

+ 2(Yo - 1-£0)'(1-£0 - Xo.B). (12.4) 

If we take expectations over the new data only, we get a quantity which we 
call the prediction error (PE), given by 

PE - Eyo [IIYo - Xo.B112] 

[ 2] , 2 Eyo IIYo - 1-£011 + 111-£0 - Xo.B11 
m 

Eyo [~)Y,;o -l-£iO)2] + 111-£0 - Xo.B112 
i=1 

2 ' 2 
ma + 111-£0 - Xo.B11 . (12.5) 

In (12.5), the cross-product term vanishes because Y and Yo are independent 
and 

(EYo[Yo)-l-£o)'(l-£o - Xoi:J) 

(/-to - 1-£0)' (1-£0 - xoj3) 
o. 

Equation (12.5) expresses the PE as the sum of a quantity ma2 which reflects 
the underlying variability ofthe data, and a term 111-£0-Xo.BW which measures 
how well the linear model represented by Xo estimates the mean 1-£0 of the new 
responses Yo. This second term, which we will call the model error (ME), 
is the crucial quantity for measuring how well the model predicts the new 
responses (or, equivalently, how well the model represented by Xo estimates 
the mean response /-to). We have 

PE= ma2 + ME, (12.6) 

where 
, 2 

ME = II/-to - Xo.B11 . (12.7) 

The ME depends on the regression matrix Xo. 
We can get a simple formula for the ME if we take Xo = X, which implies 

that m = n and /-to = E[Y) = 1-£, say, since we are assuming that the proba­
bility structures of the new and old data are the same. In this case, putting 
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e = Y - J-L and P = X(X'X)-lX', we get 

ME IIJ-L - X;3W 

IIJ-L - PYW 

IIJ-L - P(J-L + e)112 

II(In - P)J-L - Pe)112 

II(In - P)J-LW + IIPe)11 2 

J-L'(In - P)J-L + e'Pe, 

since the cross-product term again vanishes because p 2 = P. The expected 
model error E[ME] is 

E[ME] J-L'(In - P)J-L + E[e'Pe] 

J-L'(In - P)J-L + a 2 tr(P) [by (1.12)] 

J-L' (In - P)J-L + a 2 p. 

The corresponding formula for the expected PE when Xo = X is 

E[PE] E[na2 + ME] 

(n + p)a2 + J-L'(In - P)J-L, 

(12.8) 

(12.9) 

using (12.6) and (12.8). Now define the total bias and total variance of the 
predictor X;3 by 

TOTAL BIAS = IIJ-L - E[X;3]11 

and 
TOTAL VARIANCE = tr(Var[X;3]) . a 2 tr(P). 

Then (see Exercises 12a, No.1), the first term of (12.8) is just the square 
of the total bias, which vanishes if J-L is in C (X). Also, the second term of 
(12.8) is just the total variance. Thus (12.8) expresses the expected ME as 
the sum of a term measuring bias and a term measuring the variability of the 
predictor. Clearly, as new variables are added to the model, the variability 
increases but the bias decreases, unless the new variables are linearly depen­
dent on the old. The best model, having smallest expected ME (and hence 
the smallest expected PE), will be some compromise between these conflicting 
requirements of small bias and low variability. 

In the discussion above, the linear model (12.1) was only an approximation 
to the true model. Now we consider what happens if (12.1) is exactly the true 
model, although perhaps having some redundant variables with regression 
coefficients equal to zero. Specifically, suppose that we write the model in 
matrix form as 

Y = X(3 + e, 

where X = (Xl ,X2) and (3' = ((3~,(3~). Assume that Xl has p columns 
(corresponding to a submodel with p - 1 variables) and X 2 has K - p + 1 
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columns (corresponding to the remaining variables). Also assume that f31 and 
f32 have dimensions p and K - p + 1, respectively. 

We saw in Section 9.2.2 that including the redundant variables does have 
a cost; the predictor using all the explanatory variables had a larger variance 
than that based on Xl. On the other hand, if f32 f. 0, and we use only the 
subset, the predictor is biased. This raises the interesting question: Even if 
f32 f. 0, do we sometimes do better using the predictor based on the smaller, 
incorrect model? Under certain circumstances the answer is yes, as we now 
show. Suppose that we want to predict Xl f3, where x = (x~, x~)' is a (K + 1)­
vector. Should we use the biased predictor x~r31 based only on Xl, or the 
unbiased predictor x l /3, where /3 is the least squares estimate based on X 
using all the explanatory variables? 

From (12.5), with m = 1, the expected PE of the biased predictor is 

E[PE] a 2 + E[(X~,61 - x lf3)2] 

a 2 + var[x~,6d + (x~ E[,6d - Xl f3)2. 

Using the results of Section 9.2, we have 

E[,61] = f31 + Lf32, 

x~f31 + X~Lf32 - x~f31 - x~(32 

(L'xI - X2)1f32' 

and the expected PE of the biased estimate is 

E[PE] = a 2 + var[x~,6d + [(L'XI - X2)1f32]2. 

The expected PE of the unbiased predictor x l /3 is 

E[PE] a 2 + E[(x' /3 - Xl f3)2] 

a2 + var[x l /3] 

(12.10) 

a 2 + var[x~,61] + a2(L/xI - x2)/M(L'xI - X2), (12.11) 

by (9.5), where M = [X~ (In - PdX2]-1 and PI = Xl (X~ XI)-l X~. Let h = 
L'XI - X2. Comparing (12.10) and (12.11), we see that the biased predictor 
has a smaller expected PE than the predictor based on all the variables if 

(12.12) 

Now M is positive definite by the Lemma of Section 3.7, so by A.4.11, 

(hi f32)2 < h/Mh . f3~M-l f32 

for all vectors h. Thus, if f3zM-I f32 = .B2X~ (In - P I )X2f32 < a 2, then (12.12) 
is true for all h, and the biased predictor will have the smaller expected PE. 
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We see that in both the curve-fitting example and in the theory sketched 
above, the trade-off is the same. Using more variables leads to smaller bias 
and larger variance, whereas using fewer variables makes the bias larger but 
the variance smaller. 

EXERCISES 12a 

1. Show that the square of the total bias IIIL-E[X.B11l2 is equal to the first 
term in (12.8). 

2. Consider the regression model 

Yi = a + /'lXi + /'2Zi + Ci (i = 1, ... , n), (12.13) 

where 2:i Xi = 2:i Zi = 0 and 2:i xf = 2: i zt = 1. Suppose that we 
want to predict the response Y corresponding to a vector (x, z) using a 
predictor of the form 

Y = Y + 1'lX, 

where 'Yl IS the least squares estimate obtained by fitting the model 

(a) 

Yi = a + /'lXi + Ci (i = 1, ... , n). 

Assuming that the model (12.13) is correct, show that the expected 
model error E[MEl = E[(Y - a - /'lX - /'2z?1 of the predictor Y 
is given by 

where r = 2:i XiZi· 

(b) Under what circumstances will Y be a better predictor than the 
predictor based on both x and z? 

12.3 CHOOSING THE BEST SUBSET 

We saw in Section 12.2 that using a model containing all available explana­
tory variables can result in poor predictions. A possible strategy to improve 
predictions is to use only a subset of the explanatory variables and use a least 
squares predictor based on the chosen subset. How do we select the subset? 
One possible approach, which we explore in this section, is to define a crite­
rion that measures how well a model performs, evaluate the criterion for each 
subset, and pick the subset that optimizes the criterion. 

A variety of criteria are in common use. We can classify them into four 
classes: 

1. Those based on goodness-of-fit measures 
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2. Those based on estimating the prediction error (or equivalently the 
model error) 

3. Those based on estimating the difference between the true distribution 
of the responses and the distribution specified by the model 

4. Those based on approximating posterior probabilities 

12.3.1 Goodness-of-Fit Criteria 

We know from previous chapters that the residual sum of squares (RSS) is a 
measure of goodness of fit. The RSS is not a good absolute measure, since 
if we have two sets of variables 51 and 52 with 51 c 52, then the RSS for 
the model based on 52 will be smaller than that for the model based on 51 
(provided that the extra variables are not linear combinations of those in 
51, d. Exercises 3f, No.1, at the end of Section 3.7.2). Thus, even adding 
variables consisting of random numbers will decrease the RSS. However, if 
we have two competing models, both with the same number of variables, we 
would certainly prefer the model with the smaller RSS. 

We need a way of correcting the RSS to account for the number of variables 
in the model. One way of doing this is to use the estimated residual variance 

S2 = RSS/(n - p), 

where p is the number of columns in the n x p regression matrix X. (If a 
constant term is used in the model, there will be p - 1 variables plus the 
constant term, for a total of p regression coefficients.) Another criterion is the 
adjusted R2, defined by 

(12.14) 

where R2 is the coefficient of determination introduced in Section 4.4. We 
select the model having the largest adjusted R2. 

This measure is motivated by testing the adequacy of the model against 
a "full model" consisting of all available explanatory variables. Suppose that 
there are K variables available and the model under consideration contains 
p - 1 < K of these. Writing the coefficients of determination for the two 
models as R; and Rk+1' the F-test for testing the adequacy of the smaller 
model against the larger is (d. Exercises 4c, No.3, at the end of Section 4.4) 

so that 

R"i+1 - R; n - K - 1 
Fp = 2 

1- RK+1 K - P + l' 

1 _ R; = (1 _ R"i+1) (K - p + l)Fp + n - K - 1 
n-K-1 

(12.15) 
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Using this and (12.14) we get 

-2 ( 2) n Rp=l- 1-RK+l K n- -1 

(K - p + l)Fp + n - K - 1 
n-p 

If Fp > 1, then 

and 

(K - p + l)F + n - K - 1 
p > 1 

n-p -

R! < 1 - (1 - Rk+l) n _ ; _ 1 
-2 
R K +1 · 

This motiv~tes the use of R2 as a model selection criterion, since large values 
of Fp are evidence in favor of the K-variable model. Note also that 

1 - (1- R2) n 
p n - p 

1 _ RSSp n 
SSY n - p 

2 n 
l-SpSSY ' 

(12.16) 

where SSY = 2:i(Yi - y)2, so that the model with maximum R2 is also the 
model with minimum S2. 

12.3.2 Criteria Based on Prediction Error 

We now look at some criteria based on the idea of choosing a model that 
predicts well. In Section 12.2 we introduced the ME as a measure of how 
well a particular model predicts future data. However, because the expected 
ME involves the unknown mean vector 1-£, it cannot be used as a criterion 
for model selection. To get an operational criterion, we must estimate the 
expected ME, and we now discuss some ways of doing this. 

Mallow's Cp 

Let RSSp denote the RSS that results from fitting a model with p param­
eters and having an n x p regression matrix X p' If Pp = Xp(X~Xp)-lX~, 
then, using Theorem 1.5 and (12.8), we get 

by (12.8), so that 
E[ME] 

a 2 

E[Y'(In - Pp)Y] 

I-£'(In - Pp)1-£ + (n - p)a2 

E[ME] + (n - 2p)a 2
, 

(12.17) 
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If we had an estimate 8"2 of a 2 , we could use 

RSSp 
Cp = '2 +2p-n 

a 
(12.18) 

as an estimate of E[ME) / a 2 , the scaled expected ME. If the model fits well in 
the sense that J), is well approximated by vectors in C(Xp), then the quantity 
11(ln -Pp)J.l.W = J),'(ln -Pp)J), will be small. Hence, from (12.8), the expected 
value of Cp will be close to p, since 

E[RSSp) 2 
a 2 + p - n 

'(I P) J), n- pJ.l.+ +2 n-p p-n 
a 2 

~ p. (12.19) 

Mallows, who popularized the use of Cp (see, e.g., Mallows [1973)), suggested 
using the Cp plot, a plot of Cp versus p for all possible models, as a device 
for recognizing models for which Cp ~ p (and hence fit well), and for gaining 
insight into which variables contribute to the regression. 

It is common practice to estimate a 2 using the full regression containing 
all K available explanatory variables, so that 

,2 RSSK+l a = --.,"'--:-
n-K-1' 

which implies that CK +1 = K + 1. Also, using the relationship (cf. Exercises 
12b, No.1, at the end of Section 12.3.4) 

we get 

so that 

RSSp n - K -1 
RSSK+l n - p 

1- R2 
P 

2 ' 
1- RK+1 

RSSp 
'2 - n + 2p a 

RSSp(n - K - 1) 2 
RSSK+l - n + p 

-2 
(1 - Rp)(n - p) 
----"--;2:---- - n + 2p, 

1 - RK+l 

1- R2 Cp - PIP --"--=- + = --...."..."---2 
n - p 1- RK+l 

Hence if n is large compared to p, the smallest value of Cp - p corresponds 
-2 

approximately to the largest Rp. 
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Since Cp estimates the scaled expected ME, it is often thought that choos­
ing the model with the smallest Cp results in good predictions. However, 
Mallows strongly discouraged choosing the model with the smallest Cp , for 
reasons that explored more fully in Section 12.9. This also applies to using 
R! or the equivalent S; as the basis for model choice. 

Cross-Validation 

If (XOi' YOi), i = 1, ... , m, is a new set of data following the same model as 
the training data (Xi, Yi), an obvious measure of the prediction error is 

rn 
1" '2 - L..J (YOi - x~d3) , 
m i=l 

(12.20) 

where 13 is calculated using the training set and some assumed model. In 
practice, we do not often have the luxury of additional data. We can, however, 
do something similar by dividing the training set into two disjoint sets of 
cases, using one set to calculate 13, and the other to evaluate the prediction 
by calculating (12.20). Of course, accuracy is lost if too few cases are used to 
estimate the form of the predictor. Also, if too few cases are used to estimate 
the prediction error, we cannot make an accurate assessment of how good the 
proposed model is for prediction. 

To combat this, we can select a subset D of d cases, estimate the predictor 
using the remaining n - d cases, and then calculate (12.20). This produces 
an estimate PE(D) of the prediction error. We then repeat the process for 
selected d-subsets D 1 , D 2 , ••• , and average the resulting estimates PE(D i ). 

This process, called cross-validation, has a large literature; see Allen [1971] 
and Stone [1974] for early work, and George [2000] for a recent brief review. 

The most popular (although, as we will see below, not the best) choice of 
d is d = 1, which involves leaving out each case in turn, and calculating the 
estimate of (3 from the remaining (n - 1) cases. As in Section 10.1, we call 
this estimate j3(i). The error in predicting the ith case is Yi - x~j3(i), which 
leads to the leave-one-out or eV(1) prediction error estimate 

n 

eV(1) = .!. E[Yi - x~j3(i)]2. 
n i=l 

To simplify this expression, we use (10.5) to get 

Yi - x~j3(i) 

yo. _ '(3' hi(Yi - x~j3) 
• Xi + 1 - hi 

Yi - x~j3 
1 - hi . 

(12.21) 

(12.22) 
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As in Section 10.1, hi is the ith hat matrix diagonal, the ith diagonal element 
of the projection matrix X(X/X)-l X, for the model under consideration. 
Using (12.22), the eV(l) estimate can be written 

n ( ,,)2 
eV(!) = .!." Yi - xJl 

n L..J 1- h· 
i=l ~ 

(12.23) 

Next, we develop an expression for the expectation of eV(!) and show that 
it tends to overestimate the PE. If '(Ii = {(I - P)J.L}i and c; = Y - J.L, then 

so that 

Yi - x~/3 {Y - x/3h 
{(In - P)Yh 

- {(In - P)J.Lh + {(In - P)C;}i 

'TIi + {(In - P)c; }i, 

E[(Yi - x~/3)2l = E[('TIi + {(In - P)c;}d 2
] 

= 'TIt + E[{(In - P)c;HJ· (12.24) 

Now let Di be a diagonal matrix whose ith diagonal element is unity and the 
rest are zero. Then 

{(In - P)c;}f = c;1(In - P)Di(In - P)c;, 

so that, by A.1.2 and the fact that In - P is idempotent, 

so 

E[c;'(In - P)Di(In - P)c;] 

0-
2 tr[(In - P)Di(In - P)] 

0-
2 tr[Di (In - P)] 

0-
2 (1 - hi), 

E[(Yi - x~/3)2] = 'TIt + 0-
2 (1 - hi). 

It follows from (12.23) that 

n 2 2(1 h) 
E[neV(l)] = L 'rJi + 0- - i . 

i=l (1 - hi)2 

Now consider the expected PE. From (12.9) we have 

E[PE] (n + p)0-2 + J.L'(In - P)J.L 

(n + p)a 2 + II(In - P)J.L11 2 

i=l 
n 

E[a2 (l + hi) + 'TIn, 
i=l 

(12.25) 

(12.26) 
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by (10.13). Combining (12.25) and (12.26), we get 

E[nCV(1) - PEl 
n 2 2( h) n 

",'TIi+ a1 -i_",[2(1 h) 2] o (1 _ h.)2 0 a +. + 'TI. 
i=l '1. i=l 

(12.27) 

Since 0 < hi < 1, both terms in this sum are positive, and hence nCV(1) 
tends to overestimate PE. 

For d > 1, the calculations are numerically intensive, although there is a 
generalization of (12.22) that reduces the computational demands. Specifi­
cally, suppose that D = {i1 , ... ,id } are the cases to be omitted. Let Y v = 

(li" ... , lid) denote the estimate of f3 based on the cases not in D by iJ(D), 
let X D be the submatrix of X consisting of the rows with labels in D, and let 
HD = X D(X'X)-l Xv. Then, since we are now predicting D cases simulta­
neously and comparing our prediction with Y D, we have (cf. Exercises IDe, 
No.2, at the enp. of Section 10.6.5) 

A -1 A 

Y D - X Df3(D) = (I - H D) (Y D - XD(3), 

so that 

CV(d) = (~) -1 ~(YD - xDiJ)'(1 - HD)-2(YD - xDiJ), 

where the sum is taken over all d-subsets of cases. For d more than 2 or 
3, calculating CV(d) is very computationally intensive. Alternatives are to 
select subsets of cases at random, or to select subsets based on a balanced 
incomplete block design; see Shao [1993] or Zhang [1993] for details. Shao 
and Zhang show that using CV(d), where d is an appreciable fraction of n, 
leads to better subset selection and better predictions than does CV(l). 

The expressions (12.19) and (12.25) for the expectations of Cp and CV(l) 
hold true only if the model is specified in advance. If the model is chosen on 
the basis of the data, say by choosing the model for which CV(l) or Cp is 
a minimum, then the formulas no longer hold. We illustrate this important 
point with an example. 

EXAMPLE 12.1 Suppose that the variance a2 is known, there is no con­
stant term, and that the K explanatory variables are orthonormal. In this 
case the RSS for fitting a p-parameter submodel with regression matrix Xp 
(which satisfies X'X = Ip) is 

y'y - fjx~xpiJ 

y'y - iJ'iJ 
p 

y'y - L:/3;' 
j=l 
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Note that because X~Xp = I p , the estimated regression coefficients are not 
changed if variables are added or subtracted from the model (cf. Section 3.10). 
If Var[Y] = 0"2In, then Var[,B] = 0"2(X~Xp)-1 = 0"2Ip. 

When 0"2 is known, we can write Cp [ef. (12.18)] as 

RSSp 2 
_-:0-"- + p - n 

0"2 

:; -L: (~~ -2 ) -no (12.28) 

If we fit the full model with all K variables, we get K estimated regression 
coefficients /31, ... , /3K. We now order these estimates and write them as 
/3(j) , j = 1, ... ,K, where 

-2 -2 
(3(1) > ... > (3(K)· 

Then it is clear from (12.28) that the submodel with smallest Cp is the one 
including exactly the variables that satisfy /3J /0"2 > 2 (Le., the variables 

whose coefficients have magnitudes exceeding the threshold '1'20"). Let p be 
the number of variables in this model and let Cp be the corresponding Cp 

value. 
Now suppose that the true model satisfies E[Y] = 0, so that the /3/s are 

independent, each having a N(O, 0"2) distribution. Then, from (12.18), if the 
model is specified in advance, E[Cp ] = p. However, 

C· = - - '" - - 2 - n, 
y'Y p (/3(j) ) 

p 0"2 ~ 0"2 
j=l 

where the upper limit of the sum is random. Since E[Y] = 0, 

and hence 

Since each term in the sum is nonnegative, the sum must have a nonnegative 
expected value, so that E[Cp] < O. Thus E[Cp] < E[Cp ], and using Cp leads 
to an underestimate of the true model error. 0 

The Little Bootstrap 

A better method for estimating the PE or ME of the model selected is 
the little bootstrap, a technique introduced by Breiman in a series of papers 
(Breiman [1992, 1995, 1996bJ). The little bootstrap is based on resampling 
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residuals and gives an almost unbiased method of estimating the PE of a data­
selected model. It is also useful in estimating the PE of predictors constructed 
uSing shrinkage methods, so we defer further discussion until we have dealt 
with the latter in Section 12.5. 

12.3.3 Estimating Distributional Discrepancies 

Another type of criterion is based on the idea of a discrepancy between the 
true distribution of the data Y and the distribution specified by the candidate 
model. If fey) is the density of the true distribution and g(y) is that speci­
fied by the model, a well-known discrepancy measure is the Kullback-Leibler 
discrepancy 

KL(f,g) = Jlog~~~~f(Y)dY. 
Note that this is not a true distance, as KL(f,g) i- KL(g,f). Rather, it is 
a measure of the difference between the true fixed f and various competing 
models g. Note that KL(f,g) > KL(f,f) = 0 (cf. Exercises 12b, No.3). 

In practice, we are interested in a family of possible models g(y; e), where 
e ranges over some parameter space, and we use the notation K L(f, g; e) to 
reflect this. The true model f mayor may not be of the form g(y; e) for some 
particular e. In any event, we would like to choose the model corresponding 
to the value of e that minimizes K L(f, g; e) or, equivalently, that minimizes 

-! logg(y; e)f(y) dy = -E(logg(Y; e)]. (12.29) 

This is equal to KL(j, g; e) up to the constant 

! log{f(y)} fey) dy, 

which does not depend on g. Note that the criterion (12.29) depends on two 
unknowns, the parameter 0 and the unknown true model f. 

To estimate 0, suppose that we have a sample Y and we estimate e uSing 
the maximum likelihood estimate 9(Y) that maximizes g(Y; 0) as a function 
of e. This leads to the modified criterion 

6. = - J logg(x; 9(Y))f(x) dx (12.30) 

with expected value 

E[6.] = - ! J logg(x; 9(y))f(x)f(y) dxdy. 

The criterion 6. measures the discrepancy (up to a fixed constant depending 
only on 1) between the unknown true model f and the best-fitting model of 
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the form g(y, e). However, it still depends on the unknown f. To obtain an 
operational criterion, we need an estimate of 6.. 

The standard estimate of 6. (in fact, it estimates 26.) is the Akaike in­
formation criterion (AIC) (Akaike [1973], Burnham and Anderson [1998]), 
defined by 

AIC = -2Iogg(Y; B(Y)) + 2r, (12.31) 

where r is the dimension of the parameter vector e. The AIC is applicable 
to any modeling situation. In the case of linear models, the true model fCy) 
of Y may be taken as multivariate normal with mean vector J-L, and variance 
matrix 0"5In. A typical candidate model g(y; e) is also multivariate normal, 
with mean vector Xf3 and variance matrix 0"2In. The regression matrix X 
is assumed to be n x p of rank p, and the parameter vector in this case is 
e = (13 ' ,0"2)'. 

It follows from (2.1) that for a candidate model g, 

n 1 
-logg(y; e) = 2 log(27r0"2) + 20"2 (y - Xf3)'(y - Xf3). 

The maximum likelihood estimates (MLEs) are 

/3 = (X/X)-lX/y and 8-2 = RSS. 
n 

Let Yo have the same distribution as Y and be independent of Y. Then, 
from (12.30), 

6. E yo [-log g(Yo; B(Y))] 
n ,2 1 ' 1 ' "2 log(27r0" ) + 28-2 Eyo[(Yo - Xf3) (Yo - Xf3)] 

n 1 2 ' 2 "2 log(27r8-
2
) + 28-2 {nO"o + IIJ-L - Xf3ll }, 

where the last step follows from Theorem 1.5. Using the fact that the MLEs 
/3 and a-2 are independent [Theorem 3.5(iii) in Section 3.4]' and setting'\' = 
J-L' (In - P) J-L/ 0"5, we get 

1 ' 
E[26.] Ey[nlog(27ra-2) + ~{n0"5 + IIJ-L - Xf3I12}] 

0" 

nE[log2(7ra-2)] + {n0"5 + E[lIJ-L - X/3W]}E [;2 ] 
- nE[log(27ra-2)] + (n + p + '\')E [~~] 

by (12.8), To estimate this, we use the AIC. From (12.31), and putting 
r = p + 1, we see that the AIC can be written 

AIC nlog(27ra-2) + (Y - X/3~'~Y - x/3) + 2(P + 1) 
0" 

- n log(27ra-2) + n + 2(p + 1). 
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Comparing these two expressions, and using the approximation 

E [~~] = 1 + 0(n- 1
), 

we see that up to 0(1) the expected value of AIC and E[26.] are the same, 
which suggests that AIC is a reasonable estimate of E[26.] . 

In the case of linear models, the true distribution f is of the form g(y, 9) 
for some 9 if and only if J-L is in C(X), which is equivalent to >.. = o. When 
this holds, ncJ2 /(T~ ~ X~-P' so that using the result 

1 

1I-2 
(12.32) 

for a X~ random variable X, we get 

n 

n-p-2 

and 

E[26.] = nE[log(27rcJ2
)] + :~: !;. 

Both 26. and AIC have expectations that are O(n). The bias in estimating 
E[26.] by AIC is 

E[AIC - 26.] = n + 2(p + 1) _ n(n + p) = 2(p + 1) _ 2n(p + 1) , 
n-p-2 n-p-2 

which is 0(1). Although the bias is of smaller order than E[26.], we can get 
an exactly unbiased estimate of E[26.] by using the modified criterion 

-2 n(n+p) 
AIC c = n log 27r(T + . 

n-p-2 

Hurvich and Tsai [1991] give some examples where AICc is a much better 
estimate of E[26.] than AIC. 

If J-L is not in C(X), then from (12.17), nE(cJ2] = (T6(>" + n - p) and 

(T2 n 
~ 0 _ -:--__ _ 

~ E[cJ2 ] - >.. + n - p' 

leading to 

E[AIC - 26.] 2( 1) 
(n+p+>..)n 

~ n+ p+ - \ 
A+n-p 

2 (p + 1 _ >.. np ) 
+n-p 
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or approximately 2 for large n, as the last term in parentheses is approximately 
p. Hurvich and Tsai [1991] provide exact expressions for the bias in the form 
of an infinite series when J.L is not in C (X). 

A slightly different form of the AlC arises if we assume that 0"2 is known. 
If this is the case, there are only p parameters, and 

-210gg(y,O(y)) = nlog(27r0"2) + (y - X,B)/~y - X,B), 
0" 

so that up to a constant n log(27r0"2) not depending on the model, 

AIC = RSSp + 2p. 
0"2 

(12.33) 

Thus, in this case, the AIC is very similar to Cpo If 0"2 is replaced by an 
estimate 8-2, they differ by the constant n. 

An obvious generalization of this version of the AIC is to consider criteria 
of the form 

RSSp 
-7

2 
-'- + anp, 

0" 
(12.34) 

where an is allowed to depend on n. The choice an = logn leads to a criterion 
known as the Bayesian information criterion (BIC), that is discussed further 
in Section 12.3.4. For other choices, see Hannan and Quinn [1979] and Zhang 
[1992]. 

Note that in the case of orthonormal explanatory variables and known 
0"2, both Cp and AIC are equivalent; by Example 12.1, choosing the model 
minimizing AIC is equivalent to including variables for which /3J /0"2 > 2. 
More generally, if we use the criterion (12.34), this is equivalent to including 
variables with /3J / 0"2 > an. 

The choice an = 2 can lead to too many redundant variables being included 
in the model. In the extreme case when all regression coefficients are zero, the 
quantities /3J /0"2 have independent xi distributions, so that in the case of K 

variables, the probability of choosing the correct model is (pr[xf < 2])K = 
0.8427K . For K = 10, this is 0.181, and for K = 20, it is 0.033. Clearly, this 
problem can be solved by increasing an. An approach to selecting the optimal 
value of an is discussed briefly in Section 12.9. 

12.3.4 Approximating Posterior Probabilities 

Suppose that the true mean vector J.L = E[Y] is in fact of the form J.L = Xj3, 
where X has full rank K + 1, and we wish to see if one of the submodels 
J.L = Xpj3p holds, where Xp is a submatrix of X of rank p [< (K + 1)]. 
If we take a Bayesian perspective and assign a prior probability op to this 
model, then the posterior probability of the model after observing data y is 
proportional to 

(12.35) 
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where fp is the conditional density of the data given the parameters and the 
model, and 1[" p is the prior for the parameter vector for the model having 
regression matrix Xpo We then select the model with the largest posterior 
probability. 

Let us assume that n is large and that (72 is known. As in Section 3.12, 
we will assume that conditional on (72, the p-dimensional prior for j3p is 
multivariate normal with mean In and variance matrix (72V, and that the 
conditional distribution of the data given the parameters and the model is 
N n (Xpj3p, (72In). In this case the integral in (12.35) is proportional to 

/ exp[-Q/(2(72)] dj3 (12.36) 

where 

(12.37) 

By Theorem 3.7 in Section 3.12, we can write Q as 

(12.38) 

where V* = (X~Xp + V-I)-I, In. = V.(X~y + V-lIn), and W = (In + 
Xp VX~). By (12.37) and the results of Section 2.1, the integral (12.36) is 

so, up to quantities that do not depend on the model, the log of the posterior 
probability corresponding to the model with regression matrix Xp is 

(12.39) 

We note that logap is 0(1), and we can approximate the other terms as 
follows. Assume that X~Xp = nEp, where Ep is 0(1). Then 

so that 

det(V.) 1/ det(X~Xp + V-I) 

1/ det(nEp + V-I) 

l/[nP det(Ep + ~ V-I)], 

logdet(V.) = -plogn + 0(1). (12.40) 
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Next, we use the fact that W-1 = In - Xp V*X~ (see the proof of Theorem 
3.7) to approximate the third term in (12.39). We have 

(y - XpIll)'W-1(y - XpIll) 

[(y - Xp/J) - Xp(/J - Ill)]'(In - Xp V*X~) 

x [(y - Xp/J) - Xp(/J - Ill)] 

(y - Xp/J)' (y - Xp/J) 

- (X~y - X~Xp/J)'V*(X~y - X~Xp/J) 

+ (13 - Ill)'X~(In - Xp V*X~)Xp(j3 - Ill) 

- 2(y - Xp/J)'(In - XpV*X~)Xp(j3 - Ill). 

The first term in this expression is RSSp , the second is zero since 13 is a 
solution of the normal equations, and the fourth term is also zero since 

(y - xpj3)'Xp(In - V*X~Xp) 

(X~y - x~Xpj3)(In - V*X~Xp) 
o. 

Finally, as in the proof of Theorem 3.7, we have 

so that 

(V + (X~Xp)-l)-l 
(V + n-1E-1)-1 

0(1), 

(12.41) 

Using this result and (12.40), it follows from (12.39) that the log of the pos­
terior probability of the model is equal to 

RSSp 1 
- 20'2 - zP log n + 0(1). 

Thus, selecting the model with largest posterior probability is asymptotically 
equivalent to selecting the model for which 

RSS 
-7"2 ,-P + P log n 

0' 
(12.42) 

is a mmlmum. The criterion (12.42) is just the BIC discussed in Section 12.3.3, 
first introduced by Schwarz [1978] as a device for estimating the dimension 
of the correct model. Although it is motivated by Bayesian ideas, the actual 
priors used do not explicitly form part of the criterion, so that the BIC has a 
non-Bayesian interpretation, similar to that of the AIC, as a goodness-of-fit 
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measure that penalizes models that have an excessive number of parameters. 
For sample sizes in excess of 7 (i.e., when log n > 2), the BIC imposes a 
greater penalty for each extra parameter than does the AIC. 

EXERCISES 12b 

1. Prove that 
n-K-1 

n-p 

2. Perform a small simulation to assess how badly Cp underestimates the 
prediction error in Example 12.1. 

3. Prove that KL(f,g) > O. You may assume that f(y) > 0 and g(y) > 0 
for all x. Hint: Show that logx < x-I for x > 0, and put x = 
g(y)/ f(y)· 

4. Obtain (12.35) using conditional probability arguments. 

12.4 STEPWISE METHODS 

Computing all possible regression models rapidly becomes impractical as the 
number of variables increases. In this case we may resort to step-by-step 
methods that select subsets sequentially and avoid the computational cost of 
fitting very large numbers numbers of models. 

Suppose as in Section 12.3 that we have a regression model 

Y = Xj3 + e, 

where X is n x (K + 1), and we want to identify the "significant" variables 
having nonzero regression coefficients. Suppose that we divide the K variables 
up into two sets: the first set consists of p - 1 variables that we regard as 
important, while the second, which contains the remaining K -p+ 1 variables, 
consists of variables whose coefficients we suspect are zero. We can test if the 
second set contains no significant variables by using the F-statistic 

F = RSSp - RSSK+1 n - K - 1. 
RSSK+l K - p+ 1 

(12.43) 

We can think of this test as discriminating between two models, having K 
and p - 1 variables, respectively. In particular, if K = p, the test is 

F = RSSp - RSSp+1 ( _ _ 1) 
RSS

p
+1 n p , (12.44) 

which tests if the addition of a specified extra variable is necessary. 
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12.4.1 Forward Selection 

The discussion above suggests the following procedure. We start with a model 
containing only the constant term, compute (12.44) with p = 1 for all the 
available explanatory variables in turn and pick the variable for which (12.44) 
is the greatest. We then repeat the procedure for p = 2,3, ... , selecting at 
each stage the variable not currently included that gives the maximum value 
of F. We stop if the maximum F at any stage does not exceed some threshold 
value FIN. This procedure is commonly called forward selection (FS). 

A slight variation on forward selection is to pick at each stage the variable 
not currently in the model having the greatest partial correlation with the 
response, given the variables currently included. This is equivalent to picking 
the variable that maximizes the numerator of (12.44) (d. Exercises 12c, No. 
2). Thompson [1978) calls the version using the F-statistic forward ranking, 
reserving the term forward selection for the partial correlation version. 

We illustrate with an example, which also compares FS with the all-possible­
regressions method using the AIC criterion. 

EXAMPLE 12.2 In this example we present a graphical description of for­
ward selection and compare it with the all-possible-regressions approach to 
choosing a model, using the AIC as a criterion. We examine the very simple 
case when we have just two possible explanatory variables, Xl and X2. 

In this case, assuming that a constant term is always included, there are 
only four possible models: the null model {O}, consisting of the constant term 
alone, and the models {xd, {X2}, and {Xl, X2}' Consider a centered and 
scaled regression with these two explanatory variables. The model is 

(12.45) 

For simplicity we will assume that the variance 0'2 of Ci is known; we suppose 
that 0'2 = 1. 

From Example 3.10 in Section 3.11.2, the least squares estimate of 11 is 

A r1 - rr2 
11 = 1 2' -r 

where r1 = Li Xi1 Yi, r2 = Li Xi2 Yi, and r = Li Xi1 Xi2' A similar expression 
holds for 12. Both estimates have variance 1/(1 - r2). To test the hypothesis 
12 = 0, we use the statistic 

which has a N(O, 1) distribution under the null hypothesis, since we are as­
suming that the variance is l. If we had assumed, instead, that the model 
was 

(12.46) 
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the estimate of 11 would be rl, with variance 1. The test statistic for testing 
11 = 0 is now rl, whose null distribution is also standard normal. Similar 
remarks apply to the model having the single explanatory variable x:;;. 

Suppose that we select the model using forward selection. As demonstrated 
in Exercises 12<::, No.1, the first variable to be selected is the one most highly 
correlated with the response. Provided that the absolute value of this cor­
relation exceeds some cutoff value CI, we include this variable in the model. 
Since the correlation is, in fact, the test statistic for testing if the coefficient 
is zero and the null distribution is the standard normal, a suitable value for 
CI is the 90th percentile of the standard normal distribution, or CI = 1.64. 

Assuming that this cutoff is exceeded, we then have to decide if the other 
variable is to be included. Suppose that Xl has been included at the first 
stage. Then the second variable will be included if the hypothesis 12 = 0 is 
rejected, say at the 10% level. Thus, we select model {Xl, X2} if Ir2 - rrll > C2, 
where C2 = (1 - r 2)1/2 cl . The complete algorithm for selecting a model is as 
follows: 

Algorithm 12.1"-

Step 1: If max(hl, Ir21) < CI, select model {O}. Otherwise, 

Step 2: If hi > hi , hi > CI and r2 - rrl < C2, select model {xt}. 
Otherwise, 

Step 3: If hi > Irll , Ir21 > Cl and rl - rr2 < C2, select model {X2}. 
Otherwise, 

Step 4: Select model {Xl, X2}. 

Note that the model finally chosen depends on Y only through rl and r2. The 
inequalities above partition the rl, r2 plane into four disjOint regions, one for 
each model. We thus have a nice geometrical description of the algorithm, 
which is shown in Figure 12.2 for the case r = 0.5. 

Now suppose that we use AlC as a model selection criterion. Since 0-
2 = 1, 

we can write the AlC criterion (12.33) as 

AIC = RSSp + 2p. 

By Example 3.10 in Section 3.ll, the RSS for the full three-parameter model 
is 

n 

RSS 2)Yi - y)2 - Y'X*"Y 
i=l 

~ -2 1 ( 1 ~(Yi - Y) - 1 _ r2 (rl, r2) -r 
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Thus, writing SSY = 2:~=1 (Yi - y)2, the AlC for this model is 

AlC SSY _ rf - 21'1'11'2 + r~ + 6 
1- 1'2 

SSY - 1'* + 6, 

where 1'* = (rf - 21'1'11'2 + rD/(l - r2). Similarly, the AlCs for the other 
models are 

AlC SSY - rf + 4, for model {xd, 
AlC SSY - r~ + 4, for model {X2}, 

AlC SSY + 2, for model {O}. 

After some algebra, we see that picking the model with the smallest AlC is 
equivalent to the following algorithm. 

Algorithm 12.2 

(a) Choose {X1,X2} if 1'* > 4, 11'1'1 - r21 > )2(1- r2), and Irr2 - I'll > 
-)2(1- 1'2). 

(b) Choose {xd if rf > 2, rr > r~, and 11'1'1 - 1'21 < )2(1- 1'2). 

(c) Choose {X2} ifr~ > 2, r~ > rf, and 11'1'2 - I'll < )2(1- r2). 

Cd) Choose {O} if rf < 2, r~ < 2, and r. < 4. 

We see that this rule is very similar to the forward selection algorithm if 
we take C1 = -12 instead of 1.64. The geometric representation of the rule 
is shown in Figure 12.3. Apart from the rounded corners of the square, it is 
identical to Figure 12.2. 0 

12.4.2 Backward Elimination 

As an alternative to forward selection (FS), we can start with the full model 
using all K variables (provided that K + 1 is less than n) and compute (12.43) 
with p = K for each of the K variables. We eliminate the variable having 
the smallest F-statistic from the model, provided that F is less than some 
threshold FOUT. This procedure is continued until all variables are eliminated 
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• {OJ 

• {xil 

D {Xl} 

D {XI, Xl} 

Fig. 12.2 Forward selection algorithm for two explanatory variables . 

• {OJ 

• {xil 

D {Xl) 

D {XI, Xl} 

Fig. 12.3 Maximum AlC algorithm for two explanatory variables. 
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or the smallest F fails to be less than F OUT . This procedure is called backward 
elimination (BE). It typically takes much more computation than FS when a 
small number of variables explain most of the variation. The thresholds FIN 
and FOUT may change as the algorithms proceed; a popular choice is to keep 
the formal significance level fixed, and set the thresholds to be the critical 
values for the corresponding F-test. 

12.4.3 Stepwise Regression 

A drawback of these two methods is that in the case of BE, a variable once 
eliminated can never be reintroduced into the regression, and in the case of 
FS, once included can never be removed. Also, they can give very different 
results on the same data (Thompson [1978]). 

A method that combines FS and BE is the well-known stepwise regression 
algorithm (Efroymson [1960], Draper and Smith [1998: p. 335]), which is just 
FS followed by a BE step at each stage. This algorithm starts with a model 
consisting of the constant term alone, then performs an FS step, adding a 
single variable. This is followed by a BE step, removing a variable if the 
corresponding F is less than F OUT . This combination of an FS step followed 
by a BE step is repeated until no further variables are introduced at the FS 
stage. Provided that FOUT < FIN, the stepwise algorithm must eventually 
terminate, as is shown by the following argument. 

Suppose that at the beginning of an FS step, there are p - 1 variables in 
the current model, which has a residual sum of squares RSSp . Then either no 
variable can be added, and the algorithm terminates, or an additional variable 
is added, resulting in a new residual sum of squares RSSp +l say, which must 
satisfy 

RSSp - RSSp+1 ( 1) F 
RSS

p
+1 n - p - > IN 

or, equivalently, 

RSSp > RSSp+1 (1 + n !:- 1) 
Now we do the BE step. Either no variable is deleted or we get a new model 
with p - 1 variables and a new RSS equal to RSS;, say, where 

* (FOUT ) RSSp < RSSp +1 1 + 1. n-p-

Hence 

RSS; < RSSp +1 (1 + FOUT ) < RSSp +1 (1 + FIN ) RSSp , 
n-p-l n-p-l 

so that at the end of each FS/BE cycle, either the algorithm has terminated 
or a new model is chosen whose RSS is strictly smaller. Since there are only a 
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finite number of models and the RSS is bounded below by zero, the algorithm 
must terminate. 

The computations necessary to generate the sequence of models can either 
be based on the sweep operator discussed in Section 11.2.2 or the orthogonal 
decomposition methods described in Section 11.6.3. The former requires less 
calculation but suffers from the inaccuracy inherent in methods that form the 
SSCP matrix X'X explicitly. Note that BE can be implemented as a series 
of Gaussian elimination steps applied to the inverse of the SSCP matrix; see 
Section 11.2.2 for details. No matter how the calculations are done, they 
will be much less computationally intensive than the all-possible-regressions 
methods discussed in the Section 12.4.1. 

However, the stepwise methods do have some drawbacks. First, if we stop 
the process using an FIN / FOUT stopping rule, only a single model is produced, 
whereas there may be a variety of models with similar goodness of fit that 
we might wish to inspect. Moreover, there is no guarantee that the chosen 
model will be the same as that produced by the all possible regressions (APR) 
methods. Berk [1978] gives an example where BE and FS agree but produce 
a model with an-arbitrarily large difference in R2 compared to APR methods. 

Because the selection at each stage is determined by an F-test, it might 
be thought that the procedures find the correct subset with some specified 
probability. However, at each stage, the F -statistic actually used to make the 
decision is the maximum or minimum of a set of correlated statistics, each of 
which depends in complicated ways on the previous history of the procedure. 
Thus these F-statistics have distributions that can be very different from 
those considered in Chapter 4, which makes the choice of the thresholds FOUT 
and FIN somewhat arbitrary. The probability that the procedures will yield 
the correct subset remains unknown. Several authors (Draper et al. [1971], 
Kennedy and Bancroft [1971], Pope and Webster [1972]) have attempted to 
describe the inferential performance of isolated parts of these procedures, but 
no complete analysis is known. 

Several variations on stepwise methods have been proposed. Broerson 
[1986] suggests modifying the BE step in stepwise regression by using Cp 

to guide the elimination of variables, and Grier [1992] uses cross-validation 
to compare subsets in backward elimination. Bendel and Afifi [1977] discuss 
alternatives to the F-statistic when using stepwise procedures. 

How do stepwise methods of subset selection compare to the more compu­
tationally expensive APR methods? Both FS and BE choose a p-parameter 
model for each value of p = 1,2, ... , K + 1. All-possible-regression meth­
ods do the same thing, usually by selecting the p-parameter model with the 
smallest RSS. Obviously, the stepwise methods can do no better than the 
APR methods in identifying the p-parameter model with the smallest RSS. 
But suppose that the "correct" model has p parameters. It is quite possible 
that the APR method will fail to identify the correct model, but that FS 
(or BE) will. In stepwise methods, a good stopping rule will result in good 
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performance; similarly, for APR methods, a good criterion will likewise result 
in good performance. 

EXERCISES 12c 

1. Show that the first step in forward selection is equivalent to selecting 
the variable most highly correlated with the response. 

2. Show that the variable that increases the difference RSSp - RSSp +1 by 
the greatest amount is the one having the greatest partial correlation 
with the response, given the variables already in the model. 

3. In Example 12.2, verify Algorithm 12.2 and identify the regions corre­
sponding to the subsets chosen by (a) backward elimination, (b) stepwise 
regression. 

12.5 SHRINKAGE METHODS 

In Sections 12.3 and 12.4 we explored ways of selecting a subset of variables 
in order to improve estimation of coefficients and the accuracy of predictions. 
When using these methods, we choose a subset of variables and then construct 
estimates and predictors by using least squares to fit the model selected. 
In this section we take a different point of view; we retain all the variables 
in the model but abandon the use of least squares. We shall examine the 
use of various "shrinkage" estimates where the least squares estimates of the 
regression coefficients are shrunk toward zero. 

12.5.1 Stein Shrinkage 

The basic idea is due to James and Stein [1961], who discuss the concept 
of shrinkage in the following context. Suppose that we observe Z, which 
is assumed to have a Np(J-L, (72Ip) distribution, where p > 2. The obvious 
estimate of J-L is Z, which is in fact the minimum variance unbiased estimate. 
However, this estimate is unsatisfactory in the following sense: Its squared 
length liZ W tends to be too large, since 

P 

E[IIZI12] 2: E [Zll 
i=1 

p 

2:((72 + J-Lt) 
i=1 

p(72 + 11J-L112 (12.47) 

> 11J-L112. (12.48) 



SHRINKAGE METHODS 421 

Thus, at least some of the elements of the estimate are too large. This suggests 
"shrinking" the elements of Z, and considering an estimate of the form jj, = cZ, 
where 0 < c < 1. 

This estimate is biased, but it is possible to choose c so that jj, has a smaller 
mean-squared error than Z as an estimate of J-L. Consider 

E[lliL - J-LW] 
p 

L E[(CZi - Mi)2] 
i=l 

p 

L E[(C(Zi - Mi) - (1 - C)Mi)2] 
i=l 

P 

L[C20-2 + (1 - C)2 MfJ 
i=l 

(12.49) 

which is minimized by choosing c = IIJ-LW 1 (p0-2 + IIJ-LW). Thus the optimal 
estimate can b~ written as 

Unfortunately, this is not a practical estimate, since it requires that we know 
IIJ-LII, the length of the quantity we are trying to estimate! 

Suppose, however, that 0-2 is known. Then we know from (12.47) that IIZW 
is an unbiased estimate of p0-2 + IIJ-LW. This suggests using the estimate 

(12.50) 

In fact, we can do even better than this. James and Stein [1961] showed that 
of all estimates of the form (1 - bIIIZW)Z, the best choiCe (in the sense of 
having smallest MSE) is b = (p - 2)0-2 , provided that p > 2. However, this 
is not the end of the story, since this estimate can be improved even further. 
We do not pursue the details here; they may be found in Efron and Morris 
[1973]. 

This James-Stein shrinkage estimate also has a nice Bayesian interpreta­
tion. Suppose that the means Mi are i.i.d. N(O, o-~), and that, as before, 
conditional on the Mis, the Zis are independently N(Mi,0-2), where 0-2 is 
known. Then, using a completing the square argument as in Section 3.12, 
it can be shown that the posterior density of J-L (i.e., the conditional density 
of J-L given Z) is N p((l - w)Z,wo-~Ip), where w = 0-2/(0-2 + o-~). The Bayes 
estimate of J-L is the posterior mean (1 - w)Z. 

Assuming that 0-2 is known, the Bayesian approach requires that we specify 
a value for 0-0. For an alternative approach, note that (cf. Exercises 12d, No. 
1) the marginal distribution of Z is Np(O, (0- 2 + o-~)Ip), so by Theorem 2.9, 

IIZW 1 (0-
2 + o-~) 
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has a X; distribution, and by (12.32), 

1 

p-2 

It follows that (p - 2)/IIZW is an unbiased estimate of 1/(cr2 + cr~), which 
leads to the estimate (1 - (p - 2)cr2 /IIZW)Z of J-L. 

An estimate based on the posterior mean, but using the marginal distribu­
tion of the observed data to estimate the parameters of the prior distribution, 
is called an empirical Bayes estimate. We have demonstrated that the James­
Stein estimate is just the empirical Bayes estimate based on the N(O, cr~) prior 
for the J-Li'S. More details may be found in Efron and Morris [1973]. Another 
clever motivation for the James-Stein estimate is given in Stigler [1990]. 

In the case of a regression with p orthonormal explanatory variables, known 
cr2

, and no constant term, we can apply the James-Stein estimate directly by 
setting Z = jJ and J-L = /3. In the orthonornmal case X'X = Ip, the least 
squares estimate jJ has an N p(/3, cr 2 Ip) distribution, so that the shrunken 
estimate 

has the smallest MSE of any estimate of the form (1 - c)jJ. If cr2 is unknown, 
we can use the usual estimate 52 for cr2 , at the cost of losing the optimality 
property. 

If the explanatory variables are not orthogonal, we can use the character­
ization of the James-Stein estimate as an empirical Bayes estimate to guide 
us in the choice of an estimate. Let us assume the setup of Section 3.12, 
where conditional on (3, Y is N n(X/3, cr2In) and the prior distribution of /3 is 
Np(m, cr2V). Then we know from Section 3.12 that the posterior mean of {3 
is of the form m. = (V-1 + X/X)-l (X/y + V-1m), and this result holds if cr2 

is known or not. If we take V = 7-1 Ip and m = 0, then the Bayes estimate 
is 

which is the same form as the ridge estimate introduced in Section 10.7.3 and 
considered in more detail in Section 12.5.2. 

If we take V = 7-1 (X /X)-l and m = 0, we get the estimate 

This is often called the James-Stein regression estimate. We shall not consider 
it further, but an examination of its properties may be found in Dempster et 
al. [1977]. 
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12.5.2 Ridge Regression 

Ridge regression was introduced in Section 10.7.3 as a means for improving the 
estimation of regression coefficients when the predictors are highly correlated. 
Ridge methods are also effective as a means of improving the accuracy of 
predictions. In the previous discussion, the regression model was written in 
centered and scaled form. For notational convenience, we do not consider an 
explicitly centered and scaled model in this section, although the results hold 
true if X is interpreted in this way. With this proviso, the ridge estimate is 

/3(k) = (X'X + kI)-lX'y, 

which depends on the ridge parameter k, assumed to be nonnegative and not 
necessarily an integer. We have seen in Section 10.7.3 how the ridge estimate 
arises naturally as the Bayes estimate, assuming a particular prior on (:3. In 
this section we take a non-Bayesian perspective and treat k as a parameter 
whose value must be chosen in some way. 

The ridge estimate can be written as 

/3(k) (X'X + kI)-lX'X/3 

{X'X[I + k(X'X)-l]} -lX'X/3 

[I + k(X'X)-l]-l/3 

C(:3, 

say. If we assume that E[Y] = X(:3 and use x/3 (k) as a predictor of X(:3, the 
expected ME is 

E[ME] Ellx/3(k) - X(:31\2 

EIIX(C/3 - (:3) 112 

EIIXC(/3 - (:3) + X(C - Ip)(:3112 

EI\XC(/3 - (:3)11 2 + \\X(C - Ip)(:3W. (12.51) 

Now let X'X = TAT', where T is orthogonal and A = diag(Al, ... ,Ap). 
Setting Q = T' (:3 and using the arguments of Section 10.7.3, we have 

(12.52) 

Note the similarity with (10.66); considering the ME rather than the mean­
squared error merely replaces Aj by AJ. The derivative of (12.52) with respect 
to k is 
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which is negative for small positive values of k, so there is a value of k for 
which the expected ME using XiJ(k) is smaller than that using the predictor 
xiJ(O) = xiJ based on the least squares estimate. 

In the case of orthonormal predictor variables, we have X'X = Ip and all 
the eigenvalues are unity. In this case the derivative is 

where B = Lj (3; = Lj oJ, and the minimum occurs at k = p(J"2 lB. 
In the general case, we need a reliable method of estimating the optimal 

value of k if ridge is to be superior to least squares. Note that the formulas 
above apply only for fixed k, not when k is data-selected. Popular methods of 
estimating k include cross-validation and generalized cross-validation (Golub 
et al. [1979]). As for subset selection, an intuitively appealing estimate of the 
PE of the ridge predictor is 

n 
1 '" , , )2 - L.)Yi - XJ3(_i)(k) , 
n . 

• =1 

where iJ(-i)(k) is the ridge estimate calculated using ridge coefficient k but 
leaving out the data from the ith case. We can avoid repeatedly calculating 
the ridge estimates by writing this estimate as 

(12.53) 

where aii(k) is the ith diagonal element of A(k) = X(X'X + kI)-IX'. The 
value of k is then chosen to minimize this criterion. 

A variation on this is generalized cross-validation (GCV). Here the elements 
aii(k) are replaced by their average n-1 tr A(k). Golub et al. [1979) discuss the 
relative merits of these two methods of selecting k. A more modern method 
is the little bootstrap, discussed in Section 12.9. 

The relative merits of ridge regression versus least squares and subset selec­
tion have been endlessly debated. While we know that there is a k for which 
the ridge estimate has smaller MSE than least squares, no known method of 
estimating this k from the data will guarantee this for the chosen k. 

We will see in Section 12.9 that the effectiveness of ridge depends in part 
on the distribution of the unknown true regression coefficients. We saw above 
that in the case of independent and identically distributed normal (3j'S, the 
ridge estimate is the Bayes estimate and is optimal in the sense of mean­
squared error. In other cases, ridge will not usually be optimal, but can still 
be better than least squares. Many simulation studies have compared ridge 
to least squares; see Golub et al. [1979) and the references in Section 10.7.3 
for details. 
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The ridge estimate can be regarded as the solution of a constrained least 
squares problem. Consider the problem of minimizing the sum of squares 

\\Y-XbW (12.54) 

subject to the constraint L b; < s, where s is some specified constant. If 

Lj S; < s, the least squares estimate solves this constrained problem. How­

ever, if s < Lj S;, the solution is different and is given by the solution to the 
Lagrangian equations (cf. Fletcher [1987], Lawson and Hanson [1995]) 

X'Xb - X'Y + Ab 0, 

I); s, 
j 

which have a solution of the form 

ileA) = (X'X + AI)-lX'Y, 

where A is ch~sen to satisfy Lj Sj(A)2 == s. Note that in the case when the 
explanatory variables are orthonormal, so that X'X = I p , the ridge estimate 
is 

, 1, 
{3(A) = 1 + A{3, 

and therefore each coefficient is shrunk by a constant factor. 
By using other types of constraint, we can get a variety of alternative 

shrinkage estimates, which we now discuss. 

12.5.3 Garrote and Lasso Estimates 

Garrote Estimate 

One drawback to the ridge approach is that unlike subset selection, it 
retains all variables in the model, thus sacrificing the possibility of a simple 
model with fewer variables. An alternative to ridge that also can lead to 
simpler models is the garrote, an intriguingly named technique introduced by 
Breiman [1995]. In the garrote, the individual least squares coefficients Sj are 
shrunk by a nonnegative quantity Cj, leading to garrote estimates jjj = CjSj. 
The shrinkage factors are chosen to minimize the least squares criterion 

n p-l 

\\Y - Xil\\2 = L(Yi - LXijCjSj)2, (12.55) 
i=l j=O 

subject to the constraints Cj > O,j = 0, ... ,p-l, and L~:~ Cj < s, where s is 
some specified positive constant. For s > p, the choice Cj = 1, j = 0, ... ,p-l, 

yields jjj = Sj, which gives the unconstrained minimum. As s is reduced and 
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the garrote is drawn tighter, the shrinkage coefficients get smaller and some 
are even forced to zero. Thus the garrote can be regarded as a compromise 
between ridge (which shrinks but zeros no coefficients) and subset selection 
(which zeros coefficients but does not shrink). 

The problem of finding the shrinkage coefficients Cj can be reduced to a 
standard problem in constrained least squares. We can write 

IIY - X,6lf II(Y - X,6) + (X,6 - X,6)11 2 

IIY - X,611 2 + IIX,6 - X,6W + 2(Y - X,6)'(X,6 - Xf3) 
RSS + IIX,6 - X,6112 

, (12.56) 

smce 
(Y - X,6)'X = Y'X - ,6'X'X = o. 

Let aij = Xij!3j, A = (aij) and c' = (co, ... ,Cp -1). Then X,6 = Ac, so from 
(12.56) we get 

IIY - X,B1I 2 = RSS + lid - Ac1l 2
, 

where d = X,6. We see that the vector c which minimizes (12.55) subject to 
the constraints Cj > 0, j = O, ... ,p - 1 and Lj':~ Cj < s, is the same as the 
vector c which minimizes 

IIA c - dW (12.57) 

subject to the same constraints. The constrained minimization of (12.57) is a 
standard problem for which efficient algorithms are known. A full discussion 
may be found in Lawson and Hanson [1995: Chapter 23], and Bj6rck [1996: 
p. 194). 

When the explanatory variables are orthonormal, the solution of the min­
imization problem can be written explicitly; in this case the shrinkage coeffi­
cients are (Breiman [1995]) 

{ 

'2 . _ 1 - ).,/ (3j , 
cJ -

0, 
)., < t3J, 
otherwise, 

where)., is determined by the equation "L: j Cj = s. 

As in ridge regression, we must choose the value of s, then compute the 
cj's by solving the minimization problem (12.57). The little bootstrap can be 
used to select s; further details are given in Section 12.9. 

A variation on the garrote (Breiman [1995, 1996bJ) drops the requirement 
that the shrinkage coefficients be nonnegative and requires instead that they 
satisfy the constraint Lj t3J < s used in ridge. This gives a very similar 
result to ridge, except that the large least squares coefficients are not shrunk 
as much as the small ones. Breiman calls the previous version of the garrote 
the nonnegative garrote (nn-garrote) to distinguish it from this new version. 
Using a Lagrange multiplier argument very similar to that used in ridge, we 
can show that the shrinkage coefficients Cj are now given by 

c = (A' A + >'I)-l A'd, (12.58) 
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where>. is determined by the constraint 'E j cJ = s. When the explanatory 
variables are orthonormal, 

'2 f3 j 
Cj = ->'-+-"--::Sc:-r 

so the large coefficients are shrunk proportionally less than the small ones. We 
note that like ridge, this version of the garrote does not zero any coefficients. 

Lasso Estimate 

Yet another shrinkage estimate is the lasso (Tibshirani [1996]). This esti­
mate is the same as ridge but uses a different constraint; the criterion (12.55) 
is now minimized subject to the constraint 'E j Ibjl < s rather than the ridge 
constraint Lj b; < s. Like the nn-garrote, the lasso can zero some coefficients. 
Tibshirani discusses an efficient algorithm for finding the lasso estimates. In 
the orthonormal case, they can be written as 

ffij = { sign(Sj)(ISjl- >.), 
0, 

>. < ISjl, 
otherwise, 

where>. is chosen to satisfy the constraint Lj ISjl < s. 
In the orthonormal case, all the shrinkage methods replace the least squares 

coefficients Sj by shrunken versions h(Sj). The various functions h are graphed 
in Figure 12.4. 

We note that selection based on thresholding, as described in Example 12.1, 
can be regarded as an extreme form of shrinkage, using the function h given 
by 

>. < ISjl, 
otherwise. 

Which of these functions gives the best predictor? A Bayesian answer to this 
question is given in Section 12.9. 

EXERCISES 12d 

1. Verify that the marginal distribution of Y in the Bayesian setup of 
Section 12.5.1 is Np(O, (0"2 + 0"5)Ip). 

2. Show that when XIX = I p , then the quantity Cj in the second version 
of the garrote is given by 

'2 f3 j 
Cj = --"-:-

>.+S;· 
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Least Squares Threshold 

Fig. 12.4 Functions giving shrinkage estimates in the orthonormal case. The shrinkage 
estimate (3j is h((3j). 

12.6 BAYESIAN METHODS 

12.6.1 Predictive Densities 

In contrast to the frequentist methods we have described earlier in this chap­
ter, Bayesian methods have an appealing simplicity, as we just select the model 
having the greatest posterior probability. Suppose that we have m models 
MI,' .. ,Mm with prior probabilities WI, ... ,Wm. Conditional on M j , sup­
pose that we have a model Ii (YIBj) which describes the distribution of the 
observations, conditional on the parameter vector Bj • Assuming that for each 
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model we can specify a prior distribution 7rj(Bj), we then have a predictive 
density for model M j, given by 

(12.59) 

Using Bayes' theorem, we can calculate the posterior probability of M j being 
the true model as 

P(Mjly) = fj(yIMj)wj , 
2:1 ilCylMl)Wl 

(12.60) 

where the sum is taken over all m models under consideration. To select the 
model that is most probable a priori, we choose that model for which P(MjIY) 
is a maximum. This is equivalent to choosing the model for which fj (yiM j )Wj 

is a maximum, or if all models are equally likely a priori, to choosing the model 
with the largest predictive density, evaluated at the observations y. 

In the case of two models, by Bayes' theorem we have 

P(yIM1)Wl 
P(yIM2)W2 ' 

and if the two models are equally likely a priori, we have 

P(M1Iy) P(yIMl) 
P(M2Iy) - P(yIM2)' 

(12.61) 

(12.62) 

The quantity on the right of (12.62) is called the Bayes factor. Model 1 
is preferred over model 2 if the Bayes factor is sufficiently large. Kass and 
Raftery [1995] suggest that a Bayes factor in excess of 3 should be regarded 
as positive evidence of model 1 over model 2, and Bayes factors in excess of 
20 be regarded as strong evidence. 

In the case of equal priors 7r j (Bj ), the predictive density behaves very much 
as a likelihood, except that it is obtained by integrating out parameters rather 
than by maximization. One crucial difference is that the likelihood ratio 
requires that model 1 be nested within model 2 to make sense, but the Bayes 
factor does not. 

There are difficulties with the definition of Bayes factors when the priors 
are improper, since in this case they are defined only up to arbitrary constants. 
Atkinson [1978] objects to their use on these and other grounds. Several au­
thors (Berger and Pericchi [1996], O'Hagen [1995], Spiegelhalter and Smith 
[1982]) have proposed solutions to this problem, but these are somewhat con­
troversial (cf. the discussion in the 0 'Hagen paper). 

Gelfand and Dey [1994] point out that even with proper priors, Bayes 
factors lead to Lindley's paradox. Suppose that we are comparing two models 
Ml and M 2 , with Ml a submodel of M 2 . As the amount of data increases, 
the Bayes factor leads increasingly to a preference for model Ml over M2, no 
matter what the data. This is in contrast to the F -test, which will increasingly 
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prefer M2 over MI. They also point out that using the BIC can sometimes 
be misleading, since the 0(1) terms that are omitted (cf. Section 12.3.4) can 
be quite large. 

In the Bayesian approach, priors must be specified for both the model and 
the model parameters for every model under consideration. Methods for doing 
this are discussed by Laud and Ibrahim [1996], Draper [1995], and Garthwaite 
and Dickey [1992]. 

In general, calculating the predictive densities, and hence the Bayes factor, 
requires evaluating the integral in (12.59), which will be high-dimensional for 
most interesting models. Conventional numerical integration techniques are 
not much help in this situation, but recently, specialized methods have been 
introduced to cope with the problem. In particular, the Laplace approxima­
tion, importance sampling, and Markov chain Monte Carlo have all proved 
effective. Evans and Swartz [1995] give a review. 

Markov chain Monte Carlo (MCMC) methods have been used by Carlin 
and Chib [1995] to calculate posterior model probabilities and by George and 
McCulloch [1993] to calculate posterior distributions for parameters. George 
and McCulloch assume the usual normal model, conditional on the regression 
coefficients /3j. The prior on /3j is then modeled as a mixture of two normals, 
one with very small variance and mean zero, and MCMC methods are used 
to obtain the posterior distributions of the mixture proportions. Coefficients 
for which the mixture proportion for the low variance, zerO-mean component 
is close to 1 correspond to variables that should be deleted from the model, 
giving a nice Bayesian method of subset selection. Mitchell and Beauchamp 
[1988] describe a similar idea. 

In the case of linear models, the conditional density fj (yIBj) of Y, given the 
model M j and the parameters Bj , is taken to be N n (X j (3,a 2 In ), where Bj = 
((3j, a)'. We can choose priors for Bj that permit the analytical evaluation of 
the predictive density (12.59). As in Section 3.12, we will assume that the 
prior on (3j conditional on a 2 is Nk(m, a 2V), and that the prior on a 2 is 
inverse gamma with density (3.63). Using the results and notation of Section 
3.12 and dropping the subscript j to simplify the notation, we see that the 
joint density is 

Integrating this over a 2 (cf. Section 3.12) gives 

(Q + a)-(d+n+ p)/2 

[a* + ((3 - m*)'V;:-l((3 - m*)]-(d+n+P)/2 

-(d+n+p)/2 
a* 

x [1 + (d + n)-l((3 - m*)[a* V*/(d + n)]-l((3 - m*)]-(d+n+p)/2. 
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Integrating again over (3 using A.13.5 gives, up to a constant not involving y, 

f(y\M) ex: 

ex: 

a;:-(d+n+ p )/2 det(a*V*/(d + nW/2 

a;:-(d+ n +P)/2 a~/2 det(V * I(d + n )1 1/ 2 

-(d+n)/2 a. 

[a + (y - Xm)'W-1(y - Xm)1-(d+n)/2 (12.63) 

ex: [1 + d-1(y - Xm),(aW/d)-l(y - Xm)]-(d+n)/2, 

where W = In + XVX'. Hence by A.13.5, the predictive density f(y\M) is 
a multivariate t, namely, tn(d, Xm, aW I d). 

12.6.2 Bayesian Prediction 

If we observe an n-dimensional response vector Y, and the associated n x p 
regression matrix X, suppose that we want to use this training set (X, Y) to 
predict the ?:g-vector of responses Yo corresponding to a new m xp matrix Xo. 
The Bayesian solution to this problem is to calculate the posterior predictive 
density, the conditional density of Yo given Y, and use the modal value of 
this density as the predictor. 

Assuming the same priors as before, we have the following result. 

THEOREM 12.1 With the priors and notation of the Section 12.6.1, the 
posterior predictive distribution (i.e., the conditional distribution of Yo given 
Y = y) is multivariate t, tm[d + n, Xom., ao(lm + Xo V *X~) I(d + n)], where 

ao = a + (y - Xm)'(ln + XVX')-l(y - Xm). (12.64) 

Proof. Let X~ = (X~,X'), Y~ = (Y~,Y'), and We = Im+n +XeVX~. Then, 
by (12.63), the predictive density of Y e is proportional to 

[a + (Ye - Xem)'W;;-l(Ye - X em)1-(d+m+n)/2. 

N ow partition the matrix We as 

W _ [ 1m + Xo VX~ 
e - XVXfJ 

XoVX' 
In + XVX' 1 = [ W ll 

W21 
W121 
W22 ' 

say. 

By using the partitioned matrix inverse formula A.9.1 and completing the 
square (see Exercises 12e, No.1, at the end of Section 12.6.3), we can write 

(y - Xm)'W2"zl (y - Xm) 

+ (Yo - lto)'Wl.~(Yo - Ito), (12.65) 

where 
Ito = Xom + W 12 W;} (y - Xm) 
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and 
W1.2 = Wll - W 12Wz-lw2l . 

Since the first term on the right-hand side of (12.65) does not involve Yo, the 
conditional density of Yo given Y = y, obtained by dividing the joint density 
of Yo and Y by the marginal density of Y, is proportional to 

lao + (Yo - ILo)'W1.~(Yo - ILo))-(d+n+m)/2, 

where ao is given by (12.64). 
It follows from these results that the posterior predictive density of Yo is 

multivariate t, tm[d+n, ILo, ao W1.2/(d+n)). Thus, to complete the proof, we 
need only show that 

(12.66) 

and 
W 1.2 = 1m + Xo V .X~, (12.67) 

where V. (X'X + V-I )-1. To prove (12.66), we use the relationship 
In. = V.(X'y + V-lIn) and write 

so that 

Thus 

and hence 

ILo 

X'y V:;-lIn. - V-lIn 

(V-l + X'X)In. - V-lIn 

V-I (In. - In) + X'XIn., 

y - XIn. + XVX'y - XVX'XIn. 

Y - XIn. + XV(X'y - X'XIn.) 

y - XIn. + X(In. - In) 

Y -XIn. 

(In + XVX')-l(y - XIn) = Y - XIn. 

XoIn + Xo VX' (In + XVX')-l (y - XIn) 

XOIn + Xo V(X'y - X'XIn.) 

XO(In + In. - In) 

XOIn., 

which proves (12.66). 
To prove (12.67), we have 

Wll - w12wz-lw2l 

1m + Xo VX~ - Xo VX'(ln + XVX')-lXVX~ 
1m + Xo[V - VX'(ln + XVX')-lXV)X~ 
1m + XO(V- l + X'X)-lX~ [by A.9.3) 

- 1m + XoV.X~, 
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which proves (12.67). The proof is complete. 0 

Since the tm[d+n, XIll., ao(I +Xo VXo)((d+n)] density has its maximum 
value at Yo = XOIll., the Bayesian predictor is XOIll •. 

12.6.3 Bayesian Model Averaging 

The predictor described in Section 12.6.2 is the modal value of the posterior 
predictive density, and is conditional on the model chosen. We may obtain 
a predictor whose distribution is not conditional on a particular model by 
averaging over the models M 1 , ... , Mm under consideration. As in Section 
12.6.1, suppose that model M j has prior probability Wj. We can obtain 
a posterior density f(YoIY) that is not conditional on the model chosen by 
averaging over models. From the theorem of total probability we get 

f(yo,Y) 
fey) 

2::;:1 f(YoIY, M j )f(yIM j )Wj 

2::;:1 f(yIMj)Wj 
(12.68) 

where the conditional densities f(Yoly,Mj) and f(yIMj) are the posterior 
and prior predictive densities discussed in Section 12.6.2. 

The main drawback of this approach is the amount of computation re­
quired. We must calculate the multivariate t density for each model, which will 
be too computationally expensive if the number of models is large. Raftery et 
al. [1997] offer two solutions. The first involves calculating the prior predictive 
densities, but avoids calculating the posteriors. The term corresponding to 
model j is deleted from both summations in (12.68) if (1) the prior predictive 
density satisfies f(ylM j )Wj < C maXk f(yIMk)Wk for some constant C, or, 
(2) there is a model M j, contained in M j for which (yIMj)wj < f(yIM j , )wj'. 

Raftery et al. [1997] term the first criterion Occam's window; it removes 
models that explain the data far less well than the best predicting model. The 
second criterion is a variation of Occam's razor; a simpler model that predicts 
as well as a more complex model is preferred over the complex model. They 
recommend a value of C of around 20, which typically reduces the number 
of terms in (12.68) to 25 or less. The second method described by Raftery 
et al. [1997] is based on MCMC techniques, which are used to approximate 
f(YoIY); details may be found in their paper. 

A non-Bayesian approach to model averaging has been suggested by Buck­
land et al. [1997] and by Burnham and Anderson [1998]. Breiman [1996a] 
discusses an approach to constructing weighted combinations of predictors. 

EXERCISES 12e 

1. Verify (12.65). Hint: Use the partitioned matrix inverse formula A.9.1 
and multiply out the quadratic form. 
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2. Find the form of the posterior predictive density for straight-line regres­
sion. Assume that the explanatory variable has been centered and that 
the prior mean is zero. Also assume that you are predicting a single 
value (i.e., assume that m = 1). 

12.7 EFFECT OF MODEL SELECTION ON INFERENCE 

In regression analyses it is common practice to use the same set of data to 
both select and fit the model. The precision of the resulting parameter esti­
mates is often uncritically assessed by quoting the standard errors reported by 
whatever statistical package has been used. These standard errors are based 
on the assumption that the model has been selected a priori, without reference 
to the data. If this is not the case, then the standard errors reported by the 
package are typically incorrect. 

A related problem is the assessment of prediction error when the predictors 
are based on data-selected models. We deal with this in Section 12.9. 

12.7.1 Conditional and Unconditional Distributions 

Suppose that we have K possible explanatory variables, so that there are 2K 
possible models, assuming that a constant term is always present. We want 
to estimate the regression coefficients (3 = ((30, (31, ... , (3 K ) I corresponding to 
the full model by first using a subset selection procedure and then fitting the 
selected model by least squares. Implicitly, we are estimating the coe~cients 
of the nonselected variables by zero. Denote the resulting estimate by (3, and 
the estimate that results from selecting a particular model M by j3(M). 

Any variable selection procedure can be thought of as a partition of the 
set of all observation vectors Y into M = 2K disjoint regions R 1 , ... , RM, so 
that model Mm is selected if and only if Y E Rm. With this notation, we 
see that j3 = j3(Mm) if and only if Y E Rm. 

Three distinct distributions of these estimates are of interest here. The first 
is the unconditional distribution of (3, which describes the overall performance 
of this estimation strategy. Second, if a particular model M corresponding 
to region R has been selected, the relevant distribution for inference is the 
conditional distribution of j3(M) given Y E R, and the standard error is based 
on the variance of this conditional distribution. Finally, if the model M has 
been chosen a priori without reference to the data, the distribution of j3(M) is 
multivariate normal, with mean and variance given by the results of Sections 
9.2.1 and 9.2.2. The standard errors reported by statistical packages are 
based on this last distribution, with the additional assumption that the model 
chosen is the correct one. These reported standard errors can be very different 
from the correct standard errors based on the conditional or unconditional 
distributions. The following example should make these distinctions clear. 
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EXAMPLE 12.3 Consider the centered and scaled regression model with 
two explanatory variables discussed in Example 12.2 in Section 12.4.1. Sup­
pose that we want to estimate the parameter 'Yl after selecting a model. Vari­
ous estimates of 'Yl under different model assumptions were given in Example 
12.2. 

Taking the model selection into account amounts to using the estimate 

'Yl = 

0, 
rl, 
0, 
(ri - rr2)/(1 - r2), 

if model {O} is chosen, 
if model {xd is chosen, 
if model {X2} is chosen, 
if model {Xl, X2} is chosen. 

(12.69) 

Suppose that we select the model using forward selection. If we estimate 'Yl in 
this way, we are using a very different estimate from that used if we pick the 
model a priori. If we assume a priori that model {Xl} is the correct model, 
we use the estimate 'Yt = rl' If we assume that the true model is {Xl, X2}, we 
use "h = (rl - rr2)/(1 - r2). 

These estimates have quite different statistical characteristics. In Table 
12.1 we list their means and variances for a selection of parameter values. 
These were obtained by simulation in the case of 1'1. It is common practice to 
select the model and then calculate the standard errors under the assumption 
that the chosen model is the true one. This amounts to using the wrong 
column in Table 12.1. For example, if the model selected was {Xl, X2}, and 
we used the variances in the last column, we would incorrectly estimate the 
standard error of ;h. The correct variances are in the fifth column. 

We can also consider the conditional distributions of these estimates. Sup­
pose we select a model and then calculate the LSE's for the chosen model. 
These are no longer unbiased. In Table 12.2, we show the conditional and a 
priori mean-squared errors for two different models. The conditional MSE's 
are calculated using the distribution of Y, conditional on the indicated model 

Table 12.1 Means and variances for different estimators. 

'Yl 'Y2 r E[id var[1'd E[id var["h) E[1'l] var[i'l] 

0 0 0.0 0.00 0.84 0.0 1 0 1.00 
0 0 0.5 0.00 0.80 0.0 1 0 1.33 
0 0 0.9 0.00 0.63 0.0 1 0 5.26 
3 0 0.0 2.89 1.51 3.0 1 3 1.00 
3 0 0.5 2.93 1.39 3.0 1 3 1.33 
3 0 0.9 2,97 1.39 3.0 1 3 5.26 
3 3 0.0 3.15 0.81 3.0 1 3 1.00 
3 3 0.5 3.38 1.37 4.5 1 3 1.33 
3 3 0.9 5.83 1.12 5.7 1 3 5.26 
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being selected, while the a priori MSE (equal to the a priori variance in this 
case) is the variance calculated assuming the model has been specified in ad­
vance. We see that, unlike the unconditional case, the conditional MSE's are 
smaller than the a priori variances. 0 

Table 12.2 Conditional and a priori mean-squared errors 

MSE 
Assuming model Assuming model 

{Xl} chosen {Xl, X2} chosen 

/1 /2 r Conditional a priori Conditional a priori 

3 0 0.0 0.74 1 0.74 1.00 
3 0 0.5 0.72 1 0.97 1.33 
3 0 0.9 0.76 1 1.01 5.26 
3 3 0.0 0.72 1 0.73 1.00 
3 3 0.5 0.94 1 0.53 1.33 
3 3 0.9 0.96 1 3.48 5.26 

The differences between the conditional and a priori means and variances are 
considered in more detail in the next subsection. 

12.7.2 Bias 

Suppose that we select then fit a model M. Let X = (X1,X2), where Xl is 
the regression matrix for model M, and X 2 is the matrix corresponding to 
the other variables. Suppose that the true model is 

Y = X 1,81 + X 2,82 + c. 

The least squares estimate of /31 based on model M is 

From Section 9.2.1, its a priori expectation is 

,81 + (X~X1)-lX~X2,82 
,81 + L,82, 

(12.70) 

(12.71) 

say. We reemphasize that this expectation is calculated assuming that the 
model has not been selected with reference to the data. The second term, L,82, 
is called the omission bias by Miller [1990: p. 110). If the model has been data­
selected, the expected value is E[SCM)IY E RJ, where R is the region leading 
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to the selection of model M. The difference E[S(M)\Y En] - E[S(M)] is 
called the selection bias. Thus, 

E[S(M)\Y En] = (31 + selection bias + omission bias. 

12.7.3 Conditional Means and Variances 

From (12.71), we have 

E[S(M)\Y En] = (X~X1)-lXIE[Y\Y En], 

where the last conditional expectation is given by 

and 

.~ .. 

E[Yi\Y En] = In yd(y - X(3; a2
) dy 

In fey - X(3; a 2 ) dy 

fey; a2
) = (27l"a2

)-n/2 exp ( - 2~2 \\yW) . 
A similar argument shows that 

Var[,B(M)\Y En] = (X~X1)-lX~I:MXl(X~X1)-1, 

(12.72) 

where I:M = Var[Y\Y En]. The a priori variances are calculated using the 
formula a2(X~Xl)-1. We can write the difference as 

a2(X~Xd-1 - (X~Xl)-lX~I:MXl(X~Xl)-l 

(X~Xl)-lX~(a2In - I:M)Xl(X~Xl)-l 

(X~X1)-lX~(Var[Y]- Var[YjY E n])Xl(X~Xl)-l. (12.73) 

Using the fact (Exercises 12f, No.3) that Var[Y] - E[Var(Y\Z)) is positive 
definite for any random vector Z, and A.4.5, we see that the expected value 
of (12.73) is positive semidefinite, and typically, the package standard errors 
will be larger than the standard deviation of the conditional estimate (but 
not necessarily its root-mean-squared error). 

12.7.4 Estimating Coefficients Using Conditional likelihood 

To avoid these problems, Miller [1990: p. 138] suggests using a likelihood 
based on the density of Y conditional on YEn used in Section 12.7.3. The 
conditional density is 

fey - X(3; a 2
) dy 

In fey - X(3; a2 ) dy' 

where f is given by (12.72). The log-likelihood based on this conditional 
density is, up to a constant, 

(12.74) 
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Evaluation of the last term can be done using a Monte Carlo approach. For 
fixed f3 and 0- 2 , we repeatedly generate data using the model (12.70) and 
subject each data set to the variable selection procedure. The integral is 
then estimated by the proportion of data sets that result in model M (cf. 
Miller [1990: p. 140]). The conditional likelihood can be maximized using 
an algorithm that requires no derivatives, such as the NeIder-Mead method 
(NeIder and Mead [1965]). 

12.7.5 Other Effects of Model Selection 

Several authors have noted that when evaluating a model for overall signifi­
cance using the test in Example 4.8 in Section 4.4, the p-values resulting from 
the test will be much too small if the model has been data-selected. Rencher 
and Pun [1980] discuss a Monte Carlo study where variable selection resulted 
in the null distribution of the test statistic being shifted upward, resulting 
in overly small p-values in the null case. Freedman [1983] found the same 
phenomenon. Diehr and Hoflin [1974] discuss an empirical adjustment of the 
null distribution to compensate for model selection. Hurvich and Tsai [1990] 
study the effect of model selection on confidence intervals for the regression 
coefficients and find that the coverages are much less than nominal. 

EXERCISES 12f 

1. Consider the regression model 

Yi=a+(3xi+Ci (l=l, ... ,n), 

where 2:i Xi = 0 and 2:i x; = 1. Let r = 2:i XiYi. Suppose that we 
estimate the parameter (3 by the estimate 

[3 = { 0, 
r, 

if Irl < c, 
if Irl > c, 

where c is some positive constant. How does the MSE of [3 as an estimate 
of (3 compare with that of the usual LSE? 

2. Suppose that you use forward selection to choose either the null model 
Y i = a + Ci or the simple linear regression model in Exercise 1 above. 
Explain how you would evaluate the conditional density (12.74) in this 
situation. 

3. For any pair of random vectors Y and Z, show that the difference 
Var[Y] - E[ Var(YIZ)] is positive semidefinite. Hint: Show that the 
difference is Var(E[YIZ]). 
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12.8 COMPUTATIONAL CONSIDERATIONS 

We have seen that many criteria for subset selection can be expressed in terms 
of the residual sum of squares and the dimension of the model. Moreover, for 
subsets of fixed size, selection of the best model is equivalent to finding the 
model with the smallest RSS. To find the best subsets by exhaustive search, 
we need to calculate the RSS for all models of dimension p, p = 1, ... ,K + 1, 
where K is the number of available variables. Since there are 2K such models 
(corresponding to all 2K ways the variables may be in or out of the model, in­
cluding the null model), calculation of all possible regressions is a formidable 
computational task if K is large. We first discuss some efficient algorithms 
for calculating all possible regressions and then look at some refinements that 
avoid the consideration of unpromising subsets. This can reduce the compu­
tation by a substantial amount. 

In this section we assume that the constant term is included in every model, 
so that the full model, with all variables included, has K + 1 parameters. The 
regression matrix for the full model is therefore assumed to have an initial 
column of1's. The symbol p will refer to the dimension of a submodel, which 
will have p - 1 variables plus a constant term. 

12.8.1 Methods for All Possible Subsets 

The calculations can be based either on the SSCP matrix X'X using sweeping, 
or on the X matrix using Givens transformations. We saw in Section 11.6.2 
how a variable could be added to or removed from the regression by sweeping 
the augmented SSCP matrix. Recall that sweeping on a variable not in the 
model adds the variable, and sweeping on a variable already in the model 
removes it. We need to construct a series of 2K sweeps that will generate all 
2K regressions. 

The first sweep will sweep on the first column of the (K + 2) by (K + 2) 
augmented matrix (11.3), and sweeps in the constant term. The result is 

- X 

~x ~'~ 
( 

1 -I 

-y Y'X 
(12.75) 

where X and Yare the centered versions of X (without the first column) 
and Y. Assuming that a constant term is to be included in every model, the 
initial row and column of (12.75) play no further role in the calculations and 
can be discarded. To fit the remaining 2K - 1 models, we need only work 
with the (K + 1) by (K + 1) augmented centered SSCP matrix 

( ~/~ XY) 
Y/X YY . (12.76) 
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For K === 2, we can fit the remaining models by using the sequence 1,2, I, 
representing a sweep on variable I, a sweep on variable 2, and a final sweep on 
variable 1. This fits the models {xd, {Xl, X2}, and {X2}, respectively; note 
that the third sweep, on Xl, removes Xl from the previous model {Xl, X2}. 

For K === 3, the sequence is 1,2,1,3,1,2,1 and for K = 4 it is 1, 2, 1, 3, 
1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. The general pattern is now clear: If Sk is the 
sequence of sweeps for K variables, then the sequence for K + 1 variables is 
Sk+l = Sk U {k + I} U Sk. Schatzoff et al. [1968] give a formal proof that the 
sequence generated in this way does indeed include all the 2K - 1 remaining 
regressions. 

Improving the Basic Algorithm 

This algorithm in the simple form described above is due to Garside [1965], 
and requires 2K - 1 sweeps of the (K + 1) x (K + 1) centered augmented 
SSCP matrix. It can be improved somewhat by modifying the sweep operator 
to preserve the symmetry of the SSCP matrix, so that elements below the 
diagonal need not be calculated. This reduces the computations by around 
50%. Schatzoff et al. [1968] discuss these refinements. 

More dramatic improvements can be made by rearranging the calculations 
so that only submatrices of the (K + 1) x (K + 1) SSCP matrix need be swept 
at each stage. Consider the case K = 2. The Garside algorithm performs the 
sweeps in the order shown in Table 12.3. Note that the entire 3 x 3 matrix 
must be swept each time. Now consider the sequence of sweeps shown in 
Table 12.4, where the variables are swept in the same order as before, but a 
different matrix is swept. In this approach variables are never swept out, only 
swept in. The advantage is that at step 1, the sweep need only operate on 
the submatrix corresponding to variable 1 and the response; we can ignore 

Step 

1 
2 
3 

Step 

1 
2 
3 

Table 12.3 Sequence of sweeps for the Garside algorithm 

Variable swept 

1 
2 
1 

Table 12.4 

Variable swept 

1 
2 
1 

Matrix swept 

SSCP 
Result of step 1 
Result of step 2 

Modified sequence of sweeps 

Matrix swept 

Part of SSCP 
SSCP 
Result of step 2 

Model fitted 

{I} 
{1,2} 

{2} 

Model fitted 

{I} 
{2} 

{1,2} 
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variable 2 entirely at step 1. We must store a copy of the SSCP matrix for 
use in step 2, as it is destroyed in step 1. 

If this idea is applied to the case K > 2, substantial savings in computation 
result. At each stage we need only apply the sweeps to a submatrix rather 
than to the entire matrix as in the Garside algorithm. There is an extra 
storage cost, as we must store copies of matrices produced at certain stages 
for use in later stages, but no more than K + 1 matrices need be stored at any 
one time. This idea has been implemented by Furnival (1971] and Morgan 
and Tatar [1972]. We describe the latter version as it is about 50% more 
efficient and is very simple to program. These methods are in turn an order 
of magnitude more efficient than the methods of Schatzoff et al. and Garside. 

The Morgan and Tatar implementation uses a modified sweep that pre­
serves the symmetry of the matrices, so that only upper triangles need be 
retained. However, it can compute only the RSS for each model, whereas the 
Furnival method can also produce the regression coefficients and the inverse 
of the XIX matrix. The Morgan and Tatar algorithm is as follows . 

. Algorithm.J2.3 

Step 1: Reserve storage for K + 1 matrices M(l), ... ,M(K+!), where MUJ 
is j x j. Only the upper triangle of each matrix need be stored. 

Step 2: Form the SSCP matrix as 

r ~/~ 
L y/X 

Note that the response comes first! Copy the j x j upper triangle of the 
SSCP matrix into M(j) . 

Step 3: For t = 1, ... ,2K - 1, identify a model with t as follows: Write tin 
its binary expansion 

where bj is zero or 1, and let M t be the model containing all the variables 
Xt for which bt = 1. Let p be the position in the binary sequence 
{b l , b2, ... , bK} of the first nonzero element. Then: 

(a) Sweep the matrix M(v+ l )(= (mij)], say, on row p+ 1, using the 

symmetric sweep 

Copy the result into a temporary matrix B. Do not overwrite 
M(v+!) . 
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(b) For j = 1,2, ... ,p, copy the upper j x j upper triangle of B into 
M(j). 

(c) The RSS for the model M t will now be in M(l). 

A formal proof of the correctness of this algorithm is given in Morgan and 
Tatar [1972]. 

12.8.2 Generating the Best Regressions 

The Morgan and Tatar method is an efficient way of generating all the 2K - 1 
non null regressions. However, the model selection criteria described in Section 
12.3 just require finding the best-fitting model of each size: in other words, 
the model having the smallest RSS among all j-variable models, for j = 
1,2, ... ,K. In this case we can exploit a simple property of the RSS to avoid 
fitting most of the models and thus save a significant amount of computation. 
The property is this: If a model Ml is contained in model M2 (in the sense 
that every variable in Ml is also in M 2 ), then we know that the RSS for 
M2 cannot be greater than that of MI. This is because the RSS for model 
Ml is a restricted minimum, with some estimated coefficients constrained to 
be zero, whereas the RSS for model M2 is an unrestricted minimum. Thus, 
for example, if we have K = 4 variables and we have fitted model {123} and 
obtained a RSS of 500, and we have also fitted the model {4} with an RSS 
of 100, we know immediately that {4} must be the best one-variable model, 
since RSS{I} > RSS{123} = 500 > 100 = RSS{4}, and similarly for RSS{2} 
and RSS{3}. By exploiting this property of residual sums of squares, we can 
avoid fitting the models {I}, {2}, and {3}. 

Various algorithms based on this simple idea have been proposed, including 
those of Hocking and Leslie [1967]' LaMotte and Hocking [1970], and Furnival 
and Wilson [1974]. The Furnival and Wilson algorithm, an adaption of the 
Furnival method for all possible regressions cited in Section 12.8.1, seems to be 
the current best implementation of this idea and is used in the SAS procedure 
PROC REG. We will give a brief simplified description of this algorithm. 

The first step in the algorithm is to order the variables according to the 
magnitude of the t-statistic used to test if the corresponding regression co­
efficient is zero, so that Xl has the largest (most significant) t-statistic, and 
XK the smallest. Then the models are split into two sets, the first containing 
all models not containing X K, and the second containing all models that do 
contain XK. 

For the first set, we construct a regression tree, where the fitting of all 
possible 2K - l models not containing XK (including the null model) is rep­
resented by the paths through a binary tree. For example, if K = 4, to fit 
all 8 = 23 submodels of the three variables Xl, x2, and X3, we use the tree 
shown in Figure 12.5. We start from the root marked "123." and traverse 
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Fig. 12.5 Binary tree for fitting models with three or less variables. 

down the branches. Each path down a particular branch represents a series of 
sweeps that results in fitting one of the 23 possible models. Thus, the leftmost 
branch represents the three sweeps "sweep in Xl," "sweep in X2," "sweep in 
X3," which results in fitting the model {123}. Thus, the solid lines in the fig­
ure represent actual sweeps. The dashed lines, in contrast, represent skipped 
sweeps. For example, consider the branch starting at the root labeled "123," 
moving through the nodes labelled "23." and "3.2" and ending at "23." This 
represents the series "skip the sweep on Xl, sweep on X2, and sweep on X3," 

resulting in fitting the model {23}. The labeling of the nodes shows which 
variables have been swept in at any stage (the ones listed after the ".") and 
those still available, not having been skipped at an earlier stage (the ones 
before the "."). Note that under this scheme, variables are never swept out, 
only swept in. For this reason, Gaussian elimination can be used rather than 
sweeps, with a consequent saving in arithmetic. 

This approach is, in fact, the basis of the Furnival algorithm for all possible 
regressions cited in Section 12.8.1. Branches of the tree are traversed in some 
feasible order, backing up as required to go down new branches. Intermediate 
results are stored as required. 

The Furnival and Wilson algorithm makes use of this tree and also of a 
dual tree that is the same shape as the first (primary) tree, but is interpreted 
differently. The second tree represents fitting all the models that contain X K. 

The root represents the full model, and the solid lines now represent sweeping 
out variables. As before, the dashed lines represent skipping sweeps. The 
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dual tree for our example with K = 4 is shown in Figure 12.6. The nodes 
are labeled differently; variables after the "." are variables not yet swept out. 
Note that the nodes in each tree correspond in an obvious way. The variables 
in a node label in the primary tree are those either swept in or still available 
for sweeping in, those in a node label in the dual tree are those still available 
for sweeping out, plus the variable XK, which is never swept. Each sweep in 
the primary tree is just a move from a particular node down the solid left 
branch to the node below. This corresponds to a sweep in the dual tree from 
the corresponding node but down the solid right branch. 

Having set up these trees, we first sweep all the variables into the model 
by moving down the leftmost branch of the primary tree and then performing 
a final sweep on XK. This fits the K models {I}, {1,2}, ... , {I, 2, 3, ... , K}. 
We then perform the corresponding sweeps on the dual tree, for a total of 
2K - 1 sweeps. 

We now traverse the primary tree, performing sweeps in order. The corre­
sponding sweeps are also done on the dual tree. At each point we can use the 
information in the dual tree and the "RSS property" to decide if we need to 
continue down a branch. 

We illustrate the procedure with our K = 4 example. In Table 12.5 the 
2K = 16 models are listed, along with the RSS from an actual set of data. 
To select the best one-, two- , three-, and four-variable models without fit­
ting all 15 models, we proceed as follows: We traverse the primary tree in 
"lexographic" order, fitting models in the sequence shown in Table 12.5. This 

.1234 
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~ , , , , , , , 
.1234 

, 
, 

I , , I , , , , , , 
I , 

.1:<34 I .234 ' 
I 

I 

I I 

I I 
'-'l 

.1234 .124 .134 .14 .234 .24 .34 .4 

-Fig. 12.6 Dual tree for K = 4. 
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Table 12.5 Models and RSS for the K = 4 example 

Model RSS Model RSS 

Null 320 {4} 298 
{I} 82 {I,4} 80 
{2} 186 {2,4} 185 

{1,2} 10 {1,2,4} 10 
{3} 229 {3,4} 227 

{1,3} 62 {1,3,4} 60 
{2,3} 157 {2,3,4} 157 

{1,2,3} 6 {1,2,3,4} 5 

amounts to always going down the left branches, backing up a minimum dis­
tance when we reach the bottom of a branch. The order is shown in Figures 
12.5 and 12..6 by the numbers in the small circles. At each node we use the 
dual tree to decide if it is necessary to continue down a branch or if we can 
"bound" to a new branch. 

After fitting the models {I}, {1,2}, {1,2,3}, and {1,2,3,4}, as discussed 
above, we then do the dual sweeps, resulting in fitting the further models 
{2,3,4}, {1,3,4}, and {1,2,4}. At this stage the best one-variable model is 
{I} with RSS 82; the best two-variable model is {1,2} with RSS 10, and the 
best three-variable model is {1, 2, 3} with RSS 6. Now consider sweep 4 in the 
primary tree, which would fit model {1, 3}. But sweep 2 in the dual tree gave 
us RSS{l34} = 60, so we know that RSS{I3} > RSS{134} = 60. The current 
best two-variable model is {l,2} with RSS 10, so we don't need to perform 
sweep 4. 

Moving on to sweep 5 in the primary tree, we see that the models that 
can be fitted by going down this branch are {2} and {2,3}. The RSS of both 
these models is not less than RSS{234} = 157. Since the current best one­
and two- variable models have RSS 82 and 10, respectively, we don't need to 
go any farther down this branch, so we can skip sweeps 5 and 6. 

Next we examine sweep 7. The only model fitted down this branch is 
{3}, but since RSS{3} > RSS{234} = 157, model {3} cannot be the best 
one-variable model. 

We have found the best one-, two- and three- variable models using seven 
sweeps instead of the 15 it would have taken using all possible regressions. 
Even greater savings are made with larger values of K. For example, Furni­
val and Wilson claim that their algorithm is 15 to 50 times faster than the 
LaMotte-Hocking program, which is in turn much faster than the Morgan 
and Tatar method for all possible regressions. 

The layout of the two trees ensures that as we traverse the primary tree, 
the necessary fits have been performed in the dual tree to get a lower bound 
for all the models that can be fitted by going down the current branch in the 
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primary tree. Furnival and Wilson call the primary tree the branch tree and 
the dual tree the bound tree as it determines when we can "bound" to a new 
branch of the primary tree. 

12.8.3 All Possible Regressions Using QR Decompositions 

The methods described above are fast, but being based on the SSCP matrix 
can be inaccurate if there are substantial correlations between the explanatory 
variables (cf. Section 11.8). The alternative is to use the methods based on 
the QR decomposition described in Section 11.6.3. The algorithms in Section 
12.8.2 can be adapted to use reflections and rotations instead of sweeps and 
GE steps. This results in a more accurate but slower algorithm. 

When using Givens rotations, it will generally be better to add and delete 
variables in an order different from that used in the Garside algorithm, since 
the computational cost of deleting variables using Givens transformations de­
pends on their column position in the QR decomposition. For example, sup­
pose that we have fitted a model {I, 2, 3, 4}, and have a QR decomposition of 
the form 

x x x x x 
0 x x x x 
0 0 x x x 
0 0 0 x x 

Q'[X,Y] = 0 0 0 0 x 
0 0 0 0 x 

o 0 0 0 x 

Deleting variable 4 has no computational cost, since we simply drop the fourth 
column. However, if we drop variable 1, we get the matrix 

x 

* 
o 
o 

o 

x 
x 

* 
o 

o 

x 
x 
x 
* 

o 

x 
x 
x 
x 

x 

and the reduction to uppertriangular form involves zeroing all the elements 
marked with a "*." Thus, it is cheaper to delete variables having large indices 
(3 or 4, in this case) than those having low indices (lor 2). In fact, it is cheaper 
to delete variables 3 and 4 simultaneously, which has no computational cost, 
than it is to delete variable 1, which costs three rotations. 

Thus, we can perhaps do better by using a binary scheme which drops 
and adds more than one variable at a time rather than the sequences used 
in the sweep algorithms. For example, if we identify models with binary 
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numbers so that 0001 corresponds to {4}, 0010 corresponds to {3}, 0011 
corresponds to {3,4}, and so on, then fitting models in ascending binary 
order will ensure that most of the adds and deletes will involve variables with 
large indices, and the computational cost will be small. Miller (1990: Chapter 
21 presents some calculations which suggest that the binary approach is only 
about 60% of the cost of the Garside ordering. This reference has more details 
on the QR approach to all possible regressions calculations and some accuracy 
comparisons with the sweep methods. However, we note that if the IEEE 
double-precision standard is used for computer arithmetic, the variables need 
to be very collinear before accuracy problems arise with the sweep methods. 

EXERCISES 12g 

1. Write a small computer program to calculate the residual sum of squares 
for all possible regressions using the Garside algorithm. What size prob­
lems can reasonably be handled? 

2. Implement the Morgan and Tatar algorithm. What sort of improve­
ments do you notice over the Garside algorithm? 

12.9 COMPARISON OF METHODS 

In previous sections of this chapter we have discussed a range of methods 
(all possible regressions, stepwise methods, shrinkage methods, and Bayesian 
methods) that can be used for model selection and prediction. In this section 
we take up the task of making some comparisons between the methods. 

This is complicated by the lack of a single criterion. If our aim is subset 
selection, a reasonable aspect on which to focus is the ability of a method 
to select the "correct" subset, assuming that such a thing exists. If the aim 
is to make good predictions, then the methods can be evaluated in terms of 
prediction error. 

12.9.1 Identifying the Correct Subset 

Suppose that we have available explanatory variables Xl, ... , X K, and that 
the correct model is in fact 

Yi = x~(3 + €i (i = 1, ... , n) , (12.77) 

where xi = (XiO, . .. , XiK) and (3 is a fixed (K + I)-vector of coefficients, some 
of which are possibly zero. We can then evaluate the methods according to 
how they identify the nonzero coefficients, or, in other words, select the correct 
subset. 

There have been several investigations into this question. Most have as­
sumed a simplified version of the problem, where the first p coefficients are 
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nonzero and the rest are zero. Nishi [1984] shows that as K remains fixed but 
n gets large, the criteria AIC, Cp , and CV(l) are all asymptotically the same, 
and all tend to overfit, in the sense that the probability of selecting a sub­
set properly containing the true subset converges to a positive number rather 
than zero. The probability of underfitting converges to zero. In contrast, 
under these asymptotics, the BIC selected the true model with probability 
converging to 1. 

Zhang [1992] considers different asymptotics, where K is allowed to con­
verge to infinity along with n but p remains fixed. His conclusions are, how­
ever, the same: the criteria AIC, Cp and CV(l) all overfit. However, the extent 
of the overfitting is not very great. Zhang [1993] examines cross-validation 
and finds that CV(d), where d > 1, performs better than CV(l), provided 
that d is a reasonably large fraction of n. Since this implies a great deal 
of computation, Zhang advocates the use of cross-validation based on a bal­
anced subset of d-subsets of cases as described in Section 12.3.2. Shao [1993] 
also considers cross-validation and reaches the same conclusion. The general 
conclusion here is that when the number of nonzero coefficients is small, the 
AIC-like criteria tend to overfit. 

Several simulation studies (e.g., Freedman [1983] and Rencher and Pun 
[1980)) have been published which make the same point: namely, that even 
in the extreme case when all the coefficients are zero, it is common to find 
subsets with small numbers of variables that fit well, having 'small values of 
the RSS. 

12.9.2 Using Prediction Error as a Criterion 

The results quoted in Section 12.9.1 all essentially cover the case where the 
number of nonzero coefficients was small and the focus was on identifying 
this set of nonzero coefficients. Other authors have used prediction error as a 
criterion for evaluating the competing methods. 

The most extensive investigations have been conducted by Breiman in a 
series of papers [1992, 1995, 1996b], and we discuss his findings in some detail. 
We have seen that there are several alternatives to least squares for construct­
ing predictors. For most of these methods, the general form of the predictor is 
specified but the user must calibrate the predictor in some way. For example, 
in ridge regression, the ridge parameter k must be chosen. In subset selection, 
the subset must be chosen and then the predictor is calculated by applying 
least squares to the subset chosen. If the procedure is calibrated properly, we 
can expect improvements over least squares, but not otherwise. 

In many techniques, this calibration is performed by estimating the predic­
tion error and choosing the calibration parameter to minimize the estimated 
PE. Thus,we could use cross-validation to choose a subset or to select a value 
for the ridge parameter. Suppose that the PE of the method we choose de­
pends on such a calibration parameter s, which could be a subset of variables, 
a ridge coefficient, or perhaps a garrote or lasso coefficient. There will be 
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a value of s that minimizes the PE, say SMIN, with corresponding minimum 
perdiction error PE(sMIN)' If we could evaluate PEes) for each s, we could 
use the method (ridge, subset selection) for which PE(sMIN) is a minimum. 

Since SMIN is unknown, we have to use an estimate SMIN, which is usu--ally the value of s which minimizes some estimate PE of PE. Unfortunately, 
PE(SMIN) may be a poor estimate of PE(sMIN). All the results considered in 
previous sections about the approximately unbiased nature of criteria such as 
AIC and CV(I) refer to the case where s is fixed, not data dependent. They 
do not refer to PE(SMIN)' Indeed, we saw in Example 12.1 just how bad Cp 

can be in the case of orthogonal explanatory variables. 
When prediction is viewed in this way, there are two aspects to consider. 

First, there is the size of the optimal prediction error PE(SMIN), which is 
a property of the prediction method. Second, how well can the method be 
calibrated [Le., how close is PE(sMIN) to PE(sMIN)]? In other words, will 
estimating the PE mislead us, and lead us to a predictor that in fact performs 
much worse than we believe? 

To explore this idea, Breiman [1996bJ introduces the concept of predictive 
loss (PL),"aefined as 

This is a property of both the prediction method and the method of estimating 
PE. We have 

PE(sMIN) = PL + PE(sMIN), 

which expresses the actual PE of our chosen method as a term involving the 
method of PE estimation, plus a term involving just the method of prediction. 

Methods of estimating PE include Cp , CV(I), CV(d), and the bootstrap. 
Breiman [1992, 1995, 1996bj has conducted extensive simulations of all these 
methods and concludes that, [with the exception of CV(d) where d is large 
relative to the number of cases n], none are satisfactory. He advocates instead 
the use of the little bootstrap, which has smaller predictive loss than the other 
methods. It can be used with subset selection and the shrinkage methods. 
We discuss the little bootstrap in the next section. 

Breiman's simulations also indicate that subset selection has a generally 
small minimum PE but a big predictive loss, whereas ridge has small predictive 
loss but large minimum PE. The other shrinkage techniques fall in the middle 
and represent a good compromise choice. He also uses the idea of stabilization, 
which can be used to improve the performance of subset selection (cf. Breiman 
[1996b) for details). 

If the number of nonzero coefficients is large, the asymptotically equivalent 
methods Arc, CV(I), and Cp tend to work better. Li [1987) and Shibata 
[1981, 1984J have explored the asymptotics in this situation. They find that 
under this form of asymptotics, the ratio of E[PE(SMIN)] to E[PE(sMIN)J 
converges to 1 when these "AIC-like" techniques are used for subset selection. 
This implies that the expected predictive loss will be small in this situation. 
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However, the Breiman simulations do not support this. He finds (Breiman 
[1995]) that even when the number of nonzero coefficients is a reasonable 
proportion (say, 50%) of the total number of coefficients, the AIC-like methods 
still substantially underestimate the true PE. When the proportion of nonzero 
coefficients is much smaller, Breiman also reports substantial overfitting when 
using the AIC methods. 

From the discussion above it is clear that the actual PE of the methods 
will depend on the true values of the regression coefficients. In the case of 
orthogonal explanatory variables, we can get some theoretical insight into how 
these methods compare for different distributions of the regression coefficients 
by using a Bayesian argument. Suppose that, conditional on /3, the true model 
is given by (12.77). Also, suppose that the error variance a-2 is known and 
that the elements of /3 are independently distributed with density function g. 
Note that since the columns of X are assumed to be orthonormal, we have 
j3 = X/Y. Conditional on /3, /:J has independent elements; /3j is N(f3j,a-2 ), 

with density a--1¢[(b - f3j)/a-], where ¢ is the N(O,I) density. The joint 
distribution of f3j and /3j has density 

We have seen that in the orthonormal case X'X = I p , many of the pre­
diction methods reduce to using the predictor x '13, where /3j = h(/3j). The 
corresponding functions h were graphed in Figure 12.4. Also, in the orthonor­
mal case, the ME is 

IIX/3 - x13112 
11/3 - 13112, 

so the expected ME, averaging over both /3 and /3, is 

~ J J[f3 - h(bW¢[(f3 - b)/a-]g(f3) df3 db. 

(12.78) 

(12.79) 

(12.80) 

A standard argument (see Exercises 12h, No.1) shows that the function h 
which minimizes the expected ME is the conditional expectation of 13, given 
/3, which is 

h(b) = E[f3lb] = J f3¢[(f3 - b)/a-]g(f3) df3 
J ¢ [(13 - b) / a-] g(f3) df3 

(12.81) 

Clearly, none of the prediction methods we have considered can be better than 
the method based on the conditional expectation, so in general they will be 
suboptimal. However, in particular cases, some of these methods do coincide 
with the optimal choice, as we see in our next example. 

EXAMPLE 12.4 Suppose that the marginal prior on 13 is N(O, a-6). Then, 
for a prediction method using transformed coefficients /3 = h(/3), the expected 
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model error is given by 

Completing the square, we get 

(12.83) 

where a2 = a3 + a2 and w = a3/a-2. Using this, from (12.82) we see that the 
expected ME is 

Fixing b, the inner integral can be written as 

var[jJJ + [h(b) - wW 
wa2 + [h(b) - wb12, 

so that we get, after a change of variables z = b/a, 

E[MEJ = p { wa2 + i: [h(a-z) - wazJ2.p(z) dZ} . (12.84) 

This shows that the function for the optimal predictor is h(b) = wb, which is 
the form for ridge regression (cf. Section 12.5.2). 

We saw in Example 12.1 in Section 12.3.2 that in the orthonormal case, 
AIC, Cp , and BIC are equivalent to including variable j in the predictor if 
and only if l,Bil > 7 for some threshold 7. Since the predictors are orthogonal, 
the estimates ,Bi do not change if terms are deleted from the model, so this is 
equivalent to taking 

h(b) = {b, Ibl > 7, 
0, Ibl < 7. 

Substituting this (Miscellaneous Exercises 12, No.4) in (12.84) gives 

where 

<P2(t) = J~oo Z2.p(Z) dz. 

(12.85) 

The function <P2 is increasing and has value 0.5 at zero and 1 at +00. Thus, 
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if U 2 > u6, the expected ME is minimized when T = +00 (i.e., when we use 
the null predictor). In this case the minimum expected ME is u6' 

Conversely, if u2 < u6, then the expected ME is minimized when T = 0 
(i.e., when we use least squares). In this case the minimum value of E[ME] is 
u 2 • Note that the choice T = .J2 (corresponding to AIC or Cp ) is never the 
best choice of threshold. 

The expected ME for the other methods can be evaluated easily using 
numerical integration and (12.84). In Figure 12.7 we have plotted E[ME] as 
a function of uo, with u set at 1. Except when Uo is very small (so that most 
of the (3/s are zero), the shrinkage predictors are much closer to the optimal 
h than is the best threshold predictor. 0 

EXAMPLE 12.5 Suppose that the common marginal prior is binary, with 
(3 taking on values 0 and (30 with probabilities 7l" and 1- 7l", respectively. Then 
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the optimal h is given by 

h b _ (1 - 7r)/3o¢((b - (3o)/a] 
( ) - 7r¢(b/a) + (1 - 7r)¢{(b - (3o)/a} 

and the minimum E(ME] is 

2/00 ¢(z)¢(z - (3o/a) 
p7r(l - 7r)(30 -00 7r¢(z) + (1- 7r)(3o¢(z _ (3o/a) dz. 

The ME for an arbitrary method is 

p i: {7rh(za)2 + (1- 7r)(h(az + (3) - (3]2}¢(Z) dz. 

As in Example 12.4, this formula can be evaluated numerically for the various 
methods and the minimum expected ME found for each method. In Figure 
12.8, we plot the minimum E(ME] for each method as a function of (30 and 7r 
for a = 1.,--

When 7r = 0.2, Le., when the number of null coefficients is small, ridge 
does well, and the threshold (subset selection) methods do poorly. Conversely, 
when 7r = 0.8, Le., when the number of null coefficients is large, the optimal 
threshold method does well while ridge does very poorly. Interestingly, using 
Cp is bad in both cases, indicating the need for careful choice of the threshold. 
The optimal "gold standard" is a clear winner in both cases. The garrote 
methods and the lasso are roughly comparable. 0 

EXAMPLE 12.6 We can combine the last two examples, and consider a 
prior for (3 in which (3 is zero with probability 7r, and distributed as N (0, (5) 
with probability 1 - 7r. Breiman (1995] compared ridge and the nn-garrote 
with subset selection using the optimal threshold (i.e., the optimal choice of 
r). As in Example 12.5, he found that ridge does well when most of the 
coefficients are non-zero (when subset selection does poorly), and does badly 
when most of the coefficients are zero (when subset selection does well). The 
nn-garrote is a good compromise between these two extremes. 0 

The Little Bootstrap 

We now reexamine the question of estimating the PE of a prediction rule. 
We have seen that most of the standard methods, particularly the AIC-like 
methods, are not very satisfactory for estimating the PE of a prediction rule 
based on choosing subsets. The situation is a little better for ridge, since both 
CV(l) and GCV (Section 12.5.2) tend to work quite well. However, the best 
method known seems to be the little bootstrap, and we devote the rest of this 
section to a description of this technique. 

As described above, most prediction methods depend on a "calibration 
parameter" s, and we use the prediction rule having calibration parameter 
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Fig. 12.8 Expected model error for various binary priors. 

8MIN, which minimizes the estimated PE, 8MIN = argmin:PE(s). The cali­
bration parameters and corresponding predictors for the various methods are 
as follows. 

For subset selection: In this case s is the number of variables in the subset 
chosen, and we use the least squares predictor based on the best-fitting 
subset of size s. Alternatively, we could use forward selection or back­
ward elimination rather than all possible regressions to choose the subset 
of size s. 

For ridge: We use the predictor predictor {L(s) = X,8(s), where ,8(s) mini­
mizes IIY - Xbl1 2 subject to IlbW < s. 
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For the nn-garrote: We use the predictor ft(s) = X{J(s), where S(s)j = 
CjSj, and the cj's minimize (12.57) subject to the constraints Cj > 0, j = 

d "",p-l 0, ... ,p - 1, an L.Jj=O Cj < s. 

For the garrote: We use the predictor ft(s) = X{J(s), where IIcl1 2 < s. 

For the lasso: We use the predictor {L(s) = X{J(s), where the {J(s)j's mini­

mize IIY - XbW subject to 2:;:~ Ibjl < s. 

Suppose that our model is 

Y=J.L+e:, 

where e: is Nn(O,a2In) and that we use one of the predictors {L(s) described 
above. For fixed s we can estimate PEes) by the following procedure. 

First note that using the same argument as in Section 12.2, we get 

so that 

RSS(s) Ily - ft(s)W 

lie: + J.L - {L(s)W 

IIe:W + 2e:'[JL - {L(s)] + IIJL - ft(s)W 
{11e:W + 2e:' J.L - na2} + PEes) - 2e:' {L(s). 

Now the term in braces {} has zero expectation, so that 

E[PE(s)] = E[RSS(s)] + 2E[e:'ft(s)]. (12.86) 

Thus, if we could get an approximately unbiased estimate of e:' {L(s), we would 
have an approximately unbiased estimate of PEes). 

Such an estimate is furnished by the following resampling procedure. 

Step 1: For a small positive number t, generate c:i, ... , c:;;, from N(O, t2( 2). 

Step 2: Compute yi = Yi + c:i, i = 1, ... ,n. 

Step 3: Calculate {L*(s) using the same method as ft(s), but using the yi's 
instead of the y/s. Put Bt(s) = c:*' {L*(S)/t2. 

Step 4: Repeat steps 1-3 several times and compute the average Bt(s) of 
the resulting Bt(s)'s. 

Then Breiman [1996b] proves that, for all the situations above, Bt(s) is 
an almost unbiased estimate of E[e:' {L(s)], with the bias converging to zero as 
t -+ 0. 

For methods such as garrote and ridge, where the corresponding f3 is a 
smooth function of {J, the variance of Bt(s) remains bounded as t -+ 0. In 
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this case we may let t -t 0, which results in the tiny bootstrap. For ridge, the 
little and tiny bootstraps both have the form (Breiman [19951) 

PE(s) = RSS(s) + 2&2 tr[X(X'X + kI)-l X'l, 

where &2 is an estimate of (J'2 and k is the ridge coefficient corresponding to s, 
as in Section 12.5.2. A similar approach, using a different method to estimate 
E[e' ji,(s)], is discussed in Tibshirani and Knight [1999]. 

EXERCISES 12h 

1. Show that the function f which minimizes the expected ME (12.80) is 
the conditional expectation E[f3IS] given by (12.81). 

2. Draw the same diagram for Example 12.6 as those given in the text in 
Examples 12.4 and 12.5. 

3. Show that in ridge regression when X'X = Ip , the little bootstrap and 
GCV give the same estimate for the ridge parameter. 

MISCELLANEOUS EXERCISES 12 

1. Explain how you could calculate the ridge estimate j3(k) using a least 
squares program. 

2. Consider a regression with two orthogonal centered and scaled explana­
tory variables x and z. Using the techniques of Example 12.2 in Section 
12.4.1, calculate the probability of correctly identifying the true model 
using forward selection when the regression coefficients of x and z are 
both zero. Use a value of Cl = 1.64 and assume that the error variance 
is 1. 

3. Consider a regression with K explanatory variables. Let Fp be the 
F -statistic for testing that some specified subset of r variables can be 
deleted from the model, where r = K + 1 - p. Show that the value of Cp 

for this reduced model with the r variables deleted is Cp = r(Fp -1) +p. 

4. Verify (12.85). 



Appendix A 

Some Matrix Algebra 

A.1 TRACE AND EIGENVALUES 

Provided that the matrices are conformable: 

A.I.I. tr(A + B) = tr A + tr B. 

A.I.2. tr(AC) = tr(CA). 
The proofs are straightforward. 

A.I.3. If A is an n x n matrix with eigenvalues Ai (i = 1,2, ... ,n), then 

n n 

tr(A) = L Ai and det(A) = II Ai. 
~l ~l 

Proof. det(Aln - A) = I1i(A - Ai) = An - An- l (AI + A2 + ... An) + ... + 
(_l)n AlA2··· An. Expanding det(Aln - A), we see that the coefficient 
of An- l is -(all + a22 + ... + ann), and the constant term is det( -A) = 
(_l)n det(A). Hence the sum of the roots is tr(A), and the product 
det(A). 

A.1.4. (Principal axis theorem) If A is an n x n symmetric matrix, then there 
exists an orthogonal matrix T = (tl, t2, ... ,tn ) such that T' AT = A, 

457 



458 SOME MATRIX ALGEBRA 

where A = diag(A1,A2, ... ,An). Here the Ai are the eigenvalues of A, 
and Ati = Aiti. The eigenvectors ti form an orthonormal basis for ~n. 
The factorization A = TAT' is known as the spectral decomposition of 
A. 

In the next three results we assume that A is symmetric. 

A.1.5. tr(AS) = L~==l Af. 

A.1.6. If A is nonsingular, the eigenvalues of A -1 are Ail (i = 1, ... , n), and 
hence tr(A -1) = L~=l Ail. 

A.1.7. The eigenvalues of (In + cA) are 1 + CAi (i = 1, ... ,n). 

Proof. Let A = TAT' be the spectral decomposition of A. Then 
AS = T'ATT'AT···T'AT = T'AsT. We again apply A.1.3. When 
A is nonsingular, T'A-1T = (T'AT)-l = A-I and the eigenvalues of 
A-1 are A- l . We then apply A.1.3. Also, T'(In+cA)T = In+cT' AT = 
In + cA, which is a diagonal matrix with elements 1 + CAi. 

A.2 RANK 

A.2.1. If A and B are conformable matrices, then 

rank(AB) < minimum(rankA,rankB). 

Proof. The rows of AB are linear combinations of the rows of B, so that 
the number of linear independent rows of AB is less than or equal to 
those of B; thus rank(AB) < rank(B). Similarly, the columns of AB are 
linear combinations of the columns of A, so that rank(AB) < rank(A). 

A.2.2. If A is any matrix, and P and Q are any conformable nonsingular 
matrices, then rank(PAQ) = rank(A). 

Proof. rank(A) < rank(AQ) < rank(AQQ-l) = rank(A), so that 
rank(A) = rank(AQ), etc. 

A.2.3. Let A be any m x n matrix such that r = rank(A) and 8 = nullitY(A), 
[the dimension of N(A), the null space or kernel of A, i.e., the dimension 
of {x : Ax = O}]. Then 

r + s = n. 

Proof. Let al, a2, ... , as be a basis for N(A). Enlarge this set of vec­
tors to give a basis a1, a2, ... , as, f31, f32, ... , f3t for ~n, n-dimensional 
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Euclidean space. Every vector in C(A), the column space of A (the 
space spanned by the columns of A), can be expressed in the form 

Ax 

say. Now suppose that 

then 

A (t,~o, + t,bj~j) 
t 

A Lbj{3j 
j=1 

j=1 

t 

L Cj"lj = 0; 
j",,1 

t 

= LCnj =0 
j=1 

and L Cj{3j E N(A). This is possible only if Cl = C2 = ... = Ct = 0, 
that is, "11, "12, ... ,"It are linearly independent. Since every vector Ax 
in C(A) can be expressed in terms of the "I/s, the "Ii's form a basis for 
C(A); thus t = 1'. Since s + t = n, our proof is complete. 

A.2.4. rank(A) = rank(A/) = rankeA' A) = rank(AA/). 

Proof. Ax = 0 ==} AI AX = 0 and AI AX = 0 ==} Xl AI AX = 0 ==} 

AX = O. Hence the nulls paces of A and AI A are the same. Since A 
and AI A have the same number of columns, it follows from A.2.3 that 
rank(A) = rank(AI A). Similarly, rank(A/) = rank(AI A) and the result 
follows. 

A.2.5. If C(A) is the column space of A (the space spanned by the columns of 
A), then C(A'A) = C(A/). 

Proof. AI Aa = Alb for b = Aa, so that C(AI A) C C(A/). However, 
by A.2.4, these two spaces must be the same, as they have the same 
dimension. 

A.2.6. If A is symmetric, then rank(A) is equal to the number of nonzero 
eigenvalues. 

Proof. By A.2.2, rank(A) = rank(TI AT) = rank(A). 
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A.2.7. Any n x n symmetric matrix A has a set of n orthonormal eigenvectors, 
and C(A) is the space spanned by those eigenvectors corresponding to 
nonzero eigenvalues. 

Proof. From T' AT = A we have AT = TA or Ati = Aiti, where 
T = (ti, ... , t n ); the ti are orthonormal, as T is an orthogonal matrix. 
Suppose that Ai = 0 (i = r + 1, r + 2, ... , n) and x = L:~=1 aiti. Then 

n n r T 

Ax = A 2: aiti = 2: aiAti ::::: 2: aiAiti = 2: biti, 
i=1 i=l i=1 i=l 

and C(A) is spanned by t 1, t 2, ... , t T • 

A.3 POSITIVE-SEMIDEFINITE MATRICES 

A symmetric matrix A is said to be positive-semidefinite1 (p.s.d.) if and only 
if x' Ax > 0 for all x. 

A.3.1. The eigenvalues of a p.s.d. matrix are nonnegative. 

Proof. If T' AT ::::: A, then substituting x = Ty, we have x' Ax -
y'T' ATy = A1Yf + ... + AnY~ > O. Setting Yj = c5ij leads to 0 < 
x' Ax = Ai. 

A.3.2. If A is p.s.d., then tr(A) > O. This follows from A.3.1 and A.1.3. 

A.3.3. A is p.s.d. of rank r if and only if there exists an n x n matrix R of 
rank r such that A = RR'. 

Proof. Given A is p.s.d. of rank r, then, by A.2.6 and A.3.1, A = 
diag(A1,A2, ... ,An O, ... ,0), where Ai> ° (i = 1,2, ... ,r). Let A1/2 = 
diag(Ai/2, A~/2, . .. , A;/2, 0, ... ,0), then T' AT ::::: A implies that A = 
TA1/ 2A1/2T' = RR', where rankeR) = rank(A1/2) = r. Conversely, if 
A = RR', then rank(A) = rankeR) = r (A.2.4) and x' Ax = x'RR'x = 
y'y > 0, where y = R'x. 

A.3.4. If A is an n x n p.s.d. matrix of rank r, then there exists an n x r matrix 
S of rank r such that S' AS = IT' 

Proof. From 

T'AT = (Ao ~) 
we have T~AT1 = AT' where T1 consists of the first r columns of T. 
Setting S = T1A;/2 leads to the required result. 

1 Some authors use the term nonnegative-definite. 
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A.3.5. If A is p.s.d., then X' AX = 0 =} AX = O. 

Proof. From A.3.3, 0 = X' AX = X/RR/X = B'B (B = R/X), which 
implies that b~bi = OJ that is, b i = 0 for every column b i of B. Hence 
AX=RB=O. 

A.4 POSITIVE-DEFINITE MATRICES 

A symmetric matrix A is said to be positive-definite (p.d.) if x' Ax > 0 for 
all x, x f= O. We note that a p.d. matrix is also p.s.d. 

A.4.l. The eigenvalues of a p.d. matrix A are all positive (proof is similar to 
A.3.1)j thus A is also nonsingular (A.2.6). 

A.4.2. A is p.d. if and only if there exists a nonsingular R such that A = RR/. 

Proof. This follows from A.3.3 with r = n. 

A.4.3. If A is p.d., then so is A -1. 

Proof. A-1 = (RR,)-l = (R/)-lR-1 = (R-1 ),R-1 = SS/, where S is 
nonsingular. The result then follows from A.4.2 above. 

A.4.4. If A 1s p.d., then rank(CAC') - rank(C). 

Proof. 

rank(CAC') - rank(CRR/C/) 

rank(CR) (by A.2.4) 

- rank(C) (by A.2.2). 

A.4.5. If A is an n x n p.d. matrix and C is p x n of rank p, then CAC' is p.d. 

Proof. x/CAC/x = y' Ay > 0 with equality {:} y = 0 {:} C/X = 
o {:} x = 0 (since the columns of C' are linearly independent). Hence 
x'CAC/x> 0 all x, x f= o. 

A.4.6. If X is n x p of rank p, then X'X is p.d. 

Proof. X/X/XX = y/y > 0 with equality {:} Xx = 0 {:} x = 0 (since the 
columns of X are linearly independent). 

A.4.7. A is p.d. if and only if all the leading minor determinants of A [including 
det(A) itself] are positive. 

Proof. If A is p.d., then 

det(A) = det(TAT') = det(A) = II Ai > 0 (byA.4.1). 
i 
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Let 

A, ~ ("~' ~~: ) ( Xl ) and Xr = 
arl arr Xr 

then 

x~Arxr = (x~, O')A ( x~ ) > 0 for Xr i- 0 

and Ar is positive definite. Hence if A is n x n, it follows from the 
argument above that det(Ar) > 0 (r = 1,2, ... , n). Conversely, suppose 
that all the leading minor determinants of A are positive; then we wish 
to show that A is p.d. Let 

A = ( ~n-I' C ) and R- (In-I, a ), c , ann - 0' -1 , 

where a = A;:;-':'I c. Then 

R'AR- ( An-I, 
- 0' , ~ ) , 

where 

k = det(R' AR)/ det(An_ l ) = det(R)2 det(A)/ det(An_ l ) > 0, 

since R is nonsingular. We now proceed by induction. The result is 
trivially true for n = 1; assume that it is true for matrices of orders 
up to n - l. If we set y = R-I X (x i- 0), x'AX = y'R'ARy = 
y~-IAn-IYn-1 +ky; > 0, since A n- l is p.d. by the inductive hypothesis 
and y i- O. Hence the result is true for matrices of order n. 

A.4.8. The diagonal elements of a p.d. matrix are all positive. 

Proof. Setting Xj = 8ij (j = 1,2, ... , n), we have 0 < x' Ax = aii. 

AA.9. If A is an n x n p.d. matrix and B is an n x n symmetric matrix, then 
A - tB is p.d. for It I sufficiently small. 

Proof. The ith leading minor determinant of A - tB is a function of t, 
which is positive when t = 0 (by AA.7 above). Since this function is 
continuous, it will be positive for It I < 8i for 8i sufficiently small. Let 
8 = minimum(8I , 82, ... ,8n ); then all the leading minor determinants 
will be positive for It I < 8, and the result follows from AA.7. 

AA.10. (Cholesky decomposition) If A is p.d., there exists a unique upper tri­
angular matrix R with positive diagonal elements such that A = R'R. 
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Proof. We proceed by induction and assume that the unique factoriza­
tion holds for matrices of orders up to n - 1. Thus 

A (";n-l, c ) 
c, ann 

( 
R~_lRn-l' c) 

c', ann' 

where R n- l is a unique upper triangular matrix of order n - 1 with 
positive diagonal elements. Since the determinant of a triangular matrix 
is the product of its diagonal elements, R n- l is nonsingular and we can 
define 

R = ( ~~-l' ~), 
where d = (R~_l)-lC and k = ann - did. Since R is unique and 
A = R/R, we have the required decomposition of A provided that 
k > O. Takil.1g determinants, 

det(A) = det(R/R) = det(R)2 = det(Rn_ l )2k, 

so that k is positive as det(A) > 0 (A.4.7) and det(Rn- l ) i- O. Thus 
the factorization also holds for positive definite matrices of order n. 

A.4.11. If L is positive-definite, then for any b, 

Proof. For all a, 

max {(h'b)2} = b'L -lb. 
h:h,tO h'Lh 

o < II(v - au)112 

a211ull2 - 2au'v + IIvll2 

( 
u'v)2 2 (u'v)2 

allull - lIull + Ilvll - Ilu112· 

Hence given u i- 0 and setting a = u'v/llull2, we have the Cauchy­
Schwartz inequality 

(U'V)2 < IIvl1 211 u l1 2 

with equality if and only if v = au for some a. Hence 

{ 
(u'v)2} I max = u u. 

v:v,to v/v 

Because L is positive-definite, there exists a nonsingular ma.trix R such 
that L = RR' (A.4.2). Setting v = R'h and u = R-lb leads to the 
required result. 
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A.4.12. (Square root of a positive-definite matrix) If A is p.d., there exists a p.d. 
square root Al/2 such that(A1/2)2 = A. 

Proof. Let A = TAT' be the spectral decomposition of A (A.l.4), where 
the diagonal elements of A are positive (by A.4.1). Let Al/2 = TAl/2T'; 
then TA1 / 2T'TA1/ 2T' = TAT' (since T'T = In). 

A.5 PERMUTATION MATRICES 

Let IIij be the identity matrix with its ith and jth rows interchanged. Then 
IIYj = I, so that llij is a symmetric and orthogonal matrix. Premultiplying 
any matrix by IIij will interchange its ith and jth rows so that IIij is an 
(elementary) permutation matrix. Postmultiplying a matrix by an elementary 
permutation matrix will interchange two columns. 

Any reordering of the rows of a matrix can be done using a sequence of 
elementary permutations 11= IIi;dK ... IIidl' where 

The orthogonal matrix II is called a permutation matrix. 

A.6 IDEMPOTENT MATRICES 

A matrix P is idempotent if p 2 = P. A symmetric idempotent matrix is 
called a projection matrix. 

A.6.l. If P is symmetric, then P is idempotent and of rank r if and only if it 
has r eigenvalues equal to unity and n - r eigenvalues equal to zero. 

Proof. Given p2 = P, the Px = AX (x 1= 0) implies that .>.x'x = 
x'Px = x'p2x = (Px),(Px) = A2 x i x, and A('>' - 1) = O. Hence the 
eigenvalues are 0 or 1 and, by A.2.6, P has r eigenvalues equal to unity 
and n - r eigenvalues equal to zero. Conversely, if the eigenvalues are 
o or 1, then we can assume without loss of generality that the first r 
eigenvalues are unity. Hence there exists an orthogonal matrix T such 
that 

T'PT = (10' ~) = A, or P = TAT'. 

Therefore, p 2 = TAT'TAT' = TA2T' = TAT' = P, and rank(P) = r 
(A.2.2). 

A.6.2. If P is a projection matrix, then tr(P) = rank(P). 

Proof. If rank(P) = r, then, by A.6.1 above, P has r unit eigenvalues 
and n - r zero eigenvalues. Hence tr(P) = r (by A.l.3). 
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A.6.3. If P is idempotent, so is 1 - P. 

Proof. (I - p)2 = 1 - 2P + p 2 = 1 - 2P + P = 1 - P. 

A.6.4. Projection matrices are positive-semidefinite. 

Proof. x/px = X/p2 X = (PX)' (Px) > O. 

A.6.5. If Pi (i = 1,2) is a projection matrix and P l - P 2 is p.s.d., then 

(a) P 1P 2 = P 2P l = P 2, 

(b) P l - P 2 is a projection matrix. 

Proof. (a) Given Plx -'- 0, then 0 < x/(P l - P 2)x = -X/ P 2 X. Since 
P 2 is positive-semidefinite (A.6.4), X

/ P 2 X = 0 and P 2x = o. Hence 
for any y, and x = (I - Pl)Y, P 2(1 - Pdy = 0 as Pl(1 - Pl)y = O. 
Thus P 2P 1Y = P 2Y, which implies that P 2P l = P 2 (A.l1.1). Taking 
transposes leads to P 1P 2 = P 2, and (a) is proved. 

(b) (Pl -P2Y = Pr-P1P2-P2Pl +P~ = P l -P2-P2+P2 = P l -P2. 

A.7 EIGENVALUE APPLICATIONS 

A.7.1. For conformable matrices, the nonzero eigenvalues of AB are the same 
as those of BA. The eigenvalues are identical for square matrices. 

Proof. Let A be a nonzero eigenvalue of AB. Then there exists u (u f= 0) 
such that ABu = AU; that is, BABu = ABu. Hence BAv = AV, 
where v = Bu f= 0 (as ABu f= 0), and A is an eigenvalue of BA. The 
argument reverses by interchanging the roles of A and B. For square 
matrices AB and BA have the same number of zero eigenvalues. 

A.7.2. Let A be an n x n symmetric matrix; then 

{
(x' AX)} 

max I = AMAX 
x:x#O x x 

and 
min {(Xl ~x) } = AMIN, 

x:x#O x x 

where AMIN and AMAX are the minimum and maximum eigenvalues of 
A. These values occur when x is the eigenvector corresponding to the 
eigenvalues AMIN and AMAX, respectively. 

Proof. Let A = TAT' be the spectral decomposition of A (d. A.1.4) 
and suppose that Al = AMAX. If Y f= 0 and x = Ty = (t l , ... , tn)y, 
then 
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with equality when Yl = 1, and Y2 = Y3 = ... = Yn = 0, that is, when 
x =t1 . The second result follows in a similar fashion. 

Since the ratio Xl AX/XiX is independent of the scale of x, we can set 
XiX = 1, giving us 

max (Xl Ax) = AMAX, 
x:x'x::::l 

with a similar result for AMIN. 

A.B VECTOR DIFFERENTIATION 

If d~ = (d~i) , then: 

A.8.1. 
d((31 a) 

d(3 = a. 

A.8.2. d((31 A(3) = 2A(3 
d(3 

(A symmetric). 

Proof. (1) is trivial. For (2), 

d((31 A(3) 

d(3i 

A.9 PATTERNED MATRICES 

A.9.l. If all inverses exist, 

d~. (~~",j~'~j) 
2aii(3i + 2 L aij (3j 

#1 

j 

2 (A(3);. 

where Bn = A22 - A21Al/ A 12 , B12 = A 1lA12 , B21 = A21A 
C l1 = All - A12A2l A 21 , C 12 = A12A221, and C 21 = A2l A 21 · 
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Proof. As the inverse of a matrix is unique, we only have to check that 
the matrix times its inverse is the identity matrix. 

A.9.2. Let W be an n x p matrix of rank p with columns w(j) (j = 1,2, ... ,p). 
Then 

(WW)j/ = [w(j) '(In - P j )w(j)j-1, 

where P j = WU)(W(j)'WU))-lWU)', and WU) is W with its jth 
column omitted. 

Proof. From the first equation of A.9.1, 

(W'W)-l 
( 

W(p)'W(p) 

w(p)'W(p) 

(;, ~), 

W(p)'w(p) 

w(p)'w(p) 

where h. (W'W);p1 = (w(p)'w(p) - w(p)'ppW(P))-l. Let II be the 
permutation matrix In with its jth and pth columns interchanged. Then 
II2 = In, so that II is a symmetric orthogonal matrix, and its own 
inverse. Hence 

(W'W)-l II(IIW'WII) -1 II 

where hI = (WW)j/. We have thus effectively interchanged w(p) and 
w(j), and W(p) and WU). The result then follows. 

A.9.3. (Sherman-Morrison-Woodbury formula) Let A and B be nonsingular 
m x m and n x m matrices, respectively, and let U be m x n and V be 
n x m. Then 

(A + UBV)-l = A-I - A -lUB(B + BVA -lUB)-lBVA -1. 

Proof. Multiply the right-hand side on the left by A+ UBV and simplify 
to get In. 

A.9.4. Setting B = In, U = ±u, and V = v' in A.9.3, we have 

and 

(A 
')-1 _ A-I _ A -luv' A-I 

+uv - , 
1 + v'A-1 u 

(A ')-1 A-l A -luv' A-I - uv = + -:---:-:---c;--
1- V'A-1 U 
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A.IO GENERALIZED INVERSE 

A generalized inverse of an m x n matrix B is defined to be any n x m matrix 
B- that satisfies the condition 

(a) BB-B = B. 

Such a matrix always exists (Searle [1971: Chapter 1]). The name gener­
alized inverse for B- defined by (a) is not accepted universally, although it 
is used fairly widely (e.g., Rao [1973], Rao and Mitra [1971a,b], Pringle and 
Rayner [1971]' Searle [1971]' Kruskal [1975]). Other names such as condi­
tional inverse, pseudo inverse, g-inverse, and p-inverse are also found in the 
literature, sometimes for B - defined above and sometimes for matrices de­
fined as variants of B -. It should be noted that B - is called "a" generalized 
inverse, not "the" generalized inverse, for B- is not unique. Also, taking the 
transpose of (a), we have 

B' = B'(B-),B', 

so that B-' is,ll. generalized inverse of B'; we can therefore write 

for some (B')-. 
If B- also satisfies three more conditions, namely, 

(b) B-BB- = B-, 

(c) (BB-), = BB-, 

(d) (B-B), = B-B, 

then B- is unique and it is called the Moore-Penrose inverse (Albert [1972]); 
some authors call it the pseudo inverse or the p-inverse. We denote this 
inverse by B+. 

If the regression matrix X is less than full rank, the normal equations 
X'X(3 = X'Y do not have a unique solution. Setting B = X'X and c = X'Y, 
we have 

c 

and B - c is a solution of B(3 = c. (In fact, it can be shown that every solution 
of B(3 = c can be expressed in the form B-c for some B-.) There are several 
ways of computing a suitable B- for the symmetric matrix B. One method 
is as follows: 

(i) Delete p - r rows and the corresponding columns so as to leave an r x r 
matrix that is nonsingular; this can always be done, as rank(X'X) = 
rank(X) = r. 



470 SOME MATRIX ALGEBRA 

(ii) Invert the '{' x '{' matrix. 

(iii) Obtain B- by inserting zeros into the inverse to correspond to the rows 
and columns originally deleted. For example, if 

B = ( Bll 
B21 

and Bll is an '{' x '{' nonsingular matrix, then 

We saw above that 

B-c 

(X'X)-X'Y 

X*Y , 

say, is a solution of the normal equations. Because 

(X+)'X'X (XX+)'X 

XX+X [condition (c)] 

X [condition (a)], 

we can mUltiply (X'X)(X'X)-(X'X) = X'X on the left by (X+)' and obtain 

X [(X'X)-X'1 X = X. 

Thus X*, the matrix in the square brackets, is a generalized inverse of X, as 
it satisfies condition (a); using similar arguments, we find that it also satisfies 
(b) and (c). In fact, a generalized inverse of X satisfies (a), (b), and (c) if and 
only if it can be expressed in the form (X'X)-X' (Pringle and Rayner [1971: 
p. 26]). However, any X- satisfying just (a) and (c) will do the trick: 

X'(XX-)Y 

X' (XX-),Y 

X' (X-),X'Y 
[by (c)] 

X'Y [by (a) transposed], 

and X-Y is a solution of the normal equations. In particular, X+y is the 
unique solution which minimizes /3'/3 (Peters and Wilkinson [1970]). 

Finally, we note that e = x/3 = X(X'X)-X'Y, so that by B.1.8, P 
X(X'X)-X' is the unique matrix projecting lRn onto n = C(X). 
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A.ll SOME USEFUL RESULTS 

A.ll.l. If Ax = 0 for all x, then A = o. 
Proof. Setting Xk = Oik (k = 1,2, ... ,n), we have Ax = ai = 0 where 
ai is the ith column of A. 

A.1l.2. If A is symmetric and x' Ax = 0 for all x, then A = O. 

Proof. Setting Xk = Oik (k = 1,2, ... , n), then aii = O. If we set 
Xk = Oik + Ojk (k = 1,2, .. . ,n), then x'Ax = 0 => aii + 2aij + ajj 

o => aij = O. 

A.1l.3. If A is symmetric and nonsingular, then 

f3' Af3 - 2b' f3 = (f3 - A -lb)' A(f3 - A -lb) - b' A -lb. 

A.ll.4. For all a and b: 

(a) Ila+ bll < Iiall + Ilbll· 
(b) Iia - bll > illall -llblli· 

A.12 SINGULAR VALUE DECOMPOSITION 

Let X be an n x p matrix. Then X can be expressed in the form 

X = U:EV', 

where U is an n x p matrix consisting of p orthonormalized eigenvectors 
associated with the p largest eigenvalues of XX', V is a p x p orthogo­
nal matrix consisting of the orthonormalized eigenvectors of XX', and :E = 
diag( a1, a2, ... , ap ) is a p x p diagonal matrix. Here a1 > a2 > ... > a p > 0, 
called the singular values of X, are the square roots of the (nonnegative) 
eigenvalues of X'X. 
Proof. Suppose that rank(X'X) = rank(X) = l' (A.2.4). Then there exists a 
p x p orthogonal matrix T such that 

X'XT =TA, 

where A = diag(ar, a~, ... , a;, 0, ... ,0), ar > O. Let 

(i = 1,2, ... ,1'); 

then X'Si = a;lX'Xti = aiti and XX'Si = aiXti arsi. Thus the 
Si (i = 1, 2, ... , 1') are eigenvectors of XX' corresponding to the eigenval­
ues ar (i = 1,2, ... ,1'). Now sisi = 1, and since the eigenvectors cor­
responding to different eigenvectors of a symmetric matrix are orthogonal, 
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the Si are orthonormal. By A.2.3 and A.2.4 there exists an orthonormal set 
{sr+l,Sr+2,.·. ,sn} spanning N(XX') (= N(X')). But N(X') ..L C(X) and 
Si E C(X) (i = 1,2, ... , r) so that S = (Sl' S2, ... , sn) is an n x n orthogonal 
matrix. Hence 

aiS~Sj (i = 1,2, ... , r), 
o (i=r+1, ... ,n) 

and S'XT = ( ~ ). Finally, 

X = S ( ~ ) T' = U~V', 

where U is the first p columns of S and V = T. 
When X has full rank (i.e., r = p), then the singular values of X are 

al > a2 > ... > a p > o. 

A.13 SOME MISCELLANEOUS STATISTICAL RESULTS 

A.13.1. For any random variable X, "{2 > -2, where "{2 = (p,4/ p,~) - 3. 

Proof. Let p, = E[X]i then 

and "(2 + 2 > o. 

o < var[(X - p,)2] 
_ E[(x - p,)4]_ {E[(X _ p,)2]}2 

2 
P,4 - P,2 

2 (P,4 ) 
P,2 p'~ - 3 + 2 

P,~b2 + 2) 

A.13.2. If X ~ N(O,a2 ), then var[X2] = 2a2 . 

The result follows by setting "{2 = 0 in the proof of A.13.1. 

A.13.3. Let X be a nonnegative nondegenerate random variable (i.e., not iden­
tically equal to a constant). If the expectations exist, then 

Proof. Let f(x) = X-I and let P, = E[X] (> 0, since X is not identically 
zero). Taking a Taylor expansion, we have 
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where Xo lies between X and p,. Now !"(Xo) = 2Xo3 > 0, so that 
E[(X - p,)2 !"(Xo)] > O. Hence 

E[X-1 ] = E[f(X») > j(p,) = (E[X))-l. 

A.13.4. If X is a random variable, then from A.13.3 we have 

f(X) ~ f(p,) + (X - p,)1'(p,) 

and 
var[J (X») ~ E[f(X) - f(p,»)2 ~ var f[X)(f' (p,»2. 

A.13.5. (Multivariate t-distribution) An m x 1 vector of random variables Y = 
(Y1 , Y2 , .•• , Ym)'is said to have a multivariate t-distribution if its prob­
ability density function is given by 

fey) = rc~[11 + m)) [1 -l( )'~-l( )]-(v+m)/2 
(7l'1I)m/2f(~II)det(~)l/2 +V y-p, y-p, , 

where ~,. is an m x m positive-definite matrix. We shall write Y '" 
tm (lI, p" ~). This distribution has the following properties: 

(a) If ~ = (lTij), then (Yr - P,r)f.';lTrr ~ tv' 
(b) (Y _p,)'~-l(y -p,) '" Fm,v. 

A.13.6. The random variable X is said to have a beta(a, b) distribution if its 
density function is given by 

f(x) = 1 x a - 1(1_ x)b-l, 0 < X < 1, 
B(a, b) 

where B(a,b) = rca)rcb)/f(a + b). 

A.14 FISHER SCORING 

Consider a model with log likelihood lb). Then Fisher's method of scoring 
for finding i, the maximum-likelihood estimate of "(, is given by the iterative 
process 

"Y(m+l) = "(m) _ {E [ 82
1 ) }-l (~) . 

8"(8"(' -y(=l 8"( -y(=l 

This algorithm can be regarded as a Newton method for maximizing lb), but 
with the Hessian replaced by its expected value, the (expected) information 
matrix. The latter matrix is usually simpler and more likely to be positive 
definite because of the relationship 

-E [ 8
2

1 J -E [~~J 
8"( 8"(' - 8"( 8"(' ' 

which holds under fairly general conditions. 





Appendix B 

Orthogonal Projections 

B.1 ORTHOGONAL DECOMPOSITION OF VECTORS 

B.l.l. Given n, a vector subspace oflRn (n-dimensional Euclidean space), every 
n x 1 vector y can be expressed uniquely in the form y = U + v, where 
U E n and v E nl-. 

Proof. Suppose that there are two such decompositions y = Ui + Vi 

(i = 1,2); then (Ul - U2) + (Vl - V2) = O. Because (Ul - U2) E nand 
(Vl - V2) E nl-, we must have Ul = U2 and Vl = V2. 

B.l.2. If U = Pny, then Pn is unique. . 

Proof. Given two such matrices Pi (i = 1,2), then since U is unique for 
every y, (Pl - P 2)y = 0 for all y; hence (Pl - P 2 ) = 0 (A.1l.1). 

B.l.3. The matrix Pn can be expressed in the form Pn = TTl, where the 
columns of T form an orthogonal basis for n. 
Proof. Let T = (01, 02,.' . , Or), where l' is the dimension of n. Expand 
the set of Oi to give an orthonormal basis for lRn , namely, 01, ... , Or, 

0r+l, ... , an. Then 

n r n 

y = LCiOi = LCiOi + L CiOi = U + v, 
i=l i=l i=r+l 

475 



476 ORTHOGONAL PROJECTIONS 

where u E n and v E nl-. But O~Oj = Oij, so that o~y = Ci. Hence 

U = (Oi,"" Or) ... = TT'y. 
( 
o~y ) 

o~y 

By B.1.2, Po = TT'. 

B.1.4. Po is symmetric and idempotent. 

Proof. Po = TT', which is obviously symmetric, and 

ph = TT'TT' = TIr T' = TT' = Po. 

B.1.5. C(Po) = n. 

Proof. Clearly, C(Po) c n since Po projects onto n. Conversely, if 
x E n, then x = Pox E C(P). Thus the two spaces are the same. 

B.1.6. In - Po represents an orthogonal projection on nl-. 

Proof. From the identity y = PoY + (In - Po)y we have that v 
(In - Po)y. The results above then apply by interchanging the roles of 
nand nl-. 

B.1.7. If P is a symmetric idempotent n x n matrix, then P represents an 
orthogonal projection onto C(P). 

Proof. Lety = Py+(In-P)Y. Then (Py)'(In-P)y -:- y'(p_p2)y = 0, 
so that this decomposition gives orthogonal components of y. The result 
then follows from B.1.5. 

B.1.8. If n = C(X), then Po = X(X'X)-X', where (X'X)- is any generalized 
inverse of X'X (Le., if B = X'X, then BB-B = B). 

Proof. Let c = X'Y = B,B. Then B(B-c) = BB-B,B = B,B and 
{J = B-c is a solution of B,B = c, that is, of X'X,B = X'Y. Hence 
writing iJ = X(3, we have Y = iJ + (Y - iJ), where 

iJ' (Y - iJ) {J'X' (Y - X'X{J) 

{J'(X'Y - X'X{J) 

o. 
Thus we have an orthogonal decomposition of Y such that iJ E C eX) 
and (Y - iJ) J.. C(X). Since iJ = X{J = X(X'X)-X'Y, we have that 
Po = X(X'X)-X' (by B.1.2). 

B.1.9. When the columns of X are linearly independent in B.1.8, then Po = 
X(X'X)-l X'. 
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Proof. Although B.lo9 follows from B.lo8, the result can be proved 
directly since X = TC for nonsingular C (by B.lo3) and 

Po = XC-1(C-1),X' = X(C'e)-lX' = X(X'X)-lX'. 

B.2 ORTHOGONAL COMPLEMENTS 

.B.2.lo If N(e) is the null space (kernel) of the matrix C, then N(e) = 
{C(C')}1-. 

Proof. If x E N(C), then Cx = 0 and x is orthogonal to each row 
of C. Hence x ..L C(C'). Conversely, if x ..L C(C'), then Cx = 0 and 
x E N(e). 

B.2.2. (n1 n n 2 )1- = nf + nt· 

Proof. Let C i be such that n i = N(C i ) (i = 1,2). Then 

{N ( g~ ) } 1-

C(C~, C~) (by B.2.1) 

C(C~) + C(C~) 
nt +nt· 

B.3 PROJECTIONS ON SUBS PACES 

B.3.lo Given wen, then POPw = PwPo = P w. 

Proof. Since wen and w = C(Pw) (by B.lo5), we have POPw = P w. 
The result then follows by the symmetry of P w and Pn. 

B.3.2. Pn - P w = Pw.Lnn· 

Proof. Consider PnY = pwY + (Pn - Pw)Y· Now PnY and pwY 
belong to n, so that (Po - Pw)Y E n. Hence the preceding equation 
represents an orthogonal decomposition of n into wand w1- n n since 
Pw(Po - P w) = 0 (by B.3.1). 

B.3.3. If Al is any matrix such that w = N(AI) n n, then w1- nn = C(PnAD. 

Proof. 

{nnN(Ad}1-nn 

{n1- + C(A~)} n n (by B.2.1 and B.2.2). 
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If X belongs to the right-hand side, then 

X = Pnx = Pn{(In - Pn)o: + A~,6} = PnA~,8 E C(PnAl). 

Conversely, if X E C(PnA~), then x E C(Pn) = n. Also, if z E w, then 
x'z = ,8' AIPnz = ,6' Aiz = 0, that is, x E w.L. Thus x E w.L n n. 

B.3.4. If Al is a q x n matrix of rank q, then rank(PnAD = q if and only if 
C(Al) n n.L = o. 
Proof. rank(PnA~) < rankAI (by A.2.1). Let the rows of Al be a~ 
(i = 1,2, ... , q) and suppose that rank(PnAl) < q. Then the columns 
of PnA~ are linearly dependent, so that ~i=1 CiPnai = 0; that is, 
there exists a vector ~i Ciai E C (A~) that is perpendicular to n. Hence 
C(A~) n n.L i 0, which is a contradiction. [By selecting the linearly 
independent rows of Al we find that the result above is true if Al is 
k x n (k > q).] 
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C.I PERCENTAGE POINTS OF THE BONFERRONI t-STATISTIC 

Tabulation of t~/(2k) for different values of Q, k, and v, where 

Pr[T > to!/(2k)) = ~ 
- v 2k 

and T has the t-distribution with v degrees of freedom (see Section 5.1.1). 

Q = 0.05 

k \ v: 5 7 10 12 15 20 24 30 40 60 120 00 

2 3.17 2.84 2.64 2.56 2.49 2.42 2.39 2.36 2.33 2.30 2.27 2.24 
3 3.54 3.13 2.87 2.78 2.69 2.61 2.58 2.54 2.50 2.47 2.43 2.39 
4 3.81 3.34 3.04 2.94 2.84 2.75 2.70 2.66 2.62 2.58 2.54 2.50 
5 4.04 3.50 3.17 3.06 2.95 2.85 2.80 2.75 2.71 2.66 2.62 2.58 
6 4.22 3.64 3.28 3.15 3.04 2.93 2.88 2.83 2.78 2.73 2.68 2.64 
7 4.38 3.76 3.37 3.24 3.11 3.00 2.94 2.89 2.84 2.79 2.74 2.69 
8 4.53 3.86 3.45 3.31 3.18 3.06 3.00 2.94 2.89 2.84 2.79 2.74 
9 4.66 3.95 3.52 3.37 3.24 3.11 3.05 2.99 2.93 2.88 2.83 2.77 

10 4.78 4.03 3.58 3.43 3.29 3.16 3.09 3.03 2.97 2.92 2.86 2.81 
15 5.25 4.36 3.83 3.65 3.48 3.33 3.26 3.19 3.12 3.06 2.99 2.94 
20 5.60 4.59 4.01 3.80 3.62 3.46 3.38 3.30 3.23 3.16 3.09 3.02 
25 5.89 4.78 4.15 3.93 3.74 3.55 3.47 3.39 3.31 3.24 3.16 3.09 
30 6.15 4.95 4.27 4.04 3.82 3.63 3.54 3.46 3.38 3.30 3.22 3.15 
35 6.36 5.09 4.37 4.13 3.90 3.70 3.61 3.52 3.43 3.34 3.27 3.19 
40 6.56 5.21 4.45 4.20 3.97 3.76 3.66 3.57 3.48 3.39 3.31 3.23 
45 6.70 5.31 4.53 4.26 4.02 3.80 3.70 3.61 3.51 3.42 3.34 3.26 
50 6.86 5.40 4.59 4.32 4.07 3.85 3.74 3.65 3.55 3.46 3.37 3.29 

100 8.00 6.08 5.06 4.73 4.42 4.15 4.04 3.90 3.79 3.69 3.58 3.48 
250 9.68 7.06 5.70 5.27 4.90 4.56 4.4* 4.2" 4.1* 3.97 3.83 3.72 
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a = 0.01 

k \ v: 5 7 10 12 15 20 24 30 40 60 120 00 

2 4.78 4.03 3.58 3.43 3.29 3.16 3.09 3.03 2.97 2.92 2.86 2.81 
3 5.25 4.36 3.83 3.65 3.48 3.33 3.26 3.19 3.12 3.06 2.99 2.94 
4 5.60 4.59 4.01 3.80 3.62 3.46 3.38 3.30 3.23 3.16 3.09 3.02 
5 5.89 4.78 4.15 3.93 3.74 3.55 3.47 3.39 3.31 3.24 3.16 3.09 
6 6.15 4.95 4.27 4.04 3.82 3.63 3.54 3.46 3.38 3.30 3.22 3.15 
7 6.36 5.09 4.37 4.13 3.90 3.70 3.61 3.52 3.43 3.34 3.27 3.19 
8 6.56 5.21 4.45 4.20 3.97 3.76 3.66 3.57 3.48 3.39 3.31 3.23 
9 6.70 5.31 4.53 4.26 4.02 3.80 3.70 3.61 3.51 3.42 3.34 3.26 

10 6.86 5.40 4.59 4.32 4.07 3.85 3.74 3.65 3.55 3.46 3.37 3.29 
15 7.51 5.79 4.86 4.56 4.29 4.03 3.91 3.80 3.70 3.59 3.50 3.40 
20 8.00 6.08 5.06 4.73 4.42 4.15 4.04 3.90 3.79 3.69 3.58 3.48 
25 8.37 6.30 5.20 4.86 4.53 4.25 4.1* 3.98 3.88 3.76 3.64 3.54 
30 8.68 6.49 5.33 4.95 4.61 4.33 4.2* 4.13 3.93 3.81 3.69 3.59 
35 8.95 6;67 5.44 5.04 4.71 4.39 4.3* 4.26 3.97 3.84 3.73 3.63 
40 9.19 6.83 5.52 5.12 4.78 4.46 4.3* 4.1* 4.01 3.89 3.77 3.66 
45 9.41 6.93 5.60 5.20 4.84 4.52 4.3* 4.2* 4.1* 3.93 3.80 3.69 
50 9.68 7.06 5.70 5.27 4.90 4.56 4.4* 4.2* 4.1* 3.97 3.83 3.72 

100 11.04 7.80 6.20 5.70 5.20 4.80 4.7* 4.4* 4.5* 4.00 3.89 
250 13.26 8.83 6.9* 6.3* 5.8* 5.2* 5.0* 4.9* 4.8* 4.11 

SOURCE: Dunn [1961: Tables 1 and 2]. Reprinted with permission from the 
Journal of the American Statistical Association. Copyright (1961) by the 
American Statistical Association. All rights reserved. 
*Obtained by graphical interpolation. 
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C.2 DISTRIBUTION OF THE LARGEST ABSOLUTE VALUE OF k 
STUDENT t VARIABLES 

Tabulation of u~,v,p for different values of p, a, k, and v, where 

pr[U > uk,v,pl = a 

and U is the maximum absolute value of k Student t-variables, each based 
on v degrees of freedom and having a common pairwise correlation p (see 
Section 5.1.1). 

p = 0.0 

v \ k: 1 2 3 4 5 6 8 10 12 15 20 

a = 0.10 
3 2.353 2.989 3.369 3.637 3.844 4.011 4.272 4.471 4.631 4.823 5.066 
4 2.132 2.662 2.976 3.197 3.368 3.506 3.722 3.887 4.020 4.180 4.383 
5 2.015 2.491 2.769 2.965 3.116 3.239 3.430 3.576 3.694 3.837 4.018 
6 1.943 2.385 2.642 2.822 2.961 3.074 3.249 3.384 3.493 3.624 3.790 
7 1.895 2.314 2.556 2.726 2.856 2.962 3.127 3.253 3.355 3.478 3.635 
8 1.860 2.262 2.494 2.656 2.780 2.881 3.038 3.158 3.255 3.373 3.522 
9 1.833 2.224 2.447 2.603 2.723 2.819 2.970 3.086 3.179 3.292 3.436 

10 1.813 2.193 2.410 2.562 2.678 2.741 2.918 3.029 3.120 3.229 3.368 
11 1.796 2.169 2.381 2.529 2.642 2.733 2.875 2.984 3.072 3.178 3.313 
12 1.782 2.149 2.357 2.501 2.612 2.701 2.840 2.946 3.032 3.136 3.268 
15 1.753 2.107 2.305 2.443 2.548 2.633 2.765 2.865 2.947 3.045 3.170 
20 1.725 2.065 2.255 2.386 2.486 2.567 2.691 2.786 2.863 2.956 3.073 
25 1.708 2.041 2.226 2.353 2.450 2.528 2.648 2.740 2.814 2.903 3.016 
30 1.697 2.025 2.207 2.331 2.426 2.502 2.620 2.709 2.781 2.868 2.978 
40 1.684 2.006 2.183 2.305 2.397 2.470 2.585 2.671 2.741 2.825 2.931 
60 1.671 1.986 2.160 2.278 2.368 2.439 2.550 2.634 2.701 2.782 2.884 
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p= 0.0 

v \ k: 1 2 3 4 5 6 8 10 12 15 20 

a = 0.05 
3 3.183 3.960 4.430 4.764 5.023 5.2335.562 5.812 6.015 6.259 6.567 
4 2.7773.3823.7454.0034.2034.3664.621 4.817 4.975 5.166 5.409 
5 2.571 3.091 3.3993.619 3.789 3.9284.145 4.312 4.447 4.611 4.819 
6 2.4472.9163.1933.3893.541 3.6643.858 4.008 4.129 4.275. 4.462 
7 2.365 2.800 3.056 3.236 3.376 3.489 3.668 3.805 3.916 4.051 4.223 
8 2.3062.7182.9583.128 3.258 3.365 3.532 3.660 3.764 3.891 4.052 
9 2.2622.6572.8853.046 3.171 3.272 3.430 3.552 3.651 3.770 3.923 

10 2.228 2.609 2.829 2.984 3.103 3.199 3.351 3.468 3.562 3.677 3.823 
11 2.201 2.5'71 2.784 2.933 3.048 3.142 3.288 3.400 3.491 3.602 3.743 
12 2.179 2.540 2.747 2.892 3.004 3.095 3.236 3.345 3.433 3.541 3.677 
15 2.132 2.474 2.669 2.805 2.910 2.9943.126 3.227 3.309 3.409 3.536 
20 2.0862.411 2.5942.7222.8192.8983.020 3.114 3.190 3.282 3.399 
25 2.0602.3742.551 2.673 2.766 2.842 2.959 3.048 3.121 3.208 3.320 
30 2.042 2.350 2.522 2.641 2.732 2.805 2.918 3.005 3.075 3.160 3.267 
40 2.021 2.321 2.4882.6032.6902.7602.869 2.952 3.019 3.100 3.203 
60 2.000 2.292 2.454 2.564 2.649 2.716 2.821 2.900 2.964 3.041 3.139 

a = 0.01 
3 5.841 7.127 7.914 8.479 8.919 9.2779.838 10.269 10.61611.034 11.559 
4 4.604 5.462 5.985 6.362 6.656 6.897 7.274 7.565 7.801 8.087 8.451 
5 4.0324.700 5.106 5.398 5.625 5.812 6.106 6.333 6.519 6.744 7.050 
6 3.7074.271 4.611 4.855 5.046 5.202 5.449 5.640 5.796 5.985 6.250 
7 3.5003.9984.2964.5104.6774.8145.031 5.198 5.335 5.502 5.716 
8 3.3553.8094.0804.2734.4244.5474.742 4.894 5.017 5.168 5.361 
9 3.2503.672 3.922 4.100 4.239 4.353 4.532 4.672 4.785 4.924 5.103 

10 3.169 3.5673.801 3.969 4.098 4.205 4.373 4.503 4.609 4.739 4.905 
11 3.1063.485 3.707 3.865 3.9884.0874.247 4.370 4.470 4.593 4.750 
12 3.0553.4183.6313.7823.8993.9954.146 4.263 4.359 4.475 4.625 
15 2.9473.279 3.472 3.608 3.714 3.800 3.935 4.040 4.125 4.229 4.363 
20 2.845 3.149 3.323 3.446 3.541 3.617 3.738 3.831 3.907 3.999 4.117 
25 2.7883.075 3.239 3.354 3.442 3.5143.626 3.713 3.783 3.869 3.978 
30 2.7503.0273.1853.295 3.379 3.448 3.555 3.637 3.704 3.785 3.889 
40 2.705 2.969 3.119 3.223 3.303 3.367 3.468 3.545 3.607 3.683 3.780 
60 2.660 2.913 3.055 3.154 3.229 3.290 3.384 3.456 3.515 3.586 3.676 
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p = 0.2 

v \ k: 1 2 3 4 5 6 8 10 12 15 20 

a = 0.10 
3 2.353 2.978 3.347 3.607 3.806 3.967 4.216 4.405 4.557 4.739 4.969 

, 4 2.132 2.653 2.958 3.172 3.337 3.470 3.676 3.833 3.960 4.112 4.303 
5 2.015 2.482 2.753 2.943 3.089 3.207 3.390 3.530 3.642 3.778 3.948 
6 1.943 2.377 2.627 2.802 2.937 3.045 3.213 3.342 3.446 3.570 3.728 
7 1.895 2.306 2.542 2.707 2.833 2.935 3.093 3.214 3.312 3.429 3.577 
8 1.860 2.255 2.481 2.638 2.759 2.856 3.007 3.122 3.214 3.326 3.468 
9 1.833 2.217 2.435 2.586 2.702 2.796 2.941 3.052 3.141 3.248 3.384 

10 1.813 2.187 2.399 2.546 2.658 2.749 2.889 2.997 3.083 3.187 3.319 
11 1.796 2.163 2.370 2.513 2.623 2.711 2.848 2.952 3.036 3.138 3.266 
12 1.782 2.143 2.346 2.487 2.594 2.680 2.814 2.916 2.998 3.097 3.222 
15 1.753 2.101 2.295 2.429 2.531 2.613 2.741 2.837 2.915 3.009 3.128 
20 1.725 2.060 2.245 2.373 2.470 2.548 2.669 2.761 2.835 2.923 3.036 
25 1.708 2.036 2.217 2.341 2.435 2.510 2.627 2.716 2.787 2.873 2.981 
30 1.697 2.020 2.198 2.319 2.412 2.485 2.600 2.686 2.756 2.839 2.945 
40 1.684 2.000 2.174 2.293 2.383 2.455 2.566 2.649 2.717 2.798 2.900 
60 1.671 1.981 2.151 2.267 2.354 2.424 2.532 2.613 2.679 2.757 2.856 

a = 0.05 
3 3.183 3.946 4.403 4.727 4.976 5.178 5.492 5.731 5.923 6.154 6.445 
4 2.777 3.371 3.725 3.975 4.168 4.325 4.569 4.755 4.906 5.087 5.316 
5 2.571 3.082 3.383 3.596 3.760 3.893 4.102 4.261 4.390 4.545 4.742 
6 2.447 2.908 3.178 3.369 3.516 3.635 3.821 3.964 4.079 4.218 4.395 
7 2.365 2.793 3.042 3.218 3.353 3.463 3.634 3.766 3.872 4.000 4.163 
8 2.306 2.711 2.946 3.111 3.238 3.340 3.501 3.624 3.724 3.844 3.997 
9 2.262 2.650 2.874 3.031 3.151 3.249 3.402 3.518 3.613 3.727 3.873 

10 2.228 2.603 2.818 2.969 3.084 3.178 3.324 3.436 3.527 3.637 3.776 
11 2.201 2.565 2.774 2.919 3.031 3.122 3.263 3.371 3.458 3.564 3.698 
12 2.179 2.535 2.738 2.879 2.988 3.075 3.212 3.317 3.402 3.504 3.635 
15 2.132 2.469 2.660 2.793 2.895 2.977 3.105 3.203 3.282 3.377 3.499 
20 2.086 2.406 2.586 2.711 2.806 2.883 3.002 3.093 3.166 3.255 3.367 
25 2.060 2.370 2.543 2.663 2.754 2.828 2.942 3.029 3.099 3.183 3.291 
30 2.042 2.346 2.515 2.632 2.721 2.792 2.903 2.987 3.055 3.137 3.241 
40 2.021 2.317 2.481 2.594 2.679 2.748 2.855 2.936 3.001 3.097 3.179 
60 2.000 2.288 2.447 2.556 2.639 2.705 2.808 2.886 2.948 3.023 3.119 
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p = 0.2 

l/ \ k: 1 2 3 4 5 6 8 10 12 15 20 

a = 0.01 
3 5.841 7.104 7.871 8.418 8.841 9.184 9.721 10.132 10.462 10.860 11.360 
4 4.6045.4475.9586.3236.6076.8387.200 7.477 7.702 7.973 8.316 
5 4.0324.690 5.085 5.369 5.589 5.769 6.051 6.268 6.444 6.658 6.930 
6 3.7074.2634.5954.8325.0175.1685.405 5.588 5.736 5.917 6.147 
7 3.500 3.991 4.283 4.491 4.6534.786 4.994 5.155 5.286 5.445 5.648 
8 3.355 3.803 4.068 4.257 4.403 4.523 4.711 4.857 4.975 5.119 5.303 
9 3.2503.6663.911 4.0864.2214.3314.505 4.639 4.748 4.881 5.051 

10 3.1693.562 3.7923.9564.0824.1864.348 4.474 4.576 4.700 4.859 
11 3.1063.480 3.699 3.854 3.9744.071 4.225 4.344 4.440 4.558 4.708 
12 3.055 3.414 3.623 3.771 3.886 3.979 4.126 4.239 4.331 4.443 4.587 
15 2.9473:276 3.4663.5993.7033.7873.919 4.020 4.103 4.204 4.332 
20 2.845 3.146 3.318 3.439 3.532 3.607 3.725 3.816 3.890 3.980 4.094 
25 2.7883.072 3.235 3.348 3.435 3.506 3.616 3.701 3.769 3.853 3.959 
30 2.750 3.025 3.181 3.289 3.373 3.440 3.545 3.626 3.692 3.771 3.872 
40 2.7052.967 3.115 3.218 3.2973.3613.460 3.536 3.598 3.672 3.767 
60 2.660 2.911 3.052 3.150 3.224 3.285 3.378 3.449 3.507 3.577 3.666 

p = 0.4 

l/ \ k: 1 2 3 4 5 6 8 10 12 15 20 

a = 0.10 
3 2.3532.941 3.2823.5193.7003.8454.069 4.237 4.373 4.534 4.737 
4 2.132 2.623 2.905 3.101 3.250 3.370 3.556 3.696 3.809 3.943 4.113 
5 2.015 2.455 2.706 2.880 3.013 3.120 3.284 3.410 3.510 3.630 3.781 
6 1.943 2.352 2.584 2.745 2.867 2.965 3.117 3.233 3.325 3.436 3.575 
7 1.8952.283 2.502 2.653 2.7682.8613.004 3.112 3.199 3.304 3.435 
8 1.8602.2332.442 2.587 2.697 2.786 2.922 3.026 3.109 3.208 3.334 
9 1.8332.195 2.398 2.538 2.644 2.729 2.860 2.960 3.040 3.136 3.257 

10 1.8132.166 2.363 2.499 2.6022.6842.812 2.909 2.986 3.079 3.196 
11 1. 796 2.142 2.335 2.468 2.568 2.649 2.773 2.867 2.943 3.034 3.148 
12 1.7822.1232.3122.442 2.541 2.620 2.742 2.834 2.908 2.996 3.108 
15 1.7532.081 2.2632.3872.481 2.5562.673 2.760 2.831 2.916 3.022 
20 1.7252.041 2.2162.3342.4242.4962.606 2.690 2.757 2.837 2.938 
25 1.7082.0182.1882.3032.3902.4602.567 2.649 2.713 2.791 2.888 
30 1.697 2.003 2.169 2.283 2.368 2.437 2.542 2.621 2.684 2.760 2.856 
40 1.684 1.9842.1462.2572.341 2.4082.510 2.587 2.650 2.723 2.816 
60 1.671 1.965 2.1242.2332.315 2.379 2.479 2.554 2.615 2.686 2.776 
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p = 0.4 

v \ k: 1 2 3 4 5 6 8 10 12 15 20 

0: = 0.05 
3 3.183 3.902 4.324 4.620 4.846 5.028 5.309 5.522 5.693 5.898 6.155 
4 2.777 3.337 3.665 3.894 4.069 4.210 4.430 4.596 4.730 4.891 5.093 
5 2.571 3.053 3.333 3.528 3.677 3.798 3.986 4.128 4.243 4.381 4.555 
6 2.447 2.883 3.134 3.309 3.443 3.552 3.719 3.847 3.950 4.074 4.230 
7 2.365 2.770 3.002 3.164 3.288 3.388 3.543 3.661 3.756 3.870 4.014 
8 2.3062.6902.9093.061 3.177 3.271 3.4173.528 3.617 3.725 3.860 
9 2.262 2.630 2.839 2.984 3.095 3.184 3.323 3.429 3.513 3.616 3.745 

10 2.228 2.584 2.785 2.925 3.032 3.117 3.250 3.352 3.433 3.531 3.655 
11 2.201 2.5472.742 2.877 2.980 3.063 3.192 3.290 3.369 3.464 3.583 
12 2.179 2.5172.7072.8382.939 3.020 3.145 3.240 3.317 3.409 3.525 
15 2.132 2.452 2.632 2.756 2.850 2.927 3.042 3.133 3.205 3.291 3.400 
20 2.086 2.391 2.560 2.677 2.766 2.837 2.947 3.031 3.098 3.178 3.280 
25 2.060 2.355 2.520 2.631 2.718 2.786 2.891 2.971 3.036 3.113 3.211 
30 2.042 2.332 2.492 2.602 2.685 2.751 2.854 2.933 2.995 3.070 3.165 
40 2.021 2.304 2.459 2.565 2.646 2.711 2.810 2.885 2.945 3.018 3.110 
60 2.000 2.275 2.426 2.530 2.608 2.670 2.766 2.838 2.897 2.966 3.054 

0: = 0.01 
3 5.841 7.033 7.7408.240 8.623 8.932 9.414 9.780 10.074 10.428 10.874 
4 4.604 5.401 5.874 6.209 6.467 6.675 7.000 7.249 7.448 7.688 7.991 
5 4.032 4.655 5.024 5.284 5.485 5.648 5.902 6.096 6.253 6.442 6.682 
6 3.7074.235 4.545 4.764 4.934 5.071 5.285 5.449 5.582 5.742 5.946 
7 3.500 3.9674.241 4.435 4.583 4.704 4.893 5.038 5.155 5.297 5.477 
8 3.355 3.783 4.031 4.207 4.343 4.452 4.624 4.755 4.861 4.990 5.154 
9 3.250 3.648 3.879 4.041 4.167 4.268 4.427 4.549 4.647 4.766 4.918 

10 3.169 3.545 3.763 3.916 4.034 4.129 4.277 4.392 4.484 4.596 4.739 
11 3.106 3.464 3.671 3.817 3.929 4.019 4.160 4.269 4.357 4.463 4.598 
12 3.055 3.400 3.598 3.737 3.844 3.931 4.066 4.170 4.254 4.356 4.484 
15 2.9473.263 3.444 3.571 3.668 3.746 3.869 3.962 4.039 4.131 4.247 
20 2.845 3.135 3.301 3.415 3.504 3.574 3.685 3.769 3.837 3.921 4.026 
25 2.788 3.063 3.219 3.327 3.410 3.477 3.581 3.660 3.725 3.802 3.900 
30 2.750 3.0163.1663.2703.349 3.415 3.514 3.590 3.650 3.726 3.820 
40 2.705 2.959 3.103 3.202 3.277 3.337 3.432 3.505 3.562 3.632 3.722 
60 2.660 2.904 3.040 3.134 3.207 3.264 3.353 3.421 3.477 3.542 3.628 
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p = 0.5 

v \ k: 1 2 3 4 5 6 8 10 12 15 20 

a = 0.10 
3 2.353 2.912 3.232 3.453 3.621 3.755 3.962 4.117 4.242 4.390 4.576 
4 2.132 2.598 2.863 3.046 3.185 3.296 3.468 3.597 3.701 3.825 3.980 
5 2.015 2.434 2.669 2.832 2.956 3.055 3.207 3.323 3.415 3.525 3.664 
6 1.943 2.332 2.551 2.701 2.815 2.906 3.047 3.153 3.238 3.340 3.469 
7 1.895 2.264 2.471 2.612 2.720 2.806 2.938 3.038 3.119 3.216 3.336 
8 1.860 2.215 2.413 2.548 2.651 2.733 2.860 2.956 3.032 3.124 3.239 
9 1.833 2.178 2.369 2.500 2.599 2.679 2.801 2.893 2.967 3.055 3.167 

10 1.813 2.149 2.335 2.463 2.559 2.636 2.755 2.844 2.916 3.002 3.110 
11 1. 796 2.126 2.308 2.433 2.527 2.602 2.718 2.805 2.875 2.959 3.064 
12 1.782 2.107 2.286 2.408 2.500 2.574 2.687 2.773 2.841 2.923 3.026 
15 1.753 2.066 2.238 2.355 2.443 2.514 2.622 2.704 2.769 2.847 2.945 
20 1.725 2.027 2.192 2.304 2.388 2.455 2.559 2.637 2.699 2.773 2.867 
25 1.708 2.004 2.165 2.274 2.356 2.4212.522 2.597 2.658 2.730 2.820 
30 1.697 1.989 2.147 2.254 2.335 2.399 2.498 2.572 2.631 2.701 2.790 
40 1.687 1.970 2.125 2.230 2.309 2.372 2.468 2.540 2.598 2.667 2.753 
60 1.671 1.952 2.104 2.207 2.284 2.345 2.439 2.509 2.565 2.632 2.716 

a = 0.05 
3 3.183 3.867 4.263 4.538 4.748 4.916 5.176 5.372 5.529 5.718 5.953 
4 2.777 3.310 3.618 3.832 3.995 4.126 4.328 4.482 4.605 4.752 4.938 
5 2.57 3.03 3.29 3.48 3.62 3.73 3.90 4.03 4.14 4.26 4.42 
6 2.45 2.86 3.10 3.26 3.39 3.49 3.64 3.76 3.86 3.97 4.11 
7 2.36 2.75 2.97 3.12 3.24 3.33 3.47 3.58 3.67 3.78 3.91 
8 2.31 2.67 2.88 3.02 3.13 3.22 3.35 3.46 3.54 3.64 3.76 
9 2.26 2.61 2.81 2.95 3.05 3.14 3.26 3.36 3.44 3.53 3.65 

10 2.23 2.57 2.76 2.89 2.99 3.07 3.19 3.29 3.36 3.45 3.57 
11 2.20 2.53 2.72 2.84 2.94 3.02 3.14 3.23 3.30 3.39 3.50 
12 2.18 2.50 2.68 2.81 2.90 2.98 3.09 3.18 3.25 3.34 3.45 
15 2.13 2.44 2.61 2.73 2.82 2.89 3.00 3.08 3.15 3.23 3.33 
20 2.09 2.38 2.54 2.65 2.73 2.80 2.90 2.98 3.05 3.12 3.22 
25 2.060 2.344 2.500 2.607 2.688 2.752 2.852 2.927 2.987 3.059 3.150 
30 2.04 2.32 2.47 2.58 2.66 2.72 2.82 2.89 2.95 3.02 3.11 
40 2.02 2.29 2.44 2.54 2.62 2.68 2.77 2.85 2.90 2.97 3.06 
60 2.00 2.27 2.41 2.51 2.58 2.64 2.73 2.80 2.86 2.92 3.00 
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p = 0.5 

v \ k: 1 2 3 4 5 6 8 10 12 15 20 

a = 0.01 
3 5.841 6.974 7.639 8.104 8.459 8.746 9.189 9.527 9.797 10.123 10.532 
4 4.604 5.364 5.809 6.121 6.361 6.554 6.855 7.083 7.267 7.488 7.766 
5 4.03 4.63 4.98 5.22 5.41 5.56 5.80 5.98 6.12 6.30 6.52 
6 3.71 4.21 4.51 4.71 4.87 5.00 5.20 5.35 5.47 5.62 5.81 
7 3.50 3.95 4.21 4.39 4.53 4.64 4.82 4.95 5.06 5.19 5.36 
8 3.36 3.77 4.00 4.17 4.29 4.40 4.56 4.68 4.78 4.90 5.05 
9 3.25 3.63 3.85 4.01 4.12 4.22 4.37 4.48 4.57 4.68 4.82 

10 3.17 3.53 3.74 3.88 3.99 4.08 4.22 4.33 4.42 4.52 4.65 
11 3.11 3.45 3.65 3.79 3.89 3.98 4.11 4.21 4.29 4.39 4.52 
12 3.05 3.39 3.58 3.71 3.81 3.89 4.02 4.12 4.19 4.29 4.41 
15 2.95 3.25 3.43 3.55 3.64 3.71 3.83 3.92 3.99 4.07 4.18 
20 2.85 3.13 3.29 3.40 3.48 3.55 3.65 3.73 3.80 3.87 3.97 
25 2.788 3.055 3.205 3.309 3.388 3.452 3.551 3.626 3.687 3.759 3.852 
30 2.75 3.01 3.15 3.25 3.33 3.39 3.49 3.56 3.62 3.69 3.78 
40 2.70 2.95 3.09 3.19 3.26 3.32 3.41 3.48 3.53 3.60 3.68 
60 2.66 2.90 3.03 3.12 3.19 3.25 3.33 3.40 3.45 3.51 3.59 

SOURCE: Hahn and Hendrickson, "A table of the percentage points of the 
distribution of k Student t variables and its applications," Biometrika, 1971, 
58, 323-333, Tables 1, 2, and 3, by permission of the Biometrika trustees. 
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C.3 WORKING-HOTELLING CONFIDENCE BANDS FOR FINITE 
INTERVALS 

The Working-Hotelling confidence band for a straight line over the interval 
a < x < b is the region between the two curves given by Equation (6.7) in 
Section 6.1.3. 

Tabulation of >.. for different values of n - 2 and c, where c is given by Equa-
tion (6.9). 

a = 0.01 

c \ n - 2: 5 10 15 20 30 40 60 120 00 

One point 0.0 4.03 3.16 2.95 2.84 2.75 2.70 2.66 2.62 2.58 
0.05 4.10 3.22 2.99 2.88 2.79 2.74 2.69 2.65 2.61 
0.1 4.18 3.27 3.03 2.93 2.83 2.78 2.73 2.69 2.64 

.. 0.15 4.26 3.32 3.07 2.96 2.86 2.81 2.76 2.72 2.67 
0.2 4.33 3.36 3.11 3.00 2.89 2.84 2.80 2.75 2.70 
0.3 4.45 3.44 3.18 3.06 2.95 2.90 2.85 2.80 2.75 
0.4 4.56 3.50 3.24 3.11 3.00 2.95 2.89 2.84 2.79 
0.6 4.73 3.61 3.32 3.20 3.07 3.02 2.96 2.91 2.86 
0.8 4.85 3.68 3.39 3.25 3.13 3.07 3.01 2.95 2.90 
1.0 4.94 3.74 3.43 3.30 3.17 3.11 3.05 2.99 2.94 
1.5 5.05 3.81 3.50 3.36 3.22 3.16 3.10 3.04 2.98 
2.0 5.10 3.85 3.53 3.38 3.25 3.19 3.15 3.06 3.01 

00 5.15 3.89 3.57 3.42 3.28 3.22 3.15 3.10 3.04 
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a = 0.05 

c \ n - 2: 5 10 15 20 30 40 60 120 00 

One point 0.0 2.57 2.23 2.13 2.08 2.04 2.02 2.00 1.98 1.96 
0.05 2.62 2.27 2.17 2.12 2.08 2.06 2.03 2.02 1.99 
0.1 2.68 2.31 2.21 2.16 2.12 2.10 2.07 2.05 2.03 
0.15 2.74 2.36 2.25 2.20 2.15 2.13 2.11 2.08 2.06 
0.2 2.79 2.40 2.29 2.23 2.18 2.16 2.14 2.11 2.09 
0.3 2.88 2.47 2.35 2.30 2.42 2.22 2.19 2.17 2.15 
0.4 2.97 2.53 2.41 2.35 2.29 2.27 2.24 2.21 2.19 
0.6 3.10 2.62 2.49 2.43 2.37 2.34 2.31 2.29 2.26 
0.8 3.19 2.69 2.55 2.49 2.43 2.38 2.37 2.34 2.31 
1.0 3.25 2.74 2.60 2.53 2.47 2.44 2.41 2.38 2.35 
1.5 3.33 2.81 2.67 2.59 2.52 2.49 2.46 2.43 2.40 
2.0 3.36' 2.83 2.68 2.61 2.55 2.51 2.48 2.45 2.42 

00 3.40 2.86 2.71 2.64 2.58 2.54 2.51 2.48 2.45 

a = 0.10 

c \ n - 2: 5 10 15 20 30 40 60 120 00 

One point 0.0 2.01 1.81 1.75 1.72 1.68 1.68 1.67 1.66 1.65 
0.05 2.06 1.85 1.79 1.76 1.73 1.72 1.70 1.69 1.68 
0.1 2.11 1.89 1.83 1.80 1.77 1.85 1.74 1.73 1.71 
0.15 2.16 1.93 1.87 1.84 1.81 1.79 1.77 1.76 1.75 
0.2 2.21 1.97 1.90 1.87 1.84 1.82 1.81 1.79 1.78 
0.3 2.30 2.04 1.97 1.93 1.90 1.88 1.87 1.85 1.84 
0.4 2.37 2.10 2.02 1.99 1.95 1.93 1.92 1.90 1.88 
0.6 2.49 2.19 2.12 2.07 2.03 2.01 1.99 1.98 1.96 
0.8 2.57 2.26 2.17 2.13 2.09 2.07 2.05 2.03 2.01 
1.0 2.62 2.31 2.22 2.17 2.13 2.11 2.09 2.07 2.05 
1.5 2.69 2.37 2.27 2.23 2.18 2.16 2.15 2.12 2.10 
2.0 2.72 2.39 2.29 2.25 2.20 2.18 2.16 2.14 2.12 

00 2.75 2.42 2.32 2.27 2.23 2.21 2.19 2.17 2.14 

SOURCE: Wynn and Bloomfield [1971: Appendix A]. Copyright (1971) by the 
Royal Statistical Society. All rights reserved. 
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EXERCISES la 

1. Set X - a = X - 11. + 11. - a. Then 

ElIlX - a11 2
] - E[tr{(X - a)'(X - an] 

- E[tr{(X - a)(X - a)'}] (by A.1.2) 

- tr E[(X - a)(X - a)'] 

- tr Var[X] + trllll1. - aI1 2
]. 

2. Let V = X-a, V = Y -b, then Cov[V, V] = E [(V - E[V])(V - E[V])'] 

3. Xl = YI , Xi = L:~=l Yi and var[Xi] = i. For T < s, 

cov[Xr, Xs] = cov[Xr, Xr + Yr+1 + ... + Ys] = var[Xr] = T. 

EXERCISES Ib 

( 

1 1 0 ) 
1. Let Q = X' 1 0 -2 X = X' AX, say. tr(A:E) = L:ij aij(7ij = 

o -2 1 
1 and E[Q] = p.2 + 2p.2 - 4p.2 + p.2 + 1 == 1. 

491 
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- 2 2 -2 2-2 
2. var[X] = L:i (7i /n and L:i(Xi - X) = L:i Xi - nX . 

E [~(Xi - X)2] 
i 

2: (7; - n var[X] = n(n - 1) var[X]. 
i 

3. (a) Either substitute Wn = L:~==-11 Wi or use a Lagrange multipler term 
),,(L:i Wi - 1) to minimize and get wwt = a, or a = (L:i (7;2)-1. 
Substituting for Wi gives us Vrnin = a. 

(b) 

E[(n - 1)8!] - E [~WiX;] - E[X~] 
- 2: Wi ((7; + f.J2) - (var[Xw ] + f.J2) 

i 

- 2: wi(l- Wi)O-; = na - (2: Wi) a = (n - l)a. 
i 

4. (a) var[X) = ((72/n){1 + (n - l)p} > 0, so that -l/(n - 1) < P < 1. 

(b) E[Q) = (72 {an + bn(l + (n - l)p} + 1}2(an + bn2) _ (72 + O. Hence 
b = -l/{n(n - 1)(1 - pH, a = -bn. Thus Q = a L:i Xl -
(a/n)(L: Xi)2 = a L:(Xi - X)2. 

5. In both cases we use Theorem 1.6 with f.J4 = 3f.J~ = 302, f.J3 = 0, 
A(J = I}AIn = O. Thus var[(n -1)82) = var[X'AX] = 2(74tr[A2). 

(a) tr[A2) = tr[A) = n - 1. 

(b) 2(n - l)Q = 2 L:~=1 Xl - X? - X~ - 2 L:~==-11 XiXi+1. 

(c) tr(A2) = L: L: atj = 6n-8. Hence var[Q] = 2(74(6n-8)/4(n-1)2; 

ratio = (6n - 8)/(4n - 4) -+ ~. 

EXERCISES Ie 

1. cov[X + Y, X - Y) = var[X)- var[Y) = O. Let X and Y be independent 
binomial(n, ~). Then 0 = pr(X + Y = 1, X - Y = 0) oF pr(X + Y = 
1) pr(X - Y = 0) (Le., not independent). 

2. cov[X, Y] = Pu - P.1p.1 = 0 implies that Pij = Pi.P.j for all i, j [e.g., 
P10 = Pl· - P1,P·1 = P1.(1 - P·1) = P1·P·O). 

3. E[X2r+1] = 0 because f(x) is an even function. Hence 

cov[X, X2) := E[X3) - E[X)E[X2) := O. 
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4. f(x,y) = t = h(x)h(Y), etc., but f(x,y,z) =1= h(x)h(Y)h(z). 

MISCELLANEOUS EXERCISES 1 

1. We use E[(Z - E[Z])2] = E[Z2]- (E[Z])2 for various Z. 

Ey [E{(X - E[Xly])2IY}] + Ey [(E[XIY]- E[X])2] 

= Ey [E[X2IY]- (E[XIY]?] + Ey [(E[XIY]?] - (E[X])2 

= E[X2]- (E[X])2 = var[X]. 

With vectors, Var[Z] = E[(Z - E[Z])(Z - E[Z])'] = E[ZZ']- E[Z]E[Zl' 
and hence Var[X] = E y Var[XIY] + VaryE[XIY]. 

2. (a) Use var[a'X] = a' Var[X] a = 18. 

(b) Y .... (i i ~) X = AX; Var[Y] = A Var[X]A' = ( i~ 15 ) 
21 . 

3. The nonzero covariances are 0'12,0'23, ... ,O'n-l,n' 

n n-l 

var[X] = n-2 l)O'ii + 2 L O'i,i+!) = n-2(A + 2B), 
i=l i=l 

say. Then nE[Qd = (n - l)A - 2B and E[Q2] = 2A - 2B. Solve for A 
and B and replace E[Qi] by Qi, in n-2(A + 2B). 

4. 2~, obtained by substituting in Theorem 1.6 with (J = 0, tr[A2] = 
L L afj = 18, a'a = 12, /14 = t, and /12 = ~. 

5. Use the formula 

Cov[X' AX, X'BX] = 

~ (Var[X' (A + B)X] - Var[X' AX] - Var[X'BX]). 

EXERCISES 2a 

1. 

I:- l 
= (i i), I: = (-i -;), and det(I:) = 1. 

Let Q = 2Yf + ... + 65 = 2(Yl - al)2 + (Y2 - a2)2 + 2(Yl - al)(Y2 - a2). 
Equating coefficients, al = 4 and a2 = 3. 

(a) k = 271'. 

(b) E[Y] = (4,3)' and Var[Y] = I:. 
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2. f(y) = 9 (u(y)) I det(8ui/8Yj)l. U = A -ly - c, so that (8Ui/8Yj) = 
(aij ) with determinant det(A- l ) = (detA)-l. 

3. (a) Using A.4.7, the leading minor determinants are positive if and 
only if (1 - p)2(1 + 2p) > 0 (i.e., if p > -~). 

(b) We use A.1.4. Now det(:E - A12) = 0 implies that the eigenvalues 
are Al = l+p and A2 = I-p. Solving (:E-AiI2)x = 0 for x gives us 

the orthogonal matrix T = ~ (i _ i ) of eigenvectors. Then, 

from A.4.12, :E l /2 = T diag(A~/2, A~/2)T/. 

EXERCISES 2b 

1. exp[Oltl + 02t2 + ~(O"ftr + 2PO"l0"2tlt2 + O"~t~)l· 

2. Using Example 2.7, we have Yi = (0, ... ,1, ... , O)Y = a~y, which is 
N(a~lL, a~:Eai). 

3. Writing Z = AY, we find that Z is multivariate normal with mean 

(5,1), and variance-covariance matrix (12 ~). 

4. Let Z = ey, where e = has independent rows. Hence Z is ( b
a', ) 

bivariate normal with diagonal variance-covariance matrix ee'. 
5. Let Z = (X, Y)' ~ N2(1L,:E). Then, 

E[exp(tlX+t2Y)] =E [exp(~tlX+ ~t2Y)r 
exp n-IL + n--:E- = exp t' IL + -t' -t , ( 

t' 1 t' t) ( l:E ) 
n 2n n 2 n 

showing that the distribution is N 2 (1L, :E/n). 

6. Let Xl = Yl + Y2 and X 2 = Yl - Y2, so that Yl = ~(Xl + X 2) and 
Y2 = ~(Xl - X 2 ), or Y = AX ~ N 2 (O,AA' = diag(~, ~)). 

7. Since the last term g(Xi), say, is an odd function of Xi [i.e. g( -Xi)= -
g(Xi)] this term vanishes when integrating over Xi. 

8. 

g exp [~ (ti - t + :f] 
(

1 - 2 8
2 

) exp 2~(ti - t) + 2n ' 
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which factorizes. 

9. Y = TX, where T is orthogonal, so that Y '" N3 (O, TT' = Is). 

EXERCISES 2c 

1. Yes, as the variance-covariance matrix is diagonal. 

2. 

since :Eln = (1 + (n - 1)p)lnj hence independence. 

3. Find the joint distribution of Xl = YI + Y2 + Y3 and X2 = YI - Y2 - Y3 , 

and set the off-diagonal elements of Var[X] equal to OJ then p = -~. 

EXERCISES 2d 

1. The m.g.f. of x~ is (1 - 2t)-k/2 j Zl '" xf. Hence 

E [exp(~ tdiZl)] = n exp[(tdi)ZtJ = II (1 - 2tdi)-1/2. 
t t t 

2. (a) E[exp(tY' AY)] = J(27r)-m/2 exp[-~Y'(ln - 2tA)y] dy = 
[det(ln - 2tA)]-1/2, by A.4.9. 

(b) Choose orthogonal T such that det(ln - 2tA) = det(T'T) det(ln-
2tA) = det(ln - 2tT' AT), where T' AT = diag(l~, 0, ... ,0) (since 
A is idempotent with r unit eigenvalues and n-r zero eigenvalues). 

(c) If Y '" Nn(O, :E), then Z = :E-I/2y '" Nn(O, In). The m.g.f. of 
Y' AY = Z':EI/ 2 A:EI/2Z is 

[det(ln - 2t:EI/2 A:EI/2)]-1/2 

[det(:EI/ 2:E-I/2 _ 2t:EI/2 A:E:E- I/ 2)]-1/2 

= [det(ln - 2tA:E)]-1/2. 

3. If Q = YAY, then A2 = A implies that a = b = ~. 

4. Writing Q = Y'AY, we find that A2 = A and tr[A] = 2. Using a 
similar method, the result is true only for n = 3. 

5. Using Exercise 2(a), E[exp(sY' AY +tV' AY)] = E[exp{Y'(sA+tB)Y}] 
= det(ln - 2sA - 2tB)-1/2 = det(ln - 2sA - 2tB + stAB)-1/2 = 
det(ln - sA)-1/2 det(ln - tB)-1/2 using A.4.9j hence independence. 
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MISCELLANEOUS EXERCISES 2 

1. 

=AZ. 

(a) Var[Y] = A diag((7~, (72, (72, (72)A'. 

(b) Y is multivariate normal as Z is multivariate normal. 

2. Let Z = U + V = (B + C)Y. Then Cov[X, Z] = Cov[X, U + V] = 
Cov[X, u] + Cov[X, V] = o. Hence X and Z are independent. 

3. Let U = Y = n-ll~ and V = (Y1 - Y2 , Y2 - Y3 ,··., Yn - 1 - Yn )' = AY; 
then A1n = 0 and Cov[U, V] = (72n-ll~A' = 0'. 

4. 

E[exp[t' (aX + bY)] 

E[exp(at'X)]E[exp(bt'Y)] 

exp[t'(aJ.£x + bJ.£Y) + ~t'(a2:Ex + b2:Ey)tJ. 

5. Choose orthogonal T with first row a'/llall and let Z = TY. Then 
Zl = 0 and Y'Y = Z'Z = Z~ + ... + Z~. Since the Zi are i.i.d. 
N(O, 1), the conditional distribution of the Zi (i =1= 1) is the same as the 
unconditional distribution. 

6. Let Xi = Yi - B; then X ,...., Nn(O,:E) and Q = X' AX/(l - p). Now, 
by Exercises 2d, No.2, M(t) = [det(In - 2tA:E/(1 - p))]-1/2 = lIn -
2tAI-1/2, by Example 1.9, which does not depend on p. Hence Q has 
the same distribution as for p = 0, which is X~-l. 

7. 

E [~(Yi - Y)(Yi - Y)'] 

L E {[Yi - fJ - (Y - fJ)][Yi - fJ - (Y -fJ))'} 
i 

L {Var[YiJ- 2Cov[Y, Yd + Var[YJ} 
i 

8. Let U = AY, V = BY, and W = (In - A - B)Y. Then Cov[U, VJ = 
AB' = 0, Cov[W, U] = (In - A - B)A' = 0, etc., so they are 



Outline Solutions to Selected Exercises 497 

independent by Theorem 2.5. Also, In - A - B is idempotent and 
D'D = Y' A' AY = Y' AY, etc. 

9. (a) First show that W has the correct mean and variance-covariance 
matrix. Then use Theorem 2.3 to show that W is normal, namely, 

a'W = a~X + a~ Y = b~ (Xl, YI ) + ... + b~(Xn' Yn) = LUi, 
i 

where the Ui are b.d. univariate normals. 

(b) Using Example 2.9, we have E[X\Y] = ILl In + P(Ul! (2)(Y -1L2In) 
and Var[X\Y] = ui (1 - p2)In. 

10. Let Uii = uf, U12 = UI U2p. Expanding the expression gives 

where Y3 ~ NCO, 1 - p2). 

11. Y = 
¢ 
o 

1 
¢ 

o 
1 

o 0 
o 0 

o 
000 ¢1 an 

where AA' is tridiagonal with diagonal elements 1 + ¢2 and the other 
elements ¢. 

12. Let Q = 2(Yl Y2 - Y2Y3 - Y3 Y1 ) = Y' AY. Then det(>..In - A) = 0 gives 
eigenvalues of 2, -1, and -1. Using (2.10), :Ei >"iZt = 2zi - Z~ - Z~. 

13. (a) E[Z] = 0 and Var[Z1 = 13 , Now a'Z = alZI + '" + anZn, where 
the aiZi are i.i.d. Nl (0, at), so that X = a ' Z ~ Nl (0, \ \a\ \2) for all 
a. 

(b) Now from Theorem 2.3, t'Y ~ Nl(t'IL,t'~t). From the m.g.f. of 
the univariate normal, E[exp(sX)] = exp[(t' IL)S + t(t'~t)S2. Put 
s = 1 to get the m.g.f. of Y. 

(c) Using Theorem 2.2, we can find the m.g.f. of Z = ~-1/2(y -IL) and 
thus show that the Zi are Li.d. N(O, 1). Then from (a), the density 
of Z is fez) = TIi¢(Zi), where ¢ is the N(O,l) density function. 
We can now obtain the density of Y by the change-of-variables 
technique (as demonstrated by Theorem 2.1, but in reverse). 

14. The last term is an odd function of each Yi so that it vanishes when Yi 
is integrated out. 

15. (a) Q can be negative. 
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(b) By Exercises 2d, No. 2(a), the m.g.f. of Q = Y' AY = [det(In -
2tA)t1/2 = (1 - t 2)-1. 

16. From Theorem 1.6, var[Y'AYj = 2tr(A2) = 2LLari = 12n-16. 

17. Set X = :E-1/2y and use Theorem 1.6. 

EXERCISES 3a 

1. Set Y - X(3 = (Y - X(3) + (X(3 - X(3) and show that the cross-product 
of the terms in parentheses is zero. 

2. 0 = X'Y - X'X(3 = X'(Y - Y), i.e. l~(Y - Y) = O. Alternatively, 
allY - X(3112/8/30 = 0 =} L(Y - /30 - /31 x il - ... - /3P-1Xi,P-d = o. 

3. e = t(Y1 + 2Y2 + Y3 ), ¢ = t(2Y3 - Y2). 

, - '1 '1 
4. /30 = Y, /31 = 2'(Y3 - Yi), /32 = 6'(Y1 + 2Y2 + Y3 ). 

5. Let x = sinO; then 'Ii; = Li TiX'; Li xr. 
6. Pa = X(X'X)-1X'a = X(3, so that C(P) C C(X). Conversely, if 

y = X" then Py = y and C(X) C C(P). 

7. Y'(Y - Y) = Y'P(In - P)Y = Y'(P - P2)y = O. 

8. Substitute X = WK, where K is a nonsingular diagonal matrix of the 
form diag(1,k1, ... ,kp _ 1). 

EXERCISES 3b 

2. It is helpful to express the model in the form 

Then 

{j = (1 ) {(m + 4n) LUi + 6n L Vi + 3m L Wk} , m m+13n . 
i J k 

( 113) {(2n-m)LUi+(m+3n)LVi-5mLWk}. mm+ n . . k 
t J 
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3. Y = 8In + c:. The BLUE of 8 is Y. 

4. Let 

The variance-covariance matrix of fi1 and fi2 is (72 A -1. Hence var[fid = 
0-2 2:(Xi2 - X2)2/\A\. 

EXERCISES 3c 

1. (a) From Theorem 3.4, var[S2] = var[Y'RY]/(n-p)2 = 2(74/(n-p). 

(b) Let Q = Y'RY, and use E[Q2] = var[Q] + (E[Q])2. Then 
E[(Y'RY I(n - p + 2) - (72)2] = 2(74/(n - p + 2). This is the 
mean-squared error. 

(c) MSE[S2] = var[S2] = 2(74(n - p). 

2. 2:i(Yi - y)2 I(n-I), since the diagonal elements of the associated matrix 
A are all equal. 

EXERCISES 3d 

1. Yi = 8 + Ci, which is a regression model with /30 = 8, so that 0 = Y and 
RSS = Q. (a) and (b) follow from Theorem 3.5. 

2. U = (Y - X(3) = (In - P)Y = (In - P)(Y - X(3) = (In - P)c:, say. 
V = X((3 - (3) = X{(X'X)-lX'Y - (X'X)-lX'X{3)} = P(Y - X(3) = 
Pc:. Then Cov[(In - P)c:,Pc:] = 0-2(In - P)P = o. 

EXERCISES 3e 

1. We minimize 2:~=1 >..:;1 + ¢(2:~=1 >"j - kc), where ¢ is the Lagrange 
multiplier. Differentiating with respect to >..j gives us _>..:;2 + ¢ = 0, or 
>"j = constant. 

2. ¢(x) = x 2 
- ~. 

3. (a) Use A.9.5, second equation, to get the result. 

(b) X"Xk - X"PWXk < X"Xk with equality if and only if PWXk = 0 or 
W'Xk = O. 

4. Omit the condition 2:i Xij = O. 
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5. (a) From Exercise 3, the variance is minimized when the columns of X 
are mutually orthogonal. This minimum variance 0- 2 Ix~xk is least 
when every element of Xk is nonzero. 

(b) For the optimum design, var[,Bkl = ()"2 In. 

EXERCISES 3f 

1. Y'RY - Y'RaY = 'YGZ'RY = %Z'RZ'Ya. 

2. Use A.8 to differentiate Y'RY - 2,'Z'RY + ,'Z'RZ, with respect to 

" etc. 

3. By Theorem 3.6(iv), var[,Ba,i) - var[,Bi) = ()"2(LML')ii > 0 since LML' 
is positive definite (or zero when X'Z = 0). 

, - . - 2 
4. () = Y WIth RSS = L:(Yi - Y) . 

(a) Use Exercise 2 and minimize L:(Yi -IXi - (Y -IX)2 to get 'Ya = 
L:i Yi(Xi -x)lL:i(xi - x)2. Then use Theorem 3.6(ii) to get Ba = 
Y - 'Yx. 

(b) DifferentiateL:(Yi - () - IXi)2 with respect to () and I. 

EXERCISES 3g 

1. (a) 

(b) 

, -1' -1 - -1 
a = Y1 - Y + 37r, fJ = Y2 - Y + 37r and 'Y = Y3 - Y + 37r· 

aH = t(Y1 + Y2 - Y3 + 7r). 

2. Use Y'(In - P)X(,B - ,BH) = o. 

3. The second expression in Var[,BHl is positive-semidefinite, so that the 
diagonal elements of the underlying matrix are nonnegative. 

4. Y - YH = X,B - X,BH = ~X(X'X)-1A').H. IIY - YH I1 2 

= t).'a-A(X'X)-1 A').H, etc. 

5. XBa = 0 => Ba = 0 =} a = OJ that is, columns of XB are linearly 
independent. 

EXERCISES 3h 

1. X'X,Bl = XIV = X'X,B2. Then IIY - X,BiW = Y'Y - (3~X'X(32. 

2. eX(3 = (3 and ex = I, which implies that X has full rank. 
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EXERCISES 3i 

1. a'E[.8] = a'(X'X)-X'X,8 = e',8, where e = X'X(X'X)-a E C(X'). 

2. If ai E C(X'), then :Eiciai E C(X'). 

3. First show that if X'Xb = XIV, then b+e is a solution for all e ..L C(X') 
and a unique bE C(X'). Thus ale is invariant for all such e, including 
e = O. Hence ale = 0 and a E C(X'). 

4. If a' = a'X'X, the result follows. Conversely, given the result, 

E[a'.8J = E [a'(X'X)~X'Y] = a'(X'X)-X'X,8 = a',8 

and a',8 is estimable. 

5. Use.8 = (X'X)-X'Y and Exercise 4. 

6. a E C(X') for all a E )Rp, so that C(X') = )Rp. 

EXERCISES 3j 

1. Given (In - P)Za = 0, then Za E C(P) = C(X). But C(X) nC[Z] = 0, 
so that a = O. Hence (In - P)Z has full rank. Then 

Z'(In - P)'(In - P)Z = Z'(In - P)Z. 

2. Permuting the columns of X to make the first r columns Xl we get 
XIT = (Xl, Xl K) = Xl (Ir , K), where IT is an orthogonal permutation 
matrix (see A.5). Then X = XILI , where LI = (Ir,K)IT'. 

3. We use B.3.4. Suppose that C(M) n OJ.. -=F O. Then there exists a -=F 0 
such that M'a = (In - P),8 (i.e., A'a = X'M'a = 0), which implies 
that a = O. 

4. Set 8n = X.8, 8w = X(3H, B = X(X'X)-IX'M' = X(X'X)-l A', and 
solve for .8H. 

5. Let_,8o be any solution of A,8 = e. Then Y - X,8o = X(,8 - ,80) + e, 
or Y = XI + e and AI = A,8 -,80 = O. Now apply the theory to this 
transformed setup. 

EXERCISES 3k 

1. H2YI - Y2 ), ~0-2. 

2. :Ei wiYd:Ei Wi, 0-
2 /:Ei Wi· 
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3. (j* = (l/n) L-i(~/i). 

4. V-IX = V-lIn = eln = eX, etc. 

5. Reduce the model as in Section 3.10. 

6. Use Lagrange multipliers to show that fJ* = (In - VA' (AVA')-IA)Y. 

EXERCISES 31 

1. Since X'ln = 0, PIn = 0, py = PY, and RSS = yly - ylpy. 

2. Changing the scales of the explanatory variables does not change the 
fitted model. Therefore, we simply relace Y by y* in the RSS for 
Exercise 1. 

EXERCISES 3m 

1. First, let y = a/x2 and convert the integral to a Gamma function. Sec­
ond, ifQ = Ily-X,8W, then J u- Cn+l) exp(-(l/20-2)Q)do- = (Q/2)-n/2 
r(n/2) ex: Ily - X,8II-n

. 

2. Using Q = (n - p)S2 + IIX(,8 - ,aW, we have 

f(,BIy,o-) f (,8 , y, 0-) / f (y , 0-) 

ex: f (,8 , 0- I y) ex: exp (- 2~2 Q ) 

[
l 'I I ,] 

ex: exp - 20-2 (,8 - ,8) X X(,8 -,8) , 

which is normal. This has a mean of 13. 
3. (a) f(v) ex: V- I / 2 dV I / 2/dv ex: l/v. 

(b) f(,8, vI) ex: f(ylfJ)v- 1 ex: V- n/2- 1 exp[-(l/2v)Q]. 

(c) Using Q = Ily - X,8W = IIY - x13W + IIX(,8 - 13W, 

f(vly) ex: exp( -a/v) / V- n/2- 1 exp [- 2
l
v IIX(,8 -,aW] d,8 

ex: exp( _a/v)v-n/2-lvp/2. 

(d) The posterior mean is 

100 

vv-Cv / 2+1) exp( -a/v) dv / 100 

v- Cv/ 2+1) exp( -a/v) dv. 
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Letting x = a/v and integrating gives I;" v-(,,/2+1) exp( -a/v) dv = 
a-(,,/2)r(v/2), so the posterior mean is 

a-(V/2-1)r(V-2)/2)/ a-v / 2r(v/2) = a/(v/2-1) = RSS/(n-p-2). 

EXERCISES 3" 

1. The equation :Ei signCled sl-l/e) = 0 implies that the number of resid­
uals satisfying leilsl < lie is the same as that satisfying ledsl < lie. 
Thus medianiled sl = lie, which implies that result. 

2. Let e(1) < e(2) < ... < e(n). Then 

L lei-ejl 
l$i<j$n 

where a(i) = i/(n + 1) - 0.5. 

L le(i) - eU) I 
l$i<j$n 

LeU) - e(i) 

n n-1 
L(j - l)e(j) - L (n - i)e(i) 
j=2 i=l 

n 

LC2i - n - l)e(i) 
i=l 

n 

2(n + 1) L a(i)e(i) 
i=l 

n 

2(n + 1) L a(Ri)ei, 
i=l 

3. The left-hand side of (3.101) is the number of differences > s, so by 
(3.101), the number of differences > s is approximately 3/4(;) (Le., s is 
approximately the lower quartile of the differences). 

MISCELLANEOUS EXERCISES 3 

1. :Ei aibi = O. 

2. Use Lagrange multipliers or show that In - Po = A'(AA')-lA'. 

3. Use Section 3.7.1 with X = Xl and Z = X 2 • 
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4. Let e'Y = (a + b)'Y be any other linear unbiased estimate of a'X(3 (Le., 
b'X = 0'). Then var[a'Y)+ var[b'Y)+2cov[a'Y, b'Y) > var[a'Y) with 
equality if and only if b = o. 

5. tr Var[Y] = tr Var[PY] = (72 tr P = (72 rank P = (]"2p. 

6. 9.95, 5.0, 4.15, 1.1. 

7. ~(3Yl .. -Yl.-Y.d, ~(-Yi .. +3Yl.-Y.l)' ~(-Yl .. -Yl.+3Y.d,where 
Yl .. = L: j L:k Yljk , etc. 

8. (a) (L:i YiXi)/(L:i xt)· (b) (L:i Yi)/(L:i Xi). (c) (l/n) L:i(Y,:/Xi). 

10. Use the identity Y - X(3 = Y - X(3* + X((3* - (3). Then 

13. 

(X(3* - X(3)'V- l (Y - X(3*) = ((3* - (3)' (X'V-ly - X'V- l X(3*) = o. 

Var[u) _ (]"2 

1 

P 
P 
1 

pn-l pn-2 

var[,6] _ (]"2(X'X)-lX'VX(x'x)-1 
(72 (72 

(X'X)2 [X'X + f(p)) > (X'X)· 

1 

14. X'X is diagonal. Hence,6o Y,,6l (2/n) L:;=l yt cos(hklt/n), 
,62 = (2/n) L:;=l yt sin(27rk2t/n). 

EXERCISES 4a 

1. Using A.4, we see that (X'X)-l, A(X'X)-l A', and its inverse are all 
positive definite. Now use Theorem 4.1(ii). 

2. Proceed as in Theorem 4.1(iv) except that Ai3 = A(X'X)-lX'Y is 
replaced by Ai3 - e = A(X'X)-lX'(Y - X(3) when A(3 = e. 

3. 5..H = 2[A(X'X)-1 A')-l(Ai3 - e), etc. 

4. From Section 4.5, XAI = (Xl - X2A;-1 Ad(31. 

5. Set A = (O,Iq). 

(a) i3~Bi32' where B = X~RlX2 and Rl = In - Xl(X~Xl)-lX~. 
(b) (72q + (3~B(32. 
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EXERC\SES I\.b 

1. Since In E C(X), (In "':'P)In = 0, so that (Y -c1n)'(In -P)(Y -c1n) = 
Y'(In - P)Y. The same is true for H. 

2. (a) This follows from (X'X)-I. 

(b) The hypothesis is H : (1, O),B = O. Using the general matrix theory, 
F = S51CL xt82 In "[)Xi - X)2), where So = Y - SIX, etc. 

3. 
, - 2 

((31 - Y) 
8 2 {(lin) + [II L(xl - X)2]}· 

"272 '1 '1 4. F = (81 - 2(2 ) 1(68 ), where 81 = 2(Yi - Y3 ), 82 = 6(Y1 + 2Y2 + Ys), 
and 8 2 = Y? + y 22 + Yl = 2Bi = 6B~. 

5. Us!ng ': Lag:-ange multiplier, Bi = Yi - Y. Apply Theorem 4.1(i) with 
A,B = 81 ~.- 83 . 

EXERCISES 4c 

1. From (4.31), F is distributed as Fp - 1 ,n-p; hence show that the distri­
bution of R2 is beta and find E[ R2]. 

2. Let Yi* = Yilc and Xij* = xijkj , so that X· = XK, where K is a 
nonsingular diagonal matrix diag(l, k 1 , ... , kp-d. Apply the general 
theory to the starred variables and substitute. 

3. (a) Use (4.30) twice. (b) F > O. 

EXERCISES 4d 

1. XH = (1 1 3)'; X H = In (n = nl + n2). 

2. We can express the general model in the form E[U] = E ( ~~ ) 

( WI 0) ( /1 ) o W 2 /2· Under H : /1 = /2 = /, say, or E[U] 

( ~~ ) /. 
MISCELLANEOUS EXERCISES 4 

1. Minimizing IIY - 811 2 subject to I~e = 27r using a Lagrange multiplier 
gives us Bi = Y,;- Y +~7r. Then RSS = L(Y,;-Bi)2 = 4(Y - ~7r)2. Under 
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H, (h = (h = 4>1, (}2 = (}4 = 1r - 4>1, and ¢1 = ~(Y1 - Y2 + Y3 - Y4 + 21r). 
-2 -2 -2 -2 Hence RSSH = (Yi - 4>1) + (Y2 -1r + 4>1) + (Y3 - 4>1) + (Y1 -1r + 4>1) . 

Finally, F = ~(RSSH - RSS)/RSS. 

2. Use H : (1, -1),8 = 0 and F = A,B[A(X'X)-l A']-l A,B/qS2 with A = 
(1, -1). 

4. t = fo(Y n - Yn+1)/Sn(1 + l/n)1/2 ~ tn- 1 when the means are equal, 
2_ n ( -2 where Sn - Li=l Yi - Y) . 

MISCELLANEOUS EXERCISES 5 

1. E[Ij ] = 1· pr(Ij = 1) + 0 . pr(Ij = 0) = pr(Ij = 1) = (Xj. Hence 
'Y = E[L Ij ] = Lj E[Ij] = L (Xj. 

2. Use a binomial expansion and show that the absolute values of successive 
terms after the first two (= 1- (X) are decreasing, so that the remainder 
is positive. 

3. Use the same method as for Miscellaneous Exercises 1, No. 1. 

4. ao = Y and the least squares estimates of the f3j are the same. Let 

,B' = (ao, Sl, ... , Sp-d and v' = (Xl - X·1,···, Xp-1 - X'P-1). Then 

Var[,B] = 0'2 (~1 0c') 
and 

var[Y] (1, v') Var[,B] (1, v')' 

0'2 (~ + v' cv) > :: ' 

since C is positive definite. Equality occurs when v = O. 

5. Let Yoa = (xb, zb)8a ; then using an identical argument, we find that 

var[Yo] O'2X~(X'X)-lXO + 0'2 (L'xo - zo)'M(L'xo - zo) 

> O'2x~(X'X)-lXO' 

because M is positive definite. 

6. By (5.15), aoSo + a1S1 ± (2Ff n_2)1/2v1/2, where , 
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7. We can divide x by xo, reducing the first element to 1, throughout the 
confidence interval. Change p to p - 1. 

EXERCISES 6a 

1. Follows from Yo = Y + fh(xo - x) and (X'X)-l. 

2. The log likelihood function is 

and solve for 4> and /31. 

3. Apply the method of Section 6.1.2 to U = a~(3 - 4>a~(3, where 4> = a~f3 / 
a~f3. Let ut; = (a1 - 4>a2)' Var[(3](a1 - 4>a2) and show that 

U/uu 
T = ""' tn_po 

JS2/U2 

Then consider T2 = Ff,n-p as a quadratic function of 4>. 

EXERCISES 6b 

1. (a) /3~ = n-1 L(1'£/Xi). (b) /3~ = L 1'£/ LXi. 

2. Same as equation (6.20) with L xt replaced by L wixt, and !3 and S2 
replaced by /3* and Stv of (6.28) and (6.29), respectively. 

EXERCISES 6c 

'- 2 -' 
2. /3 = L L(Yki - Y .. )(Xki - x .. )/ L L(Xki - x .. ) and & = Y .. - /3x ... 

3. (a) Differentiate the sum of squares, write the normal equations for a 
and /3k in the form (X'X) -1 X'Y and reduce all the elements of 
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the first row of X'X, except the first, to zero by subtracting off 
suitable multiples of the other rows. 

4. (a) Under H, E[Y] = (Xl'Z)(.B~,,8)' = W6, say, where z = X~lp2. 
Let Rl = In - Pl. Then, using Theorem 3.6, 

and RSSH = Y'RI Y - .8z'Rl Y. 

(b) Using Theorem 3.6(iii) with Z = X 2, we get RSS = Y'RI Y -
.8~X~Rl Y and 

RSSH - RSS = .8;X;Rl Y - .81~2X;Rl Y = (.82 - .81p2)'X;Rl Y. 

(c) We use Theorem 3.6(ii) to get X l .8a,l = X l .8l - P l X 2.8 and 
Ya = X l .8a,l + X 2.82 = PI Y + (In - P l )X2.82. Obtain a sim­
ilar expression for Y H, with X 2.82 replaced by X~lp2.8, then use 
RSSH - RSS = IIYH - YaW· 

MISCELLANEOUS EXERCISES 6 

1. Let Ryx = 2:(Yi - Y)(Xi - x); then X. - x = (Y. - Y)/(Ryx/ Rxx) and 
X. - x = (Y. - Y)(Ryx/ Ryy). Using (n - 2)82 = Ryy - R'irx/ Rxx we 
find that F = R'irx/(RyyR.,x), etc. 

2. Under H : E[Yki] = b + ,8k(Xki - a). Obtain RSSH by minimizing 
2:k 2:i[Yki - b- !3k(Xki - a)2] with respect to !3l and ,82. Also equivalent 
to shifting the origin to (a, b) and testing the hypothesis that both lines 
go through the origin. 

3. An estimate of the distance 6 is d = (a2 - al)/.8, where aI, a2, and.8 
are the LSEs from the parallelllines model (d. Example 6.2). Use the 
method of Section 6.1.2 and consider U = (a2 -(1) -6,8 = (Y 2· - Yl .) + 
,8(Xl. - X2· - 6). Then E[U] = 0, and since COV[Yk., Yki - Yd = 0, 

2 [] 2 {I 1 (Xl. - X2. - 6)2 } 
au = var U = a - + - + ~~( )2· 

n2 n2 L..J L..J Xki - Xk· 

Let 8 2 = RSS H, /(nl + n2 - 3); then the confidence limits are the roots 
of the quadratic in 6 given by T2 = F1~nl+n2-3' where T = (U/au)/ 

,j82 /a 2 . 

4. l/y = l/n + sin2 B (1/!3 - l/n). Let x = sin2 B, etc. 
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MISCELLANEOUS EXERCISES 7 

1. 

n 

RSS 

F c. 1,1 

5, X = -2, -1,0,1,2. 
1 

10 (-2Y1 - Y2 + Y4 + 2Y5 ) =.1.65, 

1 
14 (2Y1 - Y2 - 2Ys - Y4 + 2Y5 ) = -0.064, 

1 
10 (-Y1 + 2Y2 - 2Y4 + Y5 ) = -0.167. 

Y + /31 X + /32(X
2 

- 2) + /3s~ (XS - ~~X) 
13.02 + 1.65x - 0.064(X2 - 2) - 0.167(xS - 3.4x). 

2)Yi - y)2 - lO/3i - 14/3~ - 1O/3~ = 0.00514. 
~2 

~:~ = 78. Ho : Bs = 0 is not rejected. 

2. Bias is zero, as the extra column is orthogonal to the original X. /312 = 
t(Y1 - Ya - Yb + Yab). 

3. Differentiating, we have Xm = -/31/2/32. Let xm = -/31/2/32 and con­
sider U = /31 + 2Xm/32. Then E[U] = 0, 

~ ~ ~ 2 ~ ab = var[U] = var[/31] + 4xm COv[/31' /32] + 4xm var[/32] , 

where Var[.8J = a 2 (X'X)-1, and 

T = (U / au ) / v' 8 2/ a 2 ~ tn-s. The confidence limits are the roots of 
T2 = F{" n-S' a quadratic in X m . , 

EXERCISES 8a 

1. Use H: J.t1 - J.t2 = ... = J.tJ-1 - /-LJ; then 

A= 

1 -1 0 
o 1 -1 

o 0 o 

o 0 
o 0 

1 -1 

of rank 1-1. We can also use H : J.t1 - J.tJ = J.t2 - J.tJ = ... = J.tJ-1 - /-LJ 
1 -0 0 0-1 

with A1 = o 1 0 0-1 
. Then A = AlB, where B is 

000 1 -1 
nonsingular. 
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2. Let }ij - Y .. = }ij - Y i . + Y i . - Y..; then square and show that the 
cross-product term vanishes. 

3. (X'X)-l =diag(J11, ... ,Ji1) andX'Y= (J1Y1.,.,![YJ.). 

",,- - 2_"" 2 2 4. ~~(Yij-Yd -~~~j-Ei~./k 

5. Use Exercise 4 and the fact that the trace of a quadratic Q is the sum of 
the coefficients of the squared terms, then replace each random variable 
in the quadratic by its expected value. (a) E[QJ = (1 -1)0"2 + E E(f-Li­
Ei Jif-Ld EJi)2. (b) E[QJ = (n - 1)0"2. 

EXERCISES 8b 

1. From the text H AB :::;. H ABs; the steps can be reversed so that H ABS :::;. 

HAB. In a similar fashion the four hypotheses can be shown to be 
equivalent. For example, HABl implies that f-Lij - f-Llj = f-Lij, - f-Llj, or 
f-Lij - f-Lij, = f-Llj - f-Llj, = f-Li2j - f-Li2j" which implies HAB· Then, if f-Lij = 
f-L+ a i+(3j + (a(3)ij , HABS implies that (a(3)ij = -(a(3).. + (a(3)i. + (a(3)-j 
and 

2. Use the constraints to get f-Li. = f-L + (3j, f-L .. = f-L, etc. 

3. Minimizing Eijk (}ijk - f-L)2 gives us f-LH = Y ... , so that RSSH - RSS = 
IIX,B - X,BHW = Eijk(flij - flH)2 = Eij Kij(Yij . - y ... )2, with q = 
1J -1. E[QJ = (n - 1J)0"2 + Eij Kij(f-Lij - Eij Kijf-Lij/n)2. 

EXERCISES 8e 

2. (a) For example, EUiai = 2:ui(Ai - f-L) = 2:uiAi - f-L = 0, etc. 

(b) Ai = 2:j Vjf-Lij = 2:j Vj(f-L + ai + (3j + (a(3)ij) = f-L + ai using (a), 
etc. 

(c) Suppose that one system of weights gives us (a(3)L = O. Consider 

another system (without t's). Then substitute f-Lij = f-Lt + at + (3] 
in Ai, B j , and f-L, and then use these expressions in (a(3)ij = f-Lij -
Ai - B j + f-L to prove that (a(3)ij = O. 

3. Using the weights given in the hint, we find that the decomposition (8.23) 
is still orthogonal, provided that we define h· = 2:j VjE:ij. = 2:j K.jE:ij./ 
K.. = E· KijE:ij.j K i . = 2:. 2:k Cijk/ K i · and E: ... = 2:i 2:j 2:k UiVjE:ij. = 
2:i 2:j ~k KijE:ij.j K.. = ~i 2:j 2:k Cijk / K.., etc. 
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Least squares estimates are it = Y ... , cri = Y i .. - Y ... , j3j = Y.j. - Y ... , 

and (;;jJ)ij = Yij· - Y i·. - Y-j. + Y .... The F-statistic is 

EXERCISES 8d 

1. Substitute for f-Lij = f-L + Qi + {3j. 

2. Show that the first-order interactions are the same for both tables. 

3. XiX1!3 == XiY, X~X2j3 = X~Y2. Adding gives x'xj3 = X'(Y,Y2). 

4. YIJ = itI = Y I. == (l/J)(YI* + YIJ), so that YIJ = YI*/(J - 1), where 
YI* = '£;::11 YIj . 

EXERCISES 8e 

1. Y'RY = '£i '£j(Yij - y i.)2 = '£i RYYi = R yy , say. Replacing Yij 

by Yij - ,iXj and differentiating leads to ii,a = '£j(Yij - Yi.)(Xj -

x)/'£j(Xj - X)2 = Ry"i/R"", say, and RSSa = Ryy - '£iR~"dR"". In 
a similar fashion, if,1 = ,2 = " say, then iH = '£i R y"i/2R"" and 
RSSH = Ryy - ('£i Ry"i)2 /2R"". Then q = 1. The next step is to 
construct a t-statistic. Now Ry"i = '£j Yij(Xj - x.), so that var[ii,a] = 
(J2/Rx". Then t = (il -i2)/8y'2/R"" ~ t2J-4, when H is true, where 
8 2 = RSSa/(2J - 4). Then verify that t2 = F. 

2. (a) i1 = (RwwRyz - RzwRyw)/(RzzRww - R~J. 

(b) (J2 (;zz ;zw) -1. (c) R zw = O. 
zw ww 

RSS 

F 

i j 

(RSSH - RSS)/(1J -1) 
RSS/(I JK - 21 J) 

MISCELLANEOUS EXERCISES 8 

1. Show that cov[€r. - € .. , Cij - €;. - €.j + € .. ] 
J- 1 var[€r.]). 

o (e.g., cov[€r.,€ .. ] 
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2. Differentiating 2:= 2:= C;j + A 2:=i di(Xi with respect to Ji, and (Xi gives us 
L L (Y,;j - Ji, - (Xi) = 0 and - 2 Lj (1'ij - Ji, - (Xi) + Adi = o. Summing the 
second equation over i leads to A L di = 0 or A = o. Then p, = L diY i. / 
2:= di and ai = Yi. - p,. 

3. (a) Cijk = 't... + (€i .. - € ... ) + (€ij. - €i .. ) + Cijk - €ij .. Squaring and 
summing on i, j, k, the cross-product terms vanish. Hence, substi­
tutingforcijk, we obtain p, = Y ... , a1 = Yi .. -Y ... , Sij = Yij.-Yi ... 
Zero covariance and Theorem 2.5 imply independence. 

(b) Test for H1 is 

F= 2:= 2:= L(Yij. -Yd2/1(J-1) 

LLL(Yijk - Y ij.)2/1J(K -1) 

4. (a) H : (~ -; _~ ~) JL = O. F == [(QH - Q)/2]/[Q/(4J - 4)], 
- 2 - 2-

where Q = LLCY,:j - Y i.) , QH = J{(Y1. - 3P,3H) + (Y2. -
3- 2 - - 2 - - - -'2Ji,3H) + (Y3. - Ji,3H) }, and Ji,3H = (1/49)(12Y1. + 6Y2. + 4Y3.)· 

2 J - - 2_- - 2 
(b) Show that 2:=i=lLj=l(Yi' -Y .. ) - (Y1. -Y2.) /(2/J). 

5. (a) Ji, = Ji, ... , (Xi = Ji,i .. - Ji, ... , /3j = Ji,.j. - Ji, ... , ,k = Ji, .. k - Ji, .... 

(b) Use the decomposition 

(c) 

Cijk = L + (€i .. - L) + Wj· - € ... ) + (€ .. k - L) 

+ (cijk - €i .. - €.j. - € .. k + 2€ ... ). 

Hence find RSS and RSSH by inspection and obtain 

F = L L L(Yi .. - Y .. .)2 /(1 - 1) , 
L 2:= L(Yijk - Y i .. - Y. j . - Y .. k + 2y ... )2/V 

where v = I J K - I - J - K + 2. 

L L L(€ij. - €i .. )2 

L L L {(€ij. - €i .. - €.j. + L) + (€.j. - € ... )}2 

LLL(€ij. -€i .. -€.j. +€ ... ? 
+ L L L(€.j. - € ... )2 

or Q1 = (Q1 - Q2) + Q2. Now Q1/0'2 ~ XJJ-J, Q2/0'2 ~ xL1' 
Q1 - Q2 > 0, so that by Example 2.13, (Q1 -Q2)/0'2 ~ XJJ-I-J+1' 
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6. (a) Split up Cijk in the same way as !-lijk and obtain an orthogonal 
decomposition. Hence fl = Y ... , ai = Y i .. - Y ... , Sij = Y ij . - Y i .. , 
')tk = Y.·k - Y .... 

(b) 

EXERCISES 9a 

1. There is no bias in this case. 

2. Mean is zero and covariance matrix is a 2 (In - P). 

3. E[Yo] = x~E[,6] = xQ,B. E[ylO] = X~OE[,61] = x~O,Bl. var[Yo] 
a2x~(X'X)-lx~. var[YlO] = a2x~o(X~Xl)-lx~o. As in Section 9.2.1, 
we find that var[ylO] < var[Yo]. 

EXERCISES 9b 

1. V(In-P) = V-VP = V-[(l-p)In+plnl~P] = V-[(1-p)P+plnln, 
since PIn = In· Hence tr[V(In - P)] = tr[V - [(1 - p)P + pIn In] = 
tr[V)- (1- p) tr(P) + ptr(lnln) = n - (1 - p)p - np = (n - p)(l- p), 
so var[S2) = [a2 /(n - p))(n - p)(l - p) = a 2 (1 - p). 

2. We must show that (X'V-1 X)1 X'V-l Y = (X'X)-1 X'Y for each Y. 
Write Y = Y 1 + Y 2 where Y 1 is in C(X) and Y 2 is orthogonal to C(X). 
Then Y 1 = Xa for some vector a, so (X'V-l X)1 X'V-1 Y 1 = a = 
(X'X)-IX'Y1. To show that (X'V-1Xj1X'V-1Y 2 = (X'X)-IX'Y2, 
we need only show that X'V-1Y 2 = 0, since X'Y2 = O. But Y 2· 
is orthogonal to C(X) = C(V-IX), so X'V-IY2 = O. The proof is 
complete. 

EXERCISES 9c 

2. Use Exercises 4a, No.2, at the end of Section 4.3.2. 

3. From (9.19), E[Z] ~ !U2 1 
- 11-

1)(1 + h2A). In this case fr k, 
12 = n - k - 1, PI = P - ~lnl~, and P 2 = In - P, where P 
X(X'X)-1 X' = [(Pij)). Hence 

A = k2 2:(1 - Pii)2 - (n - k - 1)2 2:[(l/n) - Pii]2 

k(n - k - 1)(2k - n + 1) 
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EXERCISES 9d 

'S-l W W = __ n_-::
2
- (x, z)' ( 

8 xx 8 zz - 8 xz 

Szz 

-Sxz 

[

X2 2xzr Z2 ] -- +-
8 xx .Jsxxszz Szz 

n 
1 - r2 

) ( ~ ) 

_1--::- [~ _ 2 sign(x) sign(z)r +~] . 
1 - r2 CV x CV xCV z CV z 

2. 1 = Ilx·(j)11 2 = IlPjx·(j) + (In - Pj)x·(j)W = II(In - Pj)x·(j)W 

+ IIPjx*(j)W, so that by (9.54), R; = IlPjx·(j)11 2 . Thus R; = 0 if and 

only if P jX* (j) = 0 (Le., if and only if x· (j) is orthogonal to the columns 
of X·(j)). 

3. Since Rxx = X·/X*, it is enough to show that rank(X*) 
Suppose that c = (Cl' ... , Cp-l)' is a vector with 

p - 1. 

Since X has full rank, X(l), ... ,x(p-l) are linearly independent, so Cl = 
... = Cp-l = 0 and hence rank(X*) = p - 1. 

4. Let 110 be a (p - I)-vector with last element 1 and the rest zero. Then 
AMAX = maxa IIX·aW IllaW > IIX*11oW 11111011 2 = Ilx*(P-l)W = 1. 
Also, if xi is the ith row of X·, then for any (p - I)-vector a, IIX·aW 1 
IlaW = 2:i(xi 'a)2 < 2:i IlxiWllaW = 2:i 2: j xi/llaW = (p - l)llaW, 
so that AM AX < p - 1. Also, 

p-l 

VIF j 2::)~d Ak 
k=l 

p-l 

< L t~iIAMIN 
k=l 

IIAMIN 

AMAXIAMIN 

,,? . 
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- - 8 -
5. 2:i(Xi - x)(Yi - Y) 2:i Xi(Yi - Y) so 8Xi 2:i(Xi - x)(Yi - Y) = 

(Yi - Y). 2:i(Xi - xf = 2:i x; - (2:i Xi)2 In, so 88 2:i(Xi - X)2 = 
Xi 

2Xi - 2(2:i xi)ln = 2(Xi - x). 

MISCELLANEOUS EXERCISES 9 

1. E[,Bol = /33 + 4/32, E[,Bd = /31 + 7/33. 

2. ei = Yi - Y - ,Bl(Xil - Xl), where 

Also, E[Yi - Y] = /31(Xil - xd + /32 (Xi2 - X2) and 

E[Jll = [~E[Yil(Xil - Xl)] I ~(Xi1 - xd2 = /31 + 1//32, 

where 

Thus 

E[eil /31(Xil - Xl) + /32 (Xi2 - X2) - (/31 + 1//32)(Xil - Xl) 
[Xi2 -1/Xil - (X2 -1/xdl/32. 

3. From Example 4.5, RSSH - RSS = nln2(U - V)2/(nl + n2) = yip I Y 
and RSS = 2:(Ul - U)2 + 2:CYj - V)2 = Y /P 2 Y. We then use (9.18) 
and (9.19) with h = 1, h = nl + n2 - 2, 

pi _ nln2 (~11 ~1/) 
I - nl + n2 ni n,' n~ n2 

and 

p~ = [(1 - ~l) 1~" (1 - ~2) 1~2] . 
When nl = n2, F is quadratically balanced. 

4. Let [; = U - Mu. Then X = Mu + [; + c5 and Y = /30 + /3IMU + /31[; + €, 

so 
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CU, €, 0) has a multivariate normal distribution with zero mean vector 
and covariance matrix diag(O"[" 0";, O"g), so by Theorem 2.2, (X, Y) has a 
multivariate normal distribution with mean vector (Mu, /30 + /31Mu) and 
covariance matrix 

o 1)' 
1 0 

EXERCISES lOa 

1. From (10.11), hi = n-1 + (n - 1)-1MDi. For p = 2, MDi = (n - l)x 
(Xi - X)2 f"£i(Xi - x)2, so that hi = n-1 + (Xi - x)2/ ,,£JXi - X)2. 

2. Follows from the change-of-variable formula. B = aF/(aF + /3). 

3. (a) (In - H)Y = (In - H)(X,B + e) = (In - H)e, so that ei = cWn­
H)e, where Ci has ith element 1 and the rest O. 

(b) 

(n - p)-1e; 

5 2 (1 - hi) 

[«In - H)eJ2 
e'(ln - H)e(l - hi) 

Z'QZ 
Z'(ln - H)Z' 

where Z = e/O", since RSS = e'(ln - H)e. 

(c) Follows from «In - H)Ci = 1 - hi. 

(d) (In -H)Q = Q so (In _H)2 = In -H+Q-2Q = In -H-Q. Z'QZ 
and Z'(ln - H - Q)Z are independent since Q(ln - H - Q) = o. 
Also tr(Q) = (1- hi )-1 tr[cic~(ln - H)] = (1- hi)-1 (1- hi) = 1, so 
that rank(Q) = tr(Q) = 1 and rank(ln -H-Q) = tr(ln -H-Q) = 
n-p-1. Thus Z'QZ/Z'(ln - H)Z is ofthe form xi!(XI+X;-P-1) 
and so is B(1/2, (n - p - 1)/2). 

4. (In-H)2 has i, i element "£'j=1 (Oij -hij ) (Oij -hij ) = (1-hi)2+ "£#i hij . 
Since (In - H)2 is idempotent, this is just (1 - hi). 

EXERCISES lOb 

1. (a) Assuming that the first column of X is aliI's, ,,£7=1 (Xij - Xj)ei = 
[X'(I - P)Y]j+1 - xj[X'(1 - P)Yh = 0 since (I - P)X = o. 
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(b) Numerator of squared correlation is [2:~=1 (Xij -x) (ei +.Bj (Xij -x)j2 
= .BJ[2:~=1 (Xij - x)2j2. Denominator is 2:~=1 (Xij - X)2 x 

2:~=I[ei + .Bj(Xij - x)j2= 2:~=1 (Xij - x)2[RSS +.8J 2:~=1 (Xij - X)2]. 

2. (b) Plotting the function g(x) = 2sign(x)lxl l / 3 on top of the partial 
residual plot shows that the plot reveals the shape of 9 very well. 

(d) In this case the form of 9 is not revealed at all. 

3. The partial residual plot gives the impression of a linear relationship for 
r = 0.999 but not for r = O. 

4. The added variable plot suggests no relationship for both r = 0.999 and 
r = O. 

5. Partial residual plot fails to reveal 9 in the first case but does in the 
second. 

EXERCIS ES lOe 

( ) [PC _ {)£ , -I( ) 
1. From 10.35 aj3aj3' - aj3X :E Y - Xj3 -0'-2X'X, since :E 

0'2In under Ro. Also, from (10.35), 

L Xij (Yi - x~(3) /w; ~~ , 
i 

which has zero expectation. Finally, 

a2 . 
""( 2 2 w, -1/2 L...J l/wi - cdwJ a>..a>..' 

i 

"" 2 2 3) aWi aWi' + 1/2 L...J(l/wi - 2ci /wi a>.. a>.. 
i 

since E[l/Wi - cUwTJ = 0 and E[l/w; - 2cUwrJ = _0'-4. 

2. (a) G:EQ = (X':E- 1 X)-I X':E-I:EQ = (X':E- I X)-I X'Q 
Q'X = 0, and 

° since 

G':EG = (X':E- I X)-I X':E- I :E:E- I X(X':E- I X)-I = (X':E- I X)-I. 

(b) Assume that X is n x p of rank p. We need to show that the matrix 
(:EI/ 2 Q, :EI/ 2 G) is of rank n. G':EQ = 0, so the columns of :EI/ 2 Q 
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are orthogonal to the columns of I;1/2G. Since I;1/2 is nonsingular 
and Q is of rank n - p, I;1/2Q is of rank n - p. Thus, because 
of the orthogonality, it is enough to show that rank(I;1/2G) = p. 
This follows by A.2.2 since I;1/2G is of the form AXB with A and 
B nonsingular, and X is of rank p. 

(c) By (b), 

(d) 

I;1/2Q(Q'I;Q)-lQ'I;1/2 + I;1/2G(X'I;- l X)G'I;1/2 

I;1/2[Q(Q'I;Q)-lQ' + X(X'I;-l X)-lX']I;1/2. 

Pre- and postmultiplying by I;1/2 and rearranging gives the result. 

det(M)2 

Also, 

det(M)2 

det(M'M) 

det [( Q'~Q (X'I;-Ol X)-l ) ] 

det(Q'I;Q)/ det(X'I;-lX). 

det[I;1/2(Q, GW 

det(I;) det [( ci:'Q ~:~) ] 
det(I;) det(G'G - G'QQ'G) 

det(I;)/ det(X'X), 

since G'G - G'QQ'G = G'(ln - QQ')G = G'X(X'X)-lX'G = 
(X'X)-l. Combining these relations proves the result. 

3. (a) From (10040), the restricted likelihood is 

lR(a2
) = e - 1/2{log det(a2In) + log det(l' a-2In1) 

-log det(U') + a-2 y' (I - n-1U')y} 

e' -1/2{nloga2 +log(na-2) + l:)Yi - y)2/a2} 

e" - 1/2{(n - 1) loga2 + L(Yi - y)2/a2}. 

(b) Differentiating and equating to zero gives the REML estimate 0- 2 = 
(n _1)-1 E(Yi - y)2, the usual unbiased estimate. 

4. For this example, w(p,) = p,2/r, so that f(p,) = r 1/ 2 J d: = r1/2log p,. 
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EXERCISES lOd 

1. (a) 

(b) 

B(i, n - i + 1)-1 I: z<l>(z)i-1[1 - <l>(z)]n-i1>(z) dz 

B(i,n - i + 1)-1 10
1 

<l>-1(y)yi- 1(1_ y)n-idy, 

after making the change of variable y = <l>(z). 

n 

~ L:<l>-1[(i - O.5)/n]wij. 
j=1 

(c) The sum of the weights is the area under the beta density. 

(d) Accurate if Wij is small for i i- j. 

2. (a) Let h be the density of Yi. Then for some >., the density of g(Yi, >.) 
is N(xd3, 0"2), so by the change-of-variable formula 

and hence 

The log likelihood is 

n n 

L: log h(Yi) = -(n/2) log 0"2 - (1/20"2) L:[g(Yi, >.) - x~,8]2 
i=1 i=1 

(b) TO' h J h D f· 8g(Yi' >.) = (1 + ly"I),-1, so ror teo n- raper trans ormatIOn, -. 
8Yi 

the result follows from (a). 

3. Minimize - J h),(y) [-(n/2) log 0"2 - (1/20"2) Li(Yi - x~,8)2] dy. Differ­
entiating with respect to ,8, we get J h),(y) Li Xij(Yi - x~,8) dy = 0 
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for each j, so that (3. = (X'X)-l X' E>.[Y]. Differentiating with re­
spect to a2 gives (n/2a;) - (1/)2a4 E[2:~=l (Yi - xi(3.)2] = 0, so a; = 
n-1 E[lIY - PE>.[Y]W] = n-1 {E>.[Yl' (In - P)E..\[Y] + tr(Var>.[Y])}. 

EXERCISES lOe 

1. d'(,B(i) -,B) = d'(X'X)-lXied(l - hi) = (C'd)ied(l - hi). 

2. 

3. 

,B(D) (X(D)'X(D))-lX(D)'Y(D) 

(X'X - XnXD)-l(X'Y - Xn Y D) 
[(X'X)-l + (X'X)-lXn(Id - HD)-lXD(X'X)-l] 

x (X'Y - Xn YD) 

,B + (X'X)-lXn(Id - HD)-l 
, 1 

x [XD(3 - HDY D - (Id - HD)- YD] 

,B - (X'X)-lXn(Id - HD)-leD. 

AP(D) 
det[XA (D)'XA (D)] 

det(XAXA) 
det[X(D)'X(D)] . RSS(D) 

det(X'X) RSS 

Using A.9.6, we get det[X(D)'X(D)] = det(X'X) x det(Id - HD). Also, 
by (10.60), . 

Y - X,B(D) 

so that 

RSS(D) 

Y - X,B + [X(,B - ,B(D)] 
e + X(X'X)-lXn(Id - HD)-leD, 

IIY(D) - X(D),B(D)112 

IIY - X,B(D)W -IIY D - XD,B(D)W 
Ille + X(X'X)-lXn(Id - HD)-leDW 

- lieD + HD(Id - HD)-leDW 
RSS + en(Id - HD)-lHD(Id - HD)-leD 

- en(Id - HD)-2 eD 
RSS - en(Id - HD)-leD. 

Combining these results, we get the desired expression for AP(D). 
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4. The augmented hat matrix is 

( 
x'x X'Y) -1 ( X' ) 

(X, Y) Y'X y'y Y' 

== H + (In - H)YY'(In - H)/RSS. 

The diagonal elements are of the form hi + eURSS. Thus, by (10.56), 
AP(i) == 1 - hi,A. 

5. (a) (n - l)-I(nFn - Oi) == (n - l)-I(2: j OJ - Oi) == (n - 1)-1 2:#i OJ, 
which is the empirical distribution function of the sample with 
point i deleted. 

(b) T(Fn) = /3, so that by (a), T[(n - l)-I(nFn - Oi)) = /3(i). Thus 
SICi == (n -1)-I(/3(i) - /3). 

(c) c 1 (SIC i )'M(SICi) == (/3(i) - /3)'X'X(/3(i) - /3)/pS2, which is 
Cook's D. 

EXERCISES IOf 

1. Let ao be a p-vector with last element 1 and the rest zero. Then AMAX = 
maxa IIXaW /llaW > IIXaoW /llaoW == Ilx(P-l) W == 1. Also, if Xi is the 
ith row of X, then for any p-vector a, IIXaW /llaW == 2:i(x~a)2 < 
2:i II x iWIl a l1 2 == 2:i 2:j x;jllaW == pllaW, so that AMAX < p. 

2. x/3 == ( ..J.-t ) and X(3 == ( X~, ), so that IIX/3 - X(3W == 

(Y - a)2 + IIX·-t - X·,W. The result follows by taking expectations. 

3. Posterior mean is (X~Xs + V-I )-1 (V-1Ill+ X~ Y). With the assumed 

. X' X V-I _ (n 0') (c 0' ) pnors, s s + - 0 Rxx + 0 kIp_
1 

== ( n; C Rxx ~'kIp-l ) . Also, V-lIll+X~Y == ( f:,~ ), so the 

t . . ( 2:i "Yi/(n + c) ) 
pos enor mean IS (Rxx + kIp_

1
)-IX*'Y . 

4. Conditional on" -t has a Np - 1 (" a 2R;;,-l) distribution, so that & == T'-t 
has a N p _ 1 (a., a 2Ip_ 1 ) distribution. If, has a N p _ 1 (0, a5Ip-l) prior, so 
does n. By the arguments of Example 12.3, the marginal distribution 
of n is N p _ 1 (0, (a 2 + (5)Ip-d. 
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MISCEllANEOUS EXERCISES 10 

1. Let (3 be the new LSE, (3 the old LSE, and X the old regression matrix 
with ith row Xi. Also, set h = x'(X'X)-l x and hi = x~(X'X)-lx. The 
new RSS is 2:~1 (Yi - x~(3)2 + (Y - x' (3)2. Arguing as in Theorem 10.1, 
we get (3 = (3 + (X'X)-lxe/(1 + h), so that Yi - x~(3 = ei - hie/(1 + h) 
and the new RSS is 2:7=1 lei - hie/(1 + h)j2 + e2 /(1 + h). Multiplying 
out and using 2: hiei = 0 and 2: h; = h gives the result. 

2. (a) Let m = [xU)' (In - H j )XU)]-l. Then using A.9.l, 

H 
(j) (j) ((X(j)'X(j)) X(j)'x(j) )-1 ( X(j)' ) 

(X ,x) -x(j)'X(j) x(j)'x(j) x(j)' 

H· + m[H ·xU)x(j)'H· - x(j)x(j)'H· 
J J J J 

- Hjx(i)x(i)' + x(j)x{j),] 

H j + m[(In - Hj)x(j)x{j)'(In - Hj)). 

(b) m-1 = x(j)'(In - Hj)x(j) = II(In - Hj)x(j)W = 2:k "I~j. Thus 

hi = h~j) + m{[(In - H j )X(j))iP = h~j) + "IU 2:k "I~j" 
(c) The second term is the leverage of a point in the added variable 

plot for variable Xj. The equation splits the leverage of a point 
into two parts; one due to adding variable Xj to a regression and a 
remainder. 

3. (a) (ii) and (iii) imply that AA' = I n - p and AX = 0, so that the 
columns of A' are an orthonormal basis for C(X).l.. Since the 
columns of Q2 are also a basis. for C(X).l., there is an orthogonal 
matrix T such that A = TQ~. 

(b) 

EII(TQ~ - J)eW 

0"2 tr[(TQ~ - J)'(TQ~ - J)] 

0"2 tr[(TQ~ - J)(TQ~ - J)'] 

20"2[n - p - tr(TQ~J')]. 

(c) treY - TU)A(V - TU)' > 0 since A is positive definite. Hence 
o <tr(A) - tr(TQ~J'), with equality when T = VU'. 
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EXERCISES lla 

1. Without pivoting, we get 

(: 1 1 1 ) U 1 1 1 ) 1+€ 2 2 ~ € 1 1 
2 1 3 1 0 2 

U 1 1 1 ) ~ € 1 1 
0 -1/€ 2 - 1/€ 

and Xs is calculated as (2 - c 1 ) I - c 1 • With pivoting, we get 

(: 1 1 n ( 1 1 1 1 ) 1+€ 2 ~ 0 € 1 1 
2 1 0 1 0 2 

( 1 1 1 1 ) ~ 0 1 0 2 
0 € 1 1 

U 1 1 1 ) ~ 1 0 2 
0 1 1- 2€ 

and Xs is calculated as 1 - 2€. This is more accurate if € is small. 

2. 
n nXl Xp-l 

X'X= 
nXl LiXYl Li XilXi,p-l 

nXp-l Li Xi,p-1Xi,1 Li XY,P-l 

Subtracting Xj times row 1 from row j + 1 for j = 1, ... ,p - 1 gives 

Xp-l 

Li XilXi,p-l - nXIXp_l 

'"' 2 -2 ~i Xi,p_l - nXp _ 1 

using the identity Li XijXi,j' - nXjxj' = Li(Xij - Xj)(Xij' - Xj'). 

3. The Cholesky factor RA of X~ XA is of the form 

( 
Ro 
0' 

Zo ) 
do ' 
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4. 

where Ro is upper triangular. The relationship XAXA = RARA implies 
that X'X = R~Ro, R~zo = X'Y, and d6 + z~zo = Y'Y. By the 
uniqueness of the Cholesky decomposition, we have Ro = R, so that 
Zo = z and d6 = y'Y - z'z = RSS. 

det(X'X) = det(R'R) = det(R)2 = 

EXERCISES llb 

1. The proof is by induction. The result is obviously true for j = 1. Assume 
that it is true for j. We have 

and 

Zj+1 = a(j+l) - qla(j+1)'ql - ... - q;a(j+l)'q; 

a(Hl)'ql - q~qla(Hl)'ql _ .. ' - qlq;a(HI)'q; 

a(j+1)'ql - a(H1)'ql 

O. 

Thus q1, ... , q;+1 are orthonormal. These vectors span C(a(l), ... , a(j+1») 
since a(j+I) can be expressed as a linear combination of q1, ... , q;+1, 
by the expression above and the induction hypothesis. 

2. Matrix has a nonzero determinant (an upper triangular matrix has its 
determinant equal to the product of the diagonal elements). 

3. (X, Y) = (WU, Wu + w) (Le., X = WU, Y = Wu + w), so X'X = 
U'W'WU and X'Y = U'W(Wu + w) = U'WWu, since Ww = O. 
The normal equations are U'W'WUb = U'W'Wu, which reduce to 
Ub = u. Finally, x[3 = WUU-1 u = Wu - Y = w, implying that 
e=w. 

4. Suppose that after j stages, the nxp matrix A with columns a{1), ... , a(p) 
has been transformed into the matrix Wj with columns wi1), ... , w;p). 
In matrix terms (cf. Section 11.3.2) we have AV1 x ... xVj = Wj 

A ( 
Vl1 V12) W h V' " . 1 or 0 Ip_

j 
= j, were 11 IS a J x J upper tnangu ar 

matrix with unit diagonals. Thus, the first j columns of W j can be 
written 'as linear combinations of the first j columns of A. Conversely, 

( 
V-I -W- 1 V ) 

since A = W j J1 I~~j 12 , the first j columns of A can be 

written as linear combinations of the first j columns of W j. 
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To prove the orthogonality part, we use induction. For j = 1, W;I) = 
a(1) and for C > 1, w;I)'w;i) = a(I)'(a(£) + vl£a(1)) = 0 since Vl£ = 
-a(I)'a(£) Illa(1) W. Thus the result is true for j = 1. Now assume that 

1 . af . T h h (1) (HI) the resu t IS true ter stage J. 0 s ow t at w j +I ' ... , w j +I are or-

h 1 h (m) (m) f . 1 (1) . (HI) 
t ogona, we note t at W j +I = Wj or m < J + , so W j +I '···, W j +I 
are orthogonal by the induction hypothesis. Now consider w;~i'w;21 
for m < j + 1 < C. We have 

(m), (£) _ (m),( (£) + (HI)) 
W j + I W j +I - Wj Wj Vj,iWj . 

For m < j + 1, both inner products in this last expression are zero by 
the induction hypothesis. For m = j + 1, the expression is zero since 
Vji = _w;HI) 'wy) Illw;HI) W. The proof is complete. 

5. (TI T 2)'TI T2 = T~ T~ TI T2 = T~ T2 = I. 
6. 

EXERCISES lld 

1. If we delete variable i, the new RSS is RSS* == RSS - er 1(1 - hii). 
Consider adding case j to the regression. By Miscellaneous Exercises 
10, No.1, the new RSS is RSS* + ej2 1(1 + hjj ), where ej is the residual 
from the "delete i" regression, and hjj = xj(XJ(i)'XJ(i))-IXj . These 
are given by ej = ej + hijeil(l - hii ) and hij = hjj + hrj l(l - hii ), 
respectively. Thus the RSS from the "add j" regression is 

EXERCISES 12a 

1. IIJL - E[X,B]W = IIJL - X(X'X)-I XE[Y]W = II(In - P)JLW = 
JL'(In - P)JL. 

2. (a) ElY + 1'1 X - (a + ')'1 X + ')'2z)j2 = E[(Y - a)2] + E[(1'I - ')'I)2]X2 
+')'2z2_2')'2XzE[1'I -')'d· Now 1'1 = L XiYi = L Xi(a+')'I Xi+')'2 Z i+ 
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Ci) = 11 + 12r + L Xici, SO E[ (1'1 - 11 )2] = E[ C!2r + L Xici)2] = 
l~r2 + (J2 and E[1'1 - III = 12r. Also, E[(Y - a)2] = (J2 In so 
combining these shows that the expected model error is (J2[(1/n) + 
X2] + I~(rx - z)2. 

(b) Using the results of Section 9.7.1 yields 

var[Y + 1'1 X + 12Z] 
(J2 In + X2 var[1'I] + Z2 var[1'2] + 2xz COV[1'I' 1'2] 

X2 (J2 z2 (J2 2rxz(J2 
(J2 In + + - --::;-

1 - r2 1 - r2 1 - r2 

2(1 2) 2(rx-z)2 
(J n + x + (J 1 _ r2 

which is also the expected model error in this case. Thus the biased 
predictor is best if 'Y~ < (J2 1(1 - r2). 

EXERCISES 12b 

1. From (12.16) we get 

_ R2 _ RSSp n 
1 p - SSY n _ p' 

so that 

RSSp n . SSY n - K - 1 

SSY n - p RSSK+1 n 

RSSp n - K -1 

RSSK+1 n - p 

3. For all x > 0, logx < x - 1, so that 

4. 

fey) log [~~~~] < g(y) - fey)· 

Integrating both sides gives the result. 

P[MIY] P[M, Y]IP[Y] 

J p[M,Y,e]deIP[Y] 

ex: J prY, Ie, M]p[eIM]p[M] de 

a p J fp(Y, le)7l'p(e) de. 
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EXERCISES 12c 

1. For p = 1, we have RSSp = SSY and RSSp+1 = (1 - r2)SSY. Thus 
(RSSp - RSSp+1)/RSSp+1 = r2/(1 - r2), so the largest F corresponds 
to the largest r2. 

2. Consider a centered and scaled model and let x. be the new (centered 
and scaled) column. By Theorem 3.6, we have RSSp - RSSp+1 = 
[yl(In - Pp)x.)2 Ix~(In - Pp)x., where Pp is the projection for the 
current model. Then the square of the partial correlation is also given 
by [yl(In - P p)x*]2 Ix~(In - Pp)x •. 

3. (a) The regions for backward elimination are: 
Model {X1,X2}: h - rr21 > c1(1 - r2)1/2 and Ir2 - rr11 > 
c1(1 - r2)1/2. 
Model {X2}: h - rr21 < c1(1 - r2)1/2 < h - rr11 and 17-21 > C1· 
Model {xd: Ir2 - rr11 < c1(1- r2)1/2 < h - rr21 and hi > C1. 
Model {OJ otherwise. 

(b) Stepwise regression is the same as forward selection in this case. 

EXERCISES 12d 

1. The joint density of Y and J.L can be written as [after completing the 
square; see (12.83)) 

where ;2 = 0"5 + 0"2. Integrating out the J.Li'S gives the marginal density 
of Y as Np(O, a2 Ip). 

2. c = (A' A + >.Ip)-l A'd, where A = X diag(go, ... , gp-1) = XB, say. 
Then c = (B'B + Alp)-l B' /3 since /3 = X'Y. Thus Cj = g; I(g; + A). 

EXERCISES 12e 

1. 

w- 1 
c 

W -1W W-1 ) - 1.2 12 22 
w 2l + W 22

1 W 21 W1.~ W 12 w 2l . 
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Thus 

(Ye - Xem)'W~l(Ye - Xem) 

= (Y - Xm)'W221(y - Xm) + (Yo - /-LO)'W1.~(Yo - f-LO). 

( 

-1 0 ) 
2. Assume that V = T~ TIl . Then, for this example, 

m. = [Y 1(1 + Toln), fil(l + TI/S"",)l', Xo V.Xo = 1/(n + TO) + 
(x - x)2/(T1 + s"''''), Xom. = Y 1(1 + Toln) + fi(x - x)/(l + TI/S",,,,) 
= a + /3(x - x), say. Thus the predictive density is proportional to 

[yo - a - (3(x - x)J2 
{ 

_ } -(n+d)/2 

1 + ao[l + 1/(n + TO) + (x - X)2/(T1 + s"'''')] 

EXERCISES 12f 

1. The MSE of the LSE is a 2 . The MSE of /3 is 

~ r (32 rjJ[(r - (3) I a] dr 
a J1rl<e 

+ ~ r (r-(3)2rjJ[(r-(3)la]dr 
a J1rl?e 

a2 + ~ r [(32 - (r - (3?]rjJ[(r - (3)la] dr. 
a J1rl<e 

Put (3 = at, c = aE. Then the MSE is a2 + a2 J1z+tl«[t2 - z2]rjJ(z) dz. 

2. The conditional log likelihood is 

where n = {y : I 1:i XiYil < c}. The integral is pr[l 1:i xiYiI < c] 
~ ~rl<c rjJ[(r - (3)la] dr, which can be evaluated numerically. 
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3. 

Var[Y] J (y - f.L)(y - f.LY J(y) dy 

J J[(y - E[Ylz]) + (E[Ylz]- f.L)] 

[(y - E[Ylz]) + (E[Ylz] - f.L)1' J(y, z) dy dz 

- J {J (y - E[Ylz])(y - E[Ylz])' J(ylz) dY } J(z) dz 

+ J (E[Ylz] - f.L)(E[Ylz] - f.L)' J(z) dz 

+ zero cross-product term 

E( Var[YIZ]) + a positive-definite integral. 

EXERCISES 12h 

1. Up to a factor pia, the expected model error is 

J J [,8 - J(bW¢[(,8 - b) /a]g(,8) d,8 db. 

The inner integral is J(,8 - j)2¢[(,8 - b)/a]g(,8) d,8, which is J ,82¢g d,8 + 
2J J ,8¢gd,8+J2 J ¢gd,8. This is minimized when J = J ,8¢gd,8/ J ¢gd,8. 

3. Put A(k) = X(X/X +klp)-l X' and &2 = RSS/(n-p). Then RSS(k) = 
IIY -X,6(k)W = RSS+,6IX/(C-Ip)2X,6. When X'X = Ip, tr[A(k)) = 
p/(l +k) and X/(C - Ip)2X = k2(1 + k)-2Ip. Put B = 11,611 2. The little 
bootstrap and GCV are 

LB RSS(k) + 2&2 tr[A(k)] 

= RSS + Bk2 /(1 + k)2 + 2&2p/(1 + k) 

and 

GCV = n- 1RSS(k)/(1 - n- 1 tr[A(k)])2 

= n[RSS + (1 + k)2 + Bk2]/(nk + n _ p)2. 

Differentiating with respect to k, we see that both LB and GCV are 
minimized subject to k > 0 at k = p&2/(B - p&2) if B > p&2, and at 
zero otherwise. 

MISCELLANEOUS EXERCISES 12 

1. Augment the data as described in Section 10.7.3 and do least squares. 
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2. Using the notation of Example 12.2, the correct model is chosen if h J < 
Cl and Jr2J < Cl. When x and z are orthogonal, rl and r2 are indepen­
dent N(O, 1), so the probability of correct selection is [<I> (Cl) - <I> (-cdj2, 
where <I> is the distribution function of the standard normal. 

3. 

so that 

Fp = (RSSp ~~SSK+l)/r, 
O"K+l 

rFp RSSp/&~+l - (n - K - 1) 
Cp + n - 2p - (n - K-1) 

Cp - p+ r, 

and hence Cp = r(Fp - 1) + p. 

4. The integral in (12.84) is 

L: [h(&z) - wo-zj2¢(z) dz 

so that 

E[ME] 

W2o-2 j z2¢(z) dz + (1 - W)2o-2 j z2¢(z) dz 
izi<riT-1 izi2:riT-1 

[w2 - (1 - W?]o-2 j _ z2¢(z) dz + (1 - W)2o-2, 
izi<r<T-1 

P {W0"2 + (1 - W)2o-2 - [w2 - (1 - W)2]o-2 [1- <I>2(r/o-J) 

p {0"2 + (0"2 - 0"5)[1 - <I>2(r /o-)J) . 



References 

Aitkin, M. (1987). Modeling variance heterogeneity in normal regression using 
GLIM. Appl. Stat., 36, 332-339. 

Akaike, H. (1973). Information theory as an extension of the maximum likelihood 
principle. In B. N. Petrov and F. Csaki (Eds.), Procedings, 2nd International 
Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267-28l. 

Albert, A. (1972). Regression and the Moore-Penrose Pseudoinverse. New York: 
Academic Press. 

Allen, D. M. (1971). Mean squared error of prediction as a criterion for selecting 
variables. Technometrics, 13, 469-475. 

Anda, A. A. and Park, H. (1994). Fast plane rotations with dynamic scaling. SIAM 
J. Matrix Anal. Appl., 15, 162-174. 

Anderson, T. W. (1971). The Statistical Analaysis of Time Series. New York: 
Wiley. 

Andrews, D. F. and Pregibon, D. (1978). Finding the outliers that matter. J. R. 
Stat. Soc. B, 40, 85-93. 

Atiqullah, M. (1962). The estimation ofresidual variance in quadratically balanced 
least squares problems and the robustness of the F-test. Biometrika, 49, 83-9l. 

Atkinson, A. C. (1978). Posterior probabilities for choosing a regression model. 
Biometrika, 65, 39-48. 

Atkinson, A. C. (1985). Plots, Iransformations and Regression. Oxford: Clarendon 
Press. 

Atkinson, A. C. (1986). Masking unmasked. Biometrika, 73, 533-54l. 

Atkinson, A. C. and Weisberg, S. (1991). Simulated annealing for the detection of 
multiple outliers using least squares and least median of squares fitting. In W. 

531 



532 References 

Stahel and S. Weisberg (Eds.), Directions in Robust Statistics and Diagnostics. 
New York: Springer-Verlag, pp. 7-20. 

Azzalini, A. (1996). Statistical Inference Based on the Likelihood. New York: Chap­
man & Hall. 

Barrodale, 1. and Roberts, F. D. K. (1974). Algorithm 478: Solution of an overde­
termined system of equations in the L1 norm. Commun. ACM, 14, 319-320. 

Bartels, R. H., Conn, A. R. and Sinclair, J. W. (1978). Minimization techniques for 
piecewise differentiable functions: The L1 solution to an overdetermined system. 
SIAM J. Numer. Anal., 15, 224-241. 

Bekker, R. A., Cleveland, W. S. and Weil, G. (1988). The use of brushing and 
rotation for data analysis. In Dynamic Graphics for Statistics. Pacific Grove, 
CA: Wadsworth. 

Belsley, D. A. (1984). Demeaning conditioning diagnostics through centering. Am. 
Stat., 38, 73-77. 

Belsley, D. A. (1991). Conditioning Diagnostics: Collinearity and Weak Data in 
Regression. New York: Wiley. 

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980). Regression Diagnostics: Identify­
ing Influential Data and Sources of Collinearity. New York: Wiley. 

Bendel, R. B. and Afifi, A. A. (1977). Comparison of stopping rules in forward 
"stepwise" regression. J. Am. Stat. Assoc., 72, 46-53. 

Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model 
selection and prediction. J. Am. Stat. Assoc., 91, 109-122. 

Berk, K. N. (1978).· Comparing subset regression procedures. Technometrics, 20, 
1-6. 

Berk, K. N. and Booth, D. E. (1995). Seeing a curve in multiple regression. Tech­
nometrics, 37, 385-398. 

Bickel, P. J. and Doksum, K. A. (1981). The analysis of transformations revisited. 
J. Am. Stat. Assoc., 76, 296-311. 

Birkes, D. and Dodge, Y. (1993). Alternative Methods of Regression. New York: 
Wiley. 

Bjiirck, A. (1996). Numerical Methods for Least Squares Problems. Philadelphia: 
SIAM. 

Bjiirck, A. and Paige, C. C. (1992). Loss and recapture of orthogonality in the 
modified Gram-Schmidt algorithm. SIAM J. Matrix Anal. Appl., 13, 176-190. 

Bjiirck, A. and Paige, C. C. (1994). Solution of augmented linear systems using 
orthogonal factorizations. BIT, 34, 1-26. 

Bloomfield, P. and Steiger, W. L. (1980). Least absolute deviations curve-fitting. 
SIAM J. Sci. Stat. Comput. 1, 290-301. 

Bloomfield, P. and Steiger, W. L. (1983). Least Absolute Deviations: Theory, Ap­
plications and Algorithms. Boston: Birkhauser. 

Bohrer, R. (1973). An optimality property of Scheffe bounds. Ann. Stat., 1, 766-
772-

Bohrer, R. and Francis, G. K. (1972). Sharp one-sided confidence bounds for linear 
regression over intervals. Biometrika, 59, 99-107. 

Bowden, D. C. (1970). Simultaneous confidence bands for linear regression models. 
J. Am. Stat. Assoc., 65, 413-421. 



References 533 

Bowden, D. C. and Graybill, F. A. (1966). Confidence bands of uniform and pro­
portional width for linear models. J. Am. Stat. Assoc., 61, 182-198. 

Box, G. E. P. (1966). Use and abuse of regression. Technometrics, 8, 625-629. 

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. J. R. Stat. 
Soc. B, 26, 211-252. 

Box, G. E. P. and Cox, D. R. (1982). An analysis of transformations revisited, 
rebutted. J. Am. Stat. Assoc., 77, 209-210. 

Box, G. E. P. and Taio, G. C. (1973). Bayesian Inference in Statistical Analysis. 
Reading, MA: Addison-Wesley. 

Box, G. E. P. and Watson, G. S. (1962). Robustness to non-normality of regression 
. tests. Biometrika, 49, 93-106. 

Breiman, L. (1992). The little bootstrap and other methods for dimensionality 
selection in regression: X-fixed prediction error. J: Am. Stat. Assoc., 87, 738-
754. 

Breiman, L. (1995). Better subset selection using the Nonnegative Garrote. Tech­
nometrics, 37, 373-384. 

Breiman, L. (1996a). Stacked regressions. Machine Learning, 24, 49-64 . 

. Breiman, L. (1996b). Heuristics of instability and stabilization in model selection. 
Ann. Stat., 24, 2350-2383. 

Broersen, P. M. T. (1986). Subset regression with stepwise directed search. Appl. 
Stat., 35, 168-177. 

Brown, P. J. (1977). Centering and scaling in ridge regression. Technometrics, 19, 
35-36. 

Brown, P. J. (1993). Measurement, Regression and Calibration. Oxford: Clarendon 
Press. 

Brown, M. B. and Forsythe, A. B. (1974). Robust tests for equality of variance. J. 
Am. Stat. Assoc., 69, 364-367. 

Brunk, H. D. (1965). An Introduction to Mathematical Statistics, 2nd ed. Waltham, 
MA: Blaisdell. 

Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997). Model selection: An 
integral part of inference. Biometrics, 53, 603-618. 

Burnham, K. P. and Anderson, D. R. (1998). Model Selection and Inference: A 
Practical Information-Theoretic Approach. New York: Springer-Verlag. 

Canner, P. L. (1969). Some curious results using minimum variance linear unbiased 
estimators. Am. Stat., 23 (5), 39-40. 

Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte 
Carlo methods. J. R. Stat. Soc. B, 57, 473-484. 

Carlstein, E. (1986). Simultaneous confidence intervals for predictions. Am. Stat., 
40, 277-279. 

Carroll, R. J. (1980). A robust method for testing transformations to achieve ap­
proximate normality. J. R. Stat. Soc. B, 42, 71-78. 

Carroll, R. J. (1982a). Adapting for heteroscedasticity in linear models. Ann. Stat., 
10, 1224-1233. 

Carroll, R. J. (1982b). Two examples of transformations where there are possible 
outliers. Appl. Stat., 31, 149-152. 



534 References 

Carroll, R. J. and Cline, D. B. H. (1988). An asymptotic theory for weighted least­
squares with weights estimated by replication. Biometrika, 75, 35-43. 

Carroll, R. J. and Davidian, M. (1987). Variance function estimation. J. Am. Stat. 
Assoc., 82, 1079-109l. 

Carroll, R. J. and Ruppert, D. (1981). On prediction and the power transformation 
family. Biometrika, 68, 609-615. 

Carroll, R. J. and Ruppert, D. (1982). Robust estimation in heteroscedastic linear 
models. Ann. Stat., 10, 429-44l. 

Carroll, R. J. and Ruppert, D. (1984). Power transformations when fitting theoret­
ical models to data. J. Am. Stat. Assoc., 79, 321-328. 

Carroll, R. J. and Ruppert, D. (1985). Transformations in regression: A robust 
analysis. Technometrics, 27, 1-12. 

Carroll, R. J. and Ruppert, D. (1988). Iransformations and Weighting in Regres­
sion. New York: Chapman & Hall. 

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Thkey, P. A. (1983). Graphical 
Methods for Data Analysis. Boston: Duxbury Press. 

Chan, T. F., Golub, G. H. and LeVeque, R. J. (1983). Algorithms for computing 
the sample variance: Analysis and recommendations. Am. Stat., 37, 242-247. 

Chang, W. H., McKean, J. W., Naranjo, J. D. and Sheather, S. J. (1999). High­
breakdown rank regression. J. Am. Stat. Assoc., 94, 205-219. 

Chatfield, C. (1998). Durbin-Watson test. In P. Armitage and T. Colton, (Eds.), 
Encyclopedia of Biostatistics, Vol. 2. Wiley: New York, pp. 1252-1253. 

Chatterjee, S. and Hadi, A. S. (1988). Sensitivity Analysis in Linear Regression. 
New York: Wiley. 

Cheney, E. W. (1966). Introduction to Approximation Theory. New York: McGraw­
Hill. 

Clenshaw, C. W. (1955). A note on the summation of Chebyshev series. Math. 
Tables Aids Comput., 9, 118. 

Clenshaw, C. W. (1960). Curve fitting with a digital computer. Comput. J., 2,170. 

Clenshaw, C. W. and Hayes, J. G. (1965). Curve and surface fitting. J. Inst. Math. 
Appl., 1, 164-183. 

Cleveland, W. S. (1979). Robust locally-weighted regression and smoothing scatter­
plots. J. Am. Stat. Assoc., 74, 829-836. 

Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: An approach 
to regression analysis by local fitting. J. Am. Stat. Assoc., 83, 596-610. 

Coakley, C. and Hettmansperger, T. P. (1993). A bounded-influence, high break­
down, efficient regression estimator. J. Am. Stat. Assoc., 88, 872-880. 

Cochran, W. G. (1938). The omission or addition of an independent variate in 
multiple linear regression. J. R. Stat. Soc. Suppl., 5, 171-176. 

Conover, W. J., Johnson, M. E. and Johnson, M. M. (1981). A comparative study 
of tests for homogenetity of variances, with applications to the outer continental 
shelf bidding data. Technometrics, 23, 351-361. 

Cook, R. D. (1977). Detection of influential observations in linear regression. Tech­
nometrics, 19, 15-18. 

Cook, R. D. (1993). Exploring partial residual plots. Technometrics, 35, 351-362. 



References 535 

Cook, R. D. (1994). On the interpretation of regression plots. J. Am. Stat. Assoc., 
89, 177-189. 

Cook, R. D. (1998). Regression Graphics: Ideas for Studying Regressions through 
Graphics. New York: Wiley. 

Cook, R. D. and Wang, P. C. (1983). Transformation and influential cases in re­
gression. Technometrics, 25, 337-343. 

Cook, R. D .. and Weisberg, S. (1982). Residuals and Influence in Regression. New 
York: Chapman & Hall. 

Cook, R. D. and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regres­
sion. Biometrika, 70, 1-10. 

Cook, R. D. and Weisberg, S. (1994). An Introduction to Regression Graphics. New 
York: Wiley. 

Cook, R. D. and Weisberg, S. (1999). Applied Regression including Computing and 
Graphics. New York: Wiley. 

Cook, R. D., Hawkins, D. M. and Weisberg, S. (1992). Comparison of model mis­
specification diagnostics using residuals from least mean of squares and least 
median of squares fits. J. Am. Stat. Assoc., 87, 419-424. 

Cooper, B. E .. ,(1968). The use of orthogonal polynomials: Algorithm AS 10. Appl. 
Stat., 17, 283-287. 

Cooper, B. E. (1971a). The use of orthogonal polynomials with equal x-values: 
Algorithm AS 42. Appl. Stat., 20, 208-213. 

Cooper, B. E. (1971b). A remark on algorithm AS 10. Appl. Stat., 20, 216. 
Cox, C. P. (1971). Interval estimating for X-predictions from linear Y -on-X re­

gression lines through the origin. J. Am. Stat. Assoc., 66, 749-751. 
Cox, D. R. and Hinkley, D. V. (1968). A note on the efficiency of least squares 

estimates. J. R. Stat. Soc. B, 30, 284-289. 
Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman & 

Hall. 

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: 
Estimating the correct degree of smoothing by the method of cross-validation. 
Numer. Math., 31, 377-403. 

Croux, C., Rousseeuw, P. J. and Hossjer, O. (1994). Gener'!lized S-estimators. J. 
Am. Stat. Assoc., 89, 1271-1281. 

David, H. A. (1981). Order Statistics, 2nd ed. New York: Wiley. 
Davies, R. B. and Hutton, B. (1975). The effects of errors in the independent 

variables in linear regression. Biometrika, 62, 383-391. Correction, 64, 655. 
Davis, P. (1975). Interpolation and Approximation. New York: Dover. 
Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. 

Cambridge: Cambridge University Press. 
De Boor, C. (1978). A Practical Guide to Splines. Berlin: Springer-Verlag. 
Dempster, A. P. and Gasko-Green, M. (1981). New tools for residual analysis. Ann. 

Stat., 9, 945-959. 

Dempster, A. P., Schatzoff, M. and Wermuth, N. (1977). A simulation study of 
alternatives to ordinary least squares. J. Am. Stat. Assoc., 72, 77-106. 

Diehr, G. and Hoflin, D. R. (1974). Approximating the distribution of the sample 
R2 in best subset regressions. Technometrics, 16, 317-320. 



536 References 

Diercx, P. (1993). Curve and Surface Fitting with Splines. Oxford: Clarendon Press. 
Dodge, Y. (Ed.) (1987). Statistical Data Analysis Based on the L1 Norm and 

Related Methods. Amsterdam: North-Holland. 
Draper, D. (1995). Assessment and propagation of model uncertainty (with discus­

sion). J. R. Stat. Soc. B, 57, 45-98. 
Draper, N. R. and Cox, D. R. (1969). On distributions and their transformation to 

normality. J. R. Stat. Soc. B, 31, 472-476. 
Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed. New 

York: Wiley. 
Draper, N. R. and Van Nostrand, R. C. (1979). Ridge regression and James-Stein 

estimation: Review and comments. Technometrics, 21, 451-466. 
Draper, N. R., Guttman, I., and Kanemasu, H. (1971). The distribution of certain 

regression statistics. Biometrika, 58, 295-298. 
Dunn, O. J. (1959). Confidence intervals for the means of dependent, normally 

distributed variables. J. Am. Stat. Assoc., 54, 613-62l. 

Dunn, O. J. (1961). Multiple comparisons among means. J. Am. Stat. Assoc., 56, 
52-64. 

Dunn, O. J. (1968). A note on confidence bands for a regression line over finite 
range. J. Am. Stat. Assoc., 63, 1029-1033. 

Durbin, J. and Watson, G. S. (1950). Testing for serial correlation in least squares 
regression. I. Biometrika, 37, 409-428. 

Durbin, J. and Watson, G. S. (1951). Testing for serial correlation in least squares 
regression. II. Biometrika, 38, 159-178. 

Durbin, J. and Watson, G. S. (1971). Testing for serial correlation in least squares 
regression. III. Biometrika, 58, 1-19. 

Efron, B. and Morris, C. (1973). Stein's estimation rule and its competitors-an 
empirical Bayes approach. J. Am. Stat. Assoc., 68, 117-130. 

Efroymson, M. A. (1960). Multiple regression analysis. In A. Ralston and H. S. 
Wilf (Eds.), Mathematical Methods for Digital Computers, 1, 191-203. 

Eicker, F. (1963). Asymptotic normality and consistency of the least squares esti­
mators for families of linear regressions. Ann. Math. Stat., 34, 447-456. 

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and 
penalties. Stat. Sci., 11, 89-12l. 

Eubank, R. L. (1984). Approximate regression models and splines. Commun. Stat. 
A, 13, 485-511. 

Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing, 2nd ed. 
New York: Marcel Dekker. 

Evans, M. and and Swartz, T. (1995). Methods for approximating integrals in 
statistics with special emphasis on Bayesian integration problems. Stat. Sci., 
10, 254-272. 

Ezekiel, M. (1924). A method of handling curvilinear correlation for any number of 
variables. J. Am. Stat. Assoc., 19,431-453. 

Ezekiel, M. and Fox, K. A. (1959). Methods of Correlation and Regression Analysis, 
3rd ed. New York: Wiley. 

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. 
London: Chapman & Hall. 



References 537 

Farebrother, R. W. (1990). Algorithm AS 256: The distribution of a quadratic form 
in normal variables. Appl. Stat., 23, 470-476. 

Farley, J. U. and Hinich, M. J. (1970). A test for shifting slope coefficient in a linear 
model. J. Am. Stat. Assoc., 65, 1320-1329. 

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, 3rd 
ed. New York: Wiley. 

Fieller, E. C. (1940). The biological standardization of insulin. J. R. Stat. Soc. 
Suppl., 7, 1-64. 

Fisher, R. A. and Yates, F. (1957). Statistical Tables fo';' Biological, Agricultural, 
and Medical Research, 5th ed. London: Oliver and Boyd. 

Fletcher, R. (1987). Practical Methods of Optimization, 2nd ed. New York: Wiley. 

Forsythe, G. E. (1957). Generation and use of orthogonal polynomials for data­
fitting with a digital computer. J. Soc. Ind. Appl. Math., 5, 74-87. 

Frank,!. E. and Friedman, J. H. (1993). A comparison of some chemometrics 
regression tools. Technometrics, 35, 109-148. 

Freedman, D. A. (1983). A note on screening regression equations. Am. Stat., 37, 
152-155. 

Fuller, W. A. (1987). Measurement Error Models. New York: Wiley. 

Fuller, W. A. and Rao, J. N. K. (1978). Estimation for a linear regression model 
with unknown diagonal covariance matrix. Ann. Stat., 6, 1149-1158. 

Furnival, G. M. (1971). All possible regressions with less computation. Technomet­
rics, 13, 403-408. 

Furnival, G. M. and Wilson, R. W. (1974). Regression by leaps and bounds. Tech­
nometrics, 16, 499-51l. 

Gafarian A. V. (1964). Confidence bands in straight line regression. J. Am. Stat. 
Assoc., 59, 182-213. 

Garside, M. J. (1965). The best subset in multiple regression analysis. Appl. Stat., 
14, 196-200. 

Garthwaite, P. H. and Dickey, J. M. (1992). Elicitation of prior distributions for 
variable selection problems in regression. Ann. Stat., 20, 1697-1719. 

Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and 
exact calculations. J. R. Stat. Soc. B, 56, 501-514. 

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995). Bayesian Data 
Analysis. London: Chapman & Hall. 

Gentleman, W. M. (1973). Least squares computations by Givens transformations 
without square roots. J. Inst. Math. Appl., 10, 195-197. 

George, E. 1. (2000). The variable selection problem. J. Am. Stat. Assoc., 95, 
1304-1308. 

George, E. 1. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. 
J. Am. Stat. Assoc., 88, 881-889. 

Ghosh, M. N. and Sharma, D. (1963). Power of Tukey's tests for non-additivity. J. 
R. Stat. Soc. B, 25, 213-219. 

Glaser, R. E. (1983). Levene's robust test of homogeneity of variances. In N. L. 
Johnson and C. B. Read (Eds.), Encyclopedia of Statistical Sciences, Vol. 4. New 
York: Wiley, pp. 608-610. 



538 References 

Golub, G. H. and Styan, G. P. H. (1974). Some aspects of numerical computations 
for linear models. In Proceedings, 7th Annual Symposium on the Interface, Iowa 
State University, Ames, lA, pp. 189-192. 

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, 3rd. ed. Baltimore: 
Johns Hopkins University Press. 

Golub, G. H., Heath, M. and Wahba, G. (1979). Generalized cross-validation as a 
method for choosing a good ridge parameter. Technometrics, 21, 215-223. 

Good, I. J. (1969). Conditions for a quadratic form to have a chi-squared distribu­
tion. Biometrika, 56, 215-216. 

Good, I. J. (1970). Correction to "Conditions for a quadratic form to have a chi­
squared distribution." Biometrika, 57, 225. 

Goodnight, J. (1979). A tutorial on the SWEEP operator. Am. Stat., 33, 149-158. 

Graybill, F. A. (1961). An Introduction to Linear Statistical Models. New York: 
McGraw-Hill. 

Graybill, F. A. and Bowden D. C. (1967). Linear segment confidence bands for 
simple linear models. 1. Am. Stat. Assoc., 62, 403-408. 

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and General­
ized Linear Models. London: Chapman & Hall. 

Grier, D. A. (1992). An extended sweep operator for the cross-validation of variable 
selection in linear regression. J. Stat. Comput. Simul., 43, 117-126. 

Grossman, S. I. and Styan, G. P. H. (1972). Optimal properties of Theil's BLUS 
residuals. J. Am. Stat. Assoc., 67, 672-673. 

Gujarati, D. (1970). Use of dummy variables in testing for equality between sets of 
coefficients in linear regressions: A generalization. Am. Stat., 24, 18-22. 

Gunst, R. F. and Mason, R. L. (1977). Biased estimation in regression: An evalua­
tion using mean squared error. J. Am. Stat. Assoc., 72, 616-628. 

Gunst, R. F. and Mason, R. L. (1985). Outlier-induced collinearities. Technomet­
rics, 27,401-407. 

Hadi, A. S. and Ling, R. F. (1998). Some cautionary notes on the use of principal 
components regression. Am. Stat., 52, 15-19. 

Hadi, A. S. and Simonoff, J. S. (1993). Procedures for the identification of multiple 
outliers in linear models. J. Am. Stat. Assoc., 88, 1264-1272. 

Hahn, G. J. (1972). Simultaneous prediction intervals for a regression model. Tech­
no metrics, 14, 203-214. 

Hahn, G. J. and Hendrickson, R. W. (1971). A table of percentage points of the dis­
tribution of the largest absolute value of k Student t variates and its applications. 
Biometrika, 58, 323-332. 

Halperin, M. and Gurian, J. (1968). Confidence bands in linear regression with 
constraints on the independent variables. J. Am. Stat. Assoc., 63, 1020-1027. 

Halperin, M. and Gurian, J. (1971). A note on estimation in straight line regression 
when both variables are subject to error. J. Am. Stat. Assoc., 66, 587-589. 

Halperin, M., Rastogi, S. C., Ho, I. and Yang, Y. Y. (1967). Shorter confidence 
bands in linear regression. J. Am. Stat. Assoc., 62, 1050-1067. 

Hampel, F. R., Ronchetti, E. M. , Rousseeuw, P. J. and Stahel, W. A. (1986). Robust 
Statistics: The Approach Based on Influence Functions. New York: Wiley. 



References 539 

Han, C. P. (1969). Testing the homogeneity of variances in a two-way classification. 
Biometrics, 25, 153-158. 

Handschin, E., Kohlas, J., Fiechter, A. and Schweppe, F. (1975). Bad data analysis 
for power system state estimation. IEEE Trans. Power Apparatus Syst., 2, 32.9-
337. 

Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an 
autoregression. J. R. Stat. Soc. B, 41, 190-195. 

Hardie, W. (1990). Applied Nonparametric Regression. Cambridge: Cambridge 
University Press. 

Harville, D. A. (1997). Matrix Algebra From a Statistician's Perspective. New York: 
Springer-Verlag. 

Hastie, T. and Loader, C. (1993). Local regression: Automatic kernel carpentry. 
Stat. Sci., 8, 120-143. 

Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical 
Learning: Data Mining, Inference and Prediction. New York: Springer-Verlag. 

Hawkins, D. M. (1993a). The accuracy of elemental set approximations for regres­
sion. J. Am. Stat. Assoc., 88, 580-589. 

Hawkins, D. M. (1993b). The feasible solution algorithm for least median of squares 
regression. Comput. Stat. Data Anal., 16, 81-101. 

Hawkins, D.M. (1994a). The feasible solution algorithm for least trimmed squares 
regression. Comput. Stat. Data Anal., 17, 185-196. 

Hawkins, D. M. (1994b). The feasible solution algorithm for the minimum covariance 
determinant estimate in multivariate data. Comput. Stat. Data Anal., 17, 197-
210. 

Hawkins, D. M. and Olive, D. (1999). Improved feasible solution algorithms for 
high-breakdown estimation. Comput. Stat. Data Anal., 30, 1-11. 

Hawkins, D. M. and Olive, D. (2002). Inconsistency of resampling algorithms for 
high-breakdown regression estimators and a new algorithm. J. Am. Stat. Assoc., 
97, 136-159. 

Hawkins, D. M., Bradu, D. and Kass, G. V. (1984). Location of several outliers in 
multiple-regression data using elemental sets. Technometrics, 26, 197-208. 

Hayes, D. G. (1969). A method of storing the orthogonal polynomials used for curve 
and surface fitting. Comput. J., 12, 148-150. 

Hayes, J. G. (1970). Curve fitting by polynomials in one variable. In J. G. Hayes 
(Ed.), Numerical Approximation to Functions and Data. London: Athlone Press, 
pp.43-64. 

Hayes, J. G. (1974). Numerical methods for curve and surface fitting. J. Inst. Math. 
Appl., 10, 144-152. 

Hayter, A. J. (1984). A proof of the conjecture that the Tukey-Kramer multiple 
comparison procedure is conservative. Ann. Stat., 12, 61-75. 

Hernandez, F. and Johnson, R. A. (1980). The large-sample behavior of transfor­
mations to normality. J. Am. Stat. Assoc., 75, 855-861. 

Higham, N. I. (1996). Accuracy and Stability of Numerical Algorithms. Philadelphia: 
SIAM. 

Hill, R. W. (1977). Robust regression where there are outliers in the carriers. Ph.D. 
Dissertation, Harvard University, Department of Statistics. 



540 References 

Hinkley, D. V. (1969a). On the ratio of two correlated normal random variables. 
Biometrika, 56, 635-639. 

Hinkley, D. V. (1969b). Inference about the intersection in two-phase regression. 
Biometrika, 56, 495-504. 

Hinkley, D. V. (1971). Inference in two-phase regression. J. Am. Stat. Assoc., 66, 
736-743. 

Hinkley, D. V. and Runger, G. (1984). Analysis of transformed data. J. Am. Stat. 
Assoc., 79, 302-308. 

Hoadley, B. (1970). A Bayesian look at inverse linear regression. J. Am. Stat. 
Assoc., 65, 356-369. 

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. New 
York: Wiley. 

Hocking, R. R. (1996). Methods and Applications of Linear Models: Regression and 
Analysis of Variance. New York: Wiley. 

Hocking, R. R. and Leslie, R. N. (1967). Selection of the best subset in regression 
analysis. Technometrics, 9, 531-540. 

Hocking, R. R. and Pendleton, O. J. (1983). The regression dilemma. Comm. 
Statist. A., 12,497-527. 

Hodges, S. D. and Moore, P. G. (1972). Data uncertainties and least squares regres­
sion. Appl. Stat., 21, 185-195. 

Hoerl, A. E. and Kennard, R. W. (1970a). Ridge regression: Biased estimation for 
non-orthogonal problems. Technometrics, 12, 55-67. 

Hoerl, A. E. and Kennard, R. W. (1970b). Ridge regression: Applications to non­
orthogonal problems. Technometrics, 12, 69-82. 

Hoerl, A. E., Kennard, R. W. and Baldwin K. E. (1975). Ridge regression: Some 
simulations. Commun. Stat. A, 4, 105-124. 

Hoerl, R. W., Schuenemeyer, J. H. and Hoerl, A. E. (1986). A simulation of biased 
estimation and subset selection regression techniques. Technometrics, 28, 369-
380. 

Hogg, R. V. and Craig, A. T. (1958). On the decomposition of certain chi-square 
variables. Ann. Math. Stat., 29, 608-610. 

Hogg, R. V. and Craig, A. T. (1970). Introduction to Mathematical Statistics, 3rd 
ed. New Yqrk: Macmillan. 

Hiissjer, O. (1994). Rank-based estimates in the linear model with high-breakdown 
point. J. Am. Stat. Assoc., 89, 149-158. 

Householder, A. S. (1958). A class of methods for inverting matrices. J. Soc. Ind. 
Appl. Math, 6, 189-195. 

Hsu, J. C. (1996). Multiple Comparisons: Theory and Methods. London: Chapman 
& Hall. 

Hsu, P. L. (1938). On the best unbiased quadratic estimate of the variance. Stat. 
Res. Mem., 2, 91-104. 

Huber, P. J. (1981). Robust Statistics. New York: Wiley. 
Hubert, M. and Rousseeuw, P. J. (1997). Robust regression with both continuous 

and binary regressors. J. Stat. PI ann. Inference, 57, 153-163. 
Hudson, D. J. (1966). Fitting segmented curves whose join points have to be esti­

mated. J. Am. Stat. Assoc., 61, 1097-1129. 



References 541 

Hudson, D. J. (1969). Least squares fitting of a polynomial constrained to be either 
non-negative, non-decreasing or convex. J. R. Stat. Soc. B, 31, 113-118. 

Hunt, D. N. and Triggs, C. M. (1989). Iterative missing value estimation. Appl. 
Stat., 38, 293-300. 

Hurvich, C. M. and Tsai, C.-L. (1990). The impact of model selection on inference 
in linear regression. Am. Stat., 44, 214-217. 

Hurvich, C. M. and Tsai, C.-L. (1991). Bias of the corrected AlC criterion for 
underfitted regression and time series models. Biometrika, 78, 499-509. 

Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing the dispersion 
of residuals. Ann. Math. Stat., 43, 1449-1458. 

James, A. T. and Wilkinson, G. N. (1971). Factorization of the residual operator 
and canonical decomposition of non-orthogonal factors in analysis of variance. 
Biometrika, 58, 279-294. 

James, W. and Stein, C. (1961). Estimation with quadratic loss. Proc. 4th Berkeley 
Symp. Math. Stat. Probab., 1, 361-379. 

Jarrett, R. G. (1978). The analysis of designed experiments with missing observa­
tions. Appl. Stat., 27, 38-46. 

Jennrich, R. I. and Sampson, P. I. (1971). A remark on algorithm AS 10. Appl. 
Stat., 20,117-118. 

John, J. A. and Draper, N. R. (1980). An alternative family of transformations. 
Appl. Stat., 29, 190-197. 

Johnson, D. E. and Graybill, F. A. (1972a). Estimation of 0"2 in a two-way classifi­
cation model with interaction. J. Am. Stat. Assoc., 67, 388-394. 

Johnson, D. E. and Graybill, F. A. (1972b). An analysis of a two-way model with 
interaction and no replication. J. Am. Stat. Assoc., 67, 862-868. 

Joiner, B. L. (1981). Lurking variables: Some examples. Am. Stat., 35, 227-233. 

Jones, G. and Rocke, D. M. (1999). Bootstrapping in controlled calibration experi­
ments. Technometrics, 41, 224-233. 

Joshi, S. W. (1970). Construction of certain bivariate distributions. Am. Stat., 24 
(2), 32. 

Jureckova, J. (1971). Non-parametric estimate of regression coefficients. Ann. 
Math. Stat., 42, 1328-1338. 

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Am. Stat. Assoc., 90, 
773-795. 

Kennedy, W. J. and Bancroft, T. A. (1971). Model building for prediction in regres­
sion based upon repeated significance tests. Ann. Math. Stat., 42, 1273-1284. 

Khatri, C. G. (1978). A remark on the necessary and sufficient conditions for a 
quadratic form to be distributed as chi-squared. Biometrika, 65, 239-240. 

Koerts, J. and Abrahamse, A. P. J. (1969). On the Theory and Application of the 
General Linear Model. Rotterdam: Rotterdam University Press. 

Kowalski, C. (1970). The performance of some rough tests for bivariate normality 
before and after coordinate transformations to normality. Technometrics, 12, 
517-544. 

Krasker, W. S. and Welsch, R. E. (1982). Efficient bounded-influence regression 
estimation. J. Am. Stat. Assoc., 77, 595-604. 



542 References 

Kruskal, W. (1975). The geometry of generalized inverses. J. R. Stat. Soc. B, 37, 
272-283. 

Krutchoff, R. G.· (1967). Classical and inverse regression methods of calibration. 
Technometrics, 9, 425-439. 

Krutchoff, R. G. (1969). Classical and inverse regression methods of calibration in 
extrapolation. Technometrics, 11, 605-608. 

Kupper, L. L. (1972). Letter to the editor. Am. Stat., 26 (1), 52. 
LaMotte, L. R. and Hocking, R. R. (1970). Computational efficiency in the selection 

of regression variables. Technometrics, 12, 83-93. 

Lane, T. P. and DuMouchel, W. H. (1994). Simultaneous confidence intervals in 
multiple regression. Am. Stat., 48, 315-32l. 

Larsen, W. A. and McCleary, S. J. (1972). The use of partial residual plots in 
regression analysis. Technometrics, 14, 781-790. 

Laud, P. W. and Ibrahim, J. G. (1996). Predictive specification of prior model 
probabilities in variable selection. Biometrika, 83, 267-274. 

Lawson, C. L. and Hanson, R. J. (1995). Solving Least Squares Problems. Philadel­
phia: SIAM. 

Levene, H. (1960). Robust tests for the equality of variance. In I. Olkin (Ed.), 
Contributions to Probability and Statistics. Palo Alto, CA: Stanford University 
Press, pp. 278-292. 

Li, K.-C. (1987). Asymptotic optimality for Cp, CL, cross-validation and generalized 
cross-validation: Discrete index set. Ann. Stat., 15, 958-975. 

Lieberman, G. J., Miller, R. G., Jr. and Hamilton M. A. (1967). Unlimited simul­
taneous discrimination intervals in regression. Biometrika, 54, 133-145. 

Limam, M. M. T. and Thomas, D. R. (1988). Simultaneous tolerance intervals for 
the linear regression model. J. Am. Stat. Assoc., 83, 801-804. 

Linhart, H. and Zucchini, W. (1986). Model Selection. New York: Wiley. 
Longley, J. W. (1967). An appraisal of least squares programs for the electronic 

computer from the point of view of use. J. Am. Stat. Assoc., 62, 819-84l. 
Lyon, J. D. and Tsai, C.-L. (1996). A comparison of tests for heteroscedasticity. 

Statistician, 45, 337-349. 

Malinvaud, E. (1970). Statistical Methods of Econometrics, 2nd ed. (translated by 
A. Silvey). Amsterdam: North Holland. 

Mallows, C. L. (1973). Some comments on Cpo Technometrics, 15, 661-675. 
Mallows, C. L. (1975). Some topics in robustness. Unpublished memorandum, Bell 

Telephone Laboratories, Murray Hill, N.J. 
Mallows, C. L. (1986). Augmented partial residual plots. Technometrics, 28, 313-

320. 
Mansfield, E. R. and Conerly, M. D. (1987). Diagnostic value of residual and partial 

residual plots. Am. Stat., 41, 107-116. 
Markowski, C. A. and Markowski, E. P. (1990). Conditions for the effectiveness of 

a preliminary test of variance. Am. Stat., 44, 322-326. 
Mayo, M. S. and Gray, J. B. (1997). Elemental subsets: The building blocks of 

regression. Am. Stat., 51, 122-129. 
McElroy, F. W. (1967). A necessary and sufficient condition that ordinary least­

squares estimators be best linear unbiased. J. Am. Stat. Assoc., 62, 1302-1304. 



References 543 

McKean, J. W., Sheather, S. J. and Hettmansperger, T. P. (1993). The use and 
interpretation of residuals based on robust estimation. J. Am. Stat. Assoc., 88, 
1254-1263. 

Mee, R. W. and Eberhardt, K. R. (1996). A comparison of uncertainty criteria for 
calibration. Technometrics, 38, 221-229. 

Miller, A. (1990). Subset Selection in Regression. New York: Chapman & Hall. 
Miller, R. G. (1977). Developments in multiple comparisons, 1966-1976. J. Am. 

Stat. Assoc., 72, 779-788. 
Miller, R. G. (1981). Simultaneous Statistical Inference, 2nd ed. New York: McGraw­

Hill. 
Mitchell, J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear 

regression. J. Am. Stat. Assoc., 83, 1023-1036. 
Moran, P. A. P. (1970). Fitting a straight line when both variables are subject to 

error. In R. S. Anderssen and M. R. Osborne (Eds.), Data Presentation. St 
Lucia, QL, Australia: University of Queensland Press, pp. 25-28. 

Moran, P. A. P. (1971). Estimating structural and functional relationships. J. Mult. 
Anal., 1, 232-255. 

Morgan, J. A. and Tatar, J. F. (1972). Calculation of the residual sum of squares 
for all possible regressions. Technometrics, 14, 317-325. 

Myers, R. H. and Montgomery, D. C. (1995). Response Surface Methodology: Process 
and Product Optimization Using Designed Experiments. New York: Wiley. 

Naranjo, J. D. and Hettmansperger, T. P. (1994). Bounded influence rank regres­
sion. J. R. Stat. Soc. B, 56, 209-220. 

NeIder, J. A. (1965a). The analysis of randomized experiments with orthogonal 
block structure. I. Block structure and the null analysis of variance. Proc. R. 
Soc. A, 283, 147-162. 

NeIder, J. A. (1965b). The analysis of randomized experiments with orthogonal 
block structure. II. Treatment structure and the general analysis of variance. 
Proc. R. Soc. A, 283, 163-178. 

NeIder, J. A. (1994). The statistics of linear models: Back to basics. Stat. Comput., 
4, 221-234. 

NeIder, J. A. and Mead, R. (1965). A simplex method for function minimization. 
Comput. J., 7, 308-313. 

Nishi, R. (1984). Asymptotic properties of criteria for selection of variables in 
multiple regression. Ann. Stat., 12, 758-765. 

O'Hagan, A. (1994). Kendall's Advanced Theory of Statistics, Vol. 2B, Bayesian 
Inference. London: Arnold. 

O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discus­
sion). J. R. Stat. Soc. B, 57, 99-138. 

Olejnik, S. F. and Algina, J. (1987). Type I error rates and power estimates of 
selected parametric and non-parametric tests of scale. J. Ed. Stat., 12, 45-61. 

Olshen, R. A. (1973). The conditional level of the F-test. J. Am. Stat. Assoc., 68, 
692-698. 

Osborne, C. (1991). Statistical calibration: A review. Int. Stat. Rev., 59, 309-336. 
Parlett, B. N. (1980). The Symmetric Eigenvalue Problem. Englewood Cliffs, NJ: 

Prentice Hall. 



544 References 

Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information 
when block sizes are unequal. Biometrika, 58, 545-554. 

Payne, J. A. (1970). An automatic curve-fitting package. In J. G. Hayes (Ed.), 
Numerical Approximation of Functions and Data. London: Athlone Press, pp. 
98-106. 

Pearce, S. C., Calinski, T. and Marshall, T. F. de C. (1974). The basic contrasts of 
an experimental design with special reference to the analysis of data. Biometrika, 
61, 449-460. 

Pearson, E. S. and Hartley, H. O. (1970). Biometrika Tables for Statisticians, 3rd 
ed. Cambridge: Cambridge University Press. 

Peters, G. and Wilkinson, J. H. (1970). The least squares problem and pseudoin­
verses, Comput. J., 13, 309-316. 

Pierce, D. A. and Dykstra, R. L. (1969). Independence and the normal distribution. 
Am. Stat., 23 (4), 39. 

Pope, P. T. and Webster, J. T. (1972). The use of an F-statistic in stepwise regres­
sion procedures. Technometrics, 14, 327-340. 

Portnoy, S. (1987). Using regression fractiles to identify outliers. In Y. Dodge 
(Ed.), Statistical Data Analysis Based on the L1 Norm and Related Methods. 
Amsterdam: North Holland, pp. 345-356. 

Prentice, R. L. (1974). Degrees-of-freedom modifications for F tests based on non­
normal errors. Biometrika, 61, 559-563. 

Pringle, R. M. and Rayner, A. A. (1971). Generalized Inverse Matrices with Appli­
cations to Statistics. London: Griffin. 

Quenouille, M. H. (1950). An application of least squares to family diet surveys. 
Econometrica, 18, 27-44. 

Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997). Bayesian model averaging 
for linear regression models. J. Am. Stat. Assoc., 92, 179-191. 

Rahman, N. A. (1967). Exercises in Probability and Statistics. London: Griffin. 
Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares 

regression analysis. J. R. Stat. Soc. B, 31, 350-371. 
Rao, C. R. (1952). Some theorems on minimum variance estimation. Sankhya, 12, 

27-42. 
Rao, C. R. (1970). Estimation of heteroscedastic variances in linear models. J. Am. 

Stat. Assoc., 65, 161-172. 
Rao, C. R. (1972). Estimation of variance and co-variance components in linear 

models. J. Am. Stat. Assoc., 67, 112-115. 
Rao, C. R. (1973). Linear Statistical Inference and its Applications, 2nd ed. New 

York: Wiley. 
Rao, C. R. (1974). Projectors, generalized inverses and the BLUE's. J. R. Stat. 

Soc. B, 36, 442-448. 
Rao, C. R. and Mitra, S. K. (1971a). Generalized Inverse of Matrices and its Ap­

plications. New York: Wiley. 
Rao, C. R. and Mitra, S. K. (1971b). Further contribution to the theory of gener­

alized inverse of matrices and its applications. Sankhya Ser. A, 33, 289-300. 
Rencher, A. C. (1998). Multivariate Statistical Inference and Applications. New 

York: Wiley. 



References 545 

Rencher, A. C. and Pun, F. C. (1980). Inflation of R2 in best subset regression. 
Technometrics, 22, 49-53. 

Richardson, D. H. and Wu, D.-M. (1970). Alternative estimators in the error in 
variables model. J. Am. Stat. Assoc., 65, 724-748. 

Rogers, C. E. and Wilkinson, G. N. (1974). Regression, curve fitting and smoothing 
numerical problems in recursive analysis of variance algorithms. J. Inst. Math. 
Appl., 10, 141-143. 

Ronchetti, E. (1987). Bounded influence inference in regression: A review. In 
Y. Dodge (Ed.), Statistical Data Analysis Based on the L1 Norm and Related 
Methods, Amsterdam: North Holland, pp. 65-80. 

Roth, A. J. (1988). Welch tests. In Encyclopedia of Statistical Sciences, Vol. 9, N. 
L. Johnson and C. B. Read (Eds.). New York: Wiley, pp. 608-610. 

Rousseeuw, P. J. (1984). Least median of squares regression. J. Am. Stat. Assoc., 
79, 871-880. 

Rousseeuw, P. J. and Leroy, A. M (1987). Robust Regression and Outlier Detection. 
New York: Wiley. 

Rousseeuw, P. J. and van Driesen, K. (1999). A fast algorithm for the minimum 
covariance determinant estimator. Technometrics, 41, 212-223. 

Rousseeuw, P. J. and van Zomeren, B. C. (1990). Unmasking multivariate outliers 
and leverage points. J. Am. Stat. Assoc., 85, 633-639. 

Rousseeuw, P. J. and Yohai, V. (1984). Robust regression by means of S-estimators. 
In J. Franke, W. Hardie and D. Martin (Eds.), Lecture Notes in Statistics, Vol. 
26. New York: Springer-Verlag, pp. 256-272. 

Ruppert, D. (1992). Computing S-estimators for regression and multivariate loca­
tion/dispersion. J. Comput. Graph. Stat., 1, 253-270. 

Savage, I. R. and Lukacs, E. (1954). Tables of inverses of finite segments of the 
Hilbert matrix. In O. Taussky (Ed.). Contributions to the Solution of Systems 
of Linear Equations and the Determination of Eigenvalues. National Bureau of 
Standards Applied Mathematics Series 39. Washington, DC: U.S. Government 
Printing Office, pp. 105-108. 

Saw, J. G. (1966). A conservative test for the concurrence of several regression lines 
and related problems. Biometrika, 53, 272-275. 

Schatzoff, M., Tsao, R. and Feinberg, S. (1968). Efficient calculation of all possible 
regressions. Technometrics, 10, 769-779. 

Scheffe, H. (1953). A method of judging all contrasts in the analysis of variance. 
Ann. Math. Stat., 40, 87-104. 

Scheffe, H. (1959). The Analysis of Variance. New York: Wiley. 

Schlesselman, J. (1971). Power families: A note on the Box and Cox transformation. 
J. R. Stat. Soc. B, 33, 307-31l. 

Schoenberg, I. J. (1946). Contributions to the problem of approximation of equidis­
tant data by analytic functions. Q. J. Appl. Math., 4, 45-99; 112-14l. 

Schimek, M. (Ed.). (2000). Smoothing and Regression: Approaches, Computation 
and Application, New York: Wiley. 

Schumaker, L. L. (1981). Spline Functions. New York: Wiley. 

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461-464. 



546 References 

Scott, A. and Smith, T. M. F. (1970). A note on Moran's approximation to Student's 
t. Biometrika, 57, 681-682. 

Scott, A. J. and Smith, T. M. F. (1971). Interval estimates for linear combinations 
of means. Appl. Stat., 20, 276-285. 

Searle, S. R. (1971). Linear Models. New York: Wiley. 

Seber, G. A. F. (1980). The Linear Hypothesis: A General Theory, 2nd ed. London: 
Griffin. 

Seber, G. A. F. (1982). The Estimation of Animal Abundance and Related Param-
eters, 2nd ed. London: Griffin. 

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley. 

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. New York: Wiley. 

Shao, J. (1993). Linear model selection by cross-validation. J. Am. Stat. Assoc., 
88, 486-494. 

Shibata, R. (1981). An optimal selection of regression variables. Biometrika, 68, 
45-54. 

Shibata, R. (1984). Approximate efficiency of a selection procedure for the number 
of regression variables. Biometrika, 71, 43-49. 

Sidak, Z. (1968). On multivariate normal probabilities of rectangles. Ann. Math. 
Stat., 39, 1425-1434. 

Sievers, G. L. (1983). A weighted dispersion function for estimation in linear models. 
Commun. Stat. A, 12, 1161-1179. 

Silvey, S. D. (1970). Statistical Inference. London: Penguin. 

Simonoff, J. S. (1995). Smoothing Methods in Statistics. New York: Springer-Verlag. 

Simpson, D. G., Ruppert, D. and Carroll, R. J. (1992). On one-step GM-estimates 
and stability of inferences in linear regression. J. Am. Stat. Assoc., 87, 439-450. 

Smith, G. and Campbell, F. (1980). A critique of some ridge regression methods. 
J. Am. Stat. Assoc., 75, 74-8l. 

Speed, F. M. and Hocking, R. R. (1976). The use of R( ) notation with unbalanced 
data. Am. Stat., 30, 30-33. 

Speed, F. M., Hocking, R. R. and Hackney, O. P. (1978). Methods of analysis of 
linear models with unbalanced data. J. Am. Stat. Assoc., 73, 105-112. 

Speigelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and loglinear 
models. J. R. Stat. Soc. B, 44, 377-387. 

Spjiitvoll, E. (1972). On the optimality of some multiple comparison procedures. 
Ann. Math. Stat., 43, 398-41l. 

Sprent, P. (1961). Some hypotheses concerning two phase regression lines. Biomet­
rics, 17, 634-645. 

Sprent, P. (1969). Models in Regression and Related Topics. London: Methuen. 

Stewart, G. W. (1976). The economical storage of plane rotations. Numer. Math., 
25, 137-138. 

Stigler, S. M. (1990). A Galtonian perspective on shrinkage estimators. Stat. Sci., 
5, 147-155. 

Stone, M. (1974). Cross-validatory choice and the assessment of statistical predic­
tions (with discussion). J. R. Stat. Soc. B, 36, 111-147. 



References 547 

Stromberg, A. J. (1993). Computing the exact least median of squares estimate and 
stability diagnostics in multiple linear regression. SIAM J. Sci. Comput., 14, 
1289-1299. 

Stromberg, A. J., Hossjer, O. and Hawkins, D. M. (2000). The least trimmed 
differences estimator and alternatives. J. Am. Stat. Assoc., 95,853-864. 

Swindel, B. F. (1968). On the bias of some least-squares estimators of variance in a 
general linear model. Biometrika, 55, 313-316. 

Swindel, B. F. and Bower, D. R. (1972). Rounding errors in the independent vari­
ables in general linear model. Technometrics, 14, 215-218. 

Theil, H. (1965). The analysis of disturbances in regression analysis. J. Am. Stat. 
Assoc., 60, 1067-1079. 

Theil, H. (1968). A simplification of the BLUS procedur~ for analyzing regression 
disturbances. J. Am. Stat. Assoc., 63, 242-251. 

Theil, H. and Schweitzer, A. (1961). The best quadratic estimator of the residual 
variance in regression analysis. Stat. Need., 15, 19-23. 

Thompson, M. L. (1978). Selection of variables in multiple regression: Part I: A 
review and evaluation. Part II: Chosen procedures, computations and examples. 
Int. Stat. Rev., 46, 1-19, 129-146. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. 
Soc. B, 58, 267-288. 

Tibshirani, R. and Hastie, T. J. (1990). Generalized Additive Models. New York: 
Chapman & Hall. 

Tibshirani, R. and Knight, K. (1999). The covariance inflation criterion for adaptive 
model selection. J. R. Stat. Soc. B, 61, 529-546. 

Todd, J. (1954). The condition of the finite segments of the Hilbert matrix. In 
O. Taussley (Ed.), Contributions to the Solution of Systems of Linear Equations 
and the Determination of Eigenvalues, National Bureau of Standards Applied 
Mathematics Series 39, Washington, DC: U.S. Government Printing Office, pp. 
109-116. 

Todd, J. (1961). Computational problems concerning the Hilbert matrix. J. Res. 
Nat. Bur. Standards, 65, 19-22. 

Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions. New York: 
Academic Press. 

Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. Philadelphia: 
SIAM. 

TUkey, J. W. (1949). One degree of freedom for non-additivity. Biometrics, 5, 
232-242. 

TUkey, J. W. (1953). The problem of multiple comparisons. U npu blished manuscript, 
Princeton, NJ. 

TUkey, J. W. (1954). Causation, regression and path analysis. In O. Kempthorne 
(Ed.), Statistics and Mathematics in Biology. Ames, IA: Iowa State College Press, 
pp. 35-66. 

TUrner, M. E. (1960). Straight line regression through the origin. Biometrics, 16, 
483-485. 

Velleman, P. F. and Welsch, R. E. (1981). Efficient computing of regression diag­
nostics. Am. Stat., 35, 234-242. 



548 References 

Verbyla, A. P. (1993). Modeling variance heterogeneity: Residual maximum likeli­
hood and diagnostics. J. R. Stat. Soc. B, 55, 493-508. 

Wahba, G. (1990). Spline Methods for Observational Data. Philadelphia: SIAM. 

Walls, R. C. and Weeks, D. L. (1969). A note on the variance of a predicted response 
in regression. Am. Stat., 23, 24-26. 

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. New York: Chapman & 
Hall. 

Warren, W. G. (1971). Correlation or regression: Bias or precision. Appl. Stat., 20, 
148-164. 

Watkins, D. S. (1991). Fundamentals of Matrix Computations. New York: Wiley. 

Wedderburn, R. W. M. (1974). Generalized linear models specified in terms of 
constraints. J. R. Stat. Soc. B, 36, 449-454. 

Wilkinson, G. N. (1970). A general recursive procedure for analysis of variance. 
Biometrika, 57, 19-46. 23, 377-380. 

Williams, D. A. (1970). Discrimination between regression models to determine the 
pattern of enzyme synthesis in synchronous cell cultures. Biometrics, 26, 23-32. 

Williams, E. J. (1959). Regression Analysis. New York: Wiley. 

Wold, S. (1974). Spline functions in data analysis. Technometrics, 16, I-II. 

Working, H. and Hotelling, H. (1929). Application of the theory of error to the 
interpretation of trends. J. Am. Stat. Assoc. Suppl. (Proc.), 24, 73-85. 

Wynn, H. P. and Bloomfield, P. (1971). Simultaneous confidence bands in regression 
analysis. J. R. Stat. Soc. B, 33, 202-217 . 

. Yates, F. (1972). A Monte-Carlo trial on the behavior of the non-additivity test 
with non-normal data. Biometrika, 59, 253-26I. 

Yeo, I.-K. and Johnson, R. A. (2000). A new family of power transformations to 
improve normality and symmetry. Biometrika, 87, 954-959. 

Zhang, P. (1992). On the distributional properties of model selection criteria. J. 
Am. Stat. Assoc., 87, 732-737. 

Zhang, P. (1993). Model selection via multifold cross validation. Ann. Stat., 21, 
299-313. 

Zimmerman, D (1987). Comments on "Simultaneous confidence intervals for pre­
diction".(8(jV40 p279), Am. Stat., 41, 247. 



Abbreviated probability error rate, 120 
Accuracy 

of Givens, 371 
of Householder, 371 
of MGSA, 371 
of SVD, 371 

Added variable plot, 277-278 
Adding an extra variable, 54, 57 

effect on confidence interval, 135 
effect on prediction interval, 135 
full rank case, 57 
less than full rank case, 65 

Adding columns to the data matrix, 356 
Adding rows to the data matrix, 356 
Additivity 

test for, 213 
Adjusted R2, 400 
AIC, 408 

expected value of, 409 
modified, 409 
(72 known, 410 

Akaike information criterion, 408 
Algorithm 

for all possible regressions, 393, 439 
for all possible regressions via QR, 446 
for Cholesky decomposition, 336 
for high-breakdown methods, 385 
for stepwise regression, 418 
Furnival, 441 
Furnival and Wilson, 442 

Index 

Garside, 439 
Gram-Schmidt, 338 
modified Gram-Schmidt, 341 
Morgan and Tatar, 441 
N elder-Mead, 438 
Schatzoff et aI., 440 
Wilkinson, 58 

All possible regressions, 392, 399 
Garside algorithm for, 439 
Morgan and Tatar method for, 441 
order of generation, 440 
using sweeps for, 439 

Alternative parameterizations 
in one-way classification, 190 

Analysis of covariance, 222 
Analysis of variance, 187 
Andrews and Pregibon statistic, 309 
AN OVA table 

higher-way classification, 219 
one-way classification, 192 
two-way classification, 208 
two-way classification with one 

observation per mean, 212 
Apparent reSiduals, 58 
Backfitting, 276 
Back-substitution, 337 
Backward analysis, 370 
Backward elimination, 168, 392, 416 
Backward stable algorithm, 370 
Bayes estimate 

549 



550 INDEX 

in inverse prediction, 147 
Bayes factor, 429 
Bayes' formula, 73 
Bayesian information criterion, 410, 412 
Bayesian model averaging, 392, 433 
Bayesian prediction, 392, 428, 431 
Berkson's model, 240 
Best linear unbiased estimate, 68 
Best unbiased estimate, 50 
Beta distribition, 473 
Bias 

due to overfitting, 230 
due to underfitting, 228 
in polynomial fitting, 393 
trade-off with variance, 394 

BIC, 410, 412 
Binomial distribution, 8 
Bivariate normal density, 19 
Bivariate normal distribution, 19 
Biweight function, 90 
BLUE, 42, 68 
BLUS residuals, 327 
Bonferroni confidence interval, 121-122, 

124, 129, 131, 142 
percentage points for, 480 

Bonferroni inequality, 121 
Bonferroni method, 193 

in straight-line regression, 140 
Bonferroni tests, 121 
Bonferroni t-interval, 121-122, 124, 129, 

131, 142 
Bound tree, 446 
Box-Cox transformation, 276, 297 
Branch tree, 446 
Breakdown point, 82 

of generalized M-estimate, 89 
of LMS estimate, 83 
of LQD estimate, 92 
of LTS estimate, 83 
of one-step estimate, 89 
of S-estimate,· 90 

B-spline basis, 174 
C p , 402 
Cali bration, 145 
Canonical form for F-test, 113 
Cauchy distri bution, 13 
Cauchy-Schwartz inequality, 463 
Centering, 69 
Centering the data 

algorithms for, 363 
CERES plot, 275 
Changeover point, 160 
Chebyshev fit, 386 
Chebyshev polynomials, 169 
Chi-square distribution, 13 

idempotent matrices and, 28 

m.g.f. for, 13 
notation for, 2 
of differences in two quadratic forms, 29 

Cholesky decomposition, 329, 336 
Cholesky factor, 336 
Choosing the best regression subset, 399 
Coefficient of determination, Ill, 400 

expectation of, 113 
Coincidence 

test for, 155 
CoUinearity, 249, 315 

diagnosis of, 315 
remedies for, 321 

Column space 
notation for, 2 

Columns 
linearly independent, 37 

Comparing two means, 104 
Comparing two regression models, 114 
Concurrence 

test for, 156 
Condition number, 316 
Conditional distributions 

for multivariate normal, 25 
Conditional expectation 

notation for, 1 
Conditional likelihood, 437 
Confidence band 

for regression surface, 129 
for straight line regression, 141 
Gafarian, 143 
Graybill-Bowden, 142 
Working-Hotelling, 142 

Confidence interval 
Bonferroni, 121-122, 124, 129, 131, 142 
for contrast, 107 
for regression surface, 129 
for special su bset, 124 
for straight-line regression, 139 
for x intercept in straight-line regression, 

140 
in one-way classification, 192 
in two-way classification, 204 
maximum modulus, 124, 130, 142 
simultaneous, 119 
simultaneous for regression coefficients, 

126 
Tukey-Kramer, 193 

Confidence region, 125 
Conjugate prior, 74 
Consistency, 79 
Contrast, 187 

confidence interval for, 107, 123 
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James-Stein, 421 
L 1 ,79 
LAD, 79 
lasso, 427 
least median of squares, 78, 80 
least squares, 35, 41, 44, 53, 55, 57, 59, 

62, 77, 93, 95 
least trimmed squares, 78, 81 
LQD,92 
LTD, 93 
M-,77 
MAD, 80 
maximum likelihood, 49 
minimum norm quadratic unbiased, 47 
one-step GM, 89 
ordinary least squares, 68 
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in inverse prediction, 147 
Inverse prediction, 145 
Inverse 

notation for, 2 
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James-Stein shrinkage estimate, 421 
John-Draper transformation, 298 
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number of, 178 
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Kullback-Leibler discrepancy, 298, 407 
L1 estimate, 79 
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Laplace approximation, 430 
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Least median of squares 

inefficiency of, 82 
instability of, 81 
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weighted, 150-151 
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distribution of, 47 
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independent of 8 2 , 48 
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properties of, 42 
unbiased, 48 
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variance matrix of, 48 

Least squares under restrictions 
method of orthogonal projections, 61 
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Least trimmed squares estimate, 81 
Least trimmed squares 

inefficiency of, 82 
Levene test, 195 
Likelihood 

connection with M-estimate, 78 
for linear regression model, 49 

Likelihood ratio test, 98 
Linear regression model, 4 

constant term in, 36 
general hypothesis for, 97 
likelihood for, 49 
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matrix form of, 35 

Little bootstrap, 406, 424, 453 
Local linear regression, 162 

multidimensional, 184 
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breakdown point of, 92 
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influence curve of, 87 

MAD estimate, 80, 90 
Mahalanobis distance, 70,261, 269 
Main effects, 217 
Mallows' C p , 402 
Mallows weights, 89 
Mantissa, 369 
Marginal distribution, 22 
Markov chain Monte Carlo, 430 
Masking, 312 
Matrix 

design, 36 
dispersion, 6 
idempotent, 36 
information, 50 
notation for, 1 
projection, 36 
regression, 36 
sum of squares and cross-products, 329 
variance, 6 

Maximum likelihood estimate, 49 
in inverse prediction, 145 
in weighted least squares, 151 

Maximum modulus confidence interval, 
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Mean 
influence curve of, 85 
of multivariate normal, 18 
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comparing, 104 
comparing two, 4 

Median scores, 91 
MGSA,341 
Minimum covariance determinant estimate, 

305 
Minimum volume ellipsoid, 304 
MINQUE,47 
Missing observations 

in balanced design, 220 
Model 

linear regression, 4 
regression through the origin, 270 
transform both sides, 299 
for two straight lines, 97 

Model averaging, 392 
Model error, 394, 396 
Model selection, 98, 391 
Modified Gram-Schmidt algorithm, 341 

flop count for:, 343 
Moment generating function, 13 

of chi-squared, 13 
of multivariate normal, 20 
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Multinomial distribution, 8 
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Scheffe method for, 124 
Thkey-Kramer method for, 193 

Multiple correlation coefficient, 110 
Multivariate normal, 17 

characterization of, 22 
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density of, 17 
extended definition of, 21 
independence and, 24 
marginal distributions, 22 
mean of, 18 
m.g.f. of, 20 
variance matrix of, 18 

Multivariate t-distribution, 74, 121, 431, 
473 

NeIder-Mead algorithm, 438 
Nested design, 221 
Noninformative prior, 73 
Nonnegative garrote, 426 
Nonnormality 

effect on F-test, 235 
Norm 

definition of, 1 
of matrix, 256 

Normal distribution 
independence of sample mean and 
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notation for, 2 

Normal equations, 37, 330 
Normal plot, 295 
Notation, 1 
Null space 

notation for, 2 
Occam's window, 433 
Ohm's Law, 3 
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One-step estimate 

breakdown point of, 89 
One-step GM-estimate, 89 
One-way classification, 188 

ANOVA table for, 192 
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F-test for, 189 

One-way layout, 188 
Orthogonal columns 

in regression matrix, 51 
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Orthogonal complement, 40 
Orthogonal polynomials, 166 
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generation of, 168 
statistical properties of, 166 

Orthogonal projection, 40, 61 
Orthonormal basis, 338 
Outlier, 77, 233, 301 
Outlier shift model, 310 
Overfitting, 230 
Pairwise independence, 14 
Parallelism 

test for, 155 
Partial residual, 273 
Partial residual plot, 272 
Partitioned matrices, 466 
Path of steepest ascent, 181 
Patterned matrices, 466 
Permutation matrix, 361, 376, 464 
Piecewise polynomial fitting, 173 
Pivotting 

in Gaussian elimination, 333, 367, 370 
Plug-in estimate, 84 

robustness of, 85 
Polynomial regression, 165 

choosing degree in, 168 
ill-conditioning in, 165 
use in surface fitting, 180 

Positive-definite matrix, 8, 17, 461 
Positive-semidefinite matrix, 21, 460 
Posterior predictive density, 431 
Posterior 

density function, 73 
distribution, 74 
for regression coefficients, 74 

Prediction, 391 
Prediction band 

in straight-line regression, 142 
Prediction error, 394, 396 
Prediction interval, 131 

in straight-line regression, 141 
Predictive density, 428 
Predictive loss, 449 
Predictor 

calibration of, 448 
construction of, 391 

Prior 
conjugate, 74 
for error variance, 74 
for regression coefficients, 74 
improper, 73 
noninformative, 73 

Prior information, 73 
Production function, 3 
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use in inverse prediction, 148 
Projection matrix, 36-37, 66, 464 

for centered data, 70 
for two-variable model, 72 



F-test and, 116 
Pseudolikelihood, 289 
QR decomposition, 330, 338 

calculation of regression quantities using, 
340 

in rank-deficient case, 376 
use in adding and deleting cases, 360 
use in adding and deleting variables, 360 
using Givens transformations, 348 
using Householder transformations, 345 
using MGSA, 341 

Quadratic form, 9 
chi-squared distribution of, 28 
condition to be chi-squared, 30 
distribution of, 27 
independence of, 29 
mean of, 9 
variance of, 9 

Quadratically balanced F-test, 236 
R,121 
R2, 111 
Random explanatory variables, 5, 240 
Randomized block design, 62 
Rank,458 

calculation of in presence of round-off, 
378 

Regression 
testing significance of, 112 

Regression analysis 
aim of, 2 

Regression calculations 
for all possible regressions, 439 
for robust regression, 382 
using fast rotators, 350 
using Gaussian elimination, 332 
using Householder transformations, 346 
using MGSA, 342 
using SVD, 353 

Regression coefficients 
in straight-line regression, 107 
MLE of, 49 
posterior for, 74 
prior for, 74 
tests for, 106 

Regression matrix, 36 
ill-conditioned in polynomial regression, 

165 
orthogonal columns in, 51 

Regression model 
linear, 4 
two phase, 159 

Regression splines, 173 
Regression surface, 271 

confidence band for, 129 
confidence interval for, 129 

Regression tree, 442 

Regression updating, 356 
Regressor, 3 
Relationshi ps 

between variables, 3 
causal, 3 

REML,287 
Residual, 38 

apparent, 58 
BLUS, 327 
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internally Studentized, 267 
partial, 273 
properties of, 266 

Residual plot, 272, 283 
Residual sum of squares, 38, 400 
Response surface, 180 
Response variable, 3, 36 
R-estimate, 91 
Restricted likelihood, 287 
Ridge estimate, 423 

as Bayes estimate, 424 
as solution of constrained least squares 

problem, 425 
orthogonal case, 425 

Ridge parameter, 423 
estimation of, 424 
estimation of via cross validation, 424 
estimation of via GCV, 424 

Ridge regression, 392, 423 
RO-notation, 202 
Robust estimation, 77, 304, 313 
Round-off error, 245, 370 
RSS, 38 
".2 (Error variance) 

estimation of, 44 
S-estimate, 90 

breakdown point of, 90 
S-interval, 142 
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Sample mean and variance 

independence for normal distribution, 25 
Scaling, 69, 71, 250, 318 
Scheffe interval, 124, 129-130, 142 
Scheffe's method, 123-124, 130, 142, 193 
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Second order interaction, 216 
Selection bias, 437 
Shrinkage estimate, 420 
Simple block structure, 221 
Simultaneous confidence interval, 119 

comparisons between, 124 
relationship with F-test, 127 

Simultaneous confidence intervals, 124 
Simultaneous prediction interval 

for straight-line regression, 145 
Single explanatory variable 
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Smoothing parameter 
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regression, 173 
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