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Preface

Since publication of the first edition in 1977, there has been a steady flow
of books on regression ranging over the pure-applied spectrum. Given the
success of the first edition in both English and other languages (Russian and
Chinese), we have therefore decided to maintain the same theoretical approach
in this edition, so we make no apologies for a lack of data! However, since 1977
there have major advances in computing, especially in the use of powerful sta-
tistical packages, so our emphasis has changed. Although we cover much the
same topics, the book has been largely rewritten to reflect current thinking.
Of course, some theoretical aspects of regression, such as least squares and
maximum likelihood are almost set in stone. However, topics such as analysis
of covariance which, in the past, required various algebraic techniques can now
be treated as a special case of multiple linear regression using an appropriate
package.

We now list some of the major changes. Chapter 1 has been reorganized
with more emphasis on moment generating functions. In Chapter 2 we have
changed our approach to the multivariate normal distribution and the ensuing
theorems about quadratics. Chapter 3 has less focus on the dichotomy of
full-rank and less-than-full-rank models. Fitting models using Bayesian and
robust methods are also included. Hypothesis testing again forms the focus
of Chapter 4. The methods of constructing simultaneous confidence intervals
have been updated in Chapter 5. In Chapter 6, on the straight line, there is
more emphasis on modeling and piecewise fitting and less on algebra. New
techniques of smoothing, such as splines and loess, are now considered in
Chapters 6 and 7. Chapter 8, on analysis of variance and covariance, has

XV



xXvi Preface

been updated, and the thorny problem of the two-way unbalanced model
is addressed in detail. Departures from the underlying assumptions as well
as the problem of collinearity are addressed in Chapter 9, and in Chapter
10 we discuss diagnostics and strategies for detecting and coping with such
departures. Chapter 11 is a major update on the computational aspects,
and Chapter 12 presents a comprehensive approach to the problem of model
selection. There are some additions to the appendices and more exercises have
been added.

One of the authors (GAFS) has been very encouraged by positive comments
from many people, and he would like to thank those who have passed on errors
found in the first edition. We also express our thanks to those reviewers of
our proposed table of contents for their useful comments and suggestions.

GEORGCE A. F. SEBER
ALAN J. LEE

Auckland, New Zealand
November 2002



1

Vectors of Random Variables

1.1 NOTATION

Matrices and vectors are denoted by boldface letters A and a, respectively,
and scalars by italics. Random variables are represented by capital letters
and their values by lowercase letters (e.g., Y and y, respectively). This use
of capitals for random variables, which seems to be widely accepted, is par-
ticularly useful in regression when distinguishing between fixed and random
regressor (independent) variables. However, it does cause problems because
a vector of random variables, Y, say, then looks like a matrix. Occasionally,
because of a shortage of letters, a boldface lowercase letter represents a vector
of random variables.

If X and Y are random variables, then the symbols E[Y], var[Y], cov[X, Y],
and E[X|Y = y] (or, more briefly, E[{X|Y]) represent expectation, variance,
covariance, and conditional expectation, respectively.

The n X n matrix with diagonal elements d;, d»,...,d, and zeros elsewhere
is denoted by diag(d;,ds,...,dn), and when all the d;’s are unity we have the
identity matrix I,,.

If a is an n X 1 column vector with elements ay, as, . .., an, we write a = (a;),
and the length or norm of a is denoted by ||a||. Thus

lall = vVa'a = (a? + @} + --- + a2)*/%.

The vector with elements all equal to unity is represented by 1,, and the set
of all vectors having n elements is denoted by R,,.

If the m X n matrix A has elements a;;, we write A = (a;;), and the
sum of the diagonal elements, called the trace of A, is denoted by tr(A)
(= a11 + aga + + -+ + agk, where k is the smaller of m and n). The transpose

1



2 VECTORS OF RANDOM VARIABLES

of A is represented by A’ = (ai;), where a; = a;;. If A is square, its
determinant is written det(A), and if A is nonsingular its inverse is denoted
by A~!. The space spanned by the columns of A, called the column space of
A, is denoted by C(A). The null space or kernel of A (= {z: Ax = 0}) is
denoted by M (A).

We say that Y ~ N(f,02) if Y is normally distributed with mean 6 and
variance o2: Y has a standard normal distribution if 8 = 0 and ¢2 = 1. The
t- and chi-square distributions with k degrees of freedom are denoted by i
and xﬁ, respectively, and the F-distribution with m and n degrees of freedom
is denoted by Fi, .

Finally we mention the dot and bar notation, representing sum and average,
respectively; for example,

J

- a;.

a;. = E Qij and a;. = N
j=1

In the case of a single subscript, we omit the dot.

Some knowledge of linear algebra by the reader is assumed, and for a short
review course several books are available (see, e.g., Harville [1997]). However,
a number of matrix results are included in Appendices A and B at the end of
this book, and references to these appendices are denoted by, e.g., A.2.3.

1.2 STATISTICAL MODELS

A major activity in statistics is the building of statistical models that hope-
fully reflect the important aspects of the object of study with some degree of
realism. In particular, the aim of regression analysis is to construct math-
ematical models which describe or explain relationships that may exist be-
tween variables. The simplest case is when there are just two variables, such
as height and weight, income and intelligence quotient (IQ), ages of husband
and wife at marriage, population size and time, length and breadth of leaves,
temperature and pressure of a certain volume of gas, and so on. If we have n
pairs of observations (z;,y;) (i = 1,2,...,n), we can plot these points, giving
a scatter diagram, and endeavor to fit a smooth curve through the points in
such a way that the points are as close to the curve as possible. Clearly,
we would not expect an exact fit, as at least one of the variables is subject
to chance fluctuations due to factors outside our control. Even if there is
an “exact” relationship between such variables as temperature and pressure,
fluctuations would still show up in the scatter diagram because of errors of
measurement. The simplest two-variable regression model is the straight line,
and it is assumed that the reader has already come across the fitting of such
a model.

Statistical models are fitted for a variety of reasons. One important reason
is that of trying to uncover causes by studying relationships between vari-
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ables. Usually, we are interested in just one variable, called the response (or
predicted or dependent) variable, and we want to study how it depends on
a set of variables called the explanatory variables (or regressors or indepen-
dent variables). For example, our response variable might be the risk of heart
attack, and the explanatory variables could include blood pressure, age, gen-
der, cholesterol level, and so on. We know that statistical relationships do
not necessarily imply causal relationships, but the presence of any statistical
‘relationship does give us a starting point for further research. Once we are
confident that a statistical relationship exists, we can then try to model this
relationship mathematically and then use the model for prediction. For a
given person, we can use their values of the explanatory variables to predict
their risk of a heart attack. We need, however, to be careful when making
predictions outside the usual ranges of the explanatory variables, as the model
may not be valid there.

A second reason for fitting models, over and above prediction and expla-
nation, is to examine and test scientific hypotheses, as in the following simple
examples.

EXAMPLE 1.1 Ohm’s law states that ¥ = rX, where X amperes is the
current through a resistor of r ohms and Y volts is the voltage across the
resistor. This give us a straight line through the origin so that a linear scatter
diagram will lend support to the law. ' B

EXAMPLE 1.2 The theory of gravitation states that the force of gravity
F between two objects is given by F' = a/dP. Here d is the distance between
the objects and « is a constant related to the masses of the two objects. The
famous inverse square law states that 8 = 2. We might want to test whether
this is consistent with experimental measurements. J

EXAMPLE 1.3 Economic theory uses a production function, Q = oLPK",
to relate Q (production) to L (the quantity of labor) and K (the quantity of
capital). Here a, 8, and <y are constants that depend on the type of goods
and the market involved. We might want to estimate these parameters for a
particular market and use the relationship to predict the effects of infusions
of capital on the behavior of that market. C

From these examples we see that we might use models developed from the-
oretical considerations to (a) check up on the validity of the theory (as in the
Ohm’s law example), (b) test whether a parameter has the value predicted
from the theory, under the assumption that the model is true (as in the grav-
itational example and the inverse square law), and (c) estimate the unknown
constants, under the assumption of a valid model, and then use the model for
prediction purposes (as in the economic example).



4 VECTORS OF RANDOM VARIABLES

1.3 LINEAR REGRESSION MODELS

If we denote the response variable by Y and the explanatory variables by
X1,Xs,..., Xk, then a general model relating these variables is

E[YIXl = $1,X2 = Iq,. ..,XK = CUK] = ¢(£U1,CC2, ‘e ,:UK),

although, for brevity, we will usually drop the conditioning part and write
E[Y]. In this book we direct our attention to the important class of linear
models, that is,

¢($11$2:“'3$K) =l80+ﬁ1$1 +"'+ﬂKwK3

which is linear in the parameters ;. This restriction to linearity is not as re-
strictive as one might think. For example, many functions of several variables
are approximately linear over sufficiently small regions, or they may be made
linear by a suitable transformation. Using logarithms for the gravitational
model, we get the straight line

log F' = loga — Blogd. (1.1)

For the linear model, the z; could be functions of other variables z, w, etc.;
for example, z; = sin z, 2 = logw, and z3 = zw. We can also have z; = z°,
which leads to a polynomial model; the linearity refers to the parameters,
not the variables. Note that “categorical” models can be included under our
umbrella by using dummy (indicator) z-variables. For example, suppose that
we wish to compare the means of two populations, say, u; = E[U;] (1 = 1,2).
Then we can combine the data into the single model

E[Y] pr + (p2 — )z

= ﬁO + bz,

Il

where z = 0 when Y is a U; observation and z = 1 when Y is a U, observation.
Here 13 = fo and ps = By + P, the difference being 8:. We can extend this
idea to the case of comparing m means using m — 1 dummy variables.

In a similar fashion we can combine two straight lines,

UJ' = Qj + ¥;T1 (.7 = 132)1

using a dummy zs variable which takes the value 0 if the observation is from
the first line, and 1 otherwise. The combined model is

ElY] = o1+me1+ (e —a)22 + (12 - n)n122
= fo+ prz1 + Baz2 + Pazs, (1.2)

say, where 3 = z125. Here a; = By, az = fo+ 2, 11 = B1, and 42 = 1+ B3.
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In the various models considered above, the explanatory variables may or
may not be random. For example, dummy variables are nonrandom. With
random X-variables, we carry out the regression conditionally on their ob-
served values, provided that they are measured exactly (or at least with suf-
ficient accuracy). We effectively proceed as though the X-variables were not
random at all. When measurement errors cannot be ignored, the theory has
to be modified, as we shall see in Chapter 9.

1.4 EXPECTATION AND COVARIANCE OPERATORS

In this book we focus on vectors and matrices, so we first need to generalize
the ideas of expectation, covariance, and variance, which we do in this section.

Let Z;; (1 = 1,2,...,m; 7 = 1,2,...,n) be a set of random variables
with expected values E[Z;;]. Expressing both the random variables and their
expectations in matrix form, we can define the general expectation operator
of the matrix Z = (Z;;) as follows:

Deﬁnition 1.1

BlZ) = (E(Z4)).
THEOREM 1.1 If A = (a;;), B = (b;;), and C = (¢i5) arel xm, n x p,
and | x p matrices, respectively, of constants, then

E[AZB + C] = AE[Z]B + C.
Proof. Let W = AZB + C; then Wij =3 S| GirZrsbs; + ¢;; and

E[{AZB + C] = (E[W;-j]) = (Z > i E[Zrs)bs; + c,;j)

= ((AE[Z]B);;) + (cij)
— AE[Z)B + C. O

In this proof we note that I, m, n, and p are any positive integers, and
the matrices of constants can take any values. For example, if X isanm x 1
vector, tien E[AX] = AE[X]. Using similar algebra, we can prove that if A
and B are m X n matrices of constants, and X and Y are n x 1 vectors of -
random variables, then

E[AX + BY] = AE[X] + BE[Y].

In a similar manner we can generalize the notions of covariance and variance
for vectors. If X and Y are m x 1 and n x 1 vectors of random variables, then
we define the generalized covariance operator Cov as follows:
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Definition 1.2
Cov[X, Y] = (cov[X;, Y;]).

THEOREM 1.2 If E[X] = a and E[Y] = 8, then
Cov[X, Y] = E[(X - a)(Y - BY].
Proof.

CoviX, Y] = (cov[X;,Y;])
= {E[(X; — a:)(Y; — 8;)1}
=E {{(X; — as)(Y; — B;)]}
=E[(X - a)(Y - 8)]. D

Definition 1.3 When Y = X, Cov[X, X], written as Var[X], is called the
variance (variance—covariance or dispersion) matriz of X. Thus

Var[X] = (cov[X;, X;])
var[X; ] cov[Xy, Xo] -+ cov[Xy, X;)
_ cov[ X2, X1] var[X5] oo cov[Xa, X,) (1.3)
cov{Xn,X1] cov[Xp,Xa] --- var(Xp)

Since cov[X,;, X;] = cov[X;, X;], the matriz above is symmetric. We note
that when X = X; we write Var[X] = var[X;].

From Theorem 1.2 with Y = X we have

Var[X] = E{(X - a)}(X - a)'], (1.4)

which, on expanding, leads to
Var[X] = E[XX'] - ac’'. (1.5)
These last two equations are natural generalizations of uhivariate results.
EXAMPLE 1.4 If a is any n x 1 vector of constants, then
Var[X - a] = Var[X].

This follows from the fact that X; — a; — E[X; — a;] = X; — E[X}], so that

'COV[X.,; - a.,;,Xj - aj] = COV[X,;, Xj]. )
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THEOREM 1.3 IfX andY arem X1 and nx1 vectors of random variables,
and A and B are l X m and p X n matrices of constants, respectively, then

Cov[AX,BY] = A Cov[X,Y]B'. (1.6)
Proof. Let U = AX and V = BY. Then, by Theorems 1.2 and 1.1,
Cov[AX,BY] = Cov[U, V]
=E[(U — E[U])(V - E[V])']
=FE[(AX — Aa)(BY — Bg)']
=E[AX - a)(Y ~ B)'B]
—AE[(X - a)(Y - 8)]B'
=A Cov[X,Y]B'. O

From the theorem above we have the special cases
CovlAX,Y] = ACov[X,Y] and Cov[X,BY]= Cov[X,Y|B'

Of particular importance is the following result, obtained by setting B = A
and ¥ = X:

Var[AX] = Cov[AX,AX] = ACov[X,X]JA' = AVar[X]A'. (1.7)

EXAMPLE 1.5 If X, Y, U, and V are any (not necessarily distinct) n x 1
vectors of random variables, then for all real numbers a, b, ¢, and d (including
Zero),

Cov[aX + bY,cU + dV]
= acCov{X, U] + ad Cov[X, V] + be Cov[Y, U] + bd Cov[Y, V].

(1.8)
To prove this result, we simply multiply out
E[(aX + bY — aE[X] — bE[Y])(cU + dV — cE[U] — dE[V])]
= E{(a(X - E[X]) + b(Y — E[Y])) (c(U — E[U]) + d(V — E[V]))'].
HIweset U=Xand V=Y, c=a and d = b, we get
Var[aX + bY] = Cov[eX +bY,aX + bY]
= a® Var[X] + ab(Cov[X, Y] + Cov[Y,X])
+b* Var[Y]. (1.9)

a
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In Chapter 2 we make frequent use of the following theorem.

THEOREM 1.4 If X is a vector of random variables such that no element
of X is a linear combination of the remaining elements [i.e., there do not exist
a(# 0) and b such that a’X = b for all values of X = xJ, then Var[X] is a
positive-definite matriz (see A.4).

Proof. For any vector ¢, we have

0 < var[e'X]
= ¢ Var[X]c [by equation (1.7)].

Now equality holds if and only if ¢/’X is a constant, that is, if and only if
¢'’X =d (¢ #0) or c = 0. Because the former possibility is ruled out, ¢ =0
and Var[X] is positive-definite. 4

EXAMPLE 1.6 If X and Y are m x 1 and n x 1 vectors of random variables
such that no element of X is a linear combination of the remaining elements,
then there exists an n x m_ matrix M such that Cov[X,Y — MX] = 0. To
find M, we use the previous results to get

CoviX,Y - MX] = Cov[X,Y]- Cov[X, MX]
= Cov[X,Y] - Cov[X,X]M'
Cov[X,Y] — Var[X]M'. (1.10)

By Theorem 1.4, Var[X] is positive-definite and therefore nonsingular (A.4.1).
Hence (1.10) is zero for

M’ = (Var[X])~* Cov[X, Y]. O

EXAMPLE 1.7 We now give an example of a singular variance matrix by
using the two-cell multinomial distribution to represent a binomial distribu-
. tion as follows:

n!

__;_TpifII)gz’ pr+p2=1 21+ 32 =n. -
2

pr(Xi =z, X =13) = .

IfX = (Xl,Xz)’, then

Var[X] = ( npi(1 — p1) —~Np1P2 )
—np1p2 npa(l—p2) )’

which has rank 1 as p2 =1 — p;. O

EXERCISES 1a

1. Prove that if a is a vector of constants with the same dimension as the
random vector X, then

E[(X —a)(X — a)'] = Var[X] + (E[X] — a)(E[X] — a)".
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- If Var[X] = 2 = (0;), deduce that

E[l|X - al’) = 3 ou + || BIX] - ail”

2. f X and Y are m x 1 and n x 1 vectors of random variables, and a and
b are m x 1 and n x 1 vectors of constants, prove that

Cov[X —a,Y —b] = CoviX, Y].

3. Let X = (X1,Xa,...,X,n) be a vector of random variables, and let
Vi =X1,Y; = X; - X5 (0 = 2,3,...,n). If the ¥; are mutually
independent random variables, each with unit variance, find Var[X].

4, If X,,Xs,..., X, are random variables satisfying X;1; = pX; (i =
1,2,...,n — 1), where p is a constant, and var[X;] = o2, find Var[X].

1.5 MEAN AND VARIANCE OF QUADRATIC FORMS

Quadratic forms play a major role in this book. In particular, we will fre-
quently need to find the expected value of a quadratic form using the following
theorem.

THEOREM 1.5 Let X = (X;) be an n x 1 vector of random variables, and
let A be an n x n symmetric matriz. If E[X] = p and Var[X] = ¥ = (045),
then

EX'AX] = tr(AZ) + p/Ap.

Proof.

EX'AX] =tr(E[X'AX])
=E[tr(X'AX)]
—E[tr(AXX")] [by A.1.2]
=tr( E[AXX'])
=tr(AE[XX'])
= tr [A(Var[X] + p)] by (15)
=tr(AX) + tr(App’)
—tr(AZ) + w'Ap |by A.1.2]. O

We can deduce two special cases. First, by setting Y = X — b and noting
that Var{Y] = Var{X] (by Example 1.4), we have.

E[(X ~bYA(X - b)] = tr(AZ) + (u~b)A(u—b).  (1.11)
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Second, if & = %I, (a common situation in this book), then tr(AX) =
o2 tr(A). Thus in this case we have the simple rule

E[X'AX] = o?(sum of coefficients of X?) + (X'AX)x—p- (1.12)

EXAMPLE 1.8 If X;,Xs,...,X, are independently and identically dis-
tributed with mean p and variance o2, then we can use equation (1.12) to
find the expected value of

Q=(X1 —X2)?+ (X2 —X3)? 4+ 4+ (Xpn-1 — Xn)2

To do so, we first write

n n—1
Q=XAX= 2ZX='2 - X7 - X5 “ZZXiXHl-

i=1 i=1

Then, since cov[X;, X;] =0 (i # j), £ = ¢*1, and from the squared tei*ms,
tr(A) = 2n — 2. Replacing each X; by u in the original expression for @, we
see that the second term of E[{X'AX] is zero, so that E[Q] = c?(2n - 2). O

EXAMPLE 1.9 Suppose that the elements of X = (X1, X3,...,X5) have
a common mean g and X has variance matrix ¥ with o4 = 02 and 045 = po?
(i # j). Then, when p = 0, we know that @ = > ,(X; — X)? has expected
value o2(n — 1). To find its expected value when p # 0, we express @ in the
form X'AX, where A = [(§;; — n~')] and

1-n"t —-n-1 ... —p71

1 1 1 Los P

Az = 2| Tn T T Pl

—n1 —n~!L 1 —n"1 p p 1

= o%(1 - pA.
Once again the second term in E{Q)] is zero, so that

E[Q] = t:(AZ) = 0*(1 - p) tr(A) = o*(1 ~ p)(n — 1). O
THEOREM 1.6 Let X1, Xa,...,Xn be independent random variables with
means 61,0z, ...,60,, common variance us, and common third and fourth mo-

ments about their means, us and p4, respectively (i.e., ur = E[(X; — 6;)7]).
If A is any n X n symmetric matriz and a is a column vector of the diagonal
elements of A, then

var[X'AX]| = (u4 — 3u3)a’a + 2u2 tr(A?) + 4120’ A%0 + 4136’ Aa.
(This result is stated without proof in Atiqullah [1962].)
Proof. We note that E{X] = 0, Var[X] = u2I,, and
Var[X'AX] = E[(X'AX)?] - (E[X'AX])2. (1.13)
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Now
XAX=X-0))AX-0)+ 20A(X - 0) + 6'A90,

so that squaring gives

(X'AX)? = [(X-8)AX-0)? +4[0'A(X —0)]® + (0'A8)?
+20'A0[(X ~0)A(X - 0) +40'A00'A(X - 0)]
+40'A(X — 6)(X - 6)'A(X - 9).

Setting Y = X — 8, we have E[Y] = 0 and, using Theorem 1.5,

E[(X'AX)?] = E[(Y'AY)?] +4E[(0'AY)?) + (0' AG)?
+20'A0us tr(A) + 4E[@'AYY' AY].

As a first step in evaluating the expression above we note that
(YAY? = ST Y T aguainin
i j k1

Since the ¥; are mutually independent with the same first four moments
the origin, we have

MBa, 1=j=k=l,

EVY;iVil=4 13, i=gk=Li=kj=4Li=1j=k,
0, otherwise.

Hence

i

11

about

E[(Y’AY)Z] = L4 Za.,?,‘.; 4 ug Z (Z QiiGrk + Z a?j +- Zaijaj,;)

s P pre
= (uq — 3p3)a’a + p3 [tr(A)? + 2tr(A?)],

since A is symmetric and )5, 37 af; = tr(A?). Also,

(0'AY)® = (b'Y)? = ) > " bib;ViYj,
J

i

say, and |
O'AYY'AY = N> “biapYiY;Ya,
i 7 k
so that
E[(0'AY)*] = pz ) _ b} = usb'b = 11,68'A%0
i
and

E[0'AYY'AY] = p3 » _ biay; = psb'a = p36'Aa.

(1.14)
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Finally, collecting all the terms and substituting into equation (1.13) leads to
the desired result. O

EXERCISES 1b

1. Suppose that X, X2, and X3 are random variables with common mean
i and variance matrix

1 0 0
Var[X]=0¢®>| 0 1 ; |.
0 § 1
Find E[X? +2X1 X2 — 44X, X3 + X2].
2. If Xy, Xa,..., X, are independent random variables with common mean
p and variances 0,03, ...,02, prove that 3_,(X; — X)?/[n(n —1)] is an

unbiased estimate of var[X].

3. Suppose that in Exercise 2 the variances are known. Let X, = Yo wiXy
be an unbiased estimate of u (i.e., >, w; = 1).

(a) Prove that var[X,] is minimized when w; < 1/0?. Find this min-
imum variance vmin.

(b) Let S2 =¥, wi(Xi — Xuw)?/(n—1). Fwio? =a (i=1,2,...,n),
prove that F[S2] is an unbiased estimate of Umin.

4, The random variables X1, X5,...,X, have a common nonzero mean u,
a common variance o2, and the correlation between any pair of random
variables is p. '

(a) Find var[X] and hence prove that —1/(n-1) < p < 1.
(b) I

n n 2
Q=a) XZ+b (ZX.;)
=1 i=1

is an unbiased estimate of o2, find a and b. Hence show that, in

this case,
n
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and

1 n—1
Q = m ;(Xi.;_l — X,;)z.

(a) Prove that var{S2] = 20%/(n — 1).
(b) Show that @ is an unbiased estimate of o2.

(¢) Find the variance of @ and hence show that as n — oo, the effi-

. . 2 s 2
ciency of () relative to S° is 5.

1.6 MOMENT GENERATING FUNCTIONS AND INDEPENDENCE

If X and t are n x 1 vectors of random variables and constants, respectively,
then the moment generating function (m.g.f.) of X is defined to be

Mx (t) = Elexp(t'X)].

A key result about m.g.f.’s is that if Mx(t) exists for all ||t|| < to (to > 0)
(i.e., in an interval containing the origin), then it determines the distribution
uniquely. Fortunately, most of the common distributions have m.g.f.’s, one
important exception being the t-distribution (with some of its moments being
infinite, including the Cauchy distribution with 1 degree of freedom). We give
an example where this uniqueness is usefully exploited. It is assumed that the
reader is familiar with the m.g.f. of x2: namely, (1 — 2t)~7/2,

EXAMPLE 1.10 Suppose that Q; ~ x2. fori = 1,2, and Q@ = Q1 — Q2 is
statistically independent of Q2. We now show that Q ~ x2, where r = ry —r,.
Writing

1- 2t)""1/2 = Elexp(tQ;)]
Elexp(tQ + tQ2)]

Elexp(tQ)] Elexp(tQ2)]
Elexp(tQ)](1 — 2¢)1/2,

i

we have
Elexp(tQ)] = (1 ~ 2t)~(r=m2)/2,

which is the m.g.f. of x2. m

Moment generating functions also provide a convenient method for proving
results about statistical independence. For example, if Mx(t) exists and

Mx(t) = Mx(t1, .-, £,0,...,00Mx(0,...,0,tri1,...,tn),
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then X; = (X;,...,. X)) and X3 = (Xr41,...,Xn) are statistically indepen-
dent. An equivalent result is that X; and X, are independent if and only if
we have the factorization

Mx(t) — a(tl, e ,t,-)b(t,-+1, - ,tn)
for some functions a(-) and b(:).

EXAMPLE 1.11 Suppose that the joint distribution of the vectors of ran-
dom variables X and Y have a joint m.g.f. which exists in an interval contain-
ing the origin. Then if X and Y are independent, so are any (measurable)
functions of them. This follows from the fact that if ¢(-) and d(-) are suitable
vector functions,

Blexp{s'c(X) + s'd(Y)} = Blexp{s'c(X)}]Blexp{s'd(Y)}] = a(s)b(t),

say. This result is, in fact, true for any X and Y, even if their m.g.f.’s do not
exist, and can be proved using characteristic functions. O

Another route that we shall use for proving independence is via covariance.
It is well known that cov{X,Y] = 0 does not in general imply that X and
Y are independent. However, in one important special case, the bivariate
normal distribution, X and Y are independent if and only if cov[X,Y] =0. A
generalization of this result applied to the multivariate normal distribution is
given in Chapter 2. For more than two variables we find that for multivariate
normal distributions, the variables are mutually independent if and only if
they are pairwise independent. However, pairwise independence does not
necessarily imply mutual independence, as we see in the following example.

EXAMPLE 1.12 Suppose that X;, X3, and X3 have joint density function

f(m11m21m3) = (27{')—3/2 exp ['—%w% + 1;'% + wg)]
X {1+ z1z273 exp [—3(z? + 73 + 23)] }
—00 < T; < 00 (i =1,2,3).

Then the second term in the braces above is an odd function of zg, so that
its integral over —oo < z3 < oo is zero. Hence

fia(z1,22) = (2m) ' exp [—3(2? + 23)]
= fi1(z1)fa(z2),

and X; and X, are independent N(0,1) variables. Thus although X;, Xj,
and X3 are pairwise independent, they are not mutually independent, as

f(m1, 23, 23) # (2m) 2% exp [~ (a1 + 23 + 23)] = fi(z1)fa(22) fo(z3). O
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EXERCISES 1c

1. If X and Y are random variables with the same variance, prove that
coviX +Y, X ~ Y] = 0. Give a counterexample which shows that zero
covariance does not necessarily imply independence.

2. Let X and Y be discrete random variables taking values 0 or 1 only,
and let pr(X =4, Y = j) =py; (¢ =1,0;5 = 1,0). Prove that X and Y
are independent if and only if cov[X,Y}=0.

3. If X is a random variable with a density function symmetric about zero
and having zero mean, prove that cov[X,X?] = 0.

4. If X, Y and Z have joint density function
f(z,y,2) = 5(1+zyz) (-1<=,y,2<1),

prove that they are pairwise independent but not mutually independent.

MISCELLANEOUS EXERCISES 1

1. If X and Y are random variables, prove that
var[X] = By {var[X|Y]} + vary {E[X|Y]}.
Generalize this result to vectors X and Y of random variables.

2. Let X = (X1, X2, X3) with

Var[X] = (
(a) Find the variance of X; — 2X5 + X3.

(b) Find the variance matrix of Y = (¥3,Y2)!, where Y1 = X1 + X,
and Y2 = X; + X3 + X3, '

o b O
O Lo
W O W

3. Let X3, Xo,..., X, be random variables with a common mean u. Sup-
pose that cov[X;, X;] = 0 for all i and j such that j > ¢+ 1. If

Q=) (Xi—X)?

i=1

and

Q= (X1 - X)) +(Xa—X3)2 ++ 4+ (Xpo1 — Xn)? + (Xn — X1)?,
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prove that
£ [3Q1 — Q2

(= 3) ] = var[X].

4. Given a random sample X1, X3, X3 from the distribution with density

function

fley=5 (-1<z<1),

find the variance of (Xl - X2)2 + (Xz — X3)2 + (Xa - Xl)z.

I X, , X», are independently and identically distributed as N (0, o?),

and A and B are any n X n symmetric matrices, prove that

Cov[X'AX,X'BX] = 20 tr(AB).



2

Multivariate Normal Distribution

2.1 DENSITY FUNCTION

Let ¥ be a positive-definite n X n matrix and p an n-vector. Consider the
(positive) function

f(yls “or ;yn) = k_.l eXp[‘*%(y - ’J’)’E—l(y - ,U-)], (2‘1)

where k is a constant. Since ¥ (and hence £~ by A.4.3) is positive-definite,
the quadratic form (y — u)'E~1(y — u) is nonnegative and the function f is
bounded, taking its maximum value of k™! at y = p.

Because X is positive-definite, it has a symmetric positive-definite square
root B!/2, which satisfies (£1/2)2 = T (by A.4.12).

Let z = £~Y2(y — p), so that y = 5!/2z 4 y. The Jacobian of this
transformation is

J = det (ayi) = det(Z/?) = [det(Z)]*/2.
62_7'

Cha.ngingrthe variables in the integral, we get

/°° f°° expl~1(y ~ 'S~ (y — )] dy1 -+~ dyn

—0o0 —00

oo o0
= / / exp(—%z’El/zﬂ—lﬂlﬂzﬂJ[ dzy -+ - dzn

— 00 — 00
= / / exp(—12'z)|J|dzy - - - dzp
—0o —o0

17



18 MULTIVARIATE NORMAL DISTRIEUTION
o 00
VY F 3,2y
= |Jlﬂjj’ exp(—32; ) d%;
e

= [J|]fam)/?
i=1
= (2m)™? det(Z)}/2.

Since f > 0, it follows that if & = (2r)"/2 det(Z)!/2, then (2.1) represents a
density function.

Definition 2.1 The distribution corresponding to the density (2.1) is called
the multivariate normal distribution.

THEOREM 2.1 If o random vector Y has density (2.1), then E[Y] = p
and Var[Y] =

Proof. Let Z = Z~Y2(Y — p). Repeating the argument above, we see, using
the change-of-variable formula, that Z has density

9(z1,22,...,20) = f[y(Z)]IJI

= Hmexp 577) , (2.2)
= @—-ﬂ—;;ﬁexp (—32'z) . (2.3)

The factorization of the joint density function in (2.2) implies that the Z; are
mutually independent normal variables and Z; ~ N(0,1). Thus E[Z] = 0 and
Var[Z] = 1,,, so that

E[Y]=E[S'?Z + p] = 2V?E[Z]| + p= p

and
Var[Y] = Var[Z/2Z + u] = Var[E2/?Z] = 31/21,81/2 = 3, 0

We shall use the notation Y ~ N, (i, ) to indicate that Y has the density
(2.1). When n =1 we drop the subscript.

EXAMPLE 2.1 Let Z,,...,Z, be independent N(0,1) random variables.
The density of Z = (Z1,...,2Z,)" is the product of the univariate densities
given by (2.2), so that by (2.3) the density of Z is of the form (2.1) with
pu=0and =1, [i.e, Z ~ N,(0,I,)]. O

We conclude that if Y ~ Np(u,Z) and Y = BY?Z 4 p, then Z =
X-1/2(Y — p) and Z ~ N,(0,1,). The distribution of Z is the simplest and
most fundamental example of the multivariate normal. Just as any univariate
normal can be obtained by rescaling and translating a standard normal with
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mean zero and variance 1, so can any multivariate normal be thought of as
a rescaled and translated N,(0,1,). Multiplying by %'/? is just a type of
rescaling of the the elements of Z, and adding g is just a translation by pu.

EXAMPLE 2.2 Consider the function

1
f(m'.ny) = 27r(1 — p2)%am0-y
xexp{ 1 [(-’B-#m)z _2p(w—um)(y-uy) +(y—#y)2]}

T 2(1—p?) o2 g0y o2

y
where o, > 0, oy > 0, and [p| < 1. Then f is of the form (2.1) with

: 2
P _ CTa pO’mO'-y
p' = (pz,py) and T = ( P 0_3 ) i

The density f above is the density of the bivariate normal distribution. [

EXERCISES 2a
1. Show that

F(y1,y2) = k7" exp[—5 (253 + 3 + 29192 — 22y1 — 14y, + 65)]
is the density of a bivariate normal random vector Y = (¥3,Y32)".

(a) Find k.
(b) Find E[Y] and Var[Y].

2. Let U have density ¢ and let Y = A(U + ¢), where A is nonsingular.
Show that the density f of Y satisfies

F(y) = g(u)/| det(A)],
where y = A(u + c).

3. (a) Show that the 3 x 3 matrix

is positive-definite for p > —2.

(b) Find %!/2 when
(1~
E—(p 1).
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2.2 MOMENT GENERATING FUNCTIONS

We can use the results of Section 2.1 to calculate the moment generating
function (m.g.f.) of the multivariate normal. First, if Z ~ N,,(0,1,,), then, by
the independence of the Z;’s, the m.g.f. of Z is

E lexp (i t.,;Zi)

i=1

= E ﬁexp(tizi)]

| i=1

Elexp(t'Z)]

= H E [exp(t: Z;)]

= []exp(3t?)
i=1
= exp(5t't). (2.4)

Now if Y ~ Np(u,X), we can write Y = B/2Z 4. 4 where Z ~ N,(0,1,,).
Hence using (2.4) and putting s = Z1/2t, we get
Elexp(t'Y)] = Elexp{t'(Z'?Z + n)}]
Elexp(s'Z)] exp(t'n)
= exp(;s's) exp(t'p)
= exp(3t'BY2EV2¢ 4 t'p)
= exp(t'n + 3t'St). (2.5)

Another well-known result for the univariate normal is that if Y ~ N(u,o?),

then aY -+ b is N(au + b,a’0?) provided that a # 0. A similar result is true
for the multivariate normal, as we see below.

THEOREM 2.2 Let Y ~ N,(u,X), C be an m X n matriz of rank m, and
d be an m x 1 vector. Then CY +d ~ N,,(Cu +d, CEC').

Proof. The m.g.f. of CY +d is

E{exp[t'(CY +d)]} = E{exp[(C't)'Y +t'd]}
= exp[(C't)'p + L(C't)'EC't + t'd]
= exp[t'(Cp +d) + 3t'CEC't].
Since CEC' is positive-definite, the equation above is the moment generating
function of N, (Cu + d,CEC’). We stress that C must be of full rank to

ensure that CEC’ is positive-definite (by A.4.5), since we have only defined
the multivariate normal for positive-definite variance matrices. D
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COROLLARY IY = AZ + u, where A is an n X n nonsingular matrix,
then Y ~ Np(u, AA').

Proof. We replace Y, p, £ and d by Z, 0, I, and pu, respectively, in Theorem
2.2, O

EXAMPLE 2.3 Suppose that Y ~ N,(0,1,,) and that T is an orthogonal
matrix. Then, by Theorem 2.2, Z = T'Y is N,(0,1,), since T!T = I,,. a

In subsequent chapters, we shall need to deal with random vectors of the
form CY, where Y is multivariate normal but the matrix C is not of full rank.
For example, the vectors of fitted values and residuals in a regression are of
this form. In addition, the statement and proof of many theorems become
much simpler if we admit the possibility of singular variance matrices. In
particular we would like the Corollary above to hold in some sense when C
does not have full row rank.

Let Z ~ N, (0,1,,), and let A be an n x m matrix and & an n x 1 vector.
By replacing £'/2 by A in the derivation of (2.5), we see that the m.g.f. of
Y = AZ + p is exp(t'p + 3t'St), with © = AA’. Since distributions having
the same m.g.f. are identical, the distribution of Y depends on A only through
AA'. We note that E[Y] = AE[Z) + p = p and Var[Y] = A Var[Z]A' =
A A’ These results motivate us to introduce the following definition.

Definition 2.2 A random n x1 vector Y with mean p and variance matriz T
has a multivariate normal distribution if it has the same distribution as AZ +
i, where A is any n X m matriz satisfying ¥ = AA' andZ ~ N,,(0,1,,). We
write Y ~ AZ + u to indicate that Y and AZ + p have the same distribution.

We need to prove that when ¥ is positive-definite, the new definition is
equivalent to the old. As noted above, the distribution is invariant to the
choice of A, as long as ¥ = AA'. If ¥ is of full rank (or, equivalently, is
positive-definite), then there exists a nonsingular A with £ = AA', by A.4.2.
If Y is multivariate normal by Definition 2.1, then Theorem 2.2 shows that
Z = A71(Y - u) is N,(0,1,), so Y is multivariate normal in the sense of
Definition 2.2. Conversely, if Y is multivariate normal by Definition 2.2, then
its m.g.f. is given by (2.5). But this is also the m.g.f. of a random vector
having demnsity (2.1), so by the uniqueness of the m.g.f.’s, Y must also have
density (2.1).

If ¥ is of rank m < n, the probability distribution of Y cannot be expressed
in terms of a density function. In both cases, irrespective of whether ¥ is
positive-definite or just positive-semidefinite, we saw above that the m.g.f. is

exp(t'n + 1t'St). (2.6)

We write Y ~ N, (p,X) as before. When ¥ has less than full rank, Y is
sometimes said to have a singular distribution. From now on, no assumption
that X is positive-definite will be made unless explicitly stated.
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EXAMPLE 2.4 Let Y ~ N{u,0%; and put Y' = (Y,-Y). The variance-

covariance matrix of Y is
1 -1
.3
Y=c¢o ( -1 1 ) .

Put Z = (Y — p)/o. Then
Yz( ")z+(”)=Az+,u,

T =AA"

Thus Y has a multivariate normal distribution. O

and

EXAMPLE 2.5 We can show that Theorem 2.2 remains true for random
vectors having this extended definition of the multivariate normal without the
restriction on the rank of A. f Y ~ N,(u,X), then Y ~ AZ + u. Hence
CY ~ CAZ + Cu = BZ + b, say, and CY is multivariate normal with
E[CY]=b =Cpu and Var[CY] = BB’ = CAA'C' = CIC'. O

EXAMPLE 2.6 Under the extended definition, a constant vector has a
multivariate normal distribution. (Take A to be a matrix of zeros.) In par-
ticular, if A is a zero row vector, a scalar constant has a (univariate) normal
distribution under this definition, so that we regard constants (with zero vari-
ance) as being normally distributed. d

EXAMPLE 2.7 (Marginal distributions) Suppose that Y ~ N, (u,X) and
we partition Y, i and ¥ conformably as

Y, 1 i Z )
Y = ; = , d = .
( Yo ) H ( H2 ) an ( T Dy
Then Yy ~ Np(p1,Z11). We see this by writing Y; = BY, where B = (I,,,0).
Then By = g1 and BEB' = 341, so the result follows from Theorem 2.2.

Clearly, Y1 can be any subset of Y. In other words, the marginal distributions
of the multivariate normal are multivariate normal. 0O

QOur final result in this section is a characterization of the multivariate
normal.

THEOREM 2.3 A random vector Y with variance-covariance matriz & and

mean vector p has a N, (u, X) distribution if and only if a'Y has a univariate
normal distribution for every vector a.

Proof. First, assume that Y ~ N, (i, X). Then Y ~ AZ + u, so that a'Y ~
a'AZ +a'y = (A'a)’Z + a'p. This has a (univariate) normal distribution in
the sense of Definition 2.2.
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Conversely, assume that t'Y is a univariate normal random variable for all
t. Its mean is t'y and the variance is t'¥t. Then using the formula for the
m.g.f. of the univariate normal, we get

E{exp[s(t’Y)]} = exp[s(t'p) + 75°(t'St)] .

Putting s = 1 shows that the m.g.f. of Y is given by (2.6), and thus Y ~
Np(u, X). 0

We have seen in Example 2.7 that the multivariate normal has normal
marginals; and in particular the univariate marginals are normal. However,
the converse is not true, as the following example shows. Consider the function

Fy1,y2) = (2m) " Vexp[— 3 (13 + ¥2)}{1 + vy exp[- 3(¥F + ¥3)l},

which is nonnegative (since 1 + ye‘y2 > 0) and integrates to 1 (since the
integral fj'oc: ye“yz/ 2 dy has value 0). Thus f is a joint density, but it is not
bivariate normal. However,

+00 1 2 1 400 5 p
dy, = ——=exp(—1 x—/ exp(—3
[-oo f(ylsyZ) 12 \/57? p( 2y1) m e p( 2y2) 2
1 1 2 1 +w 1 2
+\/2_7Ty1 GXP(—'gyl) X \/2_71‘ Y2 exP(_iyZ) dyZ
— 00
1
m p( 2y1)

so that the marginals are N(0,1). In terms of Theorem 2.3, to prove that Y
is bivariate normal, we must show that a’Y is bivariate normal for all vectors
a, not just for the vectors (1,0).and (0,1). Many other examples such as
this are known; see, for example, Pierce and Dykstra [1969], Joshi [1970], and
Kowalski [1970].

EXERCISES 2b

1. Find the moment generating function of the bivariate normal distribu-
tion given in Example 2.2.

2. If Y ~ N,(u, X), show that Y; ~ N(u;i, ).
3. Suppose that Y ~ N3(u,Y), where

2 2 1 1
p=1 1 and X = 1 3 0
2 1 01

Find the joint distribution of Z; =Y; + Y2+ Y3 and Z; =Y, — V5.

4. Given Y ~ Np(u,I,), find the joint density of a’Y and b"Y, where
a'b = 0, and hence show that a'Y and b'Y are independent.
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. Let (X;,Y3),i1=1,2,...,n, be arandom sample from a bivariate normal

distribution. Find the joint distribution of (X,Y).

. If Y7 and Y; are random wvariables such thé.t Y1 +Y; and Y7 — Y5 are

independent N(0,1) random variables, show that Y; and Y3 have a

bivariate normal distribution. Find the mean and variance matrix of
Y = (1/1, Yz)’.

. Let X; and X, have joint density

1 .
flz1,20) = gy exp[—%(mf + z2)] [1 - i m%:(rlz+ m%)] ,

-0 < T1,Ty < 00.
Show that X; and X3 have N(0,1) marginal distributions.
(Joshi [1970])

. Suppose that Y;,Y2,...,Y, are independently distributed as N (0, 1).
- Calculate the m.g.f: of the random vector

Y. "h-Y,2-Y,...,Y,=Y)
and hence show that Y is independent of 3_.(Y; — Y)2.
(Hogg and Craig [1970})

. Let X1, X5, and X3 be ii.d. N(O, 1) Let

i = (X1+ X2+ X3)/V3,
Y = (X1-—X5)/V?2,
Y3 = (Xi+Xo—2Xs)/V6.

Show that Y7, Y, and Y3 are i.i.d. N(0,1). (The transformation above
is a special case of the so-called Helmert transformation.)

2.3 STATISTICAL INDEPENDENCE

For any pair of random variables, independence implies that the pair are

uncorrelated. For the normal distribution the converse is also true, as we now

show.

THEOREM 2.4 LetY ~ N, (11, X) and partition Y, p and T as in Fxample
2.7. Then Y1 and Y2 are independent if and only if 15 = 0.

Proof. The m.gf. of Y is exp(t'p + t'Et). Partition t conformably with Y.
Then the exponent in the m.g.f. above is

tipr +tops + 2613ty + $5350t0 + t] Diats. (2.7)
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If ;5 = 0, the exponent can be written as a function of just t; plus a function
of just t,, so the m.g.f. factorizes into a term in t; alone times a term in t,
alone. This implies that Y7-and Y are independent.

Conversely, if Y; and Y, are independent, then
M(tla O)M(Oa t2) = M(tls tZ):

where M is the m.g.f. of Y. By (2.7) this implies that t}X;sts = 0 for
all t; and t,, which in turn implies that ¥;5; = 0. [This follows by setting
t; = (1,0,...,0),, etc.] O

We use this theorem to prove our next result.

THEOREM 2.5 Let Y ~ N,(u, %) and define U = AY, V = BY. Then
U and V are independent if and only if Cov[U,V] = AZB’' = 0.

v-(9)-(3)r

Then, by Theorem 2.2, the random vector W is multivariate normal with
variance-covariance matrix

Var[W] = ( a ) Var[Y] (A’,B') = ( ggiﬁ gggf ) .

Thus, by Theorem 2.4, U and V are independent if and only if AXB' =0. O

Proof. Consider

EXAMPLE 2.8 Let Y ~ N, (u,0%I,) and let 1, be an n-vector of 1’s.
Then the sample mean Y = n~! ¥, Y; is independent of the sample variance
§2 = (n-1)"1Y(Y; - Y)?. To see this, let I, = 1,1/, be the n x n matrix
of 1’s, Then ¥ = n~11!Y (= AY, say) and

Y-
Yo -Y

, = (I, - n~1J,)Y = BY,
Yn-?

say. Now
AZB' = n"1 021, (1, — n~J,) = 6?n7 1, — 6%n"11, =0,

so by Theorem 2.5, Y is independent of (Y; - Y,...,Y,, —Y), and hence
independent of S2. a

EXAMPLE 2.9 Suppose that Y ~ N, (i, ¥) with £ positive-definite, and
Y is partitioned into two subvectors Y' = (Y1, Y3), where Y; has dimension
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r. Partition g and Z simailarly. Then the conditional distribution of Y given
Yo =yz is No{pa + B12855 (y2 — p2), B11 — 212355 o).
To derive this, put

Ui = Yy —p — T8 (Y2 — p2),
U = Y3 — po.

Then
U, I, —1,%;; ) ( Y1~
U - = 22 = Y —
( Uz ) ( 0 Li-»r Yo — p2 A o

so that U is multivariate normal with mean 0 and variance matrix AXA'

given by
( I, —Z,5;} ) ( i i ) / I, 0 )
0 In—«_r T g K —%3 8 Iy
_{ Zu—-Z1558n 0
0 To2 J°

Hence, U; and Uj; are independent, with joint density of the form g(u;,us) =
g1(u1)gz2(uz).
Now consider the conditional density function of ¥; given Y,:

fiz(yilyz2) = f(y1,¥2)/ f2(y2) (2.8)

and write
u = y1—p1— 21225 (Y2 — p2),
Uz = Y2 — Hz2.

By Exercises 28,, No. 2, fz(yz) = 92(112) and f(yl,yg) =M (ul)gz(U2), so that
from (2.8), f1]2(Y1|YZ) =g(w) =g1(y1—p1— 21222_21 (y2 — w2)). The result
now follows from the fact that g; is the density of the N,.(0, Z1; — 2122;21 ¥o1)
distribution. 0

EXERCISES 2c

1. If Y1,Y5,...,Y, have a multivariate normal distribution and are pairwise
independent, are they mutually independent?

2. Let Y ~ Nu(uly,, ), where £ = (1 — p)I, + pJn and p > ~1/(n — 1).
When p=0,Y and 3} ,(Y; — Y)? are independent, by Example 2.8. Are
they independent when p # 07
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3. Given Y ~ N3(u, X), where

Y =g

ow =
Y O

P
1
P

for what value(s) of p are Y1 + Y3 + Y3 and ¥; — Ys — V3 statistically’
independent?

2.4 DISTRIBUTION OF QUADRATIC FORMS

Quadratic forms in normal variables arise frequently in the theory of regression
in connection with various tests of hypotheses. In this section we prove some
simple results concerning the distribution of such quadratic forms.

Let Y ~ N,(u,X), where I is positive-definite. We are interested in the
distribution of random variables of the form Y'AY = 370", 5%, a;;ViY;.
Note that we can always assume that the matrix A is symmetric, since if
not we can replace ai; with 3(ai; + a;;) without changing the value of the
quadratic form. Since A is symmetric, we can diagonalize it with an orthog-
onal transformation; that is, there is an orthogonal matrix T' and a diagonal
matrix D with

T'AT = D = diag(d,...,d,). (2.9)

The diagonal elements d; are the eigenvalues of A and can be any real num-
bers.

We begin by assuming that the random vector in the quadratic form has a
Nn(0,1,,) distribution. The general case can be reduced to this through the
usual transformations. By Example 2.3, if T is an orthogonal matrix and Y
has an N, (0,1,) distribution, so does Z = T'Y. Thus we can write

Y'AY = Y'TDT'Y =Z'DZ = _d;Z?, (2.10)

i=1

so the distribution of Y'AY is a linear combination of independent x? random
variables. Given the values of d;, it is possible to calculate the distribution,
at least numerically. Farebrother [1990] describes algorithms for this.

There is an important special case that allows us to derive the distribution
of the quadratic form exactly, without recourse to numerical methods. If r of
the eigenvalues d; are 1 and the remaining n — r zero, then the distribution
is the sum of r independent x3’s, which is x2. We can recognize when the
eigenvalues are zero or 1 using the following theorem.

THEOREM 2.6 Let A be o symmelric matriz. Then A has r eigenvalues
equal to 1 and the rest zero if and only if A2 = A and rank A = r.
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Proof. See A.6.1. ' [

Matrices A satisfying A2 = A are called idempotent. Thus, if A is sym-
metric, idempotent, and has rank r, we have shown that the distribution of
Y'AY must be x2. The converse is also true: If A is symmetric and Y'AY
is x2, then A must be idempotent and have rank r. To prove this by The-
orem 2.6, all we need to show is that r of the eigenvalues of A are 1 and
the rest are zero. By (2.10) and Exercises 2d, No. 1, the m.gf. of Y'AY
is []r,(1 — 2d;¢)71/2. But since Y'AY is x2, the m.g.f. must also equal
(1 —2t)~"/2. Thus

f[a — 2d;t) = (1 — 2¢)",

2=}
so by the unique factorization of polynomials, r of the d; are 1 and the rest
are zero.

We summarize these results by stating them as a theorem.

THEOREM 2.7 LetY ~ N,(0,1,,) and let A be a symmetric matriz. Then
Y'AY is x2 if and only if A is idempotent of rank r.

EXAMPLE 2.10 Let Y ~ Np(u,0%1,) and let S? be the sample variance
as defined in Example 2.8. Then (n — 1)§2/06% ~ x2_,. To see this, recall
that (n — 1)5?/0? can be written as 02Y'(I, — n7J,)Y. Now define Z =
o1 (Y — ul,), so that Z ~ N,(0,1,). Then we have

(n—1)8%/c* =Z'(1, ~n~'J,)Z,

where the matrix I, — n~1J,, is symmetric and idempotent, as can be veri-
fied by direct multiplication. To calculate its rank, we use the fact that for
symmetric idempotent matrices, the rank and trace are the same (A.6.2). We
get

rank(I, — n™1J,) tr(l, — 27 J5)
tr(L,) —n~ttr(J,)

= n-1,

so the result follows from Theorem 2.7. O

Our next two examples illustrate two very important additional properties
of quadratic forms, which will be useful in Chapter 4.

EXAMPLE 2.11 Suppose that A is symmetric and Y ~ N,(0,I,). Then if
Y'AY is x2, the quadratic form Y'(I, —A)Y is x2_,. This follows because A
must be idempotent, which implies that (I, — A) is also idempotent. (Check
by direct multiplication.) Furthermore,

rank(I, — A) = tr(I, — A) = tr(I,) —tr(A) =n —r,
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so that Y'(I, — A)Y is x2_,. O

EXAMPLE 2.12 Suppose that A and B are symmetric, Y ~ N,(0,1,),
and Y'AY and Y'BY are both chi-squared. Then Y'AY and Y'BY are
independent if and only if AB = 0.

To prove this, suppose first that AB = 0. Since A and B are idempo-
tent, we can write the quadratic forms as Y/AY = YA'AY = ||AY||? and
Y'BY = ||BY||?>. By Theorem 2.5, AY and BY are independent, which
implies that the quadratic forms are independent.

Conversely, suppose that the quadratic forms are independent. Then their
sum is the sum of independent chi-squareds, which implies that Y'(A + B)Y
is also chi-squared. Thus A + B must be idempotent and

A+B=(A+B)?=A2+AB+BA+B?=A + AB+BA +B,

so that

AB +BA =0.
Multiplying on the left by A gives AB + ABA = 0, while multiplying on the
right by A gives ABA + BA = 0; hence AB=BA =0. O

EXAMPLE 2.13 (Hogg and Craig [1958, 1970]) Let Y ~ N,(@,¢%1,) and
let Q; = (Y — 8)P,(Y - 8)/0? (i = 1,2). We will show that if Q; ~ x2. and
@1 — Q2 2 0, then Q1 — Q2 and Q2 are independently distributed as X?'l
and x2,, respectively.

We begin by noting that if @Q; ~ x2,, then P? = P; (Theorem 2.7). Also,
@1 — @2 > 0 implies that P; — Ps is positive-semidefinite and therefore
idempotent (A.6.5). Hence, by Theorem 2.7, Q; — Q2 ~ xZ, where

r = rank(P; - P3)}
tr(Py, — P3)

tr P, — trPs

rank P; — rank P»

= T1 —T9.

Also, by A.6.5, P1P, = PP, = P33, and (P; — P2)P; = 0. Therefore,
since Z = (Y — 8) /0% ~ N,(0,1,), we have, by Example 2.12, that Q1 — Q2
[= Z'(P; — P3)Z] is independent of Q3 (= Z'P>Z). O

We can use these results to study the distribution of quadratic forms when
the variance-covariance matrix ¥ is any positive-semidefinite matrix. Suppose
that Y is now N, (0, X), where ¥ is of rank s (s < n). Then, by Definition 2.2
(Section 2.2), Y has the same distribution as RZ, where £ = RR' and R is
n x 8 of rank s (A.3.3). Thus the distribution of Y'AY is that of ZZR'ARZ,
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which, by Theorem 2.7, will be x2 if and only if R’AR is idempotent of rank
r. However, this i not a very useful condition. A better one is contained in
our next theorem.

THEOREM 2.8 Suppose that Y ~ N,(0,X), and A is symmetric. Then

Y'AY is x2 if and only if r of the eigenvalues of AY are 1 and the rest are
zero.

Proof. We assume that Y'AY = Z'R'ARZ is x2. Then R'AR is symmetric
and idempotent with r unit eigenvalues and the rest zero (by A.6.1), and its
rank equals its trace (A.6.2). Hence, by (A.1.2),

r = rank(R'AR) = tr(R'AR) = tr(ARR') = tr(AZ).

Now, by (A.7.1), R"AR and ARR' = AX have the same eigenvalues, with
possibly different multiplicities. Hence the eigenvalues of A¥ are 1 or zero.
As the trace of any square matrix equals the sum of its eigenvalues (A.1.3), r
of the eigenvalues of A¥ must be 1 and the rest zero. The converse argument

is just the reverse of the one above. O

For nonsymmetric matrices, idempotence implies that the eigenvalues are
zero or 1, but the converse is not true. However, when ¥ (and hence R) has
full rank, the fact that R'AR is idempotent implies that AX is idempotent.
This is because the equation

R'ARR'AR = R'AR
can be premultiplied by (R')™! and postmultiplied by R’ to give
AYAY = A¥.

Thus we have the following corollary to Theorem 2.8.

COROLLARY Let Y ~ N,(0,X), where X is positive-definite, and sup-
pose that A is symmetric. Then Y'AY is x2 if and only AX is idempotent
and has rank r.

For other necessary and sufficient conditions, see Good [1969, 1970] and
Khatri [1978).

Our final theorem concerns a very special quadratic form that arises fre-
quently in statistics.

THEOREM 2.9 Suppose that Y ~ Np(p,X), where T is positive-definite.
Then Q = (Y — p)'E71(Y — ) ~ 22

Proof. Making the transformation Y = Z'/2Z + u considered in Theorem 2.1,
we get

n
Q=232 g =22 =) ZI.

i=1
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Since the Z?2’s are independent x? variables, @ ~ x2.
EXERCISES 2d

1. Show that the m.g.f. for (2.10) is []T(1 — 2td;)~/2.
2. Let Y ~ N,(0,1,,) and let A be symmetric.
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(a) Show that the m.g.f. of Y'AY is [det(I, — 2tA)]~1/2.
(b) If A is idempotent of rank r, show that the m.g.f. is (1 — 2¢)~7/2.
(c) Find the m.g.f. if Y ~ N,(0, X).

. If Y ~ N2(0,I2), find values of a and b such that
a(Y1 - Y2)2 + b(Y]_ + Y2)2 ~ X%. .

. Suppose that Y ~ N3(0,1,). Show that
5[ —Y2)? + (Y2 - Y3)% + (Vs ~ 1)?)
has a x2 distribution. Does some multiple of
M =Y2)? + (V2= Va) + oo+ (Y1 = Y0)? + (Yo — 11)?
have a chi-squared distribution for general n?

. Let Y ~ N,(0,1,) and let A and B be symmetric. Show that the joint,
m.g.f. of Y/AY and Y'BY is [det(I, — 2sA — 2tB)]~!/2. Hence show
that the two quadratic forms are independent if AB = 0.

MISCELLANEOUS EXERCISES 2

1. Suppose that e ~ N3(0,02I3) and that Yp is N(0,02), independently of

the €;’s. Define
Y;: =p}"i,—1 + E&: (331,2,3)-
(a) Find the variance-covariance matrix of Y = (Y1, Y2, Y3)'.
(b) What is the distribution of Y?

2. Let Y ~ Nn(0,I,), and put X = AY, U = BY and V = CY. Suppose
that Cov{X, U] = 0 and Cov[X, V] = 0. Show that X is independent
of U+ V.

. If Y1,Ys,...,Y, is a random sample from N{u,c?), prove that Y is
independent of S0 (Y; — Yiy1)2.

. If X and Y are n-dimensional vectors with independent multivariate
normal distributions, prove that aX + bY is also multivariate normal.
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. Y ~ N,(0,I,) and a is a nonzero vector, show that the conditional

distribution of Y'Y given a'Y =01is x2_;.

. Let Y ~ Np(uly,X2), where T = (1-p)I, +p1,1 and p > —-1/(n-1).

Show that 3°,(¥; -~ ¥)%/(1 - p) is x2_;.

Let Y;, ¢ = 1,...,n, be independent N,(u,X) random vectors. Show
that

1
n—1

> (Y =YY - ?)'

i=1
is an unbiased estimate of X.
Let Y ~ N,(0,1,) and let A and B be symmetric idempotent matrices

with AB = BA = 0. Show that Y'AY, Y'BY and Y'(I, — A - B)Y
have independent chi-square distributions.

. Let (X;,Y3), i« = 1,2,...,n, be a random sample from a bivariate

normal distribution, with means u; and us, variances ¢? and o2, and
correlation p, and let

W = (XlaY’)’ = (X1:X2: .. 'an»Y11Y23= . -:Yn)!'

(a) Show that W has a Na,(u, £) distribution, where

2
— ' 'Y _— C"1:[1’1 po1021,
p=(ualy,pely) and T = ( porosl, o2, )

(b) Find the conditional distribution of X given Y.
If Y ~ N3(0,%), where ¥ = (0;;), prove that

2
(Y'z-lY e ) ~ X%
o11

Let ag,a1,...,an be independent N(0,0?) random variables and define
Y, =a; + da;—1 (’L = 1,2,...,1‘.’.).

Show that Y = (¥7,Y2,...,Y,)’ has a multivariate normal distribution
and find its variance-covariance matrix. (The sequence Y¥i,Ys,... is

called a moving average process of order one and is a commonly used
model in time series analysis.)

Suppose that Y ~ N3(0,1,). Find the m.g.f. of 2(Y1Y2 — Y2¥3 - ¥314).
Hence show that this random variable has the same distribution as that
of 2U; ~ Uz — Us, where the U;’s are independent x? random variables.
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Theorem 2.3 can be used as a definition of the multivariate normal

distribution. If so, deduce from this definition the following results:

(a) If Z1, Za,...,2, are iid. N(0,1), then Z ~ N,(0,1,).
(b) HY ~ Nyp(i, %), then Y has m.g.f. (2.5).
(c) If ¥ is positive-definite, prove that Y has density function (2.1).

Let Y = (11,Ys,...,Y,)" be a vector of n random variables (n > 3)
with density function ‘

fly) = (@m) ™ exp (—% y?) {1 + [ [w: exp(—%y?)]},

i=1 i=1

—o<y; <o (i=12,...,n).

Prove that any subset of n — 1 random variables are mutually indepen-
dent N(0, 1) variables.

(Pierce and Dykstra [1969])
Suppose that Y = (Y1, Ys, ¥s, ¥4)' ~ N4(0,1s), and let Q = Y1 V- Y3 Y.

(a) Prove that @ does not have a chi-square distribution.
(b) Find the m.g.f. of Q.

IfY ~ N,(0,L,), find the variance of
YV —-Y2)? + (Y2 ~Ys)? + oo+ (Ypo1 — Y3)2
Given Y ~ N,(u, %), prove that

var[Y'AY] = 2tr(AZAZ) + 4u' AT A u.






3

Linear Regression: Estimation and
Distribution Theory

3.1 LEAST SQUARES ESTIMATION

Let Y be a random variable that fluctuates about an unknown parameter 7;
that is, ¥ = n + €, where ¢ is the fluctuation or error. For example, £ may
be a “natural” fluctuation inherent in the experiment which gives rise to 7,
or it may represent the error in measuring 7, so that n is the true response
and Y is the observed response. As noted in Chapter 1, our focus is on linear
models, so we agsume that n can be expressed in the form

n=P0+fz1+ -+ Bp—1Tp—1,

where the ezplanatory variables z,zs2,...,z,~1 are known constants {(e.g.,
experimental variables that are controlled by the experimenter and are mea-
sured with negligible error), and the 8; (7 = 0,1,...,p — 1) are unknown

parameters to be estimated. If the z; are varied and n values, Y1,Y;,...,Y,,
of Y are observed, then
Yi=0F+ bz + -+ Bp_1Tip-1 + & (t=12,...,n), (3.1)

where z;; is'the ith value of z;. Writing these n equations in matrix form, we
have

i Zio T ZTi2 *tr Tip-1 Bo €1
Y, Too T21 T2 v Tep-1 B €2
—_— . . + . b
Y, ]an Tnl ZTn2 ' Tpp-1 ﬁp—l En
or
Y =X8 +e¢, (3.2)

35
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where 19 = Tgg = --+ = Zpo = 1. The n x p matrix X will be called the
regression matriz, and the z;;’s are generally chosen so that the columns of
X are linearly independent; that is, X has rank p, and we say that X has
full rank. However, in some experimental design situations, the elements of
X are chosen to be 0 or 1, and the columns of X may be linearly dependent.
In this case X is commonly called the design matriz, and we say that X has
less than full rank.

It has been the custom in the past to call the z;’s the independent variables
and Y the dependent variable. However, this terminology is confusing, so we
follow the more contemporary usage as in Chapter 1 and refer to z; as a
explanatory variable or regressor and Y as the response variable.

As we mentioned in Chapter 1, (3.1) is a very general model. For example,
setting z;; = ] and k = p — 1, we have the polynomial model

Y; = Bo + Prxs + Bax? + -+ + Prat + e

Again,
Vi = Bo + Bre¥ + Bawspwis + Basinwiz + &

is also a special case. The essential aspect of (3.1) is that it is linear in the
unknown parameters ;; for this reason it is called a linear model. In contrast,

Y; = Bo + Br1e P ¢

is a nonlinear model, being nonlinear in Bs.

Before considering the problem of estimating 3, we note that all the theory
in this and subsequent chapters is developed for the model (3.2), where z; is
not necessarily constrained to be unity. In the case where z;y # 1, the reader
may question the use of a notation in which 7 runs from 0 to p — 1 rather
than 1 to p. However, since the major application of the theory is to the case
z;0 = 1, it is convenient to “separate” S, from the other §;’s right from the
outset. We shall assume the latter case until stated otherwise.

One method of obtaining an estimate of B is the method of least squares.
This method consists of minimizing Y. e? with respect to 8; that is, setting
0 = X3, we minimize &’e = [|Y — 8|2 subject to 8 € C(X) = 2, where 2 is
the column space of X (= {y : y = Xx for any x}). If we let 8 vary in 2,
1Y — 8||2 (the square of the length of Y — ) will be a minimum for 8 = 8
when (Y — 8) L Q (cf. Figure 3.1). This is obvious geometrically, and it is
readily proved algebraically as follows.

We first note that @ can be obtained via a symmetric idempotent (projec-
tion) matrix P, namely 6 = PY, where P represents the orthogonal projection
onto 2 (see Appendix B). Then

Y-0=(Y-0)+(6-0),
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----------------------------------

i ey

N

Fig. 3.1 The method of least squares consists of finding A such that AB is a minimum.

where from PO = 6, P’ = P and P2 = P, we have

(Y-6)(0-86) = (Y-PY)P(Y-6)
Y'(1, - P)P(Y — 6)
0.
Hence
Y —6l> = |IY-a|>+]16 0|

> |lY -6|7,
with equality if and only if @ = 8. Since Y — 0 is perpendicular to £,
X' (Y -6)=0
or A
X'0=X'Y. (3.3)

Here 8 is uniquely determined, being the unique orthogonal projection of Y
onto € (see Appendix B).

We now assume that the columns of X are linearly independent so that
there exists.a unique vector 3 such that @ = X3. Then substituting in (3.3),
we have A

X'XB8 =X'Y, (3.4)

the normal equations. As X has rank p, X'X is positive-definite (A.4.6) and
therefore nonsingular. Hence (3.4) has a unique solution, namely,

B =X'X)"'X'Y. (3.5)

Here B is called the {ordinary) least squares estimate of 8, and computational
methods for actually calculating the estimate are given in Chapter 11.
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We note that £ can aiso be obtained by writing

ge = (Y - XBY(Y —X8)
Y'Y ~28'X'Y + B'X'X3

[using the fact that 8'X'Y = (8'X'Y) = Y'XS] and dlﬁerentla,tmg g'e with
respect to 8. Thus from 9e’e/3B = 0 we have (A.8)

—2X'Y +2X'XB =0 (3.6)

or
X'X8 =X'Y

This solution for B gives us a stationary value of €'e, and a simple algebraic
identity (see Exercises 3a, No. 1) confirms that 3 is a minimum.

In addition to the method of least squares, several other methods are used
for estimating 3. These are described in Section 3.13.

Suppose now that the columns of X are not linearly independent. For a
particular @ there is no longer a unique 3 such that & = X2, and (3.4) does
not have a unique solution. However, a solution is given by

= (X'X)"X'Y
where (X'X)~ is any generalized inverse of (X'X) (see A.10). Then
f=XB=XX'X)"X'Y =PY,

and since P is unique, it follows that P does not depend on which generalized
inverse is used. R R A A

We denote the fitted values X8 by Y = (¥1,...,Yn). The elements of the
vector ‘

~

Y-Y = Y-X3
= (I,—-P)Y, say, (3.7)

are called the residuals and are denoted by e. The minimum value of €'e,
namely

ee = (Y -XB)(Y-XB)

Y'Y - 28'X'Y + B'X'X3

Y'Y -A3'X'Y +B'[X'X3 - X'Y]

Y'Y -@X'Y  [by (3.4)], (3.8)
Y'Y - 3'X'X}3, (3.9)

is called the residual sum of squares (RSS). As @ = X is unique, we note
that Y, e, and RSS are unique, irrespective of the rank of X.
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EXAMPLE 3.1 Let Y7 and Y5 be independent random variables with means
o and 2q, respectively. We will now find the least squares estimate of @ and
the residual sum of squares using both (3.5) and direct differentiation as in

(3.6). Writing
(2)=(3)e+(2).

we have Y = X3 + €, where X = ( ; ) and 8 = a. Hence, by the theory
above,
& = (X'X)"' X'y
] -1
- oo (1)) wa
_ 1 n
= a2 (
= (Y1 +2Y,)
and
ee = Y'Y-BXY

Y'Y - &(Y; +2Yz)
Y? +YE - 2(Y1 +2Ya)>.

Il

We note that

() {en () 0n=1(3 1)

The problem can also be solved by first principles as follows: g'e = (Y1 -
@)? 4 (Y2 — 2a)® and de’e/Ba = 0 implies that & = £(¥1 + 2Y2). Further,

e'e = (Y1 -4)+(Yz-24)?
= YZ+Y?:-a(2Y; +4Y;) + 562
= Y 4% - (N +21p)%

In practice, both approaches are used. 0O

EXAMPLE 3.2 Suppose that ¥3, ¥5,...,Y, all have mean 5. Then the
least squares estimate of /8 is found by minimizing },(¥; — 8)® with respect to

B. This leads readily to 3 =Y. Alternatively, we can express the observations
in terms of the regression model

Y =1,8+¢,
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where 1,, is an n-dimensional column of 1’s. Then

B=(1.1,)""1.Y = %1;1( =7
Also,
1 1 .. 1
P=1. 1) =2| 1 L =t o
1 1 .. 1

We have emphasized that P is the linear transformation representing the
orthogonal projection of n-dimensional Euclidean space, R,,, onto {2, the space
spanned by the columns of X. Similarly, I,, — P represents the orthogonal
projection of R, onto the orthogonal complement, Q1, of 8. Thus Y =
PY + (I, — P)Y represents a unique orthogonal decomposition of Y into two
components, one in  and the other in Q1. Some basic properties of P and
(I,—P) are proved in Theorem 3.1 and its corollary, although these properties
follow directly from the more general results concerning orthogonal projections
stated in Appendix B. For a more abstract setting, see Seber [1980].

THEOREM 3.1 Suppose that X is nxp of rankp, so that P = X(X'X)~1X'.
Then the following hold. '

(i) P and I,, — P are symmetric and idempotent.
(12) rank(I, — P) = tr(I, — P) =n —p.
(i) PX = X.
Proof. (i) P is obviously symmetric and (I, — P)' =1, - P' =1, — P. Also,
P2 = XX'X)'X'X(X'X)"'X
= XIL(X'X)"'X' =P,

and I, -P)?=1,-2P+P%2 =1, —P.
(ii) Since I, — P is symmetric and idempotent, we have, by A.6.2,

rank(I, - P) = tr(l, —P)
n — tr(P),
where
tr(P) = tr[X(X'X)"1X]
= t[X'X(X'X)"!'] (by A.1.2)
= tr(lp)
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(iii) PX = X(X'X)"1X'X = X. | O

COROLLARY If X has rank r (r < p), then Theorem 3.1 still holds, but
with p replaced by r.

Proof. Let X; be an nxr matrix with r linearly independent columns and hav-
ing the same column space as X [i.e., C(X;) = ]. Then P = X, (X X;)"1X{,
and (i) and (ii) follow immediately. We can find a matrix L such that
X = X;L, which implies that (cf. Exercises 3j, No. 2)

PX = X, (XX X{XiL = XL = X,
which is (iii). O
EXERCISES 3a

1. Show that if X has full rank,
(Y - XB)'(Y - XB) = (Y - XB)(Y =XB) + (B - B)'X'X(B - B),
and hence deduce that the left side is minimized uniquely when 8 = f3

2. If X has full rank, prove that 3., (¥; —- ¥;) = 0. Hint: Consider the
first column of X. \ :

3. Let
Yl = 9+€1
Yg = 29""¢+62
Y3. = 0+2¢+e¢s,

where Fle;} = 0 (1 = 1,2,3). Find the least squares estimates of 8 and
o.

4. Consider the regression model
ElYi] = fo + brzi + B2(3z; —2)  (i=1,2,3),

where z; = ~1, 3 = 0, and z3 = +1. Find the least squares estimates
of fBo, B1, and Bz. Show that the least squares estimates of By and 5
are unchanged if B, = 0.

5. The tension T observed in a nonextensible string required to maintain a
body of unknown weight w in equilibrium on a smooth inclined plane of
angle 8 (0 < @ < 7/2) is a random variable with mean E[T] = wsiné.
If for 8 = 6; (i = 1,2,...,n) the corresponding values of T are T;
(1=1,2,...,n), find the least squares estimate of w.

6. If X has full rank, so that P = X(X'X)~'X’, prove that C(P) = C(X).
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7. For a general regression model in which X may or may not have full
rank, show that

an Yi(Y; - Yi) =0
i=1

8. Suppose that we scale the explanatory variables so that z;; = k;w;; for

all i,j. By expressing X in terms of a new matrix W, prove that Y
remains unchanged under this change of scale.

3.2 PROPERTIES OF LEAST SQUARES ESTIMATES

If we assume that the errors are unbiased (i.e., E[e} = 0), and the columns of
X are linearly independent, then

E[B] = (X'X)7'X'E[Y]
' = (X'X)"'X'Xp
= B, (3.10)

and B3 is an unbiased estimate of B. If we assume further that the ¢&; are

uncorrelated and have the same variance, that is, covie;,e;] = &;;02, then
Varle] = ¢21, and

Var{Y] = Var[Y — Xf3] = Varle].
Hence, by (1.7),

Var[3] Var[(X'X) ' X"Y] .
(X'X)"1X! Var[Y] X(X'X)"!
2 (X' X)"HX'X)(X'X)?

o2 (X'X)L. (3.11)

The question now arises as to why we chose B3 as our estimate of 3 and not
some other estimate. We show below that for a reasonable class of estimates,
ﬁj is the estimate of ,6J with the smallest variance. Here §; can be extracted

from B = (Bo, b1, - -, Bp—1)’ simply by premultiplying by the row vector ¢/,
which contains unity in the (j+1)th position and zeros elsewhere. It transpires
that this special property of [3}- can be generalized to the case of any linear
combination a’3 using the following theorem.

THEOREM 3.2 Let @ be the least squares estimate of 0 = X3, where @ €
Q = C(X) and X may not have full rank. Then among the class of linear

unbiased estimates of c'8, ¢ 0 is the unique estimate with minimum variance.
[We say that ¢'0 is the best linear unbiased estimate (BLUE) of ¢'0.]
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Proof. From Section 3.1, @ = PY, where P8 = PX3 = X8 = 0 (Theorem
3.1, Corollary). Hence Ef[c'8] = ¢'P8 = ¢'@ for all 6 € ), so that c'@
[= (Pc)'Y] is a linear unbiased estimate of ¢'@. Let d'Y be any other linear
unbiased estimate of ¢’@. Then ¢'8 = E[d'Y] = d'8 or (c —d)'8 = 0, s0 that
(c —d) L Q. Therefore, P(c —d) =0 and Pc = Pd.

Now
var[c'é] = var[(Pc)'Y]
= var{(Pd)'Y]
2d'P'Pd
a2d'P%d
0?d'Pd  (Theorem 3.1)
so that

var[d'Y] — var[c'@] var{d'Y] — var[(Pd)'Y]
o?(d'd - d'Pd)

o?d'(1, - P)d

o?d'(1, - P) (I, — P)d
o2did;, say,

= 0,

with equality only if (I, —P)d = 0 or d = Pd = Pec. Hence ¢’@ has minimum
variance and is unique. : O

COROLLARY If X has full rank, then a’ B is the BLUE of a’@ for every
vector a. |

Proof. Now 8 = X implies that 8 = (X’X)"'X'0 and 8 = (X'X)"!X'8.
Hence setting ¢’ = a'(X'X)~1X’ we have that a’3 (= ¢'8) is the BLUE of
a’'B (= c¢'0) for every vector a. O

Thus far we have not made any assumptions about the distribution of the
€;. However, when the ¢; are independently and identically distributed as
N(0,0?), that is, € ~ N(0, 021,) or, equivalently, Y ~ N,(X83,0%1,), then

a’ has minimum variance for the entire class of unbiased estimates, not just
for linear estimates (cf. Rao [1973: p. 319] for a proof). In part1cular, B,
which is also the maximum likelihood estimate of 3; (Section 3.5}, is the most
efficient estimate of ;.

When the common underlying distribution of the ¢; is not normal, then
the least squares estimate of 5; is not the same as the asymptotically most
efficient maximum likelihood estimate. The asymptotic efficiency of the least
squares estimate is, for this case, derived by Cox and Hinkley [1968].

Eicker [1963] has discussed the question of the consistency and asymptotic
normality of B as n — oo. Under weak restrictions he shows that 3 is a
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consistent estimate of 3 if and only if the smallest eigenvalue of X'X tends to
infinity. This condition on the smallest eigenvalue is a mild one, so that the
result has wide applicability. Eicker also proves a theorem giving necessary
and sufficient conditions for the asymptotic normality of each 3; (see Anderson
{1971: pp. 23-27)).

EXERCISES 3b

1. LetY; = Bo+ Bizi +e; (i =1,2,...,n), where Ele] = 0 and Var[e] =
0?I,,. Find the least squares estimates of By and B;. Prove that they
are uncorrelated if and only if T = 0.

2. In order to estimate two parameters 6 and ¢ it is possible to make
observations of three types: (a) the first type have expectation 6, (b)
the second type have expectation 8 + ¢, and (c) the third type have
expectation & — 2¢. All observations are subject to uncorrelated errors
of mean zero and constant variance. If ' observations of type (a),
m observations of (b), and n observations of type (c) are made, find
the least squares estimates 6 and q3 Prove that these estimates are
uncorrelated if m = 2n.

3. Let Y3,Y3,...,Y, be a random sample from N(#,02). Find the linear
unbiased estimate of § with minimum variance.

4. Let
Y; = fo + Br(xi1 — T1) + Pa(xie — F2) + &5 (1=1,2,...,n),

where T; = 3.7, @i;/n, Ele] = 0, and Var[e] = 02I,. If §; is the least

i=1
squares estimate of 31, show that

a2

varlfa] = 2oi(ma = T1)2(1 - r2)’

where 7 is the correlation coefficient of the n pairs (z:1, Z:2).

3.3 UNBIASED ESTIMATION OF o2

We now focus our attention on o2 (= varle;]). An unbiased estimate is de-
scribed in the following theorem.

THEOREM 3.3 If E{Y] = XB, where X is an n X p matriz of rank 1
(r <p), and Var[Y] = 021, then

. (Y-0)(Y-8) RSS

n—r n—r

S
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is an unbiased estimate of o2.

Proof. Consider the full-rank representation 8 = X; o, where X, is n x r of
rank 7. Then A
Y~-0=(1,-P)Y,

where P = X; (X} X;)"!X]. From Theorem 3.1 we have

(n—r)S* = Y'(I,-P)I,-P)Y
= Y'(I, - P)?Y
Y'(I, - P)Y. (3.12)
Since P@ = 0, it follows from Theorems 1.5 and 3.1(iii) applied to X, that
E[Y'(I, -P)Y] = c?tr(I, ~-P)+6'(1, - P)8
= o*(n—-r),
and hence E[S?] = ¢2. ]

When X has full rank, $2 = (Y — X3)'(Y — X3)/(n — p). In this case it
transpires that S2, like 8, has certain minimum properties which are partly
summarized in the following theorem.

THEOREM 3.4 (Atiqullah [1962]) Let Y},Y3,...,Y, be n independent ran-
dom variables with common variance o? and common third and fourth mo-
ments, us and u4, respectively, about their means. If E[Y] = X3, where X is
n X p of rank p, then (n — p)S? is the unique nonnegative quadratic unbiased
estimate of (n — p)o? with minimum variance when py = 30* or when the
diagonal elements of P are all equal.

Proof. Since o2 > 0 it is not unreasonable to follow Rao [1952] and consider
estimates that are nonnegative. Let Y'AY be a member of the class C of
nonnegative quadratic unbiased estimates of (n — p)¢?. Then, by Theorem
1.5,

(n -~ p)o? = E[Y'AY] = o®tr(A) + B'X'AX3

for all B, so that tr(A) = n — p (setting 8 = 0) and B'X'AX3 = 0 for all
. Thus X'AX = 0 (A.11.2) and, since A is positive semidefinite, AX = 0
- (A.3.5) and X'A = 0. Hence if a is a vector of diagonal elements of A, and
vz = (u4 — 30%) /04, it follows from Theorem 1.6 that

var[Y'AY] = o*ya'a+ 20*tr(A®) +40°B'X'A’XB + 4u38'X’'Aa
= oglya'a+ 20% tr(A?). (3.13)

Now by Theorem 3.3, (n—p)8? [= Y'(I,—P)Y = Y'RY, say]| is a member
of the class C. Also, by Theorem 3.1,

tr(R?) = tr(R) = n — p,
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so that if we substitute in (3.13),
var[Y'RY] = o¥yer'r + 20*(n — p). (3.14)

To find sufficient conditions for Y/'RY to have minimum variance for class
C,let A = R+ D. Then D is symmetric, and tr(A) = tr(R) + tr(D);
thus tr(D) = 0. Since AX = 0, we have AP = AX(X'X)"1X' = 0, and
combining this equation with P? = P, that is, RP = 0, leads to

0=AP=RP+DP =DP

and
DR=D (=D'=RD).
Hence
A? = R?+DR+RD +D?
R + 2D + D?
and
tr(A%) = tr(R) + 2tr(D) + tr(D?)

= (n—p)+tr(D?).
Substituting in (3.13), setting a = r + d, and using (3.14), we have
var[Y'AY] = o*yea'a+ 20%[(n —p) + tr(D?)]
= oyt + 2r'd + d'd) + 26%[(n — p) + tr(D?))
= olyr'r + 204 (n - p) + 20t [y (r'd + id'd) + tr(D?)]
= var[Y'RY]

+ 204 [’)’2 (Z ridi + 3 Z d?i) + Z Zd?j] .
i i i g

To find the estimate with minimum variance, we must minimize var[Y'AY]
subject to tr(D) = 0 and DR = D. The minimization in general is difficult
(cf. Hsu {1938]) but can be done readily in two important special cases. First,
if yo = 0, then

139

var[Y’'AY] = var[Y'RY] + 2¢* Z Z dz
iJ

which is minimized when d;; = 0 for all 4, j, that is, when D = 0 and A = R.
Second, if the diagonal elements of P are all equal, then they are equal to p/n
[since, by Theorem 3.1(ii), tr(P) = p|. Hence r;; = (n — p)/n for each 7 and

var[Y'AY] = var[Y'RY]+20* |7 (°+%Zd?,;) +szgj]

-
= var[Y'RY]+20¢ |[(3m+ 1)) 2+ S dfj} :
i

i#]
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as Y .riudiy = [(n — p)/n]jtr(D) = 0. Now 72 > —2 (A.13.1), so that
var[Y'AY] is minimized when d;; = 0 for all 4,j. Thus in both cases we
have minimum variance if and only if A = R. O

This theorem highlights the fact that a uniformly minimum variance quad-
ratic unbiased estimate of o2 exists only under certain restrictive conditions
like those stated in the enunciation of the theorem. If normality can be
assumed (y2 = 0), then it transpires that (Rao [1973: p. 319]) S2 is the
minimum variance unbiased estimate of ¢? in the entire class of unbiased
estimates (not just the class of quadratic estimates).

Rao {1970, 1972] has also introduced another criterion for choosing the
estimate of ¢2: minimum norm gquadratic unbiased estimation (MINQUE).

Irrespective of whether or not we assume normality, this criterion also leads
to 52 (cf. Rao [1970, 1974: p. 448]).

EXERCISES 3c

1. Suppose that Y ~ N,(X8,c%1,), where X is n x p of rank p.

(a) Find var[S?].
(b) Evaluate E[(Y'A;Y — ¢2)?] for

1

— —_ ! —lxl )

Ay

(¢) Prove that Y'A;Y is an estimate of 02 with a smaller mean-
squared error than S2.

(Theil and Schweitzer [1961])

2. Let Y1,Ys,...,Y,, be independently and identically distributed with
mean # and variance ¢2. Find the nonnegative quadratic unbiased esti-
mate of o2 with the minimum variance.

3.4 DISTRIBUTION THEORY

Until now the only assumptions we have made about the ¢; are that E[e] = 0
and Varfe] = ¢21,. If we assume that the ¢; are also normally distributed,
then € ~ N,(0,0°L,) and hence Y ~ N,(XB,0%L,). A number of distribu-
tional results then follow.

THEOREM 3.5 If Y ~ N,(X8,021,,), where X is n X p of rank p, then:
(i) B ~ Np(B,c*(X'X)71).
(ii) (B - B)X'X(B - B)/d* ~ X2
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(iii) B is independent of S2.
(i) RSS/o = (n — 2)S?/0? ~ XLy,

Proof. (i) Since B = (X'X)"1X'Y = CY, say, where C is a p X n matrix such
that rank C = rank X’ = rank X = p (by A.2.4), B has a multivariate normal
distribution {Theorem 2.2 in Section 2.2). In particular, from equations (3.10)
and (3.11), we have 3 ~ Np(8,02(X'X)"1).

(ii) (B - BYX'X(B — B)/o* = (B — B)'(Var[B])~!(B — B), which, by (i)
and Theorem 2.9, is distributed as x2.

(iif)
CoviB,Y — XJ]

Cov [(X'X)"!X'Y, (I, - P)Y]
(X'X)"X' Cov[Y] (I, — P)
o?(X'X)"1X'(1,, — P)

= 0 [by Theorem 3.1(iii)].

If U=/8and V=Y — X3 in Theorem 2.5 (Section 2.3), B is independent
of ||(Y — XB)||?> and therefore of $2.

(iv) This result can be proved in various ways, depending on which theo-
rems relating to quadratic forms we are prepared to invoke. It is instructive to
examine two methods of proof, although the first method is the more standard
one.

Method 1: Using Theorem 3.3, we have

RSS = Y'(I,-P)Y
= (Y -XB)(I,-P)(Y -X3) [by Theorem 3.1(iii)]
(I, — P)e, ' (3.15)

where I,,— P is symmetric and idempotent of rank n—p. Since & ~ N,(0,021,),
RSS/c? ~ xi_p (Theorem 2.7 in Section 2.4).

Method 2:
Q = (Y-XB)(Y-XB)
= (Y-XB+X(B-8) (Y-XB+X(B-9)
= (Y ~-XB)(Y -X3)
+2(8 - B)'X'(Y - XB) + (B -BYX'X(B - B)
(Y - XB)' (Y — XB)+ (B - B)X'X(3 - B)
Q + Q2a say, (316)

since, from the normal equations,

(B-BYX'(Y-XB)=(B~-B)X'Y-X'XB)=0. (3.17)
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Now Qi/0? (= X ,€}/0?%) is X2, and Q2/0? ~ X3 [by (ii)]. Also, Q2 is a
continuous function of f'], so that by Example 1.11 and (iii), @ is independent
of Q2. Hence Q/0? ~ x3%_, (Example 1.10, Section 1.6). 0O

EXERCISES 3d

1. Given 11, Y5,...,Y, independently distributed as N (8, 02), use Theorem
3.5 to prove that:

(a) Y is statistically independent of @ = 3" (Y; ~ Y)2.
(b) Q/a* ~x2_;.

2. Use Theorem 2.5 to prove that for the full-rank regression model, RSS
is independent of (8 — B)'X'X (8 — B).

3.5 MAXIMUM LIKELIHOOD ESTIMATION

Assuming normality, as in Section 3.4, the likelihood function, L(B,0?) say,
for the full-rank regression model is the probability density function of Y,
namely,

—_n 1
L(B,0%) = (2n0®) ™% exp {—“2";2'”)’ ~ xa)llz} -
Let {(B, v) = log L(B, 0%), where v = ¢%. Then, ignoring constants, we have
—_r 1 2
1(B,v) = =5 logv ~ o-|ly — XB[[*,

and from (3.6) it follows that

ol 1 , ;
and 51 ;

A P S | P 2

v 2v + 2'02”y XBII*-

Setting O!/88 = 0, we get the least squares estimate of 3, which clearly
maximizes /(B,v) for any v > 0. Hence

L(B,v) < L(B,v) forallv>0

with equality if and only if 8 = 3. )
We now wish to maximize L(3,v), or equivalently I(3,v), with respect to
v. Setting 61/0v = 0, we get a stationary value of 4 = ||y — XB)||*/n. Then

) 1] U
~hoe [ = 1=-%
2[°g(v)+ vJ

0,

l(éyﬁ) - l(ﬁ:‘”)

IV
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since z < e*~! and therefore logz < z — 1 for z > 0 (with equality when
z = 1). Hence

L(B,v) < L(B,%) forallv >0

with equality if and only if 8 = ﬁ and v = 9. Thus B and ¥ are the maximum
likelihood estimates of 8 and v. Also, for future use,

L(B,6%) = (2n6?)~™/2e~/2, (3.18)

In determining the efficiency of the estimates above, we derive the (ex-
pected) information matrix ' .

I = -—E[6°1/6000
Var{dl/ 69]_, (3.19)
where @ = (8',v)". As a first step we find that
821 1.,
88 84" - EE(X X),
8l 1 , ,
33 v —-1;-5(——2}{ y + X'X3)
and
521 n

1 2
502 =52 ,U_3“y - X3Bi°.

We note that ||[Y—XB||? /v = &'e /v ~ X2, so that E[e’'e] = nv (as E[x2] = n).
Replacing y by Y and taking expected values in the equations above gives us

(l(x'X) 0 )
I= v .
o’ n

2v2

This gives us the multivariate Cramer—Rao lower bound for unbiased estimates

of @, namely,
v(X'X)"t o0
I = o 22 .
)

Since Var[8] = v(X'X)™!, B is the best unbiased estimate of 8 in the sense
that for any a, a' f'] is the minimum variance unbiased estimate (MINVUE) of
a's.

Since (n — p)S?/v ~ x%_, [by Theorem 3.5(iv)] and var[x2_,] = 2(n — p),
it follows that var[S?] = 205/ (n — p), which tends to 2v%/n as n — oco. This
tells us that S? is, asympotically, the MINVUE of v. However, the Cramer-
Rao lower bound gives us just a lower bound on the minimum variance rather
than the actual minimum. It transpires that S? is exactly MINVUE, and a
different approach is needed to prove this (e.g., Rao [1973: p. 319]).



ORTHOGONAL COLUMNS IN THE REGRESSION MATRIX 51

3.6 ORTHOGONAL COLUMNS IN THE REGRESSION MATRIX

Suppose that in the full-rank model E[Y] = X the matrix X has a column
representation

X = (x(9, %), . ,x(P—l)),

where the columns are all mutually orthogonal. Then

-~

B = X'X)"X'Y
%(0)15(0) 0 o 0 -1/ xOry
0 x(DigD) ... 0 x(W'y
0 0 coe x{P=1) i1y (p-1) =11y

(K(O) ’x(o))_l x (0} ry
(x(l):x(l))-—lx(l)rY

(xP=Dix -1y -1x(p-1)ry

Thus B; = xU'Y /xD'x() turns out to be the least squares estimate of f;
for the model E[Y] = x{)§;, which means that the least squares estimate of
B; is unchanged if any of the other §; (I # j) are put equal to zero. Also,
from equations (3.8) and (3.9), the residual sum of squares takes the form

RSS = Y'Y-3X'Y

L p-l ~ .
= Y'Y - Zﬁij)’Y

=0

p—1
= Y'Y -) ABxDx) (3.20)

j=0

If we put $; = 0 in the model, the only change in the residual sum of squares
is the addition of the term ,Bjx(j)’ Y, so that we now have

p—1
YY- Y Axy. (3.21)
r=0,r#j

Two applications of this model are discussed in Sections 7.1.2 and 7.3.1.

EXAMPLE 3.3 Consider the full-rank model

I/‘k=ﬁ0+ﬁ1$i1+"'+ﬁp-—1mp—1+5i (?:-——1,2,...,7?,),
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where the g; are iid. N(0,02) and the z;; are standardized so that for
i=14,2,...,p-1, ¥, z;; =0and 3, 2% = c. We now show that

15
p ZO var[3;] (3.22)
J=

is minimized when the columns of X are mutually orthogonal.

From :
i~ __( n O
XX_(O c)’
say, we have

p—1

Zvar[f]j] = tr(Var[@])

j=0
= o? [tr(C_l) + l]
T
p—1

a? Y A7, (3.23)

§=0

where \p = n and A; (j = 1,2,...,p — 1) are the eigenvalues of C (A.1.6).
Now the minimum of (3.23) subject to the condition tr(X'X} = n+c(p—1), or
tr(C) = ¢(p—1), is given by A\; = constant, that is, A\; = c(j = 1,2,...,p—1).
Hence there exists an orthogonal matrix T such that T'CT = cI,_;, or
C = cl,;, so that the columns of X must be mutually orthogonal. 0O

This example shows that using a particular optimality criterion, the “opti-
mum” choice of X is the design matrix with mutually orthogonal columns. A
related property, proved by Hotelling (see Exercises 3e, No. 3), is the following:
Given any design matrix X such that x(9)'x() = c%, then

[

o

Va'r[Bj] 2 ??"

and the minimum is attained when x()'x(") = 0 (all r, 7 # j) [i.e., when x{)
is perpendicular to the other columns].

EXERCISES 3e

1. Prove the statement above that the minimum is given by A; = ¢ (j =
1,2,...,p—1).

2. It is required to fit a regression model of the form

EY:] = Bo + Brzi + Bed(zi) (6 =1,2,3),
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where ¢(z) is a second-degree polynomial. If z; = —1, z, = 0, and
z3 = 1, find ¢ such that the design matrix X has mutually orthogonal
columns.

. Suppose that X = (x(@,x(1) . x(P~1) x®)) = (W,x")) has linearly
independent columns.

(a) Using A.9.5, prove that
det(X'X) = det(W'W) (x(@)'x(® — x(P)'W(W'W)-1W'x(P)) .
(b) Deduce that

det(W'W) > 1
det(X'X) = x(@)ix(p)’

and hence show that var[3,] > o2(x(®/x(P)~1 with equality if and
only if x?P'x() =0 ( =0,1,...,p~1).

(Rao [1973: p. 236])

. What modifications in the statement of Example 3.3 proved above can
be made if the term Sy is omitted?

. Suppose that we wish to find the weights 8; (1 = 1,2,..., k) of k objects.
One method is to weigh each object r times and take the average; this
requires a total of kr weighings, and the variance of each average is o2 /r
(0? being the variance of the weighing error). Another method is to
weigh the objects in combinations; some of the objects are distributed
between the two pans and weights are placed in one pan to achieve
equilibrium. The regression model for such a scheme is

Y = 12y + Bazs + -+ + Brzi + &,

where z; = 0, 1, or —1 according as the ith object is not used, placed in
the left pan or in the right pan, ¢ is the weighing error (assumed to be the
same for all weighings), and Y is the weight required for equilibrium (Y
is regarded as negative if placed in the left pan). After n such weighing
operations we can find the least squares estimates j3; of the weights.

(a) Show that the estimates of the weights have maximum precision
(i.e., minimum variance) when each entry in the design matrix X
is 1 and the columns of X are mutually orthogonal.

(b) If the objects are weighed individually, show that kn weighings are
required to achieve the same precision as that given by the optimal
design with n weighings.

(Rao [1973: p. 309))
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3.7 INTRODUCING FURTHER EXPLANATORY VARIABLES

3.7.1 General Theory
Suppose that after having fitted the regression model
E[Y] = X8, Var[Y] = ¢21,,

we decide to introduce additional z;’s into the model so that the model is
now enlarged to

G:E[Y] = XB+Zy

- w0(2)

= W9, (3.24)

say, where X is n x p of rank p, Z is n x t of rank ¢, and the columns of Z are
linearly independent of the columns of X; that is, W is n x (p + ¢t} of rank
p+t. Then to find the least squares estimate d0c of & there are two possible

approaches. We can either compute d¢ and its dispersion matrix directly
from

bg=(WW)'W'Y and  Var[dg] = c2(WW) !,

or to reduce the amount of computation, we can utilize the calculations al-
ready carried out in fitting the original model, as in Theorem 3.6 below. A
geometrical proof of this theorem, which allows X to have less than full rank,
is given in Section 3.9.3. But first a lemma.

LEMMA IfR=1I,-P =1, - XX'X) X’ then ZRZ is positive-
definite.
Proof. Let Z'RZa = 0; then, by Theorem 3.1(i),

a'Z'R'RZa=3a'Z'RZ%a =0,

or RZa = 0. Hence Za = X(X'X)"'X'Za = Xb, say, which implies that
a = 0, as the columns of Z are linearly independent of the columns of X.
Because Z'RZa = 0 implies that a = 0, Z'RZ has linearly independent
columns and is therefore nonsingular. Also, a’Z'RZa = (RZa)'(RZa) > 0.
0

THEOREM 3.6 Let Rg =1, - WW'W)"!'W' L=X'X)"'X'Z, M =
(Z’RZ)71, and
5o = ( Pe ) .
¢ ( YG
Then:
(i) 4¢ = (Z'RZ)"1Z'RY.
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(i) Be = (X'X)1X/(Y - ZAg) = B - LAe.
(iii) Y'RGY = (Y — Z3¢)'R(Y — ZAg) = Y'RY — ALZ'RY.
(iv)

- X'X)"1+LML' -LM
Var[dg] = o? ( ( )—ML' M ) .

Proof. (i) We first “orthogonalize” the model. Since C(PZ) C C(X),

(3.25)

XB+2Zy = XB+PZy+(1,-P)Zy
= Xa+RZy

;(xnm(ﬁ)
= V2,

say, where a = A + (X'X)~"!1X'Z~y = B + L~ is unique. We note that
C(X) L C(RZ). Also, by A.2.4 and the previous lemma,

rank(RZ) = rank(Z'R'RZ) = rank(Z'RZ) = t,

so that V has full rank p + t. Since XR = 0, the least squares estimate of A
is

A = (VIV)IV'Y
XX XRzZ \"'Y x ¥
Z’RX Z'R'RZ Z'R
(XX 0o \'/x ¥
= 0 Z'RZ 7Z'R
_ X'X)1X'Y [ &
= \@Rrz)'zmrYy /= \ 7 )°

Now the relationship between (3,) and {a, v} is one-to-one, so that the same
relationships exist between their least square estimates. Hence

Yo =7 = (Z'RZ)"1Z'RY. (3.26)

(ii) We also have

-

Be = a&-L%
= B-1Aq
(X'X)1X'(Y - ZA¢). (3.27)
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(iii) Using (3.27) gives

RegY = Y -Xfg-Z4c
= Y -XX'X)7'X(Y - Z4s) - Z7¢
(In - X(X'X)"1X') (Y - ZAg)
R(Y — ZA4g) (3.28)
RY — RZ(Z'RZ)"'Z'RY, (3.29)

so that by (3.28),
Y'ReY = (Y- Wig) (Y - Wdg)
(Y - Xfa - Z46)' (Y — XBa - Z4e)
(Y = Z46) R'R(Y ~ Z4g)
= (Y - Z4g)'R(Y — ZAg), (3.30)

since R is symmetric and idempotent [Theorem 3.1(i)].
Expanding equation (3.30) gives us

Y'RgY = Y'RY -29LZ'RY + 45Z'RZAq
= Y'RY —4LZ'RY — 45(Z'RY — Z'RZ4;)
= Y'RY —A4LZ'RY [by (3.26)].

(iv)

Var[4¢] = (Z'RZ)"'Z'R Var[Y]RZ(Z'RZ)™!
0 (Z'RZ)"1(Z'RZ)(Z'RZ)™!
= 0*(Z'RZ)"! = oM.

Now, by Theorem 1.3,
Cov[B,4¢] = Cov[(X'X)"'X'Y,(Z'RZ)'Z'RY]
= (X'X)1X'RZ(Z'RZ)™!
= 0, (3.31)

since X'R = 0. Hence using (i) above, we have, from Theorem 1.3,

Cov{Ba,4c] = CoviB — g, a]
= Cov|B,4¢] — L Var|4¢]
=-o?LM [by (3.31)]
and
Var[Bg] = Var[ - LAg]
=Var|f] - Cov[B,LAg] — Cov[Lia,B] + Var[L4c]
= Var[8] + L Var[§c]L/ [by (3.31)]
=0® [(X'X)"! + LML/]. O
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0
_ From Theorem 3.6 we see that once X'X has been inverted, we can find
d¢ and its variance—covariance matrix simply by inverting the ¢ x ¢ matrix

Z'RZ; we need not invert the (p 4 t) x (p + t) matrix W'W. The case t = 1
is considered below.

3.7.2 One Extra Variable
Let the columns of X be denoted by x() ( =0,1,2,...,p - 1), so that

BY] = @), x0-Dyg
x8o +xWpy + ...+ xtg, .

Suppose now that we wish to introduce a further explanatory variable, z,, say,
into the model so that in terms of the notation above we have Zvy = x(P)3,.
Then by Theorem 3.6, the least squares estimates for the enlarged model are
readily calculated, since Z'RZ (= x®/Rx(?)) is only a 1 x 1 matrix, that is,
a scalar. Hence

- P)RY
o AL -1 _ X
ﬂp,G = Ya = (Z'RZ) Z'RY = m, (332)
66’ - (BO.G: s 3613--1,67)’ = B - (X'X)_lx’x(p)ﬁp,G;
Y'RegY = Y'RY - j,ex®'RY, (3.33)

and the matrix Var[S'G] is readily calculated from (X'X)~!. The ease with
which “corrections” can be made to allow for a single additional z variable
suggests that if more than one variable is to be added into the regression
model, then the variables should be brought in one at a time. We return to
this stepwise procedure in Chapter 11.

The technique above for introducing one extra variable was first discussed
in detail by Cochran [1938] and generalized to the case of several variables by
Quenouille {1950].

EXAMPLE 3.4 A recursive algorithm was given by given by Wilkinson
[1970] (see also James and Wilkinson [1971], Rogers and Wilkinson [1974],
and Pearce et al. [1974]) for fitting analysis-of-variance models by regression
methods. This algorithm amounts to proving that the residuals for the aug-
mented model are given by RSRY, where S = I,, — Z(Z'RZ)"'Z'. We now
prove this result. By (3.28) the residuals required are

ReY =RY - RZA¢g
=R(RY — Z4c)
=R [I, - Z(ZRZ)"'Z'| RY (3.34)
=RSRY. 0



58 LINEAR REGRESSION: ESTIMATION AND DISTRIBUTION THEORY

The basic steps of the Wilkinson algorithm are as follows:
Algorithm 3.1

Step 1: Compute the residuals RY.

Step 2: Use the operator S, which Wilkinson calls a sweep {not to be con-
fused with the sweep method of Section 11.2.2), to produce a vector of
apparent residuals RY — Z4g (= SRY).

Step 3: Applying the operator R once again, reanalyze the apparent residu-
als to produce the correct residuals RSRY.

If the columns of Z are perpendicular to the columns of X, then RZ = Z
and, by (3.34),

RSR = R(I.-Z(Z'RZ)"'Z)R
= R-Z(Z'Z)"'Z'R
= SR,

so that step 3 is unnecessary. We see later (Section 3.9.3) that the procedure
above can still be used when the design matrix X does not have full rank.
By setting X equal to the first k& columns of X, and Z equal to the (k+1)th
column (k =1,2,...,p— 1), this algorithm can be used to fit the regression
one column of X at a time. Such a stepwise procedure is appropriate in ex-
perimental design situations because the columns of X then correspond to
different components of the model, such as the grand mean, main effects,
block effects, and interactions, and some of the columns are usually orthog-
onal. Also, the elements of the design matrix X are 0 or 1, so that in many
standard designs the sweep operator S amounts to a simple operation such as
subtracting means, or a multiple of the means, from the residuals.

EXERCISES 3f
1. Prove that
Y'RY — Y'ReY = 0?4 (Var[4g])) ™! 4a-
2. Prove that 4g can be obtained by replacing ¥ by Y —Z~ in Y'RY and

minimizing with respect to «v. Show further that the minimum value
thus obtained is Y'RgY.

3. If B = (Be.;) and B = (B;), use Theorem 3.6(iv) to prove that

va.r[ﬁg,j] > var[ﬁj].
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4. Given that Y;,Y>,...,Y, areindependently distributed as V (¢, 5?), find
the least squares estimate of 6.

(a) Use Theorem 3.6 to find the least squares estimates and the residual
sum of squares for the augmented model

Vi=0+vz; +¢; (i1=1,2,...,n),

where the ¢; are independently distributed as N(0, ¢2).

(b) Verify the formulae for the least square estimates of § and v by
differentiating the usual sum of squares.

3.8 ESTIMATION WITH LINEAR RESTRICTIONS

As a prelude to hypothesis testing in Chapter 4, we now examine what hap-
pens to least squares estimation when there are some hypothesized constraints
on the model. We lead into this by way of an example.

EXAMPLE 3.5 A surveyor measures each of the angles ¢, 8, and v and
obtains unbiased measurements Y;, Y3, and Y3 in radians, respectively. If
the angles form a triangle, then a + f + v = . We can now find the least
squares estimates of the unknown angles in two ways. The first method uses
the constraint to write vy = # — o — 8 and reduces the number of unknown
parameters from three to two, giving the model

(2 )-(2 )G)+(3)

We then minimize (Y) — a)? + (Y2 — 8)% + (Y3 — 7 + o+ §)? with respect to «
and f, respectively. Unfortunately, this method is somewhat ad hoc and not
easy to use with more complicated models.

An alternative and more general approach is to use the model

Y] 1 0 0 (8] €1
Yo =1 0 1 0 (ﬁ)+(82)
Y3 0 0 1 Y ' E3

and minimize (Y1 — a)? + (Y2 — B8)? + (Y3 ~ v)? subject to the constraint
a + B + v = 7 using Lagrange multipliers. We consider this approach for a
general model below. Q-
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3.8.1 Method of Lagrange Multipliers

Let Y = X8 + ¢, where X is n x p of full rank p. Suppose that we wish
to find the minimum of £’ subject to the linear restrictions A8 = ¢, where
A is a known ¢ x p matrix of rank ¢ and c is a known ¢ x 1 vector. One
method of solving this problem is to use Lagrange multipliers, one for each

linear constraint a8 =¢; (: = 1,2,...,q), where a} is the ith row of A. Asa
first step we note that

q

Y x@iB-e) = XN(AB-c)

=1

= (B'A'—c)

(since the transpose of a 1 x 1 matrix is itself). To apply the method of
Lagrange multipliers, we consider the expression r = e’e + (8’A’ — ¢’)A and
solve the equations

and Or/8B = 0; that is (from A.B),

—2X'Y + 2X'X8 + A'A = 0. | (3.36)

For future reference we denote the solutions of these two equations by By and
Ag. Then, from (3.36),

A

Br = (X'X)7IX'Y - j(X'X)'ASg
= B-LHX'X)*A'Ay, (3.37)
and from (3.35),
c = Afx
= AB-LIAX'X)'A'Ay.
Since (X'X)~! is positive-definite, being the inverse of a positive-definite ma-

trix, A(X'X)1 A’ is also positive-definite (A.4.5) and therefore nonsingular.
Hence

—i3g = [AX'X)7A] T (c - AB)
and substituting in (3.37), we have
By =B+ (X'X)TA [AX'X) A (c — AB). (3.38)
To prove that B actually minimizes &'e subject to AB = c, we note that
XG-o1F = G-pHXXB-p
= (B-Bu+Bu—-BYX'X(B~Bu+Pr-B)
= (B - Bu)X'X(B - Bu) + (Br — B)X'X(Bx — B) (3.39)
= ||1X(8 - Bu)II* + 1X(Bu - B)II? (3.40)
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since from (3.37),

208 - Br)'X'X(Br ~ B) = NgA(By — B) = Ng(c —¢) =0.  (3.41)
Hence from (3.16) in Section 3.4 and (3.40),

ce = IV -XBI"+ 11X - B)IP ,
= Y —XBIP + I(X(B - Bu)I? + |1X(Br - BIF  (3.42)
is a minimum when ||X(8x — B)||> = 0, that is, when X(8y — 8) =0, or

B = By (since the columns of X are linearly independent).
Setting 8 = By, we obtain the useful identity

1Y - XBul? = IY — XB|1* + IX(8 - Bu)I? (3.43)
or, writing ¥ = X8 and Yy = X8,
Y = Yul? - IY - Y|P =Y - Yal* (3.44)

.This identity can also be derived directly (see Exercises 3g, No. 2, at the end
of Section 3.8.2).

3.8.2 Method of Orthogonal Projections

It is instructive to derive (3.38) using the theory of B.3. In order to do this,
we first “shift” ¢, in much the same way that we shifted 7 across into the
left-hand side of Example 3.5.

Suppose that By is any solution of AB = ¢. Then
Y - XBo = X(8—Bo) + ¢ (3.45)

or Y = X~+¢, and Ay = AB—ABy = 0. Thus we have the model Y = 8+¢,
where 8 € 2 = C(X), and since X has full rank, A(X'X)"1X'0 = A~ = 0.
Setting A; = A(X'X)™'X' and w = M(A;) N1, it follows from B.3.3 that
wt NN =C(PqAl), where

PoAl = X(X'X)1X'X(X'X) 1A' = X(X'X) 1A’
isn x g of rank ¢ (by Exercises 3g, No. 5, below). Therefore, by B.3.2,
Po-P, = P,inq
= (PpAj)[A1PZAI]H (PaA))
= XXX)'A [AXX)TIA] T AXX) X
Hence
XBy—-XBo = XAg=P,Y =PaY -P_. oY
= PoY —XBo - X(X'X)1A' [AX'X)"1X'] M (AB —¢),
(3.46)
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since PaX By = Xﬁo amﬁ ABy = c. Therefore, canceling X 8o and multiplying
both sides by (X’ 1%’ leads to By of (3.38). Clearly, this gives a minimum
as |Y — X3l = IIY X4ull?

EXERCISES 3g

1. (a) Find the least squares estimates of o and S in Example 3.5 using
the two approaches described there. What is the least squares
estimate of 7

(b) Suppose that a further constraint is introduced: namely, o = 5.
Find the least squares estimates for this new situation using both
methods.

2. By considering the identity Y — Yy =Y — Y +V -Yy, prove that
1Y = Yul? = |IY = Y| + ¥ - Yul?.
3. Prove that :
Var[Bx] = o2 {(X'X)-l — (X'X)A [AX'X)AN] A(X'X)—l} .
Hence deduce that A A
var(Bp;] < var(Bl,
where BHJ- and Bj are the jth elements of By and 3, respectively.

4. Show that

A

N N - - -1
1Y — Vg2 - 1Y — V|12 = 0234 (Va.r[AH]) An.

5. If X is n x p of rank p and B is p X ¢ of rank ¢, show that rank(XB) = q.

3.9 DESIGN MATRIX OF LESS THAN FULL RANK

3.9.1 Least Squares Estimation

When the techniques of regression analysis are used for analyzing data from
experimental designs, we find that the elements of X are 0 or 1 (Chapter 8),
and the columns of X are usually linearly dependent. We now give such an
example.

EXAMPLE 3.6 Consider the randomized block design with two treatments
and two blocks: namely,

Yi=pto+m+e; (i=1,27=1,2),
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where Y;; is the response from the ith treatment in the jth block. Then

Y]_]_ 1 1 0 1 0 K £11
Yo 1 1 0 0 1 o1 €12
= Qy | + (3.47)
1’21 1 01 1 0 YE £91
Y22 1 0 1 0 1 Ty £99

or Y = XfB+¢, where, for example, the first column of X is linearly dependent
on the other columns. a

In Section 3.1 we developed a least squares theory which applies whether
or not X has full rank. If X is n x p of rank r, where r < p, we saw in Section
3.1 that 3 is no longer unique. In fact, ﬂ should be regarded as simply a
solution of the normal equations fe.g., (X' X) X'Y] which then enables us to
find ¥ = Xﬂ, e=Y — X[)’ and RSS = é'e, all of which are unique. We
note that the normal equations X'X8 = X'Y always have a solution for 8 as
C(X") = C(X'X) (by A.2.5). Our focus now is to consider methods for finding
8.

So far in this chapter our approach has been to replace X by an n x r
matrix X; which has the same column space as X. Very often the simplest
way of doing this is to select r appropriate columns of X, which amounts to
setting some of the §; in X3 equal to zero. Algorithms for carrying this out
are described in Section 11.9.

In the past, two other methods have been used. The first consists of impos-
ing identifiability constraints, HB = 0 say, which take up the “slack” in 8 so
that there is now a unique B satisfying @ = X and HS = 0. This approach
is described by Scheffé [1959: p. 17]. The second method involves computing
a generalized inverse. In Section 3.1 we saw that a B is given by (X'X)~X'Y,
where (X'X)™ is a suitable generalized inverse of X'X. One commonly used
such inverse of a matrix A is the Moore-Penrose inverse AT, which is unigue

(see A.10).

EXAMPLE 3.7 In Example 3.6 we see that the first column of X in (3.47)
is the sum of columns 2 and 3, and the sum of columns 4 and 5. Although
X is 4 x 5, it has only three linearly independent columns, so it is of rank 3.
To reduce the model to one of full rank, we can set ay = 0 and 7» = 0, thus
effectively removing the third and fifth columns. Our model is now

Y11 1 1 1 . £11

Yis 110 a £19

Ya1 1 0 1 a o,
1 0 0 n

292 £22

Alternatively, we can use two identifiability constraints, the most common
being ;@ =0 and 3, 7; = 0. If we add these two constraints below X, we
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get
(1 1 0 10\
1 1 0 0 1 2
@ X a 1 0 1 1 0 Q1
—_— ] = | — = o ,
0 H 1 01 0 1 7'12
0 11 00 -
\o 00 11/)‘"

where the augmented matrix now has five linearly independent columns. Thus
given @, B is now unique. .

EXERCISES 3h

1. Suppose that X does not have full rank, and let Bz (¢ = 1,2) be any two
solutions of the normal equations. Show directly that

IY — X5 = IY — X5,

2. If the columns of X are linearly dependent, prove that there is no matrix
C such that CY is an unbiased estimate of 3. '

3.0.2 Estimable Functions

Since B is not unique, B is not estimable. The question then arises: What
can we estimate? Since each element 8; of 8 (= Xf) is estimated by the
ith element of & = PY, then every linear combination of the 8;, say b'8, is
also estimable. This means that the §; form a linear subspace of estimable
functions, where §; = x}3, x| being the ith row of X. Usually, we define
estimable functions formally as follows.

Definition 3.1 The parametric function a’B is said to be estimable if it has
a linear unbiased estimate, b'Y, say.

We note that if a’B is estimable, then a’8 = E[b'Y] = b'@ = b'Xf
identically in 3, so that a’ =b’X ora = X'b (A.11.1). Heifice a'8 is estimable
if and only if a € C(X').

EXAMPLE 3.8 If a'8 is estimable, and B is any solution of the normal
equations, then a’ '3 is unique. To show this we first note that a = X'b for
some b, so that a’g = b’X = b’8. Similarly, a’A = b'XA = b'6, which is
unique. Furthermore, by Theorem 3.2, b’d is the BLUE of b’'8, so that a'3
is the BLUE of a’g3. O
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In conclusion, the simplest approach to estimable functions is to avoid them
altogether by transforming the model into a full-rank model!

EXERCISES 3i

1. Prove that a'E[B] is an estimable function of .

2. If a{B,a,8,...,a, 0 are estimable, prove that any linear combination
of these is also estimable.

3. Ifa’ ,@ is invariant with respect to fi, prove that a’fB is estimable.
4. Prove that a'8 is estimable if and only if
a' (X'X)"X'X =a'.
(Note that AA~A = A.)

5. If a’'f is an estimable function, prove that
Var[a'8] = ¢%a'(X'X) " a.

6. Prove that all linear functions a'@# are estimable if and only if the
columns of X are linearly independent.

3.9.3 Introducing Further Explanatory Variables

If we wish to introduce further explanatory variables into a less-than-full-rank
model, we can, once again, reduce the model to one of full rank. As in Section
3.7, we see what happens when we add Z~ to our model X3. It makes sense
to assume that Z has full column rank and that the columns of Z are linearly
independent of the columns of X. Using the full-rank model

Y=Xjx+Zvy+e¢e,

where X, is n x r of rank r, we find that Theorem 3.6(ii), (iii), and (iv) of
Section 3.7.1'still hold. To see this, one simply works through the same steps
of the theorem, but replacing X by X;, 8 by o, and R by I, — P, where
P = X; (X{X;)"1X, is the unique projection matrix projecting onto C(X).

3.9.4 Introducing Linear Restrictions

Referring to Section 3.8, suppose that we have a set of linear restrictions a}8 =
0(:=1,2...,q), or in matrix form, AB = 0. Then a realistic assumption is
that these constraints are all estimable. This implies that a; = m!X for some
m;, or A = MX, where M is ¢ x n of rank ¢ {as ¢ = rank(A) < rank(M)
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by A.2.1]. Since Ag = MXfS = M#, we therefore find the restricted least
squares estimate of 8 by minimizing ||'Y — 8||? subject to 8 € C(X) = Q and
M@ = 0, that is, subject to

e NM)NQ (=w, say).

If Po and P, are the projegtion matrices projecting onto §2 and w, respec-
tively, then we want to find 6, = P, Y. Now, from B.3.2 and B.3.3,

Pa—-P, =P, inq,
where w N = C(B) and B = PoM'. Thus

6, = P,Y
PoY —P 1Y
6o — B(B'B)"B'Y.

EXERCISES 3j

1. If P projects onto C(X), show that Z'(I,, — P)Z is nonsingular.

2. Prove that if X; is n x r of rank r and consists of a set of r linearly
independent columns of X, then X = X;L, where L is r x p of rank r.

3. Prove that B ha,s full column rank [ i.e., (B'B)~ = (B'B)™!].
4. If X has full rank and 8, = XBH, show that
By =B~ (XX)TAAXX)A)TAB
[This is a special case of (3.38).]

5. Show how to modify the theory above to take care of the case when the
restrictions are A = ¢ (¢ # 0).

3.10 GENERALIZED LEAST SQUARES

Having developed a least squares theory for the full-rank model Y = X3 +¢,
where E[e] = 0 and Var[e] = 021, we now consider what modifications are
necessary if we allow the &; to be correlated. In particular, we assume that
Var[e] = 02V, where V is a known n X n positive-definite matrix.

Since V is positive-definite, there exists an n x n nonsingular matrix K
such that V = KK’ (A.4.2). Therefore, setting Z = K=Y, B =K~ !X, and
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771 = K~ 'e, we have the model Z = BB +1, where B is n x p of rank p (A.2.2).
Also, E[n] = 0 and

Var[n] = Var[K~le] = K~! Var[e]K ™' = 6’ K~'KK'K' ™' = ¢I,,.

Minimizing 1’7 with respect to 8, and using the theory of Section 3.1, the
least squares estimate of 8 for this transformed model is

ﬁ* — (BIB)—l BIZ
(X'(KK')™1X) ™ X/(KK')"1Y
= XVIX)'X'v-ly,
with expected value
Elf*] = (X'VIX)TIX'VTIX8 = 6,
dispersion matrix
Var[8*] = o*(B'B)™"
o(X'V1X), (3.48)
and residual sum of squares
f'f = (Z-Bp*)(Z-BF*)

(Y - XB*)(KK')" (Y - XB%)
(Y —XB*)'VI(Y - XB").

Alternatively, we can obtain 8* simply by differentiating

nl,n —_ Elv—ls
(Y - XB)(Y - XB)
Y'VY - 28'X'V7Y + g'X'V~IXY

with respect to 8. Thus, by A.8,

on'n
op

and setting this equal to zero leads once again to 8*. Using this approach
instead of the general theory above, we see that X'V~1X has an inverse, as
it is positive-definite (by A.4.5). We note that the coefficient of 28 in (3.49)
gives us the inverse of Va.r[ﬂ 1/0?

There is some variation in termmology among books dealing with the model
above: Some texts call 8* the weighted least squares estimate. However,
we call 8* the generalized least squares estimate and reserve the expression
weighted least squares for the case when V is a diagonal matrix: The diagonal

= —2X'V-lY +2X'V~1X3, (3.49)
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case is discussed in various places throughout this book (see, e.g., Section
10.4).

EXAMPLE 3.9 Let Y =x8 +¢, where Y = (Y;) and x = (z;) aren x 1
vectors, E[€] = 0 and Varle] = ¢?V. If V = diag(w;*,w; !, ..., w;) (w; >
0), we now find the weighted least squares estimate of 8 and its variance. Here

it is simpler to differentiate n’n directly rather than use the general matrix
theory. Thus, since V! = diag(wi,wz,...,w,),

n'n = Z(Yi — z;8)%w;

and o’
nn _ (Vo ,
Setting the right side of (3.50) equal to zero leads to
;B E w;Y;z;
- 2, wiT?

and from the coefficient of 28,

vas(p (z wia )_1.

We can also find the variance directly from

(X'V-IX) = ¥V Iix) ! = (Z 'w,-:cz?)_l . 0

Since the generalized least squares estimate is simply the ordinary least
squares estimate (OLSE) for a transformed model, we would -expect 8* to
have the same optimal properties, namely, that a'3* is the best linear unbiased
estimate (BLUE) of a’8. To see this, we note that

a'A" = a'(X'VIX)"IX'VTY = b'Y,

say, is linear and unbiased. Let b{Y be any other linear unbiased esti-
mate of a’@. Then, using the transformed model, a’A* = a'(B'B)~'B'Z
and b{Y = b{KK~1Y = (K'b;)'Z. By Theorem 3.2 (Section 3.2) and the
ensuing arguinent,

var[a’8*] < var[(K'b;)' Z] = var[b]Y].
Equality occurs if and only if (K'b;)' = a'(B'B)~'B’, or
b, = a'(B'B)"'B'K™! = a/(X'VI!X)!X'V-! =D’

Thus a’3* is the unique BLUE ofa’@3. Note that the ordinary least squares es-
timate a’@ will still be an unbiased estimate of a'A@, but var[a’3] > var[a'3*].
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EXERCISES 3k

1. Let Y; = Bz; +&; (i = 1,2), where &1 ~ N(0,0%), g5 ~ N(0,20?), and
g1 and & are statistically independent. If z; = +1 and z, = —1, obtain
the weighted least squares estimate of # and find the variance of your
estimate.

2. LetY; (i =1,2,...,n) be independent random variables with a common
mean § and variances 0% /w; (i = 1,2,...,n). Find the linear unbiased
estimate of & with minimum variance, and find this minimum variance.

3. Let Y3,Y5,...,Y, be independent random variables, and let Y; have
a N(i0,i%20?) distribution for ¢ = 1,2,...,n. Find the weighted least
squares estimate of 6 and prove that its variance is ¢2/n.

4. Let Y1,Y,,...,Y, be random variables with common mean € and with
dispersion matrix o2V, where v;; = 1 (i = 1,2,...,n) and v;; = p
0D<p<l;i,j=1,2,...,n; 1t # j). Find the generalized least squares
estimate of § and show that it is the same as the ordinary least squares
estimate. Hint: V1 takes the same form as V.

(McElroy [1967])

5. Let Y ~ N,(X3,0%V), where X is n X p of rank p and V is a known
positive-definite n» x n matrix. If A* is the generalized least squares
estimate of A, prove that

(a) @ = (Y —XB)V Y - XB")/o® ~ xi_,.

(b) Q is the quadratic nonnegative unbiased estimate of (n —p)o? with
minimum variance.

(c) f Y* = X3* = P*Y, then P* is idempotent but not, in general,
Ssymimetric.

6. Suppose that E[Y] =8, A8 = 0, and Var[Y] = 02V, where Aisagxn
matrix of rank ¢ and V is a known n X n positive-definite matrix. Let
68* be the generalized least squares estimate of &; that is, 8* minimizes
(Y - 8)'V-1(Y — 8) subject to A@ = 0. Show that

Y — 8% = VA'~*,

where 'i;* is the generalized least squares estimate of < for the model
E[Y] = VA'~y, Var[Y] = 0?V.
(Wedderburn [1974])

3.11 CENTERING AND SCALING THE EXPLANATORY VARIABLES

It is instructive to consider the effect of centering and scaling the z-variables
on the regression model. We shall use this theory later in the book.
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3.11.1 Centering

Up until now, we have used the model Y = X3 + £. Suppose, however, that
we center the z-data and use the reparameterized model

Yi=ao+ Bz —Z1)++ + Bp—1(z1,p-1 — Tp—1) + €4,

where
a0 =Po+ T+ + ﬁp-—-lfp—l

and Z; = ) ; z;;/n. Our model is now Y = X, + €, where

a’ = (a()nBla e 3ﬁp—1) = (a()aﬁi-)s
X =(1n, 5(), and X has typical element #;; = z;; — T;. Because the trans-
formation between « and B is one-to-one, the least squares estimate of 3.

remains the same. Then, since X'1,, = 0,

& = (XIX)'XLY

_ (n O \T/1Y
- 0 X'X X'y
_ n~t 0 1'Y
- 0 (X'X)1 X'y
Y
( (X'X)-1XY ), (3.51)

so that & = ¥ and B = (X'X)~!X'Y. Now C(X.) = C(X), which can
be proved by subtracting Z; x column (1)} from column (j + 1) of X for each

Il

j=1,...,p—1. Hence X, and X have the same projection matrices, so that
P = X (X.X.)X!
- (™ O\ @,y
™ 0 X'X ™
- %1,;;,, +X(XX)IK (3.52)

Let x; now represent the ith row of X, but reduced in the sense that the initial
unit element (corresponding to ag) is omitted. Picking out the ith diagonal
element of (3.52), we get

pi = nl4m-1D"1x -%)S;lxi —%)
n~! + (n - 1)"'MD;, (3.53)

where ¥ = 5 i, Xi, Sz is the sample covariance matrix X'X/(n - 1), and
MD; is the Mahalanobis distance between the ith reduced row of X and the
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average reduced row {cf. Seber [1984: p. 10]). Thus pi is a measure of how
far away x; is from the center of the z-data.

We note that the centering and subsequent reparameterization of the model
do not affect the fitted model Y, so that the residuals for both the centered
and uncentered models are the same. Hence, from (3.52), the residual sum of
squares for both models is given by

RSS

Y'(I, - P)Y

= Y (In - ;11-1”1;, - )"(()"(’5()"1}"{) Y

= Y (In — %1,11;1) Y -Y'PY

Y (¥, -7)2 - Y'PY, (3.54)
i
where P = X(X'X)~1X'. We will use this result later.

3.11.2 Scaling

Suppose that we now also scale the columns of X so that they have unit
length. Let s7 = 33, %7 and consider the new variables zj; = &i;/s;. Then
our model becomes

*

Yi=a0+mzj + -0 +Yp-1%5 p1s

where v; = B;s;. Because the transformation is still one-to-one, ¥; = Bjsj
and g =Y. If X* = (z7;) and v = (71,...,7p—1), then replacing X by X*
in (3.51) gives us

4= (X*X*)"1X"Y = R} XY, (3.55)

where R, is now the (symmetric) correlation matrix

1 T2 o Tip—1
21 1 v Topea
Tp—11 Tp-12 - 1

and

Tik = Z(wia’ - Z;)(Tik — Tk )/(8;5k)

is the (sample) correlation coefficient of the jth and kth explanatory variables.

If we introduce the notation X* = (x*), ... ,x*(”_l)) for the columns of X*,
we see that 7, = x*()/x*(k),
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EXAMPLE 3.10 For later reference we consider the special case of p = 3.

Then

_ 1 r
R”“’—(r 1)’

where r = x*(1)/x*(2) | Also, from (3.55), we have
gt 1\ xW'y
Y2 r 1 x*@"y
_ 1 1 -r x*W'y
1 —r2 —r 1 x*(z)'Y ’

so that

. 1 «(1)! x(2)! 5 .

h=13 x*VY —rx*@'Y) and B =i/s1
By interchanging the superscripts (1) and (2), we get

. 1 . . A _ o

Fo= 1= - (x @y —rx (1)’Y) and f2 = Y2/ ss.
Since

v * 31 0 .
X=X ( o 82)_xsd,

say, it follows that
P =n“11n1; + X*Sd(SdX*’X*Sd)*lst*’
=n—11n1;1+xﬂ=(xtlx=k)—lx*r

=n"11,1"

. (x*(n,x*(z))( 1 —17‘ )(x*(l),x*(z))':

1—1r? —r

—n~1 1:,-11;1 + x*(Z)x*(2)!

1 (1) *(2 *(1 *(2
-+ T——_—;‘z‘(x* — TrX ( ))(x (1) — X ( ))’.

EXERCISES 3l

(3.56)

(3.57)

(3.58)

1.V, =Y;—-Y and ¥ = (V1,...,Y,,)’, prove from (3.54) that RSS =

Y’ (In - P)Y.

2. Suppose that we consider fitting a model in which the Y-data are cen-
tered and scaled as well as the z-data. This means that we use ¥;* =
(Y; ~Y)/sy instead of Y;, where s2 = 3°,(Y; —Y)?. Using (3.54), obtain

an expression for RSS from this model.
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3.12 BAYESIAN ESTIMATION

This method of estimation utilizes any prior information that we have about
the parameter vector 8 = (A',0). We begin with the probability density
function. of Y, f(y, ), say, which we have assumed to be multivariate normal
in this chapter, and we now wish to incorporate prior knowledge about 8,
which is expressed in terms of some density function f(8) of 6. Our aim is
to make inferences on the basis of the density function of 8 given Y =y, the
posterior density functien of 8. To do this, we use Bayes’ formula,

f(8,y)
f(y)
f(y8)f(6)
f(y)
= cf(y|@)f(8), | (3.59)

where ¢ does not involve @. It is usual to assume that 8 and ¢ have indepen-
dent prior distributions, so that

f(8) = £1(B) f2(0).

Frequently, one uses the noninformative prior (see Box and Taio [1973: Sec-
tion 1.3] for a justification) in which 8 and logo are assumed to be locally
uniform and o > 0. This translates into f;(8) = constant and fa2(0) «x 1/0.
These priors are described as improper, as their integrals are technically infi-
nite (although we can get around this by making the intervals of the uniform
distributions sufficiently large). Using these along with the independence as-
sumption, we obtain from (3.59)

fB,oly) = cf(yi0)ot
= c(2m) 20" exp (—;};ny - me) .

f(6ly)

Using the result

/ 2=+ exp (—a/z?) dz = L1a~¥2T'(b/2) (3.60)
0

derived from the gamma distribution, we find that

@y« [ 5@.oly)do
0
< ||y - Xa[™™. (3.61)
Now, from Exercises 3a, No.

ly —XBI> = |ly - X8| +{IX8-Xg|> -
= (n—p)s® +||1XB - Xa|?, (3.62)

P
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so that 2
(B - B)X'X(B - B)

(n —p)s?

This is a special case of the p-dimensional multivariate ¢-distribution

F(Bly) o< [1+

PG +2))
(m)PAT(50) |72

ft) = [1+v7M(t = )= (= p)) "2,
with v =n —p, & = s2(X'X)"1, and p = 8.

What estimate of 8 do we use? If we use the mean or the mode of the
posterior distribution (which are the same in this case, as the distribution is

symmetric) we get B3, the least squares estimate. For interval inferences, the
marginal posterior distribution of 8, is a ¢-distribution given by

ﬁ'r - ﬁ'r ~ 1
Vot

where (¢™) = (X'X)L.

If some information is available on @, it is convenient, computationally,
to use a conjugate prior, one that combines with f(y|@) to give a posterior
distribution which has the same form as the prior. For example, suppose that
f(B]o?) is the density function for the N,(m,c?V) distribution and that o2
has an inverted gamma distribution with density function

F(0?) o (62)~(4+2)/2 oxp (— 2%‘2) : (3.63)

Then
f(B,0*) = f(Blo*)f(s*)
- (0.2)—(d+19+2)/2 exp {“‘éi‘:ﬁ[(ﬁ _ m)fv—l(ﬁ —m) + a]} '

Combining this prior with the normal likelihood function, we obtain

F(B,0%y) x f(ylB,0*)f(B,07)
o (0_2)-—(d+p+'n.+2)/2 exp ["’(Q + a)/(20_2)] ,

where
Q= ~XB)(y—-XB)+ (B—m)' V™3 —m).

We can now integrate out o2 to get the posterior density of B. Thus

f8ly) = /Ooof(ﬁ,orzly)daz

N /vooo(a_z)—(d+n+p+2)/2 exp [_‘(Q + a)/(20.2)] do?.
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Using the standard integral formula
o
f z= WD) exp(—k/z) dz = D(v)k~Y,
0

we see that the posterior density is proportional to
(Q + a)~l@tniP)/2, (3.64)
To make further progress, we need the following result.

THEOREM 3.7 Define V, = (X'X+V~1)"! and let m, be given by m, =
V. (X'y + V-m). Then

Q= (8-m,) V8 ~m,) +(y - Xm)' (I, + XVX')"}(y — Xm). (3.65)
Proof, |

Q BAX'X+vVvHB-2X'y+ V' im)+y'y+m'Vim
BVIlg-28V  im,+yy+m'Vim

= B-m)VHA-m,)+yy+m'V ' im-—m/ V m,.

Thus, it is enough to show that
Yy+mV'lm-m,V;!m, = (y - Xm)'T, + XVX')~!(y — Xm). (3.66)
Consider
Yy +m'V™im —-m'V, 1m,
= ¥Yy+m'Vim- Xy+ V' im)V.(X'y + Vlm)
= y{@,-XV.X)y-2y'XV,Vlm
+m'(V™1 - VIv-iv, V-1m. (3.67)

By the definition of V,, we have V,(X'X + V~1) =1, so that
V,V1=1,-V.X'X
and

Xv, v X -XV.X'X

I, - XV, X)X. (3.68)

Also, by A.9.3,

vi-vly, v VI5I-v (XX +V~ )iy
(V+&XX)™H)

XX -X'X(X'X +V H~IX'x

X'(I, - XV, X)X, (3.69)
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Substituting (3.68) and (3.69) into (3.67), we get

y' (I, - XV.X)y -2y (I, - XV.X")Ym + m'(I, - XV, X )m
= (y - Xm)'(I, - XV, X')(y — Xm). (3.70)
Finally, again using A.9.3,

In +XVX)! = I,-X(X'X+V-1-Ix
= I,-XV.X',

proving the theorem. O

Using Theorem 3.7, we see from (3.64) that the posterior density of 8 is
proportional to '

[a* +(B-m,) VI (E - m*)] —(n+d+p)/2,

where
ax = a+ (y — Xm)'(I, + XVX')"y — Xm).
This is proportional to

[1+ (n+d)~ (B — m,)W;1(8 — m,)] P72

where W, = a.V,/(n + d), so from A.13.5, the posterior distribution of 3
is a multivariate ¢p,(n + d,m,, W,). In particular, the posterior mean (and
mode) is m,, which we can take as our Bayes’ estimate of 3.

These arguments give the flavor of the algebra involved in Bayesian regres-
sion. Further related distributions are derived by O’Hagen [1994: Chapter 9]
and in Section 12.6.2. Clearly, the choice of prior is critical and a necessary
requirement in the conjugate prior approach is the choice of the values of m
and V. These might come from a previous experiment, for example. Distribu-
tions other than the normal can also be used for the likelihood, and numerical
methods are available for computing posterior likelihoods when analytical so-
lutions are not possible. Numerical methods are surveyed in Evans and Swartz

[1995]. For further practical details, the reader is referred to Gelman et al.
[1995], for example.

EXERCISES 3m

1. Derive equations (3.60) and (3.61).

2. Using the noninformative prior for #, show that the conditional poste-
rior density f{B|y,c) is multivariate normal. Hence deduce that the
posterior mean of 3 is 8.

3. Suppose that we use the noninformative prior for 8.

(a) If v = o2, show that f(v) « 1/v..
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(b) Obtain an expression proportional to f(3,v]y).
(c) Using (3.62), integrate out @ to obtain

F(oly) oc v /2 exp (-2,

where v = n — p and a = ||y — XB||?/2.
(d) Find the posterior mean of v.

3.13 ROBUST REGRESSION

Least squares estimates are the most efficient unbiased estimates of the re-
gression coefficients when the errors are normally distributed. However, they
are not very efficient when the distribution of the errors is long-tailed. Under
these circumstances, we can expect outliers in the data: namely, observations
whose errors £; are extreme. We will see in Section 9.5 that least squares fits
are unsatisfactory when outliers are present in the data, and for this reason
alternative methods of fitting have been developed that are not as sensitive
to outliers.

When fitting a regression, we minimize some average measure of the size
of the residuals. We can think of least squares as “least mean of squares”
which fits a regression by minimizing the mean of the squared residuals {or,
equivalently, the sum of the squared residuals). Thus, least squares solves the
minimization problem '

1S,
min - ; e (b),
where e;(b) = Y; — x|b. Here, average is interpreted as the mean and size as
the square. The sensitivity of least squares to outliers is due to two factors.
First, if we measure size using the squared residual, any residual with a large
magnitude will have a very large size relative to the others. Second, by using
a measure of location such as a mean that is not robust, any large square
will have a very strong impact on the criterion, resulting in the extreme data
point having a disproportionate influence on the fit.

Two remedies for this problem have become popular. First, we can measure
size in some other way, by replacing the square e? by some other function p(e)
which reflects the size of the residual in a less extreme way. To be a sensible
measure of size, the function p should be symmetric [i.e., p(e) = p(—e)},
positive [p(e) > 0] and monotone [p(|e1]) > p(lez]) if |e1| > lez|]. This idea
leads to the notion of M-estimation, discussed by, for example, Huber [1981:
Chapter 7], Hampel et al. [1986: Chapter 6], and Birkes and Dodge [1993:
Chapter 5).

Second, we can replace the sum (or, equivalently, the mean) by a more
robust measure of location such as the median or a trimmed mean. Regression
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methods based on this idea include least median of squares and least trimmed
squares, described in Rousseeuw [1984] and Rousseeuw and Leroy [1987]. A

related idea is to minimize some robust measure of the scale of the residuals
(Rousseeuw and Yohai [1984]).

3.13.1 M-Estimates

Suppose that the observed responses Y; are independent and have density
functions

1 ; —x18\
fws o) = 1 (L=XE), (3.71)
where o is a scale parameter. For example, if f is the standard normal density,
then the model described by (3.71) is just the standard regression model and
o is the standard deviation of the responses.

The log likelihood corresponding to this density function is

I(B,0) = —nloga + Y _log f [(Yi — xB)/c],

i=1

which, putting p = —log f, we can write as
n
- {nloga + Zp[(}’; - x}B}/o] } :
i=1
Thus, to estimate A and o using maximum likelihood, we must minimize
nlog s + Z plei(b)/s] (3.72)
=1
as a function of b and s. Diflerentiating leads to the estimating equations
n
> pleb)/s]x; = 0, (3.73)
=1
n
> vleib/s)lesb) = ns, (3.74)

i=1
where ¢ = p'.

EXAMPLE 3.11 Let p(z) = 322 so that ¢(z) = z. Then (3.73) reduces to

the normal equations (3.4) with solution the least squares estimate (LSE) B,
and (3.74) gives the standard maximum likelihood estimate

‘ ) n )
~2 § , 2
’ n i=1 et(ﬂ)
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EXAMPLE 3.12 Let p(z) = |z|. The corresponding estimates are values
of s and b that minimize

1 n
nlogs + ;;|ei(b)|. (3.75)

Clearly, a value of b minimizing (3.75) is also a value that minimizes

> lei(b)|

=1

and is called the L, estimate. Note that there may be more than one value of
b that minimizes (3.75). There is a large literature devoted to L, estimation;
see, for example, Bloomfield and Steiger [1983] and Dodge [1987]. Note that
the L, estimate is the maximum likelihood estimator if f in (3.71) is the
double exponential density proportional to exp(—|y|). An alternative term
for the L; estimate is the LAD (Least Absolute Deviations) estimate. O

If we have no particular density function f in mind, we can choose p to
make the estimate robust by choosing a p for which ¢ = p’ is bounded. We
can generalize (3.73) and (3.74) to the estimating equations

n

S ples®)/slx = 0, (3.76)

i=1

where x is also chosen to make the scale estimate robust. The resulting
estimates are called M-estimates, since their definition is motivated by the
maximum likelihood estimating equations (3.73) and (3.74). However, there
is no requirement that ¢ and x be related to the density function f in (3.71).

EXAMPLE 3.13 (Huber “Proposal 2,” Huber [1981: p. 137]) Let

—k, z < —k,
W(z)={ =z, —k<z<k, (3.78)
k, z >k,

where k is a constant to be chosen. The function (3.78) was derived by Hu-
ber using minimax asymptotic variance arguments and truncates the large
residuals. The value of k is usually chosen to be 1.5, which gives a reason-
able compromise between least squares (which is the choice giving greatest
efficiency at the normal model) and L; estimation, which will give more pro-
tection from outliers, O

An estimate 6 of a parameter @ is consistent if 6 — 6 as the sample size
increases. (Roughly speaking, consistency means that @ is the parameter
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actually being estimated by 6.) It ¢an be shown that a necessary condition
for consistency when the parameters are estimated using (3.76) and (3.77) is

E[(2)] =0, ~(3.79)

and
Elx(2)] =0, (3.80)

where Z has density function f. Equation (3.79) will be satisfied if f is
symmetric about zero and if ¢ is antisymmetric [i.e., ¥(—2) = ¥(z)]. This will
be the case if p is symmetric about zero. We note that the conditions (3.79)
and (3.80) are only necessary conditions, so the estimates may be biased even
if they are satisfied. However, Huber [1981: p. 171} observes that in practice
the bias will be small, even if the conditions are not satisfied.

EXAMPLE 3.14 In Huber’s Proposal 2, the function % is asymmetric, so
condition (3.79) is satisfied. The scale parameter is estimated by taking
x(z) = ¥?(z) - ¢ for some constant ¢, which is chosen to make the estimate
consistent when f is the normal density function. From (3.80), we require
that ¢ = E[(Z)?], where Z is standard normal. O

EXAMPLE 3.15 Another popular choice is to use x(z) = sign(jz| — 1/¢)
for some constant ¢. Then (3.77) becomes

3 sign(jes(b)| — s/c) =0,
i=1

which has solution (see Exercises 3n, No. 1, at the end of this chapter)
s = cmedian; |e;(b)|.

This estimate is called the median absolute deviation (MAD'); to make it
consistent for the normal distribution, we require that ¢~ = &~1(3/4) =
0.6749 (i.e., c = 1.4326). O

Regression coefficients estimated using M-estimators are almost as efficient
as least squares if the errors are normal, but are much more robust if the
error distribution is long-tailed. Unfortunately, as we will see in Example
3.23 below, M-estimates of regression coeflicients are just as vulnerable as
least squares estimates to outliers in the explanatory variables.

3.13.2 Estimates Based on Robust Location and Scale Measures

As an alternative to M-estimation, we can replace the mean by a robust
measure of location but retain the squared residual as a measure of size. This
leads to the least median of squares estimate (LMS estimate), which minimizes

median; e;(b)?.



ROBUST REGRESSION 81

The LMS estimator was popularized by Rousseeuw [1984] and is also discussed
by Rousseeuw and Leroy {1987]. An alternative is to use the trimmed mean
rather than the median, which results in the least trimmed squares estimate
(LTS estimate), which minimizes

h
> ey (b)?, (3.81)
i=1

where & is chosen to achieve a robust estimator and e(l)(b)2 < <ewy (b)?
are the ordered squared residuals. The amount of trimming has to be quite
severe to make the estimate robust. The choice h = [n/2] + 1 (where [z] is the
greatest integer < z) is a popular choice, which amounts to trimming 50% of
the residuals. The choice of h is discussed further in Section 3.13.3.

These estimates are very robust to outliers in both the errors and the
explanatory variables but can be unstable in a different way. In certain cir-
cumstances, small changes in nonextreme points can make a very large change
in the fitted regression. In Figure 3.2(a), the eight points lie on one of two
lines, with the point marked A lying on both. If a line is fitted through the
five collinear points, all five residuals corresponding to those points are zero.
Since a majority of the residuals are zero, the median squared residual is also
z€ro, so a line through these points minimizes the LMS criterion.

Now move the point marked B to be collinear with the remaining three
points, resulting in Figure 3.2(b). This results in a new set of five collinear
points. Using the same argument, this small change has resulted in the fitted
LMS line now passing through the new set of collinear points. A small change
in point B has resulted in a big change in the fit. '

W
=
v
®

(a) (b)

Fig. 3.2 Instability of the LMS estimator.
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In adgitiorn, shess sstimates are very inefficiert compared to least squares
if the data are actually normally distributed. Iz this case, the asymptotic
relative efficiency of LMS relasive <o the LSE is zero. (That is, the ratio of
the variance of the L3E to that of the LMS estimate approaches zero as the
sample size increases.) The equivalent for the LTS is 8% (Stromberg et al.
[2000]). These poor efficiencies have motivated a search for methods that are
at the same time robust and efficient. Before describing these, we need to
discuss ways of quantifying robustness more precisely.

3.13.3 Measuring Robustness

We will discuss two measures of robustness. The first is the notion of break-
- down point, which measures how well an estimate can resist gross corruption
of a fraction of the data. The second is the influence curve, which gives
information on how a single outlier affects the estimate.

Breakdown Point of an Estimate

Suppose that we select a fraction of the data. Can we cause an arbitrarily
large change in the estimate by making a suitably large change in the selected
data points? .

Clearly, for some estimates the answer is yes; in the case of the sample mean
we can make an arbitrarily large change in the mean by making a sufficiently
large change in a single data point. On the other hand, for the sample median
we can make large changes to almost 50% of the data without changing the
median to the same extent.

Definition 3.2 The breakdown point of an estimate is the smallest fraction
of the data that can be changed by an arbitrarily large amount and still cause
an arbitrarily large change in the estimate.

Thus, the sample mean has a breakdown point of 1/n and the sample
median a breakdown point of almost 1/2. We note that a breakdown point of
1/2 is the best possible, for if more than 50% of the sample is contaminated,
it is impossible to distinguish between the “good” and “bad” observations,
since the outliers are now typical of the sample.

Since the least squares estimate of a regression coefficient is a linear combi-
nation of the responses, it follows that an arbitrarily large change in a single
response will cause an arbitrarily large change in at least one regression coef-
ficient. Thus, the breakdown point of the least squares estimate is 1/n.

Since the median has a very high breakdown point, and the median of
the data Y5,...,Y, minimizes the least absolute deviation ), |Y; — 0| as a
function of 4, it might be thought that the L; estimator of the regression
coefficients would also have a high breakdown point. Unfortunately, this is
not the case; in fact, the breakdown point of L; is the same as that of least
squares. It can be shown, for example in Bloomfield and Steiger [1983: p. 7],
that when the regression matrix X is of full rank, there is a value minimizing
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Y., les(b)] for which at least p residuals are zero. Further, Bloomfield and
Steiger [1983: p. 55] also prove that if one data point is arbitrarily far from the
others, this data point must have a zero residual. It follows that by moving
the data point an arbitrary amount, we must also be moving the fitted plane
by an arbitrary amount, since the fitted plane passes through the extreme
data point. Thus replacing a single point can cause an an arbitrarily large
change in the regression plane, and the breakdown point of the L; estimate is
1/n. The same is true of M-estimates (Rousseeuw and Leroy [1987: p. 149]).

We saw above that the LMS and LTS estimates were inefficient compared
to M-estimates. They compensate for this by having breakdown points of
almost 1/2, the best possible. If we make a small change in the definition of
the LMS, its breakdown point can be slightly improved. Let ‘

h=[n/2]+[(p+1)/2], - (3.82)

where [z] denotes the largest integer < z. If we redefine the LMS estimator
as the value of b that minimizes e(,)(b)?, rather than the median squared
residual, the LMS breakdown point becomes ([(n — p)/2] +1)/n. If h is given
by (3.82), then the LTS estimate which minimizes

h
Z €(3) (b)2
i=1

also has breakdown point ([(n — p)/2] + 1)/n, slightly higher than with the
choice h = [n/2] + 1. These results are discussed in Rousseeuw and Leroy
[1987: pp. 124, 132].

Influence Curves

Suppose that F' is a k-dimensional distribution function (d.f.), and 8 is a
population parameter that depends on F, so that we may write 8 = T'(F).
We call T' a statistical functional, since it is a function of a function.

EXAMPLE 3.16 Perhaps the simplest example of a statistical functional
is the mean Ep[X] of a random variable X, where the subscript F' denotes
expectation with respect to the d.f. F'. In terms of integrals,

T(F) = Ep[X] (3.83)
= / ¢ dF(z). O

EXAMPLE 3.17 If Z is a random k-vector with distribution function F,
then the matrix Ep[ZZ'] is a statistical functional, also given by the k-
dimensional integral

T(F) = / 27’ dF (z). (3.84)

0
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Definition 3.3 IfZi,...,Z, are independent and identically distributed ran-
dom vectors each with dzstmbutzon function F, the empirical distribution func-
tion (e. df) Fy is the d.f which places mass n~! at each of the n points
Z,,i=1,...,n.

Integration with respect to the e.d.f. is just averaging; if h is a function,
then

/ h(z) dE,(2) = n—! Z ).

Many statistics used to estimate parameters T'(F') are plug-in estimates
of the form T'(F,), where F,, is the e.d.f. based on a random sample from F.

EXAMPLE 3.18 (Vector sample mean) Let Z4, ..., Z, be a random sample
from some multivariate distribution having d.f. F. The plug-in estimate of

T(F) = f 2 dF(z)

T(E,) = f 2 dF (2)

n

the sample mean. , O

EXAMPLE 3.19 The plug-in estimate of (3.84) is

T(F,) = [zz' dE,, (z) (3.85)
=n"1Y"Z,Z; O

i==1

Consider a regression with a response variable Y and explanatory variables
Z1,...,Tp—1. When studying the statistical functionals that arise in regres-
sion, it is usual to assume that the explanatory variables are random. We
regard the regression data (x;,Y;),7 = 1,...,n, as n identically and inde-
pendently distributed random (p + 1)-vectors, distributed as (x,Y), having a
joint distribution function F', say. Thus, in contrast with earlier sections, we
think of the vectors x; as being random and having initial element 1 if the
regression contains a constant term. As before, we write X for the (random)
matrix with 7th row x}.

We shall assume tha.t the conditional distribution of Y given x has density
function g [(y — B’x) /0], where g is a known density, for example the standard
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normal. For simplicity, we will sometimes assume that the scale parameter
o is known. In this case, we can absorb ¢ into ¢ and write the conditional
density as g(y — B'x).

EXAMPLE 3.20 (Least squares) Consider the functional
T(F) = {Er[xx']} " Er[xY].

The plug-in estimator of T is

T(Fn) = (n"l i xz-xi) (’I’L-—l i XZY;) (386)
’ =1

i=1

= (XX)"1X'Y. 0

To assess the robustness of a plug-in estimator T(ﬁ‘n), we could study how
it responds to a small change in a single data point. An alternative, which
we adopt below, is to examine the population version: We look at the effect
of small changes in F' on the functional T'(F"). This allows us to examine the
sensitivity of 7' more generally, without reference to a particular set of data.

Suppose that F'is a distribution function. We can model a small change in
F at a fixed (i.e., nonrandom) value zg = (x§, ¥0)' by considering the mixture
of distributions F; = (1 — t)F + t4,,, where 0z, is the distribution function
of the constant zg, and t > 0 is close to zero. The sensitivity of T can be
measured by the rate at which T'(F;) changes for small values of ¢.

Definition 3.4 The influence curve (IC) of a statistical functional T' is the
derivative with respect to t of T(F;) evaluated at t = 0, and is a measure of
the rate at which T' responds to a small amount of contamination at zg.

We note that the influence curve depends on both F and zo, and we use

the notation

- dT ( F,
IC(F, ZO) = %
t=0

to emphasize this. Cook and Weisberg {1982: Chapter 3}, Hampel et al. [1986])
and Davison and Hinkley {1997] all have more information on influence curves.

EXAMPLE 3.21 (IC of the mean} Let T' be the mean functional defined in
Example 3.16. Then

(7)) = [odR)

= (l—t)/mdF(:c) +t/mdt550(:c)
= (1-1)T(F) +tzo,
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so that
T(F) - TF)

t

=:230—T(F)

and
IC(:UQ,F) =Xy — T(F)

This is unbounded in zp, suggesting that a small amount of contamination
can cause an arbitrarily large change. In other words, the mean is highly
nonrobust. .,

EXAMPLE 3.22 (IC for the LSE) Let T be the LSE functional defined in
Example 3.20. Write Xr = Er[xx'] and v = Er[xY]. Then

T(F) = {Zr} 'vr,- (3.87)
We have

EFz EFt [xx’]
(1 —t)Er[xx'] + txoxg
(1-8)XEF + txoxg

= (1 -t){ZF +t'x0x5},

It

where t' = t/(1 —t). By A.9.1 we get

P xoxh 2R
= (1—t)7 Bt — ¢ SE 00 :
o =(1-1) [ e T+ o(d) (3.88)
Similarly,
IR, = (1 — t)"YF + tXo¥o- (389)

Substituting (3.88) and (3.89) in (3.87) yields
CT(F;) = T(F) + 'E5 Xoyo — t Tp' xox, T51 + o(t),

so that
T(F) — T(F)
t
Letting ¢t — 0, we get

= EEIXOyQ — EEIXOX’DT(F) + 0(1)

I1C(zo, F) = E;-lj{g[yo — x5 T(F)}.

We see that this is unbounded in both x¢ and yg, indicating that the LSE is
not robust. O

The situation is somewhat better for M-estimates.
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EXAMPLE 3.23 (IC for M-éstimates) For simplicity we will assume that
the scale parameter ¢ is known. Consider the functional T" defined implicitly
by the equation

Er (¢{[Y —x'T(F)]/o}x) = 0. (3.90)
The plug-in version is T(F),) is the solution of

il Zzp{ G — xiT(ﬁ’n)]/U}xz' =0,

z-—-l

which is of the form (3.76). Thus, the functional T defined by (3.90) is the
M-estimation functional.
To derive its influence curve, we substitute F; for F' in (3.90). This yields

(1 =) Ep[p{lY — x'T(F))/o}x] + t¥{[yo — xcT(F)]/o}x0 = 0. (3.91)

Let T, = dT(F)/dt, e, = [Y — X'T(F,)]/ and m; = [yo — xpT(F;)]/o, and
note the derivatives

é%@ = —¢'(n:)x( T /0
and
d Er[1(e)x] dip(:)
— = br [Tx]

= —Ep[¢/(es)xx') Ts/o.
Now differentiate both sides of (3.91). We obtain

(1 - Bl #in)

which, using the derivatives above, gives
~(1—t)Er [¢'(es)xx']| Ty /o — Ep[th(es)x] — o' (n:)%o%xo T /o + ()Xo = O.
Now set £ = 0. Noting that F; = F when ¢ = 0, and using (3.90), we get

Erp(eo)] = Er[p{lY - x'T(F))/c}]
= 0,

Ep(p(ed)x] + t—="%0 + ¥(n:)%0 = 0,

and from the definition of the IC, To = 1C(zo, F'). Thus,
—Er [¢'{[Y - x'T(F)]/0) }xx'] 1C(z0, F) /o + %{[yo — x4 T(F)}/c}x0 = 0,

so finally,
IC(2zo, F) = op{{yo — xoT(F)}/o} M 1%, (3.92)

where M = Ep [¢{(Y —x'T(F))/o }xx']. Thus, assuming that 1/ is bounded,
the influence curve is bounded in yp, suggesting that M-estimates are robust
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with respect to outliers in the errors. However, the IC is not bounded in xg,
so M-estimates are not robust with respect to high-leverage points (i.e., points
with outliers in the explanatory variables; see Section 9.4). O

The robust estimates discussed so far are not entirely satisfactory, since
the high breakdown estimators LMS and LTS have poor efficiency, and the
eflicient M-estimators are not robust against outliers in the explanatory vari-
ables and have breakdown points of zero. Next, we describe some other robust

estimates that have high breakdown points but much greater efficiency that
LMS or LTS.

3.13.4 Other Robust Estimates

Bounded Influence Estimators

As we saw above, M-estimators have infiuence curves that are unbounded
in x¢ and so are not robust with respect to high-leverage points. However, it
is possible to modify the estimating equation (3.73) so that the resulting IC
is bounded in x¢. Consider an estimating equation of the form

Z w(x;)p{es(b)/low(x;)] }x; = 0, (3.93)
=1

where, for simplicity, we will assume that the scale parameter ¢ is known.
This modified estimating equation was first suggested by Handschin et al.
[1975], and the weights are known as Schweppe weights. It can be shown (see
Hampel et al. [1986: p. 316]) that the IC for this estimate is

1C(20, F) = ow(x0)¥{(yo — XBT(F))/(GW(XO))}M_I_XO,

where M is a matrix [different from the M appearing in (3.92)] not depending
on zg. The weight function w is chosen to make the IC bounded, and the
resulting estimates are called bounded influence estimates or generalized M-
estimates {GM-estimates).

To make the IC bounded, the weights are chosen to downweight cases that,
are high-leverage points. However, including a high-leverage point that is
not an outlier (in the sense of not having an extreme error) increases the
efficiency of the estimate. This is the reason for including the weight function
w in the denominator in the expression e;(b)/[ow(x;)], so that the effect of a
small residual at a high-leverage point will be magnified. An earlier version
of (3.93), due to Mallows [1975], does not include the weight w(x;) in the
denominator and seems to be less efficient (Hill [1977)).

The weights can be chosen to minimize the asymptotic variance of the
estimates, subject to the infiuence curve being bounded by some fixed amount.
This leads to weights of the form w(x) = [|[Ax||~! for some matrix A. More
details may be found in Ronchetti [1987] and Hampel et al. [1986: p. 316].



ROBUST REGRESSION 89

Krasker and Welsch [1982] give additional references and discuss some other
proposals for choosing the weights.

The breakdown point of these estimators is better than for M-estimators,
but cannot exceed 1/p (Hampel et al. [1986: p. 328]). This can be low for
problems with more than a few explanatory variables. To improve the break-
down point of GM-estimators, we could combine them in some way with high
breakdown estimators, in the hope that the combined estimate will inherit
the desirable properties of both.

The estimating equation (3.93) that defines the GM-estimate is usually
solved iteratively by either the Newton-Raphson method or Fisher scoring
(A.14), using some other estimate as a starting value. (This procedure is
discussed in more detail in Section 11.12.2.)

A simple way of combining a high breakdown estimate with a GM-estimate
is to use the high breakdown estimate as a starting value and then perform
a single Newton—Raphson or Fisher scoring iteration using the GM iteration
scheme discussed in Section 11.12.2; the resulting estimate is called a one-step
GM-estimate. This idea has been suggested informally by several authors: for
example, Hampel et al. [1986: p. 328] and Ronchetti [1987].

Simpson et al. [1992] have carried out a formal investigation of the prop-
erties of the one-step GM-estimate. They used the Mallows form of the es-
timating equation (3.93), with weights w(x;) based on a robust Mahalanobis
distance. The Mallows weights are given by

w(x;) = min [1, { i — m)'Cb—l(xz- e }0/2} ; (3.94)

where b and o are tuning constants, m and C are robust measures of the
location and dispersion of the explanatory variables, and the x;’s are to be
interpreted in the “reduced” sense, without the initial 1. Thus, the denomi-
nator in the weight function is a robust Mahalanobis distance, measuring the
distance of x; from a typical x. Suitable estimates m and C are furnished by
the minimum volume ellipsoid described in Section 10.6.2 and in Rousseeuw
and Leroy [1987: p. 258].

If the robust. distance used to define the weights and the initial estimate
of the regression coefficients both have a breakdown point of almost 50%,
then the one-step estimator will also inherit this breakdown point. Thus,
if LMS is used as the initial estimator, and the minimum volume ellipsoid
(see Section 10.6.2) is used to calculate the weights, the breakdown point
of the one-step estimator will be almost 50%. The one-step estimator also
inherits the bounded-infiuence property of the GM-estimator. Coakley and
Hettmansperger [1993] suggest that efficiency can be improved by using the
Schweppe form of the estimating equation and starting with the LTS estimate
rather than the LMS.
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S-Estimnarors

”»

We can think cf the “average size” of the residuals as a measure of their
dispersion, sc we car consider more general regression estimators based on
some dispersion or scale estimator z(e1,...,e,). This leads to minimizing

D(b) = se1(b), ..., en(b)], (3.95)

where s is a estimator of scale. The scale parameter ¢ is estimated by the
minimum value of (3.95).

EXAMPLE 3.24 If we use the standard deviation as an estimate of scale,
(3.95) reduces to

Z[ei(b) - E:-(-E_)—]z = Z [1,: - ?"' bl(xil ""El) -t bp—l(xz',p—l _Ep—l)]zr

i=1 i=1

which is the residual sum of squares. The estimates minimizing this are the
least squares estimates. Thus, in the case of a regression with a constant
term, taking the scale estimate s to be the standard deviation is equivalent
to estimating the regression coefficients by least squares. O

EXAMPLE 3.25 Using the MAD as an estimate of scale leads to minimiz-
ing median; |e;(b)|, which is equivalent to minimizing median; |e;(b)|2. Thus,
using the estimate based on the MAD is equivalent fo LMS. 1

Rousseeuw and Yohai [1984] considered using robust scale estimators s =
s(€1,...,€n) defined by the equation

1 €;
Lo (2) =K

where K = E[p(Z)] for a standard normal Z, and the function p is symmetric
and positive. They also assume that p is strictly increasing on [0, ¢] for some
value ¢ and is constant on (¢,o00). Estimators defined in this way are called
S-estimators.

Rousseeuw and Yohai show that the breakdown point of such an estimator
can be made close to 50% by a suitable choice of the function p. The biweight
function, defined by

_ | 222 —=z%/(2c%) + 28 /(6c%), |z| <e,
pla) = { ¢ /6, ol > e

is a popular choice. If the constant ¢ satisfies p(c) = 2E[p(Z)], where Z is
standard normal, then Rousseeuw and Yohai prove that the breakdown point
of the estimator is ([n/2] — p + 2)/n, or close to 50%. For the biweight esti-
mator, this implies that ¢ = 1.547. The efficiency at the normal distribution
is about 29%.
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R-Estimators

Another class of estimators based on a measure of dispersion are the R-
estimators, where the dispersion measure is defined using ranks. Let a,(%),1 =
1,...,n, be a set of scores, given by

an(é) = hli/(n + 1)), (3.96)

where h is a function defined on [0, 1]. Examples from nonparametric statistics
include the Wilcoxon scores, [h(u) = u — 0.5}, the van der Waerden scores
[h(u) = ®1(u)] and median scores [h(u) = sign(u — 0.5)]. All these scores
satisfy Y i, an(i) = 0.

Jaeckel [1972] defined a dispersion measure by

n
s(e1,-.-.en) = O _ an(Ri)es, (3.97)
. i=1
where R; is the rank of e; (i.e., its position in the sequence {e1,...,en}).

Since the scores sum to zero, the dispersion measure will be close to zero if
the ¢;’s are similar. For a fixed vector b, let R; be the rank of €;(b). Jaeckel
proposed as a robust estimator the vector that minimizes sfe; (b),..., e, (b)].
Note that since the scores satisfy Y 7 ) an(i) = 0, the measure s has the
property
s(er +e,...,ep+¢) =s(er,...,en).

Thus, for any vector b, if the regression contains a constant term, the quantity
sle1(b),...,en(b)] does not depend on the initial element by of b. If we write
b = (bg,b})’, then s[ei1(b),...,en(b)] is a function of by alone, which we
can denote by D(b;). It follows that we cannot obtain an estimate of S
by minimizing D(b,); this must be 6btained separately, by using a robust
location_measure such as the median applied to the residuals e;(b), where
b = (0,b})’, b; being the minimizer of D(b;).

The estimate defined in this way has properties similar to those of an M-
estimator: For the Wilcoxon scores it has an infinence function that is bounded
in yo but not in xg, has a breakdown point of 1/n, and has high efficiency at
the normal distribution. These facts are proved in Jaeckel [1972], Jureckova
[1971], and Naranjo and Heti{mansperger [1994].

The estimate can be modified to have a better breakdown point by modi-
fying the scores and basing the ranks on the absolute values of the residuals,
or equivalently, on the ordered absolute residuals, which satisfy

leqy(b)} < -+ < ey (b))

Consider an estimate based on minimizing

D(b) = > an(d)leq) (b}, (3.98)

i=1
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where the scores are now of the form a,(i) = h*(i/(n + 1)), where At is a
nonnegative function defined on [0, 1] and is zero on [e, 1} for 0 < a < 1. Then
Hossjer [1994] shows that for suitable choice of ht, the breakdown point of the
estimate approaches min(a, 1 — a) as the sample size increases. The efficiency
decreases as the breakdown point increases. For a breakdown point of almost
50%, the efficiency is about 7% at the normal model, similar to LTS.

The efficiency can be improved while retaining the high breakdown prop-
erty by considering estimates based on differences of residuals. Sievers [1983],
Naranjo and Hettmansperger [1994], and Chang et al. [1999] considered es-
timates of the regression coeflicients (excluding the constant term) based on
minimizing the criterion

D(b1)= Y wile(b) —ei(b)l, (3.99)

1<i<j<n

which, like Jaeckel’s estimator, does not depend on by. The weights w;; can

be chosen to achieve a high breakdown point, bounded influence, and high

efficiency. Suppose that b and & are preliminary 50% breakdown estimates

of B and o. For example, we could use LMS to estimate 8, and estimate o

using the MAD. Chang et al. [1999] show that if the weights are defined by
cw(x;)w(x;)

g = e {1’ [e:(B)/5]le; () /5]

then the efficiency can be raised to about 67% while retaining a 50% break-
down point. In (3.100), the weights w(x;) are the Mallows weights defined in
(3.94), and c is a tuning constant. If w;; = 1 for all ¢ < j, then the estimate
reduces to Jaeckel’s estimate with Wilcoxon scores (see Exercises 3n, No. 2).

Similar efficiencies can be achieved using a modified form of S-estimate
which is also based on differences of residuals. Croux et al. [{1994] define a

} . (3.100)

scale estimate s = s(ey,...,e,) as the solution to the equation
;(b) —e;(b
S p (e( ) — & )) = (") - (h) +1, (3.101)
oy L 2 2
1<i<ji<n

where h = [(n + p+ 1)/2]. Then the estimate based on minimizing s(b;) =

slei(b),...,en(b)] is called a generalized S-estimate. Note that again this
criterion does not depend on bg.
Defining
1 zf 2> 1,
p(z) = { O: }35 <1 (3.102)

gives an estimate called the least quartile difference estimate (LQD estimate),
since (see Exercises 3n, No. 3) the resulting s is approximately the lower

quartile of all the (g) differences |e;(b) — e;(b)]. Croux et al. [1994] show
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that the LQD estimator has a breakdown point of almost 50% and roughly

67% efficiency. It does not have a bounded influence function. _
A similar egtimate, based on a trimmed mean of squared differences, is the

least trimmed difference estimate (LTD estimate), which minimises the sum

of the first (g) ordered squared differences. This estimate, introduced in
Stromberg et al. [2000], has properties similar to those of the LQD.
EXERCISES 3n

1. Let x(2) = sign(]z| — 1/¢) for some constant ¢. Show that the solution
of (3.77) is the MAD estimate

8 = ¢ median; |e;(b)].
2. Show that if we put w;; = 1 in (3.99), we get Jaeckel’s estimator defined
by (3.97) with Wilcoxon weights.
3. Show that if s is the solution of (3.101) with p given by (3.102), then the

resulting s is approximately the lower quartile of the (g’ differences
lei(b) — e;(b)].

MISCELLANEOUS EXERCISES 3

1. Let Y; = a;f81 +b;82+¢; (i =1,2,...,n), where the a;, b; are known and
the &; are independently and identically distributed as N (0, ¢?). Find a
necessary and sufficient condition for the least squares estimates of
and f9 to be independent.

2. Let Y = 0+-¢, where E[e] = 0. Prove that the value of @ that minimizes
'Y — 0||? subject to A@ = 0, where A is a known g X n matrix of rank
q, is
0=(I,—A'(AA)TA)Y.

3. Let Y = X8 + ¢, where E[e] = 0, Varle] = ¢2I,, and X is n x p of
rank p. If X and B are partitioned in the form

XB = (X1,X>) ( g; ) ,

prove that the least squares estimate B, of B is given by

B = [X{Xp— XX (X\Xy)™1XiX,] ™
x [XLY — X4X;(X,X;,)"1X, Y],
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Find VarlZs).

4, Suppose that £¥] = X8 and Var[Y] = o21,. Prove that a’Y is the
linear unbiased estimate of Ef{a’Y] with minimum variance if and only

if covia’¥,b"Y] = 0 for all b such that E[b’Y] =0 (i.e., b’X = 0').
(Rao [1973])

5. If X has full rank and ¥ = X33, prove that
n ~
Z var[Y;] = o?p.
i=1

6. Estimate the weights 8; (i = 1, 2, 3,4) of four objects from the following
weighing data (see Exercises 3e, No. 5, at the end of Section 3.6 for

notation):
i i) T3 T4 Weight (Y)
1 1 1 1 20.2
1 -1 1 -1 8.0
1 1 -1 -1 9.7
I -1 -1 1 1.9

7. Three parcels are weighed at a post office singly, in pairs, and all to-
gether, giving weights Y3, (4, 4,k = 0, 1), the suffix 1 denoting the pres-
ence of a particular parcel and the suffix 0 denoting its absence. Find
the least squares estimates of the weights.

(Rahman [1967])

8. An experimenter wishes to estimate the density d of a liquid by weighing
known volumes of the liquid. Let Y; be the weight for volume z; (2 =
1,2,...,n) and let E[Y;] = dz; and var[YV;] = o2 f(z;). Find the least
squares estimate of d for the following cases:

(@) f) =1 () fl@) =z (o) flus) = a2

9. Let Y; = Bo+ Biz;i+¢; (1 = 1,2,3), where Ele] = 0, Var[e] = ¢?V with

V= ;a Z‘: -;a (a, p unknown)
’ 0<p<l1
p pa 1
and z; = —1, zo = 0, and z3 = 1. Show that the generalized least

squares estimates of Bp and §; are

( Bo ) _ ( r~1 {(a® — ap)Y1 + (1 — 2ap + p)Y2 + (a® — ap)Y3} )
Bt ) -iY1 +1Ys



10.

11.

12.

13.

14.

15.
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where 7 = 1 + p + 2a® — 4ap. Also prove the following:

(a) I a =1, then the fitted regression Y* = 8% + 81 z; cannot lie wholly
above or below the values of Y; (i.e., the Y; ~ Y;* cannot all have
the same sign).

(b) f 0 < a < p < 1, then the fitted regression line can liec wholly
above or below the observations.
(Canner [1969])

If X is not of full rank, show that any solution 8 of X'V~!XA3 =
X'V-1Y minimizes (Y — X8)'V-1(Y — X3).

Let
Yi = 601 +6y+ e,
Yo = 6; —26, + €2,

and
Yé = 291 _92+63}

where Ele;] =0 (i = 1,2, 3). Find the least squares estimates of 9; and
f>. If the equations above are augmented to

Y1 = 91+92+93+E1,
Yo = 60; —20,+ 03 + e,
Y3 = 26, -6+ 03 +es,

find the least squares estimate of 63.

Given the usual full-rank regression model, prove that the random vari-
ables Y and 3_,(Y; —Y;)? are statistically independent.

Let V; = Bz; +u;, z; > 0 (0 = 1,2,...,n), where u; = pu;—1 + ¢; and
the &; are independently distributed as N(0,c2). If S is the ordinary
least squares estimate of 3, prove that var{f] is inflated when p > 0.

Suppose that E[Y;] = Bo + 1 cos(2mki1t/n) + Basin(2wkat/n), where
t = 1,2,...,n, and k; and ky are positive integers. Find the least
squares estimates of §gy, 81, and fs.

Suppose that E{Y;] = ao + f1(zi — F1) + ez — %2),1 = 1,2,...,n.
Show that the least squares estimates of ayg, #1, and B> can be obtained
by the following two-stage procedure:

(i) Fit the model E[Y;] =ay+ 5 (.’E,;l - El).

(ii) Regress the residuals from (i) on (z;3 — Z3).
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Hypothesis Testing

4.1 INTRODUCTION

In this chapter we develop a procedure for testing a linear hypothesis for
a linear regression model. To motivate the general theory given below, we
consider several examples.

EXAMPLE 4.1 From (1.1} we have the model
log F' = logc — Blogd,

representing the force of gravity between two bodies distance d apart. Setting
Y =log F and x = — logd, we have the usual linear model Y = 8y + f1z + ¢,
where an error term £ has been added to allow for uncontrolled fluctuations
in the experiment. The inverse square law states that # = 2, and we can test
this by taking n pairs of observations (z;,y;) and seeing if the least squares
line has a slope close enough to 2, given the variability in the data. a

Testing whether a particular 8 in a regression model takes a value other
than zero is not common and generally arises in models constructed from some
underlying theory rather than from empirical considerations.

EXAMPLE 4.2 From (1.2) we have the following model for comparing two
straight lines:

E[Y] = Bo + frz1 + Pazxz + faza,

where B9 = a1, 1 = M, B2 = az — a3, and B3 = 72 — 71. To test whether
the two lines have the same slope, we test 83 = 0; while to test whether the
two lines are identical, we test 83 = f3 = 0. Here we are interested in testing
whether certain prespecified 8; are zero. a

"97
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EXAMPLE 4.3 Suspose that we bave the geners! linear model

G ‘/' = pO + ﬁ" Ty + -+ ﬂp-—lfﬁ‘i,p-—l + €4,

or Y = X3 +e. When p is large we will usually be interested in considering
whether we can set some of the 3; equal to zero. This is the problem of model
selection discussed in Chapter 12. If we test the hypothesis 8, = 8,41 =+ =
Bp—1 = 0, then our model becomes

H:Y,=po+pbr1za + -+ Br_1Tip-1 + €45
or Y = X, 3 + . Here X, consists of the first r columns of X. 0
Examples 4.1 and 4.2 are special cases of Example 4.3 whereby we wish
to test a submodel H versus the full model G. The same computer package

used to fit G and obtain RSS can also be used to fit H and obtain RSSy =

Y — X, B||?. We can also express the hypothesis constraints in the matrix
form

o ... 010 -+ O© Bo
o= 0 001 D A s
6 --- 00O --- 1 ﬂp—1

where the rows of A are linearly independent.
Combining the three examples above, a general hypothesis can be expressed

in the form H : A#B = c¢. In the next section we develop a likelihood ratio
test for testing H.

4.2 LIKELIHOOD RATIO TEST

Given the linear model G : Y = X8 + &, where X is n x p of rank p and
€ ~ Npn(0,021,), we wish to test the hypothesis H : A@ = ¢, where A isgxp
of rank ¢. The likelihood function for G is

L(B,0*) = @no?)y ™2 exp| = Lolly - XIP|

In Section 3.5 we showed that the maximum likelihood estimates of 3 and o2
are B = (X'X)~'X'Y, the least squares estimate, and 6% = ||Y — X||?/n.
The maximum value of the likelihood is given by [see equation (3.18)]

L{B,52%) = (2rg?)~/2e~n/2,

The next step is to find the maximum likelihood estimates subject to the
constraints H. This requires use of the Lagrange multiplier approach of Sec-
tion 3.8, where we now consider

r = JoEL(8,0%) + (5'AT— )

= constant — %a‘o‘ - ——HY X8| + (BA' - ')A
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Using algebra almost identical to that which led to Bz of (3.38), we find that

the maximum likelihood estimates are B8y and & 2 = ||Y - XBx||?/n with a
maximum of

L(Bu,6%) = (2m6%) " ?e™ /2, (4.1)
The likelihood ratio test of H is given by
Ao LBH, oY) _ (_q_)/
LB, \o/)

and according to the likelihood principle, we reject H if A is too small. Unfor-
tunately, A is not a convenient test statistic and we show in the next section
that

(4.2)

F="22 ;p(A‘z/" ~ 1)

has an Fg ,_, distribution when H is true. We then reject H when F is too
large.

4.3 F-TEST

4.3.1 Motivation

Since we want to test H : A3 = c, a natural statistic for testing this is
AB — ¢; H will be rejected if AB is sufficiently different from c. However,
not every element in A should be treated the same, as they have different
precisions. One way of incorporating the precision of each 3; into a a suitable

- Ay —1 -
distance measure is to use the quadratic (A8 — ¢)’ (Var[AB]) (AB — c),
where Var[AfB] = c2A(X'X) 1A' If we estimate o? by its unbiased estimate
S? = RSS/(n — p), we arrive at (A - ¢)'[AX'X)"TA']"1(AB - ¢)/S2.
We will now derive a test statistic which is a constant times this quadratic
measure.

4.3.2 Derivation

Before we derive our main theorem, we recall some notation. We have
RSS =Y - X8I =Y -Y|? [=(n-p)S?

and R .
RSSy = “Y — ){ABH“2 = ”Y - YH||2!

where, from (3.38),

B =B+ (X'X)TA[AX'X) AT e - AB). (4.3)
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Here RSSy is the minimum value of €'e subject to AB = c. An F-statistic
for testing H is described in the following theorem.

THEOREM 4.1
(i) RSSy —RSS = ||¥ — Yy|I? = (AB — ¢)'[A(X'X)"LA]"1 (A — ¢).
(i1)

E[RSSy —RSS] = o%q+ (AB ) [AX'X)"IA"1(AB ~¢)
= o%q+ (RSSy — RSS)y—riv]-
(31i) When H is true,

o (BSSy —RSS)/q _ (AB - o) [AX'X) A" (AB —¢)
RSS/(n — p) 752

is distributed as Fy ,-p (the F-distribution with ¢ end n — p degrees of
freedom, respectively).

(iv) When ¢ =0, F can be expressed in the form

n—pY' (P -Py)Y

F=——3a o7’

where Py is symmetric and idempotent, and PyP = PPy = Py.
Proof. (i) From (3.43) and (3.44) in Section 3.8.1 we have
RSSy ~RSS = ||¥ —YxlI?
(B - Ba)X'X(B ~ Bn),
and substituting for 8 — Bx using equation (4.3) leads to the required result.
(ii) The rows of A are linearly independent and 8 ~ N,(B,c2(X'X)™"),

so from Theorem 2.2 in Section 2.2, we get A3 ~ N,(AB,02A(X'X)~1A").
Let Z=ApB —cand B=A(X'X)"!'A’; then E[Z] = AB ~ ¢ and

Var[Z] = Var[AS] = ¢°B.
Hence, using Theorem 1.5 in Section 1.5,

E[RSSy —RSS] = E[Z'B™'Z] [by (i)]

tr(c*’B'B) + (AB —¢)'B71(AB — ¢)
tr(c?1,) + (AB — ¢)B71(AB — ¢)

o°q + (AB —c)BTH(AB —<). (4.4)

Il



F-TEST 101

(iif) From (i), RSSy — RSS is a continuous function of B and is therefore
independent of RSS [by Theorem 3.5(iii) in Section 3.4 and Example 1.11 in
Section 1.5]. Also, when H is true, A ~ N,(c,0?A(X'X)~1A"), so that by
Theorem 2.9,

RSSy — RSS

02

= (AB - ¢)'(Var[AB) " (AB —¢)
is x2. Finally, since RSS/g? ~ x2_, [Theorem 3.5(iv)}], we have that

P (RSSy — RSS)/o?q
~ RSS/o2(n —p)

is of the form [x2/q]/[x%_,/(n — p)] when H is true. Hence F' ~ F, ,_, when
H is true.

(iv) Using equation (4.3) with ¢ = 0, we have

?H = XBH
= {X(X'X)"'X' - X(X'X)TTAAX'X)TTATTIAX'X) X'} Y
= (P-P))Y (4.5)
= PyY, (4.6)

say, where Py is symmetric. Multiplying the matrices together and canceling
matrices with their inverses where possible, we find that P; is symmetric and
idempotent and P1P = PP; = P;. Hence

P2, = P?_-P,P-PP; +P?

= P-2P,+P

= P-P,

= Py, (4.7)
PyP = (P-P,))P=P-P;, =Py (4.8)

and taking transposes, PPy = Pgy. To complete the proof, we recall that
RSS = Y'(I, — P)Y and, in a similar fashion, obtain

RSSy = |Y —XBul?
= Y'dI,-Py)?Y
Y'(I, - Py)Y. (4.9)
Thus RSSy —RSS=Y'(P - Py)Y. O

We note that if S% = (RSSy — RSS)/g, then from Theorem 4.1(ii),

o (AR~ AX'X) AT AB = o)
q

E[SE]

I

= 0-2 -+ 5: say,
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where § > 0 [since A{X'X)"*A’ = Var[AB]/o? ic positive-definite]. Also
(Theorem 3.3, Section 3.3),
E[S?) = o°.

When H is true, § = 0 and S} and S? are both unbiased estimates of o2;
that is, F = S%/S? ~ 1. When H is false, § > 0 and E[S%] > E[S?], so that

E[F] = E[S%]E [-31—2] E[SY]/E[S? > 1

(by the independence of S% and S%, and A.13.3). Thus F gives some in-
dication as to the “true state of affairs”; H is rejected if F' is significantly
large. :

When ¢ > 2 it is usually more convenient to obtain RSS and RSSgy
by finding the unrestricted and restricted minimum values of €’ directly.
However, if ¢ < 2, F can usually be found most readily by applying the
general matrix theory above; the matrix [A(X'X)~*A'] to be inverted is
only of order one or two. It can also be found directly using the fact that
[A(X’X)"1A']"! = Var[AB]/c?. Examples are given in Section 4.3.3. It
should be noted that since RSSy is unique, it does not matter what method
we use for obtaining it. We could, for example, use the constraints A3 = ¢ to
eliminate some of the §; and then minimize €’'e with respect to the remaining
ﬁj ’s.

Part (iv) of Theorem 4.1 highlights the geometry underlying the F-test.
This geometry can be used to extend the theory to the less-than-full-rank
case (cf. Theorem 4.3 in Section 4.7).

From 6% = RSSy/n and 6% = RSS/n we see that
~2

~2
n - Oy — 0
F = p_ H

where A is the likelihood ratio test statistic (4.2).
EXERCISES 4a

1. Prove that RSSy — RSS > 0.

2. If H: AB = c is true, show that F' can be expressed in the form

n—p (P -Pyle
q e'(I, — Ple




F-TEST 103

3. If Ay is the least squares estimate of the Lagrange multiplier associated
with the constraints AB3 = ¢ (cf. Section 3.8), show that

RSSy — RSS = o? Ny ( Var[Ag]) "t A g
(This idea is used to construct Lagrange multiplier tests.)'

4. Suppose that we want to test A3 = 0, where A is ¢ x p of rank gq.
Assume that the last ¢ columns of A, A, say, are linearly independent,
so that A = (A, As), where A, is a nonsingular matrix. By expressing
B2 in terms of B, find a matrix X 4 so that under H the linear model
becomes E{Y] == X 4. Prove that X4 has full rank.

5. Consider the full-rank model with X8 = (X1,X2)(81,8%)", where X,
isn X q.

(a) Obtain a test statistic for testing H : 83 = 0 in the form of the
right-hand side of Theorem 4.1(i). Hint: Use A.9.1.

(b) Find E[RSSg — RSS].

4.3.3 Some Examples
EXAMPLE 4.4 Let

Y1 = a1 +eée,
Yo = 20!1 — Qg -+ &9,
Y3 = o1+ 2a+e3,

where € ~ N3(0, 0%1I3). We now derive the F-statistic for testing H : oy = ax.
We note first that

(£)-(3 1) ()+(3),

or Y = X3 + ¢, where X is 3 x 2 of rank 2. Also, H is equivalent to

(1,-1) ( o ) =0,

or A3 = 0, where A is 1 x 2 of rank 1. Hence the theory above applies with
n=3, p=2,and g=1.
The next step is to find

~_ (1 21
xx_.(O -1 2)(
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Then

0 Yi+2Y2+ Y,

% ~Y2 + Y3 "

%(Yl +2Ys + Y3)
H-Y2 +Y3)

o o=

B=(XX)"'X'Y = (

&
dig

and from equation (3.9),

I
AN

RSS = Y'Y -3'X'Xj3
= Y2+ Y3+ Y¥ —64% - 543,

We have at least two methods of finding the F-statistic.

Method 1 R
Aﬁ = &1 - &2:
: 1 0 1 1 1 11
! -1 i — —_ 6 _— - _—= —
AXX)T A = (1, 1)( 0 1% )(_1) 65" 30
and
Fo ABYAX'X)TIA-IAB
qS?
(61 — (3!2)2
B

where S? = RSS/(n — p) = RSS. When H is true, F ~ Fy n_, = F1 1.

Method 2
Let a1 = ap = a. When H is true, we have

g'e = (Y1 — a)® + (Y2 — @) + (Y3 - 3a)®

and de'e/Ba = 0 implies that &g = {3(Y1 + Y2 + 3Y3). Hence

RSSy = (Yi - 6x)? + (Ya — én)? + (Ya — 365)? (4.10)
d
o - _ RSSy —RSS -
=" RSS

EXAMPLE 4.5 Let Uy,...,U,, be sampled independently from N{u,, o?),
and let V1,...,V,, be sampled independently from N{(uz,c?). We now derive
a test statistic for H : u; = us.
Writing
Ui=u1+5i (7::1:25'--)”1)
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and
Vi=ps+en+; (G=12...,n2),

we have the matrix representation

(U (10 (=)

1 €2
U, 1 0 £
M= — ( Hr ) + =1, (4.11)
V.:L 0 1 H2 E'.l'i.],+1
V2 0 1

\ Ve /) \ O 1) \ e
where n = n; + ny. Thus our model is of the form Y = X3 + €, where X is

n % 2 of rank 2 and € ~ N,(0,0%I,). Also, as in Example 4.4, H takes the
form AB = 0, so that our general regression theory applies with p = 2 and

g = 1. Now ,
xX=(™ 0
0 no ?

so that

and ’
RSS = Y'Y -3'X'Xp3
= ZU2+ZV —nlU —‘n2V
= z:(Uz U)2+Z(v V)2,
Also,
[ -1 t 1 1
AX'X)TIA = — + —,
n o

so that the F'-statistic for H is

(AB)[AX'X)1A1AB
gS?
(U-V)?
S2(1/n + 1/ng)’

F =

(4.12)



106 HYPOTHESIS TESTING

where S?2 = RSS/(n — p) = RSS/{n; + ny — 2). When H is true, F ~
Fl,'nl +ng—2-

Since, distribution-wise, we have the identity F1; = tZ, the F-statistic
above is the square of the usual t-statistic for testing the difference of two
normal means (assuming equal variances). O

EXAMPLE 4.6 Given the general linear model
Yi=po+ iz + -+ Pp1Zip_1+e (i —1,2,...,n),

we can obtain a test statistic for H : §; = ¢, where 7 > 0.
We first need the following partition:

xx=( 45 ).

where [ is 1 x 1. Now H is of the form a’'8 = ¢, where a’ is the row vector
with unity in the (7 + 1)th position and zeros elsewhere. Therefore, using the
general matrix theory, a’(X'X)~!a = d;; (the jth diagonal element of D),
a’ ﬁ —c= ﬁ_,- — ¢, and the F-statistic is

F= ______(ﬁg; 2;;)2, (4.13)

which has the Fi ,_, distribution when H is true. As in Example 4.5, F is
again the square of the usual ¢-statistic.

The matrix D can be identified using the method of A.9 for inverting a
partitioned symmetric matrix. Let 1,, be an n X 1 column vector of 1’s and
let X' = (5-135-23 e 7T-p—1)' Then X = (]-n.; Xl)'s

i~ __( n X
xx_(nf X! X, )

and by A.9.1,
(X'X)™! = ( %JJ_’x:E -fzj ) (4.14)
where V = (v;;) = X[ X; — nXX' and
Vg = zxijxik ~ NI T .k
= Y (T —Toj)(Tir ~ Fok). (4.15)
i

Thus D is the inverse of V, where V is the matrix of corrected sums of squares
and products of the z’s. In the notation of Section 3.11, V = X'X. Similar
examples are considered in Section 9.7. ) O
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EXAMPLE 4.7 Suppose that in Example 4.6 we want to test H : a’'8 =c¢. -
Then g =1, X A
var[a’@] = a' Var[Bla = o%a’'(X'X) a
and R
o (B =y
s?a'(X'X)~1a’
which is distributed as F} ,—, when H is true. Again this is the square of

usual ¢-statistic, which we can also derive directly as follows.
By Theorem 2.2, a’8 ~ N(a'B,c%a'(X'X)"1a), so that

_ a'3—a'B
o {a'(X'X)-1a}!/?

i

~ N(0,1).

Also, by Theorem 3.5 (Section 3.4), V = (n — p)S?/o® ~ x%__, and since S?
is statistically independent of 3, V is independent of U. Hence

U
VV/(n—p)

a’ff —~a'f
S{a'(X'X)-la}l/2

T =

(4.16)

has the ¢,_, distribution. To test H : a’'8 = c we set a’B equal to ¢cin T

and reject H at the a level of significance if |T| > t,(,al_/ ,2,)“; here tf,}_/ 2)* is the

upper a/2 point of the t,—, distribution; that is, pr(T > tg_/f,)“) = af2.

Alternatively, we can construct a 100(1 — a)% confidence interval for a’s3,
namely,

a'B + /P g fa'(X'X)"1a} /2, (4.17)
or since $?{a’'(X'X)~!a} is an unbiased estimate of c2a’(X'X)la (the vari-
ance of a'3),

- 1/2)ex A
a'B + tsl_/p)“ga,ﬁ, say, (4.18)
and see if the interval above contains c. O

4.3.4 The Straight Line

Let Y; = Bo + brz; +¢; (1 = 1,2,...,n), and suppose that we wish to test
H: By =c Then X = (1,,x),

1
x’x:( A ) X'X)™ = v
nE, 3,3 (X'X) Y-z \ "z

and
X’Y-_—.( 2. ¥ )

AT
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Also, from 8 = (X'X)~'X'Y we have, after some simplification,

-~

Bo = Y - 57,
5 = > Yi(z; — %) _ > (Y~ Y)(z; — %)
Y (z; — T)? > (z —Z)?

and

-~

Vi = fo+him
Y +,31(£E5 —_ E)

(Actually, Bo and ,31 can be obtained more readily by differentiating £'e with
respect to By and B;.) Finally, from Example 4.6 with p = 2, the F-statistic

for testing H is given by

F= (31 — C)2 _ (61 - c)?
- Szd]_l - 32/ Z(LE.,, - '5)2 ’

where

(n - 2)5?

> (i - 73)?

> IYi-Y - bz -]

= Y (Vi-Y)2 -5 (z: - 7)°
= 2 (G=-7) -3 %i-7)7

I

We note‘ from (4.21) that
Y (Yi-7)? = Y (Mi-Y)P+)Y (B-Y)?
S i~V (¥ - 7)2

where
, _ (i -Y)?
T Y (Yi-Y)?
Bt Yo (i — T)?
> (Y; - Y)?
[E (% = P) (@i - D)
(Vi ~Y)2 X (z; - z)?

(4.19)

(4.20)
(4.21)

(4.22)
(4.23)

(4.24)

is the square of the sample correlation between Y and z. Also, r is a measure

of the degree of linearity between Y and z since, from (4.23),
RSS = Y (v;-Y))?
= (1-r)) (Y -Y),

(4.25)
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so that the larger the value of r2, the smaller RSS and the better the fit of
the estimated regression line to the observations.

Although 1 — r2 is a useful measure of fit, the correlation r itself is of
doubtful use in making inferences. Tukey [1954] makes the provocative but
not unreasonable statement that “correlation coefficients are justified in two
and only two circumstances, when they are regression coefficients, or when
the measurement of one or both variables on a determinate scale is hopeless.”
The first part of his statement refers to the situation where X and Y have a
bivariate normal distribution; we have (Example 2.9)

EY|X =] = py+p—(z—px)
ox
= fo+ bz,

and when aﬁf = 0%, 1 = p. One area where correlation coefficients are
widely used, and determinate scales seem hopeless, is in the social sciences.
Here the measuring scales are often completely arbitrary, so that observations
are essentially only ranks. A helpful discussion on the question of correlation
versus regression is given by Warren [1971).

We note that when ¢ = 0, the F-statistic (4.19) can also be expressed in
terms of r%. From equation (4.25) we have

(n —2)S% = (1 - %) Z(Y" -Y)?,
so that

r _ BI@-2m-2
(1-r2) 2 (Yi-Y)?
r2(n = 2)
1—72 °

The usual t-statistic for testing 5; = 0 can also be expressed in the same form,

namely,
r

NV o) 20

EXERCISES 4b

1. Let Y; = fo + f1Tiz + -+ + Bp_1Ti,p—1 + &5, 4 = 1,2,...,n, where the
g; are independent N(0,02). Prove that the F-statistic for testing the
hypothesis H : 8 = fg41 =+ = Bp~1 = 0(0 < ¢ < p—1) is unchanged
if a constant, ¢, say, is subtracted from each Y;.

2. LetY; = Bo + Br1z; + €4, (1 =1,2,...,n), where the ¢; are independent,
N(0,0?). '

(a) Show that the correlation coefficient of 3y and 5, is —nZ/(n/>. z2).
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(b) Derive an F-statistic for testing H : o = 0.

3. Given that T = 0, derive an F'-statistic for testing the hypothesis H :
Bo = B1 in Exercise No. 2 above. Show that it is equivalent to a certain

t-test.
4. Let
Yi = 0, +602+¢,
Y2 = 203 +e,,
and

Y3 =—6: + 65 +e2,

where the ¢; (7 = 1, 2, 3) are independent N(0, ¢?). Derive an F-statistic
for testing the hypothesis H : 6; = 26,.

5. Given Y = @ +¢, where € ~ N4(0,02%14) and 0; + 6, + 63 + 684 = 0, show
that the F-statistic for testing H : 8, = 03 is

2(Y; — Y3)2
(Y1 +Ys + Y3 + Y2

4.4 MULTIPLE CORRELATION COEFFICIENT
For a straight line, from equation (4.25) we have
RSS=(1-7%)) (Y:-Y)2.

Thus, r? is a measure of how well the least squares line fits the data. N otmg
that ¥; = Bo + 61:::z =Y +5 (z; — T), we have

b T (Vi =) (z: — 7)
AUV = 1) (i — 7)H/2
Y -Y)(¥i-Y)
[ = P)2(¥i - ¥)2)/2

which is the correlation coefficient of the pairs (¥;,Y;). To demonstrate this,
we note that >(¥; — ¥;) = 2°[Y; - Y; — Bi(z: — F)] = 0, so that the mean of
the V;, ¥ say, is the same as Y.

This reformulation of r suggests how we might generalize this measure
from a straight line to a general linear model. We can now define the sample
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multiple correlation coefficient R as the correlation coefficient of the pairs
(Y;,Y3), namely,

(% - )(Fi - ¥) /.
(@ -PrTdi- 7))

The quantity R? is commonly called the coefficient of determination. We now
prove a useful theorem that generalizes equations (4.22) and (4.24).

(4.27)

THEOREM 4.2

(i) |
-T2 = (V-9 + > (%~ 7).
i i i
(i1)
R2 —_ Z(}'}l - Z)z
> (Yi-Y)?
- - RSS
(¥ -Y)?
Proof. (i) ¥ = PY, so that
Y'Y = Y'PY = Y'PY =Y'Y. (4.28)
Also, by differentiating }~.(Y; — ﬁo - ﬁlmu — v~ Bp_1Ti p—1)? with respect
to Bo, we have one of the normal equations for 8, namely,
Z(Yi —Bo— Bizis — -+ = Bp1Zip—1) =0
or A
> (- =0 (4.29)
i
Hence
Y W-Y)) = Y (Mi-Yi+Yi-7)
= > (G-Y)’+3 (V-7
since

S - B) (3 - )

Z(Y; ~Y;)Y; [by equation (4.29)]
(Y -¥)Y
0 [by equation (4.28)].
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(ii) From equation (4.29), we get V= Y, so that

DW= -1) = Y W-NF-7)
= S W-%+%-NE-7)
Z(f"z-?)2a

and the required expression for R? follows immediately from (4.27). The
second expression for R? follows from (i). O

From the theorem above, we have a generalization of (4.25), namely, -
RSS = (1 - R%) Y (V; - Y)?, (4.30)

and the greater the value of ﬁ2, the closer the fit of the estimated surface to
the observed data; if ¥; = Y;, we have a perfect fit and R? = 1, otherwise
R? < 1. When there is just a single z-regressor then R? = r2, By writing P =
X(X'X)~X’, where (X'X)™ is a generalized inverse of X'X, we find that the
theorem above still holds even when X is not of full rank. Alternatively, we can
write P = X;(X|X;)~1X{, where X, is the matrix of linearly independent
columns of X.

EXAMPLE 4.8 Given the linear model YV; = o+ 81zi1 +- -+ Bp-1Zo p—1 +
g; (1 =1,2,...,n), suppose that we wish to test whether or not the regression
on the regressor variables is significant; that is, test H : 81 = B2 = -+ =
Bp—1 = 0. Then H takes the form A3 = 0, where A = (0,I,_,) isa (p—1) xp
matrix of rank p — 1, so that the general regression theory applies with ¢ =
p — 1. We therefore find that

RSSy = min‘iaronum zi:(l’,; — fo)?
= Y (Y;-Y)?,
and by Theorem 4.2 and (4.30),
(RSSy — RSS}/(p — 1)

F RSS/(n - p)
SV -Yi-T)in-p
RSS p—1

SF-Y)?2 n-p
(1-R)X(V:-Y)p-—-1
2 . _
= ?Rzz_zl’, (4.31)

where F' ~ Fy,_1 ,—p when H is true.



CANONICAL FORM FOR H 113

The statistic F' provides a test for “overall” regression, and we reject H if
F > F3 1 nps Fp1 n—p Deing the upper a point for the Fp 1,n—p distribution.
If we re_]ect H, we say that there is a significant regression and the zs:; values
cannot be totally ignored. However, the rejection of H does not mean that
the fitted equation ¥ = X 3 is necessarily adequate, particularly for predictive
purposes. Since a large R? leads to alarge F statistic, a working rule suggested
by Draper and Smith [1998: p. 247} for model adequacy is that the observed
F-ratio must be at least four or five times F¥, ,_.. O

EXERCISES 4c

1. Suppose that 83 = B2 = +++ = Bp—1 = 0. Find the distribution of R?
and hence prove that

E[Rz] = %—z—l.

2. For the general linear full-rank regression model, prove that R? and the
F-statistic for testing H : 8; = 0 (j # 0) are independent of the units
in which the Y; and the z;; are measured.

3. Given the full-rank model, suppose that we wish to test H : g; = 0,
j # 0. Let R% be the coefficient of determination for the model with
B; =0.

(a) Prove that the F-statistic for testing H is given by

Rz—-R%I'n——p
1 - R? 1

F =

(This result shows that F' is a test for a significant reduction in
R2)

(b} Deduce that R? can never increase when a § coefficient is set equal
to zero.

4.5 CANONICAL FORM FOR H

Suppose that we wish to test H : A8 = 0, where A is ¢ x p of rank ¢, for the
full-rank model Y = X3 + . Since A has ¢ linearly independent columns,
we can assume without loss of generality (by relabeling the §; if necessary)
that these are the last ¢ columns; thus A = (A, A2), where Ag isa g x ¢
nonsingular matrix. Partitioning 8 in the same way, we have

0=AB=A161 +Ay0,,



114 HYPOTHESIS TESTING

' . . P 1 -
and multiplying tharough by A5 ieads to

B2 = —AT AL B (4.32)

This means that under the hypothesis H, the regression model takes the
“canonical” form :

XIB (XI,X2)IB
X181 + X282
(X1 - X2A5 A1)

= X7, - (4.33)

say, where X g is n x (p — ¢) of rank p — q and v = B;. The matrix Xy has
linearly independent columns since

Xgpr1=0 & X=0 & =0 & B;=0.

By expressing the hypothesized model H : E[Y] = X g+ in the same form
as the original model E[Y)] = X3, we see that the same computer package
can be used for calculating both RSS and RSSy, provided, of course, that
X g can be found easily and accurately. If X g is not readily found, then the
numerator of the F-statistic for testing H can be computed directly using the
method of Section 11.11. We note that ¢ = rank(X) — rank(Xg).

One very simple application of the theory above is to test H : 82 = 0;
X g is simply the first p — ¢ columns of X. Further applications are given in
Section 6.4, Chapter 8, and in Section 4.6.

EXERCISES 4d

1. Express the hypotheses in Examples 4.4 and 4.5 in canonical form.

2. Suppose that we have n; observations on wy, w2, ..., wy—1 and U, giving
the model

Ui = ’}’él) -+ '}’l(l)wil s O '}'I(,]-_)]_wi,p—l + 1 (Z = 1; 2) c. ,TL]_)-

We are now given ng (> p) additional observations which can be ex-
pressed in the same way, namely,

U; = 7{()2) + 'y§2)'wi]_ S 'Y,(,?_)lwi,p—l + 7

(t=mn1+1,ne+2,...,n1 +ns).

Derive an F-statistic for testing the hypothesis H that the additional
observations come from the same model.
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4.6 GOODNESS-OF-FIT TEST

Suppose that for each set of values taken by the regressors in the model
Y = fBo + 121 + B2z2 4 - - + Bp—1Tp-1 + &, (4.34)

we have repeated observations on Y, namely,
1’121' = ;BO + ;Blmil + :Bp—lm'i,p—l + Eir, (4'35)

where Ele;r] = 0, var[e;r] = 0%, r = 1,2,...,R;, and ¢ = 1,2,...,n. We
assume that the R; repetitions Y, for a particular set (zi1,...,Z;p—1) are
genuine replications and not just repetitions of the same reading for Y; in a
given experiment. For example, if p = 2, Y is yield and z; is temperature,
then the replicated observations Y;,. (r = 1,2,..., R;) are obtained by having
R; experiments with z; = =;; in each experiment, not by having a single
experiment with z; = z; and measuring the yield R; times. Clearly, the
latter method would supply only information on the variance of the device
for measuring yield, which is just part of the variance o?; our definition of o2
also includes the variation in yield between experiments at the same temper-
ature. However, given genuine replications, it is possible to test whether the
model (4.34) is appropriate using the F-statistic derived below.
Let Y;. = ¢; + €4, say. Then writing

Y = (Y11,Y12,...,Y131,. .. ,YnI,Yn2,- . '1YnR")s etc.,

we have Y = W¢ + ¢, where

1R, 0 e 0 o1
we=| 9 1m0 ) 6} (4.36)
0 0 o+ 1p, O

Defining N = ¥;R;, then W is an N x n matrix of rank n; we also assume

that € ~ Ny(0,0%In). Now testing the adequacy of (4.34) is equivalent to
testing the hypothesis

H:¢;= o+ pr1%is + - + Pp—1Ti,p—1 (i=1,2,...,n)

or H : ¢ = X3, where X is n x p of rank p. We thus have the canonical form
(cf. Section 4.5) E[Y] = WX3. We note in passing that H can be converted
into the more familiar constraint equation form using the following lemma.

LEMMA ¢ € C(X) if and only if A¢ = 0 for some (n — p) X n matrix A
of rank n — p.

Proof. Let P = X(X'X)"1X'. If ¢ € C(X), that is, ¢ = X3 for some
8, then (I, — P)¢p = (I, — P)X8 = O [by Theorem 3.1(iii)]. Conversely,
if (I, — P)é = 0, then ¢ = P¢ = X(X'X)"1X'¢p = X € C(X). Hence
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¢ € C(X) if and only if (I, — P)¢ = 0. By Theorem 3.1(ii) the n x n matrix
I, — P has rank n — p and therefore has n — p linearly independent rows which
we can take as our required matrix A. .

Using the Lemma above or the canonical form, we see that the general -
regression theory applies to H, but with n, p, and g replaced by N, n, and
n — p, respectively; hence

_ (RSSu —RSS)/(n—p)

F RSS/(NV — n)

Here RSS is found directly by minimizing }~, 3 (Y — ¢)%. Thus differenti-
ating partially with respect to ¢, we have

qBi = _Er_}f"_r = ?z and RSS = Z E(Kr _?i,)2-

R;
To find RSSy we minimize }; ¥, (Yir — Bo — B1Za — = Pp—1Tip~1)? (= d,
say). Therefore, setting 8d/88o = 0 and 8d/88; = 0 (j # 0), we have
ZRi(?i. —Bo—Prza — - — Bp—1Zip-1) =0 (4.37)

and
E me(};r - ﬁO - :613:111 -t :Bp-—lm'i,p—l) =0 (J = 1:!23 -y D — 1):
that is,

Z Riz;j(Y; — Bo— Bimin — -+ — Bp—-1Tip—1) = 0. (4.38)

Since equations (4.37) and (4.38) are identical to the usual normal equations,
except that Y; is replaced by Z; = Y ;, we have

Br = (X'X)"X'Z

and

RSSy = > (Yir — Borr — Brerzis ~ -+ — Bp—1,HTip-1)".

4.7 F-TEST AND PROJECTION MATRICES

The theory of Theorem 4.1 can be generalized to the case when X has less than
full rank and the rows of A in testing H : A = 0 are linearly dependent, so
that some of the hypothesis constraints are redundant, However, the algebra
involves the use of generalized inverses, and the resulting formulation is not
the one used to actually carry out the computations. Theorem 4.1(iv) suggests



F-TEST AND PROJECTION MATRICES 117

that a more elegant approach is to use projection matrices. To set the scene,
suppose that we have the model Y = @ + €, where 6 € 2 (an r-dimensional
subspace of R,), and we wish to test H : & € w, where w is an (r — g)-
dimensional subspace of 2. Then we have the following theorem.

THEOREM 4.3 When H is true and € ~ N,(0,02L,),

P (RSSy —RS8S)/q _ &'(Pa—Pule/g F
~ RSS/(n—-r) ~ €&(I,-Pgqle/(n~—r) gn-r;

where Pg and P, are the symmetric idempotent matrices projecting R,, onto
? and w, respectively (Appendiz B).

Proof. 0= PoY and 8y = P,Y are the respective least squares estimates
of 8, so that

RSS =Y -0|2=Y'(I, - Pa)Y
and
RSSy =Y'(I, - P,)Y.
Also, (I, — Pg)0 = 0 (since 8 € ), which implies that

RSS = (Y -6)(T, —Pa)(Y — 0) =£'(1I, - Pq)e.
Similarly, when H is true, 8 € w and
RSSy =£'(1I, — P, )e.

Now (I, — Pg) and (Pg — P,) project onto 2+ and wt N Q (by B.1.6 and
B.3.2), so that these matrices are symmetric and idempotent (B.1.4) and have
ranks n —r and 7 — (r — ¢) = ¢ by B.1.5. Since PoP,, = P, we have (I, —
Po)(Pq —P,) = 0. Hence by Theorem 2.7 and Example 2.12 in Section 2.4,
e'(Pa — Py)e/o? and e(I, — Pq)e/o? are independently distributed as x?2
and x2_,., respectively. Thus F ~ F, n_,. 0

It is readily seen that Theorem 4.1(iv) is a special case of the above; there
! = C(X), and when ¢ = 0, w = NAX'X)"1X") N Q.

MISCELLANEQUS EXERCISES 4

1. Aerial observations Y1, Yo, Y3, and Yy are made of angles 4, 85, 62, and
84, respectively, of a quadrilateral on the ground. If the observations are
subject to independent normal errors with zero means and common vari-

ance o2, derive a test statistic for the hypothesis that the quadrilateral
is a parallelogram with 6; = 83 and 62 = 6.

(Adapted from Silvey [1970].)

2. Given the two regression lines

Yk'i:ﬂkmi"'eki (k=1,2;z'=1,2,...,n),
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show that the F-ssatistic for teziing H : 81 = 7 can be put in the form
_ -h
282 (32, =2) -
Obtain RSS and RSSy and verify that

204, _ A2
'RSSH—RSS=Z‘$1(% Ba) .

. Show that the usual full-rank regression model and hypothesis H : A8 =

0 can be transformed to the model Z = u + 1, where py+1 = ppy2 =
-+ = pp = 0 and n ~ N,(0,0%1,), and the hypothesis H : y1 = pp =
v+ = ug = 0. Hint: Choose an orthonormal basis of p —~ g vectors
{ag+1,Qq42,...,0p} for C(X4), where X 4 is defined in Exercises 4a,
No. 4; extend this to an orthonormal basis {a,a2,...,a,} for C(X);
and then extend once more to an orthonormal basis {;, s, ..., a,} for
R,. Consider the transformation Z = T'Y, where T = (a1, a2,...,ap)
is orthogonal.

A series of n 4 1 observations Y; (¢ = 1,2,...,n 4 1) are taken from
a normal distribution with unknown variance ¢g2. After the first n ob-
servations it is suspected that there is a sudden change in the mean of
the distribution. Derive a test statistic for testing the hypothesis that
the (n + 1)th observation has the same population mean as the previous
observations.
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Confidence Intervals and Regions

5.1 SIMULTANEOUS INTERVAL ESTIMATION

5.1.1 Simultaneous inferences

We begin with the full-rank model Y = X3 + e, where X is n x p of rank
p. A common statistical problem for such a model is that of finding two-
sided confidence intervals for k linear combinations a;3 (j = 1,2,...,k). One
solution would simply be to write down k ¢-intervals of the form given in
(4.18) of Section 4.3.3, namely,

alf + tS_/;)"‘&a; 5 (5.1)

A typical application of this would be to write aj = (1,0,...,0), a, =
(0,1,...,0), etc., and k = p, so that we are interested in confidence intervals
for all the 8; ( =0,1,...,p— 1). The intervals above would then become

B; + t3/D5d} 2, (5.2)
where d;; is the (j + 1)th diagonal element of (X'X)~* (see Example 4.6).
For j = 1,...,p—1 we note that d;; is also the jth diagonal element of V1,
where V is given by equation (4.15).

If we attach a probability of 1 — a to each separate interval, as we have
done above, the overall probability that the confidence statements are true
simultaneously is, unfortunately, not 1 — a. To see this, suppose that E;
(7 = 1,2,...,k) is the event that the jth statement is correct, and let pr[E,] =

119
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1 — ;. If E; denotes the complementary event of Ey, then

k

1-6 = pr ﬂEz =1-pr ﬂEj =1_Pr|:UEj]

=1 J
k k
> 1-— Zpr[Ej] =1- Zaj. (5.3)
j=1 =1

Here §, the probability of getting at least one statement wrong, is referred to
variously as the probability of a nonzero family error rate, the abbreviated
probability error rate, (Miller [1981: p. 6), the familywise error rate (FWE,
Hochberg and Tamhane [1987: p. 7]), or the experimentwise error rote (Tukey
[1953]). For the case a; = (= 1,2,...,k),

k
pri () Ei| > 1- ko, (5.4)

J=1

so that the probability of all the statements being correct is not 1 — a but

something greater than 1 — ka. For example, if @ = 0.05 and k¥ = 10, then

1 — ka = 0.5. Furthermore, as pointed out by Miller [1977: p. 779; 1981: p.

8], the inequality (5.4) is surprisingly sharp: It is not as crude as one might

expect, provided that & is not too large (say, £ < 5) and « is small, say, 0.01.
It is also worth noting that

pr|(E;j| = prlEi]pr[Bz | Ei) - -pr[Ex | E1,..., Ex_1]
i

~ pr[E1]pr{E2] - pr{Ek)
= (1-a)(—-az) (1 - ) (5.5)

if the dependence between the events E; is small. As we shall see below, (5.5)
can sometimes provide a lower bound for pr[N;E;] (Miller [{1977: p. 780]).
Other related probability inequalities are given by Hochberg and Tamhane
[1987: Appendix 2]; for a general review, see Tong [1980].

There is one other problem associated with the E;. If a; = 0.05 (j =
1,2,...,k), there is 1 chance in 20 of making an incorrect statement about
a; (3, so that for every 20 statements made we can expect 1 to be incorrect. In
other words, 5% of our k confidence intervals can be expected to be unreliable;
there is an expected error rate of 1 in 20.

A number of authors (cf. Hochberg and Tamhane [1987: pp. 9-11]) rec-
ommend that & should be the quantity to control in any given multiple-
comparison situation. When k is finite, Spjotvoll [1972] suggested that y =
zj a; should be controlled, where <y is the expected number of incorrect
statements (see Miscellaneous Exercises 5, No. 1). Hochberg and Tamhane
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[1987: pp. 9-12] discuss the relative merits of controlling 4, vy, or «/k; it de-
pends on whether k is infinite or not and whether the focus is exploratory or
explanatory. It turns out that v/k < J§ <~ [cf. (5.3)].

We now consider several ways of avoiding some of the problems mentioned
above.

Bonferroni t-Intervals

If we use an individual significance level of o/ k instead of a (i.e., use t‘;/_(,f k))
for each of the k confidence intervals, then, from (5.4),

pr ﬁ E; zl—k(%) =1-a, | (5.6)

i—1

so that the overall probability is at least 1 — a. However, a word of caution.
When k is large, this method could lead to confidence intervals that are so
wide as to be of little practical use. This means that a reasonable compromise
may be to increase a: for example, use a = 0.10.

To use the method above we frequently require significance levels for the
t-distribution which are not listed in the common i-tables. The following
approximation due to Scott and Smith [1970] may therefore be useful:

22 41\t
tfjmza(l_ a4u ) ’

where z, denotes the upper a point of the N(0,1) distribution. Statistical
packages (e.g., S-PLUS and R) generally provide t& for any . Hochberg and
Tamhane [1987: Appendix 3, Table 1] give an extensive table for small values
of a together with rules for interpolation. A table of £/ for o = 0.05,
0.01; £ = 2(1)10(5)50, 100, 250; v = 5, 7, 10, 12, 15, 20, 24, 30, 40, 60, 120,
oo is given in Appendix C.1.

The intervals described above based on replacing a by a/k are called Bon-
ferroni t-intervals, as (5.3) is a Bonferroni inequality (Feller [1968: p. 110]).
The corresponding tests are called Bonferroni tests and a number of modifi-
cations of such tests have been proposed (see Rencher [1998: Section 3.4.5]
for a brief summary).

Maximum Modulus ¢-Intervals

Let uf , , be the upper-tail « significance point of the distribution of the
maximum absolute value of k Student ¢-variables, each based on v degrees of
freedom and having a common pairwise correlation p (these variables have a
joint multivariate ¢-distribution—see A.13.5); when p = 0, we simply denote
this point by uf ,. Now if the a;-ﬁ (7 =1,2,...,k) are mutually independent
(k < p) and also independent of S2 (as B is independent of S? by Theorem
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3.5(iii)), the pairwise covariances of ihe ¢-variables
! :a — I
T = a_j____‘o __a__J_ﬂ__
= .7 — ~
- !
ajﬁ - jﬁ

S{a(X'X)ta;}1/2’

conditional on S2, are zero. Since E[T;)8% = 0], it follows from the Miscel-
laneous Exercises 5, No. 3 (with X = T;, Y = T}, and Z = §?) that the
unconditional covariances (and correlations) are also zero. Hence

1-—- r| max |T;] < uf
« P [1_<_j5k| JI_ k,n-—p:l

pr[|T5) < uf pops all 4],

I

and the set of k intervals X
| a:.'lﬁ iug,n—P&a;ﬁ (57)

will have an overall confidence probability of ezactly 1 — a. Thus § = a.
However, if the a}ﬁ are not independent, which is the more usual situation,
then the intervals (5.7) can still be used, but they will be conservative; the
overall probability will be at least 1 — a. (This result follows from a theorem
by Sidak [1968]; see Hahn and Hendrickson [1971] and Hahn [1972].) We note
in passing that if Bonferroni ¢-intervals are used with a/k instead of a [as in
(5.6)], then (5.5) becomes a lower bound (Miller [1977: p. 780]), so that

anNF
pr(N; E;] > (1 — E) > (1~ a),
which is a slight improvement on the Bonferroni inequality. However, these

Bonferroni intervals won’t be as narrow as those given by (5.7).
Hahn [1972] showed that when k = 2, the intervals

a;f3 % uf,n__p,p&a;ﬁ (1 =1,2),

where p, the correlation between a3 and a}f, is given by

_ af (X'X) 2
T {a}(X'X)"1a; a)(X'X)-1az}1/2’

o (5.8)

have an exact overall probability of 1 — @. This result can be used in straight-
line regression (see Chapter 6).

A table of ug, _ for a = 0.05,0.0L; k = 1(1)6 , 8, 10, 12, 15, 20; v = 3(1)12,
15, 20, 25, 30, 40, 60; and p = 0.0, 0.2, 0.4, and 0.5 is given in Appendix C.2.
Hochberg and Tamhane {1987: Appendix 3, Tables 4 and 7] give a slightly
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more extensive table for p = 0.1,0.3,0.5 and 0.7, and an extensive table for
p=0.
Scheffé's S-Method

We may assume without loss of generality that the first d vectors of the set
{a;,as,...,a;} are linearly independent, and the remaining vectors (if any)
are linearly dependent on the first d vectors; thus d < min(k,p). Consider
the d X p matrix A, where A’ = (a;,a,,...,a4), and let ¢ = AB. Now A
is a d X p matrix of rank d so that using the same argument as that given in
proving Theorem 4.1(iii} and setting qb Aﬁ, we have

(@ — ) [AX'X)A] 7 (d - )

452 ~ Fd,n——p' (5'9)
Setting L = A(X'X)~'A’, it now follows that
l—a = pr[Fdn—p < an-—p]
= pr[($—¢) [AXX)IAT T (- ¢) < dSPFE,_,)
= pr[(@-LHE-d) <m|, s (5.10)
= pr[bL b < m]
h'b)? |
= pr ;1;% { (h'LL } < m] (by A.4.11)
= w|EP allh(#O)]
[|h'¢ — h'¢p .
= pr lS(l(f'Lh)l/?' < (dFSn-p)?, all b (h # 0)] (5.11)

We can therefore construct a confidence interval for eny linear function h'¢,
namely,

h'¢ + (dFS,_,)"/*S(h'Lh)'/?, (5.12)

and the overall probability for the entire class of such intervals is exactly 1 ~a,
The term S?h'Lh involved in the calculation of (5.12) is simply an unbiased
estimate of var[h' @); frequently, the latter expression can be found directly
without the need for matrix inversion (e.g., see Section 8.2.2). The interval
(5.12) can therefore be written in the more compact form

W+ (dFS, ) %6, e (5.13)

Since h'¢p = 453 for certain h, we see that a confidence interval every a3 =
¢; (2 =1,2,...,d) is included in the set of intervals (5.13). In addltlon an
interval f0r every ¢; (j = d+1,d+2,...,k) is also included in this set, owing
to the linear dependence of the a, (j =d+1,...,k) on the other a;’s. For
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: d
example, if agy; = hja; +- -+ hgag, then ¢z = agH_lﬂ = Ej:l hi¢; =h'¢.
Therefore, if E; is the event that a}3 lies in the interval

aif £ (dFg )5, 5, (5.14)

then since the complete set of intervals (5.13) is more than the intervals for
¢; (7 =1,2,...,k) that we asked for,

k
pr|[)Bi| 21-a.

=1

We note that the class of parametric functions h'¢ form a linear space, £
say, with basis ¢1, ¢2,..., ¢4. In fact, £ is the smallest linear space containing
the k functions ¢; (7 = 1,2,..., k). The method above is due to Scheffé [1953]
and is called the S-method of multiple comparisons in his book (Scheffé [1959:
p. 68]). Other methods for constructing simultaneous confidence intervals for
special subsets of £ are discussed in Section 8.2.2. For general references on

.the subject of multiple comparisons, the reader is referred to Miller [1977,
1981}, Hochberg and Tamahane {1987], and Hsu [1996]. The class of linear
functions £ of the form h'¢ (= h' AB) is only a subclass of all possible linear
functions a’'3, where a is now any p x 1 vector. However, settingd =k =p
and A = I,, we have ¢ = 3, and the corresponding confidence intervals for
the class of all functions h'3 take the form [cf. (5.13)]

W B+ (pFgn_p) 645 (5.15)

5.1.2 Comparison of Methods

For k confidence intervals, the Bonferroni ¢-intervals, the maximum modulus
t-intervals (5.7), and Scheffé’s S-intervals (5.14) all give a lower bound of 1 —
for prin; E;]. By comparing Tables 5.1 and 5.2 we see that for o = 0.05,d < k,
and £ not much greater than d,

1%/ %) < (dFg,)/2. (5.16)

When k is much greater than d, the reverse inequality holds. Also, it can be
shown theoretically (compare Table 5.1 and Appendix C.2) that

ug, < to/ (k) (5.17)

so that for the common situation of d = k (i.e., no “redundant” confidence in-
tervals), the maximum modulus intervals are the shortest and the F-intervals
are the widest. For example, when a@ = 0.05, d =k =5, p = 6, and n = 26,
we have

v = 20, EFS )% =368,  t3/(?%) =985  and ug, =2.82.
k,v v kv

If we were interested in just a single ¢-interval, we would use t,(,l/ 2o - 2.09,
which is much smaller than the previous three numbers.
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Table 5.1 Values of &%) for o = 0.05

v\k 1 2 3 4 5 6 7 8 g 10 15 20 50

5 2.57 3.16 3.54 3.81 4.04 4.22 4.38 4.53 4.66 4.78 5.25 5.60 6.87
10 2.23 2.64 2.87 3.04 3.17 3.28 3.37 3.45 3.52 3.58 3.83 4.01 4.59
15 2.13 2.49 2.70 2.84 2.95 3.04 3.11 3.18 3.24 3.29 3.48 3.62 4.08
20 2.09 2.42 2.61 2.75 2.85 2.93 3.00 3.06 3.11 3.16 3.33 3.46 3.85
24 2.07 2.39 2.58 2.70 2.80 2.88 2.94 3.00 3.05 3.09 3.26 3.38 3.75

30 2.04 2.36 2.54 2.66 2.75 2.83 2.8 2.94 2.99 3.03 3.19 3.30 3.65
40 2.02 2.33 2.50 2.62 2.70 2.78 2.84 2.89 2.93 2.97 3.12 3.23 3.55
60 2.00 2.30 2.47 2.58 2.66 2.73 2.79 2.84 2.88 2.92 3.06 3.16 3.46
120 1.98 2.27 2.43 2.54 2.62 2.68 2.74 2.79 2.83 2.86 3.00 3.09 3.38
oo 1.96 2.24 2.40 2.50 2.58 2.64 2.69 2.74 2.78 2.81 2.94 3.03 3.29

SOURCE : Dunn [1959]. Reprinted with permission from the Journal of the American

Statistical Association. Copyright (1959) by the American Statistical Association. All
rights reserved.

Table 5.2 Values of (dF5,)'/? for & = 0.05

v\ d 1 2 3 4 5 6 7 8

) 2.57 3.40 4.03 4.56 5.02 5.45 5.84 6.21
10 2.23 2.86 3.34 3.73 4.08 4.40 4.69 4.96
15 2.13 2,711 3.14 3.50 3.81 4.09 4.36 4.60
20 2.09 2.64 3.05 -3.39 3.68 3.95 4.19 4.43
24 2.06 2.61 3.00 3.34 3.62 3.88 4.12 4.34

30 2.04 2.58 2.96 3.28 3.56 3.81 4.04 4.26
40 2.02 2.54 2.92 3.23 3.50 3.75 3.97 4.18
60 2.00 2.51 2.88 3.18 3.44 3.67 3.90 4.10
120 1.98 2.48 2.84 3.13 3.38 3.62 3.83 4.02
00 1.96 2.45 2.79 3.08 3.32 3.55 3.75 3.94

SOURCE : Dunn [1959]. Reprinted with permission from the Journal of the American

Statistical Association. Copyright (1959) by the American Statistical Association. All
rights reserved.

5.1.3 Confidence Regions

Suppose that d = k. Then from (5.10) we have

l—a=pr|(¢-QLH - <m|,
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where the region (¢ — $) L~ (¢p — @) < m is a solid ellipsoid with center
&, since L [= A(X'X)~1A’], and therefore L™, is positive definite. This
ellipsoid gives us & 100(1 — @)% confidence region for ¢p. However, unless k is
small, say, 2 or 3, such a region will not be computed readily, nor interpreted
easily. In this respect, suitable contour lines or surfaces may be sufficient to
give a reasonable description of the region. For example, if k = 3, the region
may be pictured in two dimensions by means of a contour map as in Figure
5.1; here we have a plot of ¢; versus ¢2 for three values of ¢3. For k > 3
it is still possible to convey the general shape of the confidence region by
using a set of contour maps. However, generally speaking, the contour region
approach is of limited value.

b2

}

ol ¢1
Fig. 5.1 Contour map of the confidence region for ¢’ = (¢1, P2, ¢3).

If our focus of interest is just B, which will usually be the case, we can set
A =1, and ¢ = 3 in the preceding equation to get

l1—a=pr [(,B ~ B)YX'X(8 - B) < pS* F;;n_p] , (5.18)
a confidence ellipsoid for 3.

EXAMPLE 5.1 All the conservative confidence intervals for the 8; [cf. (5.2)]

take the form 3; + tS d;-f, where t is one of t2/%7, (pFZ, )2, or ug . We shall
derive a formula for comparing the rectangular volume R contained within the
joint confidence intervals for all of the 3;, derived from one of the conservative
methods, with the volume E of the confidence ellipsoid for 3.

First,
o1 1/2

R=275"¢" | [[dii |

j=0
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where dj; is the (j + 1)th diagonal element of D = (X'X)~!. Second, the
p-dimensional ellipsoid

(B~ B)X'X(B - B) =pS*Fg,_, =0,
say, has volume (cf. Seber and Wild [1989: p. 679])

Wp/2 p-l

E= ey Lo

=0
where the a_, are the lengths of the semimajor axes. For p = 2, we can compare
Mz? + Aoz3 = ¢ with the standardized form (z2/a?) + (z3/a3) = 1 and we
see that a; = (c/A;)1/2, where }; is an eigenvalue of X'X. Thus, for general

o
wP/2
E=____Cp/2D1/2
L(p/2+1) DI,

since |X'X| = []; A; (by A.L.3).
Comparing E and R, we have

E P/ 2pp/2 (F&,_ p)p/2 |DJ1/2
R~ 2oT(p/2+1) t»  (W;d;;)Y/*

(5.19)

Draper and Smith [1998: p. 143] express {D]*/?(I1;d;;)~*/2 in the form |W|*/2,
where Wiy = dij/(diidjj)1/2. O

5.1.4 Hypothesis Testing and Confidence Intervals

An interesting relationship exists between the set of confidence intervals (5.12)
and the F-statistic for testing the hypothesis H: ¢¢ = c. From (5.9) we see
that the F-statistic is not significant at the a level of significance if and only

if
b —c)'L1(¢p —c
po @G g

which is true if and only if ¢ = ¢ is contained in the region (¢ — ¢)L (¢ ~
@) < m [by (5.10)], that is, if and only if h'c is contained in (5.12) for every
h. Therefore, F' is significant if one or more of the intervals (5.12) does not
contain h'c, and the situation can arise where each interval for ¢; contains
c; (t=1,2,...,k) but H is rejected. For example, when k = 2 the separate
intervals for ¢; and ¢2 form the rectangle given in Figure 5.2, and the ellipse
is the region (¢ — @)'L~1(¢ — ¢) < m; a point ¢ that lies within the rectangle
does not necessarily lie within the ellipse.

Usually, interval estimation is preceded by an F-test of some hypothesis
H: AB = c. However, when a preliminary test is carried out, the appropri-
ate probability to be considered is now the conditional probability pr{n; E;|F
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Confidence

\<'ellipsoid

I
] \
)

S~

Y

By

Fig. 5.2 Separate confidence intervals for So and S1 compared with a joint confidence
region.

significant], which may be greater or less than the unconditional probability
pr[N; E;] (Olshen [1973]).

A null hypothesis is inevitably false, as, for example, two unknown param-
eters are never exactly equal. The question is whether there are sufficient
data to detect the differences. Confidence intervals should therefore always
be constructed.

EXAMPLE 5.2 Suppose that wetest H: f; = fy = :-- = b4 =0(d <
p — 1). We then should examine each 8; (j = 1,2,...,d) separately using
the confidence intervals BJ— * 65 provided by any one of the three methods
given above. However, the maximum modulus intervals would normally be
preferred if they are the shortest. We hope that those intervals that do not
contain zero will indicate which of the 3; are significantly different from zero,
and by how much. We can also obtain intervals for all linear combinations
Ef=1 a;3; using Scheffé’s method. a

EXAMPLE 5.3 Suppose that we wish to test H : 1 = B2 = -+« = Bg41.
Subsequent to the test, we will be interested in all &k [= d(d+1)/2] pairs 8; - B;
(i < 7). For example, if d = 4, n — p = v = 20, and o = 0.05, then k& = 10,
(dFg,)}/? = 3.39, t2/(2%) = 316, and ug, = 3.114, so that the maximum
modulus intervals are still the shortest. Now H can also be written in the
form ¢; = Bi— Bu41 = 0( =1,2,...,d), so that Scheffé’s method will provide
confidence intervals for all linear combinations

d+1

d d
S i = hufl - (Zh ) fon =S o (520)
i=1 =1

i=1
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where Ef:ll ¢; = 05 thus every linear combination of the ¢; is a contrast in
the ;. By reversing the argument above we see that every contrast in the 8;
is a linear combination of the ¢;. Hence Scheffé’s method provides a set of
multiple confidence intervals for all contrasts in the 8; (i =1,2,...,d+4+1). D

5.2 CONFIDENCE BANDS FOR THE REGRESSION SURFACE

5.2.1 Confidence Intervals

Once we have estimated 8 from n observations Y, we can use the predictor
Y =ﬂ0+/§1$1 +"'+ﬁp-—-13-7p-—1 (= x!/@: Sa‘Y)
for studying the shape of the regression surface

f(551a372s---:33p—1) = Po + frzy 4 --- +ﬂp—-1$p-—1 = x’ﬂ

over a range of values of the regressors z;. In particular, we can construct a
two-sided 100(1 — @)% confidence interval for the value of f at a particular
value of x, say, xo = (1,2Zo1,Zo02,.-.,%0,p—1)", using Vo = x{,fi. Thus from
(4.17), we have the interval

Yo + t4/ DS/, (5.21)

where vp = x5(X'X) " 1xo.

If we are interested in &k particular values of x, say,x =a; (j = 1,2,...,k),
then we can use any of the three methods discussed in Section 5.1 to obtain &
two-sided confidence intervals for the a;3 with a joint confidence probability
of at least 1 — a. (Application of the Bonferroni and the Scheffé intervals to
this problem seems to be due to Lieberman [1961].)

5.2.2 Confidence Bands

If we are interested in all values of x, then using Scheffé’s method we have
from (5.15) that x’8 lies in

x'B & (pF2, ) 2 S{x'(X'X)1x}1/2 (5.22)
for all x = (1,":1:1,:1:2, ...yZp—1)', with an exact overall probability of 1 — a.

(Although the first element of x is constrained to be unity, this does not mean
that the appropriate constant in (5.22) should now be [(p — 1)Fg , ,,_)]'/%;
the interval is invariant under a scale change of one element of x; cf. Miller
[1981: pp. 110-114]). The expression above gives two surfaces defined by the
functions f° and fy, where

f(m1:$2: s $$P—1)
fo(:l‘.l,:l?z, v ,.'Bp_]_), all T1,T2y0.. ,in_l]
1—-cq.

pr{fO(z1, 22, .. ., Tp1)

v v
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The region between 7° and fp is commonly called a confidence band. As
pointed out by Miller [1981], the band over that part of the regression surface
that is not of interest, or i8 physically meaningless, is ignored. This means
that the probability associated with the regression band over a limited region
exceeds 1 —a, and the intervals given by (5.22) will be somewhat conservative.
The question of constructing a confidence band over a limited region, with an
exact probability 1 — a, is discussed by Wynn and Bloomfield [1971]. A
solution is given by Halperin and Gurian [1968] for the case of an ellipsoidal
region centered on the vector of means (Z.;,T.2,...,Z,p—1). Various solutions
for the straight-line case are considered in detail in Section 6.1.3.

Scheffé’s method described by (5.22) is a special case of a more general
procedure developed by Bowden [1970]. Let

P 1/m
(Z ]ai]’") 1<m < oo

=1

(&l
= maxla| m= oo
then, as Bowden proves,
pr[]x'B — x'B| < S|[x||mz%, all x] —1-o, (5.23)

where z% is the upper « significant point of the distribution of ||(3 ~ 8)/S||m.
By taking m = 1, 2, or oo and varying the value of x, different types of
regression bands can be obtained; when p = 2 (the straight-line case}, the
band has uniform or trapezoidal width (m = 1), or is hyperbolic (m = 2), or
is bounded by straight-line segments (m = oo0). However, it transpires that
for p > 2, Scheffé’s method (m = 2) and its corresponding one-sided analog
have certain optimal properties (Bohrer [1973]). When k is large it is natural
to ask whether the maximum modulus ¢-intervals of (5.7) are still shorter
than the intervals given by the confidence band of (5.22), particularly when
k is much greater than p. Hahn [1972] has calculated

r = Ui m—p (5.24)
(PFg,_p)/? '

the ratio of the interval widths, for a = 0.1, 0.05, 0.01, and for different values
of k, p, and n — p. Table 5.3 gives the maximum value of & (for a = 0.05,
p=2,3,5and n—p=25, 10, 20, 40, 60) for which » < 1. Hahn also found
that, for these values of o, r increased slightly as o decreased.

Sometimes a model consists of several regression models combined together
using dummy explanatory variables. For example, suppose that we have J
straight lines

E[Y..?.]:aj-*-’Yja:’ (j=172)"'!'])!

and for all x [= (1,z)] and all j (j = 1,...,J), we want to construct si-
multaneous confidence intervals for x'8; [8; = (a,7;)']. An obvious method
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Table 5.3 Maximum Value of k for which r < 1 [r is defined by equation (5.24)],
a = 0.05.

n—p p=2 p=3 p=2>
5 3 6 20+
10 3 8 20+
20 3 8 20+
40 3 9 20+
60 3 9 20+

SOURCE : Hahn [1972: Table 3]. Reprinted with permission from Technometrics.
Copyright (1972) by the American Statistical Association. All rights reserved.

would be to allocate a/J to each model, as with the Bonferroni method, and
then apply Scheffé’s method to each of the J individual models. We can write
each individual model as a regression model with regression matrix X, and
po (= 2) parameters and then combine them using dummy explanatory vari-
ables, as demonstrated by equation (1.2), to obtain a regression model with p
(= 2J) parameters. Then, for the combined model, S? is independent of each
B;, so that we can use S? to obtain a confidence ellipsoid for 8;. Thus from
(5.22) it follows that x'3; lies in

x'B; & S{pp X' (XpXo) 'x F/J_ Y/ 2 forallx € Ry, mo =1,  (5.25)

Po,n—p

with probability at least 1 — o/J. Using (5.3) we can combine all J models to
obtain a probability of at least 1 - > a/J (= 1 — a) that the statement above
is true for all j = 1,2,...,J with probability at least (1 — o). This method
is essentially that proposed by Lane and DuMouchel [1994]. They compare
the intervals given above with those obtained by the less efficient procedure
of using the combined model and constructing Scheffé intervals for all x'3,
where now x € R,,.

5.3 PREDICTION INTERVALS AND BANDS FOR THE RESPONSE

5.3.1 Prediction Intervals

In the preceding section we discussed the problem of predicting the value of a
regression surface x'3 at a given value of x = Xg, say. However, in practice, we
are generally more interested in predicting the value, Yj, say, of the random
variable Y, where

Yy = x{,ﬁ + €g-
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If we assume that g9 ~ N(0,02) and that &g is independent of Y, then

ElYy-Yy] = x,8-xi8=0,
var[¥p — Yo] var[Yp] + var[Ys]
o?x((X'X) 'xg + 0
= o%(wo + 1), (5.26)

i

say, and (Yp —Yp) ~ N(0,02%(vg +1)). We can therefore construct a t-statistic
and obtain the 100(1 — )% confidence interval for ¥, given by

Yo & t5/D7S (vo + 1)!/2, (5.27)
which may be compared with the interval (5.21).

If we are interested in predicting Y for k different values of x, say, x = a;
(1 =1,2,...,k), then we can use any of the three methods discussed in Section
5.1.1 to obtain k£ confidence intervals with an overall confidence probability of
at least 1 — o. For k£ = 2, Hahn [1972] shows that the intervals

P tug, ,,SE + 1)V (5 =1,2),

where Y7 = a3, o$ = a;(X'X) 'a;, and
b= a] (X'X) 'a,
{(wg” + Dg” + 132

have an eract overall probability of 1 — c.

Fitted regressions are used for two types of prediction (Box [1966]). First,
we may wish to predict Y in the future from passive observation of the z;’s.
We assume that the system is not interfered with, so that the regression model
proposed is still appropriate in the future. Second, we want to discover how
deliberate changes in the z;’s will affect ¥, with the intention of actually
modifying the system to get a better value of Y. The need to distinguish
between these two situations is borne out by the following example adapted
from Box [1966]. In a chemical process it is found that undesirable frothing
can be reduced by increasing the pressure (z); it is also known that the yield
(Y) is unaffected directly by a change in pressure. The standard operating
procedure then consists of increasing the pressure whenever frothing occurs.
Suppose, however, that the frothing is actually caused by the presence of
an unsuspected impurity (z2), and that unknown to the experimenter, an
increase in concentration of impurity causes an increase in frothing and a
decrease in Y. If z; and z3 are positively correlated because an increase in
pressure causes an increase in impurity, then although Y is unaffected directly
by changes in z;, there is a spurious negative correlation between Y and z;
as Y and xz; are both affected by z;, but in opposite directions. This means
that there will be a significant regression of ¥ on z;, and the fitted regression
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can be used for adequately predicting Y, provided that the system continues
to run in the same fashion as when the data were recorded. However, this
regression does not indicate the true causal situation. We are mistaken if we
think that we can increase Y by decreasing z;.

5.3.2 Simultaneous Prediction Bands

Carlstein [1986] gives two examples where the k predictions mentioned in the
preceding section are at unknown values of x = a; (j = 1,2,...,k). In this
case what is needed is a prediction band for each of & future values of Y.
Writing Y'(9) = Y{9)(x), Carlstein [1986] proves the following theorem.

THEOREM 5.1 The event that Y lies in the interval
x'B + S{(p+ k)1 +x'(X'X) " 'x)F% 1 n_p}/?

forallx € R, , withzo =1, and all j = 1,2,...,k has probability at least
(1 - a).

Proof. Let YU(x) = xX'B + eny; (j = 1,...,k), where the €,,; are inde-

pendent of the n initial observations Y. Let €f = (Eny1,---,Entk), b’ =
(ﬁ’ - 6’766): and | )
_f X'X)P 0
W= ( o L)

We recall that S2 = ||Y — X3{|?/(n — p) is independent of 3, and therefore
of b, where b ~ N,,£(0,0*W). Also, W~=1b/o? ~ x§+k, so that

b’W_lb/(p +k)'5,2 ~ Fp+k,'n.--p-

Then arguing as in the theory leading to equation (5.11) yields

1-a = pr{b Wb < S[(p+ k) Fgisnpl/?]
= pr —'H—t—)l———<5[(p+k:)F°' /2 forallhe ® h # 0
— Plmwnyt = ptkn—p Pk '
Now considerlonly those h such that h' = (x/,681,62,...,d¢), where x € R, is
arbitrary and the §;’s are all zero except for a single §; = -1 (j = 1,2,...,k).
Then

h'b =x'8-YW(x) and h'Wh=1+x'(X'X)"!x.

The result follows by noting that we are only looking at a subset of the possible
vectors h, so that (1 — @) is now a lower bound. 0

Carlstein [1986] also gives an alternative method by obtaining separate
confidence intervals for the two components x'3 and €,4; of Y, as in the
following theorem.
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THEOREM 5.2 Lex i < & < . Yhe event that Vi) lies in the interval
x'B £ S{[p x'(X'X)"1x F 2+ RFE )

for all x € R,, with o = 1, and all j = 1,2,...,k has probability at least
(1 - a).

Proof. We use a Bonferroni argument and allocate & to a confidence band for
x’'B, and a — & to k simultaneous intervals for the elements €541,...,€n4k Of
€Q.

Now x'( lies in

x'B+ S{p x"(X'X)"'x FZ,_,}'/*forall x e Ry, 2o =1

with probability (1 — &). Also, since €jeo/0? ~ x2 and is independent of SZ,
we have eleo/kS? ~ Fy n—p and, from (5.11),

l—a+a = pr(laa'gOI < S{kFZ;2 }/? forall a € §Rk)

> pr(lents| < S{EFE,E 1 /2 forall j =1,2,..., k).

The last equation follows by setting a = (1,0,...,0), etc.
The probability statements above are then combined by using pr(AUB) <
1, which leads to

pr(ANB) > pr(dA)+pr(B)-1
= 1-+1—(a—a&)—1
= 1—oa.

[This result is a special case of (5.3) with & = 2.] 0

We note that & can be chosen to give the shortest intervals. Carlstein
[1986] gives an example which demonstrates that neither of the two methods
above is uniformly better than the other.

By noting that

j=1,..k S
= prllenys| < Suf 2 pforallj=1,2,....k,

E —~
l—a+a = perax |n+3l5ukn p]

where uf ,_, is defined prior to equation (5.7), Zimmerman [1987] obtained
shorter intervals by replacing (k:F,f‘;"‘p)l/ 2 by the smaller value u‘;“:;‘_i_p in the
statement of Theorem 5.2.

A third method, proposed by Lane and DuMouchel [1994], is based on the
fact that with zo = 1,

It

xX'B-yW xB ~x'B — en+t;

— /b
= x by,
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where b; = (o — Bo — €ntjs 1 — Bis- -+ Bp-1 ~ Bp—1)"- Replacing W in
Theorem 5.1 by Var[b,], and using (5.25), it can be shown that ¥'() lies in

x'B+S{p(1 + x(X'X)x)F/k Piforallx e Ry, x =1,

p,n—p

and all 1 =1,2,...,k (5.28)

with probability at least 1 — .

Lane and DuMouchel [1994] give some examples where this method is better
than the previous ones. Clearly, intervals could be computed using all the
methods, and the shortest selected. If k, the number of predictions is large
or unknown, another method is to use simultaneous tolerance intervals (cf.
Limam and Thomas [1988] for several methods).

5.4 ENLARGING THE REGRESSION MATRIX

Suppose that our original regression mode] is enlarged by the addition of an
extra regressor z,, say, so that our model is now

G:Y; = fo+ Brizis + -+ BpTip + € (i =1,2,...,n).

What effect will this have on the width of the confidence intervals given in
Sections 5.2 and 5.37 Surprisingly, the answer is that the intervals will be at
least as wide and, in fact, almost invariably wider! To see this, we use the
general theory of Section 3.7 to show that o2v, the variance of the predictor
Y, cannot decrease when another regressor is added to the model. Setting

ﬁp =7 (mzp) =Xp = &, and W = (X,Z),
we can write the model @ in the form

Y = XB+zy+e
Wi 4+ ¢,

and the least squares estimate of 4 is
dg = (WW) W'Y,
For G, the new predictor at (x}, zop) is
?OG = (x6,$0p)3G,
and from Theorem 3.6(iv) in Section 3.7.1,
var(Yog] = (x0,Top) Var[dg)(x4, z,)'
o’ (xg, T0op) (W’W)_l (X0, Top)'

Y (X'X)"! 4+ mkk!, —mk X0
= ag (x{hmOp) ( - mk’, m Top )
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where m = (2’Rz)~! and k = (X'X)~'X’z. Multiplying out the matrix
expression above, and completing the square on k'xg, we have

o? x4 (X'X) " x0 + ma? (k'xo — zop)*
o*x5(X'X) " x¢ (= o)
var[¥p], (5.29)

with equality if and only if zgp = k'xg = 2'X(X'X)"1x,. Since variances and
covariances are independent of a change of origin, we see that the result above
holds even if E[Y] is not equal to either X3 or W§; in this case, both predic-
tors Yog and Yy are biased estimates of E[Y]. We conclude, therefore, that
although we may sometimes reduce the bias and improve the fit by enlarging
the regression model, the variance of the predictor is not reduced. Walls and
Weeks [1969] give an example in which the variance of prediction at a par-
ticular point is increased tenfold when the model is enlarged from a straight
line to a quadratic. If we use the mean-squared error (MSE) of prediction as
our criterion, then the MSE may increase or decrease when exira regressors
are added to the model. Mallows’ C), statistic (see Section 12.3.2), which is
used for comparing different regression models, is based on an “average” MSE
criterion. By setting zqp = 0 and setting xp equal to the column vector with
unity in the (j41)th position and zeros elsewhere in the theory above, we have
var[,éjg] > va.r[,éj] with equality if and only if z/X(X'X) " xq = 0. Equality
holds if z is orthogonal to the columns of X. However, in general, the variance
of the least squares estimate of ; increases when the model is enlarged. The
lesson to be learned from this discussion is that we should avoid “overfitting”
regression models. See Section 12.2 for further discussion of this point.

MISCELLANEOUS EXERCISES 5

va.r[f’bg]

I

nowv

1. Referring to Section 5.1.1, prove that v = % ; @; 1s the expected number
of incorrect statements. Hint: Let I; = 1 if E; is incorrect, and 0
otherwise.

2. Prove that (1 —a/k)f >1—-a (k> 1).

3. Suppose X, Y, and Z are random variables and a(-) and b(-) are func-
tions. Define

covz[a(Z),b(Z)] = Ez[(a(Z) — E{a(Z)})(b(Z) — E{b(Z)})].
Prove that
cov[X,Y] = Ez[cov(X,Y|Z)] + covz{E(X|Z), E(Y|Z)].
4, Given the predictor V=%+hzi+ -+ Bp_lmp_l, show that ¥ has a

minimum variance of 6% /n at the z point z; =Z; ( = 1,2,...,p—1).
Hint: Consider the model

Yi=ap+ Bi(rin —T4) + -+ + Bp-1(Tsp—1 — T p—1) + €i.
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(Kupper {1972: p. 52])

5. Generalize the argument given in Section 5.4; namely, show that the
addition of several regressors to a regression model cannot decrease the
variance of the prediction V. [Such a proof is, of course, not necessary,
as we can add in the regressors just one at a time and evoke (5.29).]

6. Let Y; = Bo+ Biz; +¢; (1= 1,2,...,n), where the g; are independently
distributed as N(0, 2). Obtain a set of multiple confidence intervals for
all linear combinations agfg + a1 81 (a¢, a1 not both zero) such that the
overall confidence for the set is 100(1 — &) %.

7. In constructing simultaneous confidence intervals for all x'3, explain
why setting o = 1 does not affect the theory. What modifications to
the theory are needed if Gg = 07






6

Straight-Line Regression

6.1 THE STRAIGHT LINE

The simplest regression model is that of a straight line, namely,
ﬂ;:ﬂo—f—ﬁlxi'i-&'i (z'=1,2,...,n),

where the g; are independently and identically distributed as N(0,0%). The
least squares theory was derived in Section 4.3.4 and we recall the following

results:
- 1 Yz2 —nZT
1 1 __ i
Bo =Y - A7,

By = 2% - Y)(z: ~%) _ Y Yi(z: ~7)
PRI >

5= — (T -7 - B Y- 77}

We now use the theory of Chapter 5 to construct various contidence intervals
and bands.

6.1.1 Confidence Intervals for the Slope and Intercept

Using the maximum modulus method of Section 5.1.1 [equation (5.8)] with
aj = (1,0) and a}, = (0,1), we have an ezact overall confidence probability of

139
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1 — o for the following confidence intervals for gy and 8;:

. 2 2

. o 1 2
B1 = Uz,n-—z,ps { S (zi — T)2 } ’

and

where from Exercises 4b, No. 2(a),
—nT
RO
Conservative intervals are obtained by setting p = 0 or using the Bonferroni
method with multiplier ¢2/%.
The two intervals can also be used for jointly testing a hypothesis about

Bo and a hypothesis about §;. However, if we are interested in just a single
hypothesis, say, H: 51 = ¢, then we can use the usual ¢-statistic,

T = ﬁl &
S/ (i — T)2}/2’
and reject H at the o level of significance if |T'| > tf.}_/?“. This statistic can

be derived direci;,ly from the fact that ,@1 ~ N(B1,0%] Y (z; — T)?) and S? is
independent of 8;. The F-statistic T2 is given by (4.19).

(6.2)

6.1.2 Confidence Interval for the -Intercept

When E[Y] =0, 0 = By 4+ B1z and the z-intercept is ¢ = —fy/F1. We now
derive a confidence interval for ¢ using a technique due to Fieller [{1940].
Let

= —¢+T; | (6.3)
then E[Y — 641] = 0. Also,

cov]V,51] = cov[a'Y,b'Y]
= a'Var[Y]b
= o%a'b
o2 >z — )
>.i(zi —T)2n

= 0,
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S0 that
var [(Tf' - 5&1)] = var[Y] + 62 var[3;]

= ﬁ{%+2wﬁfw}

= o?w,

say. Now Y — 84, is of the form ¢'Y, so that it is univariate normal, namely,
N(0,0%w). Also, S? is independent of (8y, 81) [Theorem 3.5(iit), Section 3.4]

and therefore of ¥ — 68; [= Bo + 61 (Z — 6)]. Hence, by the usual argument
for constructing ¢-variables [see equation (4.16)],

Y - 65 .
TSJw e

and a 100(1 — @)% confidence set for é is given by

T =

T2 < (t(l—g)a)z - Fﬁn—z'

n

It transpires that this set reduces to the simple interval d; < é§ < dj, where
d; and dy are the roots of the quadratic

. S2Fe — . —
d? {ﬁf > (:a,-lf_;)Z} — 2dY 5 + (Y2 ~ %SzFffn_z) =0 (6.4)
if and only if the coefficient of d? in equation (6.4) is positive (i.e., the line is
not too flat). In this case, from equation (6.3), the corresponding interval for
¢ is [T — dg, T — d;], and é = —fo / G lies in this interval.

We note that ¢ is the ratio of two correlated normal random variables; the
exact distribution of such a ratio is given by Hinkley [1969a).

EXAMPLE 6.1 A model that often arises in animal population studies (cf.
Seber [1982: p. 298]} is the following:

ElY] = y(N-q)

= YN -z
( = ﬁO + ﬁlms S&Y)-
In such applications we are interested in finding a confidence interval for the
population size N = —f8o/b:. O

6.1.3 Prediction Intervals and Bands

The fitted regression line is

~

Y = Bo +B1$
?+Bl($ -—f),
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which passes through the point (Z,Y). From the general theory of Section
5.2 we see that we can use the prediction Yy = x{,[:} = (l,mo)f') to obtain a
100(1 — @)% confidence interval for E[Yp] = (1, z9)B, the expected value of YV
at £ = zo. This interval is ‘

Yo+ /9%S /v, (6.5)
where, from equation (6.1),

Y9 = 'X&(X’X)—IXO
3. z2 — 2zgnT + nzd
n) (z; — )2
S22 — nZ? + n(xo — T)2
n ) (zi — T)?
1 To — T)?
S . ) (6.6)
n o >(zi—7T)
(Here vy can also be obtained directly—see Exercises 6a, No. 1.) We note
that vp is & minimum when z¢ = T; the farther we are from Z, the wider our
confidence interval.
If we require k prediction intervals, then our critical constant tz/_ 22 in (6.5)

is replaced by t:i (22 ®), (2F2"fn_2)1/ 2 and Uy o for the Bonferroni, Scheffé,
and maximum modulus methods, respectively. However, if k£ is unknown
or is so large that the intervals are too wide, we can construct a confidence
band for the entire regression line and thus obtain an unlimited number of
confidence intervals with an overall confidence probability of at least 1 — a.
From equation (5.22) this infinite band is the region between the two curves
(Figure 6.1)

) . 1/2
y=7+ﬂ1(w_z)i,\s{%+£fmi __‘f’);z} , (6.7

where A = (2F§,,_;)'/2. This band, commonly called the Working-Hotelling
confidence band (Working and Hotelling [1929]), is of variable vertical width
d, d being a minimum at the point (Z,Y). The intervals obtained from this
band are simply the Scheffé F-intervals.

An alternative confidence band with straight sides (Figure 6.2} has been
proposed by Graybill and Bowden [1967], namely,

— A _ o 1 T—T |
where s2 = > (z; — £)2/n. This band has two advantages over (6.7): (1) it

is easier to graph, and (2) it has a smaller average width, although this is
misleading since the average is taken over the entire band, including extreme
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Fig. 6.1 Working-Hotelling confidence band.

values of z. However, Dunn [1968] and Halperin and Gurian [1968: p. 1027]
show that for a = 0.05, (6.7) provides narrower intervals than (6.8) when z
satisfies (approximately)

Since, in practice, one would not expect the experimental range of |z — Z|
to exceed 5s;, the Working~Hotelling band is preferred. A similar conclusion
holds for 90% confidence levels (o = 0.1). Both bands can be derived as special
cases of a general procedure given by Bowden [1970] [cf. equation (5.23) and
the following discussion].

The problem of obtaining an exact confidence band for the regression line
when z, is restricted to the finite interval [a, b] was first solved by Gafarian
[1964]). He showed how to construct a band of uniform width 26 and provided
appropriate tables for the case T = %(a + b) and even n. Miller [1981: p. 121]
gave a useful discussion of this method and pointed out that the two conditions
necessary for the use of the tables are not very restrictive: The interval {a, b]

Fig. 6.2 Graybill-Bowden confidence band.
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is usually sufliciently ill-defined to permit adjustment so that T is the middle
point, and interpolation in the tables gives approximate results for odd values
of n. However, Bowden and Graybill [1966] later provided tables for any finite
interval [a, ] and even n. Their tables can also be used for computing exact
trapezoidal confidence bands, which may be more appropriate than uniform
width bands when T lies outside {a, b].

Dunn [1968] provided a truncated modification of (6.8) which gave a con-
servative confidence band. Halperin et al. [1967] and Halperin and Gurian
[1968] gave an exact confidence band of the form (6.7) but with a different
value of A, and truncated at £ = a and £ = b. However, their tables can only

be used for the case T = % (a. + b); A is tabulated in Halperln et al. [1967] for
different values of @1, where

(b—a)*

@=1+ 4s2

Wynn and Bloomfield [1971], however, tackled the problem from a different
viewpoint and provided tables (reproduced in Appendix C.3) for any interval

[a,b]. One simply calculates a “standardized” version of the interval width,
namely,

_ (b—a)s;
[{s2+ (a~7F)2}{s2 + (b —5)2}]1/2 + 52 + (a —Z)(b — T)

(6.9)

and looks up the corresponding value of A in Appendix C.3. When T = 1(a-+b)
we note that ¢ = (b—a)/2s; and Q = 14c?, thus linking the tables in Halperin
et al. [1967]) with Appendix C.3. Letting @ — —o0, b — 00, we have ¢ = oo and
A = (2F§,_,)!/?, as expected. Calculations given by Halperin and Gurian
[1968] suggest that this modification of the Working—Hotelling band generally
provides narrower confidence intervals than either the uniform or trapezoidal
bands mentioned above. In conclusion, therefore, we recommend the general
use of (6.7) but with X obtained from Appendix C.3 in the case z € {a, b).

Finally, we mention one-sided confidence intervals. Bohrer and Francis
[1972] give an (upper) one-gsided analog of (6.7), namely (modifying their
model slightly so that z € [a,b] instead of z — T € [a, b]),

: A 1 T—7 1/2
1——o:=pr{ﬁo-f-1f31-'lc S‘;‘y‘+,61(w—f)+)\5-[;;+ S (z: _3;-)2] ’

all z € [a, b]}, (6.10)

where A (= c# in their notation) is tabulated for different n, ¢* (= arctan[(b—
Z)/sz]|—arctan[(a—Z)/sz]), and a (= 1—« in their notation). Lower one-sided
intervals are obtained by reversing the inequality and replacing A by —A.
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6.1.4 Prediction Intervals for the Response

From the general theory of Section 5.3, we can use the predictor ¥, to obtain
a 100(1 — @)% confidence interval for the random variable Yy, namely,

Yo £ 0/D%5(1 + vo)'/2,

where v is given by equation (6.6). If k intervals are required at z = mgj)
(=1,2,...,k), then we can use

Y £ASA+o? (j=1,2,...,k),
where X is t2/C% | (kFg,_,)1/?, and ug ,_, for the Bonferroni, Scheffé, and
maximum modulus methods, respectively. However, if k is so large that the

intervals are hopelessly wide, or k£ is unknown, then we can use simultaneous
tolerance intervals (see Limam and Thomas [1988] for several methods).

6.1.5 Inverse Prediction (Calibration)

Single Observation

Suppose that we wish to calibrate an instrument, say, a pressure gauge, and
we know that the gauge reading is a linear function of the pressure, namely,

“gauge reading” = fo + P “pressure” + “error”

or
Y = fo + iz + €.

In order to calibrate the gauge, we subject it to two or more (say, n) controlled
pressures z; ( = 1,2,...,n) and note the gauge readings Y;. Using these data
we obtain the ﬁtted equatlon Y = ,80 + ﬁ1a: which can be used for estimating
(predicting) the unknown pressure zo for a given gauge reading Yp. This is
the inverse problem to the one considered in Section 6.1.4 of predicting Y} for
a given z = zo, and it is commonly referred to as the controlled calibration
problem. The case when z is fixed rather than random, which we consider
here, is also referred to as the absolute calibration problem.
A natural estimate of ¢ (which is also the maximum likelihood estimate)
is found by solving the fitted equation Yy = o + B; z, namely,
s Yomh o %-F

b1 B

This ratio-type estimate is biased because, in general,

(6.11)

Blio) 220 =Bl _ o ="
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However, a confidence interval for xo can be constructed using the method of
Section 6.1.2. From equation (5.26), we get

Yo - Yo = Yo — Bo — Brzo ~ N(0,02(1 + w)),
so that .
Yo - YO Yo - Y 61(270 - :B) ~ 1
SYI+tve S+ 0o n=®

where vg is given by (6.6). Since

T =

l1—a = pr [|T[ < t(l/z)a]
=~ pr [Tz < (t(l/Z)a)z]

the set of all values of = satisfying the inequality

{Yo -Y - Bi(z - ﬁ)}2 < A28? {1 + —71; +- Z(j:v: f);z } , (6.12)

with A = t(l/z)a (and A% = Ff,_,), will provide a 100(1 — )% confidence
region for the unknown zg. This set of points, commonly called the discrimi-
nation interval, may give a finite interval, two semi-infinite lines, or the entire
real line (see Miller [1981: pp. 118-119; Figures 2, 3, and 4] and Hoadley
[1970]). One obtains a finite interval if and only if 82 > X252/ S (z; — %)%
that is, the F-test for 81 = 0 is significant, which we would expect for any
sensible calibration curve. In this case the interval contains the estimate Zg

and is given by [d; + Z, dz + Z], where d; and d; are the (real unequal) roots
of

~ 2 2 -~ —

+ {(Y0 —Y)? - \25? (1 + —le) } = 0. (6.13)

[This equation follows from (6.12) by setting d = z — Z.] If Z, does not
lie in {d; + Z,d; + Z], then the confidence region for zy is the union of two
semi-infinite lines. However, if (6.13) has no real roots, then the region is the
entire real line. The confidence region defined by (6.13) can also be derived
by inverting a test of the hypothesis z = zo (Cox and Hinkley [1974: p. 268)).
A bootstrap approach to the problem is given by Jones and Rocke {1999].
The theory above is readily extended in two directions. If k values of

Yy are observed at different values of zg, then one simply substitutes Y(J )
(i =1,...,k)in (6.13) and sets A equal to £2/2%) and uf ,,_o for the Bonferroni

n—2 ,
and maximum modulus intervals, respectively. Unfortunately, this method
cannot be used when k is unknown. Such will be the case in calibration
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problems where the estimated calibration line is used to “correct” an unlimited
number of future readings taken with the instrument; for example, in bioassay
a standard curve is constructed for making future assays (discriminations).
If k& is large, A may be so large as to render the discrimination intervals
useless. However, when k is large or unknown, several simultaneous confidence
intervals can be constructed (see Mee and Eberhardt [1996]).

Krutchoff [1967, 1969] resurrected an alternative estimate Zy, called the
inverse estimate, obtained by regressing z on Y (even when z is not a random
variable) and then predicting zq from Yj in the usual manner. There has been
an extensive debate on the relative merits of Zp and Zp in the literature, and
details are given by Osborne [1991]. It is clear that &g is satisfactory provided
that ﬁl is not too small, as already mentioned above, and the properties of
Zp should be derived conditional on this requirement. Hoadley {1970] showed
that Zo is a Bayes solution with respect to a particular prior distribution on
zo. He also gave a confidence interval based on £y when the particular prior
could be justified. For further comments on this issue, see Brown [1993: pp.
31-33].

In practice there is not a great deal of difference between &y and g when

the data are close to a straight line [i.e., when r? is large; see Exercises 6a,
No. 4].

Replicated Observations

Suppose that we have m replications Yp; (7 = 1,2,...,m; m > 1), with
sample mean Yy, at the unknown value z = zg. In this situation we have
two estimates of o2, namely, S? and Y .(Yo; — Yo)?/(m — 1), which can be
combined to give a confidence interval for zo as follows. Following Graybill
[1961: pp. 125-127],let U = Yo — ¥ — B1(x0 — 7). Then E[U] = 0,

1 1 (220—52
=g2d = - = g2
var[Ul = o { + =+ S (s = ,3_:)2} atr,

say, and U/oy ~ N(0,1). If

Vi= 3 [Vi—¥ - fiwi - )] = RSs

=1

and
™m

Vo = Z(ij —Yo)?,
j=1

then U, Vi, and Va2 are mutually independent and

(n+m-—3)2 Vi+VW
o2 = o2 ~ Xﬁ—2+m—1- | (5-14)
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Therefore,
r = You
G/o
U
T U1 1 mezp e
=+ =+ =t
{ n E(mé*ﬂ?)z}

T T2 2.2 (1 1 —

+{(Yg——Y) ©eG (m+n)}_ , (6.16)
where p? (t&f_{i{%)z = Fpn4m—3- We note that 62, based on n +m — 3
degrees of freedom has a sthaller sampling variance than S? with n—2 degrees
of freedom; also, u? < A2. These two facts imply that (Cox [1971]) (1) the
intervals given by (6.16) will, on the average, be narrower than those given
by (6.13), and (2) the coefficient of d? in (6.16) is generally larger than that
in (6.13), so that the probability of obtaining a finite confidence interval for
zg is greater when there are replications of Yjp.

Using a profile likelihood approach, Brown [1993: pp. 26-30] showed that
the profile likelihood is a monotonic function of (6.15).

EXERCISES 6a

1. In ﬁttmg the straight line Y; = ﬁo + B1Zi + € (i =1,2,...,n), prove
that Y and ﬁl are uncorrelated. If YE, ﬁo -+ ﬁla:o, deduce that

it = {1+ =B

2. Using the notation of Section 6.1.2, prove that qf; =—PF / B is the max-
imum likelihood estimate of ¢.

3. Given a general linear regression model, show how to find a confidence
interval for the ratio aj /a8 of two linear parametric functions.

4. Using the notation of Section 6.1.5, show that when T = 0,

i:o*-:Eo ::1_7'2
Zo ’

where r is the correlation coefficient of the pairs (z;,Y;).
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6.2 STRAIGHT LINE THROUGH THE ORIGIN
In many situations it is known that E[Y] = 0 when z = 0, so that the
appropriate regression line is Y; = f1z; + £;. The least squares estimate of 5

is now
2 Ya%i

szf ,

B =
and the unbiased estimate of o2 is

= (Tv-BY4). (6.17)

Because ) ~ N(81,02/ Y z?), a t-confidence interval for 8 is

~1/2
Blztti,lﬁ’“s( mg) . (6.18)

We can use the predictor 17'0 = 0B to obtain a confidence interval for
E[Yo] = 0B at ¢ = g, namely,

Vo £ 14/ S /s, (6.19)

where vo = 3/, z?; this interval gets wider as we move away from the
origin. Since f; lies in the interval (6.18) if and only if 298, lies in (6.19) for
every T, a 100(1 — a)% confidence band for the entire regression line is the
region between the two lines,

y = prx £t/ gy (Z 2)

Prediction intervals for Yy, or k& values of Yj, are obtained as in Section 6.1.4;
however, v is defined as above and the appropriate degrees of freedom are
now n—1 instead of n—2. Inverse prediction is also straightforward. Following
the method of Section 6.1.5, we find that zg is estimated by Zo = Y5/51, and
the corresponding confidence interval for xg is given by the roots of

1/2

- )\2 2
(51 Zi) 204 Yy + Y7 ~ A2S% =0, (6.20)

where ) ="t1(n1 / f‘;)a and S2 is given by (6.17). For m replications Yp; at = = x,
the corresponding quadratic is (cf. Cox {1971))

20.2 —0 26'2
(ﬁl Zmz) 20/1Y0 + ¥ - ”m =0,

where p = t{/2%,, and

O = {Z(Y Bra:)? +Z Yo; = ¥o)’ }
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6.3 WEIGHTED LEAST SQUARES FOR THE STRAIGHT LINE

6.3.1 Known Weights

Let Y; = o+ f1zi +e; (1 = 1,2,...,n), where the g; are independently
distributed as N(0, 2w, L, and the w; are known positive numbers. Then,
from Section 3.10, the weighted least squares estimates 8¢ and 7 of B9 and
b1, respectively, are obtained by minimizing Y w;(Y; — 8o — f12:)2. Therefore,
differentiating this expression partially with respect to 89 and §1, we have

Be Zwi + B1 Zwim'i = Z'ini (6.21)

Bs Z'wimi + By Z'w,;:uf = Zin,;:c,;. (6.22)

Dividing (6.21) by Y_ w; and defining the weighted means Y, = Y, w;Y;/ S_w;,
etc., we have

and

B3 =V — T (6.23)
Substituting (6.23) in (6.22) leads to

Y wiYizi — S witi¥ w
S w;z? — Y wiTi Ty,
Zwi(Yi - ?w)(mi - _fw)
E'wz’(fﬂi - -fw)z .

By =

From the alternative expression

it readily follows that
0.2
S wi(zT; ~ Tw)?
Using the general theory of Section 3.10, we can show that

Sz = 1 (S wi [¥i = Vo — b1 (i — 70)]" } (6.25)

n—2
= n 1_ 9 {Zwi(Yi - ?w)z - (ABDZ Z'wi(mi - ?E_w)z} (6.26)

is an unbiased estimate of o2, and a 100(1 — )% confidence interval for g, is
given by

var[f]] =

2 1/2
T [ Su ] (6.27)

Yowi(Ts — Fy)?
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When g = 0 and $; = 8 we have, from Example 3.9 in Section 3.10,

g = S wYiz;
Yowiz?

and the appropriate confidence interval for 8 is now

5*:}:,5(1/2)&( S2, )1/2

(6.28)

where

§2 = 2 [T wy? - () wia?}. (6.29)

n—1
[We note that these formulas follow from those given by equations (6.24)
to (6.27) by setting Y, = Z,, = 0 and replacing n — 2 by n — 1.] Under the
normality assumptions, 8* is the maximum likelihood estimate of 3. However,
Turner [1960] has shown that for certain w;, 8* can still be the maximum
likelihood estimate when Y is not normally distributed (cf. Exercises 6b, No.

1). Inverse prediction {discrimination) for this model is discussed by Cox
[1971].

6.3.2 Unknown Weights
Let

Y, = 6:+&
= fo+ iz +eEi i=12,...,n),
where the g; are independently distributed as N(0,vg(6;)); here v = ¢2, g is

a known positive function, and the weights w; = 1/g(6;) are now unknown.
Two methods are available for estimating 8¢ and 3.

Maximum Likelihood Method
If g; = g(8;), then L, the logarithm of the likelihood function, is given by

1 1 N1 (Y; = Bo — B1z:)?
L= 2nlog 27 5 ;log('ug, 5 21: " .

i

Now

Ologg _ 1 8y _ B

a6 g 00 ’

say, so that

g Adg 086

o 6 oh "
and

99 = @ . —(?—9— = ghx.
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The maximum likelihood estimates Bo, B;, and ¥ are obtained by solving
OL/8Bg = OL/0B, = OL/Ov = 0, namely,

Iy 1 hi(Y: — 6;)° Y:i-6) | _
R N

- ; Ug;
1 ;1 hizi(Y; — 6;)2 z:(Y; ~ 6;) _
2;”‘*“’”2;{ 7 +¥ g =0,
and ( -
1n 1 Y;—e.a) _
T AP ekl

where ;‘.é’ Gi,_ andﬁz- are functions of Bo and Ai. Multiplying through by 7,
setting ¥; = 0; = o+ B1Z;, and w; = 1/§;, we can reduce the equations above
to

Bo Zﬁu + 5 Z@ziﬁz = Z“JHY;’ + % E hs [tD,-(Y;; —Y)? - 'D'] , (6.30)
Bo Z?ﬁiﬂ?z’ + 5 Z Wix; = ZtﬁzmzYz + % E hix; [tﬁi(Yi ~ V)2 - 51(6.31)

and )
== (Y- Y (6.32)

Equations (6.30) and (6.31) may be compared with (6.21) and (6.22). There-
fore, given initial approximations to Sy and 8, (say, unweighted least squares
estimates), we can evaluate the corresponding values of w;, h;, and v, solve
(6.30) and (6.31), and obtain new approximations for By and $1. This pro-
cess is then repeated. When n is large, the variance—covariance matrix of the
maximum likelihood estimates is approximately |

(ol -elaf] ol )

313{2) 3B 3ﬁ1 _350 3’0_
9L 82 [ 82
- [650 aﬁl] - [5523?] ~% | 3800

82L 8L 82L
\_E[aﬁoav] "E[aﬁlav] _E[‘az_v] J

( Zai Zfﬂiaz’ %th \—1

i

1
2
~ v E T E T30 52 hiz; ,
i i

i

52 5o 5(5)

1
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where

1
g{l + -éh%v

_ 1)l (5_%;)2 |
9i 2g9; \ 90;
Frequently, the second term of the preceding equation is small. For example,
if g; = 62, then the second term is 2v, which can be neglected if v is much

smaller than % In this case the variance—covariance matrix for 89 and 8, is

approximately .
> w; Smpw;  \ '
which is the variance~covariance matrix of A5 and 3y in Section 6.3.1.

The treatment above is based on Williams {1959: pp. 67-70}, although with
the following differences: We have worked with ¢2 instead of o, and Williams’s
g2 is our g; (his g; may be negative).

)
.
1

Least Squares Method

This technique consists of estimating the weights w; [= 1/g(Bo + B1%;)]
from trial estimates of Sy and f;, say, the unweighted least squares estimates
(which are unbiased), and then solving equations (6.21) and (6.22) for new
estimates of 8o and ;. These new values may be used for recalculating the
wy, and the process can be repeated. Williams [1959] suggests that only two
cycles of iteration are generally required, as great accuracy in the weights is
not necessary for giving accurate estimates of §g and ;. Ignoring the fact
that the estimated w; are strictly random variables, the variance—covariance
matrix of the least squares estimates is given approximately by (6.33). By the
same argument, approximate tests and confidence intervals can be obtained
using the theory of Section 6.3.1, but with the w; estimated. For this reason,
and for computational simplicity, the least squares method is often preferred
to the maximum likelihood approach.

EXERCISES 6b

1. Let Y3,Y5,...,Y, be independent random variables such that for 7 =
1,2,...,n,
ElY;| X = z;] = frz;
and
var[Yil X = z;] = o?w] " (w; > 0).

(a) If the conditional distribution of Y given z is the Type III (scaled
gamma,) distribution,

1 _
flylz) = 55—y’ texp(~y/a.) 0<y<oo, p>0,
amI‘@)
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whete oy is a function of z, and w;” 1 = z2, prove that the maximum
likelinocd estimate of §; is also the weighted least squares estimate.

(b) If the conditional distribution of Y given z is Poisson, and w} ! =
z;, show that the maximum likelihood estimate is just the weighted
least squares estimadte.

(Turner [1960])

2. Given the model YV; = pByz; +¢; (£ = 1,2,...,n), where the ¢; are
independently distributed as N(0, o%w;!), w; > 0, show how to predict
zg for a given value Y of Y. Describe briefly a method for constructing
a, confidence interval for zg.

3. Given the regression line
Yz'“—‘50+13155i+€7: (‘i=1,2,...,'n.),

where the g; are indépendent with E[¢;] = 0 and var[e;] = 0?z2, show

that weighted least squares estimation is equivalent to ordinary least
squares estimation for the model

y |
Sopi s,

] 3

6.4 COMPARING STRAIGHT LINES

6.4.1 General Model
Suppose that we wish to compare K regression lines
Y =oar+Brr+e (k=1,2,...,K),
where E[¢] = 0, and var[g] (= o2, :say) is the same for each line. If we are

given ny, pairs of observations (zgi, Yii) (¢ = 1,2,...,n%) on the kth line, then
we have the model

Yki = oy, + ‘Bkﬂ:ki_+ Eki ('i = 1,23 se }nk)a (6‘34)

where the £i; are independently and identically distributed as N (0,0%). Writ-
ing

Y’ = (Yll:Y123"':Y1'n11'- -)YKIQYK2,'°'3YKHK)’
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etc., we have Y = X + ¢, where

(1 0 = 0 au 0 0\
1 0 -+ 0 ma O 0
1 0 -+ 0 Ty O - 0 (al \
0 1 0 0 oy 0 ay
0 1 0 0 a9 0
o
X’Y= PR ren e . e “ae . e .. . ﬁK
0 1 -+ 0 0 @ -+ O A
2
0 0 - 1 0 0 - xx \ B/
0 o .- 1 0 0 o Tio
\o 0 - 1 0 0 - mgn,{)

(6.35)
Here X is an N x 2K matrix of rank 2K, where N = Ef=1 Nk, SO that we can
test any hypothesis of the form H: A~ = c using the general regression theory
of Chapter 4; examples of three such hypotheses are considered below. With
a regression software package we do not need to derive any algebraic formulas.
All we need to do is identify the X matrix corresponding to each hypothesis
and then compute RSS for that model. However, it is informative to derive
least squares estimates and residual sums of squares for each hypothesis, and
such derivations are relegated to Exercises 6c. The following examples can
also be handled using the analysis of covariance method (Section 8.8).

EXAMPLE 6.2 (Test for parallelism) Suppose that we wish to test whether

the K lines are parallel; then our hypothesisis Hy: fy =, =--- = Bk (=8,
say) or B1 — Bx = B2 — Bk = -+ = Bk -1 — Bk = 0; in matrix form this is
1 0 o - 0 -1
0 1 o -+ 0 -1 a )
Ol v o il il Ll 8 =

0 0 0 0 1 -1

or Ay = 0, where A is (K — 1) x 2K of rank K — 1. Applying the general
regression theory with ¢ = K — 1, n = N, and p = 2K, the test statistic for
Hl is
Fe (RSSH, — RSS/(K — 1)

- RSS/(N — 2K)

To obtain RSSy, we see that when H, is true, the design matrix, X; say, is
| obtained by simply adding together the last K columns of X in (6.35). O

EXAMPLE 6.3 (Test for coincidence) To test whether the K lines are co-
incident, we consider Hy: oy = a2 = -+ = ag (= a, say) and 8; = B, =
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-+ = B (= B, say). Arguing as in Example 6.2, we see that H, is of the
form A~y = 0, where A is now (2K —2) x 2K of rank 2K — 2. The F-statistic
for testing Hy is

_ (RSSy, —RSS)/(2K — 2)
- RSS/(N —2K)

To compute RSSy,, we note that the design matrix for H,, X, say, is obtained
by adding together the first K columns of X and then the last K columns.

~ In practice we would probably test for parallelism first and then, if H; is
not rejected, test for Hp (given that H; is true) using

7 — (BRSSH, —RSSm)/(K — 1)
~ RSSy,/(N—-K-1)

If this also is not significant, then we can check this nested procedure using
(6.36) as a final test statistic. O

F

(6.36)

EXAMPLE 6.4 (Test for concurrence with z-coordinate known) Suppose
that we wish to test the hypothesis H3 that all the lines meet at a point
on the y-axis (z = 0), that is, H3: oy = ap = -+ = ag (= a, say). The
F-statistic for testing Hj is then

_ (RSSk, — RSS)/(K - 1)
~ 7 RSS/(N -2K)

The design matrix for Hj is obtained by adding together the first K columns of
X. An estimate of o, the y coordinate of the point of concurrence is obtained
automatically when the model for Hj is fitted.

If we wish to test whether the lines meet on the line z = ¢, we simply
replace Tx; by T — ¢ in the theory above; we shift the origin from (0, 0) to
(c,0). In this case the y-coordinate of the concurrence point is still given by
the estimate of a. O

F

EXAMPLE 6.5 (Test for concurrence with z-coordinate unknown) The hy-
pothesis that the lines meet at z = ¢, where ¢ is now unknown, takes the
form H: ay + Br¢ = constant for k£ = 1,2,..., K, or, eliminating ¢,

) oy — & g — &

" BL-B " Bx—B
Since H is no longer a linear hypothesis, we cannot use the general regression
theory to derive a test statistic. However, an approximate test is provided by
Saw [1966]. O
6.4.2 Use of Dummy Explanatory Variables

Suppose that we wish to compare just two regression lines,

Ykizak-kﬁkxki‘l'ski (k‘_—l,z: i=1:2:"':nk)'
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By introducing the dummy variable d, where

g=1 1 if the observation comes from the second line,
T 1 0, otherwise,

we can combine these two lines into a single model, namely,

Yi = a1+ fizi+ (02 —a)d; + (B2 — f1)(dx)i + &
= Yo+ Mz -+ v2Zi2 + V323 + & (6.37)
where ( Y, i=1.2
VY — L1, £1i)y 2= L, 4,...,M1,
(IIL,,,Y,,) B { (-Tziayzi), t=n1+1,...,n1 +n2
and

d = 0, 1=1,2,...,m,
v 1, i=nm+1,...,n1 + ns.

We note that the model (6.37) is simply a reparameterization of (6.34) (with
K = 2); the parameters oy, a2, 51, and f; are now replaced by v = ay,
i = B, v2o = g — @3, and ya = f» — Bi. For this new model, the various
tests discussed above reduce to the following: vz = 0 (parallelism), v» = 0
(common intercept on the y-axis), and v, = y3 = 0 (coincidence). In the case
of three straight lines, we introduce two dummy variables:

di = 1, if the observation comes from the second line,
1= 0, otherwise;
1, if the observation comes from the third line,
da = .
0, otherwise,
and obtain
Y, = o1+ Pizi+ (a2 —or)da + (a3 —a1)diz + (B2 — B1)(d1z)s

+ (B3 — B1)(d2z)i + €;
= 0 + 71Tl + V2Ti2 + ¥3Ti3 + Y4Ti4 + V5Tis + E4,

say. Further generalizations are straightforward (see, e.g., Gujarati [1970]).
EXERCISES 6c

1. Using the notation of Example 6.2, prove that the least squares estimates

of a; and the common slope # (under the null hypothesis of parallelism)
are given by

and _
Yok 2iYei = Y )(Thi — Tg.) .

b= Yok 2oi(Thi ~ Tk.)?
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Prove that
RSSH, = Z Z(Yki —Y.)? _-52 Z Z($k£ — Ty )%
k i k :

If B; is the least squares estimate of 8 under the general model, prove
that

RSSw, —RSS =) A2 (whi = Tk)> = B2 DD (zhi — Tk.)?.
k i ki

2. In Example 6.3 find the least squares estimates of & and 8 when H, is
true.

3. In Example 6.4 derive the following results.

(a) Show that the least squares estimates of « a_nd B, under Hj, are

given by
(R S
2T 2Ty
_ (Y _ oz ) Yiam TR > YKiCUKz')
and

B, = > (Y — ')z
k >iTh
(b) When the values of = are the same for each line so that ny = n and
Tri = 5 (k= 1,2,...,K), prove that

__ oy
T nKY (z; — %)%’

(k: 132:"')K)-

var{a']

RS8x, = Yzz - (Zzyk*m")z —~( I)ZK Z(mz —2&:—)2.
! ;; * >z} ¢ " > T2

Hint: Y.. and B, are uncorrelated.

4. The examples in Section 6.4 are all special cases of the following problem.
Consider the model

G:E[Y] =X 181 + X2, = X,
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where X; is n X p; of rank p; (i = 1,2). We want to test the hypothesis
H that all the elements of 82 are equal (to B, i.e., B2 = 1,,5)..

(a) If B is the least squares estimate of 8 under H, show that

1, X5(I, = P)Y

B = :
10 X5(I, — P1)Xz1,,

where Py, = Xl(X"le)—lXi.
(b) If B, is the least squares estimate of 8, under G, prove that

RSSy — RSS¢ = (B2 — B1,,)' X,(I, — P1)Y.
(c) If Y is the fitted regression for G, prove that
Yo =P1Y + (I, - P1)X,5,
and
RSSy — RSSg = (1,8 — B2)' X5 (I, — P1)X2(1,,8 — B2).

Hint: For (a) and (b) apply Theorem 3.6 with Z equal to X, and 1,,,
respectively. For part (c) note that RSS¢ — RSSy = |[Ye ~ YH||2.

6.5 TWO-PHASE LINEAR REGRESSION

Multiphase regression models are models that undergo one of more changes
in their structure. Such models, including nonlinear models, are described in
detail by Seber and Wild [1989: Chapter 9], and in this section we consider
just a linear two-phase model. Looking at this simple model will give a good
idea as to the kinds of problems one might encounter in this topic. Here the
underlying model is a straight line, but it undergoes a change in slope at some
point z = ~, where the change may be continuous, smooth, or abrupt. Also, v
may be (1) known, (2) unknown but known to lie between two observed values
of z, or (3) completely unknown. Assuming that the change is continuous, we
have the model

_ ay + ﬁlma T S %Y,
ElY]= { az + B2z, T2>1,

where continuity requires that

ay + By = ag + Bay (= 8). (6.38)

For example, z may be an increasing function of time, and at time ¢, a treat-
ment is applied that may possibly affect the slope of the regression line either
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immediately or after a time lag. Following Sprent [1961], we call z = « the
changeover point and € the changeover value.

Known Changeover Point
Given n; observations on the first line and n, on the second, we have, using
(6.38),
_ Y]i = o +ﬂ1$1i + €14 (?- = 1,2,...,?’11),
Yo: = ou+ b1y + Balz2i — ) + €2 (i=1,2,...,n3),
where
T11 < T12 < < Typy <K ¥Y< T <Taz < < Tan,,

and 7 is known. Writing Yj = (}’}1, lsz, “iey Ifjnj )’, X; = (.’Gjl, ooy Ting ), and

€; = (€j1,..-,€&4n;), for j = 1,2, we have
Y1 ) — 1n1_ X1 0 ) Cﬁ)!]_ + € )
Y, 1o, 7ln, X2 ~7lp, ﬂ; €2
or
Y =XB + ¢,

where X is (ng; + ng) X 3 of rank 3. Given a value of v, we can use a re-
gression software package to find the least squares estimate B = (&4, ﬁl , 5‘2)’
and (X'X)~!. Assuming that € ~ Np,4n,(0,021,), we can apply several
inferential procedures. For example, to estimate 6 we can use

6 =61++v6 = (1,708 (=a'B, say),

and we can construct a t-confidence interval for a’# in the usual manner [cf.
(4.17)].
If we want to test H : v = ¢, where ¢ lies between a pair of = values,

say Tpn, < ¢ < T2y, then testing H is equivalent to testing whether two lines
concur at £ = c¢. This can be done using Example 6.4.

Unknown Changeover Point

In practice the changeover point v will be unknown. Suppose, however,
it is known that z,, < v < Z21; then < can be estimated by [cf. equation
(6.38)]

. Gy — b
Y= -7
pr — B2
where é; and ﬁk are the usual least squares estimates for the kth line (k =
1,2). Since 4 is the ratio of two correlated normal variables, we can use
Fieller's method for finding a confidence interval for v as follows. Consider
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= (@3 — @) + v(B1 — f2). Then E[U] = 0 and from (6.6) in Section 6.1.3
with zo = 1y, we have

_ 21 (F1. — )2 1 (T2 — )
var[lU] = o { + S (z1: — 71, )2 E(:Cz — Ta. )2}

ow, |

say.
Arguing as in Section 6.1.2, a 100(1 — )% confidence interval for v is given
by the roots of

[5’1 ~ G2 + ’7(51 — [32)] - Flan-aiszw =
that is, of |

2 [([ﬁ f2)? — Ff_4S” {Z 3 (-'L'kz — Ty.)? }:l
+ 2 [(al — 62)(B1 — Ba) + FfnsS” {Z > (ﬂfk:k— k)2 }]

2 —
— Fn 2 xk' _}_ A1 — fva )2 —
Fiin—e5 {,; [Ei(mm — Ty.)? * nk] } + (& = Ga)

where 5% = RSS/(n ~ 4) and n = ny + na.

If 4 does not lie in the interval (z1p,,%Z21), then the experimenter must
decide whether to attribute this to sampling errors (and the confidence interval
for v will shed some light on this) or to an incorrect assumption about the
position of v. When the position of « is unknown, the problem becomes much
more difficult, as it is now nonlinear. In this case the two-phase model can be
written in the form (Hinkley [1971])

Y 9+161(w1. 7)+6ir (Z = 112""vﬁ’):
9+182('T‘£ 7)'*'67:! ('i=ﬁ:+1,...,ﬂ.),

where 7 < +» < Ty < ¥ < Tpq1 < +-- < Ty, 8 is the changeover value,
and & is now unknown and has to be estimated. Hinkley summarizes the
maximum likelihood estimation procedure for estimating ~, €, 81, B2, and «:
This is described in detail in Hudson [1966] and Hinkley [1969b]. Hinkley also
provides approximate large sample confidence intervals for the parameters and
gives large sample tests for the hypotheses 1 = 82 (no change in slope) and
B2 = 0. Another approach to testing 8, = 2 is given by Farley and Hinich
[1970]. We note that Hudson’s technique was generalized by Williams [1970)
to the case of three-phase linear regression. For a general discussion of the
problem, see Seber and Wild [1989: Section 9.3]. Instead of changing slope
abruptly from one straight line to the next, the transition can be modeled
smoothly. Methods for doing this are described by Seber and Wild [1989:
Section 9.4].
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6.6 LOCAL LINEAR REGRESSION

A wide range of methods are available for fitting a nonlinear curve to a scatter
plot. One of the conceptually simplest methods is to fit a series of straight-line
segments, thus giving a piecewise linear regression reminiscent of multiphase
linear regression. In fitting a straight-line segment at a target point, xg,
say, it is clear that data points close to z¢ should carry more weight than
those farther away. One method of doing this is to use lowess, developed
by Cleveland [1979] and implemented in S-PLUS as the function lowess.
The name lowess, which stands for “locally weighted scatterplot smoother”,
is essentially a robust version of a locally weighted regression in which a
local regression model such as a polynomial is fitted at each point. If the_
underlying model is Y = f(z) + €, the linear version of lowess (the default
for lowess) consists of carrying out a weighted least squares by minimizing
SoT w(zo, 2:)(Yi — Bo — B1z;)? with respect to 8y and B;. Although we use
all the data to fit the line, we use only the fitted line to evaluate the fit at
the single point zp, namely, f(zo) = Bo + Bizo = (1,70)3. If W is the
diagonal matrix with ith diagonal element w(zo,z;) and X = (1,,x), where

x = (z1,...,Zn)", we have from Section 3.10 that
flzo) = (Lzo)(X'WX)'X'WY
= Z lz(:EO)Y;,:
i=1

say. Then, using a Taylor expansion for f(z;) (Hastie et al. [2001: p. 170)),
we get

E(f(zo)] = ) lL(zo)f(z:)
i=1

= f(z0) D_ Lilmo) + f'(z0) D _(w:i — mo)li(zo) + R

1=1 i=1

= f(.’L'o) + R,

by the following lemma. Here the remainder term R involves second and
higher-order derivatives of f and is typically small under suitable smoothness
assumptions, so that E[f(zo)] = f(zo).

LEMMA

Zzi(mo) =1 and Zli(mo)(mi — z4) = 0.
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Proof. Taking expected values of the two expressions for f(wzo) yields

Zn: Li(zo)(1,z;)3 = (1, xb)(X'WX)"l}C’WXﬁ

i=1
= (1: 30)13

for all B and all zg. Setting 8p = 1 and fB; = 0 in the equation above we get
SoT li(zo) = 1. Also, setting Bo = 0, 1, = 1 and replacing z by © — zg, we
have

Zn:li(mo)(mﬁ - :'Co) = (1,:’80 - .'!20)(0, 1)’ = Q. O

i=1

In applying this theory, we need to choose an appropriate weight function.
Typically, we set w(Xy,z;) = K)(xo—z;), where K is a kernel function and X
is an appropriate scale constant. A more general version of lowess (Cleveland
and Devlin [1988)]) is loess, which is also implemented in S-PLUS and can

incorporate several regressors. For further details, see, for example, Hastie
and Loader [1993] and Hastie et al. [2001].

MISCELLANEOUS EXERCISES 6

1. Let F = 2 Y, (x; — )?/8?, the F-statistic for testing H : 8, = 0 for a
straight line. Using the notation of Section 6.1.5, prove that

Fo— T = (0 —
0 T F+(n-2)""

).

(Hoadley [1970])

2. Derive an F'-statistic for testing the hypothesis that two straight lines
intersect at the point (a,b).

3. Obtain an estimate and a confidence interval for the horizontal distance
between two parallel lines.

4. Show how to transform the following equation into a straight line so
that @ and 8 can be estimated by least squares:

— afp

" asin?f + Bcos?§’

(Williams {1959: p. 19])
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Polynomial Regression

7.1 POLYNOMIALS IiN ONE VARIABLE

7.1.1 Problem of lll-Conditioning

When faced with a well-behaved curved trend in a scatter plot a statistician
would be tempted to try and fit a low-degree polynomial. Technical sup-
port for this decision comes from the Weierstrass approximation theorem (see
Davis [1975: Chapter VI]), which implies that any continuous function on a
finite interval can be approximated arbitrarily closely by a polynomial. This
amounts to lumping any remainder terms from a Taylor series expansion of
the unknown model function into the error term. Although the approxima-
tion can be improved by increasing the order of the polynomial, the cost is an
increase in the number of unknown parameters and some oscillation between

data points. However, another problem arises when fitting a high-degree poly-
nomial, which we now discuss.

If we set z,; = =] and k = p—1 (€ n — 1) in the general multiple linear
regression model, we have the kth-degree [(k + 1)th-order] polynomial model

K=ﬁo+61$z+32w3++ﬁk$f+ei (z=1,2,,n) (71)

Although it is theoretically possible to fit a polynomial of degree up ton—1, a
number of practical difficulties arise when & is large. First, for & greater than
about 6, we find that the regression matrix X associated with (7.1) becomes
ill-conditioned (Section 11.4). For example, assuming that z; is distributed-

165
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approximately uniformly on [0, 1], then for large n we have (Forsythe [1957])

n . 1
(X’X)rs = nzmsza

i=1

1
Y nf 'z dx
0

1
= nf "t dx
0

n .
= —— 7.2

T+s+1 (7.2)

Hence X'X is something like n times the matrix [1/{r + s + 1)],(r,s =

0,1,...,k), which is the (k+ 1) x (k+ 1) principal minor of the Hilbert matriz

o
i
W= = =
S e RV
= i [

It is well known that H is very ill-conditioned (Todd [1954, 1961]); for exam-
ple, when k = 9, the inverse of Hip, the 10 % 10 principal minor of H, has
elements of magnitude 3 x 10!° (Savage and Lukacs {1954]). Thus a small
error of 10710 in one element of X'Y will lead to an error of about 3 in an
element of B = (X'X)"1X'Y.

Two things can done to help overcome this ill-conditioning and the insta-
bility in the computations. The first is to “normalize” the z; so that they run
from —1 to +1. The normalized z is given by

o = 2z — max(z;) — min(z;)
~ max(z;) — min(zx;)

The second is to use orthogonal polynomials, which we now discuss.

7.1.2 Using Orthogonal Polynomials

General Statistical Properties
Consider the model

Y: = yodo(zi) + mo1(z:) + - - + vebr(mi) + €1,

where ¢-(x;) is an rth-degree polynomial in z; (» = 0,1,...,k), and the
polynomials are orthogonal over the z-set: namely,

i¢r($z’)¢s($i) =0 (all r, 5,7 # s). (7.3)
i=1
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Then Y = X~ + e, where

do(z1) l(z1) -+ dr(z1)
X = go(z2) 1(z2) -+ Dr(z2)

¢0(51;n) (bl(xnj ¢k(mn)

has mutually orthogonal columns, and

. > 95(za) 0 o 0
wx-| 0 T o

Hence, from 4 = (X'X)~1X'Y, we have

i > P2 (zi)
which holds for all k. The orthogonal structure of X implies that the least
squares estimate of v,(r < k) is independent of the degree k of the polynomial

(cf. Section 3.6)—a very desirable property. Since ¢o(x;) is a polynomial of
degree zero, we can set ¢o(z) = 1 and obtain

1Y, —
’“Yo=-——2"1 - =Y.
21

The residual sum of squares is then

(r=0,1,...,k), (7.4)

RSSkr1 = (Y —XA)(Y — X4)
= Y'Y - 4X'X%

k
PIRGEDD [Z qs%(m@)] 7

r=0 i

k
- soer-Sfseals o

r=1 i

If we wish to test H : y; = 0 [which is equivalent to testing 8x = 0 in equation
(7.1)], then the residual sum of squares for the model H is

n k—~1
RSSy = Y (¥:i=-Y)2-)" [Z qﬁ(fﬂz’)] s

i=1 r=1 i

= RSS1 + [Z cbi(:cz-)} Yo (7.6)
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and the appropriate F-statistic is

RSSy — RSSk1
RSSk+1/(n —k - 1)
> 45%(3%‘)’?:%
RSSis1/(n—k—1)

The question arises as to how we choose the degree, K say, of our polynomial.
We note from (7.6) that RSS4;, the residual sum of squares for a polynomial
of degree k, decreases as k increases. Ideally, RSS,y; decreases consistently at
first and then levels off to a fairly constant value, at which stage it is usually
clear when to stop (see, e.g., Hayes [1970: Section 8, Example A}). In cases
of doubt, we can test for significance the coefficient of the last polynomial
added to the model; this is the forward selection procedure procedure with a
predetermined order for the regressors (although it is used only at an appro-
priate stage of the fitting, not necessarily right from the beginning). However,
this test procedure should be used cautiously because it may lead to stopping
prematurely. For example, we have the possibility that RSS,; may level off
for awhile before decreasing again. To safeguard against these contingencies,
it is preferable to go several steps beyond the first insignificant term, and then
look carefully at RSS.

Another test procedure that can be used is the backward elimination pro-
cedure. In this case the maximum degree that will be fitted is determined
in advance and then the highest-degree terms are eliminated one at a time
using the F'-test; the process stops when there is a significant F-statistic.
The procedure is more efficient than forward selection, and it is suggested
that the best significance level to use at each step is a ~ 0.10 (Kennedy and
Bancroft [1971: p. 1281]). However, there remains the problem of deciding
the maximum degree to be fitted. Unfortunately, the forward and backward
procedures do not necessarily lead to the same answer. These procedures are
discussed in more detail in Section 12.4.

F =

Generating Orthogonal Polynomials

Orthogonal polynomials can be obtained in a number of ways. Following
Forsythe [1957], a pioneer in the field, Hayes [1974] suggested using the three-
term recurrence relationship

Gr+1(z) = 2(z ~ ar41)¢r(z) — brdpr_1(x) (7.7)
beginning with initial polynomials
¢o(z) =1 and $1(z) = 2(z — a4).

Here z is normalized so that —~1 < z < +1, and the a,4; and b, are chosen
to make the orthogonal relations (7.3) hold, namely,

Qrgq1 = Z?:l 22 (z7) (7.8)
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and

b, = Z?:l ¢?‘ (‘Bl)

" E::lzl ¢$—-1 (m’b) ,
wherer = 0,1,2,...,k—1,bp = 0, and a1 = Z. (Forsythe used the range -2 to
+2 and the factor unity instead of the factor 2 given in equation (7.7). These
two differences in detail are essentially compensatory, for there is an arbitrary
constant factor associated with each orthogonal polynomial; cf. Hayes [1969].)
We note that the method of generating the ¢, is similar to Gram—Schmidt
orthogonalization, with the difference that only the preceding two polynomials
are involved at each stage. A computer program based on Forsythe’s method
is given by Cooper {1968, 1971a,b]. Each ¢.(z) can be represented in the
computer by its values at the (normalized) points z; or by its ¢’s and b’s.
However, Clenshaw [1960] has given a useful modification of the method above
in which each ¢, (z) is represented by the coefficients {cg-’")} in its Chebyshev
series form, namely, '

(f.9)

1 r
$r(@) = o5 To(a) + i Ti (@) + -+~ + VT (2), (7.10)
where
Tr1(z) = 22T (z) — Tr1(z) (r=1,2,...),

starting with To(z) = 1 and 71 (z) = z. The recurrence (7.7) is now carried out

in terms of the coefficients {cgr)}, and the fitted polynomial can be expressed
in terms of Chebyshev polynomials, namely,

~

V = fiulz)
1
- Edg@ To(z) + AP Ty (z) + - - + dP Ty (z), (7.11)

say. The appropriate recurrence relationships for carrying out these compu-
tations are [by substituting (7.10) in (7.7)]

G =) 2o b, o

and by substituting (7.10) and (7.11) in the equation

Forr(@) = Fel(@) + Va1 bpr1 (2),
we get
(ry __ (r=1) | A (7
d;” = dj T+ e, (7.13)

where  =0,1,...,r+1 andcgr) =d§r) =Qforj>r.

Although the modification above takes about two to three times as long
as Forsythe’s method, the computing time is generally small in either case.
Therefore, because time is not generally the decisive factor, the modification
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is recommended by Clenshaw and Hayes [1965: p. 168] as it presents a con-
venient output in concise form. The Cg_r), for example, carry more information
than the a, and b,. Hayes [1969] also shows that the recurrence relation (7.7)
can operate entirely in terms of the coefficients c§ ™ and certain of the quan-
tities Y, - (x;)Ts(xs). If these numbers are stored, then we need not store
either the z; or the ¢.(z;). Another useful feature of Clenshaw’s modification,
pointed out by Hayes [1970: p. 52}, is that the coefficients cg-k) (for increasing
4 and fixed k) behave in a very similar manner to RSS; (for increasing k);
they decrease steadily, except possibly at the start and then settle down to
constant values. This feature, illustrated by Examples A and B in Section 8
of Hayes [1970], provides additional “evidence” for determining the degree of
the polynomial fit.

When the coefficients d( )in (7.11) have been computed, f can be evaluated
at any desired value of z by a procedure given by Clenshaw [1955]. In this

we first compute the auxiliary numbers gg, gk—1,..-,g0 from the recurrence
relation

9i = 2Tgi41 — Gir2 + dgk)

starting with gr43 = gg4+2 = 0. The required value of f is then given by
fr(z) = 3(90 — 92). (7.14)

An error analysis of Clenshaw’s modification is given by Clenshaw and
Hayes [1965: p. 169]. In particular, they give a method for estimating the
numerical error in each %;; this error can then be used to deduce an error

estimate for d( ") in equation (7.11), usmg (7.13) and the computed values of
(1')

Equally Spaced z-Values
Suppose that the z-values are equally spaced so that they can be trans-
formed to
z; =1~ 3(n+1) (1=1,2,...,n). (7.15)

Then we have the following system of orthogonal polynomlals (generally as-
cribed to Chebyshev):

go(z) = 1

$1(z) = Nz

p2(z) = Ao (2® - 5(n° 1))

b3(x) Az (z° — %(371,2 — 7)z)

da(z) = Aa(zt— EH(Bn?~13)z + 25 (n% - 1)(n* - 9)), etc,

where the ), are chosen so that the values ¢,.(z;) are all positive and negative
integers. These polynomials are tabulated extensively in Pearson and Hartley
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[1970] for n = 1(1)52 and r = 1(1)6 (r € n — 1); a section of their table is
given in Table 7.1.

To illustrate the use of this table, suppose that n = 3. Then z; = -1,0, 1,
do(x) = 1, d1(x) = iz = z, ¢o(z) = Ao(z — 2) = 32% — 2 and the fitted
polynomial is

F(2) = Bo + Prz + B2 (32 — 2),

where

Bo =7,

: Zf(ﬁq;%(fw))y = (=D + Oz + (Y5} = 5(¥s - V1),
and

B, = L(Vi - 2Y; + Ya).

Also, the residual sum of squares is given by [equation (7.5)]

3
RSS; = D (Yi=Y)’ B 4i(z) - 55 3=
i=1 i i
= Y (Yi-Y)*-282 -6/

The theory of this section and the tables can be used for fitting poly-
nomials up to degree 6. However, its main application is in the theory of
experimental design, where various sums of squares are sometimes split into
linear, quadratic, etc. components. A simple method for generating the or-
thogonal polynomials iteratively when z = 0,1,...,n — 1, due to Fisher and
Yates [1957], is described by Jennrich and Sampson [1971].

Table 7.1 Values of the orthogonal polynomials, ¢.(x), for the equally spaced z-data
of equation (7.15)

n=3J3 n=4 n=3
1 ¢2 $1 B2 P3 $1 P2 @3 P4
-1 1 -3 1 -1 -2 2 -1 1
0 -2 -1 -1 3 -1 -1 2 -4
1 1 1 -1 -3 -2 0 6
1 1 -1 -2 —4
2 2 1 1
3o 92 () 2 6 20 4 20 10 14 10 70
Ar 1 3 2 1 2 1 1 5 3
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Application of Constraints

A possible requirement in curve fitting is for the fitting function f(z), and
possibly its derivatives also, to take specified values at certain values of z.
For example, the function may be required to pass through the origin or to
join smoothly onto a straight line at some point, or we may wish to fit the
data in two adjoining ranges separately, forcing continuity up to some order of
derivative at the joint. For examples, see Clenshaw and Hayes [1965], Payne
[1970] and Hayes [1974]. If the polynomial is constrained to be nonnegative,
nondecreasing, or convex, then the quadratic programming type method of
Hudson [1969] can be used for fitting the polynomial.

7.1.3 Controlled Calibration

Suppose that we have fitted a polynomial calibration curve (see Section 6.1.5)

-~

Y = Bo+hbz+-+ Pzt
= x'f’,

say. We observe a value of Y, Y, say, and we want to predict the corresponding
value of z, say &. If x; = (1,£,£%,...,£¥), then an estimate of £ is found by
solving Y, = x"JB for £, The solution will be unique if the polynomial is
monotonic in the region of interest. To construct a confidence interval we can
proceed as in Section 5.3.1 and consider the distribution of Y. — Y, where
Ye = x¢8. From (5.26) this is N(0,0%[1 + v¢]), where vg = x;(X'X) " x,.
Then | .
Y. - Y .
S/1+ Vg nokel

and a 100(1 — )% confidence interval for £ is the set of all £ satisfying

T =

12)x
71 < 6022
Brown [1993: pp. 47-88] shows that this interval is essentially a profile like-
lihood interval and generalizes the result to replicated data. He also extends
the theory to orthogonal polynomials.

7.2 PIECEWISE POLYNOMIAL FITTING

7.2.1 Unsatisfactory Fit

Sometimes a polynomial fit is unsatisfactory even when orthogonal polynomi-
als up to, say, degree 20 are fitted. This lack of fit is usually revealed in several
ways. One symptom is the failure of RSS, to settle down to a constant value
as k increases; the residual sum of squares may, for example, just continue to
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decrease slowly. Another symptom is the behavior of the residuals: a resid-
ual plot (see Chapter 10) of r; = Y; — Y; versus z; will continue to exhibit a
systematic pattern instead of a random one (see, e.g., Hayes [1970: Section 8,
Example E]). In the worst cases there will be waves in the fitted curve which
eventually become oscillations between adjacent data points, usually near the
ends of the range. These difficulties most frequently arise when the behav-
ior of the underlying function is very different in one part of the range from
another. It may, for example, be varying rapidly in one region and varying
slowly in another.

An alternative approach to the problem is to divide up the range of z into
segments and fit a low-degree polynomial in each segment (e.g., Seber and
Wild [1989: Section 9.3.3]. There are several ways of doing this, and the most
useful method employs the theory of spline functions pioneered by Schoenberg
[1946].

7.2.2 Spline Functions

The method of splines consists of dividing up the range of z into segments
with join points called knots. A polynomial of a fixed degree is then fitted
to each segment with constraints applied to ensure appropriate continuity at
the knots. Questions arise as to the number and placement of the knots, the
degree of the polynomial, and the appropriate continuity constraints. The
term spline is borrowed from a mechanical device that was used to draw cross
sections of ships’ hulls. The mechanical spline was a flexible piece of wood
which was forced to pass through certain fixed points and otherwise allowed
to find its natural position.

More formally, we define the spline function s(z) of order M (degree M —1),
with knots &1,&2,...,&x (where & < & < --- < €x) and having domain
[a,b] (—o0 < a < &,k < b < ™), to be a function with the following
properties:

1. In each of the intervals
a<mS§1: fj—lSIS§j(j=2a3,---,K), and fKSm'(ba
s(x) is a polynomial of degree M — 1 at most.

2. s(z) and its derivatives up to order (M — 2) are continuous. {When a
and b are finite, which is the usual case in practice, some authors call
& = a and €k = b knots also, a convention that we shall adopt.)

We usually refer to the splines described above as regression splines.

The cubic spline (M = 4) is a satisfactory function for fitting data in most
situations, and second-derivative continuity is usually adequate for most prac-
tical problems. Apparently, cubic splines are claimed to be the lowest-order
spline for which knot discontinuity, (in this case third order discontinuity), is
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not visible to the humar eye (Hascie et al. [2001: p. 120]). In cubic splines
there are four paramsters for each cubic and threz constraints at each knot,
thus giving 4(X + i} — 3K = K + £ free parameters to be estimated.

Unfortunately, a restricted least squares approach using the constraints at
the knots is cumbersome, and more parameters need to be estimated than
the “minimum” K + 4. However, any cubic spline with knots £; has a unique
representation in the form

3 K
s(z) =) onz® + > Bi(z — &), (7.16)
h=0 =1
where
uy = max(0,u) = { ¢, Z “<>‘ 8’

This representation contains K + 4 basis functions (four power terms and K
one-sided cubics), the smallest number by which the general cubic spline with
K knots can be represented. We can reduce the number of parameters from
K +4 to K by constraining second- and third-order derivatives to be zero at &g
and &x 41, thus forcing the spline to be linear on [&, &) and [€x,&x+1]- This
allows four more knots to be used. The modified spline is called a natural
cubic spline and the additional constraints are called the natural boundaery
conditions.

The truncated power series approach of (7.16) has a certain algebraic sim-
plicity, but computationally it has some problems. For example, each cubic
term is evaluated at all points to the right of its knot, and the buildup of
powers of large numbers leads to the ill-conditioning alluded to at the be-
ginning of this chapter. Equation (7.16) is therefore not recommended for
computational use.

Instead of using the truncated power series basis, a better approach com-
putationally is to use the B-spline basis. This is defined for any order, and
the reader is referred to the texts of de Boor [1978], Schumaker [1981] and
Diercx [1993] for the underlying theory. However, we shall follow Eilers and
Marx [1996: pp. 90-91] and provide a gentle approach to the topic.

An Mth-order basis spline is an (M — 1)th-degree piecewise polynomial
which is positive in the interior of a domain of M intervals spanned by M + 1
consecutive knots, and zero elsewhere. It is made up of M pieces, one spanning
each of the M intervals. To generate the basis, we start the first spline M — 1
(artificially created) intervals to the left of the lower boundary point £ so
that the “important” part of the function, that is, the part actually between
the boundary points, is positive on (£, &1). The second basis spline is then
defined on a similar range but shifted one interval to the right. We keep
shifting one interval to the right until we get the last spline, which is positive
on (€x,€x+1) and extends for M — 1 artificially created intervals to the right
of the upper boundary point £x 1. To define the complete basis, we therefore
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need to introduce M — 1 additional knots {_(ar—1),-.-,&i—2,&~1 at the lower

end and M — 1 knots £x+42,8Kk+3,---,Ek+m at the upper end. These must
satisfy :

-1 ... 2815 and  fx+1 S€ky2 £ ... <€k Mm.

Notationally, it is convenient to relabel the knots as 7j,p = & for j =
—(M-1),...,0,...,K+M, so that we have knots 71,...,Tkyom- Form < M
we can define the family of B-splines (sometimes called fundemental splines)
as

j+m -1
(z —74)
Bjm(z) = (Tj4m — 75) Z rm +

a=g,sn(Th = Ts)

G=12,...,K + M),

where Bjm(z), termed the jth basis function of order m, is positive in the
interval (7;,7j+m) and has a single local maximum. Although the divided
difference formula above is complicated, there is a recursive relationship which
is convenient for computation, namely (de Boor [1978]),

L, 75 <% < Tjya,
Bja(z) = { 0, otherwise,

forj=1,2,..., K +2M — 1 and

T— Ty Tjitm — T

Bjm(z) =

Tj+m~1 = Tj Ti+m = Tj+1

Bj_,_l,m__l(w) (7.17)

for j =1,2,...,K +2M — m. For a given m, it can be shown that the basis
above spans the space of piecewise polynomials of order m. Thus if s(z) is a
piecewise polynomial of order m, we can write

Ki4m
s(z) = > 7;Bj;m(z) (7.18)
=1
for some «;. .
When M = 4, the functions B;4(z) (j = 1,2,..., K + 4) are the K +4
cubic B-spline basis functions for the knot sequence ¢ = (&,...,£x). We

can use the recursive formulae to generate the B-spline basis for any order
spline.

One unanswered question is the choice of the extra knots. We recall that the
Mth-order spline has (M — 2)th-order continuity at the knots €. For example,
a cubic spline basis has continuous first- and second-order derivatives but a
discontinuous third-order derivative at an interior knot. If we duplicate an
interior knot, it transpires that the resulting basis still spans the space of
piecewise polynomials but with one less continuous derivative at the knot. If
we repeat that knot three times, then we have two fewer continuous derivatives
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there. For example, if the spline is cubic, repeating §; three times means that
the first derivative is discontinuous at §;; repeating it four times means that
the spline itself is discontinuous at &;. Thus for an Mth-order spline, repeating
an interior knot M times means that there is a discontinuity at the knot. We
can now answer our question about the extra knots. By making the M — 1
knots outside each boundary point the same as the boundary point, we make
the spline discontinuous at the boundary points and thus undefined beyond
the boundaries. We note that some care is needed in the interpretation of the
recursive formulas above when knots are duplicated. Any term with a zero
denominator is set equal to zero. Some nice figures graphing the spline basis
functions for M = 1,2, 3,4 are given by Hastie et al. [2001: p. 162].

We shall now briefly discuss the process of fitting the spline to the data
(z:, Y:),7=1,2,...,n. The model (7.18) is linear in the unknown parameters
v:, S0 we can fit the usual linear model (without an intercept) using the values
of B; m(x;) and obtain the squares estimates of these parameters. The fact
that each spline has local support, being only nonzero over M intervals, means
that there are a lot of zeros in the design matrix X, which has a band-like
structure. :

The question of the number and placing of the knots needs to be considered,
and Wold [1974] makes the following useful recommendations. Knots should
be located at data points and should be a few as possible with at least four
or five data points between each knot. No more than one extremum and one
inflection should fall between knots (as a cubic cannot approximate more vari-
ations), with extrema centered in the intervals and the inflections located near
the knots. Eubank [1984) gives a number of test procedures and diagnostics
for assessing the appropriateness of the knot selection. The S-PLUS func-
tion bs(x, degree=m-1, knots=c(0.1, 0.2,...)), with K specified inte-
rior knots 0.1, 0.2, etc. computes the values of the K + m B-spline basis
functions of degree m — 1, and returns the n x (K + m) design matrix; if
the degree is not mentioned, the default is m — 1 = 3. Alternatively, we can
specify df instead of knots, which places df — m knots uniformly along the
range of z. The design matrix is then n X df. In both situations one can
also choose whether or not to include an intercept. The function n() does a
similar thing with natural splines.

7.2.3 Smoothing Splines

‘We now discuss a spline basis method that avoids the problem of knot selection
completely by using a “maximal” set of knots. If we wanted to fit a smooth
function f to the data (z;,Y;) ( = 1,...,n), we could use the least squares
criterion of minimizing RSS(f) = Y i, [Yi — F(z:)}]* to get the best-fitting
function. However, if we choose our function as one that passes through each
data point [i.e., f(z;) = Y; for all 5], then RSS(f) will be zero. Such a function
with this property is called an interpolating function, as it interpolates the

points (z;,Y;). The simplest such f could be obtained simply by joining up
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consecutive points with straight lines. Unfortunately, this piecewise linear
graph would not be smooth, as its derivatives do not exist at each point.
Alternatively, we could use a piecewise polynomial and impose the condition
of two continuous derivatives at each point; this would give a smoother-looking
graph with curves between consecutive points. Unfortunately f could end
up looking quite “wiggly” or rough between consecutive points. What we
would like to do is impose a penalty function that measures the degree of
roughness. Since we would not want our measure to be affected by the addition
of a constant or a linear function, we could utilize the second derivative f".
Although various measures of the magnitude of f” could be considered, a very

useful one is the global measure [ : {f"(x)}? dz. Combining the two ideas of
least squares and roughness leads to the criterion of finding f which minimizes

n

b
RSS(/, %) = Y 1¥ — F@0f + A [ 170 (7.19)

i=1

the penalized residual sum of squares. The first term, which some authors
(e.g., Eubank [1999]) divide by n, measures closeness of fit, while the second
term penalizes curvature, with a fixed smoothing parameter A\ providing a
trade-off between the two criteria. If A = 0, then f is any interpolating
function, while if A = oo, there is no second derivative and we get the least
squares fit of a straight line. As A ranges between 0 and oo, f can vary from
very rough to very smooth.

We note that (7.19} can also be motivated by approximating the remainder
from a Taylor series expansion of f(z) (Eubank [1999: p. 228-229]) or using
a Bayes regression approach (cf. Eubank [1999: Section 5.6)).

Suppose that f is any curve with two continuous derivatives, and let g
be any natural cubic spline that interpolates the n points (z;, f(z;)). Then
g(z;) = f(z;) for all 7, so that the first term of (7.19) is the same for both func-
tions. However, it can be shown that (Green and Silverman [1994: Chapter

2]) b b
[ o@r e < [ 1@)P

with strict inequality if f is not a natural cubic spline. Thus if f is any twice-
differentiable function we can always find a natural cubic spline which has a
smaller RSS(f, A). This means that when minimizing RSS(f, \), we only need
to consider natural cubic splines with knots at each of the z;. Although we
seem to have too many knots, particularly when n is large and the points are
close together, the penalty on the spline coefficients has a “linearizing” effect
on the spline, so that some of the powers of the polynomials are reduced.
Since f(z) is a natural spline, we find that we can write

f(x) = ngNk(m)!
k=1
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where the N} (z) are n basis functions for the family of natural splines. Setting
{N}ir = Np(z;) and { Vit = f; N'(z)N}/ () dz, we see that (7.19) reduces
to

RSS{f,A) = (y — N8) (y — N8) + \&'V 0. (7.20)

Differentiating (7.20) with respect to & and using A.8, we obtain
—2N'y + 2N'N@ + 22V 8 =0,
which has solution
8 = (N'N + AVy) "INy, (7.21)

which is a form of ridge regression (see Section 10.7.3).

Following the discussion in Hastie et al. [2001: p. 163], we note that in
practice, it is computationally more convenient not to use natural splines but
rather to use the larger space of unconstrained B-splines. Writing

f(@) =>_ vB;(z),
i=1

the solution looks like (7.21), namely,
4= (B'B+ V) By,

except that the n x n matrix N is replaced by the (n + 4) X n matrix B, and
the (n + 4) x (n + 4) penalty matrix Vg replaces the n x n matrix V. It
turns out that, rather conveniently, the penalty term automatically imposes
boundary derivative constraints. When n is large, it is not necessary to use
all n interior knots and any suitable thinning strategy will work just as well.
For example, the S-PLUS function smooth.spline uses an approximately

logarithmic strategy, so that if n < 50, all the knots are used, while if n =
5000, only 204 knots are used.

Determining the Smoothing Parameter

We shall now consider methods for finding X, using either a subjective
estimate or an estimate computed automatically. It transpires that A\ controls
the trade-off between the bias and the variance of the fitted function fy:
the larger the value of )\, the smoother the curve (with a resulting smaller
variance) and the larger the bias. If Y = (fi(z1),..., fx(za))', then from
(7.21) we have

~

Y

N(N'N + AVN)"IN'Y
S, Y, (7.22)

where the n x n positive-definite matrix Sy is known as the smoother matriz.
This matrix is analogous to the projection (hat) matrix P = X(X'X)"1X



PIECEWISE POLYNOMIAL FITTING 179

arising from ¥ = X3 = PY. As S, connects Y to Y, it is also referred
to as a hat matriz. Since the trace of P equals p, being both the number of
parameters in the linear model E[Y] = X3 and essentially the “degrees of
freedom,” we can define in an analogous fashion,

dfy = tr(S,),

as the effective degrees of freedom of the smoothing spline. A related quantity
is EDF = n—df, which has been described as the equivalent degrees of freedom
for noise.

Several other criteria have been proposed for dfy, such as tr(S),S)) and
tr(2S, — S»S}). However, as noted by Hastie et al. [2001: p. 130], tr(Sy)
has a number of conceptual advantages as well as being simple and easy to
compute. By trying several values of df) and using various diagnostics, we
can arrive at a particular value and then back-solve numerically to get the
corresponding value of A\. A value of df, equal to 4 or 5 is often used as the
default in software. The appropriate function for fitting a smoothing spline
in S-PLUS is smooth.spline.

To compute A automatically, several criteria are available. For example,
we have the popular cross-validation method, which finds Aoy to minimize
the cross-validation sum of squares

Vi =23 (% P,

i=1

where f)(\"i) is the fitted value at z; computed by leaving out the ith data
point. If s; 5 is the ith diagonal element of Sy, then Craven and Wahba
[1979] (see also Green and Silverman [1994: p. 32]) proved that

 x=d o _ Yi— @)
Y- {70 =
so that
13 [Yi- Az )
chEig{_l_% } |

Previously, a variant of CV ) was used called the generalized cross-validation
(GCV,), in which s;; » is replaced by the average value tr(S,)/n. Generally,
GCV, is closely related to CV) (Eubank [1999: p. 43]), although GCV, tends
to lead to undersmoothing with small sample sizes.

Estimating o

‘There is one parameter we have not considered thus far, namely, o. Given
a value of )\, a natural estimate of o2 is

Y i {Y: = fr(2))?
n — df)\ '

&i:
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Green and Silverman [1994: Section 3.4] review the topic of estimating o? and
compare &2 (using dfy = tr[Sx]) with two other estimates based on first and
second differences of the data. They note that the former has a substantially
smaller asymptotic mean-squared error.

Use of Weights

The theory above can be generalized to allow for weighted smoothing; we
simply use Y . w;[Y; — f(z;)]? in (7.19). For example, if we have repeated data,
with z; repeated n; times, we can use w; = n;. Green and Silverman [1994:
Section 3.5] show that the theory goes through in a similar fashion using the
weighted sum of squares.

In concluding this section we note that there are many other kinds of
splines such as v-splines, P-splines, Q-splines, exponential splines, subsplines,
additive splines, ANOVA splines, hybrid and partial splines, tensor prod-
uct splines, and thin plate splines! In addition to smoothing using splines,
there are other families of smoothing methods such as kernel, near neighbor
and wavelet smoothers. All these topics might be described under a general
heading of nonparametric regression, for which there is a very extensive litera~
ture: for example, general methods (Simonoff [1995], Eubank [1999], Schimek
[2000], and some chapters in Hastie et al. [2001]), local polynomial smoothing
(Fan and Gijibels [1996]), kernel smoothing (Hardle [1990], Wand and Jones
[1995]), and spline smoothing (Wahba [1990], Green and Silverman [1994]).

7.3 POLYNOMIAL REGRESSION IN SEVERAL VARIABLES

7.3.1 Response Surfaces

An important application of polynomial regression in several variables is in the
study of response surfaces. We illustrate some of the basic features of response
surface methodology by considering the simple case of just two regressors.

Suppose that the response (yield) n from a given experiment is an un-
known function of two variables, z; (temperature) and z; (concentration),
namely, n = ¢g(z1,z2). It is assumed that this three-dimensional surface is
well-behaved, in particular is smooth with a single well-defined peak. The
response 7 is measured with error so that we actually observe ¥ = 1 + ¢,
where E[e] = 0 and varle] = ¢2. One basic problem of response theory then
is to estimate the coordinates, (zo1, Zo2,70) say, of the summit.

One method of doing this is to use a sequence of experiments and a steepest
ascent technique to “climb” up the surface. Typically, experimental data
points are expensive to obtain, so we need to choose a design with a small
number of data points and locate them in an optimal fashion so as to maximise
the efficiency of estimation. For points away from the summit the surface is
relatively linear in a small region, so that it can be represented locally by a
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plane, namely,
E[Y] = Bo + f171 + B2zs. (7.23)

To estimate the coefficients g;, we can, for example, use a very simple design
such as the 22 design; we shall see later that that such a design has certain
optimal properties. In this desigh we observe Y at the four vertices of a small
rectangle, with center Py, in the (z1, ;) plane (Figure 7.1). Suppose that Y,
is the Y observed at (z,1,Z,2), where z;1 (r = 1,2) are the two chosen values
of £; and x4, {s = 1,2) are the two chosen values of ;. Then we can fit the
model

Yis = Bo + f1ZTr1 + BaTs2 + €rs, (7.24)
where r = 1,2 and s = 1,2, and obtain the fitted plane

YV = ¢(z1, ) = Bo + 51331 + 321112- (7.25)

If @; is the point on this plane vertically above P, we can use the fitted
. plane, which approximates the surface in the neighborhood of @, to help
us climb up the surface to a higher point Q5 and thus obtain a higher yield
Y. For example, if 8; and 8. are both positive in (7.25), we would increase
z1 and z3. However, the most efficient way of climbing up the surface is to
choose the direction of steepest slope. To find this path of steepest ascent,
we now consider the following problem. Suppose that we wish to maximize
#(d1, ds) ~ $(0,0) subject to d? + d5 = r*. Using a Lagrange multiplier \, we
have
o¢

0d;

or, setting ¢ equal to the right side of (7.25), d; « E}i for a maximum. There-
fore, regarding ()1 as the origin, the (z;, ;) coordinates of the next experi-
mental observation should be (kf1, k£82) for some & > 0. By steadily increasing

+2d; =0 (i=1,2),

Xy

Fig. 7.1 A response surface.
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k, we can go or meazuring Y until we reach a point P, in the (z1, ;) plane at
which the increase in Y due to a change in & becomes very small, or possibly
negative. A new 22 experiment is then carried out on another small rectangle
using P» as center, and another plane (7.25) is fitted. The path of steepest as-
cent is redetermined and, once again, we proceed in this direction until there
is little change in V. In this way we climb the surface toward the summit.
As we approach the summit, 8; and f get smaller, so that progress by
the method of steepest ascent becomes more difficult; the curvature of the
surface also begins to have a significant effect on the yield. When we are
in the region of the summit, we can then fit a general quadratic form using,
say, a 3% design; that is, we use three appropriate values for each of z; and
zo and observe Y at the nine design points. Alternatively, we can use the
popular 12-point central composite design, which consists of a 22 design with
an additional four replicates at the center of the rectangle and four “coaxial”
points (cf. Myers and Montgomery {1995: p. 298] for a description of its
properties). By shifting the origin and rotating the axes, the fitted surface

¥y = Bo + 31'3?1 + 521132 + 311 :Ef + 312:1:1:112 -+ Bzm% (7.26)
can be expressed in the canonical form
y—cs=XM(z1 —c1)® + Xe(z2 —2)® (M1, 22 > 0), (7.27)

where (c1, g, c3) is an estimate of the summit point (1, Zo2,70). The triple
(c1,€2,c3) can be found by differentiating (7.26) partially with respect to z;
and 2, and solving the resulting pair of equation for z; and z3; e3 is the
value of y in (7.26) at the solution (ci, ¢3).

This rather sketchy description of response surface methodology leaves a
number of questions unanswered, such as the following;:

1. In our discussion, we used a 22 design to carry out a planar fit (called a
first order design) and two possible designs for the quadratic fit (called a
second order design). This raises the question: What is the best design
to use in each case?

2. How do we know when to change from a first-order to a second-order
design?

3. How do we select the values of k in (kB1,%k82)7?

4. What happens if in our climb, we run into a stationary point which is
not the maximum, or a slowly rising ridge? [Such a situation is indicated
when one or other of the A; in equation (7.27) is negative.]

We don’t have the space to consider these and other important practical
questions, and we refer the readers to the comprehensive text by Myers and
Montgomery [1995]. |
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EXAMPLE 7.1 It was shown in Section 3.6 that an optimal design is one
in which the design matrix has orthogonal columns. We now show that the
22 design lies in this category if we scale the values of z; and z3 so that they
take the values £1. To examine this orthogonal structure, it is convenient to
represent the two levels of x; symbolically by 1 and a, and the two levels of z5
by 1 and b, so that the four possible combinations (1, 1), (1, a), (1,b), (a,b) can
be represented symbolically (by multiplying the levels together in each pair) as
1,a,b, and ab, with observed Y values Y7,Y,,Y,, and Y., respectively. Thus
setting £y = —1 and z3 = --1 in (7.24), we see that Y; = By — f1 — B2 + &1.
In a similar fashion, we get

Y3 1 -1 -1 ﬂ &1
Yo | |1 1 -1 0 Ea
Yo 1 1 1 2 E€ab

or Y = X3 + &, where the columns of X are mutually orthogonal and satisfy
the conditions of Example 3.3 in Section 3.6. Then X'X = 41, and

) 11 1 1111
B=XX)X'Y=>| -1 1 -1 1 a |
41-1 -1 11 Yo
. Ya.b
hence
fo = Y,
Bi = (-Y1+Y, -V +Ya)
= :[2(Va+Ya) - (V1 +13)]
= %(average effect of first factor at upper level
— average effect of first factor at lower level),
Bo = Y-V -Y,+Ys+Ya)
= % [%(Yb + Ya.b) — %(Yl + Ya)] ,
and
RSS = Y'Y -3'X'X3

= > Y24V - 4f? - 442
[

We note that var[8;] = 0%/4 (j = 0,1,2), and this is the smallest variance
that can be attained with a design of just four points. Finally, we note that
if we use factor terminology and call z; and z, factors A and B, then Bl and
P2 can be identified as estimates of what we might call the main effects of A
and B, respectively. O
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7.3.2 Multidimensional Smoothing

Local Regression

We can generalize the method of Section 6.6 to accommodate k& regressors
and fit local hyperplanes B'x = 8q + S1z1 + - - - Bexx instead of lines. If x; is
the value of x at the ith data point, then at each x¢ we minimize

> Ea(xi,%0) (Vi — xi8)?

i=1

with respect to 8 to fit f(xo) = x{,['}, where 3 will be a function of zg. Typi-
cally, K»(x;,x0) will be an appropriate kernel function of the form K(||x; —
xol}/A). As noted in Section 6.6, loess() in S-PLUS incorporates multi-
dimensional local regression. It should be noted that there are some problems
as k increases, and local regression tends to become less useful for & > 3 (cf.
Hastie et al. {2001: p. 174]. Local quadratics can also be used.

Multidimensional Splines

- The theory of Section 7.2.2 can be generalized using basis functions that

are tensor products of (one-dimensional) B-splines. For example, if £ = 2, we
can establish a basis of functions B1;(z1) (j = 1,2,..., M1) for z; and a basis
Bar(zs) (k = 1,2,..., M) for zo. Then the (M; x Ms)-dimensional tensor
product basis, defined by

Bjk(x) =Blj(E1)sz(ﬂ:2) (j= 1,...,M1; kﬁl,...,Mz),

can be used to represent a two dimensional function, namely,

M1 Mo

F) =D 8k Bjx(x).

j=1 k=1

The parameters 8, can then be estimated by least squares.
Smoothing splines can also be used. Assuming once again that & = 2, we
now have the two-dimensional problem of minimizing

RSSO\, f) = D _{¥i— F(xa)}* + M (f),
=1

where

d pb 52 2 52 2 52 2
0= [ [{(5E) +2(s5m) + (54) } wem

This leads to a two-dimensional cubic natural spline called a thin plate spline
or Laplacian smoothing spline. However, the solution is computationally ex-
pensive. Software for multidimensional smoothing splines is available in S-
PLUS, and on StatLib and NetLib. For further details, see Green and Silver-
man [1994: Chapters 7 and 8].
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MISCELLANEOQUS EXERCISES 7

1. Using the method of orthogonal polynomials described in Section 7.1.2,
fit a third-degree equation to the following data:

y (index): 9.8 11.0 13.2 151 16.0
z (year): 1950 1951 1952 1953 1954

Test the hypothesis that a second-degree equation is adequate.

2. Show that the least squares estimates of 4; and S, for the model (7.28)

are still unbiased even when the true model includes an interaction term
ﬂlg, that iS,

E[Y] = Bo + P11 + Baza + Prazaizs.

Find the least squares estimate of 312.

3. Suppose that the regression curve

ElY] = Bo + b1z + Box?

has a local maximum at z = z,, where z,, is near the origin. If YV is
observed at n points z; (¢ =1,2,...,n) in [—e,a], T = 0, and the usual
normality assumptions hold, outline a method for finding a confidence
interval for z,,. Hint: Use the method of Section 6.1.2.

(Williams [1959: p. 110])
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Analysis of Variance

8.1 INTRODUCTION

In this chapter we look at certain special cases of the multiple regression
model. When the regressors are qualitative so that indicator variables are
involved (taking values 0 or 1), then we refer to the model as an analysis-
of-variance model (ANOVA model). In this case the regression matrix X is
usually referred to as the design matriz. However, if there are both qualitative
and quantitative z-variables, then we refer to the model as an analysis-of-
covariance model (ANCOVA model).

In ANOVA models we begin with the relationship E[Y] = @, where 9 is
known to belong to some space of values. We then find a matrix X such that
this space is C(X). Clearly, such a representation is not unique, as

8 = X8
XB-1Bg
= Xpg%, (8.1)

say, where B is a p X p nonsingular matrix. The choice of X g will depend
on the reparameterizing transformation v = Bf3, which in turn depends on
which linear combinations of the 8’s we are interested in. Typically, we are
interested in just the individual 8; or in contrasts Ej ¢jBj, where Ej cj =0,
for example, §; — Bj—1 . Under the broad umbrella of ANOVA models, there

is a large family of designs. We shall consider some of these in the following
sections.

187
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8.2 ONE-WAY CLASSIFICATION

8.2.1 General Theory

EXAMPLE 8.1 A health researcher wishes to compare the effects of four
anti-inflammatory drugs on arthritis patients. She takes a random sample of
patients and divides them randomly into four groups of equal size, each of
which receives one of the drugs. In the course of the study several patients
became seriously ill and had to withdraw, leaving four unequal-sized groups.
We thus have four independent samples, each receiving a different treatment.

]

In the example above, the type of drug is usually referred to as a factor
or ireatment, and the four kinds of drug are often called levels of the factor.
The entire experiment is variously called a single-factor ezperiment, a one-way
layout, or a one-way classification. Instead of four different kinds of drug, we
could have used a single drug but at four different dosages.

In general, we could have I levels of the factor, giving / independent random
samples with J; observations in the ¢th sample ({ = 1,2,...,I). We can regard
each sample as coming from its own underlying (hypothetical) population,
which we assume to be normal with a common variance o2. OQur first task is
to compare the means of these populations.

Let Y;; be the jth observation (j = 1,2,...,J;) on the ¢th normal popula-
tion N(u;,02) (i =1,2,...,I), so that we have the following array of data:

Sample mean

Population 1: Y11, Yz, ..., Y1, Y.
Population 2: Yo1,Yoes,...... y Y21, ?2.
Population I: Yii,Yre, ... ., Y1y, ?I-

We can combine the information above into the single model
Yij = piteij (t=1,2,...,I; i=1,2,...,J5),

where the ¢;; arei.i.d. (independently and identically distributed) as N(0, o).
In Example 4.5 (Section 4.3.3) we considered the special case of comparing
just two normal populations, and the theory there provides a background for
what follows.

Let Y; = (Y;1,Y52,...,Y5s,) represent the sample from the ith population.
Then following Example 4.5, we “stack” these vectors to give

Y = (Y3,..., YY),
a vector with n = zle J; elements. This vector has mean

6 = (1 1‘:]1:”21':721 <o HU'I]-:.II)’:
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so that Y = @ + &, where € ~ N,(0,02%1,). We now wish to specify a matrix
whose column space contains the set of all such vectors 8. We can find the
columns of one such matrix by setting all the y’s except p; equal to zero for
each i¢. This gives us

177 0 0 - 0
0 --- 0

x=| 9 e 0 o 0 (8.2)
0 0 0 .- 1,

an n X I matrix of rank I (since the columns, being mutually orthogonal, are
linearly independent), and Y = Xpu + €, where gt = (u1,...,ur)’. (We find
it notationally more convenient in what follows to use p instead of 8.) This
is our usual regression matrix, but without an initial column of unit elements
(corresponding to ), as X essentially describes qualitative information.

If we wish to test H : p; = pp = --- = pr (= p,say), then @ reduces to
@ = 1,p = Xppu, say, where X g is 1,, and is obtained by adding the columns
of X together. This is the “canonical” form for H given in Section 4.5, so we
can apply the general theory of Chapter 4 to get an F-test for H as follows.

For the original model, the least squares estimates are most readily found
by direct minimization; that is, we differentiate ELI E}I'=1 (Yij — p:)?) with
respect to u;, giving us

ﬁi=zﬁ ?=?7:-

and

i

RSS =3 3 (Vi — )" =3 3 (Vi = Vi)™

Similarly, under H, we minimize 5 5 (¥;; — 1)? with respect to p to get

> Yij S
g izl Y g
PIIRS n

and
RSSy =3 > (Vy-a>=3 > (¥y-Y.)" =3 Ji(¥y - ¥.)%

Since X is n X I of rank I, and Xy is n X 1 of rank 1, we have from Theorem
4.1 in Section 4.3.2 with p = I and ¢ = I — 1 (the difference in ranks between
X and Xpgr)

_ (RSSy —RSS)/(I~-1)
- RSS/(n — I)

when H is true. We can also express F' in the form 5% /52, a ratio of mean
sum of squares, where S%, = (RSSy — RSS)/(I — 1), etc.

F

~ FI-‘-‘I,ﬂ."—I,
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Setting ¥ = X and Vg = Xp iy, we have, by Theorem 4.1(i),
R3Sg —RSS = ||Y - Yyl
- SR
i
= S
i J
- Y@ T
i 7
= Y &Y. -Y.)% (8.3)
Thus

po ZhV Y2/ -1) _ Sy
SN Yy —Yi)2/(n-1) 92

In preparation for thinking about two-way classification models, we shall con-
sider some other parameterizations.

(8.4)

Alternative Parameterizations

The hypothesis H can also be expressed in the form pu; — pur = ps —
pr = <+ = pyy — py = 0, so that we have I — 1 contrasts a; = p; — ur
(i=1,...,I~1). In order to transfer from the u; to the o; [as demonstrated
by (8.1)] we need one more parameter, for example pu;. Putting py = u, we
have Vi; = p+a; + ¢ or Y = X4 + €, where v = (i, a;,...,07-1)" and
X1 is simply X with its last column deleted and having a new first column
1,. Writing v = Bpu, it is readily seen that B is nonsingular. We also note
that X; is n X I of rank I, and H amounts to testing a3 = -+ = ay—1 = 0.
What we have done is to effectively set oy = 0 in y + ay. We could have
also set a; = 0 by writing y; = p instead and then defining o; = p; — 11
(i=2,...,I).

Instead of singling out one of the a’s to be zero, we can use a more sym-
metric approach and define the contrasts o; = p; — u (1 = 1,...,I), where

we now define y = E£=1 pi/I to be the average of the u;’s. However, the o
are mathematically dependent, as a. = ) ; @; = 0 (sometimes referred to as
an identifiability constraint), and the corresponding model Y;; = p + a; + €55
has a design matrix X3, where X3 is X plus a first column 1,,. This is an
n X (I + 1) matrix and does not have full rank, as its first column is the sum
of the other columns. We can turn this matrix into one of full rank by setting
o = — Ef;ll a;. One conceptual advantage in using X instead of X is that
X, contains X as its first column.

Clearly, a wide range of reparameterizations are possible. Another common
one is to define p = 3, Jipi/n and oy = p; — p. The identifiability constraint
is then ), Jio; = 0. Although introducing all these parameterizations is not
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particularly helpful in the context of the one-way classification, the idea is im-
portant for more complex models such as the two-way classification discussed
later.

Finally, we note that the model with the design matrix (8.2) can also be
expressed in the form

Z‘l"-':f-"ldrl+y’2dr2+"'+ﬁ"1’dr1+sr (T=1,2,...,7’L),

where Z = Y and d,; is the rth observation on the ith dummy variable d;
(¢ = 1,2,...,I); that is, d; = +1 when Z, is an observation from the ith
population, and zero otherwise.

EXAMPLE 8.2 In this example we illustrate how orthogonal contrasts can
be utilized in some situations. Suppose that I = 3, J; = J for i = 1,2, 3,
with the first treatment being a placebo (dummy drug) and the other two
being different doses of the same drug. We are interested in testing for no
differences in the three treatments (i.e. H : py; = us = uz). However, if we
suspect that the hypothesis will be rejected, we will be interested in contrasts
such as $(ug + ps) — p1 (comparing the drug with the placebo) and ps — p3
(comparing the two dosages). Let

m =5 +p2+ps), 2= 752 —ps) and s = J=(u2 +ps — 2u1).

Then

Y= p = Bpu,

Sl o5
S-Sl
S-Sl

where B is an orthogonal matrix (known as Helmert’s transformation). Now,
4 = Bji, where i = (Y1.,Y2.,Y3.), so that

~ al A - ~ afa - =2 =52 =2
S R=49=pBBp=pp=) =Y, +Y, +7,.
2 %

Since 47 = L(¥1. + Yo. + ¥3.)% = 37, we have

IR+ =13 7. -37") =3 S (¥ - ¥.)? = RSSx — RSS.
i 1 g

Also, from
~ - I 2 13 ! 02
Var[4] = B Var[z]B' = Bo (7) B = —3-13,
it follows that cov[42,4s] = 0, so that 42 and 45 are independent (Theorem
2.5) under normality assumptions. We thus have a decomposition of RSSg —
RSS into two independent components, J42 and J42, which can be tested

independently. This decomposition into orthogonal components is an option
in S-PLUS. a
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Computations

With a less-than-full-rank design such as X5, a variety of computational
procedures are possible. Software packages such as S-PLUS effectively operate
on the linearly independent columns of the design matrix.

It is standard practice for software packages to set out the various sums
of squares in the form of a table (Table 8.1). The terminology used for the
column labeled “source” varies in the literature. Instead of “between popula-
tions”, one encounters “between groups” or “treatments.” The “error” sum of
squares, variously called “within groups,” “within populations,” or “residual”
sum of squares, provides a pooled estimate of o2.

Table 8.1 Analysis-of-variance table for a one-way classification

Sum of squares Degrees of 5SS
Source (SS) freedom (df) df
Between populations J Z(?g -Y.)? I-1 S%
i
Error SN vy -Yu)? IJ-1 S?
i g
Corrected total Z Z(Yij -Y;)? IJ-1
i j

8.2.2 Confidence Intervals

The literature on confidence intervals for a one-way classification (cf. Hsu
[1996] and Hochberg and Tamhane {1987] for references) is very extensive and
rather daunting. Some statistics packages (e.g., SAS) present a bewildering
array of options. We shall therefore confine ourselves to a few basic methods
that have good properties and which illustrate the general methodology.

Along with the F-test of (8.4), we are interested in seeing how the p;
differ from one another; this leads to looking at contrasts. There may be
one contrast § = ) . c;u; of particular interest, and we can estimate it by
8 =3,eY; (=3, cifts = c'f1). This has variance o2 3°, ¢2/J;, where o2 is
estimated by S? = 37,3 (¥ — Y;:)?/(n - I). Then, from Example 4.7, a
100(1 — @)% confidence interval for 8 is given by

1/2
S e £t Pes (Z c? /J,-) :
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If we are interested in several contrasts (or the individual y;), chosen prior
to seeing the data, then we can use one of the three conservative methods de-
scribed in Chapter 5: namely, the Bonferroni, Studentized maximum-modulus
(SMM), and Scheffé methods. If we are interested in just the p;, then SSM
should be used. However, if the upper quantiles of the SMM distribution are
not available, then a conservative approximation (Hsu [1996: pp. 10-11]) is

. given by the t-distribution with upper quantile tﬁl/ Iz, where
o =1-(1-a)l/*,

The Bonferroni intervals using ¢, /( %) are wider, as 1-a)¥* < 1-afk
implies that 1 — a* < 1 - a/k, but the difference is small. There is therefore
little advantage is using the approximation.

If we are interested in all possible contrasts, then Scheffé’s method is appro-
priate. Since H can be expressed in the form ¢; = p;—ur =00t =1,...,I-1),
we know from Example 5.3 in Section 5.1.4 that the set of all possible linear
combinations of the ¢; is the same as the set of all possible contrasts in the

. Hence for every c such that ¢’1l; = 0, it follows from (5.13) that ¢’ lies
in the interval

D_ci¥s & (I = DFfy o PSR (/I (8:5)

with an overall probability of 1 — a. From Section 5.1.4 we see that H will
be rejected if and only if at least one of these confidence intervals does not
contain zero.

As already noted in Chapter 5, some of the conservative intervals can be
quite wide. However, if we are interested in just the set of pairwise contrasts
tir — s (for all 7 and s with r # s), then we can do better. Tukey [1953] and
Kramer [1956] independently proposed the intervals

— — 171 1
Y, -V, 40 ;S \/ 5 (7; + 3-;), (8.6)
() ;

where qk . is the upper 100a% point of the Studentized range distribution with
parameters k and v [i.e., the distribution of the range of k independent N(0,1)
random variables d1v1ded by (V/v)1/?, where V is independently distributed
as x2]. Tukey conjectured that the overall confidence probability for these
intervals is at least 1 — a with equality when the J; are equal. This conjecture
was proved by Hayter [1984], who showed that equality occurs if and only
if the J; are all equal. He also gave similar conservative intervals for all
contrasts. Hsu [1996: Section 5.2.1] gives a helpful discussion on graphical
ways of displaying the Tukey—Kramer (TK) intervals.

There are number of other procedures available. However, it appears that
the TK intervals are to be preferred, as they are less conservative (i.e., not
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as wide) (Hoctberz sod Tamhane [1387: op. 93-85]; Hsu [1996: pp. 146,
158-160]).

Bafanced Design

If the sample sizes are all equal {i.e., J; = J for all £), then other sets of
confidence intervals are available. For example, Tukey [1953] proposed the
following intervals for all contrasts Zf=1 Ci i, namely,

S <l
P e D Pd (8.7)

which have an exact overall probability of (1 — a). If we are interested in just
the pairwise contrasts p, — ps, we can use [cf. (8.6) with J; = J]

()
= - a1, rr—19
Yr_ - Ys_ j: —_— 8-8
' \/7 ( )
or
?vr_ - ?S. :]: d,

say. Since any difference Y, — Y, greater than d suggests that p, — p, # 0,
we can sort the p,; into groups which contain means that are not significantly
different from one another. For example, if d = 10.4 and the ranked sample
means are given as follows:

i 5 1 3 2 4
Y.: 254 326 39.2 40.8 52.1

then ps < ps, po, pa; p1 < pa; ps < pg; p2 < pg; and the appropriate
groups of means are (us,p1), (41,43, 42), and ps. It is common practice to
underline the groups as we have done above. However, when the design is
unbalanced, Hsu [1996: p. 147] notes two situations where underlining is not
helpful. For example, suppose that ¥i. < Ya. < Y3. but J1 < Jz < Ja,
so that the estimated standard deviation of Y3. — Yo. is greater that the
estimated standard deviation of Y3. — Y;.. Then the Tukey—Kramer method
may find ps and ug significantly different, but not u; and ug; this cannot
be described by underlining. Furthermore, underlining will not distinguish
between a confidence interval for p; — po that is tight around zero, thus
indicating practical equivalence of p; and p2, and a wide interval around
zero, which is somewhat inconclusive.

When we use a pairwise comparison, we find that 3, |c;|/2 = 1 and (8.7)
is the same as (8.8). The reason for this is that the pairwise contrast vectors
form a basis for the set of all contrast vectors.
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8.2.3 Underlying Assumptions

In Section 9.5 we will find that quadratically balanced F-tests are robust with
regard to departures from the assumption of normality. Now it is easy to
check for quadratic balance once we have derived the F-statistic; we simply
check both the numerator and the denominator to see if, in each case, the
coefficient of Y2 is the same for all r,s. From (8.4) we see that this will be
the case when all the samples are the same size [i.e., J; = J, (i =1,...,I)],
and we say then that the model is balanced. Clearly, the experimenter should
generally aim for balance as closely as possible; although balance is not always
achievable, as we saw in Example 8.1.

Another assumption is that o? is the same for all the populations. Scheffé
[1959: Chapter 10] concluded that any heterogeneity of variance does not
affect the F-test if the design is approximately balanced. Then a usually
conservative rule of thumb is that heterogeneity is unlikely to do much harm
if the ratio of the largest to the smallest sample standard deviation is no
more than 2. However, the confidence intervals are not so robust against
variance differences. If the variance differences are substantial, then a number
of alternative procedures are available. For two samples there is the well
known Welch procedure, which does not assume equal variances; this is usually
available from statistics packages. Welch and others have generalized this
method to more than two samples (see Roth [1988] for details).

There are a number of standard tests for the equality of population (group)
variances based on sample standard deviations. Unfortunately, these tests are
very sensitive to any nonnormality of the data and are therefore suspect as a
preliminary test (cf. Markowski and Markowski [1990]). There are, however,
several robust tests that are based on calculating a dispersion variable Z;;
and then performing a one-way analysis on the Z-data. The statistics package
SAS, for example, provides a number of homogeneity of variance tests using
the HOVTEST option in its GLM procedure. The best-known of these is
Levene’s test (Levene [1960}), which uses the absolute deviations and involves
calculating for the ith group (sample)

Ziy =Yy -Y:| (G=12,...,J5).

One can also use ij instead of Z;;. A robust version of this test, due to
Brown and Forsythe [1974], uses sample medians instead of sample means
when calculating the Z;; data (see also Glaser [1983]). Simulation studies
(Conover et al. [1981]; Olejnik and Algina [1987]) indicate that this last test
seems to be the most powerful at detecting variance differences, while pro-
tecting the type I error probability. Although the test is not very powerful,
we can rely on the fact that unless the group variances are very different or
the number of groups (I) is large, the test is reasonably robust to variance
heterogeneity when the J; are approximately equal. If the group variances
are very different, we should use a Welch-type procedure.
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If the assumptions of normality and equal variances are seriously violated,
then one can perhaps transform the data or use a nonparametric test such
as the Kruskal-Wallis test. Such robust procedures are generally available in
statistics packages. '

With regard to confidence intervals, if the population variances are unequal,
a number of methods are available. For example, if we are interested in just
a single confidence interval for, say, >_ a;u;, then we can use the approximate
N(0,1) statistic (Scott and Smith [1971})

7 — Eai?i.-— E 12417)
(32; a3 St/ T /2

Rt St 1

(each J; > 3),

where S? = E‘JI‘:I (Yi; — Y;)?/(J; — 3). A number of methods for computing
simultaneous intervals are described by Hochberg and Tamhane [1987: Chap-
ter 7]. Unfortunately, the upper quantiles of the various distributions used
are difficult to obtain and one must resort to approximations.

We note that the F-statistic is not robust with respect to the presence of
intraclass correlation, that is, when cov[Y;,,Yi,] = 0%p (r # s,p # 0).

In conclusion, it should be emphasized that the diagnostic methods of
Chapter 10 using residuals can be applied to ANOVA models.

EXERCISES 8a

1. Express H : yy = -+ = py in the form Ap = 0. What is the rank of A?
As this matrix is not unique, find another matrix, A1 say, also satisfying
H : Ay = 0. What would be the relationship between A and A;?

2. Obtain the identity indicated by (8.3), namely,

PPUCIEDOED IOV RS OED I B LTS SN

3. Obtain the least squares estimates of the p; using B8 = (X'X)"1X'Y
directly, where X is given by (8.2).

4. Prove that R )
— — Y. Y

2 _ 4. .

2.2 Wum ¥ =3 Go -

i g 2

Obtain a similar expression for 3, 3, (¥i; ~ Y4.)%.

5. Find (a) B[}, -;(Y«. —Y..)*] and (b) E[3; 3°.(Yi; —Y;.)?]. Hint: Use
Theorem 4.1(ii) for the first expression.
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8.3 TWO-WAY CLASSIFICATION (UNBALANCED)

8.3.1 Representation as a Regression Model

Consider an experiment in which two factors A and B are allowed to vary:
for example, type of drug and dosage. Suppose that there are I levels of A
and J levels of B so that there are IJ different combinations of the levels.
Let Yi;r be the kth experimental observation (k = 1,2,..., K;; : K;; > 1) on
the combination of the ith level of A with the jth level of B so that there are
n=31 ijl K;; = K.. observations altogether. The data can be regarded
as providing IJ independent samples, each from a different population. We
shall assume that the Yj;; are independently distributed as IV (u;, o?), so that

},ijkzﬂij'f'sijk (321:1-[:.7:131']1’9::111K1.J)1 (89)

where the &;;; are i.i.d. N(0,02?).
Let Yi; = (Yij1,...,Yik,;) be the ijth sample vector, and suppose that
we stack these vectors to get

. ' ' ! 1 ! ! !
Y“(Y111Y12:°--: 1Jy2en Iy F T2y IJ_r)

with mean
0 = (”111’}'{11’”1213{12’ T ’NIJI’KIJ)"

If we stack the £;;, in the same way as the Yj;x to get €, then € ~ N, (0, 0'2In).
As in the one-way classification, we can find an n X I'J matrix X of rank
p = IJ just like (8.2) such that @ = Xu, where p = (u11,p12,-..,0175) .
The least squares estimates of the u;; can then be found by minimizing
> Ej S p (Yijk — pi;)? with respect to p;;. This leads to fi;; = ?ij. and
RSS = 37,37, > (Yije — Y ;)% with n — p = n — IJ degrees of freedom.

8.3.2 Hypothesis Testing

The next question to consider is: What hypotheses are of interest? The
first hypothesis to test would be to see if the factors make any difference
at all (i.e., H : p;; = p for all i,5). The test statistic for this hypothesis
is straightforward, as it follows immediately from the one-way classification
with IJ means instead of I means. Thus from (8.4) we have

_ i Kij(Yi = Y..)2/(IJ 1)
> 2 ok (Yage — Y3 )2/ (n = 1)’

which has an Frj_y ;s distribution when H is true. We would generally
expect the test to be significant if the experiment is a meaningful one.

Our next question is: Do the two factors interact in any way; that is, does
the effect of factor A at level 7, say, depend on the level of factor B? If not,

F
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then we coulc ignore the presence of factor B and treat the experiment as
a one-way classification for A with K; = E;=1 K;; observations on the ith
level of A. By the same token, we could ignore the presence of factor A and
treat the experiment as a one-way classification for B with K.; = ELI K;j
observations on the jth level of B. With no interactions we essentially get
two one-way classifications as a bonus. We now wish to pin down this concept
of interaction mathematically.

If there were no interaction between the factors, we would expect the dif-
ference in means p;, 5, — ftiy5, to depend only on i; and i2 and not on the level
j1 of B. Mathematically, this means that

Miygy = Higjr = Hizje — Hizjas (8'10)
and the hypothesis of no interactions is then
HAB t piygy = Biggy — Biyja + igjs =0 for all 1,42, 1, J2.

Another way of expressing this hypothesis is to use p;; as a baseline (i.e., set
ig = I and j» = J) and write

Hapy t pij — pry — pig+pry =0 all 4,4
If we use p;; as our baseline instead of ury, we get
Hapz t pij —p1j — pa +p1n =0 all 4, 7.

There is yet one more common method of specifying the no-interaction hy-
pothesis. From (8.10)

Hiyj — Higg = ¢(i1: 1.’2): say
J .
- Z ¢>('51, %2)
j=1 J

= B, —0; forallig,i
or
Hiyj — Ez'l. = Higzj — -ﬁzg
This equation implies that u;; — I; does not depend on ¢, so that

2

Hij — -ﬁz = .7 ’ say

24)

- I
i H.L

Il
-M"'*

2

Il

H
Ry

or
Haps i pij — s, —f; +8, =0  foralli,j (8.11)
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We note that this expression is symmetric in 7 and 7, so that we would arrive
at the same result if we assumed the difference pi7, — 45, to depend only on
j1 and j2 and not on %.

All the sets of hypothesis contrasts on the p;; above are equivalent, as they
all lead to the same vector subspace defining the linear model corresponding
to Hap. This is effectively the means model approach. However, we might
ask what this model looks like? Instead of using a constraint equation specifi-
cation where the u;;’s are constrained, we can also use a “freedom equation”
specification, in which we express the p;; in terms of other parameters. For
example, all the forms of Hap are equivalent to p;; = pu + a; + 8; (Exer-
cises 8b, No. 1), and this will specify u as belonging to the column space of
a particular matrix. To incorporate this matrix into the general model with
column space C(Iry) (as p = Iyyu), we simply write

Lij = p+ o + By + (af)i, (8.12)

where the (af});; are usually referred to as the interaction parameters. In
vector form this model is given by

”’ = L(f-": a’:ﬁ’: (a"ﬂ)")‘r = LFY’

say, where

i
Q== (ala SRR 1af)': ﬁ = (1611 s 1ﬂJ)’: and (aﬁ) = ((aﬁ)lla R (aﬂ)IJ)!-
To get some idea of what L looks like, suppose that I = 2 and J = 2. Then

[

241
111 1 10 10 1000 22
g2 _ 1 10 01 0100 ﬁ}
P21 - 1 01 10 0010 (aﬁ‘)
1 0 1 0 1 0 0 01 H
Hz2 (af)12
(afB)21
\ (aB)22
= (14,A1,A2,A12)7, (8.13)

say. We note that L does not have full rank; in fact, it has four linearly
independent columns (as the rows are linearly independent). However, C(L) =
C(14), so that C(L) also represents the general model. Since H 45 is obtained
by setting (aB) = 0, the model corresponding to Hap is obtained from L
simply by leaving out Aj;. Before discussing the fitting of such less-than-full-
rank models, we now consider two further hypotheses of interest.

If there are no interactions, then, as we noted above, we can treat the two
factors separately and test, for example, the hypothesis that all the levels
of A have the same effect. There are several other ways of expressing this
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hypothesis. For example, if p;; does not vary with 4, then p;; = gy, which
combined with H 4p1 leads to

Hy cpsyg—prg=0, i=1,...,I-1.
Alternatively, combining u;; = py; with Haps leads to
Hpo i ppyy —p11 =0, i=2,...,1.
Also, if p;; = A(j) = Z.;, then combining this with H4p3 gives us
Hups:0;, —0..=0, i=1,...,1I.

This hypothesis can also be expressed in the form

Hp:flhy, =0y =+ =05; or m;,=pr (E=1,...,I1-1)

In a similar fashion, we have

H.B (R =0 = =T,

with its alternative forms Hp: : pr; — prg = 0, Hpa @ p1j — p11 = 0, and
Hpgs :-ﬁ-j - Q.= 0.

We note that if we combine with H4p the hypothesis that the y;; do not
vary with 7, we get the model p;; = p+ B; (¢ = 1,...,I). To obtain this
model, we simply omit Ao and A; from L.

If we use the model (8.12), then since L does not have full rank, the indi-
vidual parameters are not identifiable and are therefore not estimable. Only
certain functions of them, which are also linear functions of the u;;, are es-
timable. Estimability is determined by the model, not the method of spec-
ifying the parameters. It is common practice in textbooks (including the
first edition of this book) to introduce constraints on the parameters so as to
make them all identifiable and therefore estimable. However, as Nelder [1994]
cogently argues, this is not necessary. All estimable functions have the same
estimates, irrespective of the constraints imposed, but nonestimable functions
will have different estimates under different constraints.

One reason for the introduction of constraints in statistics packages is to
avoid the use of generalized inverses in fitting less-than-full-rank models. We
briefly consider some of these constraints by referring to L above.

Suppose that we consider the group of hypotheses H4gs, Has, and Hgs,
and define (@)} = pij—F; —F;+B., &} = Fs.—F.., and f} = fi.;—F... These
parameters then satisfy (8.12) and also satisfy the symmetric constraints a* =
0,8=0,(af)f =0@GE=1,...,I —1), (aﬂ)‘_“j =0 =1,...,J—1), and
(aB)r = 0. This means that there are only :

IT-(I-1)=-J~-1)=-1=T-1)(J=1)

mathematically independent (af);;, I — 1 independent o}, and J ~ 1 inde-
pendent B;. Thus on the right-hand side of (8.12), we have 1 + (I — 1) +
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(J = 1)+ (I = 1)(J — 1) = IJ independent parameters, the same number as
the pij, so that the transformation is one-to-one. Therefore, if we proceed in
a reverse direction and start with the symmetric constraints, the parameters
are uniquely defined and have the definitions above (cf. Exercises 8b, No. 2).
The matrix L can then be reduced to one of full rank bPr using the constraints
to eliminate some of the parameters (e.g., o} = —~ 1,:—11 af, etc). However,
computationally, such an approach is not so helpful.

If we use the group of hypotheses Hap2, etc. and set 7v;; = pi; — p1j —
it — i1 1L, @ = g1 — M1, and ﬁj = Hij — Hi1, We end up with a different
set of constraints, namely, oy = 0, g1 = 0, (@f)a = 0 (¢ = 2,...,I), and
(a@B)1; = 0 (j = 1,...J). These constraints are the ones used by GLIM,
S-PLUS, and R, for example. However, if we use the hypotheses H4p1, etc.
and set vi; = pi; ~ prj = pig + prg, Qs = pig — pry, and B; = prg — prg,
we get the constraints oyy = 0, fry = 0, (@f)iy = 0 (i = 1,...,I), and
(ef)r; =0 (j = 1,...,J ~1). These constraints are used by the package
SAS, for example, and we can see what is happening if we consider L given
by (8.13). Since we have ap = B2 = (af)12 = (af)21 = (aB)22 = 0, we are
effectively omitting columns 2, 4, 6, 7, and 8 from L. This corresponds to
examining the columns of L one a time from left to right and omitting any
linearly dependent columns.

Clearly, it is preferable to work with the unambiguous means model and
the hypotheses Hap, Ha, and Hg. However, the parameters u, «, etc.,
are introduced for computational convenience but at the expense of possible
ambiguity, as we shall see below. The first hypothesis that should be tested
is Hap (or its equivalents), and if this is rejected, then H4 and Hp become
problematical. For example, if constraints on the parameters are used, the
hypotheses Ha, Ha1, Ha2, and H4s (without H4p being true as well) are
different from one another and will produce different residual sums of squares.
This means that different statistics packages can produce different answers.
Clearly, it is preferable not to impose any constraints on the parameters when
using (8.12), which is equivalent to working with the underlying vector spaces
specified by the hypotheses. This will be our approach.

In what follows we shall use the model (8.12), but without imposing any
constraints on the parameters p;;. In this case, H,, for example, is no longer
equivalent to ui; — i ; = 0 (all 4, j), the hypothesis originally intended. There
is not much point in testing whether the average effects of A are zero when
some of the individual effects p;; — 7i.; are not zero.

8.3.3 Procedures for Testing the Hypotheses

We begin with the general model E[Y] = Xu = XL+, which we shall call G.
The models of interest to us are

Hiog: iy = n
His @ pij p+ B

If
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H-z iy = B oy
Hytpy = proi+f
with no constraints on the parameters. The ranks of the underlying regression
matrices are the same as the number of free parameters when the symmetric
constraints are applied, namely, 1, J—1,I~1,and 1+7-1+J—-1=I+4J-1,
respectively. These models are all subsets of the columns of Li; here H; is the
same as H,p (we use a different notation later to illustrate the nesting effect
of the models above). The residual sum of squares for each model can be
computed by imposing constraints on the parameters to reduce each regression
matrix to one of full rank.
The model corresponding to a = 0 without H4p being true is

pi; = p+ Bi + (af)ij,

which, looking at L, for example, is still G, our unconstrained general model.
Therefore, if we tested a = 0 against GG, we would get a zero hypothesis sum
of squares in the numerator of the F-test, However, if constraints are applied
to all the parameters, then the hypothesis sum of squares will be nonzero.

Several procedures for testing the hypothesis sequence have been proposed,
and they all begin with testing H; versus GG. Let RSSi23, RSSi3, etc. be
the corresponding residual sums of squares obtained by fitting the models
Hy33, Hi3, and so on; RSS is the usual residual sum of squares from fitting
G. The degrees of freedom associated with each residual sum of squares is
n minus the rank of the regression matrix. Before proceeding further, we
introduce an alternative R-notation for RSSy — RSS which is often used in
the literature. Suppose that ' = (91, 3) and we wish to test H : «y; = 0 given
v2 # 0. Let RSSy — RSS for this hypothesis be denoted by R(y1|vz2). Then
the numerator sum of squares of the F-statistic for testing H; is RSS; ~RSS =
R((apB)|p, o, B). The degrees of freedom associated with the difference of two
residual sums of squares is simply the difference in the two degrees of freedom.
For example, RSS; — RSS has degrees of freedom

n—I+J-1)~-n-IN)=IJ~-I-J+1=(1-1)(J-1).

We now give three different procedures that can be used after testing Hi
versus G, and we shall use the nomenclature given in the statistics package

SAS.

Type 1 Procedure

After testing H;, this procedure consists of the following sequence: (1) Test
3 = 0 by testing Hy, versus H; using RSS;3 —RSS; = R(8|u, a); then (2) test
a = 0 by testing Hjo3 versus Hiz using RSS;23 — RSS12 = R(a|u). We now
show that these sums of squares, along with RSS; — RSS = R((af8)|u, o, 8),
are mutually independent.
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Let G, Hy, Hiz, and Hyz2g specify that & = E[Y] belongs to Q, wi, wi2, and
w12z, respectively. If P, represents the orthogonal projection orto w, then
consider the decomposition

L, =0, — PQ) + (Po ~Py1) +(P; - Pi2) + (P12 — Pioz) + (P122). (8.14)

Since w2z C wiz C wy C N, it follows from B.3.1 and B.3.2 that all the

matrices in parentheses in (8.14) are symmetric and idempotent, and mutually
orthogonal. For example,

(Pg —P1)(P1 —P12) = PoP; —PoPi2— PZ 4+ PPy,

. P, —Pi2—P1+ Py
' = 0.

il

The matrices in parentheses therefore represent orthogonal projections onto
the mutually orthogonal subspaces 2+, wi" NQ, wis Nws, wiss Nwiz, and wigs
respectively (by B.3.2). Therefore, if we multiply (8.14) on the right by Y, we
will obtain an orthogonal decomposition of Y on the right-hand side, namely,

Y =(I1,-Pa)Y+(Pa-P)Y+(P1—P12) Y+ (P12—P123) Y+ (P123) Y.

(8.15)
We also have from (8.15) that

Y'(I,-Pi23)Y = Y'(T,-P)Y+Y'(Pe-P))Y +Y'(P; -P12)Y
+ Y' (P12 — Pi23)Y

or

RSS;23 = RSS+ (RSSl - RSS) + (RSS12 - RSSl)
+ (RSS123 — RSSy2)
= RSS + R((afB)|p, @, B) + R(Blu, @) + R(a|u). (8.16)

Now, from Theorem 1.3 and P12P; = Pis,
Cov[(I, — P1)Y, (P, ~ P12)Y] = 6?1, — P1)(P; — P1)' = 0.

In a similar fashion we can show that the pairwise covariances of all the
vectors on the right-hand side of (8.15) are zero (a property of the orthogonal
structure). Furthermore, from results such as Y'(I, — P;)' (I, — P;)Y =
Y'(I, — P;)Y, it follows from Theorem 2.5 that the sums of squares on the
right-hand side of (8.16) are mutually independent. Hence the sums of squares
used for testing our nested sequence of hypotheses are independent of each
other and of RSS. It is usual to use RSS in the denominator of each test. We
note that since @ € wigs if and only if 8 = ul,, Piaa = 1,(1,1,)7'1 =
n 11,1/, and RSSy23 = 3, (¥; — Y.)%. The four sums of squares then add up
to the (corrected) total sum of squares RSS;23, which are expressed this way
in computer printouts.
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We note that two orderings are possible, as we can interchange the roles of
the two factors; this amounts to using H;s instead of H;», and interchanging
the subscripts 2 and 3 in the theory above. These two orders will lead to
different breakdowns of 3,(¥; ~ Y.)?, which may lead to conflicting models

and the need for a model selection method. The type 1 method is also used
by S-PLUS and GLIM.

Type 2 Procedure

In addition to testing Hj, this procedure consists of the following sequence:
(1) Test B = O by testing Hi2 versus Hy using RSS;2 — RSS; = R(8|u, a);
then (2) test a = 0 by testing Hy3 versus Hy using RSS,3—RSS; = R(a|u, 8).
This method treats the two factors symmetrically and effectively combines the
two orderings used in the type 1 method. Clearly, the various sums of squares
no longer add to };(¥; — Y.)? in the unbalanced case. This method does not
have the nice independence properties enjoyed by the type 1 procedure. Also,
one questions the appropriateness of moving outside a nested framework; a
point considered by Nelder [1994] under the title of marginality.

Type 3 Procedure

In addition to testing H; (Hap), this procedure consists of testing two
marginal means hypotheses, namely, Ha : [y, = [y, = --- = [, and
Hp : iy =@y =--- =7 versus G. Using the model (8.12) (without restric-
tions), we see that H 4, for example, is equivalent to testing that a; + (a8);. is
constant for all 7, which is not a very meaningful hypothesis when the (af8);
are not zero. This hypothesis can be tested formally by imposing, for com-
putational purposes, the symmetric constraints on the parameters and then
testing Has : of = ;. — .. = 0. Then RSSy,, — RSS can be expressed as
R(a*|p*, B*, (aB)*), which is the starred notation used by Speed and Hocking
[1976] and Speed et al. [1978]. Using * indicates that the value of R depends
on the constraints used; alternative constraints will lead to a different value.
Without the constraints we saw that R(a|y, 8, (@8)) = 0, which higblights a
problem with the R-notation; computer packages don’t always clarify which
one is being used.

When one or more cell frequencies K;; are zero, the procedures above can
be adapted accordingly in statistical packages; in SAS there is then a further
procedure referred to as a type 4 procedure. When there are no missing cells,
types 3 and 4 sums of squares are identical.

In conclusion, we note that there is considerable controversy and confusion
over which is the appropriate procedure (cf. Hocking [1996: Section 13.2]).
However, if H; is rejected, there are problems with all three methods.

8.3.4 Confidence Intervals

As we can regard a two-way classification as a one-way classification with IJ
populations (groups), we can use the methods of Section 8.2.3 to construct
confidence intervals for one or several contrasts in the {u;;}. If we use the
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symmetric constraints, we can also construct simultaneous confidence intervals
for contrasts in {c}}, {8} }, and the {(aB)};}. For example, expressing H4 in
the form ¢ = Ap =0 [¢' = (of,03,...,a7_;)], where o} = T; — .., we can
use Scheffé’s method [cf. (5.13)] as follows.

We note that

I—1
D hia} = hi(@;, —7.)

i=1 i=1
1 1 I-1 1=t
T th) i + (—‘f Zhi) 133
=1 -

.

§
_ (h
i=1

I
= Zc,;a;, (817)

where 3" ¢; = 0. Conversely, by writing e* = — S{_! a?, we see that (8.17)

i=1
is expressible in the form Ef;ll hiaj. These two statements imply that the
set of all linear combinations h'¢ is the set of all contrasts in af,a3,...,a}.
Now
Y asi=Y al.-Y.)=) ¥,
i i .
so that

var(» ;6] = 0% ) C’?'
iy | = )
i ; i K.

where K;. = 3. K;;. Hence

2
l-a = pr[Y efm €Y a¥u £l - DFRy 025 ( Y 2 )1/2’

i +

for all contrasts ] ,

where ,
$2 =3 30 (Wi =Vi)*/n and n=373 Kiy=K.
i i k i g

Similar methods can be applied using Hg and Hapg.
EXERCISES 8b

1. Prove that Hap, Hap1, Hap2, and H,4ps are all equivalent to u;; =
p+ai + G;.
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2. Using the syrzozztric constraints, express the parameters p, o, etc. in
terms of the u;..

3. Obtain an F-test statistic for testing H : u;; = g in a two-way classi-
fication. Find the expected value of the numerator sum of squares of
your test statistics.

8.4 TWO-WAY CLASSIFICATION (BALANCED)

When K;; = K for all 7 and 7, the model is said to be balanced. In this case
we find that the various sums of squares have some nice properties. To begin
with, all three procedures are identical, as we shall show below that

R(a*|p*) = R(a™|p", B%) = R(a®|,p", 8%, (af)"), (8.18)
and
R(a*|u*) = R(a|u), and R(a™|p*, 8%) = R(a|y, B). (8.19)

We recall, however, that R(a*|,u*,B*, (a8)*) # R(al,u,8,(aB)) (= 0).
Similar results can be obtained by interchanging the roles of & and 3.

To find RSSy for Hap, H4, and Hg, we can use the symmetric constraints
which are based on the decomposition

pij = B+ @ —B)+@,;~B)+ (i ~F;, —0;+E)
W+ ol + B+ (B)] (8.20)
with a corresponding decomposition of €;5x, namely,
gijg = E.+E. —E.}+E; —E.)
+ (€ij. — 1. — €4 +E.) + (€ijp — Esj. ) (8.21)

Squaring, and summing on %, j, and k, we find that the cross-product terms
vanish (because the elements come from mutually orthogonal vectors) and

Do2D e = 2D D FAD DD TN
+ 33 S (eije — E4)% (8.22)
Setting eijx = Yk — p* — of — B — (af)};, and using a* = 0, etc., we obtain
S NS Wik —pt —af - B — (@B);)’
=YY NF. -+ > Z Y (i -V -a})
+3 NS (Y -Y. -8
+ Z ZZ(?ij. ~ Y. ~ ?3 +Y.. —(af)f)?
+ 33D (Vi — Vij)2. (8.23)
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By inspection, the right side of (8.23) is minimized (subject to a* = 0, etc.)
when the unknown parameters take the values

— ——

=Y., a=Yi.-Y., B=Y;-7

and . . _ . _
(@B)i; =Yy ~Yi. =Y +Y ..

Because of our previous discussion, we won’t refer to these quantities as esti-
mates because they depend on which constraints are used. Rather, they are
intermediate quantities which assist us in finding each residual sum of squares.

By substitution we get j;; = o* + &f + ﬁ; + (575);} =Y. and

RSS = Z Z Z(Yijk ~¥i)?,

as before. This estimate of u;; and the residual sum of squares will be the
- same irrespective of the method of reparameterization.
To find RSSH,,, we must minimize (8.23) subject to (af)}; = 0 for all 4, 5.

By inspection this minimum occurs at 4*, &}, and §7, so that

RSSy .z = Z z Z(?,_, -Y; - Y, + ?)2 + Z Z Z(Yijk -Yi;)?
and
RSSu,; —RSS = > > N (¥ -Y: -V ,;+7.)

- KL TG
i J
The F-statistic for testing H4p is therefore

_ESS,@RR/I- DI 1) _ 53,

i RSS/(IJK — 1J) =5 (8.24)

say, which has an F-distribution with (I — 1)(J -~ 1) and IJK — IJ degrees
of freedom, respectively, when H4p is true.

Test statistics for H4 and Hp are obtained in a similar fashion. Setting
af = 0, for example, in (8.23), we find that the minimum of (8.23) now occurs
at 4*, B, and (@fB)};. Thus

RSSz, = Z Z Z(?"'- -Y. )+ Z Z Z(?ijk —Yi)2,
RSSy, —RSS =Y > S (V.. -Y. ) =JKY &7,

e JKS,62/I-1) _ 82
_ ; & — 1) __a '
F=Rs§iaix =17 = 5 (8.25)
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say, is the F'-statistic for testing H4. The corresponding statistic for Hp is

IKY,; B /(J-1) _ 8%
= RSS/IIK-17) ~ 5 (8.26)

In all the derivations above we see that the minimizing values of the pa-
rameters are always the same, irrespective of which ones are set equal to zero.

Using the fact that RSSy — RSS = ||¥ —~ Y||? for any pair of hypotheses
with one nested within the other, we have

R(o*|p*) = ij[ﬁ* + 67 — (@)

j

= ;[ﬂ* + &} + 5 - (2" + B;)P
i3

= Zk:[ﬁ* +&¢ + B + (@B)y — (@ + B + (@B
ij

= 2 &7 (= JKZazz) ,
ijk i

thus proving (8.18). Equation (8.19) follows from the faci that when we
have the model u;; = p + o; + §; and any submodels of it, the symmetric
constraints do not change the subspaces represented by the design matrices;
the only change is that the matrices are changed to full rank, and this does
not affect the residual sum of squares. Although the number of degrees of
freedom for each RSSg is given above, they can also be obtained from the

coefficient of ¢2 in E[RSSy] (these expected values are given in Exercises 8c,
No. 1).

Analysis-of-Variance Table

As in the one-way classification, the various sums of squares are normally
set out in the form of a table (Table 8.2). The various sums of squares in
Table 8.2 add up to 33 S (Yijk — Yi;.)%; this follows either from (8.16),
which also shows that they are independent, or from the fact that (8.22) is an
identity in the €4 and therefore also holds for the Yj;x. Since

SN D F. -7 )i = JKZ@;{

this sum of squares is usually called the sum of squares due to the A main
effects, although some textbooks use the term row sum of squares. Similar
designations apply to the next two sums of squares in Table 8.2, as they are
IK Y, B3? and K3 3,;(ap);f, respectively. The sum of squares labeled
“error” gives a pooled estimate of o2 based on all 7J normal populations; this

term is also called the within populations sum of squares or the residual sum
of squares. As in the unbalanced case, we need to look first at H4p.
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Table 8.2 Analysis-of-variance table for a two-way classification with K(K > 1)
observations per population mean '

Sum of squares Degrees of SS
Source (SS) freedom (df) df
A main effects JKZ&}Q I-1 S2
B main effects IK Zzﬁ;z J—1 S%
J
ADB interactions KZ Z(&B);‘jz (I-1)(J-1) S%g
i J
Error Z Z Z(Y}jk ~-Y4;)? IJ(K —1) S?
i ik
Corrected total Z Z Z(Yijk ~-Y )2 IJK -1
i ik
EXERCISES 8c
1. (a) Prove that
i ) i(ﬁ..——}’ )? = oY Y
s frucill = JK ILJK

(b) Using Table 8.2, prove the following:

E(I-1)S3] = *(I-1)+JKY o

E[(J - 1)5%) o*(J ~1) +IK > B;*

AI-DNJ-1D)+EKE) D (ef).
i ]

E[(I - 1)S%5]
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2. Given the sepuiasion means uy 1=1,2,...,5;7=1,2,...,J), let
42 = E Uj iz E Vi = 1 3
J J

Zuiﬂ'z’j (Z u; =11},

2

B;

and
p= Y= 30y = 3 Y st
i J i g
Define o; = A; — i, f; = Bj — i, and
(af)ij = pij — Ai — Bj + p.

(a) Sz}.:10W Eshgi): > 1(;i?ill=')2j viB; = 0,3 ui(eB)iy; = 0 (all j), and
j'Uj al)i; = all ).

(b) Conversely, given

pij = g+ a; + B + (0f)sy,

show that the parameters in the equation above are uniquely de-
termined by the constraints in (a).

(c) Prove that if the interactions {(af);;} are all zero for some system
of weights {u;} and {v;}, then they are zero for every system of
weights. In that case show that every contrast in the {o;}, or {8},
has a value that does not depend on the system of weights.

(Scheffé [1959: Section 4.1])

3. Let Vi = p+ oy + B + (aff)ij + €ijk, where ¢ = 1,2,...,I;5 =
1,2,...,J5k=1,2,..., K;;; and the g;; are independently distributed
as N(0,0%). Given K;; = K; K ;/K.. for all 1,7, find a test statistic for
testing the hypothesis H : (af);; = 0 (all ¢, j). Hint: By Exercise 2, the
validity of H does not depend on the weights used in the identifiability
constraints } ; us0; = 3, v;8; = 0. We can therefore use u; = K /K.,

and v; = K ;/ K and find the least squares estimates of a; and §; when
H is true.

(Scheffé [1959: p. 119))
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8.5 TWO-WAY CLASSIFICATION (ONE OBSERVATION PER MEAN)

Suppose that in a two-way classification there is only one observation per
mean, so that the model becomes

K:j=ﬂij+5ij (i=1121'°-3I; j=1,2,---,J), (827)

where the g;; are i.i.d. N(0,02). We now have IJ observations but IJ + 1
unknown parameters {u;;} and o2, so that we cannot estimate all the pa-
rameters without imposing at least one constraint to reduce the number of
“free” parameters. However, typically, such data come from a randomized
block design with I treatments and J blocks. Here each block has I sam-
pling units and the I treatments are applied to the units in random order so
that we would expect the interaction between treatment and block number
to be small. A reasonable assumption would then be that our model for this
experiment is the additive model

G:pig =p+ o+ B,

where there are no constraints on the parameters. In Section 8.4 we saw that
to compute residual sums of squares, we can reduce the model tc one of full
rank using, for example, the symmetric constraints (but we now drop the *

label, for convenience). Since we have o; = [i;. —~ [.., and similarly for §;, we
find that the additive model is equivalent to

pi; ~ . —B; +E. =0  forall4,j. (8.28)
We can therefore express GG in the form
pij =B+ (@ — 7)) + (@ - B.) + (g — By — By +E.),
which suggests; as in Section 8.4, the corresponding decomposition
€ij =E.+(E. —€)+(E; —E )+ (€ — €. —F; +E.).

Algebra similar to that used in Section 8.4 leads to

Y3k = YA+ @ )
+Y D Es -+ (e~ ~E;+E)%

Setting £;; = Yi; — u — a; — B; and applying the constraints . and 8. to the
model, we have

ZZ(Yw —p—os—Ps)? = ZZ(T’_ — )+ ZZ(?? -7 -a)
+> 2 V=Y. =)
+ Z Z(Yu -Y: —~ ?.j + ?)2 (8.29)
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The left-hand side of (8 29) is minimized when p =Y (= 4), a; = Y; ~Y
(= éu),and B; =Y ; - Y. (= B;), so that u”—p+at+ﬁ3=?— +Y.;-Y.
and

RSS = D > (Y- ﬁ«aj)2
= Z Z(Yw Y. - it Y )2
= > S @By,

say, with degrees of freedom IJ — (I +J — 1) = (I — 1)(J — 1). Since the
interactions are zero, we see from the equation above that the “interaction”
sum of squares takes over the role of the error sum of squares, and an unbiased
estimate of 02 is RSS/(I — 1)(J — 1). However, it should be pointed out that
an estimate of o2 can be found by making much weaker assumptions; not all
the interactions need to be zero (Johnson and Graybill [1972a,b]).

Setting a; = 0, we see, by inspection, that the left side of (8.29) is mini-
mized when p = i and 3; = ﬁj so that

RSSh, =3 > Fi-Y.)2+D D> ¥y -V -Y;+7 )
and
RSSy, —RSS=)> > (Y. -7.)%.

Hence the F-statistic for testing H 4 is

o Y. =Y. )/ -1)
Sy -V -V +Y )/ I-1)(J-1)
JY &2 /(I~1)

= _ {8.30)
(@B /I -1 -1)

The test statistic for Hp follows by interchanging ¢ and j, namely,

Iy;B3/(J-1)
TS R@RL /I~ 1)
The entire procedure can be summarized as in Table 8.3. We note that with
the interactions zero, Hy is equivalent to ps; — fi.; = 0; that is, ui; does not

depend on 7 for every j. In a similar fashion we see that Hp is equivalent to
ti; not depending on j for every 1.

(8.31)

8.5.1 Underlying Assumptions

A key assumption in the analysis above is (8.28). We shall call the quantities
(@B)i; = pij — B — B + B.., the interactions. Because we cannot estimate
all the pa.rameters in (8 27), we cannot test that (af)s; = 0 for all ¢, 7 against
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Table 8.3 Analysis-of-variance table for a two-way classification with one observation
per population mean

Sum of squares Degrees of SS
Source (SS) freedom (df) df
A main effects JY a2 I-1 5%
(treatments) i
B main effects 1y p2 J—1 S%
(blocks) i
Error ZZ(EB)?J- (I-1)(J-1) S?
i J
Corrected total Z Z(Y.,;j -Y.)? IJ—1
i

a general class of alternatives (o8);; # 0 [for at least one pair (¢,j)]. We
therefore have to resort to carrying out our test against a suitably restricted
class of alternatives; several such classes have been considered. For example,
if we assume that (@f);; = ya:iB;, then Tukey’s [1949] well-known test for
additivity is equivalent to testing the null hypothesis H, : v = 0 against the
alternative v # 0 (Scheffé [1959: pp. 129-137]). Tukey’s test statistic is

5SS
F =’ C-Do-D -1 (8.32)
where
- 2
SS. = (Zz Zj &iﬂjyij)
K 63 Y, B
and

RSS =33 (ah)i;.

Then F has an F-distribution with 1 and IJ — I — J degrees of freedom,
respectively, when the underlying model is

Yij = p+a;+ B + €.

It is instructive to derive (8.32) from the following lemma due to Scheffé [1959:
p. 144, Example 4.19].

LEMMA  Suppose that Y ~ N,(X8,0%1,), where X is n x p of rank p,
and define 8 = X3, where 3 is the least squares estimate of 3. Let Z =f (9)
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be a continuous function of & (chosen before the outcome of Y is inspected),

and let ¢ be the same linear function of Z that & is of Y. Define R = ||Y —8||?
and

Z'(Y — 6)
{(Z- @)Y (Z - )} />

1=

Then
R}

= ®-Bn=p-D

~ Fl,n—p--l -

Proof. 8 = X(X'X)"1X'Y = PY, so that ¢ = PZ and

Z'(I, -~ PYY

Ry = (Z'(1, - P)Z}'/

[=Z'A, - P)Y/cz, say].

Consider the distributions of K and R; conditional on Z = z. Since R is
independent of B [Theorem 3.5(iii), Section 3.4], and therefore of Z, the
conditional distribution of R/o? is the same as the unconditional distribu-
tion, namely, x%_, [Theorem 3.5(iv)]. Also, from (I, — P)X = 0, R; =
Z'(1, — P)(Y — XB)/c;, where Y — X is independent of @ and therefore of
Z. Hence

E[Ry)|Z = z) =2 (I, — P)E[Y — Xf]/c, =0

and
d - — XA DYV
VB,I'[R]_ IZ = z] — Z (I'n P) Var[i2 XIB] (I'n P) p A
< .
_ 2% P)(Inc; P)I,-P)z _ ,

imply that R; is conditionally N(0,o2). As this does not involve z, it is also
the unconditional distribution. Now settingu = (I,—P)Y and v = (I, —P)z
and invoking the Cauchy—Schwartz inequality (A.4.11), we have

{z(1, - P)Y}*

2 !
R-R = Y({I,-P)Y - (L. — P)z
R a0
viv
_ (u'u)(v'v) = (u'v)?
- viv
> 0.

Then, since R/o? ~ x¥%__ and R?/0% ~ x%, we have, by Example 2.13 in Sec-
tion 2.4, that (R— R2)/ o and R} /o? are independently distributed as x%_,_;
and x2, respectively. Thus Fy ~ Fi n.p—1, and because the F-distribution
does not depend on z, it is also the unconditional distribution of Fj. O
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To apply this Lemma to (8.32), we simply define Z =£(8) by Z;; = 62,
where éij =g+ &; + B_.,-. Then

'Y -8|>=RSS=> > (v; -V -Y;+7.)?

and

{{@, - P)Z)Y}?
Z'(1, — P)Z

{(33(Zi; = Zi. = Z ; + Z )Yy)?
S5S(Zii -2 —-Z;+Z )2

Ry

Using &, = B = 0, we have after some algebra that
Zij _?i. - E,j +7__ = 261,;,5_.,;

so that
g2 = 1202 6B
' I

and we have derived (8.32). A similar method can be used for deriving a
test for interaction for other experimental designs which assume additivity,
for example, the Latin square.

Tukey’s test, originally proposed without specifying any particular form for
(aB)y;, seems to have reasonably good power for the alternatives v # 0 (Ghosh
and Sharma [1963]), and the effect of nonnormality on the test is examined
empirically by Yates [1972]. Several generalizations of the procedure have
been proposed (cf. Johnson and Graybill [1972a,b] for references), and all
these tests would appear to have reasonably good power when (of);; is a
function of the a; or ;. Johnson and Graybill {1972b] also proposed a test
for interaction that would have a reasonable power when the underlying model
is

(8.33)

K‘,j =pn+ o+ 63' + /\")’-,—;(53' + €5, (8.34)

Wherea_=ﬂ.=fy_=5_=(]a,nd thy‘?:_zjé?:l

Residual plots based on the residuals (C?B)ij must be interpreted with cau-
tion. Any irregularities could be due to either departures from the usual nor-
mality assumptions or to the presence of nonzero interactions (i.e., E[(cf) ij) #
0 for some 1, j). Because the F-tests (8.30) and (8.31) are quadratically bal-
anced (cf. Section 9.5.2), we would expect the test statistics to be robust
with regard to nonnormality. As a bonus, the effect of randomizing the treat-
ments in the blocks induces a randomization distribution for the data which
is approximately normal. Any heterogeneity of variance or error correlations
within blocks could be tested using, for example, the methods of Han [1969].
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8.6 HIGHER-WAY CLASSIFICATIONS WITH EQUAL NUMBERS
PER MEAN

8.6.1 Definition of Interactions

The extension of the theory in Section 8.4 to higher-way classifications with
equal numbers of observations per mean is fairly straightforward and is demon-
strated briefly by considering the three-way classification:

Yijkm = pijk + Eijrm, (8.35)

where: = 1,2,...,; s =12,...,J; k=12,...,K;m = 1,2,...,M, and
the £ijxm are iid. N(0,0%). Here we have three factors: A at I levels, B at
J levels, C at K levels; and there are M (M > 1) observations per population
mean for each of the IJK means. In addition to the (first-order) interactions
between A and B, B and C, and A and C, we now have the possibility
of a (second-order) interaction between all three factors. If, however, the
factors interact only in pairs, so that, for example, the AB interactions are
not affected by C, then an AB interaction would be the same for all levels of
C. Mathematically, this means that

Pijk — T = Byp 2., = %(,7)

K
= > ¢(i,5)/K
k=1
= [y~ B, =By + 0

or

(@BY)ije = Mijk — Bij. —Bji — Bk + By TR + B x— B,
= 0.

(A numerical example demonstrating this is given in Exercises 8d, No. 2, at
the end of Section 8.6.3.) Since (af7)ijx is symmetric in ¢, j, k, we see that we
would have arrived at the same result if we considered the BC interaction at
different levels of A, or the AC interaction at different levels of B. It therefore
seems appropriate to define (afBv);; as the second-order interaction between
the ith level of A, the jth level of B, and the kth level of C. We refer to these
interactions simply as ABC éinteractions.

Qur two-factor concepts of Section 8.4 can be carried over to this situation
by considering a two-way table for each level of C. For example, the interac-
tion of the ith level of A with the jth level of B, given that C is at level k,
is

Mijh — Hgx — Bgp + B k- (8.36)
The average of these over the levels of C/, namely,

(0B)ij =P, —~ i — L + B,



HIGHER-WAY CLASSIFICATIONS WITH EQUAL NUMBERS PER MEAN 217

we call the interaction of the ith level of A with the jth level of B. We
similarly define the BC and AC interactions to be

BY)jx =Bk —Bj —B.x+E..
and
(eY)ik =T — Wi, — B, + H...-

By analogy with Section 8.4, we also define the following parameters, which in
the context of balanced designs, are usually referred to as main effects. Thus

A main effects: o = @, —F _,
B main effects: g; = @, —E. ., and
C main effects: v = T ,— 7. -

We stated in Section 8.3 that in the unbalanced design it is not appropriate
to put constraints on the parameters. Also, there were then three methods
of testing the hypothesis sequence. However, when the design is balanced,
we saw in Section 8.4 that there is an orthogonal structure so that the three
methods are the same and the various sums of squares can be obtained by
applying the symmetric constraints. The same thing applies to all higher-way
balanced designs, as we shall see in the next section.

8.6.2 Hypothesis Testing

With the definitions above, and defining 4 = I, we have the reparametriza-
tion

Bijk = b+ a; + B + vi + (aB)i; + (BY)je + (0¥)ix + (@f¥)ije,  (8.37)

where

|

a =f v. =0,
(@B)i. = (af); =(B7);. = BV)x= (a7} = (a7)x =0,

and
(@By)iz. = (aB7) & = (@Bv)ik = 0, (8.38)

these conditions holding for all values of the subscripts ¢, 7, and k.

The appropriate order for hypothesis testing is as follows: second-order
interactions zero [Hapc : (a87)ijx = 0, all 4, 7, k]; first-order interactions zero
[Hag : (@f)i; = 0, all 4,5; Hpc : (BY)je = 0, all §,k; Hac : (o) = 0,
all i, k]; and main effects zero (Haq : oy = 0, all ¢ Hg : 8; = 0, all j;H¢ :
v = 0, all k). When Hapc is true, the three-factor experiment becomes
equivalent to three independent two-factor experiments, one for each pair of
factors, and the first-order interactions are readily interpreted. For example,
(8.36) is now the same for all k, so it is equal to the average over k [which



is (af)iy]. Simiiary, when Hap is siso true, the three-factor experiment
becomes equivalent to two independent one-factor experiments for A and B,
respectively, and the main effects a; and 8; have a simple interpretation (e.g.,
@; =T; — [, = Py, — B = Mijk — Bx). As in the two-way classification,
the general regression theory can be applied here. For example, writing

Y' = (Y1111, Y1112, -+ - YITK M),

(8.35) can be expressed in the form Y = Xy + €, where X is n x p of rank
p,n=I1JKM, and p= IJK. Minimizing 3_, .. (Yijkm — pijr)? with respect
tO Uy, we obtain ﬁ,;jk = ? and
RSS = Y (Yikjm — Yijn.)?, (8.39)
ijkm
with (n — p) degrees of freedom. To find RSSy for each hypothesis, we split
up Eijkm in a manner suggested by (8.37), namely,
Eijkm = E.. +Ei., —E.)+((F;.—E. )+ E.x —E.)

+ (Bij. —€i.. ~€j. +E.) + Eik —Fi.. —E g +E.)

+ (Ejx. — € . —E k. +E.)

+ (Eijk. — €ij.. —E.jh. — Eik. + Ei,. +E 5. +E k. —E..)

+ (Eijkm — Eijk.).
Squaring and summing on 4, j, k¥, and m, we find that the cross-product terms
vanish, so that

2 — =2 — 9
Z Eijhm = E , S i o E (€ijrm — Eijr.)”.
ijkm ijkm ijkm

Setting €;jkm = Yijkm — pijr, and using equations (8.37) and (8.38), we find
that

Z (ijkm — U= O — e~ (aﬁv)ijk)z
ijkm
=S T -+ S (i —T. )

iikm ijkm:
Tt Z (Yijkm — Yije.). (8.40)
ijkm

By inspection, the left side of (8.40) is minimized when the unknown param-
eters take the values

po= Y.,
d’i = -i:;:'i._'}r ) ﬂjz?-’ "'Y;, ’?k=7k—? ’
(C:B)?-J = ?’&J - ?1. - Y..j,_ + ? ,etc.,
(&BTY)ijk = YVir. =Y. = YVjo~Yip +Yi. +Y ; +Y p—Y.
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and the minimum value is, of course, RSS of (8.39). Testing any particular
hypothesis is now very straightforward. For example, if we wish to test Hy4,
we set a; = 0 in (8.40) and minimize with respect to the other parameters.
We see, by inspection, that the minimum occurs at the same values of the
remaining parameters, so that

RSSq, = Z .. -Y. )+ z (?ijkm ~ Y )2

ijkm ijkm
Hence
RSSg, —RSS = > (Vi -7.)?
ijkm
= JKM) &,
i

with (I — 1) degrees of freedom, and the appropriate F-statistic is

_JEMY,&/I-1) _ S}
~ RSS/[IJK(M -1)] _ S2°

say. This statistic has an F-distribution with I — 1 and IJK (M — 1) degrees
of freedom when H 4 is true. The various quadratic forms, together with their
degrees of freedom, are listed in Table 8.4. The numbers of degrees of freedom
can be obtained from the ranks of the underlying design (regression) matrices,
from the numbers of free parameters in each case, or from the trace of the
appropriate quadratic form. For example,

Z (?zg -Yi. - Tg + T)z

tjkm
e ) () () ()
5 KM JKM 7 IKM IJKM’

F

1

and the trace of the symmetric matrix underlying this quadratic is the sum

of the coefficients of the terms Y., namely,
- 1 1
7om ;;KM- JKM;JKM—- TR ;IKM
1
+IJKM IJKM
= IJ-I-J+1
(I-1)({J-1).

It should be noted that if the test of a particular higher-order interaction is
significant, then we need to include lower-order interactions and related main
effects in the model, thus maintaining a hierarchical structure.
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Table 8.4 Analysis-of-variance table for a three-way classification with M observa-
tions per population mean

Sum of squares Degrees of SS
Source (S8) freedom (df) df
A main effects JKM ) _ &7 I-1 s2
B main effects KM Zﬁf J—-1 S%
J
C main effects IJM Zq‘fﬁ K-1 SZ,
k
AB interactions KM Z Z(&-B)fj (I-1D(J-1) S%p
. i
BC interactions IM Y > (A7)} (J = 1)(K —1) S%c
ik
AC interactions JM ZZ(@)EFG I-1D)(K-1) Sie
ik
ABC interactions M 3 S S (aB7)% (I =1)(J = 1)(K - 1)S%p0
i 3k
Error S350 Yijem ~ Yigr ) IJKM — IJK 52
i § kK m _

Corrected total Z z ZZ(Yijkm - Y)z IJKM -1
1 7 k. m

8.6.3 Missing Observations

We saw in Example 8.1 that an experimenter may set out to use a balanced
design, but one or more of the observations may get destroyed. Since unbal-
anced designs are problematical in their analysis, a sensible approach might
be to use a balanced design with some missing observations. The idea would
be to put in suitable estimates of the missing values, which have the prop-
erty that if a balanced analysis is carried out using the completed data, the
least squares estimates of the unknown parameters and the residual sum of
squares are correct for the original unbalanced design. This will mean that
any residuals corresponding to the estimated values are zero (see Exercises 8d,
No. 3). For example, if there was just one missing value, we could guess it,
find its residual, and then adjust the value to make the residual zero, giving
us a second iteration. We note that care is needed with standard errors, as
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those derived from the completed data will not be correct. For references and
further details, see Jarrett [1978] and Hunt and Triggs [1989].

EXERCISES 8d
1. Verify (8.28).

2. A three-factor experiment has population means u; (@ = 1,2,3;5 =
1,2,3;k =1, 2), given by the following tables:

Cl ] Bl Bz B3 Mean Cz l Bl Bg Bg Mean
Ay 5 6 10 7 Ay 9 7 14 10
Az 7 7 1 5 Ag 9 6 3 6
Az 6 5 7 6 Az 9 5] 10 8
Mean 6 6 6 6 Mean 9 6 9 8

Show that the ABC interactions are zero.

Y X
Y=(Yz)=(xz)ﬁ+e=){ﬁ+s,

where X has full rank. Suppose that the observations Y. are miss-
ing. For the data observed, the least squares estimate of 3 is [J’
(X{X,)1X!Y;. Let ¥, = X383. Show that B can be obtained by
applying least squares to the observed data augmented by Y, and the
regression matrix X.

3. Let

4. Suppose that we have a one-way classification
ElYyl=p (=1,2,...,Lj=12,...,J),

and suppose that Y7 is missing. Prove that the appropriate estimate
of Yrs is the mean of the remaining observations on the mean uj.

8.7 DESIGNS WITH SIMPLE BLOCK STRUCTURE

In addition to the cross-classification designs considered above, there are also
the hierarchical or nested designs. For example, suppose that we have I
cities, J factories within each city, and a sample of size K is taken from each
factory, giving the model Yix = Osk + €556 (1 = 1,2,..., 1,5 =1,2,..., 5k =
1,2,...,K). Then the appropriate reparametrization of the model is

Osje =0+ (0. —8.) + (055, — ;) + (Gizn —'-6_’-7;_-,'_) (8.41)
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or, since 0% = pij (£ =1,2,...,K),

Mig = - 0y + Bij (8.42)

with identifiability constraints &, = 0 and 8;. = 0 (all 7). The hypotheses of
interest are H; : B;; = 0 (no variation within each city) and Hy : a; = 0 (no
variation between cities), and the appropriate decomposition of €;;; is

Eijk =E... + (&, —E.) + (€i5. — &) + (Esjr — Euj.)- (8.43)

Once again we have an orthogonal decomposition of e, and F-statistics are
readily obtained for testing H; and Ha; the details are left as an exercise
(Miscellaneous Exercises 8, No. 3, at the end of this chapter).

Many of the designs currently used are a mixture of both crossing and
nesting. When every nesting classification used has equal numbers of subunits
nested in each unit, then the experimental units are said to have a simple

block structure and there is an elegant theory for handling such designs (due
to Nelder [1965a,b}).

8.8 ANALYSIS OF COVARIANCE

In Section 8.1 we referred briefly to analysis-of-covariance (ANCOVA) models
and we now wish to focus on these models, which combine both qualitative
and quantitative variables in one regression matrix. Such a situation can

arise in an experiment where a particular “factor” may be involved either
quantitatively or qualitatively.

EXAMPLE 8.3 Suppose that we wish to compare the effects of three dif-
ferent drugs on people by measuring some response Y. If Y;; is the response
from the jth patient taking the 7th drug, then a one-way analysis of variance
(one factor at three levels) can be carried out using the model E[Y;;] = p;
(1 =1,2,3; 7 =1,2,...,J), or E[Y] = X3. However, it transpires that the
effect of a drug may depend on the age of the patient, so that one model might
be

E[Yy] = wi + vazi; + Y22,

where z;; is the age of the jth patient taking drug ¢. This model can be
expressed in the form

E[Y] = X8 + Z~,



ANALYSIS OF COVARIANCE 223

where
[zu O O 2z 0 0\
212 0 0 Zi9 0 0
zZ1J 0 0 Z%J 0 0 ( Y11 \
0 221 0 0 Z%l 0 Y21
Z'Y — 0 Z32 0 0 Z%z 0 31
. . R Y12
0 297 0 0 297 0 Y22
0 0 Z31 0 0 2321 \ Y3z )
0 0 Z32 0 0 zgz

\ 0 0 2z 0 0 22 )
If there is no interaction between age and type of drug, that is, the effect of
age is the same for each drug, then the model can be simplified to

E[Yi;] = pi + 11255 + 1228

or
2
211 211
2
z z
Ty = 12 12 T -
. s . () f}lz
2
23] 237

In addition to age, there may be a body weight effect which also does not
interact with drug type. A suitable model might now be

E[Yi;] = pi + n2ij + 12255 + vswij,

where w;; is the weight of the jth patient taking the ¢th drug; if the drugs
change the weight, then w;; could refer to the initial body weight. The three
quantities age, (age)?, and weight are commonly called concomitant variables,
and frequently they are random variables rather than variables controlled by
the experimenter. Random explanatory variables are discussed in Chapter 9.
However, if the variables are measured accurately it transpires that we can
treat the variables as (conditionally) fixed. |

If, in Example 8.3, age and weight are likely to have a considerable effect on
the drug action and we are particularly interested in this effect, then it might
be more appropriate to design a three-way layout with three factors treated
qualitatively: drug, age, and weight. This model would be more robust than
the ANCOVA model.

A general analysis-of-covariance model takes the form

G: E[Y] = X8 + Zv = (X, Z) ( f ) — W9, (8.44)



224 ANALYSIS OF VARIANCE

say, where X is n x p, Z is n X £ of rank ¢ and the columns of Z are linearly
independent of the columns of X. Thus G can be analyzed as one large
regression model and hypothesis tests carried out using the general theory of
Chapter 4. We emphasize the important assumption that the variables in Z
should not affected by the “treatments” in X. For example, as we pointed out
in Example 8.3, if a particular drug causes a weight change, then w;; should
refer to the initial weight, which is, of course, unaffected by the drug.

EXAMPLE 8.4 We have already considered an ANCOVA model in Section

6.4. It is instructive to look again at Example 6.2 using a different notation.
Let

G : Y = pi + vizij + €45 (i=1,2,...,I; j=12,...,J),

where the ¢;; are independently and identically distributed as N(0,02), be I
regression lines with J observations per line. Suppose we wish to test that
the lines are parallel, namely, H : 73 = 3 = --- = 1 (= 7, say). Then we
can find RSS for the model G and RSSy for model H, where

H : Yy = pi + 72

and construct an F'-test accordingly. O
EXERCISES 8e

1. Exercises 3f, No. 2, in Section 3.7 gave the following two-stage method
for finding least squares estimates for a general ANCOVA model G,
say. First, we find the least squares estimate # of 8 for the model
E[Y) = X and the residual sum of squares Y'RY. Second, %4 is found
by replacing Y by Y — Z~ in Y'RY and minimizing with respect to -.
This minimum value is the correct residual sum of squares for the model
G. Third, referring to Theorem 3.6, we see that B¢ is obtained from 3
by replacing Y by Y — X#. This technique can be applied to the model
for H as well as G. Now apply this method to the following problem.
Consider the model Y3; = p; + viz; + €35, wherei =1,2;5=1,2,...,J;
and the g;; are independently distributed as N(0,0%). Derive an F-
statistic for testing the hypothesis that 43 = 72 and show that this

statistic is the square of the usual ¢-statistic for testing whether two
lines are parallel.

2. Let Yii = pi + v12i5 + vowiy + €45, where? =1,2,...,I;j=1,2,...,J;
and the g;; are independently distributed as N(0,o?).

(a) Derive the least squares estimate of ; and show that it is an un-
biased estimate of ;.

(b) Find the variance matrix of the least squares estimates 4; of v
(t=1,2).
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(c) Under what conditions are 4; and 4. statistically independent?

3. Let Yiju = pgi + vVijZije + €ijk, where ¢ = 1,2,...,I; 1 = 1,2,...,J;
k=1,2,...,K; and the g, are independently distributed as N(0,02).
Obtain a test statistic for testing the hypothesis

H:vyz=v (allj).

MISCELLANEOUS EXERCISES 8

1. ¥theey (1 =1,2,...,I;j =1,2,...,J) are independently distributed
as N(0,0?%), prove that

2.0 (i -2)  and 3B (e —Fi~E;+E)

i
are statistically independent.

2. Let Y;; = p+ai+e, G=12,...,I;7=12,...,J), where Eidzaz =0
(3°;di # 0) and Ele;;] = 0 for all ¢,j. Using the method of Lagrange
multipliers, find the least squares estimates of u and a;. Hint: Show
that the Lagrange multiplier is zero.

3. Let Y}jk = My + Eiik, where

pig = B+ @ —5)+ @ - 0;)
= p+a;+ Bij,

say, ¢+ = L,2,...,I;5 = 1,2,...,J;k = 1,2,..., K, and the &;;; are
independently distributed as N (0, 0?).

(a) Find the least squares estimates of u, a;, and 8;;, and show that
they are statistically independent.

(b) Obtain test statistics for testing the hypotheses Hy : §8;; = 0 (all
t,J) and Hj : o; = 0 (all 7).

4. Let Vi = ps+e45 (0= 1,2,...,0;5 = 1,2,...,J), where the €;; are
independently distributed as N(0,02).

(a) When I = 4, obtain an F-statistic for testing the hypothesis that
p1 = 2u2 = 3ug.

(b) When I = 2, show that the F-statistic for testing p; = s is the
square of the usual £-test for testing the hypothesis that the means

of two normally distributed populations are equal, given that their
variances are equal.
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5. DUPDOS&E thzt we have the modz:
T . 1 T .
f{jk = M= ey ij + v -+ Eijk>

where 7 = 1,2,___,I;j = 1,2,...,J;k‘ = 1,2,...,K, Eiai = Ejﬁj =
3.5 7 = 0, and the €;;; are independently distributed as N(0, a?).

(a) Express u, a;, 8;, and v, in terms of the parameters p;;x = E[Y;x].
(b) Obtain a test statistic for testing the hypothesis H : a; = 0 (all %).
(¢) Prove that

Z Z Z(Eij. — €. — €. +E...)2/02 ~ X%I-l)(.]-—l)'
i 4§k

Hint: Split up >, EJ- > i (&g — £;..)? into two sums of squares.

6. Consider the linear mpdel Yije = pijx + €sjk, where ¢ =1,2,...,I;5 =
1,2,...,J5k = 1,2,...,K; and the €;;; are independently distributed
as N(0,0%). Let : '

pije = B+ @, —B.)+ @y — B )+ (B —H) + Dk
= M+ai+ﬂij+'}’ka

say, where Ay, = 0 (all 4, 7, k).

(a) Find the least squares estimates of i, a, Bij, and x.
(b) Obtain an F-statistic for testing H : a; = 0 {(all %).
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Departures from Underlying
| Assumptions

9.1 INTRODUCTION

The basic multiple regression model that we have been studying thus far is
Y = X + €, where X is n X p of rank p. We assume that the elements of e

(1) are unbiased;
(2) have constant variance;
(3) are uncorrelated, and

(4) are normally distributed.

Assumption (1) implies that E[e] = 0, which implies that X is the cor-
rect design matrix (i.e., E[Y] = X8). Assumptions (2) and (3) imply that
Varle] = ¢%I,, and (3) and (4) imply the independence of the ¢;. It is also
assumed, implicitly, that the regressor variables z; are not random variables
but are predetermined constants. If the explanatory variables are random
and are measured without error, then the regression can be regarded as being
conditional on the observed values of the explanatory variables, a problem
discussed in Section 9.6.1. In this chapter we examine each of the foregoing
assumptions in detail. '

It should be noted that there is a tendency for errors that occur in many
real situations to be normally distributed owing to the central limit theorem.
If £ is a sum of n errors from different sources, then, as n increases, ¢ tends to
normality irrespective of the probability distributions of the individual errors.

227
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This argument applies to small errors §;, say, in a nonlinear system since

e = f(h +ala---16n+an) "'f(al:---aan) %61'?_"‘ e of
ai da,,’

and ¢ is once again a (weighted) sum of errors.
In the next section we examine the effect of misspecifying the design matrix.
If X is “underfitted”, we will find that 3 is biased, S? is an overestimate of
o2, but Var[@] is correct The residual vector is also biased, but its variance-
covariance matrix is not. If X is “overfitted”, then 3 is essentially unbiased,
S? is unbiased, but Var{ﬁ] is inflated. Also, the residual vector is unbiased,
but its variance-covariance matrix is inflated. In both cases there are snmla.r

problems with fitted values and predictions.

9.2 BIAS

9.2.1 Bias Due to Underfitting

If E[e] = 0, then E[Y] = X/ and the least squares estimate 8 = (X'X)~!X'Y
is an unbiased estimate of 8. However, if the model is underfitted, so that
the true model is actually

E[Y] = X8 + Z, (9.1)

where the columns of the n x t matrix Z are linearly independent of the
columns of X, then ¢ is biased and

Ef] = X'X)7'X'(XB+2Z7)
= B+ (X'X)"'X'Zvy ,

say. Thus B is now a biased estimate of B with bias L. This bias term
depends on both the postulated and the true models, and L can be interpreted
as the matrix of regression coefficients of the omitted variables regressed on
the z-variables actually included in the model. A good choice of design may
keep the bias to a minimum even if the wrong model has been postulated and
fitted. For example, if the columns of Z are orthogonal to the columns of X,
then X'Z = 0, L = 0, and EJ is unbiased. Under some circumstances the
orthogonality of the columns of X and 0 may be described as zero correlation
between a pair of z and 2 explanatory variables (Malinvaud [1970]). In this
case, inadvertently omitting an uncorrelated regressor may not be serious.

EXAMPLE 9.1 Suppose that we postulate the model E[Y] = Sy + Sz
when the true model is E[Y] = o + f1z + B22°. If we use observations of Y

at ;1 = —1, 25 = 0, and 3 = 1 to estimate 8y and B in the model postulated,
then we can find the biases as follows.
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)(3)

The true model is
Y;

El Y, =
Y3

Now

= pe e
I
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>
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+
N
o
]

and from equation (9.2), the bias of 3 is

e (4 9) ()= ()

Thus §o has bias 28,, and $; is unbiased. O

Wi

If equation (9.1) represents the true model, then provided that Var[e] =
021, we still have Var{8] = ¢2(X'X)~!. However, given P = X(X'X)~1X’
with trace p, and 5% = Y'(1, — P)Y/(n — p), then (Theorem 1.5 in Section
1.5)
~'Z' (Y, — P)Z~ > o2,

n—p
This follows from the fact that (I, — P) is idempotent and therefore positive-
semidefinite, and when 4 # 0, we have (I, — P)Z~vy # 0 [as Zv € C(X)
implies that its projection perpendicular to C(X) is not zero]. Hence S2 is an
overestimate of o2.

_ To examine the effect of underfitting on the fitted model, we note that
Y =PY and

E[S?] = o2 +

E[Y] = PE[Y]
P(X3 + Z~)
XB + PZ~. (9.3)

The effect, therefore, of ignoring Z< in the regression amounts to using PZ
instead of Z.

As far as the residuals are concerned, we see that
Ele] = E[Y]- E[XA)
XB +Zvy — (X6 + XL~y) [by (9.2)]
= (In - P)Z"I' (9'4)

W
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and
Var[e] = Var{(I, — P)Y] = ¢*(I, — P)? = o*(1, — P).

The effect of misspecification is to bias e but leave Var[e] unchanged. Ramsey

[1969] makes use of this fact to provide several tests for this kind of misspec-
ification.

We now examine the effect of the underﬁtting on prediction. Suppose that
we wish to predict the value of Y at wy = (xo,zo)’ although only xq is
observed. Then the predlctlon using xo only is Y, = X4 ﬁ , whereas the correct
prediction is Yoo = w4, where (from Section 3.7)

= (WW) W'Y

is the least squares estimate of § for the model Wé = X8 + Z~. Now, from
(9.2),

E[Y5] = xu8 + x5 L,
which may be compared to the “true” expectation
ElYoc] = wo6 = x8 + 24
Also, from equation (3.25),

var[Yog] = (xb,zh) Var[ég](x,,zh)’
0% (%0, 2o) (W'W) ™ (x5, 25)'

Il

X'X)"! + LML/ ——LM
= Jz(x:)vzz)) ( ( )__MLI ) ( X0, 0)’
= xp(X'X) Ixg + 0?(L'xq — 2o)’ M(L Xo — Z0)
> var[Yo], (9.5)

since M = [Z/(I,, — P)Z]™! is positive-definite because, by (3.25), it is the
variance—covariance matrix of 4. Hence the “apparent” prediction variance
var[Yp] will tend to be smaller than the “true” variance.

9.2.2 Bias Due to Overfitting

Suppose that the true model is E[Y] = X131, where X consists of the first
k columns of X; thus X = (X, X3), say. Then

E[f] = (X'X)"'X'X;8;
— (Xlx)—lxlx( %1 )

(%)
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and Bl, consisting of the first k elements of f") , is an unbiased estimate of 3;.
Also,

5% = BB =x (3 ) =xu8, ©.7)

so that the fitted model is an unbiased estimate of the true model. However,
as we shall now show, the familiar formula o?(X'X)~1 leads to inflated ex-

pressions for the variances of the elements of 3;. From equation (3.25) in
Section 3.7, with X and Z set equal to X; and X, respectively, we have

(X'x)™ = ( ML/, M

where M, and therefore LML/, is positive-definite (A.4.5). Hence, by A.4.8,

(XiX;)"t + LML, -LM )

“apparent” var[ﬁ;] = “rue” VM[Bz] + (LML)

> “true” var[§i],

where §; is an element of 8;. Since (I, — P)(X;,X3) = 0 [Theorem 3.1(iii)],
we note that

E[Y'(I, - P)Y] = (n - p)o? + B1X|(I, - P)X1 81 = (n — p)o?,

and S? is still an unbiased estimate of o2,
Additional effects are explored in the following exercises.

EXERCISES 9a

1. Suppose in Example 9.1 that the roles of the postulated model and the
true model are exchanged. Find the biases of the least squares estimates.

2. In Section 9.2.2 the observed residual is Y — X3. Find its true mean
and variance—covariance matrix.

3. In Section 9.2.2 suppose that x5 = (x}4,X5), where xp is p x 1 and
x10 18 k x 1. The prediction at xo is Yo = x;3, whereas the correct

prediction is Yo = x'mfj‘l. Compare Yp and Vi with respect to their
means and variances.

9.3 INCORRECT VARIANCE MATRIX

If we assume that Var[e] = 021, when in fact Var[e] = o2V, then 3 is still
an unbiased estimate of 3. However,

Var[4] = Var [(X'X)7'X'Y] = o*(X'X) ' X'VX(X'X) ™
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is, in general, not equal to ¢2(X'X)™!. Then (c¢f. Theorem 1.5 in Section 1.5)

o?

E[S?] = — pE[Y’(In —~ P)Y]
02
= tr[V(I, — P)], (9.8)

and S? is generally a biased estimate of o2. It follows that
9 = §%a'(X'X) " a (9.9)
will normally be a biased estimate of
varfa’8] = ¢%a/(X'X) " 1X'VX(X'X) *a. (9.10)
In fact, Swindel [1968] has shown that if
E[$] = var[a'] + b,

then

{mean of (n — p) least eigenvalues of V} — (greatest eigenvalue of V)
(greatest eigenvalue of V)

< ‘—'-b—',.—
var{a’f]
{mean of (n — p) greatest eigenvalues of V} — (least eigenvalue of V)

<
(least eigenvalue of V)

and the bounds are attainable.
EXERCISES 9b

1, If the first column of X is 1,, and
V=>0-pI+plal;, (0<p<1),
use (9.8) to show that
E[S?] = o*(1 - p).
Hint: Consider P1,.

2. When Var[e] = 02V, the appropriate estimate of 3 is the generalized
least squares estimate fx = (X'V-1X)"1X'V-lY. If C(V7iX) =
C(X), show that #* and B are identical. Hint: V71X = XW, where
W is nonsingular,

(McElroy [1967])
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9.4 EFFECT OF OUTLIERS

In fitting the regression model ¥; = x{8 +¢ (1 = 1,...,n), where x; is the
ith row of the design matrix X, we can think of the data point (x},Y;)’ as a
‘point in p-dimensional space. Some of these points may arouse suspicions, as
they are “discordant” with the other points. Such points are usually referred
to vaguely as outliers, and they may or may not have an effect on estimation
and inference using the prescribed regression model. It is generally accepted
that several percent of even (supposedly) high-quality data can be erroneous
through such things as wrong measurements, wrong decimal points, and wrong
copying, for example. Some fraction of the erroneous data may be sufficiently
different from the other data to warrant the label outlier. Also, if €; comes
from a long-tailed distribution rather than our postulated normal distribution,
then a Y; that is more extreme than usual can arise and become a candidate
for outlier status.

We shall be interested in two kinds of points: those points whose error ¢; is
large, and those points whose x; value is far from the bulk of the data. There
is no standard terminology for these points; the former is variously labeled
outlier, error outlier, outlier in the y-direction, and regression outlier, and the
latter variously called an extreme point, outlier in the x-direction, z-outlier,
leverage point and high-leverage point. We shall use the terms outlier and
high-leverage point, respectively. To demonstrate these terms, suppose that
our (true) underlying model is a straight line, as in Figure 9.1, with data
points scattered around it.

Fig. 9.1 Outliers and high-leverage points.
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Here the points A, B, and C, are of particuizr interest, with A and C
being outliers (i.e., a big vertical displacement frcy: the true line), and B and
C being high-leverage points (since their z-values are distant from the average
z-value). We now consider what would happen if just one of these points were
present and the other three absent. If just A were present, we would expect
A to have a modest effect on the least squares fit of the line to the data,
moving it up. The point B would have a negligible effect on the fit, but C,
which is both an outlier and a high-leverage point, will have a considerable
effect, much greater than that of A. (See Section 10.6 for more discussion.)
Points like C' are often referred to as influential points, since they exert a big
influence on the position of the fitted line.

We note that, in general, the fitted model takes the form Y = PY, or

Y; =Y piYi=puYi+ ) piY;, (9.11)
i J#i
where P = (p;;). Since P = P2, we have
n
Pii = Zpizj =p} + Zpgj: (9.12)
i=1 oy

which implies that p; > p%, or p;; < 1. Furthermore, from (3.53), the non-
negative distance MD; implies that p;; > 1/n, so that

% <pu <1 (9.13)

We note from (9.12) that when p;; is close to 1, pi; (§ # i) will be close to
zero, and from (9.11) this means that ¥; will be determined largely by the
value of ¥;. Thus if ¥; is both an outlier and a high-leverage point, MD; will
be large, pi; will be close to 1, and ¥; will be affected by Y;. This supports
our contention that a point like C' above can have a serious affect on the fitted
line.

Suppose that the ith point is an outlier, so that Y¥; = x!8 + A; + €, where
A; is a positive constant. Let A be the vector with ith element A; and the
remaining elements be zero. Then

Y =X3B+ A + ¢,
and since PX =P,

E[Y] = PE[Y]
= P(XB+A)
X[3 +PA,
which leads to A
ElY:] = x;8 + pils. (9.14)

Once again this emphasizes that the effect of A; on the fitted surface depends
on the magnitude of p,;.
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9.5 ROBUSTNESS OF THE F-TEST TO NONNORMALITY

9.5.1 Effect of the Regressor Variables

Box and Watson [1962] showed that the sensitivity of the F-test to normal-
ity depends very much on the numerical values of the regression variables. In
terms of the experimental design situation in which the elements of the design
matrix X are 0 or 1, this means that some designs will have more robust tests
associated with them. For example, Box and Watson show, by an appropriate
choice of X, that almost the same regression model can be made to reproduce,
on the one hand, a test to compare means which is little affected by nonnor-
mality, and on the other, a comparison of variances test which is notoriously
sensitive to nonnormality. Let ¥; = By + Bizi1 + -+ + Brxip—1 + &, and
consider H: f; = ff2 = ++- = 1 = 0. When H is true and the regression
assumptions are valid, then

_n—p RSSy—RSS

F=m1 RSS

~ Fk,n—p-

However, if we now relax the distributional assumptions and assume that
the e¢; are independently distributed with some common—mnot necessarily
normal—distribution, then Box and Watson [1962: p. 101] show that when
H is true, F' is approximately distributed as F,, ,,, with 11 = (p ~ 1),
vy = 6(n — p), and

_ +1)as
o - (n

1+ n—1- 20!2 ’
where N

n —_—
=5 oy Oxlr
or (to order n=!)
CxT
671 = x :
1+ o (9.15)

Here I’y = Elkq/k3], where kq and ks are the sample cumulants for the n
values of Y, and Cx is a multivariate analog of k4/k2 for the z variables.
When ¢, and therefore Y, has a normal distribution, then I'y = 0, 6 = 1, and
Fyy v = Fi n—p. We see that the effect of any nonnormality in Y depends on
C'x in the term 6. Box and Watson show that

n—3
-2 <
—n-—1

Cx <n-1, (9.16)

where the lower bound is obtainable but the upper bound, although ap-
proached, cannot be attained in finite samples. When the explanatory vari-
ables can be regarded as being approximately “normal,” then Cx =~ 0 and
the F-test is insensitive to nonnormality. Thus we may sum up by saying
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that it is the extent of nonnormality in the explanatory variables which de-

termines the sensitivity of ¥ to nonnormality in the Y observations. Let

fﬁij = Tij —fj (‘L = 1,2,...,7?.; _‘] = 1,2,...,p— 1) and let X = (ff:ij). If

M = (mys) = X(X'X)~1X' and m = Y7, m2,, Box and Watson show that
n(n? —1) { (p—1)* 2(p— 1)(‘n—p)}

Cx = m — - . 9.17

EDCEDIE z nn+ 1) ©17

Now, applying Theorem 3.1(ii} to the n x n matrix M yields tr(M) = p — 1.
If the diagonal elements of M are all equal, we have m,, = (p — 1)/n (r =
1,2,...,n), m = (p—1)%/n, and

_ n(n® — 1) _2(p-1)(n-p)

Ox = (P“l)(n—P)(n*i"){ n(n + 1) }
_2(n-1)
n—3 °

Hence, in this case, the lower bound of (9.16) is attained, §—! = 1—- (I, /n) ~ 1,
and for large n the F-test is insensitive to nonnormality. From symmetry con-
ditions it is not hard to show that many analysis-of-variance models, such as
any cross-classification with equal cell frequencies in every cell or any hierar-

chical classification with equal cell frequencies at each stage of the hierarchy,
have equal elements m,,.

‘This theory refers only to the case H: ) = .-+ = 1 = 0. However, an
alternative approach, which allows a more general hypothesis, has been given
by Atiqullah [1962]. We now consider his method in detail.

9.5.2 Quadratically Balanced F'-Tests

Let Y1,Y5,...,Y, be independent random variables with means 61,85, ...,0,,
respectively, common variance ¢%, and common third and fourth moments

about their means; let v, = (ug4 — 30*)/0* be their common kurtosis. Then
from Atiqullah [1962] we have the following theorems.

THEOREM 9.1 LetP; (i = 1,2) be a symmetric idempotent matriz of rank
fi such that E[Y'P;Y] = o2 f;, and let P1P, = 0. If p; is the column vector
of the diagonal elements of P; then:

(i) var[Y'P; Y] = 20%(f; + -12—'72p’ip?;).
(’l.'t) COV[Y’P]_Y,Y’PQY] = 0’4’)’21);'92.
Proof. (i) Since P; is symmetric and idempotent, tr(P;) = rank(P;) = f;

(A.6.2). Also, E[Y'P;Y] = ¢?tr(P;) + 0'P;0 = o f; (Theorem 1.5, Section
1.5), so that P20 = 6'P;0 = 0 for all 8; that is, P;0 = 0 for all 8. Therefore,
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substituting A = P, in Theorem 1.6, we have
var[Y'P, Y] = 20*tc(P}) + (us — 30*)pipi
= 20*[tr(P:) + 372PiPi)
= 20'(fi + 372PiPs)-
(ii) Given P1P3 = 0, we have
(Pl + P2)2 = P% + P1Ps + P2Py + Pg

= P +PPy+ (].:’]L:Pz)‘r + Py
P, +P,.

Therefore, P; 4 P2 is idémpotent and, by (i),
var[Y'P, Y + Y'P,Y] = var[Y' (P +P2)Y]
= 20 tr(P1 + P2) + 372(p1 + p2) (P1 + P2)]

= 20%[fi + f2 + L72(Pip1 + 2PiP2 + PLP2)]
= V&I‘[Y'P;[Y] -+ V&I‘[Y’PgY] + 20’4"{21);_1)2.

Hence cov[Y'P1Y,Y'P.Y] = cly,p!ps. |

THEOREM 9.2 Suppose that Py and P, satisfy the conditions of Theorem
9.1, and let Z = 1 log F, where

_YPY/H [ _.S:f_ .
F = “Y'PgY/fz (— 537 say) .
Then for large f1 and f, we have, asymptotically,
B(Z] ~ 35—

x [1 4+ Lva(fip2 — fop1) (fiP2 + foP1){fifo(fA — f2)} 1] (9.18)

and
var[Z] ~ 2 (f7 + D 1+ 2 (fip2 ~ f21) (fip2 — o ) { i fo (i + f2)} 1]
' (9.19)
Proof. Using a Taylor expansion of log S? about log o2, we have
2 _ 42 2 _ . 2)2
log S? ~ logo? + Si—o” _Si— o) : - (9.20)

o2 204

Taking expected values, and using E[S?] = o2, we have

El[log 5?] ~ logo® — 5—;—&- var[S?],
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where, from Theorer: 9.1, \

Y'P;Y] \
var(s7) = PP~ 00447+ o f i),

Substituting in
B{Z] = } { Ellog 57] - Eflog 53]}

leads to equation (9.18).
. To find an asymptotic expression for var[Z], we note first that

var[Z] = 1 { var|log S;] + var[log S3] — 2 cov[log S7,10g 52} . (9.21)
Then, ignoring the third term in (9.20), we have E[log S?] ~ logo? and
var[log Sf] ~ E [(logS? —1logo?)?]
B[(S? — o?)]
pur

var[S?]
ot

Similarly,

cov(log 57,log S3] ~ E [(logS? —logo®)(log S5 — logo?)]
E[(S% — 0?)(53 ~ 0?)]

v
cov[S7, 53]

0-4

Finally, substituting in

1
var{Z] ~ ypy { var[S?] + var[S3] — 2 cov[S?, S3]}

and using Theorem 9.1 leads to equation (9.19). O

We can now apply the theory above to the usual F-statistic for testing
H: AB = 0. From Theorem 4.1(iv) in Section 4.3, we have

Y'(P—-Py)Y/q
Y'(In-P)Y/(n —p)
Y’PlY/q
Y'PzY/(TL - p)
5

= 21 22

F

say, where PP, = (P - Py)(I, — P) =Py — PyP = 0. Suppose that we
now relax the distributional assumptions underlying F' and assume only that
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the e; are independently and identically distributed; in particular, Ele] = 0
and Varfe) = 0*I,,. Then E[52] = E[S?] = 02 (Theorem 3.3 in Section 3.3)
and, when H is true, E[S?] = o [by Theorem 4.1(ii) with A8 = ¢ = 0; the
assumption of normality is not used in the proof]. Also, the Y; satisfy the
conditions stated at the beginning of this section [with (8;) = 8 = X8), so
that when H is true, Theorem 9.2 can be applied directly to the F-statistic
(9.22) with f; = g and f; = n —p. When the ¢;, and therefore the Y;, are
normally distributed, it is known that for large f; and fo, Z = %logF is
approximately normally distributed with mean and variance given by setting
~v2 = 0 in equations (9.18) and (9.19) when H is true. As this approximation
is evidently quite good even when f, and fo are as small as four, it is not
unreasonable to accept Atiqullah’s proposition that for a moderate amount
of nonnormality, Z is still approximately normal with mean and variance
given by (9.18) and (9.19). On this assumption Z, and therefore F', will be
approximately independent of -y, if the coefficient of 12 in (9.18) and (9.19) is
zero; that is, if

fip2 = fop1. (9.23)

Now, using Atiqullah’s terminology, we say that I is quadratically balanced
if the diagonal elements of P; (z = 1,2) are equal; most of the usual F-tests
for balanced experimental designs belong to this category. In this case, since
tr(P;) = f;, we have

Pi = {'}ln and f1P2 = flnfz 1, = fop1.

Thus a sufficient condition for (9.23) to hold is that F is quadratically bal-
anced.

Atiqullah [1962: p. 88] also states that even if -y, varies among the Y,
quadratic balance is still sufficient for E{Z] and var[Z] to be independent of
kurtosis effects, to the order involved in Theorem 9.2. Finally, we note that
if v2 can be estimated, equations (9.18) and (9.19) can be used to modify the
degrees of freedom and improve the correspondence between the distribution
of the F-ratio and an F-distribution (Prentice [1974]).

- EXERCISES 9c
1. Fill in the details of the proof of Theorem 9.2,

2. Show that the theory of Section 9.5.2 can also be applied to the case
H: Apf =c, where ¢ # 0 [cf. (9.22)].

3. Consider the full-rank regression model
Yi =080+ frzas + -+ Bp-1%ip-1 + Ei (:=1,2,...,n),

where the ¢; are independently and identically distributed as N(0, o?),
and suppose that we wish to test H: 81 = fy = -« = fBp_1 = 0.
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Assuming that H is true, find an approximate expression for E[Z], where
Z = L log F, in terms of the diagonal elements of X(X'X)~1X'.

9.6 EFFECT OF RANDOM EXPLANATORY VARIABLES

We shall consider four different scenarios: random explanatory variables mea-
sured without error, fixed explanatory variables measured with error, random
explanatory variables measured with error, and controlled explanatory vari-
ables (commonly called Berkson’s model).

9.6.1 Random Explanatory Variables Measured without Error

Suppose that we have a lawlike relationship

|4 =.ﬂ0 + A1 U+ -+ ,Bp_1 Up_l (9.24)

between the random variables V and {U;}. This relationship is typically called
a structural relationship with the U; being observed exactly but V unknown
(due, for example, to experimental error), so that ¥ (= V + ¢) is actually
observed. The appropriate model is now

Y=0+/Ui1+ -+ Bp-1Up—1 +¢ (9.25)
or
EY {{U;}] = Bo + prU1 + -+ + Bp~1Up-1 (= p,say). (9.26)
The simplest and most popular method of fitting this model is to carry out
a standard regression analysis conditionally on the values observed for the
explanatory variables; we simply proceed as though the explanatory variables
were fixed. Such an approach now requires the usual assumptions of normality,
constant variance, and independence to hold conditionally on the U;’s. The
problems of bias, etc. due to model misspecification, as discussed above, will
be the same as for fixed explanatory variables.

A different approach to the problem is the following. Suppose that the true
model is

Y = Bo+BUr +---+B:Us
= fo+ /U1 +- -+ B-U; 4, (r < 3).

where the U; (j = 1,2,...,8) are random variables with E[U;] = 6;. Here

the “error” ¢ is assumed to be due to further “hidden” variables U, 41,...,Us.

Now

Y = (Bo+Brirbrsr 4+ Bebs) + Bl + -+ B,Ur + D Bi(Uj - 65)
j=r+1

ao +P1UL + -+ + BrUr + ¢,
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where El[e] = 0. This is the same model as (9.25). However, since r is
arbitrary, we will always have Ele] = 0 irrespective of the number of regressor
variables we include in the model. In this case there is no question of finding
the “true” model. What we are looking for is an adequate model, that is, one
which reduces € to a reasonable level. For this type of model it can be argued,
therefore, that the question of bias due to overfitting or underfitting does not
arise.

9.6.2 Fixed Explanatory Variables Measured with Error

Least Squares Estimation

Suppose that the relationship (9.24) is now between the expected values
rather than the random variables, that is,

v=E[Y] = Bo+AE[Xi]+ - + Bp-1E[Xp_1]
= fo+ pfrur+ -+ Pp-1Up—1. (9.27)

This lawlike relationship between the expected values is usually called a func-
tional relationship. Fuller [1987: p. 2] gives the helpful mnemonic “F” for fixed
and functional and “S” for stochastic and structural. Here v and the u;’s are
unknown, and are all measured with error. Sometimes the relationship comes
from a physical law (perhaps suitably transformed to achieve linearity), with
the randomness in the model arising from experimental errors in measuring
the mathematical variables v and u;. For this reason the model is sometimes
called the errors-in-variables model or, in the straight-line case, the model for
regression with both variables subject to error. Here the appropriate model is
now

Y =60+ 5E[Xi]+ -+ Bpr1 E[Xp-1] + ¢, (9.28)

where ¢ is assumed to be independent of the {X,}. If we have n measurements
on the model above, then

Yi = fo+pPrua+--+ Bpoitip-1 +&;
= 11;6 + €3,
say, Or
Y =US +¢, (9.29)
where U = (u;,us,...,u,)’. Suppose that the data point u; is measured

with an unbiased error of §; so that we actually observe x; = u; + §;, that
is, observe X = U + A, where X = (x3,X2,...,Xn), A = (81,82,...,0,),
and E[A] = 0. It is assumed that the d; are uncorrelated and have the same
variance matrix; thus
D, i=3
A1 = ’ )
El0:5;] { 0, i#j.
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Since the first element of each u; and X; is unity, the first element of §; is
zero, and the first row and colum=n of ID consists of zeros. We also assume
that A is independent of €. The usual least squares estimate of 8 is now

Ba = (X'X)"1X'Y

instead of B8 = (U'U)~1U’Y, so that Ba is no longer unbiased. The properties
of Ba were discussed in detail by Hodges and Moore [1972] for the common
special case of D = diag(0, 0%, 03,..., 0'%_1). However, using a more rigorous
approximation theory, Davies and Hutton [1975] extended this work to the
case of a general matrix D (in their notation, U — X', X — W/, D — S,
and A — A'). We now consider their results below.

Bias

Since A is independent of £ (and Y),

E[Bfs] = EaE[Ba|A]

BA[(X'X)™1X'UB]  [from (9.29)]
EAl(X'X)7'X'(X - A)8]

B — EA[(X'X)7IX'AB]

= f-b, (9.30)

il

i

say. When n is large, Davies and Hutton [1975: Theorem 4.1] show that

-1
b ~ (%U’U+D) D
= n(U'U+nD)"'DB. | (9.31)

[In fact, if im, 00 {(1/n)X'X} = A, say, then B4 is a consistent estimate of
(A+D)'AB =8~ (A+D)"'Dg).] Since

EX'X] = E{UU+ AU+ UA+ A'A]
= U'U+ E[A’A]

= UU+E {Z 5,;5;]
i=1
= U'U+nD, (9.32)
an obvious estimate of the bias b is

b =n(X'X)'D},

where D is a rough estimate of D available, we hope, from other experiments.
When D = diag(O,a%,...,aﬁ_l), the approximations used by Hodges and
Moore lead to a similar estimate of b (with n — p — 1 instead of n). Davies
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and Hutton show that the magnitude of b is related to how close X‘X is to
being singular. If the errors are such that they may bring X'X close to being
singular, then the bias could be large. Using the central limit theorem they
also show that /n Ba is asymptotically normal.

EXAMPLE 9.2 We now apply the theory above to the straight-line model.
Here we have

Y; = fBo+ Piui+¢e; and X; = u;+ d;.

The pairs (J;, ;) are generally assumed to be a random sample from a bivariate
normal distribution. If we assume further that J; and ¢; are independently
distributed with zero means and respective unknown variances o7 and o2, we
have n pairs (X;, Y;) of data but n+4 unknowns 8o, 81, 03, 2, and uy, ..., tn.
Applying (9.31) with D = diag(0, %) yields

ﬁﬁmo?

ElBos] ~ o + >i(ui — B)? + no}

and

- Blmrg
E B — .
D oY T FE

We note that
SG-X)? = w45 @+ B
i=1 €
Do —w)? =2 (ui — )8 — ) + > (6 ~ ),

]

so that

2

1

E [Z(X; - 'X‘){\ = Z(ui - 'ﬁ)z + (n — 1)0’3.

We then see that the relative bias in 814 is approximately

—nos /B \:Z(X,; — _'X'_)z] ,

which will generally be small if 3_,(X;—X)?/n >> o2. This will be the case if
the variation among the X; is much greater than the error in a single X;; a not
unexpected result. When this is not the case, we find that certain maximum
likelihood estimates are no longer consistent (Sprent [1969: Chapter 3]; see
also Moran [1970, 1971]. The inconsistency is related to the fact that the
number of unknowns u; increases with n. O

Expressions for the exact values of E{81a] and E[(B1a — B1)?], along with
more accurate large sample approximations, are given by Richardson and Wu
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[1970]. Their results are generalized by Halperin and Gurian [1971] to the
case where §; and e; are correlated. Alternative methods of estimation are

available under certain restrictions (e.g., when the ratio 02 /o7 is known; see
Fuller [1987] for details).

Standard Errors

Davies and Hutton [1975: equation 4.2] show that when D is close to the
zero matrix,

Var[Ba] ~ 1 { (%U’U + D) N (c® + B'AB) + O(Dz)} .

|

The usual estimate of this variance—covariance matrix is V = S2(X'X)"!,
where

(n — p)S? (Y — XBA) (Y —XBa)
Y (I, -XX'X)"'X")Y

= Y'(I, —Px)Y,

say. The question now is: Does V still provide an unbiased estimate of
Var|[Ba]? Since A is independent of €, X'(I, — Px) =0, and tr(I, - Px) =
n — p, we have (Theorem 1.5)

E[(n-p)S?|A] = E[(n-pd®+pU1,-Px)UB|A]
= E[(n-pe?+ 8 (X' -AYI, -Px)(X-A)B|A]
= E[(n-p)o*+8'A'(1,~-Px)AB | A]. (9.33)

Now for any matrix C,

EA[A'CA] = Z ZC,,JE[J,,(S;]
i 3
- e
so that from (9.33) it transpires that

EV] = EAE[S*(X'X)"'|A]

Bs {2 + ot - Poas (X

Q

{0'2 + = L SB'BIA (L, ~ Px)A]ﬁ} {BX'X])}™

(6? + B'DB)(U'U +nD) ™!
Var[Ba). (9.34)

Hence, for large 7 and small D, V is still approximately unbiased.

X q
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9.6.3 Round-off Errors

Using the notation above, we suppose, once again, that U is the correct
~ data matrix (i.e., E[Y] = UB), and we observe X = U + A. However,
following Swindel and Bower [1972], we now assume that the measurements
are accurate but they are rounded off according to some consistent rule to
give z;; = u;; + A;;. In this case the rounding error A;; can be regarded as
an (unknown) constant, not a random variable; A;; is determined solely by
the u;; and the rounding rule. The matrix X is now a matrix of constants

rather than a random matrix as in the preceding section. The bias of f)A =
(X'X)"1X'Y is

E[Ba - B8]

i

(X'X)"1X'(U~-X)B
~-(X'X)"IX'AB. (9.35)
By writing A8 = E’;;é A;fB;, where the A; are columns of A, we see that

the bias does not depend on 8; if A; = 0; the bias depends only on the
explanatory variables containing rounding errors. We see from

E[$?] = o®+ B'U'(Iz:i’x)Uﬁ
= g2y BX-A) (I, -Px)(X - A)8
n—p
_ 2, BT =Px)Ap
n—p
> o? (9.36)

(since I,, — Px is positive-semidefinite), that S? will tend to overestimate o?2.
However, 02(X'X)~! is the correct dispersion matrix of B5. Using eigenval-
ues, Swindel and Bower [1972] prove that for any a the estimate a'8a of a'3
has the property that

0 < RB(a'Ba) < ~(6'A'AB)?,

where RB is the relative bias, that is, |bias|/standard deviation.

9.6.4 So;ne Working Rules

Davies and Hutton [1975: p. 390] consider both random and round-off error in
their analysis and give the following working rules. For the round-off situation,
define »; to be the square root of the jth diagonal element of A'A/n and
suppose that m; of the r;’s are nonzero. We first compute

-1/2
p1 = Zr? [(X'X)~1]. . (9.37)
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If p; is not somewhat larger than (m;n)/2, or possibly n!/? if n is large,
then at least some of the elements of B are likely to have little meaning. (In
practice, r; will not be known exactly and will be replaced by, say, an upper
bound.) If this test is passed, then (Davies and Hutton [1975], correction)

n'/2 3 rilBial
S

should be evaluated. If this quantity is markedly less than 1, then the errors
in U can be ignored. However, if this test is failed and the situation of Section
9.6.1 prevails (with random A;;), then the next step is to compute

n (Ej s A:?,A) "
(p15) ,

where in the formula above and the definition of p in (9.37), r; is now the
square root of the jth diagonal element of D. If the quantity above is markedly
less than 1, then the effects of the errors are probably negligible, particularly
if n is large. On the other hand, if this term is larger than 1, then the bias is
likely to constitute a major part in the error of at least some of the estimates.
The authors also suggest that the diagonal elements of Px be calculated in
order to check whether any single regressor observation has an undue effect on
the estimates. In particular, if any diagonal element is greater than about 0.2,
it is possible for a moderate error in the corresponding regressor to affect the
estimates significantly and yet go undetected when the residuals are checked
(Chapter 10).

9.6.5 Random Explanatory Variables Measured with Error

Suppose that we have the structural model (9.25), but the random explanatory
variables U; are now measured with (unbiased) errors so that X; is observed
instead of U;. Then X; = U; + y;, where E[y; | U;] = 0, and our model
becomes

EY{U;}] = Bo+BUr+ -+ Bp_1Up
= fo+BE[X1{U]+ -+ Bp—1E[Xp-1 | Up-1]. (9.38)

By treating the {U;} as though they are (conditionally) constant, we see that
the model above is analogous to (9.28), so that the discussion in the preceding
section can be applied here, conditional on the {U;}. Since E[X;] = E[U;},
we note that the structural model (9.38) can also be written in the form

1

Bo + BLE[UL] + -+ + Bp-1E[Up1] + € + ) _ B;(U; — E[U;])

i=1

Bo + B1E[Ur] + -+ + Bp—1 E[Up_1] + €,

Y
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where E[e'] = 0. This looks like (9.27), but there is a difference: ¢’ is not
independent of the {U;}.

EXAMPLE 9.3 As in the functional model, we shall demonstrate some of
the estimation problems that arise by considering the special case of a straight
line. Here V; = Bo + B1U; (1 = 1,...,n) and we observe Y¥; = V; + ¢; and
X; = U; + 6;. We now assume that the vectors (U;, €4, d;) are independently
and identically distributed as N3 ((uv,0,0)',diag(c?, 02, 03)). If we use the
usual least squares estimate 81 = 3, Yi(X; — X)/ 3_(X: — X)?, which ignores
the fact that we should use the true values {U;} instead of the observed values
{X:}, we have from Richardson and Wu {1970: p. 732]

- 02 02
BB/ = B T i E}c%;gg)

and

a1 1 gl 2 ofo}
vl =1 [a%+o§ e (o%+cr§)2] |

We see that /5, is biased toward zero, and one way of describing this is to say
that the regression coefficient has been attenuated by the measurement error.
If var[X] = 0% = 0% + o7, then the coefficient of $; in the first equation is
0% /5%. This ratio measures, in some sense, the reliability of X;.

We note from Miscellaneous Exercises 9, No. 4, at the end of the chapter,
that (X;,Y;)’ has a bivariate normal distribution with mean (uu, fo + S11v)!
and variance-covariance mairix

( oF + o3 pro )

Prioy  Blog +o:

There are six unknown parameters, uy, o7, Bo, f1, 03, and o, but they can-
not all be estimated, as the bivariate normal above has only five parameters.
In fact, only uy can be estimated; the remaining parameters are not identi-
fiable and the structural relation V' = fy 4+ f1U cannot be estimated. If the
distribution of V is other than normal, it may be possible to devise methods
that will identify all the parameters. However, in practice, we never know the
distribution of U, and the nearer the distribution is to normality, the worse
the estimates. 7

We see from this simple example that a key issue in structural models is
the identifiability of the parameters. One obvious approach to the straight-
line problem is to impose some constraint on the parameters, thus effectively
reducing the number of unknown parameters by one. Three types of constraint
have been studied:

1. o} or o2 is known: All the parameters are now identifiable and can be
estimated.
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2. 05/0c (= k, say) is known: All the parameters can be estimated consis-
tently. This is perhaps the most common constraint.

3. 0% /0% is known.

4. Both o5 and o. are known: This leads to “overidentification” of the
model so that this simplification is of limited practical use.

In practice, “known” usually means estimated accurately using an indepen-
dent method. Fuller [1987] provides the theory of the straight line for cases
(1)-(3) as well as the theory for several explanatory variables, nonlinear mod-
els, and multivariate models. Another way around the identification problem

is to use replication (see, e.g., Seber and Wild [1989: Chapter 10] for the more
general nonlinear case).

9.6.6 Controlled Variables Model

In this model, usually called Berkson’s model, the explanatory variables are
random but their observed values are controlled, a common situation when
investigating lawlike relationghips in the physical sciences. We demonstrate
the idea with the following simple example. '

EXAMPLE 9.4 Suppose that we wish to study Ohm’s law
v = Bu,

where v is the voltage in volts, u is the current in amperes, and £ is the resis-
tance in ohms. Then, for a given resistance, a natural experimental procedure
would be to adjust the current through the circuit so that the ammeter reads
a certain prescribed or “target” value z;, for example, z; =.1 A, and then
measure the voltage Y; with a voltmeter. The ammeter will have a random
error so that the current actually flowing through the circuit is an unknown
random variable U;, say. Similarly, the true voltage will also be an unknown
random variable V; so that our model for this experiment is now

Y=V, +e;=BU; + ¢,

which is of the form (9.25). However, the model above reduces to a “standard”
least squares model

Yi = Bzi+ei+ U — i)
= ﬁ$i+5:;,

where the error or fluctuation term is now ¢} instead of €;. What the discussion
above implies is that in the controlled explanatory variables situation, the

model may be analyzed as though the explanatory variables are nonrandom
and error free. O
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9.7 COLLINEARITY

One important assumption that we have not yet mentioned is that the re-
gression matrix X is assumed to be of full rank. In practice, the columns of
X could be almost linearly dependent or collinear, which leads to X'X being
close to singular. Since

Var[B] = o2(X'X)"L, (9.39)

near collinearity will have a considerable effect on the precision with which
B can be estimated. When the estimated regression coefficients have large
variances, tests will have low power, and confidence intervals will be very wide.
It will be difficult to decide if a variable makes a significant contribution to
the regression.

In this section we examine in more detail the effect that almost collinear
columns have on the variances of the estimated coefficients and show how the
resulting fitted regressions can be unstable. In Section 10.7, we discuss how
we can detect the presence of almost collinear columns and what action we
can take to improve the precision of our estimates.

9.7.1 Effect on the Variances of the Estimated Coefficients

In this section we develop more detailed expressions for the variances of the
estimated regression coefficients and identify patterns in X that lead to large
variances. We begin by considering the case of the straight line.

Straight-Line Regression
‘The straight-line regression model
Yi=pBo+ fizi+e; (i=1,...,n), (9.40)

was considered in Section 6.1. The variances of the regression coefficients are

. 250 g2
var[fo] = T—=LL iz 24 (9.41)
NSzy
and
~ 0'2
var{f] = —, (9.42)
Szx
where sz = Y5, (z; —~ T)%. Define the coefficient of variation of the z's by
CvVy = ———-——(smx{_n)lﬁ.
|Z|

The quantity CV, measures the variability of the z’s relative to their average
size, and is independent of the units used to measure z. Using the identity

n n
Sai -7 =S af - n2,
i=1

=1
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we can write {9.41) 2

NSzz

9 2
= = {1+1/CVZ).

If CV. is small, then var[ﬁo] will be large.

In contrast, va,r[Bl] depends only on s, (i.e., on the absolute rather than
relative variability of the 2’s). We note that unlike var[5:] , var[f;] does not
depend on the scale with which the z’s are measured.

We can avoid estimating B¢ altogether by eonsidering the centered model

1,'i=a¢0"‘61(w‘£_E)'I"E'i. (7'=1:1n) (943)

The parameter o represents the height of the true regression line at x = T
rather than at £ = 0. The true regression line is the same in both models,
but it now has a different mathematical description. Comparing (9.40) with
(9.43), we see that ag = By — /1 E. From Section 3.11.1, the estimate of oy is
&o = Y with variance 62 /n. The estimate of 8; is unchanged.

The magnitude of 8; depends on the units in which the z’s are measured.
If the x’s are multiplied by a constant factor, for example, if different units are
used, then f; is reduced by the same factor, as are its estimate and standard
error. Thus the absolute size of the estimate and its variance have meaning
only when referred to a particular set of units.

It is common practice to center and scale the expla.na.tory variable by trans-
forming the z’s to the quantities

z} = (z: ~T) /5347,

so that 3.z = 0 and 3, z¥® = 1. This produces a scale-invariant explana-
tory variable, which is dimensionless (i.e., has no units). The model becomes
(see Section 3.11.2)

Y,‘,=0¢0+’Y$:+€¢ (i=1,...,n). (9.44)

The regression coefficients gy and v now are measured in the same units
(that of the response variable Y) and will typically have the same order of
magnitude. The estimate of «p is the same as before, but the estimate of -y is

S o1 (Vi - 7)

i=1

n

=1

,-’i,
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with variance

var[§] = var [ZmY]
i=1
> o varly]

i=1

= 0'2.

I

In terms of the original data, we have

. (2 T (Y - Y) =1 (T = E)Y;

Sz Szx

The estimates are different because the parameters describing the true regres-
sion line are different. However, the fitted values Y; remain the same.

Two Explanatory Variables
We now consider the case of two explanatory variables, with model

Yi=fo+B1xi+ Bozi +6; (i=1,...,n), (9.46)
or, in matrix notation, Y = X3 +¢, where 8 = (84,51, 82)' and X = (1, x, z).

Now let w = (Z,%)’, and let X = (%, Z) be the centered version of (x,z), as in
Section 3.11.1. Then

2 nT nz
X'X = nT T S wiz
z
1

where S = n~1X'X. Using A.9.1, we see that

rq—1 —wia—1
(X’X)‘1=n"1(1+ws w —w'S ),

-S—lw S—1
so that X
var|fo] = o*(1 + w'S™ w)/n,
var[B1] = 0% /{82 (1 — )},
and

V&I‘[B2] = 0'2/{37.:(1 - Tz)}’

where s,, = Y _r,(2; — Z)? and r is the correlation between x and z.
Also, after some algebra (see Exercises 9d, No. 1), we get

A o2 1 1 2r 1
var[fo} = —— |1+ 73 ovZ T ov.ov, Tove /|
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so that the variance of Bg does not depend on the scale used to measure z
and z.

As with straight-line regression, we can center and scale the z's and the
z’8, and use the model

Yi=00+mz; +v2z +e (i=1,...,n), (9.47)
. _ = /.1/2 . = .1/2 i . %
where z} = (x; — T)/s5% and z} = (z; — %)/sz%". Setting X, = (1,x*,2*), we
get
, _fn 0
XSXS‘(O R.. )
where

1
ree (1)

' is the correlation matrix of x and z. Inverting, we get

2

- a
var[do] = —
o1 _0°
var[1] = 1_—r2’
and
i) = 2
var|yz| = 12

Thus, given the model (9.47), the accuracy of the scaled regression coefficients
depends only on the error variance g2 and the correlation between z and =.
In particular, the scaled coefficients cannot be estimated accurately if the
correlation is close to 1, or, alternatively, when the explanatory variables
cluster about & straight line in the (z, z) plane. Intuitively, when the data are
well spread over the (z, 2) plane, the fltted regression plane is well supported
by the data. When the correlation is high, and x and z are almost linearly
dependent, the regression plane is supported by a narrow ridge of points, and
is consequently unstable, with a small change in the data resulting in a big
change in the fitted plane. Hocking and Pendleton [1983] and Hocking [1996:
p. 262] discuss this “picket fence” analogy in more detail.

General Case

We now consider the general regression model
Y:=81 +51zi + BoZia + -+ Bp1Zip-1 +& (E=1,...,n), (9.48)

with p — 1 explanatory variables and a constant term. In centered and scaled
form, the model becomes (see Section 3.11.2)

Yi=ao+mzh + 2+ +Yp-12i,01 & (E=1,...,n), (9.49)
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or in matrix terms

Y=x3(ffy° )+s, (9.50)
where X; = (1,X*). Thus
| ; _{n 0

%= (5 n. )
where R, is the correlation matrix of the explanatory variables ;,...,Tp—1.

We partition R;; as

1 r
R:z:n:—'(r Rgz),

where r = (r12,713,...,71,p~1)" 2and Ra2 is the matrix formed by deleting the
first row and column from R.. Here r; = x*(V'x*0) (5 =2,...,p—1) is the
correlation between the variables x; and z;. Then, by A.9.1, the 1,1 element
of R} is given by (1 — r'R5;'r) ™, so that

var[y1] = o?(1 -~ 'R, 1)L, (9.51)
For an alternative interpretation of (9.51), let x*() be the jth column of X*,
and let X*(} be X* with the jth column removed. Consider the formal regres-
sion of the vector x*¥) on the columns of X*¥), including a constant term.
We will now evaluate the coefficient of determination R? for this regression.

Substituting zj; for Y;, and using the equations 3, z}; =0 and }_, :c;‘j2 =1,
we get

. T n

Z (Y: - Y)* DT
i=1 i=1

= 1.
Hence, from Theorem 4.2(ii), it follows that
RSS;
R? = 1-—=5 I —
? z'i:l (Y:: - Y)2
= 1—RSS;, (9.52)

where RSS; is the residual sum of squares for the formal regression. By (3.52),
the residual sum of squares for the regression of Y on X is

Z(Yi ~7Y)? - Y'XX'X)"1X'Y.
| =1
Making the substitutions of x*¥) for Y and X*( for X, and using the facts

that for this substitution Y, (¥; — Y)? = 1 and that centering X*\) has no
effect, we get

RSS;, = 1 —x*@x*O) (X0 rx*a))=1x*(0)ry*{)
= 1-x*0)px*9), (9.53)
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where P; = X*W) X+ x+(@0))~1X*U)’ ig the projection onto C(X*()). When
i =1, X*®ix*@) = ¢ and X* D32 = Ry,, so that

RSS; =1 —~r'R;,r.
Hence, from (9.52), R? = r'R,'r and
varf1] = ¢2/(1 - R}).
Similar formulas hold for the other coefficients, namely,
var[y;] = ¢ /(1 - R}).

Since x*()'x*) = 1 and (I,, — P;) is symmetric and idempotent, it follows
from (9.52) and (9.53) that

Therefore, geometrically, I — R measures how close x*¥) is to the subspace

C(X*\)), since it is the squared length of the residual vector when x*() is
projected onto C(X*®). In other words, 1 — R? measures how near x*(?) is to
being a linear combination of the other explanatory variables. Thus, when the
columns of the centered and scaled regression matrix are “almost collinear”

in this sense, we can expect at least some of the regression coefficients to have
large variances.

0.7.2 Variance Inflation Factors
The formula
var{y;] = 0%/(1 — R3)

given above expresses the variance of the scaled regression coefficient in terms
of a coefficient of determination. Since R? is a squared correlation, we must
have 0 < R? < 1, so it follows that

V&I["’S’j] 2 0'2

with equality if and only if Rf- = 0. By Exercises 9d, No. 2, this occurs when
x*() is orthogonal to the other columns of X*.

The term (1 — R%)™! is called the jth variance inflation factor or VIF;.
From the discussion above, we have

VIF; = Varl[4;]/0°

and .
VIF; = [[(I, — P;)x*@|| 2,
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In terms of the original variables X, and using the relationship 4; = Bj s; (cf.
Section 3.11.2), we have
VIF; = Var[4;}/0
Var(;s5]/0
SHEX) a5+

9.7.3 Variances and Eigenvalues

Another expression for the variance of the estimated regression coefficient 4;
can be derived from the spectral representation A.1.4 of the correlation matrix

R... Since R, is positive-definite (see Exercises 9d, No. 3), we can write its
spectral representation as

Ry, = TAT', (9.55)

where T = (t;;) is orthogonal, A = diag(A;,...,Ap—1) and the X’s are the
eigenvalues of R, which are positive by A.4.1. From (9.55), we get R} =
TA-IT, so that

varly;] = o*(Rg2)js
p—1
= o® >y N (9.56)
=1

Now, since the rows of T are orthonormal, we must have 37~} t% = 1, so
that |¢;;] < 1 for all j and I. Thus, if any eigenvalue X; is close to zero and
the element t;; is not close to zero, then var[¥;] must be large.

Thus, we have two ways of recognising when the variances of the regression
coefficients in the centered and scaled model are large: (1) when one or more
columns are “almost collinear” with the others, as measured by a large VIF,
or, equivalently, when the projection of one column on the space spanned
by the others has a small residual, and (2) one or more eigenvalues of the
correlation matrix are small.

9.7.4 Pérturbation Theory

Ideally, a small change in the regression data should cause only a small change
in the regression coefficients. Statistically, the variance of B measures the
change expected in f}’ when the responses Y; are subjected to changes, whose
magnitudes are described by the error variance o2.

A more direct method is to examine the relative change in the estimated
regression coefficients when the data are subjected to small changes or per-
turbations. Below, we derive some bounds on these changes. First, we review
the concepts of matriz norm and the condition number of a matrix.
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Definition 9.1 If X is an n X p matriz, then the 2-norm of X is defined by

[|Xali|
X||2 = max ——— al| #0), 9.57
IX[l2 = mé ITal] (lall # 0) (9.57)
where the mazimum is taken over all nonzero p-vectors a, and ||a|| = (a’a)/?

ts the norm of a.

Note that many definitions of matrix norm are possible; see, for example
Higham [1996: Chapter 6], Bjorck {1996: p. 24], Golub and van Loan [1996: p.
52], and Trefethen and Bau {1997: p. 17]. It can be shown that a consequence
of (9.57) is that

IX|lz = omax, (9.58)

where oumax is the largest singular value of X, the square root of the largest
eigenvalue of X'X (see A.12). Also, note the inequality

{1 Xal| < {|X]|2[la}], (9.59)
which follows directly from (9.57).

EXAMPLE 9.5 Let P be a projection matrix. Then, since P is symmetric
and PP = P, the eigenvalues of P are zero or 1 (A.6.1). The largest eigenvalue
of P'P = P is therefore 1, so [|P||s = 1. Note also from (9.59) that ||Pal| <
llall. | 0

Definition 9.2 The condition number of the matriz X is the ratio of the
largest and smallest singular values of X, and is written x(X).

For matrices that are almost rank-deficient, the condition number is large
and is theoretically infinite for matrices of less than full rank. The minimum
value of the condition number is unity; this occurs when the matrix has or-
thonormal columns. If X has full rank, then the condition number can also
be written as

&(X) = (Amax/dvn) 2, (9.60)

where Amax and Amin are the largest and smallest eigenvalues of X'X.

EXAMPLE 9.6 (Straight-line regression) Let

1 1 —T

1 2 —-7%
X, =

1 mn_f'

Then
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with eigenvalues n and sz = 51, (@i —%)?. If 62 = (1/n)85e, then assuming
that & < 1 (or sgz < 1), we have ||X.||2 = n'/? and x(X.) = 1/6. O

Let us now derive a bound for changes in the regression coefficient 4 in
the centered and scaled straight-line regression model (9.44). Suppose that
the original noncentered and unscaled z;’s are changed by small amounts J;,
where |§;| < €, and assume that 0 < e < & < 1. Then Y, 62 < ne?, so that
}6]] < nt/%e. Also consider the projection P =1, —n~11,1,/, so that

Px=(r; —%,%2 —F,...,%n — ),

IPx|® = 555 = né?, (9.61)

and
x* = Px/||Px||.

Using (9.45), we can now write 4 in terms of P as

Now suppose that the z;’s are perturbed as described above, and let § =
(61,...,0,). The new estimate of 7y is

. Y'P(x + 6)
e P+ 8)]]
APx|| + Y'Pé
P (x + 8)||

1l

Thus the relative change in 4 is |

-~

¥ =% _ [IP(x + )| — IPx|| - Y'Pd/4

— , 9.62
7 B ¥ 8)]] (9.62)
o that PG+ &)l — [IPxll| + [Y'P5/4]
& — A x + 8)|| — |1Px||]| + |[Y'P6/4
—L < ; 9.63
\ 7 BT o)l (963)
Now consider the inequality (cf. A.11.4)
liall = [Ibll] < lla - b, (9.64)

which is valid for all vectors a and b. Putting a = P(x + §) and b = Px, we
get

NP (x -+ 8)]| — [IPxll] [P ]|

11411,
nl/?¢, (9.65)

A A TA
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using Bxample 3.5. 4is0, since ||P&l < n'/%¢, we have from (9.61) that

Pxil - |[PS]] > |[Px]| —n'/2%
= %5 —¢)
> 0.
Putting a = Px and b = —P4§ in (9.64), we get from the equation above
IPx+&I > |IiPx] - [IPsll]
= ||Px|| - {[Pd||
> nl/2(6 —e). (9.66)
Now the estimate of ag is Y, so that
lfi - ? = ’3’27: + €4,
and thus
PY = 4Px/||Px]|| + e.
Using this and the Cauchy-Schwartz inequality (A.4.11), we can write
10'PY|/17] < |6'Px|/||Px||+ |6"e|/|F]
< 18]l + flell/14)- (9.67)
Combining (9.63), (9.65), (9.66), and (9.67), we have
nl/2¢ + [Y'PS /4]
nl/2(G — ¢)

n'2e(2 + {lell/151)
ni2(s —¢)

Y = Ye
A

Using the formula «(X.) = 6~! from Example 9.6 and the assumption that

g <1, we get
el o s (2 + ”—e—u) :
¥ 1 - s(Xc)e 14|
This shows that provided the condition number is not too large and |9| is not,

too small, a small change in the z;’s will not cause too great a change in the
estimate.

What if the condition number is large? Then, under some circumstances,
a small change in the z;’s can cause a large relative change in the estimate.

A

¥ — e

EXAMPLE 9.7 Suppose that the sample correlation of § with both x and
y is zero and that § has its elements summing to zero. Since

P Y=Y -0) =3 Vil - 9) =Y Y, (9.68)
I i i
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we have Y'd = 0 and x'6 = 0. Then, from 1,6 = 0, we have P§ = 4,
Y'PS = Y'd =0, and (P§)Px = §'Px = §'x = 0. Thus, Px and P§ are
orthogonal, so that
IPx+OI° = [[Px|*+|IPs|?
= ||Px|? + 5},

Substituting into (9.62), and using Y'P4J = 0, the relative change is

T 21512
- = - (k)

from (9.61), since £(X.)? = 1/6% = n/||Px||?. Thus, for a fixed but arbitrarily
small change in the z’s, the relative change in 4 can be as much as 100% if
the condition number is large enough. O

The arguments above show that the condition number x(X.) is a good
diagnostic for instability. On the other hand, the variance of 4 is always o2,
no matter what the z;’s, so can give us no information about any possible
instability of the estimate when there are small changes in the z;’s

We can also look at the relative change in 4 compared to the relative
change in a single z;. Suppose that x; changes to x; + Ax; where Ax; is
small, resulting in a change A% in 4. The ratio of relative changes is

Li

Afy Am; _
A:cz AL

Letting A — 0, the right-hand side of this expression-approaches
0%

Ox;| |4
The quantity (9.69), called the ith elasticity, measures the sensitivity of the

estimate to small relative changes in the original data. To evaluate the E;’s,
we make use of the results (see Exercises 9d, No. 5)

I

Ei—_—'

(9.69)

o Z(mz—z)(y "=Y,-7

i=1
and
B Z(.m - 7)? = 2(z; — 7).
v o=

Using these results and formula (9.45), we get

8 _ Y, -Y — Az
Oz; 3
€

1/2?
T
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where e; is the 7th residual. Thus

Ei = % -sl—f% (9.70)

Since |e'x| < |l¢[| [|x|| (A.4.11), the sum of the elasticities is bounded by

lef}fixl]
Asz”

Using the relationship Y ., (z; — )2 = 31, 2 — nZ?, we have
lIx|l/s25% = (L + CVZ1)H2. (9.71)

Thus, if the CV of the z's is small, all the elasticities will also be small,
provided that |¥| is not too close to zero.

In summary, if the condition number of the centered matrix is not too
large, the regression will be stable with respect to changes in the original -
data. If CV; is not too large, the elasticities (where the relative change in
the coeflicient is compared to the relative change in the z;’s) will not be too
large. See Belsley [1991] for more information on elasticities.

General Case

A more general perturbation result can also be proved, which allows for
changes in both the explanatory variables and the response. Consider the
regression

Y =X3 +¢,

which we can take to be either centered or uncentered. Suppose that the data
is subject to small changes, resulting in new data X + 46X and Y +4dY, where
[[6X]l2 < €[|X[|2, |0Y]] < elY]|, and «(X)e < 1. Let B¢ be the new least
squares estimate after these changes. Then (see e.g., Higham {1996: p. 392})

1B = Bell . _(X)e
1Bl ~ 1-kX)e

lel
2 k(X))——— ). .
(“” ( ))uxngnﬂn) (5-72)

Thus, as in the case of simple linear regression, if the condition number of
the regression matrix is not too large, the regression coeflicients will be stable
with respect to small relative changes in the regression matrix.

The idea of stability of regression coefficients is another way of approaching
the concept of multicollinearity. Note that if the smallest eigenvalue of X'X
is not too small, then the condition number of X cannot be too large, at least
relative to the size of the elements of X, so the regression will be stable. On
the other hand, if the smallest eigenvalue is not too small, then the variances
of the regression coefficients cannot be too large; so the ideas of stability and
small variance are connected.
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9.7.5 Collinearity and Prediction

Collinearity affects the estimation of regression coefficients much more than
prediction. To demonstrate this, suppose that we want to predict the response
at xo = (zo1,...,To,p~1) , using the predictor V =8y + Blxg, where B, =
(Bi,..., B,—1). Then from Section 3.11, we have

}A’-=-‘ Y + B::(XO — 'f),

where X = (Z1,...,Zp-1)". Also, we recall from Section 3.11 the estimate
Be = (X’X)~1X'Y, where X is the centered version of X (without 1,).
From Theorem 1.3 and Section 3.11, we get

Cov[V,B.] = Covin 1Y, X'X)'X'Y]
= n7'1 Var[Y]X(X'X)™?
= o 'X(X'X)!
= 0,
since 1'X = 0. Thus

var[Y] = var[Y + BL(x¢ — %)]
= var[Y]+ var[ﬁ;(xo —X)}
= o?n"! + (%9 — X)' Var[B,](x0 — %)

= o {n 4 (o - B XX) Mo ~%)}.  (9.73)

Up to the factor 2, the second term in (9.73) is just the Mahalanobis distance
between xg and X. Thus, if we are predicting the response at xg, the variance
of the predictor depends on how outlying xq is: Predictions at points close to
X have a small error.

Conversely, predictions made at outlying points have large errors. This is
not of much consequence, as it is unwise to make a prediction at an outlying
point. We cannot be sure that the model holds at points remote from the
observed data.

If the data are collinear, then points close in the sense of Mahalanobis
distance to xg will lie almost in a subspace of lower dimension. For example,
in the case p = 2, points close to X will cluster about a line. Despite the
collinearity, predictions made at points close to this line will have small errors,
provided that they are not too far from xg.

EXERCISES 9d

1. Prove that in a regression with two explanatory variables z and z,

s 1 (1 Zi -
var(fo] = Y 1+ 1—-r2 \cy2  CV,.CV, N cvi/l’
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2. Prove that R? = 0 if and only if «*(7} i3 orthogonal to the columns of
X *{(5)

3. Show that R, is positive-definite provided that X has full rank and
contains a column of 1’s.

4. Show that the eigenvalues A; of Ry, satisfy
1<) <p-1.

Hence prove that VIF; < k2, where « is the condition number of R, .

5. Prove that
0

5 @ = DX~V =Y -Y

=1

and

E?m-; Z(.’Bi — 5)2 = 2((1:,; - f)

i=1
MISCELLANEOUS EXERCISES 9

1. Suppose that the regression model postulated is
EY] = Bo+ pi=
when, in fact, the true model is

E[Y] = fo+ Bz + 623:2 + ﬂ3ﬂ:3.

If we use observations of Y at z = -3, -2, —1, 0, 1, 2, 3 to estimate g
and Bi in the postulated model, what bias will be introduced in these
estimates?

2. Suppose that the model
Y = Bo+ Bizi + €
is fitted when the true model is actually
E[Y;] = Bo + fizi1 + P2zia.
If e; is the residual from the fitted model, prove that
Ele;) = B2(zi2 + 9zi1 + k),

where g and A are functions of the z;.
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3. Suppose we wish to test the hypothesis H that the means of two popula-
tions are equal, given n; observations from the ith population (i = 1, 2).
Assuming that the populations have the same variance and kurtosis (2),
find approximate expressions for E[Z] and var[Z] on the assumption
that H is true (cf. Theorem 9.2). Show that to the order of approxima-
tion used, these expressions are independent of v, if n; = ne.

4. Prove that (X;,Y;) in Example 9.3 of Section 9.6.5 has the bivariate
normal distribution stated.






10

Departures from Assumptions:
Diagnosis and Remedies

10.1 INTRODUCTION

In Chapter 9, we described what happens when the standard regression as-
sumptions are not met. In this chapter we consider how departures from
these assumptions may be detected and how their effects may be overcome by
suitable transformations of the variables and weighting of the cases.

Most diagnostic techniques make use of various kinds of residuals as well as
measures such as hat matriz diagonals that measure how “outlying” are the
rows of the regression matrix. These measures are discussed in Section 10.2.

The most serious form of model misspecification occurs when we use a
model that is linear in the explanatory variables when in fact the condi-
tional mean of the responses is a nonlinear function of the z-variables.
More precisely, suppose that we have a set of explanatory variables x =
(xo,%1,-..,Tp—1)" {with zo = 1, say) and we attempt to model the response
Y as

Y =x'B8+c¢.

Then the least squares estimate of 8 will not be estimating anything very
meaningful if the true model has E[Y|x] = u(x), where g is a nonlinear
function of x. We need ways of visualizing the true nature of u, and of
deciding if a linear form p(x) = x'B is at least approximately satisfied. If it
is not, we will want to transform the z’s in order to achieve a better fit. In
Section 10.3 we discuss ways of visualizing the form of u, deciding if the linear
assumption is adequate, and choosing a transformation if it is not.

The standard regression model assumes that the variance function var[Y|x]
does not depend functionally on the explanatory variables. If, in fact, we
have var[Y|x] = w(x), where w(x) is not constant, then (see Section 9.3)

265
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the least squarss estimates will stili be unbiased estimates of the regression
coefficients but will nct be efficient. If w(x) is known, we can use weighted
least squares as described in Section 3.10. If w(x) is not known, we must
decide if it can be assumed constant. If we cannot assume this, we must
estimate w(x) and incorporate the estimate into a new estimation procedure
for the regression coefficients. Alternatively, we can transform the response
in the hope of making the errors more homoscedastic. The details are given
in Sections 10.4.1 to 10.4.3.

Even if the variance function is constant, the errors € may fail to be inde-
pendent. For example, if the data have been collected sequentially, successive
observations may be serially correlated. This can be detected by the Durbin-
Watson test, which is discussed in Section 10.4.4.

If the errors are not normally distributed, then not too much goes wrong
provided that the joint distribution of the explanatory variables is approx-
imately normal. If this is not the case, we can often use transformation
methods to improve the situation, either transforming the response alone or
using the transform both sides technique. Such transformations to normality
are discussed in Section 10.5.

Outliers in the data can “attract” the fitted line or plane, resulting in a
poor fit to the remaining observations. This can be particularly pronounced if
a case has extreme values of the explanatory variables. We have two options
here; either identify the outliers and downweight or delete them before fitting
the model, or use a robust fitting method that is resistant to the outliers. We
discuss both these approaches in Section 10.6.

Finally, in Section 10.7 we discuss how to detect collinear columns in the
regression matrix and suggest some possible remedies for collinearity.

10.2 RESIDUALS AND HAT MATRIX DIAGONALS

We begin with the usual model Y = X3 + €, where X is n x p of rank
p.- The major tools for diagnosing model faults are the residuals, which were
introduced in Section 3.1. In terms of the projection matrix P, which projects
onto C(X), they are given by

e = (I,-P)Y
(I‘n - P)Ea

since (I, — P)X = 0 [by Theorem 3.1(iii)}.

The elements of the fitted regression ¥ = X3 are called the fitted values
and satisfy Y = PY. In much of the literature on regression diagnostics, the
projection matrix P is called the hat matriz, since it transforms the responses
(the Y;’s) into the fitted values (the Y;’s). For this reason, it is often denoted
by H rather than P. We use H in this chapter.
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Using the theorems of of Chapter 1 and the idempotence of H, we get

Ele] = (I, - H)E[Y] = (I, - H)X8 = 0,

Varle] = Var{(I, —H)Y]
(I, ~ H) Var[Y|({1, — HY
(I, — H)o?1,(I, — H)

il

fl

o*(1,, — H), (10.1)
E[Y]=HE[Y] =HXS = X3,
and -
Var[¥] = H Var[Y]H' = ¢?H. (10.2)
Moreover,

Covle, Y] = Cov{{I, - H)Y,HY] = ¢*(I, ~ H)H = 0,

which implies the independence of e and Y under normality assumptions (by
Theorem 2.5). If H = (h;j), the diagonal elements h;; of H are called the hat
matriz diagonals and following general practice, we denote them by h; rather
than hi;. We note from (10.1) that var[e;] = a2(1 — h;).

The results above show that, when the model is correct, the variances of the
residuals depend on the hat matrix diagonals. For this reason the residuals
are sometimes scaled to have approximately unit variance; this leads to the
internally Studentized residual

— S(1~ hy)H/?’

i

(10.3)

where S% = e'e/(n — p) is the usual estimate of ¢2. It can be shown that (see
Cook and Weisberg [1982: p. 18] and the references cited there; also Exercises
10a, No. 3) that r?/(n — p) has a beta[%, (n — p — 1)] distribution (A.13.6),
so that the internally Studentized residuals are identically distributed.

Since the residuals (and hence the estimate S? of ¢2) can be affected by
outliers, some writers favor using the externally Studentized residual

¥]
“ S~ R)E

(10.4)

The estimate S is replaced by the estimate S(i) which is calculated in the
usual way from the n — 1 data points that remain after deleting the ith case.
This results in an estimate of ¢ that will not be affected if the sth case is an
outlier. ‘

To derive the distribution of ;, we first prove a theorem that we need to
establish the relationship between S(:)? and S2.
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THEOREM 10.1 Let B and B(i) denote the least squares estimate of
with and without the ith case included in the data. Then

B-BG) =

(X'X)x;e;
1—h;

(10.5)

Proof. Let X (i) denote the regression matrix with the i¢th row deleted. Since
X(1)YX(i) = X'X — x;x, we have from A.9.4 that

(X@)'X())~

(X'X — x;x!})

rey=1 , (KIX) e (XU X)
XX+ X =,
(X'X) " 1xxf (X' X) 1

= 'x)~1 10.6
(X'X)™ + T s (10.6)
Hence
B = [XE'X@ XY -xY))
XY 1y ! (XIX)—1
- [X'X)"l ¢ ERT X XX) ] (X'Y - x;Y5)
)
1y —1.. .
= B- %ﬂi [1@-(1 — h) — X3+ hY]
'X\V-lx, e,
e f‘j e L] (10.7)
O
Using Theorem 10.1, we have
(n-p-1SGE)? = > [Vi-xBH
17§
XY-1x.e:\ 12
- 5 i (8- R
I T
2
= Z (ez + lhfei:_)
1+ t
- hie e2
= — ) -t 10.8
1=1 (el TIC h,;) (1 —hy)? (10-8)

Since H is symmetric and satisfies He

0 and H? = H, it follows that

S, hiser = 0 and 37, k2 = h;. Using these expressions in the right-hand side

of (10.8) leads to

(n —p—1)S(i)* = (n — p)S* —

es
1—h;

2
1

(10.9)
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Hence, from e2/(1 — h;) = r252,

2 = ef(n —p—1)
' (n ~p-1)S@E)?*(1 - hi)
_ ei(n —p—1)
~ [(n—-p)S? -l /(1= h)] (1~ hy)
e? n—p-—1
T S2Q-hy) n—p-1?
_ ri(ln—p-1)
 n—-p-—r1?
= N fB (n—p—1), (10.10)

say, where, by Exercises 10a, No. 3, the random variable B = r?(n — p)~!
has a beta[i,1(n — p — 1)] distribution (see A.13.6). We now use the fact
(see Exercises 10a, No. 2) that if B has a beta.(%a, %ﬁ) distribution, then
BB{a(l — B)}~! has an F, g distribution. Settinga=1and f=n—-p—1,
we see that t7 has an Fj (,—p,—1) distribution, or equivalently, that ¢; has a
tn—p~1 distribution.

The hat matrix diagonals can be interpreted as a measure of distance in
(p — 1)-dimensional space. To see this, we recall from (3.53) that

hi =n"l+ (n—1)"'MD;, (10.11)
where MD; is the Mahalanobis distance
MD; = (x; — X)'S™ {x; — X)

between x; (now interpreted as the “reduced” ¢th row of X without the initial
element of 1) and the average reduced row. Thus, the hat matrix diagonal
is a measure of how “outlying” the ith data point is, at least as far as the
explanatory variables are concerned. This measure, however, is based on the
sample covariance matrix S and the mean vector X, which are not resistant
to outliers. More robust measures are considered in Section 10.6.2.

Assuming that the regression model has a constant term, so that X contains
a column 1, it follows from (9.13) that

n~! < h; <1. (10.12)

The upper bound is attained in the limit as x; moves farther and farther away
from X. Finally, from the proof of Theorem 3.1(ii),

> " hi =tr(H) = p, (10.13)

i

so that the average hat matrix diagonal is p/n.
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EXAMPLE 16.1 Consider the regression through the origin model
Y, = Sxz; + =5
Since X = (x1,Z3,...,Z,) = X, the hat matrix is
H=X(X'X)"'X' = xx'||x||?
and h; =22/ 3", z2. _ O
EXAMPLE 10.2 In the simple linear regression model,
Y = Bo + Bz + &4,
the hat matrix diagonals are, from Section 4.3.4,

4 (zi—=7)
E::l (xk - E)2 .

1
hi = ~ (10.14)

EXERCISES 10a

1. Prove (10.14).

2. Show that if the random variable B has a beta(ia, 18) distribution,
then F = AB{a(l — B)}~! has an F, s distribution. Express B in
terms of F.

3. (a) Express ¢; in the form e; = ¢{(I,, —~ H)e for a suitable vector c;.

(b) Show that (n — p)~'r? can be written as

7'QZ
—p)-lp2 =
(n p) rt Z’(In — H)Zi
where Q = (1 — h;) 71 (I, — H)c;cl(I, — H) and Z ~ N,(0,1,,).
(c) Prove that Q is a projection matrix (i.e., show that Q2 = Q and
Q = Q).
(d) Show that (I, — H) — Q is a projection matrix and prove that

Z'QZ and Z'(I,, — H) — Q)Z are independent. Hence prove that
(n — p)~1r? has a beta(i, L(n — p — 1)] distribution.

4. Show that (1 = h;)% + 2 joti h% = (1 —hy).
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10.3 DEALING WITH CURVATURE

Let E[Y|x] denote the conditional mean of the response Y given the ex-
planatory variables x. In order to assess the suitability of the linear model
E[Y]x] = B'x, we need to be able to visualize the true regression surface
ElY|x] = p(x) and decide if it can be adequately represented by a linear
function of x.

10.3.1 Visualizing Regression Surfaces

In the case of a single explanatory variable z, a simple plot of Y versus z will
reveal the relationship between the variables. The relationship can be made
more apparent by smoothing the plot using a readily available smoother such
as loess (end of Section 6.6) 