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Foreword
BY

HowarDp C. GRIEVES

Assistant Director
Bureau of the Census

BUSINESS, THE GOVERNMENT, AND THE PROFESSIONS, IN A FREE
and progressive society, all seek the broadest possible factual basis for
decision making, policy formulation, and the development of social and
economic theory. It is the joining of these diverse interests in the com-
mon search for economic and social facts which accounts in large part
for the very great importance of statistics in the United States, Hun-
dreds of millions of dollars have been expended for statistics in this
country by public and private groups during the past twenty-five years
alone. The development of sampling during the same period made
possible much of this activity. Sampling theory and methods therefore
are the proper concern of practical businessmen, public officials, and
social scientists because they all do now, and will increasingly hence-
forth, depend upon the results of sampling for much of their factual
information.

The rapid development of the theory and practice of sampling has,
of course, made it possible to measure directly attributes which could
previously only be “estimated” more or less intuitively by experts or
otherwise indirectly approximated. As a matter’ of fact, progress has
been so rapid that constant re-examination of existing series has become
necessary to assure that they meet the new standards of reliability and
efficiency which probability theory is making attainable. In this con-
nection recent history suggests a new “law,” namely, that “good sam-
ples tend to drive bad samples out of existence.”

A probability sample properly handled provides a quantitative meas-
ure of its sampling error. With such knowledge comes the ability to
control its extent. This confronts the statistician and the user of his
results with the question of how much any given reduction in the sam-
pling error is worth. In turn, this compels a careful evaluation of the

purposes which the statistics are to serve. Thus, a wholesome and
vii ‘
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often much-needed review of ultimate objectives results in order to de-
termine specifically how much a given degree of accuracy is worth.
This is as it should be, since the science of statistical measurement
should be expected to utilize quantitative standards wherever it is pos-
sible to do so.

Modern sampling theory has also profoundly affected statistical work
in another way. It has been the means of introducing rigorous scien-
tific thinking into many statistical programs. Nothing is taken for
granted in the scientific habit of thought, and once brought into a sta-
tistical operation through the application of probability theory its influ-
ence is soon felt throughout the entire undertaking. Sampling error in
almost all surveys is not the only source of error and often not the pri-
mary source. Hence, if greater accuracy is needed, it may be possible
to reduce the total error, e.g., by correcting some other weakness in the
total project. But such an alternative, if it exists, cannot be correctly
evaluated unless an effort is made to measure quantitatively the non-
sampling errors. This brings under review such things as response
error; deficiencies of enumerators; coding or classification errors; proc-
essing errors; definitional weaknesses; and other aspects of the opera-
tion which through faulty functioning, incomplete communication, or
other defects can contribute error to the final statistical product. These
factors may be the cause of large errors, and until they are measured
and brought under control it becomes logically impossible to determine
how much of the total survey resources should be devoted to reducing
sampling error and how much should be devoted to the control of other
sources of error. This should be a major concern of all who are re-
sponsible for the management of surveys or their financing.

Because of the wide variety of its programs and the scale of its opera-
tions the experience of the Census Bureau illustrates many of the ways
in which modern sampling can affect the workings of statistical pro-
grams. In the program of complete censuses there are numerous op-
portunities to obtain economies, increase timeliness, and control quality
of results through the application of sampling methods. In addition,
the application of sampling has made possible many monthly, quarterly,
annual, and special reports on many topics including the topics covered
by the complete censuses. In these facts is to be found an explanation
of the very great emphasis which the Bureau has given to the develop-
ment and application of sampling theory and methods during the past
decade or more. Even if it wished, it could not escape the fact that
comparisons of its sample results with its complete enumerations could
and would be made. Thus, the Bureau was faced with the absolute
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necessity of employing sampling procedures which would yield valid re-
sults and at the same time be feasible within the practical limitations
which every survey administrator must face.

In developing its sampling program, the Bureau ultimately accepted
the principle that it should provide a quantitative measure of sampling
error in its published reports. This policy imposed the condition that
probability sampling be employed. This, in turn, brought into play the
rigorous logic of mathematics and probability theory in the design of
its surveys. The sampling staff of the Census Bureau, under the direc-
tion of the authors of the present volume, in company with other able
statisticians in all parts of the world faced with similar problems, de-
veloped the required theory and practice at a rapid rate. A sufficient
incentive was the ever-present demand for more efficient sampling de-
signs to reduce the unit costs of the data compiled and to maintain re-
quired standards of reliability within the limits of the resources which
could be made available.

That they have been largely successful is evidenced by the fact that
as of this writing, the beginning of the year 1953, it has been possible
to place virtually all the sample surveys of the Census Bureau on a
probability basis and to furnish quantitative measures of sampling
variation along with its published reports. In addition, new series have
been provided which would have been impossible without the develop-
ment of suitable sampling theory. Likewise, much has been learned
about other sources of error through carefully designed studies of the
over-all quality of survey results. Many steps have been taken to bring
into better balance the total resources devoted to sampling angd to other
kinds of error.

Sample Survey Methods and Theory presents in a comprehenswe
form both the theory of sampling as it exists today and its application
to practical problems. In fact, most of the theory and practice it de-
scribes has been tried and tested in actual operation. It should, there-
fore, be of real assistance to those charged with the tasks of applying
modern sampling methods to survey problems in a wide variety of sub-
ject fields. Tt should be of equal assistance also to users of sample
studies in appraising the methods employed in surveys and evalpatmg
the results obtained.

April, 1953






Preface

THIS VOLUME IS DESIGNED AS A TEXTBOOK AND REFERENCE
manual for the student and for the investigator engaged in the design
of sample surveys. It is also intended for the user of the results of sur-
veys who wishes to know the circumstances under which he may place
confidence in information based on samples.

Volumes I and II combined represent an attempt to give a compre-
hensive presentation of both sampling theory and practice. Volume I
gives the principles and methods of sampling and their applications to
various types of problems. Formulas appropriate to the methods pre-
sented are given without proof. Volume II contains the fundamental
theory on which sampling methods are based, together with derivations
of the formulas and proofs of statements made in Volume I.

A nonmathematical survey of the basic principles of sample design
is given in the first three chapters of Volume I, where illustrations
rather than formulas are used to clarify the discussion and to aid the
intuition. Those who are interested in interpreting sample survey re-
sults, but not in designing samples themselves, may find these three
chapters a sufficient guide to the basic principles. We have tried in
the succeeding chapters, also, to provide an intuitive basis for most of
the theory, primarily through the use of illustrations, and the only req-
uisite assumed is an elementary course in statistics. The primary re-
quirements for understanding the concepts in these chapters are an in-
terest in the subject and persistence. Although many of the illustra-
tions presented are based on applications in the United States Bureau
of the Census, the methods and principles are directly applicable to
sample survey design in any subject field. '

Throughout Volume I an attempt has been made to present some
simple rules for approximating the optimum sample design for a number
of types of problems commonly encountered in practice. When a quick
decision must be made on sample design, even at some sacrifice in effi-
ciency, these rules will not lead one too far astray. Nevertheless, the
main emphasis is on basic principles. To depend too heavily on a few
simple rules might indeed stifle progress in a field which depends pri-

marily on the ability of the investigator to adapt basic principles to a
xi
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variety of situations. Such adaptations are illustrated in the case studies
presented in the last chapter of Volume I.

For those with mathematical training through college algebra who
not only desire to obtain an intuitive notion of the meaning of the for-
mulas and the conditions under which they can be applied, but also wish
to be able to derive them and exténd them to other designs, Volume II
should be consulted along with Volume I. Some calculus is required
for a few of the proofs in Volume II. For the most part, the theory
presented in Volume II has been limited to the minimum required for
Volutne 1.

These volurnes are not intended to cover all phases of survey work.
The design of the questionnaire, administration of the survey, and
methods of protessing and tabulating are omitted, and the treatment of
response errors is considered but briefly. Similarly, the emphasis is
entirely on estimating characteristics of a finite population, without any
consideration of the question of more general inferences so well dis-
cussed in Deming’s Some Theory of Sampling.

For textbook purposes, the following suggestions may serve as guides
in the organization of different types of courses. A one-year course
without proofs may well begin with Chapter 1 of Volume I, then proceed
through Chapters 4-6 and 8, parts A and B of Chapter 9 taken to-
gether with Case Study A or B of Chapter 12, sections 2 and 3 of
Chapter 11, and Chapter 2. The remaining material may be covered
as time is available, or serve as supplementary reading. A one-year
course with proofs may begin with Chapter 1 of Volume I, followed by
the development of the more important theorems of Chapters 2 and 3
of Volume II, and then followed by Chapters 4-12 of Volume II and
the corresponding chapters of Volume I. Chapters 1 through 6 of
Yolume I with selected sections from the remaining chapters will pro-
vide sufficient material for a one-semestet course without proofs, and
the corresponding material from Volume II can be introduced for a
one-semester course with proofs. For courses with proofs either vol-
ume can serve as the textbook, the choice depending on the emphasis
desired, and the other can serve as a reference book and provide supple-
mental material for the teacher.

For reference purposes, a comprehensive index has been provided in
each volume. In addition, cross references between the volumes relate
the material in one volume to the corresponding material in the other.
Finally, Chapter 3 of Volume I provides a short description of some
commonly occurring problems and references to appropriate methods
and theory in other chapters.
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Introduction

1. The decision to consider a survey. Whenever the problem of
obtaining information concerning a large aggregate of people, farms,
firms, records, or other units occurs, a sample survey or sample study is
likely to provide results of the desired precision at relatively low cost.
Often the exact point at which a decision is made to consider taking a
survey will be obscure. We must be prepared in the early stages of
planning to encounter a certain vagueness concerning why the information
is needed, what information is needed, how 1mportant the information is,
how the information will be used, and why a survey is needed to obtain
the information. Often, as the discussions develop, the need for the
survey will become clear. Sometimes, however, it will become obvious
that a proposed survey will not serve a useful purpose, as, for example,
if the desired information can be obtained at lower cost and with sufficient
accuracy by other means than making a survey.

In order to reach the decision to take a survey we must usually have
some idea of the relationship between the cost and the accuracy of infor-
mation that might be obtained. Naturally, we should like to have the
survey conducted as efficiently as possible, and hence we shall seek
methods of making surveys that yield maximum information per unit
of cost.

Early in the consideration of a survey at least preliminary answers to
the following questions should be prepared:

(1) What information is believed to be necessary?

(2) Why is the information needed? How important are the various
reasons?

(3) How will decisions be affected by alternative possible survey
results ?

As a preliminary to deciding on the accuracy required for the survey it is
often helpful to obtain illustrative uses to be made of the information
desired. This involves an effort to determine the levels of inaccuracy in
the desired information at which wrong decisions might be made and an
effort to evaluate the cost of such wrong decisions.

2. Bases for planning a survey. Ordinarily, if one decides to go ahead
with the preliminary planning of the survey, there will be known at least
roughly, and more exactly at a later stage of planning:

1



2 INTRODUCTION

a. The population for which information is desired. Information may
be needed concerning the people living in a specified city, the families in
the United States, the grocery stores in a given state, the electric light
bulbs in a given shipment, the farms producing wheat, and so on. These
are populations (or universes) of elementary units, such as people, families,
grocery stores, electric light bulbs, or farms.

b. The information wanted concerning this population. The information
wanted will usually consist of certain numbers which we call true values
of the population. These might be the “average income per family,” the
““proportion male,” the “proportion of electric light bulbs that will burn
out with 1000 hours of use,” and so on. The true value of the population
is ordinarily an aggregate or average of the true values for the individual
members of the population.

The measure of income to be used, or the conditions under which the
light bulb is to be tested, must be defined. The characteristics to be
measured will finally be defined by the questionnaire and instructions for
filling it out or by other methods of measurement. The definitions may
necessarily allow for some judgment to be applied even if no errors are
made; and in opinion surveys the element of judgment may dominate.
The approximation to the true value yielded by the survey may differ
from that wanted because of a difference between the concept embodied
in the questionnaire and the concept desired, because of the indefiniteness
of the questionnaire, and because of errors in the survey itself. Thus, it
should be clear that we may distinguish between the approximation to the
“true value” associated with the survey and the *“true value” indicated by
the objectives of the survey.

Clearly, if the responses to the questionnaire or other measurements
made do not have a reasonably close relationship to the desired true
values, there is not much point in making a survey. Moreover, if errors
of measurement are a problem, the survey design must take account of
such errors as well as of sampling errors. We shall find it convenient to
consider sampling and other sources of error separately; and, except
where otherwise specifically indicated, we shall assume that the non-
sampling errors are inconsequential in the measurements obtained for the
units included in the sample. Theory and methods to take account of
errors of measurement or response will be indicated in the form of an
extension of the theory and methods developed for sampling. Chapters
2 and 12 of this volume, and Chapter 12 of Vol. 11, indicate some additional
considerations involved in evaluating errors of measurement or response
and in the joint consideration of sampling and other sources of error.

c. The required precision of results. The éstimates from a sample will
ordinarily be different from the values being estimated. The important
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question to answer is whether the differences between the estimates made
from a sample and the values being estimated are small enough to achieve
the purposes of the study. We shall see later that, if the sample is selected
and the estimate is obtained by methods that permit the use of the theory
of probability, we can evaluate the precision of the sample estimate. It is
a remarkable fact that the measure of precision can be estimated from the
sample itself, without knowing the true value being estimated.

When the sample estimate differs from the true value, the administrator
may suffer some loss when he takes action on the basis of the estimate,
and the seriousness of the loss may depend on the magnitude of the error
in the estimate. If the expected loss for different levels of error can be
approximated, we can arrive at the precision to be required of the sample
survey. Ordinarily direct measurement of expected losses is not feasible.
The required precision is then arrived at by joint consideration of the
expected costs of achieving differing levels of precision, which can be
measured, and the expected losses associated with different levels of pre-
cision, which will be a judgment.*

3. The design of surveys. An effort is made in the following chapters
to provide a guide for the efficient design of sample surveys. In applica-
tions of sampling to various problems the same fundamental principles of
sampling theory appear again and again, and an attempt is made in what
follows to introduce illustrative problems in which these common
principles are applied. At the same time, some principles have a great
deal more importance than others in certain sampling problems, and the
differences in the importance of various principles are emphasized.

* For a case where losses can be measured directly, see R. H. Blythe, “The
Economics of Sample Size Applied to the Scaling of Sawlogs,” Biom. Bull., 1
(1945), 67-70, and W. G. Cochran, Sampling Techniques, John Wiley & Sons,
New York, 1953, p. 64.



CHAPTER 1

An Elementary Survey of Sampling Principles

A. SOME FUNDAMENTAL NOTIONS OF SAMPLING

1. Scope of this chapter. This chapter gives a summary view of funda-
mental sampling principles, which will be discussed in greater detail in
subsequent chapters. We shall indicate how it is possible, with a relatively
small sample, to secure results that approximate very closely some of the
characteristics of a large population, and we shall introduce in simplified
illustrations some of the fundamental principles of sample design. The
solution of the problem of sample design in much more complicated
situations consists in large part of the repeated application of the simple
principles presented here. The complexity of the designs actually used,
however, does not change the underlying principles involved: It is par-
ticularly important that the reader understand the meaning of the measure
of precision developed in this chapter, and its relationship to the confidence
that can be placed in the results of a sample survey.

The precision of the results obtained from a sample survey depends
not only on the size of the sample but also on the other parts of the
sample design, i.e., on the way in which the sample is selected and the
way in which the estimates are prepared from the sample survey returns.
To have an efficient sample design one must make effective use of available
resources. These resources will include not only such items as staff,
equipment, and physical facilities, but also statistical information and
other knowledge of the population to be sampled, together with available
sampling theory and methods.

Ordinarily, there are many alternative sample designs that may be
applied to a particular problem, and an understanding of alternative
designs and a comparison of their efficiency are necessary if a rational
choice is to be made. Sampling theory provides powerful tools with
which to choose methods that are relatively efficient.

2. Criteria for choice of good sample designs. Before one can make an
intelligent choice between alternative designs, he must determine how to
4
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tell a more efficient design from a less efficient one. This in turn implies
the existence of a set of criteria that will serve to distinguish between good
and bad designs.

Limitations of some criteria in current use. If one wishes an estimate
of total wheat acreage in the United States or in a particular state, many
methods of estimation are available. One method would be to ask some
expert who has contact with farmers and with local officials in various
communities, and who is acquainted with what is going on in farming
areas, to give his judgment of the number of acres of wheat. This judg-
ment would be based upon the expert’s knowledge of what has happened
in the past and his speculations regarding the approximate present
situation. This sort of approach might, in fact, give the results wanted
with extremely high precision. It frequently happens, however, that two
experts, both considered well informed, give widely different answers.
For example, with respect to unemployment in the 1930’s, there were
estimates for 1935 ranging from* 6,000,000 to 14,000,000. The estimates
were generally based on projections of time series, with adjustments made
from current but fragmentary data. The range of the estimates indicates
the differences in interpretation put on the same data by different persons.
When estimates are based on such a method, we have no guide in selecting
the best estimate except our judgment as to who is the best-qualified
expert.

The use of an expert’s opinion is generally a relatively inexpensive
method of obtaining information. Moreover, there are numerous situa-
tions where objective measurement methods are not available, and com-
plete dependence must be placed on expert judgment. However, if
methods for objective measurement are available, and if an important
decision depends upon the accuracy of the estimates (e.g., timing the sale
of a large government-held wheat surplus), an error may prove more
costly in the long run than the most expensive type of survey that could
reasonably be considered.

Instead of using the judgment of one or a few individuals, we might,
for a question of an agricultural nature, send out questionnaires to a
number of farmers, analyze the responses, and build up evidence based on
a variety of sources. From prior experience and other information avail-
able, we might be able to speculate about the reliability of the results of
our questionnaires. On the basis of this added information, we might
arrive at a sounder judgment. Here there is a difference in degree, but
not in kind, from the situation where an expert is forced to arrive at a

* Social Security Board, Bureau of Research and Statistics, Selected Current
Statistics, Vol. I, No. 6, pp. 43-45 (1937).
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judgment without these further aids. The method is fundamentally based
on relationships observed in past experience, and the precision of the
estimate cannot be measured objectively.

We do not mean to imply that expert judgment is usually not good, or
that an expert will not welcome or make full use of objective data. But,
often, expert judgment does not prov1de a substitute for objective measure-
ment. There are many situations in which it is important to know how
far off an estimate may be from the result of a carefully conducted com-
plete count. In such instances it becomes exceedingly desirable that
survey methods be used which can produce results giving an assurance of
reliability within known bounds of error. Reliance upon relationships
observed in past experience may be particularly dangerous in times of
important economic or social change, yet it is in such times that the need
for reliable results is most vital,

In the evaluation of estimates which rely heavily upon the opinions of
experts, the criterion used is faith in the validity of these opinions.
Limitations are the inability to evaluate this faith, and the lack of an
objective basis for choosing between the opinions of two or more experts.

There are numerous other ways of obtaining information that go far
beyond the simple expedients described above and that ostensibly depend
on objective sample surveys for their results, but that still do not provide
guarantees that the personal judgments used cannot bias the estimates.
A casual reading of a description of some surveys might lead the reader to
believe that the sampling was carried out in a wholly objective manner.
Use may be made of a number of the factors that play an important role in
sample design, such as the size of sample, stratification (setting up more
or less homogeneous groups for purposes of sampling), elaborate methods
of estimation, and other devices, together, sometimes, with formulas that
presumably measure the reliability of the results. Still the design may be
such that the sample estimate is essentially dependent on judgment.

For example, one sometimes finds investigators using mail questionnaire
surveys with inadequate rates of response, justifying their findings with
statements that, for example, the questionnaires were widely distributed
and the sample estimates are based on returns from tens of thousands (or
perhaps millions) of cases. The law of averages may even be mentioned,
and unwarranted confidence placed in the sample results because the
sample was large. A little investigation may unearth the fact that the
addresses were drawn from inadequate (incomplete or seriously out-of-
date) mailing lists or that a relatively high proportion of those receiving
the mailed questionnaires did not respond.

The method [of mail canvass] was carried farthest by the Literary Digest,
which polled millions of citizens during the 1920’s and early 1930’s with its
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postcard ballots. . . . The record of the Digest was surprisingly good on
some points. In 1932, for example, it erred in predicting the vote for
Roosevelt by less than 1 percentage point. In 1936, as is well known, it
made a very large error of 19 percentage points in predicting Roosevelt’s
vote. Roughly 20 per cent of the ballots mailed out were returned to the
Literary Digest. From a mailing of ten million or more it received some
two million ballots, yet this huge mail vote was so far wrong that the poll
was abandoned.

There is general agreement that this mail-ballot method was subject to a
serious distortion because the better educated and more literate part of the
population, as well as those who were higher on the economic scale, tended
to return their ballots in greater proportion than those who were lower in
educational and economic status. In addition, the Digest obtained the
names of persons to whom they mailed the ballots from automobile regis-
tration lists, telephone directories, and similar sources. These sources
were biased upward in education and economic status.*

The first limitation of such sampling is the mailing list itself. It is
quite obvious that a sample, no matter how carefully drawn from a list,
can be no more representative than the list. The second limitation arises
when the proportion of nonresponse is high. It cannot be assumied, at
least without continual testing, that nonrespondents will have character-
istics similar to those of respondents. Nonrespondents may be of various
kinds—not at home, unwilling to answer, or otherwise different from
respondents. When the nonrespondents are an appreciable portion of the
total, one cannot place much confidence in the results unless by some means
he obtains information about the nonrespondents.

Remark. This does not mean that the mail suivey cannot be used
effectively. A proper use of mail surveys, combined with follow-up of
nonrespondents, is a very important technique (see Ch. 11, Sec. 3).

The inadequacy of the mailing lists and the high rate of nonresponse in
some types of mail surveys have given impetus to the so-called “field
survey” method. Here interviewers are sent to selected areas spread
throughout the country. The descriptions of the method often indicate
that a great deal of time and effort is spent in setting up “controls” to
insure obtaining a sample that is a ““good’ cross section of the population.
Very elaborate methods of estimation may be developed. With all this
care we often find sampling procedures in which the interviewer is per-
mitted considerable latitude in the selection of the sample. The inter-
viewer may be told, for example, to pick 10 persons whose ages are
between 18 and 25, who have completed high school, and who live in the

* F. F. Stephan, Ch. TI, p. 10, in Mosteller, Hyman, McCarthy, Marks,
Truman, dnd others, The Pre-election Polls of 1948, Social Science Research
Council, New York, 1949.
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northeast section of the city, but he is given latitude within these limita-
tions to exercise his discretion in-deciding whom to choose. As will be
indicated more fully below, the exercise of judgment in the final selection
of the individuals, even with great care imposed up to the very point of
selecting the sample, makes it impossible to evaluate objectively the
reliability of the sample results.

Another survey method which may also involve serious biases, and
whose reliability we are likewise unable to measure, is the selection of
typical persons, cities, or areas to represent the whole population. Even
if the persons or areas were “average” or ‘“typical” in the past, there is
no assurancc that they will remain “typical.” The fact that such a
purposive selection can be “validated” by comparing its results with those
of other surveys with respect to certain characteristics of the persons
involved does not insure that it will be adequate for these or some other
characteristics at a different date.

The types of surveys indicated above have two important limitations.
One is the difficulty of ascribing the proper emphasis to the various factors
affecting sample design. Some may overemphasize size of sample (as in
the mail questionnaire illustration); others may emphasize unduly the use
of effective “controls”; others may rely almost entirely on elaborate
estimating procedures. What is lacking is a theory that will indicate a
desirable allocation of resources to such factors of sample design. Some
guidance is required for evaluating the various factors entering into the
design and contributing to the sampling error, and for selecting the *“best™
one of a number of alternative designs. Without such guidance the
resources available for the survey may be dissipated in taking care of some
aspects of the sample design, whereas other factors equally or more
important may be disregarded.

The second limitation is the inability to measure the precision of the
sample results. For the methods described above, no objective basis is
known for measuring the amount of confidence which can be placed in
the sample estimates. True, we sometirmes find certain sampling formulas
applied, ostensibly measuring precision.* The use of these formulas is
often misleading because they involve assumptions that may be difficuit
to defend on two fundamental grounds:

(1) Formulas that measure sampling errors depend on knowledge of
the probability with which an individual is included in a sample.

(2) The formulas for sampling errors depend on the particular sample
design used.

* A common error is the indiscriminate use of pg/n as the variance of a pro-
portion, without regard to the manner in which the sample was selected.
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The sampling methods described above have one common character-
istic: the probability that an individual is included in the sample is
unknown. The probability will be unknown in any method in which a
probability method is not used in the ultimate selection of the sample.
Randomness is not insured, as we shall see later, unless specific steps are
taken to ¢ control the probabilities of se]ecuon of the e sample. When the
determination of the individuals to be included in a sample involves
personal judgment, one cannot have an objective measure of the reliability
of the sample results, because the various individuals may have differing
and unknown chances of being drawn. We shall refer to such methods
as_nonmeasurable or judgment designs. Conversely, we shall refer to

samples in which the probabilities of selection are known .as_random
samples or as probability samples. I

Tn the absence of known facts against which to check his sample
estimates, one may be prone to go along blithely without fear of contra-
diction. Facts sometimes become available subsequently, however,
against which a sample estimate may be verified. We often find adminis-
trators who do not know what to expect from a sample expressing amaze-
ment as to how close the sample estimates were to the “true” figures that
have become available. However, if one uses a design where the error
can be estimated from the sample results, he should be surprised only
when the results of the sample do not agree, within the expected sampling
error, with the results of a complete count taken with the same care as the
sample survey. In the absence of a census, the only real insurance that
we have of the adequacy of the sample is the careful use of probability
sampling methods and the measures of precision derived from the sample
results themselves.

Criteria used in this book. This book will consider primarily methods
of sample design for which the sampling error can be measured objectively,
i.e., probability samples. With probability designs it will be possible to:

(1) Compare the precision of different designs and of different modifi-
cations of the same design. '
(2) Evaluate objectively the precision of the sample results.

With probability samples it is possible to state an objective basis for
choosing from among the alternative methods of sampling and methods
of estimation. The criterion that we propose to use is to design the
sample so that it will yield the required precision at a minimum cost or,
conversely, so that at a fixed cost it will yield estimates of the character-
istics desired with the maximum precision possible. This implies that we:

(1) Use samplmg methods for which one can get from the sample itself




10 SURVEY OF SAMPLING PRINCIPLES Ch. 1

(2) Use only simple, straightforward procedures, such that it is feasible
to carry them through in practice and such that the execution of
these procedures will meet the necessary time schedules and other
administrative restrictions.

(3) Use, from among the alternative methods that meet the first two
criteria, a method that in addition yields results of maximum
reliability per unit of cost.

(4) By means ”gt:_ adequate supervision and control, actually carry out
the survey in accordance with the spécifications that have been
prescribed.  When this is accomplished, close conformance will be
assured between theory and practice.

‘Although there is not now theory to guide one uniquely to the best
design among all the possible ones, the available theory is an exceedingly
useful guide in the choice of an effective method.

3. Precision of sample results. In refernng to vamplmg error, o1 to the

duce fron%]e the results which would be obtained if we should take
a complete count or 4 Cefisus; using the same methods of measurement,
questionnaire, interview procedures, type of enumerators, supervision, etc.
The nonsampling errors that arise from the method of measurement or
interviewing, the design of the questionnaire, and other sources of errors
in surveys that are present in a complete census as well as in a sample are
considered in Chapter 2. These nonsampling errors may be equally as
important as sampling errors, or perhaps more so, depending upon the
circumstances. Here, however, we are considering only the question of
predicting from a sample what would have been shown by a complete
count, using essentially the same definitions and procedures. The differ-
ence between a sample result and the result from a complete count taken
under the same conditions is measured by what we will refer to as the
precision ot the reliability of the sample result. The difference between the
sample résult dnd the t{gg“yalue we call the accuracy of the sample survey '
It is the accuracy of a survey in which we are chiefly interested; it is the
precision which we are able to measure in most instances. We strive to
design the survey so that the combined effect of the two Will be minimized.
With probability sampling methods one can get away completely from
dependence upon judgment for determining precision. Under these
circumstances, and with reasonably large samples, the precision of the
results from the sample can be measured from the sample itself. Outer
bounds on the possible sampling errors can be set, such that the proba-
bility of exceeding these bounds is very small. Generally, the sample will
yield results with much smaller errors than these outer bounds indicate.




Sec. 4 MEANING OF “SIMPLE RANDOM SAMPLING” 11

We have already indicated, but wish to emphasize, that a sample design
yields a probability sample when the probability of inclusion in the sample
is known and is not zero for every one of the individuals or elementary
units in the population. As will become clear later, there are many ways
in which personal judgment, when it is good, can be utilized effectively
in improving sample design, provided this personal judgment is not
exercised in the final selection of the individuals or elements that are to
be included in the sample. 1If it is, the investigator will be subject to the
possible criticism that he has introduced more or less serious biases* into
the results, biases that may reflect his own predilections rather than the
real facts in the population being sampled.

B. BASIC PRINCIPLES ILLUSTRATED WITH SIMPLE
RANDOM SAMPLING '

4. Meaning of ‘‘simple random sampling.”” Before beginning a dis-
cussion of the principles to be followed in actual practical design, we shall
illustrate the fundamental character of random sampling through a
discussion of what we shall call simple random sampling. We shall first
define simple random sampling; then we shall try to explain how it works
and how it can produce results whose precision can be measured. It will
be noted, in the treatment of more complicated sampling problems which
are taken up after this exposition of the fundamentals of simple random
sampling, and throughout this book, that all the principles of sampling
that are introduced, over and above those included in the description of
simple random sampling, are introduced in order to increase efficiency,
and that such further principles involve various ways of making more
effective use of available knowledge and resources, so as to get the
maximum return for the money expended.

To simplify the discussion it is desirable to introduce some terminology.
Sample surveys cover a variety of fields. The purpose of a survey might
be to estimate the proportion of persons that use a product, or to estimate
the average number of acres per farm or the total acres or crop land, say
for the state of Iowa, or to estimate the proportion of punch cards that
are in error. The individuals whose characteristics are to be measured in
the analyses are called <e72?n?71tary units;> and the aggregate of the units,
i.e., the entire group whose characterlstlcs are to be estimated, is termed
either the #niverse o or tﬁ)upuiut:nn » Thus, if a sample of farms is drawn

* See Sec. 9 of this chapter for the meaning of the word bias, as used in
mathematical statistics.
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to estimate the average acres of crop land per farm in the United States,
the totality of all farms of the United States is the population, and
each farm is an elementary unit of this population. As another illus-
tration, if a sample of punch cards is drawn from all the cards punched
on a particular project during the course of a month, the totality of all
cards punched during that month is the population, and each punch card
is an element of the population.

By the term simple random sample of n elements we shall refer to a
sample selected from a population in such a manner that each combination
of n elements has the same chance or probability of being selected as every
other combination. Whenever the method of selecting the sample is such
that each combination of # elements does not have the same chance of
being selected, the method of selection is not simple random sampling.
Thus, the term simple random sampling is not applied to such methods of
sampling as stratified sampling or such methods as taking every kth
individual from a list (systematic sampling) or selecting a set of blocks in
each city and including in the sample a subsample of the individuals
in the selected blocks (cluster sampling), etc. Such methods of sampling
(which are someiimes referred to as restricted sampling methods) will be
discussed later.

Simple random sampling is not used frequently in practice, but because
of its importance in sampling theory, its simplicity, and its close approxi-
mation to some types of sample design that are widely utilized in practice,
it is discussed in this chapter and developed more fully in Chapter 4 to
illustrate some of the fundamental principles of sampling.

For the discussion of simple random sampling let us set up a hypo-
thetical population consisting of only 12 individuals (Table 1), and assume
that we wish to estimate their average (mean) income from a sample.
We are using a very small population here because the principles involved
can be observed more readily for a small population. They apply equally
well to samples from populations of any size, as will be seen.

After considering how to draw a simple random sample from this
population, we shall show how to prepare an estimate from the sample
and how we may increase the precision of the sample estimate by in-
creasing the size of sample. Then we shall show how these estimates
can vary and how we can obtain a measure of the precision of a sample
estimate.

5. Selection of a simple random sample. To draw a simple random
sample from this population we might proceed in a number of ways.
For example, we might get 12 equal-sized smooth chips each having 1 of
the 12 letters, 4, B, C, , L designated on it, no 2 chips having the
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same letter. Each person in the population above would be represented
by the 1 chip having the same letter designation.

Now suppose that the chips were placed in a bowl and mixed thoroughly
and 2 were drawn in such a way that the predilections of the person

Table 1. Incomes of a hypothetical population of 12 individuals

. Income
Indmdual (dollars)

1,300
6,300
3,100
2,000
3,600
2,200
1,800
2,700
1,500

900
4,800
1,900

MRS~ QTMmTAWA

Total income 32,100
Average income 2,675

making the drawings did not affect the selections. Suppose that the chips
C and K happened to be drawn. It would follow that the sample consist-
ing of individuals C and K had been obtained by simple random sampling.
There are 66 possible combinations of 2 chips which could be drawn.*
If the process is repeated a large number of times, and if counts are made
of the number of times each of the 66 possible combinations occurs, the
proportion of times that 4B occurred would be, for all practical purposes,
the same as that for BC, or any other of the 66 combinations. Table 2
gives a listing of all the possible simple random samples of 2 elements
from the population of Table 1. All these possible samples have the
same chance of being drawn with simple random sampling. Whichever
of the 66 possible samples is actually selected to be the sample we call a
simple random sample of size 2.

There are difficulties in the use of the method above of drawing a
simple random sample: the mixing must be much more persistent than

* An alternative way of getting a simple random sample of 2 individuals
would be to place 66 chips in the bowl, 1 for each of the 66 possible combinations
of 2 persons, and draw 1 of the 66 chips.

BOYT 3impawe
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most people imagine; the chips may not be the same size or weight; a
number of other kinds of inequalities may affect the drawing, with the
result that every combination does not have the same chance of being
drawn. Moreover, if the population is of any considerable size, the job

Table 2. All possible samples of 2 drawn from the population
of individuals given in Table 1

Individ- Average Individ- Average Individ- Average
uals in income uals in income uals in income
sample (dollars) sample (dollars) sample (dollars)
AB 3800 CcD 2550 FG 2000
AC 2200 CE 3350 FH 2450
AD 1650 CF 2650 Fi 1850
AE 2450 CcG 2450 FJ 1550
AF 1750 CH 2900 FK 3500
AG 1550 CcI 2300 FL 2050
AH 2000 cJ 2000
Al 1400 CK 3950 GH 2250
AJ 1100 CL 2500 Gl 1650
AK 3050 GJ 1350
AL 1600 DFE 2800 GK 3300
DF 2100 GL 1850
BC 4700 DG 1900
BD 4150 DH 2350 HI 2100
BE 4950 DI 1750 HJ 1800
BF 4250 DJ 1450 HK 3750
BG 4050 DK 3400 HL 2300
BH 4500 DL 1950
BI 3900 1y 1200
BJ 3600 EF 2900 IK 3150
BK 5550 EG 2700 IL 1700
BI 4100 EH 3150
EI 2550 JK 2850
EJ 2250 JL 1400
EK 4200
EL 2750 KL 3350

of getting a simple random sample in the manner described above may
be very difficult. A simpler and more satisfactory method is to use a
table of random numbers.*

If one wished to get a simple random sample of 2 persons by using such
a table, he could first assign the numbers from 1 to 12 to the 12 persons
in the population (arranging the population in any convenient order).

* For more complete details on how random numbers are defined and the
description and use of a table of random numbers, see Ch. 4, Sec. 5.
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He could, for example, number the individuals in the order in which they
are listed in Table 1. Then he could obtain 2 random numbers between
1 and 12 from a table of random numbers. Suppose that these numbers
turned out to be 03 and 11. These would indicate that individuals C
and K are to be included in the sample. This procedure insures that
every possible combination has equal probability of being selected. The
random numbers accomplish the equivalent of thorough mixing.

6. Probability of selection is known. If we follow the rules indicated
above, we know the probability that each individual has of being selected
in samples of any size, i.e., the proportion of samples in which he will be
included. In a sample of 1 element drawn from the population according
to these rules, each of the 12 elements would have the same chance of
getting into the sample. Hence, the probability of any individual being
selected is 5. Suppose now that we wish to know the probability that
A will be included in a sample of 2. To determine this probability, note
from Table 2 that there are exactly 66 combinations of 2 individuals and
that each of these has the same chance of being drawn. Moreover, we
note that A occurs in 11 of the possible combinations. Hence the prob-
ability of drawing A is % or . In a similar way, one may show that the
probability is the same for each of the remaining persons in the population.

For samples of 3, a count of the number (55) of samples in which 4 or
any other specified individual occurs, divided by the total number (220)
of possible samples, yields ¥%% or 1 as the probability of any specified
person being selected.

The probability that an individual will be drawn in a simple random
sample of any size turns out to be simply n/N, where N is the number of
individuals in the population and » is the number drawn in the sample.

Thus, simple random sampling is a probability design. The process of
selection is such that the probability of any individual being drawn is
known. This method of selection differs markedly from one in which an
interviewer stands on a street corner and picks the first » individuals who
pass. In simple random sampling, one must take positive steps such as
those indicated above to insure that each individual has the same
probability.

7. The estimate from the sample. The average income of the persons
in the sample is an estimate of the average income of the population. 1If,
in drawing a sample of 2, we happened to have chosen the sample con-
sisting of C and K, our estimate of the average income would be $3950.
In practice, we wish to know whether such a sample estimate can be used
with confidence; i.e., we want to know how accurate an estimate it is of
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the result that would have been obtained from a complete census covering
every individual in the population.

In order to determine the precision of an estimate based on one par-
ticular sample, it will be helpful to examine all the possible samples of
specified size that can be drawn from the population under consideration.
Table 2 (p. 14), in addition to listing the possible samples, gives the
estimate of average income made from each.

By examining all possible samples of a given size we can see what kinds
of results are obtained, on the average, from a given sampling procedure.
From this examination, we may infer what error may be expected, on the
average, for an estimate based on a single sample, and what is a reasonable
maximum for the error of a single sample. From such knowledge, we
know how much confidence to place in an estimate from a single sample
that is a random selection from among all the possible samples.

8. The expected value of a sample estimate. The average of the 66
results listed in Table 2 is $2675, which is exactly equal to the average
income of the population. Thus, we see that, on the average, the sample
estimate is exactly equal to the population average that is being estimated.
This will be true for a sample mean based on simple random sampling no
matter what size of sample is used and no matter from what population
we are sampling.

The average of the estimates over all possible samples plays an important
role in samplmg and is referred to as the expected value of a sample
estimate. For example, we may refer to the expected value of the
estimated average income, and this will mean the arithmetic average of the
sample estimates over all possible samples. In other words, the expected
value of an estimate is the sum of the results from all possible samples
divided by the number of possible samples if the possible samples are
equally likely to be selected.*

In the illustration above, the expected value of the estimate of average
income from samples of 2 is merely equal to the aggregate value over all
66 samples of the estimated averages given in Table 2, $176,550, divided
by 66.

9. Bias due to sampling. Perhaps no one popular word that has been
given an exact definition in mathematical statistics has created more of a

* If, however, the possible samples are selected with known probabilities but
are not equally likely, then the expected value is a weighted average of the
sample estimates, and the weight to be used for each sample is its probability
of selection. See Vol. II, Ch. 3, Sec. 2, for the definition of mathematical

expectation.
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language barrier between the technician and the layman than the word
bias. The primary confusion arises from the distinction between bias and
measures of precision. The bias is simply equal to the difference between
the expected value of the ¢stimate and the true value being estimated.
Whenever the blas is 0 the estimate is said to T be unb:aved For example,
in the lustration above, the expected Value of the estimate of average
income is $2675, which is identically equal to the population average
income. Therefore, the estimate of average income based on samples of
2 is an unbiased estimate of the average income in the population. Tt
will be shown later that the sample average is an unbiased estimate of the
mean with simple random sampling, no matter what the size of sample is
and no matter what the nature of the population is from which the sample
is drawn.

To illustrate one way that a bias may arise, assume that a sample of 2
is drawn from the bowl of chips described in Sec. 5.  Assume further that
chips G, K, and L somehow become glued to the bottom of the bow! and
have no chance of being drawn. It follows then that the sample of 2 can
be drawn only from the 9 free chips, so that there are 36 possible samples
of 2. The average over all these possible samples turns out to be $2622,
and therefore the bias is equal to $2675 — $2622 = $53.

The type of bias indicated above might arise, for example, if one were
choosing for his sample persons found at home during the daytime, and
if G, K, and L were not at home during the day, whereas the remaining
persons in the population were at home alf the time. If a sample of 2
were drawn from those at home during the day, the sample would provide
a biased estimate of the average income for the 12 individuals, although
an unbiased estimate for the 9.

When an estimate is unbiased, it does not follow that it is without error.
The estimate from the particular sample we happen to draw may differ
greatly from the true value (the sample estimate based on C and X differed
by $1275 from the true value) and still the estimate is unbiased (i.e., that
type of estimate averaged over all possible simple random samples is equal
to the true population average).

As we shall see later in this chapter, it is actually not important that
an estimate be unbiased provided the bias, if any, is very small. In many
situations, an estimation procedure with a very small bias may be con-
siderably more reliable than the best available unbiased estimating
procedure.

10. Precision of sample estimates increases with increasing size of
sample: consistent estimates. If, for a given size of sample, practically
every possible sample estimate of average income is close to the average
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income in the population, then we should not be taking much of a gamble
if we depended on one sample selected at random. If, however, a sub-
stantial proportion of the samples have average incomes very different
from the average income of the population, we should be taking a big
gamble in depending on a random selection of one sample. We shall now
illustrate how, as the size of sample is increased, the estimates will cluster
closer around the average being estimated.

As indicated earlier, when the size of sample is 2, there are 66 possible
samples and hence 66 possible estimates of average income. Similarly,
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FiG. 1. Distribution of estimates of average income from samples of various
sizes drawn from population given in Table 1.

if samples of 3, 4, 5, 6, etc., are drawn, all possible samples of each size
could be listed as was done for samples of 2 in Table 2 and the average
incomes could be estimated from each. The actual results of all possible
samples of sizes 3-7, drawn from the illustrative population of 12 indivi-
duals, have been listed and the averages computed and summarized in
Table 3 and Fig. 1. It is obvious from a glance at this table and figure
that the results cluster closer about the average of all possible samples as
the size of sample increases. Thus, the proportion of sample results
falling between $2000 and $3400 is 47 per cent for samples of 2, is 5§ per
cent for samples of 3, is 69 per cent for samples of 4, is 78 per cent for
samples of 5, is 87 per cent for samples of 6, and is 94 per cent for samples
of 7. Similarly, for any interval about the true average, the proportion
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of possible sample results that would fall in the interval would tend to
increase as the sample size increases.

By taking samples large enough, the proportion falling within a
designated interval about the expected value can be made as close to 100
per cent as may be desired. It can be seen from the chart that if it were
desired that at least 95 per cent, say, of the sample results should fall

Table 3. All p(.)ssible estimates of average income from samples of
various sizes drawn from population of individuals given in Table 1

. Number of samples having indicated estimate
Average income of average income with sample of size n
estimated from sample
(dollars) n=1\n=2n-=3\n=4ln=5\n=06n=17
800- 999 1
10001199 1
1200-1399 1 2 3 1
1400-1599 1 5 10 11 7 1
1600-1799 6 15 25 25 16 6
1800-1999 2 5 20 42 55 50 27
2000-2199 1 6 22 50 78 84 61
2200-2399 1 6 22 52 90 109 98
2400--2599 6 19 52 101 139 136
2600- 2799 1 3| 17 49 108 151 150
2800-2999 4 16 57 101 133 130
3000-3199 1 3 16 46 81 107 | 108
3200-3399 3 16 38 61 79 62
3400-3599 2 13 26 46 43 14
3600--3799 1 2 10 21 27 12
3800-3999 3 7 11 10
4000-4199 3 4 10 2
4200-4399 2 6 3
4400-4599 1 1 1
4600-4799 . 1 2
4800-4999 1 1 1
5000--5199
5200-5399
54005599 1
5600~-5799
5800-5999
6000-6199
6200-6399 1
Number of samples 12 66 220 | 495 7921 924 792
Average (expected
value) (dotllars) 2675 | 2675 | 2675 | 2675 | 2675 | 2675 | 2675
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between $900 and $4500, a sample of only 2 would be necessary. On
the other hand, if it were desired that 95 per cent of the sample results
should fall in the smaller interval $2000-3400, a sample of 7 would nearly
serve the purpose. Thus, if we draw a sample of 7 at random from this
population and use the average income from the sample as an estimate of
the true figure, we know we shall be within $700 of the true average about
95 per cent of the time.

This suggests, as is in fact the case, that we can achieve any desired
precision by taking a large enough sample. Moreover, with a sample of
a given size we can interpret the precision of the sample if we know the
chances (or probability) that the sample estimate will lie within various
distances from the result that would be obtained from a complete
enumeration.

The increasing concentration of sample estimates around the value
being estimated, with increased size of sample, illustrates consistency, a
quality possessed by many types of sample estimates. We say that an
estimate from a sample is a consistent estimate if the proportion of sample
estimates that differ from the value being estimated by less than any
specified small amount approaches 100 per cent as the size of sample is
increased.* This means that if the sample size is sufficiently large one
does not take a serious risk in using an estimate made from a sample
drawn at random. An important characteristic of random sampling is
that consistent estimates can be made from random samples.

Remark. It may appear to the reader that the increase in concentration
of sample estimates around the expected value shown in Table 3 and Fig. 1
arises from the fact that here, as we increase the size of the sample, we are
taking a high percentage of the population. Actually, as will be seen
shortly, the same kind of results will be observed when the size of sample

is increased but only a small proportion of the population is included in
the sample (see Sec. 12).

11. The standard deviation and variance of sample estimates. We have
illustrated how one can determine how much confidence to place in a
particular sample estimate by examining all possible estimates that might
have resulted from the sampling procedure used. We cannot, of course,
list all possible samples in a real situation; we must depend upon a single
sample. Therefore, it is necessary to find some measure of the extent to
which the sample results differ from the value being estimated; and this
measurement, if it is to be useful, must be one that can be determined from
the sample itself. The standard deviation is such a measure. We shall

* For a more precise definition of consistency, with special reference to finite
populations, see Vol. II, Ch. 3, Sec. 7b.
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illustrate the relation of the standard deviation to all possible estimates
from samples of a given size, and show how it provides a measure of the
precision of a sample estimate. Then we shall see that it can be computed
from the original population without listing all possible samples, and,
finally, that it can be estimated from a single sample.

The square of the standard deviation is the variance. The variance for
the original population is equal to

X — X2+ (Xo— X+ (X5 — X2+ - - -+ (Xy— X)

2

g° = N
where X3, X,, - - -, Xy are the values associated with the N elementary
units in the population, and X = (X; + X, -+« -« 4 Xy)/N is the

average of the values. Similarly, the variance of the possible estimates
for a given size of sample is the average value, over all possible samples,
of the squares of the deviations of the sample estimates from their expected
value. Thus, the variance of any variable is the expected value of the
square of the individual deviations of that variable from the expected
value of that variable. The variance is ordinarily indicated by the symbol
¢%, and a subscript may be added to indicate the variable to which it
relates. Thus, if we let Z stand for a sample mean based on a particular
sample, o2 is the variance of sample means for all possible samples of the
same kind and size, and o is the standard deviation or standard error.*
The symbol 6% without a subscript designates the variance of the original
population.

For samples of 1, the 12 possible deviations from the average income
($2675) are’

— 1375 — 875
3625 - 25
425 — 1175

— 675 — 1775
925 2125

— 475 — 775

and the average of the squares of these deviations is

27,162,500

= 2,263
T ,263,542

Thus, the standard deviation for samples of 1 is V2,263,542 = $1505.
This is the same as the standard deviation in the original population.

* Sometimes the term standard deviation is applied only to the original
population, and the term standard error is applied to the distribution of sample
estimates. We shall use the terms interchangeably.
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If we compute the standard deviation of the estimated means given in
Table 2, Sec. 5, for all possible samples of 2, it turns out to be $1015.
The values of the standard deviation for estimated means based on
samples of 1, 2, 3, 4, 5, 6, and 7 are given in Table 4.

Table 4. Standard deviation of estimate of average income
for various sample sizes

Sample of O
size n (dollars)

1505
1015
786
642
537
454
383

N W=

The standard deviation thus computed is a measure of the extent to
which the sample estimates differ from their expected or average value.
Thus, from Table 3, Sec. 10, it can be seen that as the sample size becomes
larger the sample estimates differ less and less from the expected value.
At the same time the standard deviation becomes smaller and smaller, as
is shown in Table4. When the standard deviation of the sample estimates
is small, most of the sample estimates are close to the average of all
sample estimates; and when it is large the estimates are more widely
spread It can be shown that no matter what the populatio~ from which
one is sampling, it is impossible for more than ¢ of the possible sample
estimates to differ from the average of all estimates by more than 3 times
the standard deviation of the sample estimates.*

In practical sampling problems where a reasonably large sample is used,
the per cent of sample results that will differ from the average of all
sample estimates by more than 3 times the standard deviation is very
much less than 4. It is in this connection that the normal distribution
plays an exceedingly important role. This is the familiar bell-shaped
distribution which has the property (among others) that about 95 per cent
of the results differ from the average by less than twice the standard
deviation. It also has the property that about 99.7 per cent of the results
differ from the average by less than 3 times the standard deviation and

* This statement is an immediate consequence of the welt-known Tchebycheff
inequality. See Vol. II, Ch. 3, Sec. 7, Theorem 18.
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about 68 per cent differ from the average by less than I standard deviation.*
Although, in practical problems, the distribution of sample estimates over
all possible samples is rarely, if ever, exactly normal, the approximation
to a normal distribution is ordinarily very close for estimates based on
samples that are moderately large, say 100 or more for populations which
do not have exceedingly extreme or unusual items. This is true even
though the original distribution from which the sample is drawn is far
from normal. Thus, in practice, if we have a moderately large sample,
we are often safe in assuming that the chance that our sample estimate, 7,
will differ from its expected value by more than 3o, will be less than 1 per
cent, and we can be reasonably confident that the error in our estimate
will be less than 30, (o; means here the standard deviation of the estimate).
Similarly, there will be only about 1 chance in 20 that the error in our
estimate will exceed 20;, and about 1 chance in 3 that it will exceed lo.

The way in which the distribution of a sample estimate approaches the
normal distribution as the size of sample is increased is illustrated by the
example we have been following through. Note from Table 3 and Fig. 1
(pp. 19 and 18) that the original population used for the illustration is
quite skewed; i.e., the population is not symmetric, but has a “long tail”
to the right. With samples of 2 the skewness is still quite marked, but
with samples of 7 the distribution of the estimated sample means already
has become nearly symmetrical.

We find by examining the distributions of sample means for various
sizes of samples, as given in Table 3 (p. 19), in relation to the corresponding
standard deviations from Table 4, that even for the very small sizes of
samples shown, and sampling from the fairly skewed population given in
Table 1 (p. 13), one would not go very far astray by assuming that the
probabilities associated with the normal distribution are applicable to
samples of any size from this population. Actually, for each size of
sample, the proportions of samples differing from the population average
by more than 1, 2, and 3 times o, are as shown in Table 5. Tt can be seen
that for samples of size 2 or more the proportions observed approximate
roughly the normal distribution proportions.

We have illustrated for a very simple case what will be universally true
—that the standard deviation of a distribution of sample estimates, if it
is known, provides a measure of the precision of an estimate based on a
single sample. Moreover, for samples of moderate size (say samples of

* The normal distribution is discussed in many texts; see, for example,
James G. Smith and Acheson J. Duncan, Fundamentals of the Theory of Statistics,
McGraw-Hill Book Co., New York, 1945, Vol. T, pp. 307-320, and also Paul G.
Hoel, Introduction to Mathematical Statistics, John Wiley & Sons, New York,
1947, pp. 28-35.
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more than 100 for many populations from which one may be sampling,
i.e., for populations which do not have exceedingly extreme or unusual
items) it usually provides a fairly precise measure.

In this illustration we have defined intervals X — ko, to X + ko, and
have ascertained the proportion of the sample estimates included in such
intervals determined by assigning different values to £. The particular
values k = 1, 2, and 3 were used, although other values could have
illustrated the point just as well.

Table 5. Concentration of sample results around population mean

Per cent of sample results in Table 3 differing
Sample of size from the average of all samples by
n

Less than oz Less than 20;  Less than 3o;

1 75 92 100
2 64 97 100
3 65 96 100
4 64 97 100
5 65 97 100
6 64 97 100
7 65 97 100
Normal distribution 68 95 99.7

If we computed, instead, intervals of ko, above and below each sample
mean, such intervals, # — ko, to & 4 ko;, would have encompassed the
true mean in exactly the same proportion of cases as the intervals X £ ko,
included the sample means. ,

Let us suppose now that we have drawn a simple random sample from
a population and have computed the mean from that sample. Suppose,
furthermore, that we know o, the standard deviation of means from all
possible samples of this size. How can we infer the precision of this
particular sample result? If we set an interval based on o around the
sample estimate, we can be fairly confident that & 4- o, will give an
interval such that one will be correct about two-thirds of the time if he
assumes that the true mean will be within that interval. Similarly,
Z £ 20; will give an interval for which the assumption will be correct
95 per cent of the time, and & 4 3o, more than 99 per cent of the time.

Thus, with a mean estimated from a sample and knowledge of the
standard deviation of all sample means, one can evaluate the precision of
the estimates. The precision is determined by and measured in terms of
0%, the standard deviation of the sample estimate.



Sec. 11 DEVIATION OF SAMPLE ESTIMATES 25

Our next problem is to see how to compute o, the standard deviation
of the sample means for a sample of size n, without obtaining the estimates
from all possible samples of n. Obviously, if one were dealing with even
a moderately large population, it would not be feasible, even if he knew
the entire population from which he was sampling, to ascertain the
estimated average income for each possible sample by listing all samples
and obtaining the average income for each. With the little illustrative
population of 12 individuals there were 792 different possible samples of 7
that could be drawn, and to list all of these is a good-sized job. But if
one were considering, say, samples of only 100 from a population of
10,000, the number of possible samples would be astronomical. More-
over, if one were in a position to list all possible samples, there would be
no need to estimate X because it would be known.

The fact is, however, that it is not necessary to list all possible samples
for the purpose of computing the standard deviation. From the theory
of sampling we find that, for samples of » elements drawn with simple
random sampling from a population of N elements, the standard deviation
of all possible sample means is given by the formula:

J N—n

=N N1’

where o represents the standard deviation of the sample means with
samples of size n, and o represents the standard deviation of the original
population (i.e., the standard deviation of the means of samples of size 1).
This formula holds for simple random samples of any size and drawn from

any kind or size of population. In the illustrative population, o = $1505
and N is equal to 12; so for samples of 2,

12—2
= ] ——=—1505 = $10
7, A/(12_ g 1505 = $1015

which is the number given in Table 4. .

Thus, if we know the standard deviation of the population from which
we are sampling we can readily ascertain the standard deviation of a
mean estimated from any given size of simple fandom sample.

Exercise 11.1. The reader should verify the accuracy of the formula by
trying it for other sample sizes and for other small populations, listing ail
possible samples and computing the variance from the samples listed.

We have still one more problem and an important one. We have
indicated that if we know the standard deviation of a population we can
measure accurately the precision of an estimate based on a sample from
that population. We shall not ordinarily know the standard deviation of
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a characteristic of the population, if we are drawing a sample to estimate
the mean. However, just as we can obtain an estimate of a mean from
a sample, we can also obtain an estimate of the standard deviation from
the sample; and thus, with a moderately large sample, we can obtain not
only the desired estimates from the sample but also measures of their
precision. The measures of precision that are derived from the sample
itself can be made as reliable as desired, since their precision again depends
on the size of the sample. The evaluation of precision from the sample
itself, with simple random sampling, is discussed in Ch. 4, Sec. 12-15.

12. Further illustrations of the principles already presented. All the
illustrative results presented up to now have been based on very small
samples drawn from a very small population, and at the same time on
samples that constitute a fairly large proportion of that population. The
sizes, both of the samples we have used for illustration and of the popu-
lation from which the samples were drawn, are too small to be useful for
practical sampling purposes. The succeeding two illustrations indicate
that the same principles apply when we are drawing samples from a very
large population.

Ilustration with a larger population. Let us consider briefly a modifica-
tion of the illustration already presented. In that illustration we assumed
a population of 12 individuals. Now let us consider a population that
has exactly the same form but which has 12,000,000 individuals in it
instead of 12. Let 1,000,000 receive each of the incomes shown in
Table 1 (p. 13).

Note that the assumption that many individuals have the same income
has no effect on the argument of this illustration, except to make the com-
putations easier. Exactly the same type of results would have been
obtained had many varying income values been assumed.

With this size of population it would be an impossible task to list all
possible samples of even moderate size. The frequencies for the 1728
samples of 3 summarized in Table 6 are proportionate to what would be
obtained by listing all possible samples of 3. To obtain approximate
distributions for the larger sizes of sample, 2000 simple random samples
of size 6 were drawn; these samples were consolidated at random to get
1000 samples of 12, and 500 samples of 24. The distributions of the
means estimated from these samples are summarized in Table 6 and in
Fig. 2.

It is seen from the table and figure that with increasing size of sample
the sample estimates cluster more closely around the value being estimated,
as occurred in the earlier illustration, and the spread of the samples in
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Table 6. Estimates of average income from samples of various sizes
drawn from a population of 12,000,000 individuals with 1,000,000
having each of the incomes given in Table 1

i}

Average income
estimated from sample
(dollars)

Number of samples having indicated estimate
of average income with sample of size n

n=3 n==6 n=12 n=724
800- 999 1

1000-1199 9 1
1200-1399 37 3
1400-1599 82 35
1600-1799 132 81 9
1800-1999 161 140 28 4
2000-2199 163 193 81 15
2200-2399 163 213 140 68
2400-2599 147 248 165 98
2600-2799 124 248 190 136
2800-2999 123 219 141 95
3000-3199 118 206 108 53
3200-3399 108 144 75 22
3400-3599 93 99 37 8
3600-3799 70 58 13 1
3800-3999 57 48 10
4000-4199 33 23 1
4200-4399 39 19 2
4400-4599 15 9
4600-4799 18 9
4800-4999 19 1
5000--5199 3 3
5200-5399 6
5400-5599 3
5600-5799
5800-5999 3
6000-6199
6200-6399 1

Total 1728 2000 1000 500

each case is the amount that would be expected from the formula given
carlier. (Note that o is still equal to $1505 as it was before, but that ¥
is now 12,000,000 instead of 12.) The closer approach to a normal
distribution with increasing size of sample is suggested by Fig. 2; Table 7
compares the proportions of samples exceeding lo;, 20; and 3o0; with

proportions expected from a normal distribution.

Again, the reasonably

close approximation of the results to the normal distribution is apparent.
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Illustration with a more extreme population. Both the illustrations
presented thus far have involved drawing samples from a skewed popula-
tion, but not from one containing any very extreme incomes. It will be
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FiG. 2. Distribution of estimates of average income from samples of various sizes
drawn from a population of 12,000,000 individuals, with 1,000,000 having each of the
incomes given in Table 1.

Table 7. Concentration of sample results around population average—
enlarged population

Per cent of sample results in Table 6 differing
Sample of size from the average of all samples by
I

Less thano; Less than 20; Less than 305

3 67.7 96.2 99.4
6 66.6 95.2 99.3
12 68.3 95.8 99.7
24 68.2 95.2 99.8

Normal distribution 68.3 95.5 99.7




Table 8. Estimates for a highly skewed population of 12,000,000 indivgdualﬁ;

Average income Number of samples having indicated estimate of
estimated from sample average income with sample of size »
(dollars) n—3 n=6 n=12 | n-24
800- 1,199 10 1
1,200~ 1,599 119 38
1,600- 1,999 293 221 36 2
2,000 2,399 326 374 140 32
2,400~ 2,799 268 320 107 24
2,800~ 3,199 181 147 36 67
3,200~ 3,599 87 37 98 65
3,600- 3,999 34 11 202 93
4,000~ 4,399 9 3 78 58
4,400- 4,799 3 70 23 75
4,800- 5,199 1 212 62 30
5,200~ 5,599 245 114 28
5,600 5,999 111 30 11
6,000~ 6,399 27 7 11
6,400~ 6,799 7 24
6,800~ 7,199 28 4
7,200~ 7,599 24 5 3
7,600- 7,999 105 40 1
8,000- 8,399 114 53 5
8,400~ 8,799 66 38 3
8,800~ 9,199 39 17 2
9,200~ 9,599 12 3
9,600- 9,999 3 1
10,000-10,399
10,400-10,799 3
10,800-11,199 7
11,200-11,599 7
11,600-11,999
12,000-12,399 2
12,400-12,799
12,800-13,199
13,200-13,599
13,600-13,999 15
14,000-14,399 12 i
14,400-14,799 3
14,800-15,199 3
15,200-15,599
15,600-15,999
16,000-16,399
16,400-16,799
16,800-17,199
17,200-17,599
17,600-17,999
18,000-18,399
18,400-18,799
18,800-19,199
19,200-19,599
19,600-19,999
20,000-20,399 1
Total 1728 2000 1000 500

29
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of interest to examine what happens with the same population of
12,000,000 individuals as in the last illustration, but with the $6300 income
changed to $20,000 income. In this instance, 15 of the population
accounts for about 44 per cent of the total income. In this illustration,
again, the results presented are based on the samples used in the preceding
illustration.

The distributions of the means estimated from these samples are
summarized in Table 8 and Fig. 3. From Fig. 3 it is seen that the samples
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FiG. 3. Distribution of estimates of average income from samples' of sizen =3
and n = 24 for a highly skewed population of 12,000,000 individuals.

from this population are much farther from approximating the normal
distribution than are samples of the same size from the two prior illustra-
tions. But in this illustration, as in the others, the results coincide with
what theory indicates would happen—the estimates appear to be (and in
fact are) clustered more and more closely about the true mean of the
population ($3817) as the sample size increases.

Notice that for samples of 6 and 12, even though the distribution is not
unimodal, our use of the normal curve for interpreting the precision of
the results is reasonably satisfactory, with not more than 1 per cent of
the estimates exceeding 3o, at these sample sizes. For larger samples, as
is seen in Table 9, the agreement is still better; and for samples of 24
and larger the bimodal character of the distribution has disappeared.
Although the approach to normality is slower with this more extreme
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population, it can be seen that even for relatively small samples the inter-
pretation of the standard deviations on the basis of the normal curve
provides a useful guide to the reliability of the estimate.

In these illustrations we have been dealing, for simplicity, with sample
sizes that are smaller than would ordinarily be used or useful in practice.
To achieve the higher precision that we usually desire from samples, we
have only to make the samples big enough. Moreover, whereas we have

Table 9. Concentration of sample results for a more extreme population

Per cent of sample results in Table 8 differing
Sample of size from the average of all samples by

n

Less than oy Less than 20; Less than 30;

3 77.0 97.9 98.0
6 83.2 92.6 99.0
12 62.1 95.3 99.0
24 72.6 95.8 99.6

Normal distribution 68.3 95.5 99.7

been illustrating certain fundamental principles with simple random
sampling, we shall ordinarily in practice use other sampling methods.
The fundamentals of these other methods are, however, the same as those
illustrated with simple random sampling, but are applied in somewhat
more complex situations.

The principles that we have presented have operated as we should
expect from the sampling theory, which will be developed in subsequent
chapters. The reader may find it helpful to construct other illustrations.
The formula of Sec. 11 will be found to apply in every instance, without
exception, where we have simple random sampling. Thus, we have
indicated a sample design that produces results of measurable precision.

13. Risks taken by depending on sample results. One should recognize
the meaning of “‘taking a risk,” in the action one takes on the basis of the
sample estimate. The chance of an individual being killed through a
home accident in one year (1943) in the United States was about 1 in
6500.* Still, in everyday behavior one plans his routine activities as if
nothing serious is going to happen. If the consequence of failure is not
serious, one may be willing to act as if there were no risk when the odds

* U.S. Bureau of the Census, Vital Statistics Special Reports National Sum-
maries, Vol. 21, No. 7, Accident Fatalities in the United States, 1943.
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are 20 to 1 in his favor. If the consequence of failure is more serious, he
may not wish to gamble even if the odds are as high as 100 to 1 or even
1000 to 1.

In designing a sample to serve a specific purpose, one must answer the
questions:

(1) How large an error in the estimate can [ tolerate before the inference
drawn will lead me to the wrong action?

(2) What risk am I willing to take that the results of the sample are in
error by more than that amount?

Before we can determine the size of sample required* in any particular
instance, we must decide the “error risk™ limits. In many instances one
might be willing to gamble with the results of the survey if the chance
were 1 in 20 of getting a sample estimate that would be off by more than,
say, 10 per cent from the true value. In other instances, where the cost
of an error is greater, one might require greater accuracy and also be
afraid to gamble with odds such as these in his favor, insisting that he
could tolerate being off by more than, say, 4 per cent in his estimate only
1 in 100 times, or perhaps 1 in 300 or 1 in 1000.

For an illustration of how one goes about setting the risks and estab-
lishing tolerable errors for actions, consider the following situation:

(1) The problem is to estimate the total number of unemployed persons
in the United States and in each state during depression years when
unemployment is large.

(2) Action is to be taken on the basis of the estimates, consisting of
the appropriation of money by Congress for a work program, and
the planning for the use of the funds appropriated.

(3) 1t is assumed that, if the figure is anywhere between 7,000,000 and
8,000,000 unemployed, a certain action will be taken. A consider-
able change in the amount of the appropriation will be made if the
figure is less than 4,000,000, and a quite different kind of change
will be made if it is more than 12,000,000. One might then be
reasonably safe in assuming that, if the sample estimate were within
about 10 per cent of the true figure, it would not appreciably change
Congressional and administrative action.

(4) We assume that we shall behave as if the sample estimate is within
10 per cent of the true figure if the odds are 19 to 1 in favor of its
falling within these limits.

* In other types of design, the sample size is only one of the factors to be
considered.
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Note that the error limits and the probability (or “risk™) taken are
related. The consequence of this fact is that if (a) the probability is 19
in 20 that the sample estimate will be within 10 per cent of the true figure,
then (b) about 99 out of 100 times our estimate will be within 124 per cent,
and (c) about 997 out of 1000 times our estimate will be within 15 per cent.
These are the figures which would follow from a given error limit on the
assumption of normal distribution, which will be a safe assumption if we
are dealing with a large enough sample. In other words, we would be
extremely sure that the estimate would be within 15 per cent of the true
figure.

The illustration above is typical of a very large class of problems where
fairly wide bounds on the tolerable errors do not seriously affect the
action to be taken. In other problems, the tolerable error has to be made
smaller. As an illustration of this class of problems, consider the
following:

(1) The problem. An estimate of the total population of each state.
(2) Action to be taken. Distribution of federal funds, on the basis of
total population.

(3) Data available. The population of each state in the 1950 Census.

If large amounts of money are to be distributed on the basis of the
population at some time subsequent to the 1950 Census, the estimate must
be good enough to detect a comparatively small change. For example, a
state that increases in population from 1,000,000 in 1950 to 1,100,000 in
1955 or decreases to 900,000 would be considered to have a highly signi-
ficant change. Hence, we might decide that a shift of 3 per cent or more
should be detected with relative certainty if the sample estimate is to be
useful. This will be accomplished if the sample size is such that the
standard deviation is only 1 per cent of the expected estimate. Then
there will be about 997 chances in 1000 that the estimate is within 3 per
cent of the true figure.

Having made up our minds what the tolerable error should be, and
having determined the odds for the prescribed bounds, we can design the
sample to meet these specifications. We determine the character and the
size of the sample required to provide this amount of precision, and then,
considering the various cost factors entering into the sample design, we
compute the cost of the survey. If the cost is acceptable the design can
be used as specified; if, however, the cost is excessive, then some balancing
of precision against costs must be considered. It may be that some
relaxation in precision will not invalidate the results, and that the available
resources will suffice with this relaxation; or it may be possible to get an
increase in the funds available. 1If, on the other hand, it is impossible to



34 SURVEY OF SAMPLING PRINCIPLES Ch. 1

design a useful survey within the budget restrictions that have been
imposed, the survey should be abandoned.

The methods used in designing samples to meet the required error limits,
balanced against the required cost limits, are the main subject matter of
this volume.

C. OTHER PRINCIPLES OF SAMPLE DESIGN
ILLUSTRATED

14. Other methods of controlling sampling error. The previous dis-
cussion has been based almost entirely upon the use of unbiased estimates
derived from simple random samples of elements from the population
under consideration. For this type of sampling the size of sampling error
(or the risk taken) can be controlled only by changing the sample size.
The sampling error is, of course, dependent upon the population variance
and to a limited extent upon the size of the population, but these factors
are not controllable by the investigator if simple random sampling of
elementary units is used. However, there are other methods of con-
trolling the sampling error, and in practical work the choice of a design
involving proper application of these methods is of great importance.
These methods may have a significant bearing on either the precision of
sample results, or the cost of obtaining the desired precision, or both.
They point to ways of making effective use of available resources. The
following sections are designed to give a summary introduction to some
of the important topics, in order that the reader may achieve a better
perspective of the whole subject before proceeding more intensively into
specific phases of it in succeeding chapters.

We are often able to effect increases in efficiency in sample design by
utilizing available resources in the form of maps, lists, census information,
building permits, and other information; or by employing methods that
cluster the units included in the sample, by the use of several stages of
sampling or by other variations in method. A sample design is said to
be more efficient (or to have higher efficiency) than another if under
specified conditions it yields more reliable results per unit of cost; i.e.,
if for a given cost it gives results of greater precision, or if results of
specified precision are produced at lower cost.

It is important to note that the validity of a standard error is unrelated
to the efficiency of the sample survey from which it was calculated. The
only requirement for the validity of a standard error and the interpretation
described above is that every person, household, farm, or other unit have
a known probability of being selected for the sample, and that appropriate
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estimation methods be used. More complex methods of sampling are
introduced merely to increase the efficiency of design.

15. Methods of estimation. The discussion in previous sections has
dealt with unbiased estimates. For this type of estimate, the expected
value of the estimate is equal to the value being estimated. Actually, we
are more concerned with the risk of error in making an estimate from a
particular sample than with the error in the average of the estimates for
all possible samples. If the standard error is large, the fact that an
estimate is unbiased is of little help. With a large standard error the
probability of drawing a sample with a large error is high.

Such a situation might be represented by a distribution of sample
estimates such as 4 in Fig. 4. Here the expected value of the sample

X, X, X, X,

Fic. 4. Two distributions of sample estimates: unbiased estimates in distribution A4;
biased estimates with smaller standard error in distribution B.

estimates is the true value X, but relatively few of these sample estimates
are close to X, where we define “close” to mean falling in the interval
(Xls X2)-

Consider, on the other hand, a distribution of sample estimates such as
B, in Fig. 4, where the mean of sample estimates X, is not equal to the
true value X, Many more of the estimates represented by B are close to
Xy, even though this estimating procedure is biased. In such a case there
is a better chance of getting a “good’ sample from a biased set of estimates,
represented by B, than from a set of samples (such as 4) which is unbiased,
but in which many of the samples have large errors.

As an example, let us consider a case in which we have a choice of two
ways of estimating the same population characteristic. We use the
population of 12 individuals shown in Table 1 (p. 13) and assume that the
purpose in sampling is to estimate the average income of this population.
We shall demonstrate by taking a sample of 3 individuals.



36 SURVEY OF SAMPLING PRINCIPLES Ch. 1

The distribution of the simple unbiased estimate from samples of 3 (in
this case the simple unbiased estimate is simply the sample mean) is shown
in Table 3 (p. 19). Now, assume that we know, from a census of this
population in an earlier year, that the average income of the 12 individuals
in the census year was $2883 and that the income of each of the 12
individuals in that year (say 1950) was as shown in Table 10.

Table 10. Incomes of a hypothetical population of 12 individuals in
the census year 1950

.. Income - Income
Individual (dollars) Individual (dollars)
A 1100 G 2200
B 5500 H 3100
C 3500 1 2500
D 1700 J 1200
E 4000 K 5300
F 2400 L 2100
Total income $34,600
Average income 2,883}

When we estimate average present income by selecting a sample of 3
individuals, say, and taking the average income of these 3, we make no
use of the knowledge available from the prior census. Suppose, instead,
that we estimate- the average income of the population by computing the
average present income of the sample divided by the average 1950 income
of the same individuals, and multiply this ratio by the known average
income of the population in 1950. For example, suppose that the sample
happens to include individuals B, C, and J. From Table | we find that
their present incomes are $6300, $3100, and $900, respectively, and their
average income is $3433. Similarly, the average 1950 income for these
same individuals is (5500 -+ 3500 -+ 1200)/3 == $3400. The ratio esti-
mate of present income from the sample would be 2883(3433/3400) =
$2911.

It seems reasonable that such an estimate might be better than the
sample mean of the present incomes. If our sample happens to over-
represent individuals with high 1950 incomes, then the average may be
expected to be too high in terms of present income, and with such an
estimate we reduce the estimate of present average income by the relative
amount that our sample of 1950 incomes is too high. To say the same
thing in another way, we use the sample only to estimate relative change
in average income, and not to establish the level. We may say that we
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have estimated from the sample the ratio of present average income to
1950 average income, and applied this estimated ratio to the known
average income for 1950.

We can calculate this estimate for all possible samples of size 3. It
turns out that the average of these estimates for all possible samples of 3
is $2658, whereas $2675 is the true population average; hence this
estimate is a biased estimate. But the amount of the bias is small relative
to the standard deviation of the estimate. The distribution of these ratio
estimates compares with the distribution of the simple unbiased estimates
as shown in columns 2 and 3 of Table 11. Tt can be seen that the ratio
(biased) estimates not only vary among themselves considerably less than
the simple unbiased estimates, but also tend to be closer to the true
value $2675.

We can measure the variation of the ratio estimates from the true value
by taking the square of each deviation from the true value (instead of from
the average of the estimates) and getting the average of these squared
deviations over all possible samples. This measure is known as the mean
square error, or simply the MSE. It is distinguished from the variance
in that the va ianc2 is measured by taking deviations from the expected

value of the estimates. For unbiased estimates the mean square error is
equal to the variance, but for b1ascd ‘estimates it will be different. For
the biased estimate in this partlcular instance the mean square error for
samples of 3 is 57,953, whereas the variance of the estimates (taken
around their own expected value) is 57,648. There is little difference.
This trivial contribution of the bias to the mean square error will not
always be relatively small for samples of sizes as small as 3, but for large
enough samples the bias of the ratio estimate will always be negligible
relative to the standard error. 'What happens for such a ratio of sample
means is that as the size of sample is increased the bias decreases, and so
does the standard error, but the bias decreases at a faster rate than the
standard error. Ordinarily, therefore, with such biased but consistent
estimates we shall ignore the bias, because with almost any practical size
of sample the square of the bias will be negligible in relation to the
variance.

Such a ratio estimate is consistent, since the bias as well as the variance
approaches zero as the size of sample is increased. The reader could
verify this statement for the illustrative population by listing all possible
samples of each size, computing the ratic estimate for each, and then
computing the expected value, the variance, and the standard deviation
of these estimates for each size of sample. Because of the negligible size
of the bias of ratio estimates with reasonably large samples our measure
- of precision will be the standard error.
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Table 11. Comparison of distributions of estimated average income based
on simple unbiased estimate (sample mean) and ‘‘ratio’’ estimate
from samples of 3

. Per cent of samples based on
Estimated average
lnc:)hr:eirf'?elll'lvnagl mn Simple Ratio estimate ~ Ratio estimate
(dollars) unbiased based on data based on data
ollars estimate in Table 10 in Table 12
¢9) (2 (3) G
1000-1199 .0 .5
1200-1399 1.4 3.6
1400-1599 4.5 3.6
1600-1799 6.8 4.5
1800-1999 9.1 6.8
2000-2199 10.0 1.8 8.6
2200-2399 10.0 13.6 8.2
2400-2599 8.6 28.2 . 9.1
2600-2799 7.7 30.9 9.1
2800-2999 73 16.4 8.2
3000-3199 7.3 8.6 9.5
3200-3399 7.3 .5 6.8
- 3400-3599 59 5.9
3600-3799 4.5 5.5
3800-3999 3.2 2.7
4000-4199 1.8 2.7
4200-4399 2.7 2.3
4400-4599 .5 .5
4600-4799 9 1.4
48004999 5 .0
5000~5199 0 5
Total 100.0 100.0 100.0
Average
(expected value) $2675 $2658 82749
Standard error £786 8240 £805
Root mean square
error == VMSE %786 $240 £808
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It will be clear that a ratio estimate, in practice, frequently will be
superior to the simple unbiased estimate. However, this is not always the
case. 1If there were little or no correlation between the 1950 incomes and
present incomes, the ratio estimate would be inferior to the unbiased
estimate. For example, if 1950 incomes of the 12 individuals in our
population were as in Table 12, the distribution of the ratio estimate of
the mean for all possible samples would be as shown in the last column
of Table 11.

Table 12. 1950 incomes of 12 individuals, to indicate low correlation
with present incomes shown in Table 1

Individual (Iélgl?:;:) Individual (I(;l:ﬁ;:)
A 500 G 2400
B 3000 H 2500
c 1100 1 3200
D 1700 J 1500
E 2000 K 1800

Here the variation from the true value is greater for the ratio estimate
than it was for the simple unbiased estimate. The root mean square error
(square root of mean square error) of the ratio estimate is, in this case,
$808, as compared with the standard deviation $786 of the simple unbiased
estimate (sample mean).

The above illustrations indicate that the important fact to consider in
making a choice between alternative estimates is not whether the estimate
is unbiased. The important fact is how close the estimate by one method
or another is likely to be to the population characteristic being estimated.
It is unimportant whether an estimate is unbiased so long as the bias is
small. ,

The theory for dealing with ratio estimates will be given in Chapter 4
and subsequent chapters. The purpose here was merely to indicate the
role of alternative estimating procedures and to suggest how available
data may be effectively utilized in improving a sample estimate.

Remark. The use of the ratio estimate, the bias of which can be shown
to be small for reasonably large sizes of sample, is to be distinguished from
the use of biased methods of sample sclection or estimation where the
magnitude of the bias is unknown, and where this bias may not decrease
with increase in sample size, and therefore may seriously affect the accuracy
of the estimates, even with a large sample.
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16. Stratification. One way of making effective use of available
information was illustrated in the discussion of a ratio estimate. Strati-
fication provides another method of utilizing supplemental information to
get greater precision in our sample estimates.

Past data may be used to divide the population into groups such that
the elements within each group are more alike than are the elements in
the population as a whole. If a sample is drawn separately from each
group by simple random sampling, we have insured the desired representa-
tion from each group, but still have a probability sample if the selections
are at random within each group. Whenever a population is divided into
such groups, and some kind of a random sample is taken in each group,
the sample is called a stratified sample, the groups from which the sample
is drawn are called strata, and the process of dividing this population into
groups is called stratification.

We shall present some illustrations which show how stratification may
increase the reliability of sample results for a given size of sample. We
will use again the population given in Table 1 (p. 13).

Illustration 16.1. Assume that we know from a prior census the 1950
incomes of each member of the population, as shown in Table 10 (p. 36),
and that a sample of 4 individuals is to be drawn to estimate the present
average income. With the prior information the population can be
divided into 4 groups of 3 persons each, so that the individuals in each
group have 1950 incomes as much alike as possible. The groups (or
strata) will be made up as follows: AJD, LGF, IHC, EKB.

If we then draw 1 person at random from each group, a proportionate
stratified sample of 4 persons will be obtained. By proportionate stratified
sampling we mean stratified sampling with a uniform fraction in the
sample from each stratum. Let us examine how this type of sampling
differs from simple random sampling.

In simple random sampling there are 495 possible samples of size 4
whose average present incomes are distributed as shown in Table 3 (p. 19).
With proportionate stratified sampling there are only 81 possible samples,
each of which is listed in Table 13. The average present income is also
shown for each sample. A total of 414, or 84 per cent, of the samples
possible under simple random sampling have no chance of being drawn,
although each individual still has the same chance of being included in the
sample and the sample estimate is unbiased. Samples such as BCEK, all
having the highest incomes in 1950, or ADJL, all having the lowest
incomes in 1950, are among the ineligibles.

Table 14 shows that for samples of 4 the chance of an error of more
than 20 per cent is 44 out of 100 for simple random sampling and only
14 out of 100 for proportionate stratified random sampling. The
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comparison is also indicated by the standard deviations. With stratified
sampling and samples of 4 the standard deviation of the estimates is
$346, whereas with simple random sampling it is $642.

If stratification does not result in strata which are homogeneous with
regard to the characteristic to be measured (not the characteristic employed
in setting up the strata), there will be no gain from its use. This can be
seen from Illustration 16.2.

Table 13. Eighty-one possible samples of 4 under stratification of
Tllustration 16.1

i

Mean Mean Mean
Sample (dollars) Sample (dollars) Sample (dollars)
ALIE 2075 JLIE 1975 DLIE 2250
ALIK 2375 JLIK 2275 DLIK 2550
ALIB 2750 JLIB 2650 DLIB 2925
ALHE 2375 JLHE 2275 DLHE 2550
ALHK 2675 JLHK 2575 DLHK 2850
ALHB 3050 JLHB 2950 DLHB 3225
ALCE 2475 JLCE 2375 DLCE 2650
ALCK 2775 JLCK 2675 DLCK 2950
ALCB 3150 JLCB 3050 DLCB 3325
AGIE 2050 JGIE 1950 DGIE 2225
AGIK 2350 JGIK 2250 DGIK 2525
AGIB 2725 JGIB 2625 DGIB 2900

AGHE 2350 JGHE 2250 DGHE 2525
AGHK 2650 JGHK 2550 DGHK 2825
AGHB 3025 JGHB 2925 DGHB 3200
AGCE 2450 JGCE 2350 DGCE 2625
AGCK 2750 JGCK 2650 DGCK 2925

AGCB 3125 JGCB 3025 DGCB 3300
AFIE 2150 JFIE 2050 DFIE 2325
AFIK 2450 JFIK 2350 DFIK 2625
AFIB 2825 JFIB 2725 DFIB 3000

AFHE 2450 JFHE 2350 DFHE 2625
AFHK 2750 JFHK 2650 DFHK 2925

AFHB 3125 JFHB 3025 DFHB 3300
AFCE 2550 JFCE 2450 DFCE 2725
AFCK 2850 JFCK 2750 DFCK 3025
AFCB 3225 JFCB 3125 DFCB 3400
Average income over all possible samples = @86—15'2 = $2675

Standard error = $346
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Ilustration 16.2. Assume that, instead of the 1950 incomes shown
above, the 1950 incomes of the 12 individuals in our population were as
shown in Table 12 (p. 39), and the population was divided again into 4
groups, each group consisting of individuals having similar 1950 incomes
(i.e., AFC, LJD, KEG, and HBI). The comparison with simple random
sampling, also displayed in Table 14, indicates that the risk of error has
not been changed in any significant way by stratification.

Table 14. Comparison of samples of 4 under 3 sampling schemes—
Tlustrations 16.1 and 16.2

Per cent of all possible samples having
given relative error

R;:Iiaet;\t/fme;::r Proportionate stratified
. li
(per cent) Simple random sampling
random
sampling Based on data | Based on data
in Table 10 in Table 12
More than 20 44.4 13.6 48.1
10-20 27.7 37.0 23.5
Less than 10 279 49.4 28.4

The very slight gain by stratification in this illustration is indicated by
the fact that for samples of 4 the standard deviation of the estimated
average income is $636 with proportionate stratified sampling and $642
with simple random sampling.

The difference between the results of the two stratifications in Illustra-
tions 16.1 and 16.2 is due to the fact that, in Illustration 16.1, high 1950
incomes were very closely associated in the population with high present
incomes and low 1950 incomes were associated with low present incomes.
In Ilustration 16.2, little relationship is apparent between 1950 income
and present income. Thus, in Illustration 16.2, stratification did not give
us homogeneous groups with respect to present income, and, consequently,
no gain in precision was achieved.

IMustration 16.3. Another significant feature of stratified sampling
deserves special mention. Consider the population of 12 individuals
shown in Table 15, similar to the more extreme population described in
Sec. 12. Note that there is one individual in this population whose income
is very different from the incomes of all the remaining individuals. In
practice, extreme values of income, sales, farm acreage, and many other
characteristics tend to remain extreme over relatively long periods of time.
The 1950 incomes for the individuals in this population are given in
Table 15, as well as their present incomes.
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Table 15. Hypothetical population of 12 individuals with
one extreme income item

Income
dollars
Individual (doltars)
Present 1950
A 1,300 1,100
B 20,000 10,000
C 3,100 3,500
D 2,000 1,700
E 3,600 4,000
F 2,200 2,400
G 1,800 2,200
H 2,700 3,100
I 1,500 2,500
J 900 1,200
K 4,800 5,300
L 1,900 2,100
Total income 45,800 39,100
Average income 3,817 3,258

Let us consider two possible stratifications of this population, based on
1950 incomes.

Stratification 1 is:
TOTAL PRESENT

STRATUM INDIVIDUALS INCOME
(dollars)

1 A, J, D 4,200

11 LG F 5,900

111 ILH C 7,300
v E, K, B 28,400

Stratification 2 is:
TOTAL PRESENT

STRATUM INDIVIDUALS INCOME
(dollars)

1 A,J, D, L 6,100

11 G,F,.ILH 8,200

I C,E K 11,500
v B 20,000

With stratification 1, there are 81 possible samples of 4; with stratifica-
tion 2, there are 48. Stratification 1 is an illustration of proportionate
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stratified sampling. Stratification 2 is an illustration of disproportionate
stratified sampling.

The possible samples of 1 from each stratum, and the sample estimates
of the population mean for each sample, are listed in Tables 16 and 17.
For each sample resulting from stratification 2, two sample estimates of
the population mean are listed. The first estimate is the sample mean
obtained by adding the values and dividing by 4. The second estimate
is a weighted average obtained by taking

doy + 4wy 4 3w + 2y
12

Table 16. Eighty-one possible samples of 4 under stratification 1
of Illustration 16.3

Sample Mean Sample Mean Sample Mean
P (dollars) p (dollars) P (dollars)

ALIE 2075 JLIE 1975 DLIE 2250
ALIK 2375 JLIK 2275 DLIK 2550
ALIB 6175 JLIB 6075 DLIB 6350

ALHE 2375 JLHE 2275 DLHE 2550
ALHK 2675 JLHK 2575 DLHK 2850

ALHB 6475 JLHB 6375 DLHB 6650
ALCE 2475 JLCE 2375 DLCE 2650
ALCK 2775 JLCK 2675 DLCK 2950
ALCB 6575 JLCB 6475 DLCB 6750
AGIE 2050 JGIE 1950 DGIE 2225
AGIK 2350 JGIK 2250 DGIK 2525
AGIB 6150 JGIB 6050 DGIB 6325

AGHE 2350 JGHE 2250 DGHE 2525
AGHK 2650 JGHK 2550 DGHK 2825
AGHB 6450 JGHB 6350 DGHB 6625

AGCE 2450 JGCE 2350 DGCE 2625
AGCK 2750 JGCK 2650 DGCK 2925
AGCB 6550 JGCB 6450 DGCB 6725
AFIE 2150 JFIE 2050 DFIE 2325
AFIK 2450 JFIK 2350 DFIK 2625
AFIB 6250 JFIB 6150 DFIB 6425

AFHE 2450 JFHE 2350 DFHE 2625
AFHK 2750 JFHK 2650 DFHK 2925

AFHB 6550 JFHB 6450 DFHB 6725
AFCE 2550 JFCE 2450 DFCE 2725
AFCK 2850 JFCK 2750 DFCK 3025

AFCB 6650 JFCB 6550 DFCB 6825

a#
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where x| is the value of the individual drawn for the sample from stratum I,
2yy is the value of the individual sampled from stratum II, etc.

The samples listed for stratification 1 are similar to those listed in
Table 13 (p. 41) for the population used in Illustration 16.1.

Table 17. Forty-eight possible samples of 4 under stratification 2
of Tlustration 16.3

Weighted Weighted
Sample (c?cl)lﬁglrls) average Sample (;\;Iﬁa?) average
(dollars) A (dollars)

AGCB 6550 3475.00 DGCB 6725 3708.33
AGEB 6675 3600.00 DGEB 6850 3833.33
AGKB 6975 3900.00 DGKB 7150 4133.33
AFCB 6650 3608.33 DFCB 6825 3841.67
AFEB 6775 3733.33 DFEB 6950 3966.67
AFKB 7075 4033.33 DFKB 7250 4266.67

AICB 6475 3375.00 DICB 6650 3608.33
AIEB 6600 3500.00 DIEB 6775 3733.33
AIKB 6900 3800.00 DIKB 7075 4033.33

AHCB 6775 3775.00 DHCB 6950 4008.33
AHEB 6900 3900.00 DHEB 7075 4133.33
AHKB 7200 4200.00 DHKB 7375 4433.33

JGCB 6450 3341.67 LGCB 6700 3675.00
JGEB 6575 3466.67 LGEB 6825 3800.00
JGKB 6875 3766.67 LGKB 7125 4100.00
JFCB 6550 3475.00 LFCB 6800 3808.33
JFEB 6675 3600.00 LFEB 6925 3933.33
JFKB 6975 3900.00 LFKB 7225 4233.33
JICB 6375 3241.67 LICB 6625 3575.00
JIEB 6500 3366.67 LIEB 6750 3700.00
JIKB 6800 3666.67 LIKB 7050 4000.00
JHCB 6675 3641.67 LHCB 6925 3975.00
JHEB 6800 3766.67 LHEB 7050 4100.00

JHKB 7100 4066.67 LHKB 7350 4400.00

From the listing of possible samples resulting from stratification 2, it
can be seen that individual B (who had an income of $20,000) comes into
every sample. In other words, his chance of being drawn is certainty.
In stratification 2, individuals A, J, D, L and G, F, I, H have a chance
of coming into the sample of 1 in 4 compared to.a chance of 1 in 3 for
stratification 1.

If we average the sample estimates for stratification 1, we get $3817,
which is the population average. If we average the unweighted sample
estimates for stratification 2, we get $6852. Thus, the unweighted sample
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average in stratification 2 is seriously biased. However, the weighted
estimate for stratification 2 is unbiased and also has a much smaller
sampling error than the proportionate stratified sample estimate. In
Table 18, we compare the distribution of errors when the weighted
estimate with samples of 4 drawn from stratification 2 is used, with the
distribution of errors in samples of 4 drawn from stratification 1, and with
simple random sampling.

Table 18. Comparison of samples of 4, under 3 sampling schemes—
Illustration 16.3, more extreme population

Per cent of all possible samples having
Relative error in given relative error
samples of 4 . -
Simple I Stratification 2—
(per cent) random Stratlf}catlon weighted average
sampling estimate
More than 20 95.6 100.0 .0
10-20 4.2 .0 18.8
Less than 10 2 .0 81.2
Average 3817 3817 3817
Standard error 2127 1878 277

Remark. It might appear from Table 18 that stratification 1 gives
worse results than simple random sampling since a larger proportion of
estimates using stratification 1 are more than 20 per cent away from the
true mean. Actually, both procedures are bad, as can be seen by examining
their standard errors, in comparison with that for stratification 2 with
weighting. Although the standard error for stratification 1 is somewhat
less than that for simple random sampling, both are very large, and it would
be unwise to use either of these sampling procedures for this population.

It is evident that we have a much smaller standard error with stratifica-
tion 2 and a weighted average estitnate than with either of the other two
designs. This result is due to the fact that disproportionate stratified
sampling can sometimes be used effectively to minimize the impact of
unusual individuals, provided we have a way of identifying them in
advance. Individual B had a much larger income than the other indivi-
duals in the population. Consequently, it would be inefficient sampling
to give him the same chance of being drawn as any other individual. The
subject of “optimum allocation,” i.e., determining the relative sizes of
samples to be drawn from each stratum in order to minimize the variance,
is taken up in Chapter 5.
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The illustrations point up the essential characteristics of stratified
sampling, which are:

(1) Certain samples possible under simple random sampling are im-
possible with stratified sampling, and with effective stratification
these tend to be the more extreme samples that contribute more
heavily to the sampling variance.

(2) The variance is smaller when we are able to classify the units into
groups so that the differences within each group are relatively small,
while at the same time differences between groups (measured by the
differences between their averages) are large.

(3) Stratification can be particularly effective when there are extreme
values in the population which can be segregated into separate
strata.

Not brought out by the illustrations is the fact that when costs differ
greatly (e.g., between large and small establishments or between _urban
and rural households) it pays to consider costs also in setting up strata.
Chapters 5 and 7 deal with cost considerations at some length.

Some points of similarity between simple random sampling and stratified
sampling are:

(1) With proportionate stratified sampling, as with simple random
sampling, each unit in the population has an equal chance of being
included in the sample.

(2) The estimates from strdtified sampling when properly constructed
are consistent; it is necessary, if disproportionate sampling is used,
that stratum weights be properly applied. Otherwise, serious
biases may arise.

(3) The sampling error of the estimate can be evaluated from the
sample results themselves provided the sample is sufficiently large.
This fact has not been illustrated here but is treated in some detail
in Chapters 4 and 5. '

Past data, intuition, the judgment of experts in the field, or what one
might think of as merely good guesses can all be used effectively in
setting up strata. If judgment is exercised in determining the strata, the
sample results will not be biased by this action, the variance may be
reduced if the judgment is good, and the design will be a probability
sample, provided the sampling within each stratum is carried out by a
random process. To have a probability sample, one must only insure
that every individual in the population has a chance of being drawn, and
that this chance is known. In many fields, such as the study of retail
sales, income data, and other highly skewed distributions, stratification is
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an exceedingly valuable tool. For estimating characteristics for less
skewed distributions, such as for estimating proportions of units having
specified characteristics, the importance of stratification can easily be
exaggerated. This is illustrated in Sec. 19.

Stratification is only one of the aspects of sampling design which should
be taken into account in order to increase the amount of information per
unit of cost. Another method, and one which sometimes is more im-
portant in reducing costs, is the concept of cluster sampling.

17. Cluster sampling. We have illustrated in preceding sections that a
change in sample design (including the estimating method) with no change
in size of sample can result in changes in the precision of results. The
implication might be drawn from the foregoing treatment that, of two
designs using the same size of sample, the one having the smaller sampling
error is the preferable one.

This would be true only if the cost per elementary unit were the same
for both designs. What we should like to have is the maximum precision
of results per unit of cost. If in one design the cost per elementary unit
is much less than in another, we can afford to take a much larger sample
in the former case than in the latter. The consideration of costs often
leads to the use of “cluster sampling.”

To assist in understanding cluster sampling we consider the following
two ways of drawing a sample of households throughout the United
States:

(1) A listing of every family in the United States is available, and a
sample of 3000 families is drawn from the listing through simple
random sampling. By this plan, households in the sample would
be spread through most counties in the United States.

(2) A sample of, say, 50 counties is drawn, and a sample of 3000 house-
holds is taken from within the sample of counties.

As will be illustrated in this section, the sample in alternative 1 drawn
by simple random sampling will have a smaller sampling error* than the
sample in alternative 2, but it involves a much wider geographic spread
and its cost may be considerably greater (since travel and supervisory costs
may be much greater). The second method of sampling is an illustration
of cluster sampling. If a population is divided into groups and a sample
of groups is drawn to represent the population, the groups serve as

* Formulas for the sampling error with simple random sampling and with
cluster sampling are compared in Chapter 6, and show that the clustering of
units usually increases the sampling error.
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sampling units, and the type of sampling is defined as cluster sampling.
Once the clusters are drawn, one can proceed either to include in the sample
all the elementary units in the selected groups or to take a sample of
smaller clusters or elementary units from the sampled clusters. When a
sample of elements is drawn from the groups, this type of design is called
two- (or more) stage sampling or may be called subsampling. At both
stages a probability sample is drawn.

To illustrate how cluster sampling works, assume that the population
of 12 individuals listed in Table 1 (p. 13) is divided into the following 3
groups consisting of 4 persons each:

[NCOME
(dollars)

1300
2000

900
1900

CLUSTER INDIVIDUAL

1

11 2200
1800
2700

1500

~zQm SSoa

41 6300
3100
3600

4800

xmAaw

Now assume that for our sample we draw a random sample of 1 cluster
from this population and use the sample average of the 4 persons included
in the sample as the estimate of the average income of the 12 individuals.
There are, of course, only 3 possible sample estimates and these are:

1 81525
IT , 2050
I 4450

The average over all possible samples is $2675, which is the average we
are trying to estimate. In other words, the estimate is unbiased. The
variance of the 3 possible estimates from cluster sampling shown above
is 1,621,250 (the standard deviation is $1273), which is much larger than
the variance for a simple random sample or stratified sample of the same
size.

The variance for simple random samples of 4 persons is 411,553 (the
standard deviation is $642). The variance for a stratified random sample
of 4 drawn from this population, with the stratification shown in Illustra-
tion 16.1,is 119,861 (the standard deviation is §346). Thus, the variance
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of cluster sampling is 3.9 times that of simple random sampling and 13.5
times that of stratified sampling. In other words, with the population of
Table 1 (p. 13) we would need 3.9 times as large a sample of persons to
obtain the same precision as with simple random sampling and 13.5 times
as Jarge a sample to obtain the same precision as with the better of the
stratified samples illustrated. As an explanation of why cluster sampling
is so much worse, in this case, than either stratified sampling or simple
random sampling, we notice that here the samples which are excluded
tend to be the “better” ones.

It is possible to divide a population into clusters and get a sample with
a variance just as small as or even smaller than that for simple random
sampling or even for stratified sampling. For example, suppose that the
clusters were made up in the following way:

AVERAGE INCOME

CLUSTER INDIVIDUAL (dollars)
I ECGT 2350
Il AHKL 2675
I BFDI 3000

Here the clusters are made up so that the individual incomes within each
cluster are as different from each other as possible. The average over all
possible samples is the same as before, and the estimate is unbiased.
However, if we measure how closely on the average each sample estimate
approximates the true average, we find that now the cluster sampling has
a variance of 70,417 (standard deviation $265), which is lower than that
for simple random sampling or even for stratified sampling.

In the first illustration, the clusters consisted of persons having similar
incomes, and the cluster sampling turned out to have a large sampling
error. In the second illustration, the clusters consisted of persons having
dissimilar incomes, and the cluster sampling turned out to have a relatively
small sampling error.

The very principles that make for efficient stratified sampling make for
inefficient cluster sampling. The more alike persons are within a cluster,
the better our results will be if we use that cluster as a stratum in stratified
samphng and the worse our results will be if we use it as a samplmg unit,

Unfortunately, in practice, makmg the clusters’ heterogeneous may not
be feasible or may be too expensive, and one may be forced to retain
many features of the original population which may not be conducive to
small sampling errors. For example, persons of high income tend to live
in the same blocks of a city, while those of extremely small incomes tend
to appear together in other blocks. If it were possible to draw a sample
of households out of every block in a city, a good cross section of every
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type of neighborhood of the city could be assured. However, this might
mean preparing lists, by field canvass, of the dwelling units in every block
in the city, and in a large city the cost might be prohibitive.

One way to reduce this cost would be to confine the sample to a sample
of city blocks with several households in the sample from each selected
block. This would necessarily mean that the sample of blocks would
contain proportionately more neighboring households  than a simple
random sample of households; and, therefore, we would get more families
with similar incomes than we would if the same number of households
were drawn through simple random sampling or stratified sampling of
dwelling units. However, the main purpose of cluster sampling is not to
get the most reliable sample in terms of the number of elementary units
included, but to get the most reliable results per unit of cost. It may be
considerably less costly to confine the whole sample of a certain size to
selected blocks scattered throughout the city than to spread the sample
over a much larger number of blocks. Optimum design for this type of
problem is discussed in Chapter 6.

18. Systematic sampling. To draw a sample of, say, 1000 cards from
a file containing 10,000 cards, one might select a random number between
1 and 10, and proceed by taking the card in the position indicated by this
number, and every tenth card thereafter. This type of sampling is called
systematic sampling. More generally, if the sample design calls for taking
every kth element in the population, or some other specified pattern, the
type of sampling is referred to as systematic sampling. In the illustration
above, the population consists of the 10,000 cards, and & is equal to 10.

Systematic sampling is used very widely. For example, in a sample
survey to estimate the average rental value of dwelling units in a city, one
might take, say, every twelfth block within the city, and every fourth
household within the selected blocks.

To illustrate the difference between systematic sampling and simple
random sampling, assume that we took every fourth person from our
original 12 individuals (Table 1, p. 13).

The possible samples are AEI, BFJ, CGK, DHL. The net effect of
systematic sampling, thus, is to set up 4 clusters. The standard deviation
of these 4 clusters is $510, which, in this instance, is less than $786, the
standard deviation of simple random sampling for a sample of size 3.
(The corresponding variances are 260,208 and 617,330, respectively.)

If, on the other hand, we had taken & = 3 and selected every third
person, we should have set up the clusters 4DGJ, BEHK, CFIL. The
standard deviation would then be $1216 (variance 1,478,750), Wthh 1s
greater than $642 (variance 411,553), the standard deviation for samples



52 SURVEY OF SAMPLING PRINCIPLES Ch. 1

of 4 with simple random sampling. In this small population it is difficult
to formulate any generalization concerning the precision of estimates
made from a systematic sample. In a larger population, systematic
sampling will frequently be found to yield results similar to those of
proportionate stratified sampling. ~Systematic sampling is discussed in
Ch. 11, Sec. 8.

19. Intuition without sampling theory may be misleading. One can see
from the previous discussion that sampling theory agrees rather closely
with common sense conclusions. It seems reasonable from purely
common sense considerations that a sample drawn from each of a number
of relatively homogeneous groups into which a population has been
divided will be more efficient than one drawn indiscriminately. Again, it
seems reasonable that the use of homogeneous groups or clusters as
sampling units is likely to be inefficient. However, there are many
situations where intuition is likely to be misleading if it is not bolstered by
sampling theory.

For example, suppose that our problem is to estimate average wage or
salary income for families receiving less than $5000 income and living in
cities of population over 1,000,000, and that we are considering the
following two alternative sampling plans:

(1) Take a sample of the cities and a large number of households in
each city.

(2) Take the same total number of households as in (1) but spread the
sample into all cities.

There were in 1939 five cities of more than 1,000,000 population, for which
the average wage or salary incomes of families receiving less than $5000
were:*

Chicago $1482
Detroit 1634
Los Angeles 1154
New York City 1446
Philadelphia 1305

The range of city averages is from $1154 to $1634, whereas within any
city the families we are considering have wage or salary incomes ranging
from none to $5000. The distribution for Chicago is shown in Table 19.

The variation between individuals in one city is about 10 times as big
as the variation between the average incomes of the various cities. Our
intuition tells us, and correctly so, that the variation between individual
incomes in a city is very large compared with the variation between the

* See footnote to Table 19.
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Table 19. Distribution of family wage or salary income, Chicago, 1939*

Income (dollars) falling Number of Per cent of
in the interval families families

0 175,740 19.0
I- 199 15,280 1.7
200~ 399 27,060 2.9
400- 599 38,920 4.2
600- 799 46,740 5.0
800- 999 50,800 5.5
1000-1199 58,660 6.3
1200-1399 70,300 7.6
1400-1599 61,820 6.7
1600-1999 105,000 11.3
2000-2499 111,600 12.0
2500-2999 66,960 7.2
3000-4999 98,500 10.6
Total 927,380 100.0

city average incomes. What our intuition may fail to do is to warn us
that even small differences among the city averages may have a very
potent effect on increasing the sampling error if the cities serve as sampling
units. (This is seen from previous discussions on cluster sampling and
Chapter 6.) Thus, one should adopt the second alternative and take all
cities into the sample. As is pointed out in Sec. 17 and in Chapters 6-9,
it is only when there will be appreciable economies that we are led to
cluster sampling.

One other faulty conclusion to which one may be led by a cursory
examination of data is worth emphasis. Often it is assumed that, if a
population is divided into a number of comparatively homogeneous
groups (strata) on the basis of available data and if a sample is drawn
from each of these groups, there will be a marked decrease in sampling
error. A simple illustration will indicate that this is not always true.
Assume that the problem is to estimate the per cent of persons completing
2 or more years of high school, and that the population is divided into
strata as shown in Table 20. ‘

Note that the per cent completing 2 or more years of high school
ranges from 7.5 per cent in the male nonwhite 40-and-over class to 55.4
per cent in the female white 25-34 class. It turns out that the variance
of a sample of 1000 with simple random sampling, completely ignoring

* Source: U.S. Bureau of the Census, Census of Population: 1940, Family
Wage or Salary Income in 1939, Table la. Families with incomes of $5000
and over and families not reporting were excluded.
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Table 20. Persons over 25 years of age completing 2 or more years
of high school

Number of people (thousands)
Per cent completin
Age’cfjg’r and Population Number completing| 2 or more y[::ars ®
over 25 years | 2 or more years of of high school
of age high school
Male
White
25-34 9,465 4,792 50.6
35-49 12,092 4,031 333
50 and over 12,557 2,552 20.3
Nonwhite
25-39 1,547 221 14.3
40 and over 1,802 136 7.5
Female
White
25-34 9,645 5,343 554
35-49 11,893 4,524 38.0
50 and over 12,348 3,006 24.3
Nonwhite
25-39 1,710 319 18.7
40 and over 1,717 144 8.4
Total 74,776 25,068 335

Source: U.S. Bureau of the Census, Census of Population: 1940, Vol. 1V,
Characteristics by Age, Table 18.

strata, is .000223, whereas that of proportionate stratified sampling is
.000203. Hence, simple random sampling would have required only
9 per cent more cases than proportionate stratified sampling to achieve the
same accuracy. It would not be worth paying more than 9 per cent
additional cost to obtain the additional precision possible through strati-
fication. Of course, stratification should be used to obtain even this
small increase in efficiency if stratification does not involve any added cost.
However, it is quite clear that stratification has not been so effective as
to remove all need for care in selecting the sample within groups.

20. More complex sample designs. Although we have illustrated
simple random sampling, stratified sampling, cluster sampling, and
systematic sampling as discrete methods of sampling, combinations of
these methods and various estimating procedures are generally used for
any one sampling problem. For example, the problem in sampling for
an estimate of the labor force described in Case Study B, Ch. 12, involves



Sec. 20 REFERENCES 55

the stratification of clusters, the sampling of clusters within strata, the
sampling of small clusters within the selected larger clusters, and, in some
instances, the sampling of dwelling units from the selected small clusters.
Different types of probability samples are drawn at each stage. Ratio
estimates are used. Thus, all methods described in this chapter are
employed in a single problem.

The subsequent chapters will develop in more detail the sampling
principles described briefly in this chapter. They will show how the
results of sample surveys can be substantially improved by the expenditure
of relatively small amounts of time and money to develop a “good”
design for the particular sampling problem facing the investigator.
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CHAPTER 2

Biases and Nonsamphng Errors in
Survey Results

A. SOME GENERAL REMARKS ON BIASES

1. The effect of biases in sample results. This chapter presents a dis-
cussion of biases in sample results: how they may arise and how they
may be controlled or avoided. Nonrandom sampling methods and their
possible biases, and biases with random sampling, are discussed briefly;
and some consideration is given also to the problems of response and
other nonsampling errors. The nature of errors in survey results is con-
sidered from the point of view that the ultimate problem of the investigator
is, so far as possible, to design a sample survey in such a way that the total
error in the results is minimized, and not just the random sampling error.

So long as the measurement or response recorded for each unit included
in a sample is not in error, or is subject only to a negligible error, any
difference between the expected value of the sample estimate and the value
being estimated reflects only the bias due to sampling. The value being
estimated is then the result that would be obtained from a complete
census taken with the same methods of collection and the same care as
the sample. However, there may also be errors in measurements or in
the responses to a questionnaire that would lead to biases that would be
present in a complete census as well as in a sample, and in the present
chapter we want to consider all possible sources of bias.

We have suggested that biased methods are acceptable in some instances
and not in others, and an attempt will be made now to indicate the
circumstances under which biases should be avoided if possible and the
circumstances under which they need not be.

2. The mean square error of a sample estimate. As suggested in
Chapter 1, the standard error will be an unsatisfactory measure of the
accuracy of an estimate whenever the bias is large relative to the standard
error. This is so because the standard error measures the deviations of

56
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the possible sample estimates from their expected value, which, if the
estimates are biased, is different from the value being estimated. A
measure of the accuracy of the estimate when the bias is relatively large is
the square root of the mean square error, where the mean square error is
defined as the average of the squares of the deviations of the possible
sample estimates from the value being estimated (the true value). ‘

The mean square error of an estimate is simply equal to the variance of
the estimate plus the square of the bias. Thus, the mean square error of
a sample mean, &, is given by:

MSE,; = 62 + (¥ — X)? .1
where X is the expected value of &, and (X — X)is the bias involved when
Z is used as an estimate of X. Obviously, whenever the methods of
sampling and measurement used yield unbiased estimates, then X is equal
to X, and MSE, = o2

If one is interested in the probability that & — X > kV'MSE or the
probability that Z— X < — kv'MSE, the interpretation of the MSE (in the
same way as the standard deviation) might be misleading except in the
trivial case when one knows the direction and magnitude of the bias.

It appears from Table 1 that so long as the bias of an estimate is no
greater than the standard error, and so long as one is interested only in
the absolute magnitude of errots, and not in their direction, the probability
that a particular sample estimate, &, will differ from the value being

estimated by more than kV'MSE, can, in practice, be interpreted in the
same way as if the estimate were unt 1ased and Ko, were used to set
probability limits. S

To illustrate, suppose that a biased sampling method is used and that
# has an expected value of X and a standard deviation of o;, and that
(¥ — X) = .750, is the bias. Then

V'MSE, = Va2 + (75002 = o, V1.5625 = 1.250;

Suppose, also, that the sample estimates are normally distributed, as they
will be very nearly with reasonably large samples. It is seen from Table 1
that when the bias is equal to 750, then

33 per cent of the time X lies outside & + V' MSE,.

4.1 per cent of the time X lies outside & 4- 2v'MSE,.
.9 per cent of the time X lies outside & + 2.5\/m
.1 per cent of the time X lies outside  + 3V MSE;.

These results, for many practical purposes, agree with the interpretations
based on the corresponding multiples of the standard deviation when an
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unbiased estimate is used. Table 1 shows corresponding values for other
assumptions as to the magnitude of the bias relative to the standard
deviation.

Table 1. Proportion of cases where the true value, j’, is not included in
the interval & --- kv MSE;, for various levels of bias in &

Proportion of sample estimates differing
o v MSEz from X by more than
Bias in & —
1VMSE; | 2VMSE; |2.5VMSE; |- 3V MSE;
0 1.000 32 .046 012 .0027
.Olo 1.00005 32 .046 .012 .0027
do 1.005 32 .046 012 .0027
25¢ 1.03 32 .046 012 .0027
So 1.12 32 044 .011 .0022
150 1.25 .33 .041 .009 .0013
1.00 1.41 35 034 .006 .0006
1.50 1.80 .38 .018 .001 ..
2.0¢ 2.24 41 .007
3.00 3.16 44 .0005
10.00 10.05 .48

We have indicated earlier (Ch. I, Sec. 15) that in choosing a sampling

method it is the mean square error that should be as small as possible,

- and not necessarily the variance of the sample estimate. Thus, if we have
a choice between two methods, one of which is unbiased, and the other
has a bias, but such that the mean square error of the second estimate is
less than the variance of the unbiased estimate, then we shall regard the
second method of estimation as better.

In actual practice the situation usually found is that, when we choose a
biased method for which the mean square error can be measured or an
upper limit can be placed on it, the bias will be negligible or small relative
to the standard error, or can readily be eliminated. It is for this reason
that the accuracy of the estimates, particularly of consistent estimates,
has been giveﬁ it terms of the standard error and little or no attention
has been given to biases which are demonstrably small relative to the
standard error. The second column of Table 1 shows that when biases
can be shown to be relatively small, say, less than 25 per cent of the
standard error of an estimate, they can be neglected without any serious
effect on the interpretation of the results.

The primary purpose here is to point out that, if biased methods are
used for which an upper limit can be placed on the bias, then the accuracy
of the results is measurable by applying formula 2.1. But if the bias is
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unknown or cannot be reliably estimated from the sample, or if one
cannot place some definite upper limit on the amount of the bias, then
the bias term in the MSE will be unknown and the accuracy of the results
cannot be evaluated. Before one uses a biased estimate it is important
that he know that the bias is negligible or that a measurable upper limit
can be found. An effort will be made in this chapter to indicate some
common situations when the bias can be neglected and some when it
cannot, and to point out how certain types of biases can be evaluated.

B. NEED FOR CARE IN SELECTION OF SAMPLE
WITH VARYING PROBABILITIES

3. Biases may arise where sample units are selected with known but
varying probabilities. A frequent source of bias in sample designs is the
use of varying probabilities in selecting the sampling units. Often the
design is such that these varying probabilities are known or can be readily
ascertained. When this is true the bias can be eliminated by appropriate
modification of the method of selecting the sample or of preparing
estimates from the sample. We shall give some illustrations of biases of
this type and indicate how they arise and how they may be avoided.

4. Mustration: Estimating the characteristics of ““family units’” from a
sample of individual members. , Suppose as an example that one wished
to estimate the proportion of school families (i.e., families with children
in school) in a given city that have a particular characteristic—say, the
proportion of school families that own their homes. One might be
tempted to draw a sample of school children, ascertain the tenure of the
home for each child included in the sample, and compute directly from
these returns the proportion of school families that own their homes. It
would turn out that even though a perfectly good sample of school children
were obtained by this procedure the result would be biased and perhaps
very seriously so. As an illustration suppose that the school families
were distributed according to the number of school children in the family
and according to the tenure of the home as shown in Table 2.

Suppose that the sample is drawn from school records in such a way
that each school child has the same chance of being included—perhaps by
taking a simple random sample of the children enrolled in school. Notice
from the table that 20 per cent of the children in school come from families
that have 4 children in school. Therefore, if we have a reasonably good
sample of children, approximately 20 per cent of the children in our
sample will be from these families, and hence 20 per cent of the families
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in our sample will have 4 children in school, whereas only 10 per cent of
all the school families in the city are of this type. At the other extreme,
only about 20 per cent of the children in the sample will be from families
with only 1 child in school, whereas 40 per cent of the families are of this
type. Consequently, if the investigator computed the proportion of home
ownership among the families of the children included in the sample, the
expected value of such an estimate would be 35 per cent, whereas the true
proportion of the school families that own their homes is 43 per cent.
Thus, the bias in this instance is quite serious. It arises because families
with 4 children, for example, have 4 times the chance of being represented
in such a sample as families with 1 child; and each family has a chance of
being included in such a sample that is proportionate to the number of
school children in the family. Large families are over-represented, and
smaller families are under-represented. In this illustration this means
that the groups with low home ownership are over-represented, and the
groups with high home ownership are under-represented, with the con-
sequent downward bias in the estimate from the sample.

Table 2. Distribution of school families

Families School children
Number of Ownine h

school p wiing home Per cent
hildren er cent of total
< famil Number | of total Per cent | Number hool

n family families | Number | of total SCnoo
families children

4 5,000 10 500 10 20,000 20

3 10,000 20 3,000 30 30,000 30

2 15,000 30 6,000 40 30,000 30

1 20,000 40 12,000 60 20,000 20

Total 50,000 . 100 21,500 43 100,000 100

—

A bias of the same sort would arise if we were estimating other charac-
teristics of the school families from such a sample as, for example, the
average size of family or the proportion of families with the head engaged
in a certain occupation, etc. The bias would be small if the average value
of the characteristic being estimated did not vary widely between the classes
of families that had widely differing probabilities of being included in the
sample, and the bias might be large if the average did vary widely between
such classes of families.

We shall indicate three ways in which the bias introduced by the method
outlined above can be avoided or eliminated.
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(i) Bias can be avoided by sampling families. One way of avoiding the
bias just considered is to compile an unduplicated list of school families,
so that the sample can be drawn directly from a list of school families
instead of from a list of the children in those families. In this instance,
each school family will have the same chance of being drawn, and unbiased
results will be achieved. The sampling theory corresponding to the
method used for selecting the sample will be applicable for evaluating the
reliability of such a sample. Thus, if a simple random sample of families
is drawn, then the simple random sampling theory will be applicable, etc.

If the sampling is done in this way, by sampling families, both individual
characteristics and family characteristics can be computed directly from
the sample, and any estimates made from such a sample, if made in
accordance with the appropriate theory as outlined in subsequent chapters,
will be consistent.

(ii) Bias can be eliminated by proper weighting. Compiling the list of
families, as suggested in (i), might be difficult, and it would not be necéssary
to do this to get an unbiased estimate. One could take the sample of
school children that was assumed above and prepare consistent estimates
from it. This could be accomplished by taking proper account of the
probabilities the various families had of coming into the sample. Thus,
suppose that a sample of # school children is drawn by a sampling method
whereby each school child had an equal chance of being selected for
inclusion in the sample (no matter whether the sampling method was
simple random sampling, stratified sampling, or perhaps some system of
cluster sampling). The effect of selecting families with varying probabil-
ities may be reflected in the estimate if the investigator ascertains for the
children that are included in the sample not only the tenure of the home
(and any other characteristics that are to be measured by the sample) but
also the number of other school children in the family (or, more generally,
the number of members of the family that had an opportunity to be
included in the sample of individuals that was drawn).

If we let x; represent some characteristic of the family of the ith
individual drawn into the sample, and a; the number of members of that
family that had an opportunity to be included in the sample, an unbiased
estimate of the aggregate value of the characteristic for all families in the
population is

1B

3=

M=

@.1)

&
l
Q

.

where n is the number of school children in the sample (n is also the
number of school families when at most | school child from a family is
in the sample).
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It should be observed that, in obtaining the estimate, the value of the
family characteristic for an individual who is included in the sample is
divided by a,, the number of members of the family who had an oppor-
tunity of being included in the sample. The division by a; is necessary
in order to offset the fact that, for families with, say, 3 members who had
an opportunity of being included in the sample, there will be 3 times as
many individuals in the sample as would result had each family had an
equal chance of being sampled. To illustrate with a very simple case how
the estimate is prepared, suppose that a sample of 5 school children is
drawn from a population of 20 school children and that the family
characteristics of home tenure, family income, and number of children in
school are obtained from the 3 individuals, as indicated in Table 3.

Table 3
Family characteristics
Identification .
of child Home tenure Family Number of school
income children in family
= owned, 0 = rented

(dollars) a;

1 0 6000 4

2 0 1500 1

3 1 3000 2

4 1 4000 1

S 1 2000 4

The estimate of the total number of families which live in homes that
they own would be

Ty Xy Xy Xy Xy 0 O 1 1
o g e, e, Ta, a1 AT
xier 2 : 4 5 20 5 ;7

This is an estimate of the number of families in the population being
sampled (the families from which the 20 school children came) that own
their homes. Similarly, the estimate of the total income of these families is

6000 1500 3000 4000 2000
s Tttty
2z =20 5 = $36,000

If we wish to estimate the per cent of the families that are owners or
the average income per family, we can do so by estimating the number of
families in the population and dividing the appropriate estimated total by
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the estimated number of families. The estimated number of families in
the population is given by:

and the estimated average value per family is » = 2’/w’. Thus, for the

illustration
A VIR AR SR TR B

wherefore the estimated per cent of the families that are owners is
1z = 58 per cent, and the estimated average income per family is
$36,000/12 = $3000.

The estimated average per family is a ratio of random variables, and
the estimated ratio will be a consistent estimate. If two members of the
same family are selected in the sample, the family must be included twice
in the tabulation. The estimate of the precision of any of the above
estimates is readily obtained from the theory presented in subsequent
chapters by simply calling

Lo _
P Ys ;
and !
a '
Then the estimated total becomes simply
N -
" 2V ; (42)

and the estimated average becomes

Y ( 43)

and the appropriate variance estimate to be applied is one of those
presented in later chapters for the variance of an estimated total or of an
estimated ratio as the case may be. The appropriate formula to use will
depend on the method followed in drawing the initial sample of school
children.

(iii) Bias can be avoided by associating family data with a unique member
of the family. Another method of avoiding bias in the problem we are
considering would be to specify that the characteristics of a family be
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associated with a unique member of the family from among those members
who have a chance of being included in the sample. Thus, we might
specify that the family data will be associated with the oldest school child
in the family. Since every school family has one and only one “oldest
school child,” each family will have the same chance of being drawn as
the oldest school child. Family data then would be compiled only for
the families of those children in the sample who are the oldest school
children in their respective families. In compiling family data all other
members of the sample would be ignored. In order to carry out this
sampling method it would be necessary to ascertain for each child origin-
ally drawn into the sample whether or not he is the oldest child in school
from that family. If not, then no further use would be made of the
information for that child in connection with estimating the characteristics
of families. If he is the oldest, then the family data would be obtained
and used. Family information for the children so selected would then
constitute a sample that could be used in the normal way. Thus, if the
sample of children were a simple random sample, the sample of oldest
children would be a simple random sample of all the oldest children;
and since there is one and only one oldest child for a school family, we
would have a simple random sample of families. The estimate of an
average or ratio would be prepared from such a sample in the way usual
for a simple random sample, and the precision of the sample results would
be evaluated in the usual way. (See Chapter 4 for a method of evaluating
the precision of sample results.)

Let us illustrate briefly how this method would work. Going back to
the very simple illustration given in the preceding paragraphs, suppose
that the additional information in the accompanying table was ascertained

for each child.
OLDEST SCHOOL CHILD
(Yes or No)
Yes
Yes
No
Yes
No

CHILD

N AW -

In this instance the family incomes would be compiled and used only
for the children in the sample designated by 1, 2, and 4. These are the
oldest children in their respective families.

We now have a sample of # = 3 instead of 5 for purposes of compiling
family estimates, and each family has had the same chance of being
included in the sample so no special weighting is necessary. The estimate
from this sample of the proportion who rent their homes will be 33 per



Sec. 6 NEED FOR CARE WITH VARYING PROBABILITIES 65

cent [equals (0 + 0 + 1)/3], and similarly the average income per family
estimated from this sample is ($6000 -{- $1500 +- $4000)/3 = $3833.
These estimates differ rather widely from the earlier estimates, as would
be expected from such a small sample. The variance of the estimated
mean or percentage is given by the usual formula for the variance for the
particular method of sampling used—simple random sampling, stratified
sampling, stratified cluster sampling, etc., as given in subsequent chapters

The estimated aggregate value of some characteristic for all families in
the populatlon requires special consideration. An estimate of this
aggregate is given by «/f, where f is the sampling fraction used in the
selection of school children, and 21 the _aggregate value of the character-
istic for the families included in jfge sample. Another estimate that can
be used in some instances and that will have a smaller variance is xN/a,
where N is the total number of school families in the population, and #
is the number in the sample. The variance for each of these estimates
is given in Sec. 9, Ch. 4.

Remark. Note that if one were trying to get a sample of all families'in a
city the methods described in (i), (ii), and (iii) would lead to a bias, since
families without school children would have no chance of being selected.

5. General applicability of these principles. The situation where a
single family, farm, business establishment, or other unit for which
information is desired may have multiple chances of being selected, is
commonly encountered. Each of the methods suggested for dealing with
the problem has practical applicability, and other similar methods can be
devised. See, for example, the method of selecting farms from a sample
of areas, discussed in Sec. 14. The case for using one or the other of the
types of methods for avoiding or eliminating the bias depends on the
circumstances in the particular problem. ‘

6. Biases that may arise in estimating individual characteristics where
families are sampled and one individual (or a fixed number of individuals)
is included in a sample from a family. It is not uncommon in surveys
such as opinion or attitude polls to draw a sample of adult persons for
interview by including in the sample one person per family in a sample
of families. This use of only one person per family may be introduced,
at additional cost, to avoid conditioning of respondents (see Sec. 24 of
this chapter) or for other reasons. If a single individual is drawn at
random within each sample family and the estimate is computed without
proper weighting, then again the sample estimates will be subject to a
more or less serious bias. The bias would arise because a member of a
family containing three adult members would have only one-third as much
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chance of being included in the sample as would a member of a family
with only one adult member; or, more generally, a member of a family
with a adult members would have only I/a as much chance of being in
the sample as would a member of a family with only one adult member.
The estimate could be made an unbiased one by ascertaining for each
individual in such a sample the number of members in the family that
would have been eligible to be included in the sample (in this instance the
number of adult members in the particular families) and using this
number as a weight in preparing estimates from the sample. An estimate
which avoids the bias, the variance of this estimate, and the estimate of
the variance are given in Ch. 7, Sec. 12.

The type of bias just described arises in the same way if one takes a
sample of one family or of a fixed number of families per block, or of a
fixed number of farms or of stores per area for areas that vary in the
number of farms or stores they contain, or for similar designs. Serious
biases will sometimes result unless appropriate recognition of the prob-
abilities of selection is carried into the estimating procedures, or unless
the original selection of the primary units has been with probability
proportionate to size (see Ch. 8, Sec. 14). Appropriate weighting is
accomphshed by welghtmg the returns for a particular md1v1dual {or other
probability that the particular unit had of being selected. This can be
done only if appropriate data on size are available or are obtained for the
sampled units, thus providing information on the probabilities of selection
of the elements included in the sample.

A method by which a sample that does not require special weighting is
obtained, and for which it is appropriate to include in the sample only
one person from a family, would be to ascertain before drawing the
sample of families the number of individuals in each family that are
members of the population being covered by the survey. If these numbers
are known, then the families can be sampled with probability proportionate
to the number of members, and one member included in the sample from
each family. This method is sometimes useful where only one interview
is wanted per family (to avoid conditioning other members of the family;
see Remark in Sec. 24) provided the necessary informa.ion on size of
family is known either exactly or approximately in advance. Then the
procedures of Chapter 8 can be applied. Ordinarily such a method will
be economical, however, only if measures of size are readily available or
the cost of ascertaining such measures is very small.

7. Bias introduced by selecting units nearest to randomly selected points.
A method of sampling that has sometimes been used and that provides
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another illustration of a biased method follows a pattern somewhat as
follows. A sample of farms or of families or of stores or of other units
is wanted for an area. A detailed map of the area is obtained on which
a random sample of points is designated.*

Then an interviewer is given the map and told to obtain his sample by
including the dwellings (or the farms or other units) that are nearest to
the selected random points. Let us examine how this method of selection
may affect the probability that a particular dwelling will have of being
included. Assume that the map, Fig. 1, shows the distribution of dwell-
ings in a part of the area. Suppose that a point is selected at random

Fic. 1.

within this area and that the dwelling nearest to the point selected is to
be included in the sample. Notice that, if the random point happens to
fall anywhere in the left-hand half of the rectangle, the dwelling numbered
1 will be the nearest to the point and will be in the sample. Now the
point has an equal chance of falling anywhere in the right-hand half of
the rectangle, in which case one of the dwellings 2, 3, or 4 will be nearest
and will fall in the sample. Thus, point 1 has a greater chance of selection
than do any of the other points. Moreover, a higher proportion of the
points within the right-hand part of the rectangle is nearer to dwelling
number 2 than to either 3 or 4. It is apparent, therefore, that this method
of selecting the sample will give the dwelling numbered 1 the greatest
chance of being selected, the dwelling numbered 2 the second greatest
chance, and the dwellings numbered 3 and 4 the least chance. If the
dwellings were disposed over the area in a different manner, the prob-
abilities would change but remain unequal. The chance that a particular
dwelling would have of being selected depends upon the density of the
dwellings in the neighborhood.

* The random sample of points may be designated by regarding the map as
plotted on rectangular coordinates. Then random coordinates are selected, and
these designate a set of random points. :
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With such a sampling method it might be possible to unravel the
probabilities that each dwelling included in the sample had of being
included, and from these probabilities one would be able to avoid biases
in the sample estimates. However, to determine the probabilities would
be, at best, a very complicated job, and a better way of avoiding this bias
is ordinarily to choose a method of selection for which the probabilities
are more readily determined. There are variations of the random point
method that give unbiased results. For example, one can cover all the
dwellings within a fixed radius around the random point. Then each
unit so selected will have an equal chance of selection, prov1ded the
random point is allowed to fall outside the physical boundaries of the area
being sampled by a distance at least equal to the radius. Such a method
would be used if other considerations pointed to it as desirable, but in
any event this would be a way of varying the random point method to
achieve results of measurable precision.

8. Possible bias with stratified disproportionate sampling. The method
of drawing a disproportionate stratified sample and the conditions where
‘it is desirable are discussed in Chapter 5. With disproportionate stratified
sampling the estimating procedure usually involves weighting the results
from each stratum by the reciprocal of the sampling fraction (the prob-
ability of selection) for that stratum. However, if through oversight or
by design one does not use this weighting procedure but simply merges
the sample returns and aggregates them without weighting, a bias may be
expected.

C. BIASES WHEN SAMPLE IS SELECTED WITH
UNKNOWN PROBABILITIES

9. Nonrandom sampling methods—bias introduced when sample units are
selected with unknown probabilities. Sections 5-8 have illustrated a very
common type of bias introduced in sampling where the probabilities of
selecting units for the sample are variable, and where the estimating
procedures do not take account of this variability. These illustrations
have for the most part pointed to methods of avoiding the bias by
obtaining certain additional information for the selected units that makes
it possible to ascertain the probability of selection for each unit in the
sample.

When the probabilities of selection are unknown and cannot be esti-
mated, the investigator is faced with a difficult problem.
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The following paragraph is quoted from Deming:*

The insidious thing about biases is their constancy and the consequent
difficulty of detecting them. Tests conducted to demonstrate the absence
of bias are ofttimes only experimental demonstrations of remarkable ability
to repeat the same mistake. To be specific, if the results of a large survey
are divided into ten piles at random, or are divided according to the
geographic locations of the regions whence they originate, intercomparisons
are incapable of detecting a bias in the over-all procedure because the results
in each pile may all be wrong by the same amount. Similarly, agreement
year after year does not demonstrate the absence of a bias. It should also
be remarked that most biases are not removed or diminished simply by
increasing the size of the sample.

Some illustrations of situations where the biases are beyond the control
of the investigator are given below.

10. Voluntary response to a mailed questionnaire. An investigator
planning a survey sometimes uses reasoning like the following: *“I don’t
see how this method of selecting these stores, these families, or these
persons will have any bearing on the characteristics to be estimated from
the sample—there is no reason to believe that those selected are different
from those not selected, and therefore there will be no bias.” Such
reasoning is common, for example, in connection with the use of respon-
dents who happen to reply to mail questionnaires. It is argued that,
since there is no apparent reason why any of those who respond will differ
from those who do not, the ones who do happen to respond constitute a
random sample of the population. The dangers of this reasoning are
illustrated by many survey experiences. '

For example, in 1937 a “census of unemployment™ was authorized by
the Congress, and funds were appropriated; but the provisions for the
census specified, in effect, that it should be a voluntary registration, and
the method for carrying it through was a mail questionnaire procedure.
The President appealed to all unemployed and partially unemployed to
respond, and a nation-wide publicity campaign attempted to achieve full
cooperation. Then the Post Office Department undertook to leave a
form at every door in the United States (with the exception of certain
areas that did not receive postal delivery service).

The technicians responsible for the “‘census” were aware of the diffi-
culties frequently encountered in interpreting voluntary mail survey
results and undertook, immediately after the mail canvass, to take a
scientific sample of the population and cover it completely with an
enumerative survey in order to provide a basis for evaluating the response
to the much more widespread mail returns.

* Deming (1), p. 17.
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With the tremendous impetus to respond in this survey, the return was
very high. As evaluated by the check sample, approximately 67 per cent
of those who should have responded actually did so, but still there were
significant and substantial biases in the returns.* The biases differed
widely between men and women and between age groups and other
classes. Moreover, they differed for varying characteristics within a
given class. Thus, WPA workers, the fully unemployed, and the partially
unemployed responded in different ways within a given age-sex group.

It should be pointed out that the mail survey in this instance was
tremendous in size, with more than 11,000,000 responses. Nevertheless,
the errors in the summary figures from the mail returns were many times
as large as the possible sampling errors of a reasonably well-designed
random sample of only a small fraction of this size. In fact, the check
survey covered less than 2 per cent of the population and involved only a
fraction of the cost of carrying out the extensive mail canvass. Not
only did it provide results of greater precision but also the precision could
be evaluated objectively.

Other illustrations of voluntary mail surveys are surveys of production,
employment, sales, and other characteristics of manufacturing or business
establishments carried out currently or periodically on a sample basis by
the government. Sometimes, in such surveys, a response is obtained
from a very high proportion of the establishments in the sample, account-
ing for perhaps 95 per cent or more of the total of the characteristic that
is being estimated for the establishments designated for the sample, and
in such instances reliable results may be expected. There is little room
for serious bias to arise. However, it is necessary to have substantially
complete coverage if confidence is to be placed in such methods.

The risk of bias may be reduced, but cannot be avoided, by dealing
separately, for example, with separate age-sex groups, particular occupa-
tional groups, or other classes of the population that are presumably more
homogeneous in their reactions to a questionnaire than the general
population. In some instances the seriousness of the problem may be
reduced by such methods, but the core of the difficulty still remains:
when the probabilities of including each member of the population in the
sample are not known, one is unable to insure results of known precision,
and biases of unknown and often of unsuspected character may distort
the survey estimates.

For discussion of the effective application of mail survey methods, and

* Calvert L. Dedrick and Morris H. Hansen, Census of Partial Employment,
Unemployment, and Occupations: 1937, Vol, 1V, The Enumerative Check Census,
U.S. Government Printing Office, 1938.
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of methods for making joint use of voluntary responses to a mail question-
naire and of other sampling methods that will insure unbiased or con-
sistent sample estimates, see Ch. 11, Sec. 3, and Case Study A, Ch. 12.

11. Selection of a convenient sample. If one who is interested in a
sample of the total population draws a sample of telephone subscribers in
a city, there will be unknown biases with respect to the characteristics
desired, and no matter how large a sample is taken of telephone sub-
scribers in the city—even if the size were increased so as to include all the
telephone subscribers—one could not expect to get results of known
precision for all families in the city. More than that, as already suggested,
it would not be sufficient to subdivide the sample into groups that appear
to be homogeneous with respect to the characteristic being measured and
weight the groups separately. Such a procedure may or may not reduce
the bias, but it provides no insurance that the bias will be eliminated or
reduced to a negligible level, and again the magnitude of the bias cannot
be measured.

The so-called “quota controlled” sampling method, which has been
widely used, is essentially a sample of convenience but with certain controls
imposed that are intended to avoid some of the more serious biases
involved in taking those most conveniently available. With this method
quotas are set up, for example, by telling an enumerator to take a specified
number of interviews in a given age group, and of a particular sex, and
perhaps in a roughly defined income group, with possibly other specifica-
tions with regard to fairly specific localities or areas within which these
quotas are to be filled. This method is similar to a stratified sampling
method except that a nonrandom sample more or less conveniently
available is used within the strata, rather than the method of random
selection.

The restrictions imposed on the convenience of the interviewer by this
method may possibly considerably reduce the biases. However, they may
also be completely ineffective. What is worse, there is no way to deter-
mine the biases except by a sample properly drawn and executed. .

12. Purposive sampling. A method of selecting a sample often em-
ployed in place of random sampling is to choose a sample which is
“representative” with respect to certain known characteristics of the
population. Thus one might attempt to choose for the sample that single
county which agrees most closely with United States averages in respect
to such selected characteristics as the per cent of the population engaged
in agriculture, the per cent engaged in manufacturing, trade, and other
industry groups, the proportion white and the proportion native-born.
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The same approach is sometimes used in choosing a sample of several
counties by the device of first classifying the counties into groups, or
strata, and then selecting a “representative” county from each stratum.
The method is sometimes applied in sampling business establishments,
families, or other units. It differs from stratified random sampling in that
the actual selection of the units to include in the sample in each group is
done purposively rather than by a random method.

The purposive approach to sampling may be useful where it is necessary
to include a very small number of units in the sample. Thus, if one were
faced with the task of finding one county, or even five or perhaps a dozen
counties, to represent all the United States, purposive selection might be
the best approach. Of course, neither a sample of one county nor a
sample of five counties can ordinarily be found that will represent the
United States on a number of characteristics, unless the investigator is
extremely fortunate, or unless the answer to the problem is known for
all practical purposes before the sample is selected, or unless there is no
variability between areas in the desired characteristics. A method based
on purposive selection is biased, but the biases probably would be smaller
for a sample of one county selected purposively to represent the United
States, than the random errors would be in a measurable method that
depended on a random selection of a single county. On the other hand,
if the sample is to include a considerable number of units, then the biases
of these purposive methods often will be more serious than the random
errors introduced by the methods discussed in this book, in which random
or chance selection rather than purposive selection is used.

13. The role of purposive and other nonrandom sampling methods. An
experiment described by Yates* illustrates the inadequacy of judgment
selection in a rather striking fashion. A collection of about 1200 stones
was spread out on a table, and each of 12 persons was asked to select 3
samples of 20 stones, which should represent as nearly as possible the size
distribution of the whole collection. The results showed a consistent
tendency, common to nearly all observers, to overestimate the average
size of the stones; in fact, only 6 of the 36 estimates were smaller than the
true average weight, and 3 of these estimates were made by a single
observer. Another interesting aspect of such a purposive selection is the
consistent tendency to underestimate the variance of the distribution; the
observers select stones as near their concept of the average size as possible,

* F. Yates, “Applications of the Sampling Technique to Crop Estimation and
Forecasting,” Transactions of the Manchester Statistical Society Session 1936-
1937.
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with a much smaller proportion of extreme sizes than would be obtained
in a random selection.

Since we know of no statistical theory for measuring the reliability of
sample results by purposive or other nonrandom sampling methods, such
methods are automatically excluded if the criteria of good sample design
described in Chapter 1 and adopted in this book are followed. But this
presumes that a probability sampling method is feasible. In some
instances a probability sample may be practically impossible, as in drawing
a sample of fish from the sea, or of some types of wildlife. In such
instances, if data are to be collected, a nonprobability sample must be
used. Also, there may be instances where a probability sample can be
designated, but only incomplete responses are available, as where there is
refusal to cooperate in a survey and persuasion is unsuccessful in getting
cooperation from a substantial fraction of the designated sample. In
such instances it is, nevertheless, important to designate a probability
sample as a basis for evaluating the possible importance and effect of the
noncooperation.

Whenever a nonrandom method is used, the same principles for
efficient sample design developed throughout this volume will be appli-
cable, but with the substitution of some purposive or other nonrandom
method of final selection, where a reasonably satisfactory one appears
available, instead of a random selection. One should keep clearly in
mind, however, that in using such methods he is obtaining results whose
accuracy must be based on assumptions and judgments that cannot be
measured objectively.

Although the facts would be difficult to establish, it may happen, in a
case where a probability sample is feasible, that a nonrandom method
would yield more reliable results per unit of cost than the optimum method
chosen through the application of the criteria and sampling theory we
have considered.

How, then, is one to know which type of method to use? A suggested
answer to this question is the following: If it is important that reliable
results be obtained, and if a fairly heavy loss may be involved if the wrong
action or decision is taken as a consequence of having depended on results
that actually turn out to have larger errors than are considered tolerable,
then a method for which the risk of error can be controlled should be used
if possible. On the other hand, if conditions are such that only fairly
rough estimates are required from the sample, and important decisions do
not hinge on the result, then only a small sample is required, and the price
to be paid for using a sample whose accuracy can be measured may not
be justified. Under these conditions it may be that the biases of a low-
cost nonrandom method will be considerably less important than the
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random errors resulting from the small size of the sample, and thus such
methods may be expected to produce results of sufficient reliability more
economically than would more rigorous alternative methods. However,
it appears reasonable to assume that, in most instances in which a fairly
precise estimate is desired, and for which, therefore, a fairly large sample
is used, the possible biases of nonrandom methods may be sufficiently
serious to make them less efficient in terms of precision of results per unit
of cost than an appropriate probability sampling method.

14. Biases that arise when a sample is not carried out in accordance with
specifications. A fundamental criterion of good sampling discussed in
Chapter 1 was that the specifications of the procedures to be followed must
involve only simple workable steps that can be actually carried through
in practice. An approach must be rejected as impracticable unless one
can assure himself that, with the resources and facilities at his disposal for
carrying out the sample, the procedures specified can and will in fact be
carried out exactly or substantially as specified. Thus, one must assure
himself, in designing a sample, that any procedures specified are practicable
and workable under the particular circumstances in which he expects to
use them. If such is not the case, a sample selected with unknown
probabilities is likely to be the result.

Some of the biases that may arise in connection with methods or pro-
cedures that are difficult to carry out in practice will now be discussed.
Some problems that need particular attention have to do with making
administrative or procedural errors in the use of maps, lists, or other
facilities, and in other steps involved in designating the sample and
obtaining the desired information from the units that are to be included
in the sample.

Suppose that an interviewer in a city were instructed simply to get a
random sample of 50 people. Few interviewers would know what is
meant by a random sample or how to select one; and, given such an
instruction, an interviewer would almost necessarily end up with some sort
of convenient sample. If a random sample is to be obtained, the investi-
gator must break the problem down into simple routines and spell out the
various steps and specifications in such a way that the interviewer will
know exactly what to do. Moreover, it is not sufficient that the staff
taking the survey know what to do. They must be able to do it. Thus,
if a sample of automobiles in an area is desired, it is conceivable that the
sample could be designated by specifying a sample of small areas, and
associating an automobile with a particular area on the basis of its location
within that area at a particular instant of time. It is probable that in
practice such a sample could not be followed through, at least without the
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extensive resources needed for coverage of all areas simultaneously,
together with the authority of a police force to stop and detain all auto-
mobiles in the designated areas. Without such resources, one would
probably be doomed to serious administrative errors if he tried to apply
such a method. Therefore, in accordance with the criterion of using only
workable methods, the procedure would have to be rejected.

Again, suppose that the problem is to take a survey of farms, and that
an area sampling method is to be used whereby the farms in designated
sample areas are to be covered. One might conceive of designing a
sample of areas by specifying the boundaries of the areas in terms of
latitude and longitude, and if the farms in such areas were cortectly
enumerated the sample might be entirely satisfactory. But most persons
employed as interviewers who were given such specifications would find it
difficult if not impossible to locate the areas accurately. The situation is
little better if a sample of areas is designated, say, on maps that are too
small to be read or that are poor and that cannot be followed in the field
operations. The problem of clearly designating areas is solved by pro-
viding reasonably accurate and detailed maps so that an interviewer with
a moderate amount of training in map-reading can locate and cover the
area indicated.

The problem of designating uniquely the particular farms to be included
in the sample would still not be solved by specifying the areas on an
accurate and detailed map. Some farms may be partly inside and partly
outside a designated area, and one would have to formulate rules that
determine whether or not a particular farm is to be regarded as associated
with a given area. Various rules may be used to do this. For example,
one may first specify some unique way of determining who is the operator
of the farm, and then designate the farm as in a given area provided the
operator lives in that area; or another approach may be to designate a
principal farm dwelling if there is a dwelling on the farm, and assign the
farm to the area that contains the principal farm dwelling; if there is no
dwelling on the farm, the location of, say, the northwest “corner” of the
farm may determine its location. If the farm has no dwelling other rules
can be found. . The problem is not easily solved, and in fact is a problem
in taking a census as well as a sample, because a census too is taken by
assigning an area to an enumerator to canvass with instructions to include
in the cen.us all the farms in the specified area.

Although the problem of associating units with areas occurs in a census
as well as in a sample, it may be more serious with a sample. Thus,ina
census of agriculture, the Bureau of the Census establishes enumeration
areas that usually contain from 50 to 200 farms. The proportion of farms
that will be near the border or cross over the border of such areas will be
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considerably smaller than for areas with, say, 4 farms, as may be seen
in Fig. 2.

In this illustration, 100 points were selected at random in the large
square, which measures 50 units on each side. The 100 points may be
taken to represent the location of 100 farms. We note that 8 of the farms
(8 per cent) lie within 1 unit of the boundary. Now let us look at the
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smaller squares, say, squares that measure 10 units on a side. In the
small square at the upper right, 3 out of 3 points (100 per cent) are within
1 unit of a boundary, and in the small square at the lower right, 2 out of
6 points (33 per cent) are within 1 unit of a boundary. In this illustration,
on the average, 8 per cent of the points in the large 50 x 50 square would
be within 1 unit of a boundary, whereas 36 per cent of the points in the
10 x 10 squares would lie within 1 unit of a boundary. Since points
near a borderline are more likely to involve difficulties in regard to their
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exact location, it is clear that such difficulties will occur less frequently in
general when the areas are larger.

Even so, if good maps are available and simple rules are spelled out
for associating farms with areas, and if reasonably well-trained inter-
viewers are available, considerable experience has shown that the use of
small areas is feasible and that farms, dwellings, and business establish-
ments can be associated with small areas satisfactorily.

The discussion in Chapter 6 indicates that small clusters are more
efficient sampling units than large ones if the entire unit is to be included
in the sample (i.e., no subsampling). However, where maps are poor
and boundary problems are frequent and difficult to handle with small
areas, it may be necessary to use larger areas and thus reduce the number
of boundary problems. Often, under these circumstances, subsampling
will be desirable, as discussed in connection with block sampling in
Chapter 3.

Many other illustrations could be given of problems involved in
designating workable procedures, but the general conclusion would be the
same in each instance. The investigator must adapt the procedures used
in a survey to the particular circumstances that he encounters. The only
acceptable procedures are those that can be carried out with the resources
and personnel available. They should also be verifiable, so that adminis-
trative controls can be established for insuring that the work has been
done substantially as specified.

Remark. A good illustration of how errors may result when sampling
units are too small is given by Sukhatme,* in a report on biases which arise
in using very small areas as sampling units in estimating the yield of wheat.
When the area was a circle of radius 2 ft., he found an overestimation of
yield of about 40 per cent, due chiefly to the inclusion of border plants.
Errors of this magnitude are obviously unacceptable in the administration
of a national food program.

D. POSSIBLE BIASES WHEN DECISIONS ON SAMPLE
DESIGN ARE BASED ON SAMPLE RESULTS ”

15. Biases sometimes introduced if decisions on sample method are made
on the basis of results from the sample. In making decisions on further
methods to be followed, it is sometimes desirable to make use of know-
ledge gained from an examination of a part of a sample already drawn.

* P. V. Sukhatme, “Bias in the Use of Small-size Plots in Sample Surveys
for Yield,” Nature, 157 (1946), No. 3993, p. 630.
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However, such a procedure may be the cause of serious biases in sample
results. For example, one may make a decision to increase the size of
the sample after an examination of partial sample returns. This pro-
cedure when properly used may be highly desirable and effective, but when
improperly used may cause serious biases. Similarly, one may make a
decision as to the particular kind of sample estimate to employ after the
sample returns have been obtained and examined. Properly used, such
a procedure may be a way of improving the reliability of estimates from
the sample. When improperly used, however, this proczdure may
introduce serious errors.

It is difficult to state general principles for determining when it is
acceptable to base further sampling decisions on partial returns, but some
specific rules and illustrative cases can be presented. The basic rule to
follow is that the making of decisions on further sampling procedures on
the basis of partial returns from the sample should be avoided except in
cases where it can be demonstrated that no significant biases will be
introduced. The next seven sections discuss several common practices
and indicate some conditions under which it is permissible to use partial
returns as a guide for further decisions. The theory of sequential sam-
pling, which deals with a general approach to increasing the size of sample
on the basis of an examination of initial sample resuits, is not treated in
this book.

16. Decision to select another sample after looking at sample results. A
fairly obvious and flagrant way of arriving at biased results is to examine
the returns from an initial sample to determine whether they appear
acceptable to the investigator; if they do, he uses the results as they are;
if they do not, he discards the sample results and draws a new sample,
perhaps by a different method, in the hope that he will obtain a result
more nearly like the one he expected. Such an approach can be utilized
to obtain almost any results desired, or can “prove” any point even when
unbiased or consistent methods of selecting the sample and making the
individual estimates are used if the initial results are subject to relatively
large sampling errors.

This is not to suggest that the investigator should refrain from question-
ing the results when he finds that they are contradictory or inconsistent
with other data. Often the results of compilations, either from samples
or censuses or from other sources, are in error due to various causes.
The errors may have arisen from blunders in compilation, errors in inter-
viewing, or other sources, and obviously the results should then be checked
thoroughly. So far as possible, of course, administrative controls should
be established to avoid such errors; verification procedures and the
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correction of errors should be carried through whether or not the results
appear to show what the investigator expected.

Verification by drawing a second sample may be acceptable, but until
one has isolated any sources of significant error other than random
sampling error in the initial result, any effort at verification by drawing a
new sample is likely to be subject to the same errors that caused difficulty
in the first sample.

17. Determination of sample size after looking at initial sample results.
It can be shown that significant biases are less likely to arise if the investi-
gator sets out to achieve a specified degree of precision, draws a sample,
increases the sample size if the estimated variance of the item being
estimated from the sample is too large to be within the bounds of error
that have previously been specified as acceptable, and stops when the
variance comes within the previously specified magnitude. Note that the
increase of sample size under such conditions may sometimes result in a
significant bias if the initial sample size is so small that it gives an un-
reliable estimate of the variance and the estimate of the variance is
correlated with the estimate of the item. But if the initial sample size
is large enough so that the estimate of the variance is subject to a coeffi-
cient of variation of no greater than, say, 15 per cent, then one may be
able to use this approach with reasonable assurance that if biases result
they will be small relative to the standard error of the sample estimate.
Such a method will lead to an under-estimate of the variance, but this bias
is made small if the coefficient of variation of the initial variance estimate
is small.

18. Determination of method of estimation after looking at the sample
returns. Another acceptable way in which an investigator can use a
sample result for determining how to proceed is in the choice of the
estimating method. This can be done if he specifies, in advance of
making his sample estimates, several alternative types of estimates that
will be considered. He then computes from his sample the estimates of
the variances for the respective estimating procedures and chooses that
method of estimation which has the least estimated variance. For
example, one may wish to estimate a certain total from the sample. One
method of estimation might be to use the simple unbiased estimate,
obtained by multiplying the sample total by the reciprocal of the sampling
fraction. Another method might be to use a ratio estimate, perhaps the
ratio to total population from the sample applied to a known total popu-
lation of the area. Then, if large enough samples were taken to yield
reasonably reliable estimates of the variances, it would be a reasonably
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safe procedure to estimate from the sample itself the variance of each of
these estimates, and choose the form of estimate that has the smallest
estimated variance. Although this procedure will lead to an under-
estimate of the variance, the understatement will be trivial for sufficiently
large samples.

This is very different from the situation in which the investigator examines
the results from possible alternative procedures and chooses the one that
looks to him to be the most reasonable or the closest to what he had expected
in advance. The latter procedure is subject to serious biases, particularly
when the variances of the estimates compared are relatively large. The
consideration that distinguishes acceptable from unacceptable procedures
of choosing the best estimate is whether the search for different methods
arises out of one’s dissatisfaction with the magnitudes of the estimates that
have already been examined, or out of a desire to obtain the estimate with
minimum variance.

19. Rejection of atypical or ‘‘unrepresentative’’ observations. Another
procedure which may lead to more or less serious biases is to examine
the observations drawn by a random process and then to discard those
that, in the judgment of the investigator, are unrepresentative or atypical.
In an extreme case, when most of the observations must pass the test of
being representative in the eyes of the investigator or else be rejected, the
whole selection operation is reduced to one of a judgment or purposive
selection. In a less extreme case the investigator may accept practically
all observations but reject occasional unusual ones as atypical. This
problem is given some further attention in Ch. 8, Sec. 9.

20. Substitutions for sample selections that are out of business, vacant
dwellings, or otherwise not members of the population that is being sampled.
A special and often misunderstood problem arises when one finds a unit
in the sample that is not a member of the population that is being sampled,
although it lies in the area or is on the listing from which the sample is
being taken. Thus, suppose that one is sampling from a list of retail
stores, selecting one at random from each successive set of 20 stores on
the list. Suppose, now, that one of those chosen is found, after sclection,
to be out of business. A procedure sometimes followed is to substitute
another store for the one that was out of business, perhaps by taking the
next store on the list, or the store next door, or by taking another one at
random from the set of 20 in which the out-of-business store was found.

Such a procedure is ordinarily biased and should not be used. If the
list from which the sample is drawn has on it stores that are out of
business, the sample will include approximately the proper propottion of
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such stores. Stores on the list adjoining the ones that are out of bysiness
may well be of a different character from the remaining stores, and if they
are, such a substitution procedure may introduce serious biases.

The situation is the same, of course, if one is sampling dwellings or
people and makes substitutions for members falling in the sample who are
not eligible for the population being sampled. The right action in such
instances is merely to reject those not to be covered, without substitution.
The total size of sample may have to be increased by a supplemental
sample in order to get enough eligibles of the desired class. However,
increasing the total size of sample is quite different from substituting
neighbors for particular persons or dwellings that are rejected as not being
eligible for the survey.

21. Subsampling and double sampling. Some sampling procedures are
designed specifically to take advantage of the sample returns in deciding
on eflicient further methods to follow in completing the survey. Sub-
sampling methods and double sampling methods especially have this
characteristic. In subsampling, for example, there is no risk of bias
whatever if one draws an initial set of sampling units consisting of clusters
of elements and then subsamples from these selected units by examining
the particular unit selected and then choosing whatever random methods
may be most convenient for subsampling. This approach makes it
possible, in designing the subsample, to take full advantage of any special
features of the particular primary units selected. This is discussed in
Ch. 9, Sec. 12.

In double sampling, also, the objective of the whole method is to
examine an initial sample as a basis for drawing a subsample from it.
The use of this method is described in Ch. 11, Sec. 3.

22. Pretesting as a basis for planning a sample design. Another highly
desirable method of obtaining partial sample results, examining them,
and making decisions as to further sampling methods and the ultimate
sample size is through the use of a pretest sample. In this instance, an
initial sample is drawn as a basis for obtaining experience in the use of a
questionnaire and on the cost of various operations, and for estimating
the variances of the sample method or alternative methods that are being
considered. After the initial evidence is obtained the final survey is
designed and carried through. In this type of situation no bias whatever
is involved, and this procedure is a widely used and often highly efficient
one in the design of statistical surveys, not only for obtaining an efficient
sample design but also in clarifying instructions, improving the design of
questionnaires, etc.
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E. RESPONSE AND OTHER NONSAMPLING
ERRORS IN SURVEYS

23. Nature and sources of nonsampling errors. We have referred to the
sampling error of a sample estimate as the difference between the estimate
computed from the particular sample and the resuit that would be
obtained from a complete census if the same interviewing and other
procedures involved in collecting the data were followed. The reason for
defining sampling error in this way was to concentrate attention on
variations due to sampling and not to have these confounded with other
types of errors in surveys that are present whether the coverage is complete
or is on some kind of sample basis. It needs to be recognized, however,
that even if a presumably complete census were taken instead of a sample,
there might be more or less serious errors in the results arising from errors
in response to the questionnaire or from other causes; the nature of such
errors and ways of controlling them need attention in survey design.

In the 1940 Census of Population, for example, statistics were collected
and compiled on the number of people who were employed on work
relief programs, while at the same time information concerning the
number on the program payrolls was available from the emergency
agencies themselves. It was found that the complete census did not
classify as on emergency work programs all of those who were known to
be receiving emergency work relief. The net discrepancy amounted to
approximately 25 per cent. The problem here was primarily a response-
error problem. The process of asking a person certain questions and
recording the answers to those questions does not insure that the answers
recorded are the correct answers, if there are any, to those questions.

As an illustration of the way response errors may arise let us consider
the problem of ascertaining the number of persons having a particular
characteristic in a city, say the number of persons between 18 and 44 years
of age, inclusive. This seems like a relatively simple characteristic to
measure.

First, suppose that a canvass—a presumably complete canvass—were
made of the entire city. Should we expect to come out with exactly the
true value? To answer this question we must determine what we mean
by “true value,” and the first step in making this determination is to
formulate a more specific definition of what it is that is to be measured.
Thus, we may want to count all persons in the city between 18 and 44
years of age at a particular instant of time, including anyone who happens
to be traveling through the city at that time, and excluding anyone who
normally lives there but happens to be elsewhere at that instant. This
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definition, although clear, might be hard to apply with precision in an
actual canvass, especially since there would be difficulty in conducting the
canvass in such a way that it could be completed instantaneously.

Instead, we might want to cover those who “usually live here.”” 1If so,
what do we mean by *“‘usually live here”? Shall we consider that people
live in an area who maintain a home there but are away on a two-month
or perhaps a six-month or longer vacation? If so, how can they be
interviewed? Perhaps they are abroad. Suppose that somsone who
maintains a home in an area has accepted employment elsewhere and
spends only his weekends at home, or suppose that he maintains a home
in each of two different areas and divides his time between the two places.
In which of the two places shall we say he lives? Or a person may have
no home anywhere but may be staying in the area temporarily, or he may
be simply passing through in a trailer that is his only home. One can
readily see many problems in defining accurately the apparently simple
population we set out to measure. Once the true value is defined, it is
apparent that there are many problems of applying the definition accu-
rately in an actual canvass. Consequently, errors may be made through
omissions of people who should be covered, or inclusion of psople who
should not be covered, or there may be duplications in the enumeration
of some people.

We see, therefore, that in taking a census to ascertain the number of
persons 18-44 years of age more or less serious errors may occur in
determining whom to enumerate in a particular community as part of a
census of the area. Moreover, once one has determined that a particular
person is to be interviewed, there is still the question of getting an accurate
report on that person’s age. Some people do not know their age exactly.
Others tend to respond in round numbers or may even purposely report
their ages incorrectly. The problem of getting an accurate response might
be considerably more serious if we were inquiring whether the individual
were employed, or whether he held a particular opinion, or if we were
interested in other more complex types of information.

A complete catalogue of all the sources of error in a survey is beyond
the scope of this volume. However, an examination of the major phases
of a survey or census indicates that some of the more important possible
errors other than sampling errors arise from the sources listed below.
The sources of error indicated are not mutually exclusive or exhaustive.

a. Errors due to faulty planning or definitions. In planning a survey the
purposes of the survey are made explicit. The purposes are then trans-
lated into a set of definitions of the characteristics for which data are to
be collected and into a set of specifications for collecting, processing, and
publishing. The possibilities of error arise where the statistician fails to
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understand the purposes of the survey, where the definitions that are set
up may not be pertinent to the purposes, where the specifications (for the
sample, the questionnaire, the method of collecting the data, the methods
of selection and training of personnel, processing methods, etc.) would
lead to error even if followed exactly.

b. Response errors. Response errors may be accidental or may be
introduced purposely, or they may arise from lack of information. A
respondent may misunderstand a question and give an improper answer
unintentionally, or may respond incorrectly because of a belief that an
incorrect answer may increase his prestige, or for some other reason.
Similarly, the interviewer may affect the accuracy of response by the way
he asks questions or records them. One source of error common to most
methods of collecting information is that of recall. Many of the questions
in surveys refer to happenings or conditions in the past, and there is a
problem both of remembering the event and of associating it with the
correct time period.

c. Errors in coverage. One can conceive of a true number of residents
in an area, according to some definition, at a point in time. When we
take a census of population we will miss some persons and duplicate or
enumerate others in error. The net error is the difference between those
missed and those enumerated that should not have been. Such errors are
often larger than would be commonly expected. Similarly, in an agricul-
ture or business census, there is a question of under- or overcoverage, but
here the problem is more difficult because of the lack of clarity of the
definition of a farm or an establishment for borderline cases. Errors in
applying a definition may affect coverage, as well as errors in location.
Samples drawn from such populations may be subject to coverage limit-
ations, also, if the sample is so designed that certain classes of the popula-
tion have no probability of being included or inappropriate probabilities
of being included. Errors in coverage may be regarded as a type of
response error, as was implied in the illustration given earlier in this
section.

d. Errors in classification. The statistical classification of data, such as
classifying persons by occupation, business establishments by industry,
deaths by cause, and illnesses by diagnosis, is fundamental to most
statistical operations. Some classifications are straightforward, but many
systems of classification are not unique or are very difficult to apply, and
conceptual problems of actual applications of the classification system
lead to misinterpretations and to error. These errors, too, may be
regarded as a form of response error.

e. Compiling errors. Errors may be introduced in the various processes
involved in tabulating and summarizing the original observations made in
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the survey. Compiling errors are subject to control through verification,
consistency check, etc. Any operation such as editing, coding, punching,
tabulating, transcribing is a potential source of error. One of the impor-
tant decisions to be made in large-scale censuses and surveys is how much
control in the sense of verification, consistency checks, etc., is required to
maintain the desired level of accuracy. Case Study E, Ch. 12, illustrates
an approach to this problem.

f. Publication errors. Here there are two sources of error to be con-
sidered. One has to do with the mechanics of publication—with proofing
errors and the like. The other, potentially much more serious, lies in
the failure of the survey organization to point out the limitations of the
statistics. Errors here can run the gamut from faulty labeling of tables
to failure to state known sampling and other types of errors and to point
out more general limitations involving definitions and purposes. A report
which conveys an erroneous impression either of the survey statistics
themselves or of their accuracy may contribute more to the error of a
statistic-in-use than any other phase of the survey.

We shall give principal attention to the evaluation and control of
response errors of various types.

24. Definition of expected survey value. Results expected on the
average from a sample survey or from a complete canvass of a population,
based upon any specified set of procedures and conditions for obtaining
the information, may be referred to as the expected survey value. The
expected survey value may vary with the particular approach used to
obtain the information. As an example, let us return to the illustration
~ mentioned above, in which it is desired to ascertain the number of persons
18-44 years of age in an area through a presumably complete census.
The specification might be to include in the survey all people who live in
the city, i.e.,, whose “usual place of residence” is in the city. Let us
consider two possible sets of conditions for taking the canvass.

(a) One method of taking the canvass might be to divide the city into
relatively small areas and to employ interviewers and assign one to carry
out the canvass in each such area. This method might involve a simple
listing sheet as a questionnaire on which each address is to be listed, and
the interviewer might be instructed to inquire of some responsible person
at each address, “How many people live at this address who are between
18 and 44 years of age, inclusive?”” and to enter the response obtained on
the listing sheet. He might be instructed to make as many calls as
necessary in order to obtain an interview at each address, or to assure
himself through sufficient inquiry of neighbors that no one lives at a
particular address, or, where it is extremely difficult to find someone at
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hbme, even after repeated calls, to obtain the desired information from a
neighbor if possible.

(b) A second method of taking the canvass might involve dividing the
city into the same small areas, making similar assignments of interviewers
to carry through the canvass, and providing for an interview of a respon-
sible person ‘at each address, as before. But, let us assume that the
second method involves the use of a questionnaire in which every indi-
vidual residing at an address is to be listed separately by name, by his
relationship to the head of the family, and by age and sex. Suppose that
this questionnaire also calls for the date of birth of each individual and
provides for further inquiry concerning the individual’s age whenever the
date of birth and the age as originally reported are inconsistent, and that
it provides for specific inquiries to be made about persons who live at the
address but who may be temporarily away from home, and about possible
lodgers or others at the address who might have been overlooked in the
initial listing of the persons resident at the address.

Suppose that the two methods of canvass just described were carried
out under conditions that were essentially identical in all other respects,
i.e., the same types of interviewers, similar quality of supervision, similar
weather conditions, same time of the year, and other essential conditions
the same.

Would one expect the two presumably complete censuses just outlined
to yield the same results if independent canvasses by the two methods
were taken of the same area? Actually, differences in results may often
be expected from what appear to be relatively minor variations in the
survey method. Thus, the’expected survey value will depend upon the
particular procedures followed and other conditions surrounding the
survey. - Many other variations in method could be introduced with
corresponding variations in the results expected: variations in the training
of the interviewers or the qualifications they possess, or in their super-
vision, or in other factors having an effect on the results to be expected
from a census.

The idea of an expected survey value does not imply that a fixed result
is achieved by the use of a specified method of taking a complete census.
It does imply that, with a large enough experience through repeated
samples or censuses taken by means of a particular method and under
similar conditions, the results of the aggregate of the experiences would
converge to a fixed value. This is an assumption that is made in the hope
that it will yield a helpful approach to measuring response error. Thus,
under the assumption of the existence of an expected survey value, if two
independent canvasses of a population are carried out, using the same
methods each time, there will be some differences between the results of
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"the two canvasses. A respondent will not always give an identical answer

to the same question; or if personal interviews are involved, the question
may be posed slightly differently for a given respondent at different
interviews. For these and many other reasons differences will arise in
repeated samples or with a complete census carried out at different times
under the same specified conditions. However, if the population under
consideration is large, the differences in averages, aggregates, or other
derived measures arising from carrying out two independent complete
censuses under the same essential conditions will be of a trivial order of
magnitude.

It may and often will be feasible to exercise greater care in collecting
data on a sample basis than might be practicable in taking a complete
census, so that the essential conditions surrounding a sample may be quite
different from the essential conditions surrounding a complete canvass
that it would be practicable to conduct. In this instance the expected
survey value for the sample procedure may be considerably different and
perhaps closer to the true value than would be the result of a complete
census taken under less adequately controlled circumstances. (See Case
Study B, Ch. 12.) On the other hand, it is not difficult to imagine, or
unusual to find, a sample survey that has been taken under less stringently
controlled conditions than ordinarily would be imposed if the larger sum
of money involved in a complete census were being expended.

Certain types of conditions can surround a complete census which it
may be impossible to introduce into a sample survey. Thus, it is common
practice in a population census in the United States, after the canvass of
an area is completed, to announce publicly the total population of the
area as obtained from the canvass and to ask anyone who believes he was
not covered by the census to cooperate by getting in touch with the census
representatives. In addition, local officials and civic groups who have an
interest in seeing that the official population figures do not reflect an
undercount may undertake to locate people who might have been missed
by the census and to stimulate such persons to take steps to insure that
they are included. In practice it has ordinarily been found that many of
the people picked up in this way who believed they were not included
actually were, and usually only small differences are introduced into the
census results from such activity whenever the original census has been
taken with reasonable care. This type of activity would not be practicable
if one were taking a sample of the city instead of a complete census.

Often the reduction of response errors is achieved only by intensive and
often expensive measurement or questionnaire or interviewing methods,
whose costs would be prohibitive in a complete census. On the other
hand, significant decreases in response errors can sometimes be achieved
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at slight increase in expenditure, perhaps by a change in wording or by -
one or two additional questions on a questionnaire that may add little
to the time of each interview. Thus, in connection with migration
studies, the Census Bureau recently investigated alternative methods of
obtaining information on place of residence of the respondent at some
prior date. Previous experience with the question had shown that there
was a strong tendency for the respondent to give a post office address
rather than actual place of residence, or, if he lived in a suburb of a city,
to give the name of the central city as his place of residence instead of the
suburb. This caused rather significant errors in the results; in the test
made it was found that the expected survey error was about 10 per cent
when a single question was asked as compared with the result obtained
by using several questions that brought out the facts more clearly. In
this instance, a few additional questions resulted in a slightly increased
time for interviewing, but it’appeared that they were essential if the
information was to be reasonably reliable.

Many other illustrations can be found where it has been demonstrated
that the accuracy of response depends on the form of questionnaire, the
method of interview, the ability and training of the interviewer, or related
factors, and where the proper expenditure of additional effort may be
expected to increase the accuracy of the response. In other instances,
however, additional effort may bear but little fruit in the form of increased
accuracy, especially in instances where the information that is wanted is
vague in nature.

Remark. Effect of conditioning of respondents. Often the responses of
one interviewee have an effect on those of another interviewes. Thus
suppose that one were to interview a husband and wife together, and ask
them about any instances of infidelity or, for that matter, about their voting
intention in the next election. Some of the responses obtained when
husband and wife were interviewed together might differ from those that
would result if they were interviewed separately and under circumstances in
which they placed confidence in the investigator. The responses might
be affected by a joint interview, and therefore might differ from the responses
to a privately and confidentially conducted interview. Similarly, on many
types of questions, if one member of a family were interviewed one day and
another the following day, intervening conversations might condition the -
responses on the second interview. Further, the response to a mailed
questionnaire, filled out by the respondent, might differ from that obtained
if an interviewer were present and asked the questions and recorded the
responses. The interview or response situation conditions the response in
many instances.

Such conditioning is a circumstance that would be present in a complete
census in the same way as in a sample survey. In a sample, however, it
may be feasible to avoid certain types of conditioning that could not be
avoided in a complete census. In a sample, for example, it can be specified
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that the interview shall be conducted with only one member from a family.
This latter specification could not be followed in a complete census.

It is not the purpose here to suggest that such conditioning is undesirable.
One may in some circumstance obtain more useful answers when a joint
interview is held than when separate interviews are conducted. The
purpose here is merely to point to the nature of conditioned responses and
to the fact that often certain types of conditioning can be controlled if
desired with appropriate survey design.

Response bias and response variance. The discrepancy between the
*“true value” that is being measured and the expected survey result is
called the “response bias.” The magnitude of such a response bias will
depend on the particular interviewing and related procedures that are
followed, the form of the questionnaire, the training of the personnel that
carry out the project, etc. The response bias may or may not be large;
the procedures specified for taking the survey should be such as to insure
that it is not large enough to make the results misleading. The collection
of information is purposeless unless procedures of interviewing and
canvassing or other methods of obtaining information can be found for
which such biases are small enough that the results will be useful. Only
when this is true is it worth while to proceed to the problem of sample
design.

Remark. When response errors as well as sampling errors are under
consideration, the response bias discussed in this section may be distin-
guished from biases that arise from the sampling procedures by referring
to the latter as sampling biases. However, in the sections of this book
where the meaning is clear from the context or where only errors due to
sampling are being considered, the sampling bias will be referred to simply
as the bias.

Once the idea of an expected survey value has bzen accepted, one can
consider the total response error in any particular instance to be divided
into two major parts: first, the response bias, and, second, the remaining
response error, which may be thought of as the contribution due to
response variation or “‘response variance.” It is obvious that the errors
in some responses may be offset by errors in a different direction in other
responses. Response variance is a measure of the variability of those
contributions to response errors that tend to be “compensating” with
large enough samples.

25. The measurement of response errors. The measurement of response
bias usually requires the existence of information external to the sample
itself—involves, in fact, the existence of data from which the true value
to be measured may be estimated more closely than from the survey data.
In many cases, there are no such external data, and collecting them may
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be an expensive and difficult process. The measurement of response
variance, on the other hand, presents a much simpler problem than the
measurement of response bias. Like other variances, response variance
can be estimated from an appropriately designed sample.

To the extent that response errors reflect differences in the way a
question is worded, or in the skill exercised and the time spent by an
interviewer, methods may be devised to aid in determining the existence
of such errors. For example, the effect of different questionnaires can
be measured by directing them to different random samples of the same
population, and, if interviewers are to be employed, by random assign-
ments to interviewers. This type of approach has been widely used.

Similarly, in order to evaluate the variation between interviewers one
can assign a random sample of interviews to each interviewer instead of
giving him a compact assignment of work within a single part of an area.
Then the variation between the results obtained by the different inter-
viewers can be compared with the variation to be expected if all inter-
viewers did uniform work. If some of the interviewers are poorly trained
or do poor work for other reasons, the differences between interviewers
will be large relative to the expected random sampling errors between the
samples, and the magnitude of the differences provides a measure of the
inconsistency of the work done. With this evidence, one can evaluate
the contribution of interviewers to the response variance.*

The lack of significant interviewer or questionnaire differences in an
experiment does not demonstrate that there are no response errors. On
the other hand, the presence of such differences in the experiment is a
clear indication of the existence of response errors. Suppose, for example,
that an interviewer was attempting to obtain information on egg produc-
tion, and that his method of approach was to ascertain the number of
chickens on hand at the time of the interview, and to multiply this number
by some standard figure on the probable number of eggs laid per year,
per chicken. Suppose, furthermore, that through meetings and discussion
this method was communicated among the interviewers working on the
survey and all were using the same approach. In this instance an analysis
of the survey would show no differences whatever in egg production per
chicken, and would thus fail to detect response errors although they might
be exceedingly serious.

An important method for studying the effect of response errors in a
survey is through the use of data available from other sources and
independent of the survey. In a population study, for example, it may

* Such a scheme was used, for example, by P. C. Mahalanobis (2) and also
by J. Stevens Stock and Joseph R. Hochstim (3).
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be possible to check the accuracy of age reporting by matching the returns
against birth certificates, and thus accurately to evaluate errors of response.
The use of a more intensive questionnaire or interview may be an effective
way of obtaining data of higher accuracy, and thus provides a means for
evaluating the quality of the responses in the original survey. Such
methods may aid in measuring both response bias and response variance.

Response variance, whether it is associated with the interviewer, the
respondent, or other aspects of the survey design, will be reflected in the
sampling variance as estimated from the sample results if appropriate
methods of computing the sampling variance are used. When the com-
pensating response errors associated with the individual sampling units
are independent, the sampling errors computed in accordance with the
various formulas given throughout this book will reflect the effect of
response errors. In other instances, where the response errors are not
independent for independently selected sample units, the compensating
response errors can be reflected in the sampling variance as estimated
from the sample by appropriate modification of the sampling variance
formulas. -

The response bias, as distinguished from the response variance, will not
be reflected in the formulas for the sampling variance and can be estimated
only by intensive measurement or by comparison of the survey results
with other data which make it possible to evaluate the magnitude of the
bias.

26. Minimizing the total error in survey results. The primary con-
sideration in survey design is to allocate the appropriate resources to the
control of response errors, sampling errors, and other sources of errors.

In the control of response errors, it is often important to be particularly
concerned with the response bias and to allocate enough of the resources
to keep the response bias relatively small. The contribution of response
bias to the total error cannot be decreased simply by increasing the size
of sample or the number of interviewers. The response variance, how-
ever, in its effect on the total error, plays a role similar to that of the
variance due to sampling, and where the compensating response errors
are independent for different sampling units, the response variance is
simply one component of the sampling variance. In other cases, the
response variance can be analyzed in terms of an interviewer contribution
and other contributions, to determine how much of the available resources
should be used to reduce these sources of errors in the same way as
sampling variance can be analyzed into within-cluster components,
between-cluster components, etc. One can examine whether it would pay
to increase the number of interviewers so as to decrease the interviewer
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contribution, or whether the resources would be better spent if they were
diverted to more effective training of a small number of interviewers. It
may be pointed out that the latter procedure may have the effect of also
reducing response bias, which often is the more serious of the two types
of errors.

A double sampling method, in which an intensive method of measure-
ment is used on a small subsample of a larger sample on which less
intensive and much less expensive methods of measurement are employed,
is sometimes an effective way of reducing response bias in survey results.
This approach to sample design is discussed in Sec. 3, Ch. 11. Chapter 12,
Vol. 1, gives some theory that makes possible the further consideration
of methods of measuring and reducing response errors and that provides
guides for the appropriate allocation of resources to the various phases of
survey design.
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CHAPTER 3

Sample Designs for Some Common Sampling
Problems

A. FREQUENTLY ENCOUNTERED SAMPLING PROBLEMS

1. Use of this chapter. The purposes of this chapter are to outline a
few sampling problems commonly encountered, to indicate some simple
rules for sample design for selected problems, and to indicate where to
look in the remaining chapters for a fuller description of the methods and
for the theory for such problems.

Some “‘rules of thumb” are given in this and other chapters for choice
of sample design that may prove to be reasonably near the optimum in
dealing with some common types of sampling problems. The investigator
who is engaged in large-scale or continuous sampling operations may well
find such rules useful for suggesting approaches to consider, but should
not rely on the suggestions without further investigation of the theory and
alternative methods. The “rules of thumb” may be close enough to the
optimum procedures for occasional small-scale problems which parallel
closely the types of problems described.

It should be clear that, although some rules for selecting a sample can
be given that can be carried out in a simple and straightforward manner,
the determination of the necessary size of sample, and the evaluation of
the precision of the results from a sample, are technical problems calling
for careful study and application of available sampling theory, as referred
to in other chapters.

2. Important distinctions between types of sampling problems. The
principal distinctions made between types of sampling problems in this
chapter have to do with the distribution of the population being sampled
and with the resources available for drawing the sample.

Two aspects of the distribution of a population are of particular
importance in their effect on sample design. The first is whether or not
the population is highly skewed, i.e., whether or not a small proportion

93
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of the units in the population account for a high proportion of an aggregate
or average value being measured. The second aspect which needs to be
considered is the geographic distribution of the population. A population
that is widely dispersed geographically may call for different sampling
methods (but not different fundamental principles) from one located in a
limited geographic area, although whether or not geographic distribution
has an important effect on sample design depends on the resources
available for sampling and the method of measurement or of obtaining
a response.

A particularly important consideration in choosing an efficient sample
survey design is whether there is a complete list, a partial list, or no
reasonably satisfactory list of the elementary units of the population that
can be used in selecting the sample.

These distinctions and certain others are important in determining the
approach to efficient sample design. They are introduced in the remaining
sections of this chapter, which describe some commonly occurring prob-
lems and identify sampling principles which are appropriate to these
problems.

B. SAMPLE DESIGNS WHEN THE POPULATION IS
NOT HIGHLY SKEWED

3. A sample from a card file or a set of existing records. Problem: A
file of cards is available indicating the personal characteristics of the
employees in a manufacturing plant. The problem is to determine the
proportion of the employees having a particular characteristic, say the
proportion who have completed high school. Information on education
is in the card records, and there is one and only one card in the record
for each employee. The information could be compiled by tabulating
the total file, but it may be obtained more quickly and more economically
by tabulating only the sample. The method of sampling suggested is to
choose a systematic sample by taking every kth card from the file (see
Ch. 11, Sec. 8), in whatever order the file happens to exist. It will not
usually be necessary to take any steps to stratify or control the sample in
any other way for this type of problem. More specifically, the procedure
is as follows:

Step 1. Determine the accuracy needed in the sample results. The
size of sample needed to achieve this accuracy can be ascertained as
indicated in Sec. 8-11, Ch. 4, and in particular from Eq. 11. 2 or 11.3
of Sec. 11. Suppose the decision is that the estimate is needed with a
relative error (coefficient of variation) of approximately 5 per cent, and
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that on the basis of advance knowledge and speculation the proportion
of high school graduates is presumed to be in the neighborhood of 40 per
cent. Then the values to use in Eq. 11.3 in order to estimate the size of
sample required are:

P =40 k=1
D = .05 V2= Q/P =15

We find that this calls for a sample size of approximately 600.

Step 2. Suppose that it is decided that a sample of » = 600 is to be
taken, and that the number of cards in the population is N = 6000.
Then the sampling fraction will be f=n/N = 4. We can select this
size of sample by choosing 1 in N/n or 1in 10. Here 1/f = N/n = 10 is
referred to as the sampling interval.

To draw the sample we take a starting number at random between
1 and 10 inclusive. Suppose that this number is 4. Then we take the
cards numbered 4, 14, 24, 34, - - -, 94, 104, - - -, 5994. The cards to be
drawn in the sample are determined by successively adding the sampling
interval to the starting number.

Step 3. The methods of estimating the desired means or totals from
the sample, and of determining the precision of the sample estimates and
the size of sample required for any desired degree of precision, are given
in Chapter 4 and in Sec. 8, Ch. 11.

Treatment of ineligible cards. 1f the card file contains a number of
ineligible cards, as, for example, blank cards, we should not substitute
eligible cards for them. Thus, suppose that the cards contain information
for employees no longer on the rolls. This means that, if we draw a
sample of 600 cards from the file, some of the cards will be for persons
no longer employed, and we will not have 600 cards in the sample for
persons currently employed. '

If a sample of approximately 600 cases is wanted of present employees,
we can proceed as follows. Guess at the proportion of cards for present
employees that are in the file. Assume that this proportionis §. Reduce
the sampling interval that would be applied to a file containing only
eligible cards by this fraction to obtain, in this case

I x10=%
20

To obtain 1 in 5" cards from the file, we can find a pattern that spreads
3 units out over a set of 20, take each of these as a starting number, and
take every 20th unit thereafter. An example would be to take the 4th,
11th, and 18th units as starting numbers from the first set of 20. Then
the 24th, 31st, 38th, 44th, etc., units would be included in the sample.
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In this way, if there are 6000 cards in the population, we will end up
with 900 cards in the sample of all employees, about 600 of which
(3 X 900) will refer to present employees.

If one does not know even approximately what proportion the cards
for present employees are of the total, he can draw an initial small sample
from the cards, estimate the proportion, and then follow the procedure
outlined above. The only purpose of the initial small sample is to
estimate the total size of sample required in order to get the appropriate
size of sample of present employees.

If the card file contains some cards that are not eligible for the sample,
then the number eligible for and included in the sample will be subject
to a sampling error, and not simply an error in selection or an error due
to rounding {see Sec. 9-13, Ch. 4, for standard error of a proportion and
of a total frequency).

Treatment of duplicates. In using a card file, one should be sure that
1 and only 1 card refers to an individual in the population. For example,
assume that certain of the persons had 5 cards representing them, others 3,
and others only 1; then the expected representation in the sample of such
classes will be in the ratio of 5 to 3 to 1. This will mean that the sample
will have over-representation of the first 2 classes compared to the last,
and the results may be seriously biased. To avoid this bias, all duplica-
tions must be removed from the file or a special technique must be used.
Consideration is given to such problems in Ch. 2, Sec. 4-5.

Use of numbers on records in selecting sample. If the cards in the file
are numbered serially, then the serial numbers often can be used to speed
up the sample selection process. The cards ending in specified digits or
sequences of digits can be selected. When cards are not numbered
serially, there may sometimes be other numbers that can serve as a basis
for selecting the sample. For example, if each card represents a person
and has on it his Social Security number, a 5 per cent sample may be
chosen by selecting each card with a Social Security number ending in,
say, 14, 34, 54, 74, and 94 or in any other set of digits that accounts for
5 per cent of the digits from 00 through 99. When using serial numbers
for selecting the sample one should be relatively sure that there is no
systematic tendency for any class of cards to have a greater or lesser
representation of the particular digits to be used in selecting the sample.
(See Sec. 8, Ch. 11, for further precautions to be taken when drawing a
systematic sample.)

Modification in method if cost of drawing sample is high. The method
described above for sampling from a file was based on the assumption
that, with a file on hand, the cost of sampling by this method will be very
low. If the cost of drawing the sample by such a method is in fact high
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as compared with the cost of summarizing the information from the
sample, then, even with a file on hand containing the information, it may
pay to resort to other methods of sampling, such as cluster sampling from
the file. For example, when the cards are not serially numbered, but
there is a complete list of file drawers in which they are contained, one can
take a sample of drawers and select a subsample from the selected
drawers. Cluster sampling, however, is likely to be desirable only in the
case where there is very little or no correlation in the characteristic
or characteristics being estimated in succeeding cards. When clusters
are used, the theory of cluster sampling applies, as given in Chapters 6
and 7.

4. A sample from existing records that do not contain the desired infor-
mation. The situation described in the preceding section is to be dis-
tinguished from one in which the record merely provides a list from which
the sample is to be drawn and does not have the factual information
required for the survey. Thus, it may be true that a list of the addresses
of every household in a community may be available from a recent
directory or a local census. Similarly, lists of establishments for a trade
may be available from the files of a trade association. In some places
every family or every person in a community must be registered. Such
lists may provide the means of selecting the sample, but often the required
information must be obtained by methods such as direct field interviewing,
mail canvassing, and telephoning.

In such cases, the method of drawing the sample described above for
sampling from a file of cards may be satisfactory, but often alternative
methods can be found that are more efficient. For example, cluster
sampling may introduce very large economies, particularly if a small
sample is selected from a large geographic area.

If the records are in geographic sequence, a geographically clustered
sample can be drawn very readily. For example, suppose that it is
desired to draw a sample in such a manner that clusters of 7 = S units
are chosen, with a specified sampling fraction, f; i.e., fis the proportion
of the population to be included in the sample.

A procedure that may be convenient in drawing the sample from a list
that is in a geographic sequence is to regard the cards of the file as
clustered or grouped into sets of /7, and take 1 in k of such clusters. Thus,
suppose that 7 = 5 and /= 5. If the cards are numbered serially, the
cards numbered 1-5 are grouped together; and, similarly, cards numbered
6-10, 11-15, 12-20, - - -, etc., are regarded as clusters. We then choose
I in 20 of these clusters, following the procsdure described earlier for the
choice of individual cards.
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When there are a large number of cards and the cards are filed in
drawers geographically, it may be more efficient to take a sample of
drawers and subsample the selected drawers. Such a procedure would
be advantageous when there are many more drawers than the desired size
of sample.

For more details on cluster sampling in local areas see Chapters 6 and 7.

The need for clustering becomes much more marked when a sample is
to be drawn for estimates for a large geographical area where the efficient
design calls for multi-stage sampling. Assuming that the file is geo-
graphically arranged, one may select, say, counties or some other similar
large areas in the manner described in Chapter 9 and then sample from
the cards for each of these first-stage units in the manner described above.
If the records are not grouped geographically, it may be necessary to
ignore them and use area sampling methods described in Chapter 9.

5. A sample of persons, families, or dwelling units from a local area.
Froblem: To take a population or dwelling unit sample of a city or local
community when there are no reasonably adequate or up-to-date lists of
people, heads of families, or dwelling units for the city that can serve as
the list from which to draw the sample. For example, the problem might
be to estimate the proportions of persons using certain products or having
specified opinions, incomes, reading habits, employment status, or other
characteristics.

A very simple probability sample. Even in the circumstance of having
very few materials to use as a basis for drawing a sample, the actual
selection of a random sample can be relatively simple. It is not essential
to have a great deal of information or to introduce complicated processes
in order to obtain a random sample of persons or dwelling units. We
might have only a reasonably up-to-date map of the city which shows the
street boundaries. The city map might be a published map or an aerial
photograph or a sketch of the block boundaries within the city. The only
requirement is that the map be sufficiently accurate that individual blocks
or other small areas can be identified, numbered, and sampled, and that
field workers can locate and identify the areas that are selected.

To obtain a probability sample of dwelling units or persons one needs
only to draw a random sample of blocks and then take a census of the
selected blocks. The steps are given as Procedure I in Sec. 4, Ch. 6.
Where this whole-block method is used, the very large blocks, say those
having 3 or 4 times the average population per block, or more, should
be subdivided into parts which will be treated as separate blocks. Each
part should have roughly the same population as an average block.

To make estimates from the sample and to estimate the precision of
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results from the sample see Chapter 4, Sec. 6 and 7 of Ch. 6, and Sec. 8
of Ch. 11.

Although the simple procedure just described will yield results of
measurable precision, it will ordinarily not be the best approach. Usually
it will be worth while to spend the time and effort to design a more
efficient procedure that will more nearly approximate the optimum
survey design.

Subsampling small compact clusters. The sampling efficiency will
usually be increased by decreasing the average size of the units to be
included in the sample. Procedures II and IIT, described in Sec. 4, Ch. 6,
are alternative methods for using smaller clusters as sampling units.
Procedure 11 is essentially the same as the method just described except
that blocks in the sample are subdivided into segments. Optimum sample
design considerations for this approach are given in Sec. 28, Ch. 6.

Procedure III involves listing and subsampling within the selected
blocks. This use of more than one stage of sampling is commonly
referred to as subsampling. In a subsampling procedure one may list all
the dwellings or other units to be subsampled in the sample of blocks, and
select for interviewing a sample of the units listed. Thus, if a sample of
10 per cent of the persons is desired, one might select every fifth block
and interview the persons living at every second address or dwelling
within the selected blocks. A given size of sample drawn in this manner
ordinarily yields considerably more reliable results than will a sample of
blocks completely enumerated. It will also be more costly, but if the
total size of such a sample is reduced to a size that gives equivalent cost,
the results may be considerably more reliable.

When such a subsampling procedure is used, one must keep the method
of listing the units within the sample blocks as simple and economical as
possible. In determining the kind of subsampling units to be listed, one
need only remember that they should be readily identifiabie, that they
should be small, and that every person (or other elementary unit) in the
block must be in one of the listed units. Sections 25 and 26 of Ch. 6
give some considerations involved in the definition of listing units.

The “best” or optimum determination of the proportion of blocks to
be drawn into the sample from the various strata and the subsampling
fractions to be used in the selected blocks is given in Chapters 6 and 7.
However, it is not necessary to adhere rigidly to the optimum allocation
of the sample. One may depart moderately from the optimum values
without significantly increasing the cost or the sampling error. Thus, the
investigator has considerable latitude in the design when he prescribes the
block sampling and subsampling fractions so as ‘to simplify the opera-
tions and processing of the sample. One simplification that is satisfactory
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for most population samples for estimating multiple characteristics, as
well as for many individual characteristics that are widely dispersed, is to
impose the condition that the sample be sclf-weighting; i.e., that every
element of the sample have the same probability of being selected, so that
an estimate of the proportion of employed persons is simply the ratio of
the number of employed persons in the sample to the total number of
persons in the sample. This is accomplished by making the product of
the block sampling fraction and the subsampling fraction the same for
all blocks in the population. An approximation to the optimum sampling
fractions will often be accomplished by merely selecting an average of,
say, 5 households per sampled block if the item being estimated has a
low internal homogeneity, and an average of 2-3 households if the internal
homogeneity is moderately high (see Sec. 8, Ch. 6). Illustrations of the
first class are items such as the per cent of the total population in the labor
force, or the per cent of the total persons registered as Democrats or
Republicans, or the per cent of persons who would buy a nationally
advertised brand of razor blades. Illustrative of the second class are
items such as rent, income, and race. Illustrations are given in Sec. 8 of
Ch. 6, and in Case Study D of Ch. 12. Sections 12-13, Ch. 8, provide a
guide to approximating optimum sample design with a uniform over-all
sampling fraction.

Estimation of totals. 1t should be emphasized that the preceding dis-
cussion of methods of sampling from a local area such as a city has been
concerned with the problem of estimating averages, proportions, ratios,
percentage distributions, or other average characteristics from the sample
and not with the problem of estimating the total number of persons in
the population, the total number of users of a product, the total number
of employed persons, or other similar aggregates that will be highly
correlated with the total population. The principal difficulty in estimating
such totals from cluster samples as described above arises from the
sensitivity of such estimates to wide variations in the number of families
per block. Estimated ratios are affected less severely by the variation in
size of block when both the numerator and the denominator of the ratio
tend to vary together.

Special considerations for sample design for estimating totals are given
in Chapter 8.

6. Population or dwelling unit sampling in a local area when there is an
incomplete list of dwelling unmits. Sometimes a relatively recent city
directory or other moderately complete listing of dwelling places in an
areais available. Even though it is not complete, such a listing, especially
if it lists individual dwelling units within large structures, may be used
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effectively, in such a way that it will not bias the sample results, provided
it does not contain duplicate listings for the same address.* This type
of resource can be used by proceeding in the following way: ,

The dwellings in the city may be regarded as divided into two major
strata for sampling purposes: (a) the dwellings that are listed in the
directory; and (b) the dwellings that are not listed in the directory. The
sample from the stratum consisting of those listed in the directory is to
be selected from the list. In some instances these dwellings may be
sampled in small clusters from the list if evaluation of costs and sampling
variance points to this approach (see Sec. 16-29, Ch. 6). In a sample
drawn from such a list some addresses may no longer represent dwellings.
This is the case if a building has been converted to nonresidential use,
has been torn down or destroyed, or has otherwise disappeared. No
substitution should be made for these, since the sample of addresses should
reflect such disappearances.

The sample of the remaining dwellings in the city—those that do not
appear in the directory—should be drawn by a cluster sampling procedure
similar to the one outlined in Sec. 5, and here whole blocks are likely to
be efficient sampling units, without segmenting or subsampling. The
procedure for this stratum of dwellings not in the directory will be to
make a check in each sample block of the completeness of the directory
for that block and to include in the sample those dwellings in the block
that do not appear in the directory. If there are in the city some new
large residential structures or housing developments, or blocks that have
clusters of new housing units, it will be desirable to define these as con-
stituting another special stratum, and to sample this special stratum by
the regular block sampling method described in Sec. 5, disregarding any
sample from the directory that falls in these particular structures or
blocks. Chapter 7 gives the theory for optimum design for this sampling
method.

7. Small 'samples from large areas. The discussion in the preceding
section has centered on the problem of making estimates for local areas
such as cities or counties, or for large samples from large areas, or other
situations where travel costs or costs of designating the elementary units
in the sample do not constitute the major costs of the survey. When
estimates are desired for a large geographic area (a large state or nation)
with a small fraction of the population in the sample, other considerations
must be taken irnto account. Factors which are relatively unimportant

* In certain instances such a listing can be used effectively even with duplicate
listings of the same address, but special procedures are required. See, for
example, Ch. 2, Sec. 3-8.
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in sample design for local areas may now become more important, and
conversely. For example, in nationwide surveys the convenient or the
optimum primary sampling unit to be used may often contain as many
as 10,000 or even 100,000 or morte persons, whereas in local area surveys
primary units with as few as 200 persons may be considered large.
Stratification may have a more important role in designs for national than
for local surveys. Travel costs, mapping costs, the use of past informa-
tion, all have a more prominent part in the design of such samples. The
general approach is one of drawing an initial sample of large primary
units, and then subsampling within the selected primary units, using
methods such as those for small area sampling. Chapter 9 presents the
methods and theory for problems of this type.

C. SAMPLE DESIGNS FOR HIGHLY SKEWED
POPULATIONS

8. General nature of problem. The sampling of farms, business estab-
lishments, etc., to estimate magnitudes such as aggregate or average
production, stocks, sales, and employment, or absolute or relative changes
in such magnitudes, or sampling for certain types of data for individuals
or families, such as average or aggregate income where a few individuals
or units contribute a considerable part of the total, calls for emphasis on
sampling procedures that have not been treated in the preceding sections
of this chapter. In these problems, for example, stratification and the
use of special lists assume especially important and significant roles.
Mail survey methods are particularly important in sampling business
establishments and can be supplemented by other methods in order to
yield results of known precision.

It is desirable in such sampling problems to identify in advance the
units that are large in size and include in the sample a higher proportion
of these than of the smaller units. The device of getting a listing of large
establishments and including all or a high proportion of these in the
sample will generally yield important gains in efficiency when the popula-
tion is highly skewed. See Ch. 5, Sec. 6-17, for fuller discussion of the
problem and Case Studies A and C in Ch. 12.

9. Sampling from a highly skewed population: complete lists are avail-
able, and needed data are in the records. This problem is essentially the
same as that described in Sec. 3 except for the fact that here the population
is highly skewed. It is assumed that the information to be compiled is
in the records, and could be compiled by using all the records. In this
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instance, the important new principle is to identify one or more separate
strata consisting of the larger units and to take higher sampling fractions
from these strata. Often the higher sampling fraction that should be
taken is 100 per cent for the stratum consisting of the largest units. The
sample can be drawn from within the strata following procedures described
in Sec. 3. The theory, illustrations, and practical approaches to survey
design for this type of problem are discussed in Ch. 5, Sec. 6-17.

10. Sampling from a highly skewed population: complete lists are
available, but desired information is not in the records. The problem here
is the same as that described in Sec. 9 so long as the list contains a satis-
factory measure of size that makes it possible to identify and sample
_separately the large units, and so long as the cost of collecting the infor-
mation is not too high, either because the needed information can be
collected by mail or other low-cost procedures, or because the sample is
confined to a comparatively small area so that travel does not make an
exceedingly important contribution to the cost. If the list does not
contain a measure of size, such a measure must be obtained by the pro-
cedures described in the next section or perhaps by the procedure described
in Ch. 11, Sec. 3. For the principles and procedures involved in deter-
mining how large the special list should be, the number of strata into
which the population should be divided, and the appropriate sampling
fractions, see Ch. 5, Sec. 6-17.

If the area to be covered is very large, travel may be an important
factor in the cost. If the list is arranged geographically, the procedures
of Chapter 9 can be applied, using the lists for subsampling from within
the selected primary sampling units. If the list is not arranged geo-
graphically, then the subsampling procedure within selected areas can
follow the lines described in the next section.

11. Sampling from a highly skewed population: partial lists or no lists
are available. The procedures will be illustrated with the problem of
estimating the sales of retail establishments in a local area. They will be
similar for related problems.

Ordinarily, whenever relatively few establishments contribute a high
proportion of the magnitude being measured, and there are no complete
or substantially complete lists of establishments, steps similar to those
indicated below should be followed in sampling from a local area.

Step 1. Determine the major strata, sample size, and allocation to
strata. Determine the number of different major strata that will be used
in selecting the sample (i.e., the number of different size classes of establish-
ments for which different sampling fractions will be used), the boundaries
of the strata, the approximate size of sample, and its allocation to the
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major strata. The size of sample will be determined jointly by the re-
quirements of accuracy and by the available resources. It is probably
satisfactory at this stage in planning the sample to assume that the
sampling process will be one-stage, with the elementary unit as the
sampling unit, even though in some of the strata the final selection may
involve cluster sampling and two or more stages of sampling. The unit
costs assumed, however, should reflect the costs of the actual methods to
be used. Chapter 5 gives the appropriate theory for one-stage sampling
of elementary units in all strata, along with some rules for defining the
strata and for approximating the optimum allocation of the sample to
strata. It also gives the formulas for estimating the precision of estimates
from different sizes of samples.

Step 2. Prepare a list of large establishments and draw the sample from
the establishments listed. The list of large establishments should include
all size classes of establishments that are identified as separate major
strata (i.e., requiring separate sampling fractions), except the class of
smallest establishments, or perhaps the two smallest size classes if a
substantial proportion of establishments are included in the next to the
smallest class. The list of large establishments does not have to be 100
per cent complete, and the identification of size does not have to be exact,
but it will pay to exert a great deal of energy, if necessary, in making sure
that the list is complete for at least the very large establishments. One
should, of course, first take advantage of all easily accessible sources.
The large stores in a community are often well known to chambers of
commerce, trade associations, and residents of a community. Such
sources can be tapped with very little expense. In preparing the list of
large establishments, the information to be obtained is:

(i) An exact identification of the location of the establishment. Ob-
taining telephone numbers will be helpful in future follow-up.

(i) A rough measure of size, using any one of a number of measures.
One relatively simple index is the number of employees. Another
may be the sales of the establishment in a previous month or year.

Step 3. Sample small stores. An area sample can be used to obtain
a sample of the small stores. Proceed by obtaining a map or maps of
the area showing individual city blocks or other small areas and other
geographic details. The blocks or sections of the city, and villages if
rural areas are involved, in which establishments of the class that is to be
sampled are likely to be located should be separately outlined and dis-
tinguished on the map from blocks where few, if any, will occur. We
shall refer to blocks where such establishments are likely to be found as
class A, and to others as class B.
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We may draw the same over-all sampling fraction of stores from class A
and class B blocks. But from the class A blocks we will begin by taking
a higher proportion of blocks in the sample and subsample, whereas from
the class B blocks we will simply include in the sample all the establish-
ments located in the sample of blocks that is selected. The procedures
for drawing the area sample are described in Ch. 6, Szc. 4. The average
size of subsample per block to be taken from the A blocks should be small,
perhaps 1-5 stores of the type being surveyed. The optimum sampling
principles of Chapters 6 and 7 provide the theory for determining the
optimum average size of the subsample. These chapters also give
formulas for estimating from the sample the precision of sample results.

It is important, in obtaining the area sample, to exclude from it all
stores on the large-store list, whether such stores are in the sample drawn
from the large-store list or not.

The principles described above may readily be extended to large-area
sampling. A complete description of an application of these principles
to large-area sampling for business statistics is given in Case Study A,
Ch. 12. The theory and practical considerations for large-area sampling
are presented in Chapter 9.

Remark. Cut-off methods. Sometimes the concentration of activity in
a few establishments is so great that a small proportion of the establishments
accounts for 90 or 95 per cent or more of the aggregates being estimated.
In such instances, it may be sufficient to use a complete coverage of such
large establishments without any sample at all from the smaller ones.
This approach, which is described in Sec. 6, Ch. 11, is sometimes satisfactory
in certain manufacturing and other industries where the concentration of
activity is particularly marked.

D. MISCELLANEOUS PROBLEMS

12. Some special aspects of agriculture sampling. There are points of
emphasis in certain types of agriculture sampling that differ from other
types of sampling problems, and some of these will be indicated briefly here.

One type of agriculture survey procedure is to obtain information from
the operator as to the crops, livestock, etc., on the holding that he operates.
This type of problem is similar to that of sampling establishments (as
described in Sec. 8-11). In such surveys, the principles involved are so
closely parallel to those for the sampling of establishments that no further
elaboration is necessary. Section 14, Ch. 2, deals with some special
problems in avoiding biases in farm sampling.

There are other methods of survey where the information is obtained
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by direct observation and measurement without depending on responses
from the operator of the holding. Response errors may be reduced
considerably by such methods. Illustrative of these procedures are some
surveys conducted to estimate yield or total acreage under crop. In
India, for example, estimates of total crop acreages (but not identified
with type of holding) have been made by obtaining a sample of plots or
fields, identifying by personal observation the crops on the sampled plots,
measuring the area of the plots, and compiling estimates from these
sample data without depending upon the process of asking questions of
the operator or farmer. This method has been particularly efficient in
India because of the availability of detailed maps that show the individual
plots or fields so accurately that the plots on the ground can be identified
from the maps, and the areas of the plots can be measured on the maps.
‘The sampling principles to apply in such a method are the same as those
for other sampling problems. The sampling may involve one, {wo, or
more stages, depending upon whether the area is to be covered intensively
or a small sample is being drawn from a large area. The reader interested
in this type of problem is referred particularly to Mahalanobis.*

An extension of this approach can be used to estimate yield per unit of
area through crop-cutting samples. Thus, yield can be estimated without
dependence on the operator’s knowledge or memory. A substantial
amount of research work has been done that provides a guide for survey
design.t The procedure is to obtain a sample of fields or plots (using
several stages of sampling if the density of the sample is light, and perhaps
only one stage if it is heavy). Once the sample of plots is obtained, a
random point or points are selected in the sample plot, a small area is
delimited, and the crop is actually harvested for a sample of such small
areas. Substantial border biases are likely to arise (see Sec. 14, Ch. 2) if
areas are not carefully delimited, and if sampling is not at random in the
total area to which the yield figures are to apply. Obviously, such a
survey must be carried out just before harvesting, when the crop is nearly
ready. Such a survey, if conducted without bias, would give an unbiased
estimate of the harvest if the harvesting were performed under the same
harvesting conditions as the sample. The results may lead to a biased

* P. C. Mahalanobis, “A Sample Survey of the Acreage under Jute in
Bengal,” Sankhya, 4 (1940), 511-530.

1 For example, P. C. Mahalanobis, “Recent Experiments in Statistical
Sampling in the Indian Statistical Institute,” J. Roy. Stat. Soc., 109 (1946),
325-370; P. V. Sukhatme, ‘“The Problem of Plot Size in Large-Scale Surveys,”
J. Amer. Stat. Assn., 42 (1947), 297-310; F. Yates, “Some Examples of Biased
Sampling,” Annals Eugenics, 6 (1935), 202-213; A. J. King, D. E. McCarty,
and M. McPecek, “An Objective Method of Sampling Wheat Fields to Estimate
Production and Quality of Wheat,” U.S. Dept. Agr. Tech. Bull. 814, 1942.
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estimate of the actual harvesting, since harvest losses in the sample
method may be different from those in the actual harvesting.

The theory given throughout this book is directly applicable to such
crop or yield sampling. The theory in Chapters 6 and 7 will be applicable,
and, in some cases, also that of Chapters 8 and 9.

13. Sampling for rare items. When the proportion of units in a
population that arc of a specified type is small, it may be exceedingly
expensive to draw a sample that will provide an estimate of high relative
precision of the number or characteristics of such units. Some guiding
principles can be given that may aid in increasing the efficiency of the
design for such a problem.

A few more words are in order to describe the nature of the problem
under consideration. Suppose, for example, that one wants an estimate
of the number of physicians in the United States, or the average income
of physicians, or the proportion or number working in a particular
specialty. If a list of the physicians in the country and their addresses is
available, it will not be a “‘rare item” problem, because the population is
directly accessible. Suppose, on the other hand, that no reasonably
adequate list of physicians is available, and that one wishes to estimate
either the total number of physicians or the number having a specified
characteristic by interviewing a sample of the general population, ascer-
taining for each member of the population whether he is a physician, and,
if so, determining any other characteristics desired. Now the particular
population under consideration is buried in a very much larger population,
and at best it will be an expensive proposition to obtain a sample that will
give estimates for physicians that will be of high relative precision. There
are many similar illustrations.

Often there are partial but not nearly complete lists of the members of
the desired group, and it may be important to make use of these lists in
designing a sample for such a rare item.

The problem is not difficult when it is only necessary, as is often the
situation, to be able to demonstrate from the sample that the number or
proportion of cases having the property in the population is small. For
example, a simple random sample of 800 cases would be sufficient if one
were required merely to state with approximately a 95 per cent probability
of being correct that the proportion of the population having a character-
istic was less than 3 per cent, when in fact the true proportion was 2 per
cent. Note that this is a relative range of error of 50 per cent, although
only | percentage point. On the other hand, if one wished to estimate
with the same confidence the number (or proportion) having the charac-
teristic within 5 per cent of the actual number in the population, the
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required sample size would be about 80,000 cases. When samples as
large as this are needed, it usually is worth while to divert some of the
resources available for the survey to special devices which will make it
possible to obtain the required results with a smaller sample.

Several different situations will be considered. The situations that
may have a particular effect on the sample design involve the way the rare
item is distributed in the population, and the extent to which a list of
members of the rare class is available or can be prepared.

Case I.  Let us assume, first, that no list of a substantial proportion of
the members of the rare population is available and one cannot be readily
prepared, and that the rare item is distributed rather evenly throughout
the population. It follows that no strata accounting for a small part of
the total population can be identified in which a high proportion of the
members of the rare population will be found. This implies that the
members of the rare population are not highly clustered in particular
blocks or subgroups of the total population. In this case, about the only
thing to do to reduce costs is to sample in large clusters. If the multi-
stage sampling theory of Chapters 6-9 is applied to this case, it will be
found that (if the population is actually as we have assumed) the measure
of homogeneity within clusters will be comparatively small, and one should
draw a sample of large clusters and enumerate them completely.

This method has been used by the Bureau of the Census in sampling
for dwelling unit vacancies in areas where the vacancy rate is very low
(say less than 2 or 3 per cent), and the occasional vacant units are not
clustered, but appear to be well scattered. An efficient basic design is to
draw a sample of blocks and to canvass them completely in order to identify
the occasional vacant units. In practice, this method has been modified
to take account of the fact that many of the vacancies are widely dis-
tributed as assumed, but in some instances large structures containing
many apartments have just been constructed and are not yet rented or are
in the process of being rented, and these have been identified and sampled
separately.

Case II. A second case arises when a partial list is available identifying
the members of the population that is to be measured. If such a list
covers perhaps one-third or more of the population to be surveyed, its
use may reduce considerably the costs of obtaining a sample that will
yield estimates of specified precision. The method of joint use of a list
with area sampling described in Sec. 6 and 11 of this chapter is directly
applicable, and the theory is given in Sec. 10 and 11 of Ch. 7 if a mixed
sample design involving both one- and two-stage sampling is used, or in
Chapter 5 if a single-stage sample is used.

Case III. Sometimes no list is available, but the rare class of the
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population is quite unevenly distributed throughout the larger population
from which it must be sampled, with a large proportion of the rare popu-
lation concentrated in a relatively small proportion of the area being
surveyed. For example, in the problem of estimating the total number,
proportion, or characteristics of persons in a minority racial or ethnic
group in a city, it is frequently found that a high proportion of the
minority population resides in a small proportion of the residential area
of a city. The approach to sampling in this case involves separating the
population into geographic strata, on the basis of the degree of concen-
tration of the rare population. This approach is illustrated in Sec. 11 of
Ch. 7. Tt is sometimes true, in'such situations, that the stratum of lowest
concentration is known to have such a small part of the rare population
in it that this whole stratum, which may be large in total population, can
be excluded from the population to be surveyed without serious damage
to the survey results. Where this can be done without seriousty impairing
the value of the results, it may substantially reduce the cost of the survey.
This suggestion is a special case of the use of the cut-off (Ch. 11, Sec. 6).

Case IV. This case is the same as Case III except that here a par-
tial list is available or can be prepared. It is often true that minority
group organizations, or organizations of farmers or business establish-
ments handling or producing a certain class of items, have lists covering
an important part of the members of the group, or on the basis of personal
knowledge can prepare such lists at low cost. In this event, the list
sampling method is combined with the one- or two-stage cluster sampling
method, using the theory given in Sec. 10-11 of Ch. 7.

14. Treatment of not-at-homes and nonresponses. The importance of
obtaining the desired measurements or responses for all or virtually all
units designated for inclusion in the sample, without making substitutions
of other -units, has been emphasized in the preceding chapters. However,
often it is necessary to proceed with some small amount of nonresponse.
The problems of initial nonresponses, not-at-homes, and ultimate non-
interviews have a number of facets. These are discussed and methods are
presented or illustrated for their treatment in a number of places. Econ-
omical methods of obtaining representation in the sample of persons not
responding to questionnaires or not at home on initial visits are discussed
in Sec. 3, Ch. 11. Often a small remaining proportion of nonrespon-
dents is handled by a system of substitution that has the effect of
weighting. Methods for doing this are discussed in Remark 4, Sec. 16,
Ch. 5. :

Methods for handling ultimate nonrespondents after collection of data
is completed are discussed and illustrated in Ch. 12, Case Studies A and B.



CHAPTER 4

Simple Random Sampling

A. DEFINITIONS AND NOTATION

1. Definition of simple random sampling. A procedure of sampling will
be called simple random sampling if, in a sample of size n, all the possible
combinations of » elementary units that may be formed from the popula-
tion of N elementary units have the same probability of being inciuded.
(See Ch. 1, Sec. 4.)

2. Reasons for discussing simple random sampling. There are three
reasons for introducing simple random sampling at this point: (a) many
of the fundamental principles of sampling may be explained in terms of
simple random sampling and then adapted to more complicated designs;
(b) the theory of simple random sampling may, under certain conditions,
provide a useful guide to the precision that is to be expected from certain
other designs whose formulas are more complicated (e.g., a systematic
selection); (c) simple random sampling is actually used without modifi-
cation in some problems, although examples are confined largely to
problems like the sampling of records.

Examples of simple random sampling or of designs that approximate
simple random sampling are frequent, even though they form only a small
portion of all the sampling that is carried out. An outstanding example
of a method that approximates simple random sampling is the use of
sampling in connection with a census. For example, in taking the
national Censuses of Population in the United States in 1940 and 1950,
and in Canada in 1951, it was found desirable to take a sample from the
complete list of the population, and to make certain tabulations from the
sample instead of for all persons, with the aim of speeding up these
tabulations (e.g., of the labor force). In addition, the sample was used
as a part of the census itself, in the interests of economy, with certain
information collected from only a subset of the persons enumerated in
the complete census. Similarly, a company may wish to obtain informa-
tion for a sample of its employees, or a business establishment may desire
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to obtain information for a sample of its customers. In such instances,
there is often a complete listing, and simple random sampling can be
carried out, although even in these circumstances simple random sampling
is often not the best procedure. In the sampling of physical materials
and property for appraisal and inventory, complete lists of items are often
kept up to date, from which simple random samples may be drawn.

In this chapter we shall describe the procedures to be followed in (a)
drawing a simple random sample from a finite population; (b) computing
estimates of averages, percentages, and totals from the sample and
evaluating the precision of the sample estimates; and (c) determining the
size of sample necessary to obtain results of specified precision. The
problems of estimating and evaluating the precision of simple percentages,
averages, and totals from the sample will be considered first, and the
problems of making certain more complex types of estimates and of
evaluating their precision will be examined later.

We shall assume that the aims of a survey have already been well
defined, so that we may proceed with the steps that are to be followed in
drawing a simple random sample of size # and in preparing estimates from
it. For the present we shall ignore the problem of determining the
correct size of sample, and shall assume that simple random sampling is
possible and desirable. We shall learn later how one determines in
advance the approximate size of sample that would be necessary, with
simple random sampling, to achieve a specified degree of precision. The
problem of the choice of a particular sample design is a more complex
one and is dealt with in other chapters of the book.

3. Notation and terminology. We shall assume that we are sampling
from a population (or universe) containing a total of N elementary units
on which measurements are to be made, and that we wish to draw into
the sample a total of » elementary units by a simple random sampling
procedure. It will be assumed that each elementary unit has been
assigned a serial number and that these serial numbers run from 1 to N;
the particular serial number of any individual elementary unit will be
designated by the symbol 7. That is, i takes on the values from 1 to N,
and any particular value of / designates a particular elementary unit in
the population. We shall let X represent a characteristic (or variable or
variate) that is measured. More specifically, let:

X, be the value of some particular characteristic for the ith elementary
unit in the population of N elementary units. Thus, if X, is used to
designate the income of the ith individual, then X; is the income of the
individual in the population that has been assigned the serial number 1,
X, is the income of the second individual, etc., and Xy is the income of
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the individual having serial number N. Similarly, let Y, be the value of
a second characteristic for the ith individual. ~Additional symbols Z,, W,,
etc., will be introduced as needed for other characteristics.

Also let

N
X=>X,=X+ X+ X;+" -+ Xy 3.1

be the aggregate value of the specified characteristic over all members of
the population.
N

The symbol > merely indicates a sum of N values, in this case the N
values of X;. Thus, if X, designates the income of the ith individual,

N
then > X; would designate the sum of the income of all individuals in the
population, or, in other words, the aggregate income of the entire popu-
lation under consideration. Note that a capital letter with a subscript
(X,) has been used to denote the ith elementary unit in the population,
and a capital letter without the subscript has been used to denote the sum

over the entire population, i.e., over the entire N elementary units or indi-
AY

viduals in the population. Thus,if N = 3, X = > X, = X + X, + X;.

Now suppose that we draw a sample of n elementary units from a
universe of N elementary units and number these units from 1 to #, in the
order in which they are selected. We use small letters to designate
sample numbers; thus, we shall adopt the notation z, for whatever the
value of X, that appears as the first elementary unit of the sample, z, for
the value of X; that appears as the second elementary unit of the sample,
etc. Now the first elementary unit of the sample may be any one of the
N elementary units, and hence ,, the value of the first elementary unit

selected, may be X, or X, or X;, + « -, or X. Similarly x,, the value
of the second elementary unit selected, may be any of the values X;, X,
X37 Y A,N'

If a sum of some particular characteristic (such as rent) is taken over
the » elementary units that are included in a sample, the sum will be
denoted by a small letter. In the notation to be used,

v = 3z, (32

is the aggregate of the characteristic for the » units included in the sample.
Thus, if N = 3 and # = 2, and X; and X; are selected for the sample, in
n

that order, then z; = X3, and @, = X;, ® = D>, = 2, + &, = X; + X,.

The distinction between the mean of the population and the mean of a
sample will be indicated also by the use of a capital letter for the former
and a small letter for the latter. Thus,
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N
. SX, X
O s 33
X==5=5 (3.3)

is the average or mean of the characteristic per elementary unit in the
population, and n

X,

£ = 2% 3.4

n

3R

is the average or mean of the characteristic per elementary unit in the
sample for a sample of # families.

Often the characteristic that we are trying to measure is not a quantita-
tive one. We may instead wish to indicate the presence or absence of a
particular characteristic, or to ascertain the number or proportion of
elementary units in the population that do or do not have the characteristic
specified. In such instances, the above notation is still used, but the
value assigned to X, is 1 if the individual under consideration has the
specified characteristic, and is 0 if the individual does not have the
characteristic. Thus, if we want to consider the number of people or the
proportion of the population with incomes within a particular income
group, we may use the symbol X, to indicate the presence or absence of
this characteristic for each individual. Then X, will have the value 1 if
the ith individual’s income is within the specified income interval and will
have the value 0 if it is not. It follows for such a characteristic that

N

X=X 3.5
is the total number of elementary units in the population that have the
specified characteristic (i.e., individuals having incomes within the desig-
nated income group).

For example, assume that N = 3 and that the first individual has an
income of $6000, the second $2000, and the third $3000. If we wish to
express the number of persons in this population having incomes over
$2500, we can assign to X, the value 1 for those individuals having
incomes over $2500 and the value O for those with incomes of $2500 or
less. The number 1 is assigned to the first and third individuals since
they have incomes over $2500, and the number 0 to the second individual.

N
Then, X; =1, X, =0, X3 =1,and > X, =1+ 0+ 1 = 2, the number
of persons having incomes over $2500. Similarly,

= Sz, (3.6)

is the total number of elementary units in a particular sample of » that
have the specified characteristic;

X
P = I X))

RURT LiBRayy

BREBUT NI AT Y TNy
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is the proportion of the population having the specified characteristic;
g=1-—P

is the proportion of the population not having the characteristic; and

=2 (3.9)
7
is the proportion of the elementary units in a sample of » that have the
specified characteristic, and, again, ¢ = 1 — p.

Note that P = X and p = ¥ for variates that have only the value 1 or 0;
L.e., P and p are special cases of X and Z.

The same type of notation would be used if we were considering another
characteristic, as, for example, the number of males in the population.
Then we would assign to X, the value of 1 if the /th individual were male,
and the value 0 if not. The sum of the X, i.e., X, in this instance would
be equal to the total number of males in the population; and X/N would
be the proportion male.

With this notation we shall usually designate an estimate from a sample
by the same symbol as that used for the population characteristic being
estimated, except that the sample estimate will be denoted by a small
letter instead of by a capital letter. If we are estimating a population
total from a sample, however, the notation needs modification, for here
x represents the total for the sample and cannot be regarded as an
estimate of X, the total for the population. In such an instance we will
use x’ to denote the estimate of X from the sample.

We shall also need measures of variability, for which we shall use the
notation: v
S(X, — X

N (3.9

2 2
g = 0% =

is the variance of the X, in the population and sometimes will be referred
N

to as the population variance. Note that here the S indicates the sum

N
of the quantities (X; — X)? in the universe. Thus, if N = 3, >(X, — X)?
= (X;— X2+ (X, — X)? -+ (X;— X)2 The subscript X on ¢® will be
omitted unless it is needed for clarity.
For simplification of both discussion and formulas we shall also refer
to S? as the variance of the X, where
v
s e L N, 22X XP
82 = 8% == 1= ST (3.10)

1t should be noted that N/(N — 1) = 1 for any population of reasonable
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size, i.e., for N moderately large, and S? and o2 are essentially the same
numerically.*  Similarly,

N § ‘
S,— xR . X, Ty
S O Y £

will be referred to as the standard deviation of the characteristic X in
the population.
We define

& Z(_:IL:_IEL (3.12)

as the variance of the characteristic x, in a particular sample of size », and

"
/2(7, — &)
§=8x TN ——T 3.13)
as the sample standard deviation of the characteristic.

Note that, although we distinguish between ¢ and § in the formulas,
we refer to both as the standard deviation, and to both ¢ and 82 as the
variance. The more precise distinctions in the formulas usually make
little difference, but where (in certain instances in subsequent chapters)
the difference between o* and S* is important, the formula will contain
the appropriate value.

The term standard error is ordinarily used only in referring to the
standard deviation of all possible sample estimates of a percentage, mean,
total, or other summary measure estimated from samples. The standard -
error of such estimates will be indicated by the notation gy, ¢, etc., where
the subscript denotes the particular statistic to which the standard error
relates. When the standard error is estimated from the sample itself, the
estimate of o will be denoted by s;, with similar notation for the estimated
standard error of other statistics, such as o, denoted by s, and ¢, denoted
by s;. *

The fraction of the universe that is included in the sample is »/N, but
since we shall frequently use this ratio it will be convenient to assign a
symbol *

f=

for the sampling fraction. Then the proportion of the population not
included in the sample is (1 — f).
Certain additional notation will be introduced as it is needed.

(3.14)

=l=

* The equal sign with a dot over it (=) is to be read as “is approximately
€qual to.”
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4. An illustration. We shall consider the problem of obtaining a
sample of the adult population (over 14 years of age) in a community
that has a total adult population of 5000. We shall assume that from
this sample we desire estimates of such items as the proportion of the
population male and female, and the corresponding totals; and the
average wage and salary income for the persons who earned less than
$5000 during the prior year.

For this illustration, let us assume that a complete and up-to-date list
of the adult population is at hand, from which a simple random sample
may be drawn in order to estimate various characteristics not given in
the complete listing. The symbols X, Y;, Z;, etc., will be used to indicate
various characteristics of the same person. Thus, if we wish to consider
the proportion of males in the population, we would let X; =1 if the
ith person is male and let X; = 0 if the ith person is female. On the other
hand, if we wish to consider the proportion of females in the population,
we would let Y, = 1 if the ith person is female and let Y, = 0 if the ith
person is male. Similarly, if we are considering the average age, Z, can
indicate the age of the ith individual, etc.

Now let us consider the problem of drawing a sample of 400 individuals
from this population and preparing, from the sample, estimates of the
characteristics of the entire population. We shall discuss the operations
of drawing such a sample from a finite population by the use of simple
random sampling, of computing estimates from the sample, and of
evaluating the precision of these estimates.

5. Drawing a simple random sample. It was pointed out earlier that a
practical method of drawing a simple random sample is to use a table
of random numbers, which has been constructed through a process
analogous to that of drawing chips from a bowl. A replica of some
random numbers is shown on p. 117.

A simple random sample of n elementary units may be drawn from a
population of N elementary units by proceeding as follows:

(@) Number the N units in the population serially, in any order. Each
serial number should have as many digits as the number of digits in N.
For example, in our illustration ¥ = 5000, and the required number of
digits is 4. The first unit is assigned the number 0001; the second, 0002;
the 203rd unit, 0203; up to 5000 for the last one.

(b) Select a page from the table of random numbers. As the numbers
are random, any arbitrary selection of a page will do, just so that one does
not always begin at the same point, and does not permit the numbers on
the page to influence his selection of the page. In practice, one may well
begin on the first page of random numbers, mark lightly in pencil the last
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number used on a page, and proceed onward from that point when the

next random number is needed.

-4,
1 2017
2 74 49
3 94 70
4 2215
5 9329

6 45 04
7 44 9]
8 16 23
9 04 50
10 3270

11 03 64
12 62 49
13 61 00
14 89 03
15 01 72

16 27 56
17 49 05
18 49 74
19 20 26
20 48 87

21 08 72
22 95 97
23 37 99
24 0579
25 5585

5-8

75 73
17 27
70 40
85 33
00 79

Table of random numbers*

Eleventh thousand

13-16
59 66
10 33
23 42
32 52
30 55

99 45
94 60
47 59
82 42
66 26

81 39
93 48
14 03
21 04
60 07

3222
3525
33 94
19 85
76 93

00 11
31 42
46 55
75 18
91 22

25-28
86 10
48 63
78 1
54 02
58 51

03 83
64 72
30 92
61 47
88 33

92 34
67 68
33 40
22 03
14 2%

33 26
35 66
59 58
65 63
54 55

30 85
3275
36 74
54 28
51 40

29-32

3740
‘44 25

57 38

06 57

12 93

96 40

22 37
25 57

23 66
82 37
73 49

21 42
52 03
68 57
33 81
31 96

99 70
91 23
73 82

56
90 77

19 13
94 85
95 93
66 45
78 32

(¢) On the selected page of random numbers use a vertical guide to
Thus, if N = 5000,

demarcate the required number of columns of digits.
we shall need 4 columns.

numbers of 4 digits are

2017
7449
9470
2215

On the replica above, the first 4 random

* M. G. Kendall and B. Babington Smith, Tracts for Computers, No. XX1V,
Cambridge University Press, second edition, 1946.
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Move the eye downward on these 4 columns until you encounter a number
less than 5000; all others are counted as blanks. The first number less
than 5000 is 2017; this is the serial number of the first item that is to be
drawn into the sample. For the second item, we proceed onward—
7449, 9470, 2215, which is the serial number of the second item that is
drawn into the sample. The numbers 7449 and 9470 are ignored, since
they are larger than 5000, the size of the population. As no item may be
drawn twice, duplicate random numbers are to be counted as blanks.

When we arrive at the bottom of the page of random numbers, we
demarcate the next 4 columns and use them. The second column yields
4228, 0449, etc.; and proceeding in this manner through the successive
columns, we select the required 400 individuals to be included in the
sample.

Often in a sampling problem one will use many pages of random
numbers; he may even exhaust the entire set, in which case he turns back
to the beginning of the table. Some people would then demarcate columns
2, 3, 4, 5, for 4 digits, to avoid traveling over the same ground twice, or
read down instead of across, etc.

6. Obtaining the desired information. The sampling procedure just
outlined has identified the individual elements of the universe that are to
be in the sample. The next step in a statistical survey is to obtain the
information desired from each of the individuals that was designated for
the sample. The method of collecting this information will vary, depend-
ing on the problem. It may involve arranging interviews with the selected
individuals and recording their responses on a carefully designed question-
naire; it may involve merely assembling information from sources
already available, as, for example, if a company has information in its
records for the entire universe that is to be surveyed, but wants to make
certain special tabulations with the aid of a sample of the records. Col-
lection of the information may involve a testing procedure, as where the
elements in the universe consist of a batch of goods, perhaps a carload of
bricks, that is being purchased, and one wants to test a sample of them
to determine whether they conform with specifications, or to ascertain the
quality of the lot or its weight, or whether to accept the lot or to reject it.

In the illustration we are considering we shall assume that wage and
salary income during the preceding year will be ascertained for each
individual in the sample having an income up to $5000. For those in
the sample with incomes of more than $5000 there will be merely an
indication that their incomes are over that level. (This assumption is
made because the source of information from which the illustration is
drawn was collected on that basis.)
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If we wish to obtain from the sample estimates to which statistical
theory is completely applicable, it is essential that the information be
collected for each of the individuals originally designated for inclusion in
the sample. The data might be assembled from each of the 400 persons
designated for the sample, and summarized as shown in Table 1.

Table 1. Information obtained from 400 sample individuals

Individual Wage or
number in sample Sex Age salary income
i= lton (dollars)

1 M 19 1,274

2 M 46 692

3 F 28 863

399 M 24 2,281

400 F 39 0

Total 218 182 16,370 210,428

B. SAMPLE ESTIMATES AND THEIR PRECISION—
SIMPLE MEANS, PERCENTAGES, AND TOTALS

7. The computation of estimates from the sample. We shall consider,
now, three simple types of characteristics of the population and methods
of estimating them from the sample. The characteristics of the popula-
tion whose estimates we shall consider here are, first, the average value X
of some characteristic; second, the proportion P of the population having
a certain characteristic; and third, the aggregate or total X for some
characteristic. Although the estimation of a proportion is a special case
of the estimation of an average, it will be considered separately because
in the evaluation of the precision of proportions some relationships hold
that do not hold for averages in general.

Estimates of X, P, and X from the sample are obtained by computing
& from Eq. 3.4, p from Eq. 3.4 or 3.8, and 2’ from Eq. 7.1 or 7.2."

2 = Ni =

%x (7.1)

is an estimate from the sample of X, the aggregate value of the specified
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characteristic for the N units in the population, where & — x/n is the
sample estimate of X = X/N, and « is the aggregate value of the charac-
teristic for the » units in the sample, or

o' = Np = %x (7.2)

is an estimate of X, the total number of elements or individuals in the
population having a specified characteristic, where p = x/n is the sample
estimate of P = X/N, and where @ is the number of units in the sample
having a specified characteristic.

In estimating X the forms N and (1/f)x given above will yield identical
results except for rounding errors, but sometimes one form is more
convenient than the other.

Each of the above estimates is unbiased; i.e., the expected value of & is
equal to X, the expected value of p is equal to P, and the expected value
of ' is equal to X, the population total.* As already indicated in
Sec. 12 of Ch. 1, this means that, on the average over all possible samples,
the estimate will be precisely equal to the population value that is being
estimated. An estimate obtained from Eq. 3.4, 3.8, 7.1, or 7.2 is called
a simple unbiased estimate. The unbiased estimates in this book will be
referred to as simple unbiased estimates unless specifically indicated
otherwise. The exceptions in general make use of supplemental informa-
tion not involved in determining the probability of selection.

Remark. Estimating means or totals for subgroups. If we take a simple
random sample of units from a population, then we also have a simple
random sample of any subgroup of the units in that population. When
the average or percentage to be estimated is for a subgroup of the population,
Eq. 3.4 or 3.8 applies, but » in these equations is the number of units in the
subgroup n, instead of the total sample. There is little opportunity for
confusion in this case, but special care is needed in defining & or p in Eq. 7.1
or 7.2 in estimating totals for a subgroup. Suppose, for example, that one
is estimating the aggregate value of a characteristic, X, for males in the
population. A simple random sample of # persons is selected. If the total
number of males in the population is known one would have a choice
between two estimates.

(a) For the first estimate (given by Eq. 7.1) one can either multiply x,
the aggregate value for males, by the reciprocal of the sampling fraction,
or multiply & = x/n by N, where x is the aggregate value of the characteristic
for males in the sample, and » is equal to the total number of persons in
the sample (not the total number of males). Thus & in this instance is not
the average value per male, but is the average value per person included in

* For proof, see Vol. II, Ch. 4, Sec. 1.
1 For proof, see Vol. II, Ch. 4, Sec. 10.
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the sample. () If the total number of males is known from another source,
a better estimate of « is given by

2 = &N, = =N, (7.1a)

where £, now is the average value per male in the sample and N, is the
number of males in the population. This is a special case of Eq. 7.1 but
with &, substituted for & and N, substituted for N. 1If one were estimating
the total number of males having a certain characteristic, Eq. 7.1a would
be used, with &, now equal to p,, where p, is the proportion of males in the
sample having the characteristic. In general, for simple random sampling,
whenever we are estimating the aggregate value for a subset of the popula-
tion, it is desirable when N, is known to use Eq. 7.1a, with N, equal to the
number in the subset for the population, and 7, equal to the number in the
subset for the sample.

Going back to our illustration of the sample of individuals, we may
compute estimates of the per cent male, and the average and aggregate
wage and salary income of individuals. The totals needed are shown at
the foot of Table 1, Sec. 6. The desired estimates are as follows:*

218 m

200 == estimated proportion male (using Eq. 3.8)
$210,428 : i i
%%F" = $526 = estimated average income (using Eq. 3.4)

5000($526) = $2,630,000 = estimated total income (using Eq. 7.1)

Some further illustrations with estimates of average and percentage for
subsets are given in Sec. 15.

Although we know that these are unbiased estimates, this tells us
nothing about how reliable they are. Our next step, therefore, is to
evaluate the precision of these estimates.

8. Standards of precision of sample estimates. We have seen in Ch. 1,
Sec. 11, that the standard error of a sample estimate provides a measure
of its precision. If the standard error of an estimate is known, we can
set bounds around the estimated value in such a way that the true value
that is being estimated will almost certainly (or with any desired proba-
bility) lie within these bounds.

We shall adopt the standard of three standard deviations as entitling
us to say that we are “practically certain.” For a “normal’ universe the
chances for 30 are 997 in 1000, but we shall apply the term “practically
certain” to the chances that are associated with 3¢ whatever the distribu-

* In this illustration, the estimated average income and total income are
defined to exclude that part of any individual’s income in excess of $5000.
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tion of the statistic being estimated. For most characteristics and for
reasonably large samples, the chances of a consistent sample estimate
deviating from the true value by more than 3¢ are negligible.

9. Absolute precision of sample estimates. The variances (the standard
error squared) of the three estimates we have given, if the estimates are
based on simple random samples, are as follows:*

The variance of p, the proportion of individuals in the sample having a
certain characteristic, is

. N
“E:(lwf)ﬁ_—l

the variance of ¥, a mecan estimated from the sample, is

Logpni2 ©.1)

R

. S2
o= (=)= ©.2)
and the variance of 2, an estimated total from the sample, is
S?‘ nS'2
L = NY]—f)— — (1 — 9.3
o =N =N = (=D 9.3)
where
N
S(X,— X
N2 e 9.4
N1 949

and the other terms are defined in Sec. 3.

We have seen earlier that a proportion is merely a special case of a mean.
It follows, then, that the two formulas for the variance should be the
same; le., Eq. 9.1 is equivalent to Eq. 9.2. Actually, this is so because
the variance in the population of a characteristic taking on only the value
1 or 0 is equal to P(1 — P). To see this, let us define

Y, = Lif the ith individual has a particular characteristic;

= 0 if it does not.

Then F_p
and

J2 ..
82 -

S e S(rope N(iﬁ_pﬂ
N—1 N—1 N—1\ N

But, if Y, =0 then ¥Y? =0, and if ¥, ~1 then Y? = 1. Therefore

Y2-— Y, and

Y

N

* For proof, see Vol. TI, Ch. 4, Sec. 2.

[ A

~opo

= P

1\7
N
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so that

" N N N N

S = N~I(P P _N~—1P(l P) - N«lPQ (9.4a)
So we see that the variance of p can be written in exactly the same manner
as the variance of a sample mean, and indeed it is a special case of the
variance of the sample mean. This special case has been treated sepa-
rately because some simplification can be introduced for it, since ¢ need
not be computed by application of formula 3.9 but is readily obtained in
simple random sampling from a knowledge of P alone. '

It should be noted, also, that a very simple relationship holds between
the variance of ¥ and that of . Since we can compute «' by multiplying
& by the known number ¥, it follows that o,. will be equal to .Va,, and
then the variance of 2’ will be N%¢2, which is the relationship between
formulas 9.1 or 9.2 and 9.3. The general rule or theorem applied here
is that, if ¢2 is the variance of a sample estimate or other variate, and if
k is a known number or constant (i.e., a number that is known independent
of the sample and not subject to any sampling error), then the variance
of the product kx is equal to A%¢2. Similarly, the variance of A is equal
to ko3

The variances given in Eq. 9.1, 9.2, and 9.3 differ from those shown in
some statistics books by the factor of approximately (1 -- /'), which results
from sampling from a finite population and is referred to as the finite
multiplier. The finite multiplier is merely the proportion of the popula-
tion not included in the sample. Thus, some show ‘

G2

- (9.5)

n

ag

=9

as the variance of the mean of » observations, and o, = o/Vn as the
standard error of the sample mean. Actually, however, because of the
effect of the finite multiplier, the precision of a sample estimate is deter-
mined not only by the absolute size n of the sample, but also to some
extent by the proportion of the population that is included in the sample.
For example, if n = N, i.e., if we take 100 per cent of our finite population
as the sample so that f = 1, then the finite multiplier (1 — /) is equal to 0
and we have no sampling error at all, which we know must be true because
we have covered the entire universe. This result is different from that
obtained by using Eq. 9.5, which, with 100 per cent of the population
covered, would indicate a sampling error equal to o/V'N, although the
error due to sampling is actually 0.

Equation 9.5 is correct on the assumption that the total number of
elements in the universe being sampled is infinitely large, or if the sampling
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is carried out with replacement, which amounts to the same thing.
Sampling with replacement means that after a unit is selected it is replaced
and has a chance of being selected again.

When a small percentage of a finite universe is included in the sample,
say 5 per cent or less, the reduction of the variance due to the finite
multiplier can be ignored, and Eq. 9.5 provides a simple and acceptable
approximation. However, the effect of the finite multiplier is significant
in cases where as much as 25-50 per cent or more of the population is in-
cluded in the sample, and we should then be careful to use Eq. 9.2 and 9.3.

10. Relative precision of sample estimates. We can talk about the
precision of a sample estimate in either absolute or relative terms. For
example, the error made by using p as an estimate of P can be regarded in
absolute terms as measured by (p — P), or in relative terms as measured
by (p— P)/P. The standard error (square root of the variance), as
obtained from Eq. 9.1, is a measure of the absolute error, i.e., it is the
standard deviation of the distribution of (p — P) over all possible samples.
A measure of average relative error is obtained merely by computing the
standard deviation of the distribution of the relative errors, (p — P)/P.
We call this the coeflicient of variation of p. We shall denote the coeffi-
cient of variation of a variable by the symbol ¥V, and thus designate the
coefficient of variation of p by the symbol V,.* We shall call the square
of the coefficient of variation the rel-variance in order to avoid the long
expression “‘coefficient of variation squared.” The term rel-variance is,
of course, a shortening of “relative variance.”

In general, then, the coefficient of variation of any sample estimate is
equal to (standard error of the estimate)/(the value being estimated), and
the coefficient of variation of an original variate, X;, is V' = S/X. The
corresponding rel-variances are the squares of these expressions. Then
we have as the rel-variances of X, &, «’, and p:

N
X, — X)
52 5y 2
¥ YT RT  wo)xe (10.1)
o2 S2 p2

2 — L= -_ e = — —_ .

Vi= Tz a1-x T or a—-5n p, (10.2)
and

R o R S2 S2 V2 0

Vx,:}:z:N(l~f m:(l—f)m, or =(l_f)7(1 3)

* Tt should be noted particularly that this use of ¥ is different from that in
many texts in which ¥ denotes a variance.
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It is seen from Eq. 10.2 and 10.3 that V,, = V7, which follows because z’
equals a constant times #, and such constant multipliers drop out of the
coefficient of variation and rel-variance because they appear in both the
numerator and denominator.

Note that in sampling to estimate the proportion of the total population
having a specified characteristic

N @
Ve i X
N—1P
or V2 = Q/P, and therefore
vi—-nt=a-n (10.4)
? n nP ' ’

It should be emphasized that ¥, measures the relative precision of p as
an estimate of P and not the absolute precision of P. Confusion some-
times arises because o2 is the variance of a set of relative numbers, and
V2 is the rel-variance of the set of relative numbers.

As with the absolute measures of precision, where the proportion of the
population included in the sample is small, say less than 5 per cent, the
factor (1 — f) is approximately I, and the formulas above are approxi-
mately

[
N
(-]

A Ay Y (10.5)

vV =
n n’ ? nP

200

The probability that the relative error of a sample estimate is less than
some specified multiple of its coefficient of variation is exactly the same
as the probability that the absolute error of a sample estimate is less than
that same multiple of its standard error. Thus, we can say that we are
practically certain that the relative error in a sample estimate will not be
greater than 3 times its coefficient of variation, and that the chances are
only 1 out of 3 that the relative error will exceed the coefficient of variation.

Remark. When & or p is an estimated average or percentage for a
subgroup of the population (see Remark in Sec. 7), then Eq. 10.2 or 10.5
applies, but is approximate, although the approximation will be close if the
number of members of the subgroup expected in the sample is not too small,
say equal to 20 or more. In applying these equations ¥'? is the rel-variance
among the units in the subset of the population, and # is the number of
members of the subset expected in the sample. Thus, if a sample of persons
is drawn and the average value of a characteristic is computed for the males
in the sample, then V2 in Eq. 10.2 is the rel-variance of the characteristic
among males and not for the total population, and # is the number of males
expected in the sample. Similarly, if the characteristic being estimated is
the proportion of the subset (males in this case) having a characteristic, then
the V2 = Q/P, where P is the proportion of the subset having the charac-
teristic,and @ =1 — P.
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When 2’ is an estimated total for a subset obtained as described in part
(@) of the Remark in Sec. 7, the variance of @’ is given by Eq. 10.3. How-
ever, the variance is now based on all units in the population, and not just
the subset. Thus, if the population consists of both males and females,
and if the total income of the males is estimated with Eq. 7.1 (and not

Eq. 7.1a), then
N N _
N—1

Here X; has the value 0 for all units that are not members of the subset.
Also, N is the total size of the population from which the simple random
sample is drawn, and not the number of males in the subset.

1t is often useful to state the variance of such an estimated total in another
form.* Equation 10.3 is very nearly equal to

Vi+ 0
Pn
where now P equals the proportion of elementary units in the subset and

Q = | — P, and where

Ve o= (1--f) (10.6)

Ny
2 E (Xi - Xa)g
vV, = N, — DX (10.7)

is the rel-variance for the members of the subset, and X, is the average
value per element in the subset.

If N,, the total number in the subset, is known, the estimate of the total
for the subset is given by Eq. 7.1a, and the rel-variance of the estimate is
approximately

Ve L Vi :
Vi = (l-—_/)Fnl = (l—f)’T‘ (10.8)

and the approximation will be close if, again, n, is equal to 20 or more.
By comparing Eq. 10.6 with Eq. 10.8, we sec that an estimate based on
Eq. 7.1a has a smaller variance than when Eq. 7.1 is used. Equation 10.6
is a convenient formula for estimating V'3 when V] is known or has already
been estimated.
In the special cases when 2 is an estimate of the number of elementary

units in the subset, then V; (Eq. 10.7) is very nearly

2 . Qr/

V== .

"= p, (10.9)
where P, is the proportion of the subset having the characteristic, and
Q,=1—P,

11. The size of sample necessary to obtain results of specified precision.
The problem to be solved in determining the size of sample necessary to
achieve results having a specified degree of precision may be stated as
follows. We wish to have a satisfactory degree of certainty that the

* For proof, see Vol. Il, Ch. 4, Sec. 17.
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sample estimate of a particular characteristic is in error by no more than
a specified amount, or that the error made is no more than a specified
proportion of the value being estimated. For example, we may wish to
be practically certain that the coefficient of variation of the sample
estimate does not exceed, say, .04 or 4 per cent.

Since we are assuming for the present that the method of sampling to
be used is simple random sampling of the elementary units, our only
choice in the sample design is in regard to the size of sample required.
When the precision required is specified, all that remains is to set the
coefficient of variation equal to the average error that one is willing to
tolerate, or to set the coefficient of variation of the sample estimate equal
to one-third of the maximum error that one wants to be practically certain
not to exceed, and solve for the sample size required. For example, if
we want to be practically certain that the relative difference between the
estimated mean from a sample and the true mean will be no greater than
D, we set

D

3Ve=D, or V‘ET—ZS_

and from Eq. 10.2 or 10.3 we get

D)\? V: N—ny?

-y — = =

(3) ( f)n N n

or ’
ONYV?

n -

=N L ove (11.1)

We can then compute the size of sample necessary by substituting the
appropriate values for D, V2, and N in Eq. 11.1.

We see, then, that to ascertain the size of sample required to achieve a
specified precision we must have a reasonable approximation to ¥ in
advance. A knowledge of the approximate size of V" may be available
from past experience. If not, some pretesting and preliminary study may
be necessary in order to obtain an approximate value for it.

The value for # as given in Eq. 11.1 is for the specific situation in which
the precision desired is such that 3 times the coefficient of variation of
the estimate is equal to D. In general, one might wish to have a degree
of precision such that & times the coefficient of variation would be equal
to D. Then the size of sample necessary is given by substituting k® for
9 in Eq. 11.1, and we have

k2N Y

(11.2)
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The value selected for & determines the probability that the sample
result will have a relative error no greater than + D. Formula 11.2 is
applicable with simple random sampling whether the characteristic being
estimated is a mean, a total, or a percentage.

In the usual case where the population is large relative to any size of
sample that may be considered, the computation to determine the size of
sample needed is somewhat simpler. In such instances, as we have
already seen (Eq. 10.5), the rel-variance of an estimated mean, percentage,
or total is given approximately by ¥?/n. If we wish to have a result of
such precision that & times the coefficient of variation of the estimate is
equal to D, then we have

k2 V2 _ D2
n
whence
k2y2
n = Y (11.3)

The decision on the level of accuracy required, i.e., on the value of D,
is an important one.* We see from Eq. 11.3 that, if we are willing to
double an expected relative error, we shall require a sample only about
one-fourth as large. For example, if

D=.04k=3and V=14
then the necessary sample size is

= 1406

"= 4(0016)

But, if we are satisfled with D = 8 per cent instead of 4 per cent, the
sample size required is reduced to n = 9/.0256 = 352, a sample only one-
fourth as large as 1406.

It is important, therefore, to make D as large as can be tolerated, in
order to avoid paying a very high price for results of greater precision
than required.

One further point should be mentioned in connection with the calcula-
tion of the size of sample that is needed. Thus far we have dealt with
the estimation of a single characteristic. Usually, however, one estimates
many characteristics from the same sample, and the size of sample
necessary to achieve the desired precision for one characteristic may be
larger or smaller than the size of sample necessary to achieve the desired
precision for others. This problem is ordinarily settled by taking a

* See Ch. 1, Sec. 13,
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sample large enough that each of the most important characteristics is
estimated with sufficient precision. Then, for the characteristics of
secondary importance, one accepts whatever precision is attained. Some
of the characteristics of secondary importance will be estimated with
greater precision than the purposes of the survey require, whereas others
will be estimated with less than the desired precision. In either case, the
various results of the sample must be interpreted in the light of the
precision actually attained.

12. Estimates of variances from the sample. Equations 9.1, 9.2, and 9.3
give the variances of the sample estimates p, &, 2, and Eq. 11.2 and 11.3
show how these variances can be applied to determine the size of sample
needed for a specified precision of results. The use of these formulas,
however, requires a knowledge of certain population values. The variance
of p, for example, can be computed with Eq. 9.1 if we know P, but P is
the unknown value that we are trying to estimate. If P were known, we
should not be trying to estimate it from a sample. Similarly, in com-
puting the variance of # or 2’ with Eq. 9.2 or 9.3, we need to know 8%,
the variance of the universe. In many instances S% may be known
approximately from prior experience. As an estimate of S% from the
sample itself, we can compute s2, the variance of the sample observations,
where s is given by Eq. 3.12. To estimate the variance of & or &’ we
substitute s? for S and have as our estimate, from Eq. 9.2,

S2
sg=0—f)= (12.1)
n
and from Eq. 9.3,
2 9
52 = NY(1 —f)% = (=)= (12.2)

It turns out* that s% is an unbiased estimate of S?, and therefore that
Eq. 12.1 and 12.2 represent unbiased estimates of the variances of & and
x'.  Similarly,

5
v = = (12.3)
is an estimate from the sample of V2 ( as given in Eq. 10.1), and this
sample estimate may be substituted for V2 in the equations that give the
precision of sample estimates or the size of sample required. The
estimate, 2, is a consistent (although not unbiased) estimate of V2, and
for reasonably large samples the bias will be trivial.{

* For proof, seec Vol. II, Ch. 4, Sec. 4.
1 For proof, see Vol. II, Ch. 4, Sec. 15, 20, and 21.
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Similar considerations apply to the estimate of the variance of p. We
have already seen (Sec. 9) that, for a variate that takes on only the value
0 or 1, 82 = NPQ/(N— 1). Similarly, it can readily be seen that s* =
npg/(n — 1), and we can substitute npg/(n — 1) for NPQ/(N — 1) in Eq. 9.1
to obtain an unbiased estimate of the variance of p. Consequently,
we have as our estimate of 02

$2 = (1—f) -4 (12.4)
n—1

Equations 12.1, 12.2, and 12.4 will be good approximations provided
the estimate of p or of s2 is based on a sufficiently large sample. But how
large must the sample be to allow us to rely upon the estimated variance
when that variance is estimated from the sample? The answer to this
question is different for different problems, although a very simple answer
can be given for many of the problems that we encounter in our
experience.

By now it should be clear to the reader that the variance estimated from
the sample will vary from sample to sample, and the estimated variance,
too, will have a standard deviation over all possible samples. Also, as
with the sample mean, the coefficient of variation over all possible samples
of the estimated variance provides a measure of the relative precision of
the estimate from a particular sample.

We shall assume that the estimate of a standard deviation is sufficiently
reliable if it has a coeflicient of variation no greater than 10 or 15 per cent.
This coefficient of variation is not to be confused with the precision
required for the estimate of the mean or total. The precision that is
required in an estimate of a standard deviation is, of course, a matter of
personal preference, and it will depend on circumstances. As a working
rule, we shall adopt 10 per cent, except where otherwise stated.

To illustrate how the variability in the estimate of the standard deviation
will affect the sample size, let us suppose that, as in the illustration in
Sec. 11, D = .04, k = 3, and V' = .5. Suppose that we do not actually
know ¥V = .5, but that we estimate it with a coefficient of variation equal
to 10 per cent. However, since the unknown ¥V = .5, about 19 times in
20 we shall have the estimate » in the interval 4 << v < .6. Using Eq.
11.3 to determine the sample size, we find 900 < »n << 2025. If now Vis
actually equal to .5, then n == 900 will lead to a value of D = .05, and
n = 2025 will lead to D = .033, so that the precision obtained will lie in
the range .033 << D <C .05, the limits corresponding to sample sizes of
2025 and 900, respectively, instead of being exactly equal to .04, as
specified above. Thus, such a variation in the advance estimate of V'
may lead to somewhat greater precision (and higher cost) than necessary,
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or to lower precision than desired, or may necessitate a further sampling
operation to increase the sample size if the accuracy actually achieved is
deemed not sufficient.

Some simple rules for determining size of sample needed for reliable
estimate of variance. If a simple random sample is to be drawn from an
original universe that is approximated by the normal distribution, then
50 observations are enough to yield a reasonably reliable estimate of the
standard error of a mean or total. Simple approximate rules are also
available if we are estimating, from a simple random sample of elementary
units, the proportion of the elements or the total number of elements in
the population having a specified characteristic. These rules are as
follows :*

Rule 1. 1f p, the sample proportion, is between 30 per cent and 70 per
cent, and if the denominator on which the percentage is based is 60 or
more, then the coefficient of variation, ¥, of the estimated standard error
will be less than 10 per cent.

Rule 1I.  Whether or not p or ¢ is less than 30 per cent, if both np and
ng are greater than 35, then, again, the ¥, will be less than 10 per cent.

The two rules cover much actual practice. Cases not covered by these
rules will require the worker to turn to the theory of confidence intervals
referred to in Sec. 13.

Hlustration 12.1. Precision of the estimate of the standard error of a
proportion. Suppose that we want to estimate the proportion of the
families having incomes in each of the income groups shown in Table 2,
and that a simple random sample of 200 families has been drawn from a

Table 2. Family income—hypothetical example

Income erou Number Per cent of families
g., p in as estimated from
(doliars)
sample sample

Under 500 68 34
500-1499 72 36
1500-2999 40 20
3000 and over 20 10
Totals 200 100

* For proof, see Vol. II, Ch. 4, Sec. 8 and 9.
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population of 2000. The results of this sample are summarized in
Table 2.

First, suppose that we wish to estimate the proportion of families
having incomes under $500 and also the standard error of this estimate.
The estimated proportion is 68/200 = .34 or 34 per cent. The estimated
standard error of this proportion (from Eq. 12.4) is

P (.34)(.66) .

Sp /(.9) 00—1 — 3.2 percentage points
Because the numerator (68) of the proportion 68/200 is greater than 35,
and also because the denominator minus the numerator (200 — 68 = 132)
is greater than 35, the estimated standard error can be used with confi-
dence, according to Rule II given above. For similar reasons the per-
centage estimated to have incomes between $1500 and $3000 also has an
estimated standard error that can be used with confidence. On the other
hand, the precision of the estimated percentage receiving $3000 or more
income will not be estimated so reliably.

Moreover, we cannot get from the sample a reliable measure of the
precision of the proportion estimated to earn less than $3000, even
though there are more than 35 persons in the sample in this group. The
percentage in this group (90 per cent) is not between 30 per cent and
70 per cent, and the denominator minus the numerator of the proportion
is less than 35, so that neither Rule I nor Rule II applies.

Now, among the families having $1500 or more income, suppose that
we wish to estimate the proportion which received more than $3000
income, and wish to estimate the standard error of this estimate. The
estimated proportion is 20/60 = 33 per cent, which is between 30 and
70 per cent. Also, the denominator is 60, so that Rule I is met, and,
therefore, our estimated standard error can be used with confidence.

Exercise 12.1. The occupancy and tenure of dwelling units in a certain city
are estimated by a sample of 160 dwelling units as follows:

PER CENT OF DWELLING

OCCUPANCY AND TENURE ~ NUMBER IN SAMPLE UNITS AS ESTIMATED
FROM THE SAMPLE
(1 03] 3
All dwelling units 160 100
Owner-occupied 48 30
Tenant-occupied 104 65
Vacant 8 5

Assume that the population is large enough that the finite multiplier can be
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neglected. What is the standard error, as computed from the sample, of each
of the percentages in column 3? Which standard errors can be used with
confidence ?

Precision of the estimate of the standard error for estimates other than
proportions. If the variate being measured for each elementary unit takes
on values other than 1 or O, the problem is more difficult, unless the
variate is approximately normally distributed; a great many populations
to be sampled will have far from normal distributions.

If we are sampling from a population that has no extremely large or
small items, a sample of 100 will be sufficient to provide a reliable estimate
of the standard deviation, even if the original distribution does not
approximate the normal distribution.. On the other hand, with popula-
tions having some very extreme items (a small proportion of them but a
higher proportion than would be expected with the normal distribution),
much larger samples may be required in order to get reliable measures of
precision from the sample itself. In practice, however, when the popula-
tion has some exceedingly extreme items, it is desirable not to use simple
random sampling, and ordinarily one finds it possible to avoid that
method. Instead, as will be indicated in detail in Chapter 5, it may be
possible to take advantage of the large differences between the very
extreme items and the remainder of the population, to increase the
precision of the results much beyond that which could be achieved with
simple random sampling from such a population.

A reasonable question to ask at this point is: How do we know the
kind of population from which we are sampling? The evidence con-
cerning extreme items provided by the sample itself, unless the sample is
very large, may not be sufficient to indicate the nature of this population
and the probable reliability of our estimates of precision from a sample
of a given size. Consequently we may not know the approximate size of
sample necessary to make reasonably accurate measures of precision from
the sample itself. In sampling for a percentage or a total number in the
population having a specified characteristic, there is no problem. As
long as we are dealing with percentages, the rules given earlier hold for
any kind of population, so long as the elementary unit whose characteristic
is being measured is the sampling unit and so long as simple random
sampling is used. For other characteristics, however, the answer is not
so simple, and one must depend on prior knowledge and other investiga-
tions as to the nature of the population being sampled. For large
samples (say 500 or more) it is necessary to have only a very general
knowledge that the population is not extremely skewed or otherwise
peculiar.

Coefficient of variation of the sample estimate of the standard deviation.
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The relative precision (coefficient of variation) of the estimated standard
deviation, sy, with simple random sampling is given approximately by*

1
v, ﬁA/ﬂ% (12.5)

or, if n is very small or if § is close to 1, a better approximation is

n-—3

y, - ey (12.6)
= .0

¢ 4n

where 7 is the size of sample,
N
Ha (X, — X

= ;, and Hy = ~—~——AI—~ (12,7)

is referred to as the fourth moment about the mean.}

We can use Eq. 12.5 to ascertain the relative precision of s, if we know
the approximate value of . Conversely, if § is known approximately,
we can solve Eq. 12.5 for n to ascertain the size of sample necessary to
achieve any specified precision in our estimate of S. Solving for n, we
have

f—1

= 12.8
n 47 (12.8)

for the size of sample necessary in order to estimate the standard deviation
from the sample with a coefficient of variation of V. Now, if we adopt
the standard, mentioned earlier, that we will regard s as a reliable estimate
of S if we have a coefficient of variation of no more than 10 per cent, we
substitute ¥2 = .01 in the above equation to obtain

n = @—;~4—] (12.9)

For the normal distribution f is equal to 3, and we can now examine
the basis for the statement made earlier that a sample of 50 or more is

* The formula assumes a population large relative to sample size, or sampling
with replacement, and is a good approximation for sizes of sample such that
V is less than .15; i.e., Vs is less than .30. Limits of sampling variation for
sz can be obtained by the method given in Sec. 7, Ch. 4, Vol. II.  For sampling
from a finite population, where a large proportion of the population is included
in the sample, this formula will overstate the sampling error. Section 5, Ch. 4,
Vol. II, gives the formula for the rel-variance of s% for sampling without
replacement. For proofs see Vol. II, Ch. 4, Sec. 6 and 7.

1 B is the well-known Pearson measure of kurtosis or peakedness.
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adequate to provide a reliable measure of reliability from the sample
itself. If we are doing simple random sampling from a normal distribu-
tion, we have » — 3 —1)/.04 = 50, :

We see from formula 12.9 that, as 8 increases, the size of sample neces-
sary to be able to place confidence in our standard deviation estimated
from the sample will increase. Thus, for a 10 per cent coefficient of
variation in the estimated standard deviation (from Eq. 12.9), the following
sizes of sample are needed for the indicated values of B:

B =6, n =125
B=11, =250
B =41, »n— 1000
£ =101, »n= 2500

Populations with values of F as high as those shown are not unusuyal,
One frequently encounters populations with very large values for B, but
for many of these it is particularly inefficient to use simple random
sampling or a method that is substantially equivalen. For many such
populations one can find alternative and more efficient sampling methods
(discussed in Chapter 5).

13. Exact confidence limits for sample estimates. We have discussed
the interpretation of the precision of an estimate in terms of its standard
error, and the procedure for estimating from a sample the standard error
of an estimated mean, total, or percentage. With Tespect to the interpre-
tation of the standard error, we have indicated that, if an estimate is

of more than any specified multiple of its estimated standard error. But
there are two reasons in the types of problems with which we shall deal
why such probability statements will not be exact. The first reason is
that the sample estimate, although it may be distributed approximately
according to the normal distribution, may not be exactly so: the prob-
abilities will consequently be approximate. The second reason is that
we do not ordinarily know the standard error of our estimate exactly but
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be reasonably close for most practical purposes whenever the sample is
large enough that V is less than 10 per cent.

Methods exist for setting “confidence limits,”” which may be used under
certain circumstances for computing limits of sampling error, and with
which it is possible to make exact probability statements. Confidence
limits are ranges of sampling variability which can be computed under
certain circumstances from the sample itself and for which exact prob-
abilities can be associated with the statement that the upper and lower
confidence limits will include the true value being estimated. Such
probabilities will be exact when one is using simple random sampling
from a normal distribution, or for a variate that takes on only the value
1 or 0,* or from certain other distributions. [See, for example, Deming
(1), Chapters 9 and 16, and S. S. Wilks, Elementary Statistical Analysis,
Princeton University Press, 1949.] Confidence limits cannot be computed
with exact probabilities for sampling in general from populations of
unknown distribution.

We shall not discuss here the use of confidence limits because they are
presented in other literature and because we are not ordinarily sampling
from a normal distribution or even from a known type of distribution
other than where the variate has only the value 0 or 1.

When a simple random sample is used with a variate that takes on only
values 0 and 1, the treatment in Sec. 12 is adequate provided the conditions
on precision indicated in the rules given are met. When these conditions
are not met, available tables will provide more accurate limits of sampling
errors.T

14. Some illustrative populations. We shall now examine a few popu-
lations that have been encountered in actual sampling work in order to
illustrate for different types of populations the sizes of sample necessary,
with simple random sampling, to achieve results of a given precision in
estimating the standard deviation as well as in estimating means, totals,
or percentages.

In 1944 the Bureau of the Census estimated the total population of

* A variate having the value 0 or 1, when the sampling is simple random
sampling with replacement, yields the binomial (or Bernoulli) distribution.
When the sampling is without replacement, the distribution of sample values
(means or totals) will be approximately binomial unless the sample size, », is
large relative to the size of the population, N.- When both N and # are very
large, with n small relative to N, the distributions of means and totals approach
normal distributions.

t See, for example, National Bureau of Standards, Applied Mathematical
Series 6, Tables of the Binomial Probability Distribution, U.S. Government
Printing Office, Washington, D.C., 1950.
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each of certain designated cities from a sample.* Each of the cities had
had a very large influx of population since the most recent census. To
obtain the estimate, a list of the dwelling places was made in each of the
designated cities, a sample of dwelling places was taken, and the people
in these sample dwelling places were enumerated. The estimated total
population of an area was then obtained by computing the average
number of persons per dwelling place from the sample and multiplying
this average by the known total number of dwelling places in the area.
We shall not review here how the sample was drawn or how a dwelling
place was defined except to say, first, that the sampling method in some
of the cities was approximately equivalent to simple random sampling,
and, second, that a dwelling place was. usually an entire structure provided
the structure did not appear to contain four or more families. It will be
useful to examine the distribution of dwelling places by number of persons
for one of these cities, and to compute the size of sample needed to achieve
estimates of specified precision from the sample.

Table 3 and Fig. 1 show the distribution of the population in dwelling
places in the city of Charleston, S.C.t The reader will do well to examine
carefully Fig. 1 along with the other figures and tables that follow in
order to perceive the consequences of doing unrestricted random sampling
from populations such as these, and to appreciate that different types of
populations may call for varying treatment.

Computations from the data in Table 3 show that for Charleston the
coefficient of variation of the distribution of persons per dwelling place
was .73.  With this information, and with the further knowledge that the
total number of dwelling places in the Charleston area was about 20,000,
we can readily ascertain the size of sample necessary to achieve any
specified precision in our estimate of the average population per dwelling
place. Suppose, for example, that we wish to estimate the population
with a coefficient of variation of 4 per cent. From Eq. 11.2, with

2= 732 = 533, D == .04, and k = 1, we have

o (20,000)(.533) .
"= (20,000)(0016) + 533 2 (14.1)

Thus, a sample of approximately 330 dwelling places is required.

* Reported in A Chapter in Population Sampling, Sampling Staff, U.S. Bureau
of the Census, U.S. Government Printing Office, Washington, D.C., 1947.

T Actually the information here summarized is based on a sample of dwelling
places from the city of Charleston, but for our purpose it is just as well to regard
it as representing precisely the total population; i.e., we want to consider the
sampling problems for a population that is described by the distribution shown
in Fig. 1.



Table 3. Number of persons per dwelling place in city of Charleston, S.C.:

1944
Number of Per cent of Number of Per cent of
persons per  dwelling places persons per dwelling places
dwelling place having dwelling place having

X; X; inhabitants X; X; inhabitants

0 .8 10 1.9

1 7.7 11 3.8

2 13.1 12 2.7

3 12.3 13 1.2

4 15.4 14 1.5

5 11.5 15 2.7

6 9.2 18 4

7 6.9 21 .8

8 3.1 23 4

9 4.2 24 4

Source: A sample of 260 blocks from the Survey of Congested Production
Areas of 1944, conducted by the U.S. Bureau of the Census at the request of
the Committee for Congested Production Areas.

X = 5.69
o= 4.15
V= .73
f = 5.94
201
§15—
®
o
b
£
E
210}
k]
=
3
)
a 5
0 — M
0 T [‘l4\ T T Tl T |12| T \16| T |20| [ |24] 1

Number of persons per dwelling place

F16. 1. Number of persons per dwelling place in city of Charleston, S.C.: 1944,

138
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Now, if we are sampling from such a population, and if we use a sample
of 330 dwelling places, how much reliance can we place on the standard
error of our sample estimate when the standard error is computed from
the sample itself? Computations based on Table 3 show that j is equal
to 5.94. Substituting this value into Eq. 12.5, we have

v J5'94"] 06 or 6 4.2
2N a0 or 6 per cent (14.2)
In other words, from a sample of approximately 330 dwelling places we
not only shall have achieved the required accuracy in the estimated total
population or estimated average population per dwelling place, but also
shall have evaluated accurately the precision of our sample estimate from
the sample returns themselves, because the coefficient of variation of the
estimated standard deviation would be only 6 per cent. This would be
more than sufficient accuracy if we accept the suggestion made earlier
that for most problems a 10 per cent coefficient of variation in our estimate
of the standard error is small enough.

Of course, in advance of planning a sample, we would not ordinarily
know the value of V or of § or the exact nature of the distribution from
which we are sampling. If the distribution of the population per dwelling
place were known, we would not even need the sample, because we should
then know also the average size of dwelling place. However, we may
know from prior experience and from preliminary investigation that the
population is distributed roughly as shown in Table 3 and Fig. I, and
from such knowledge we would be able to infer that the coefficient of
variation is in the neighborhood of perhaps .6-.9 and that £ is in the
neighborhood of 5-10. Such information may be adequate for designing
a sample by which to estimate the population per dwelling place.

Thus, rough approximations often provide a useful and accurate guide
for fixing a suitable sample design and the size of sample required. The
sample itself will then provide objective estimates of the population per
dwelling place or of the aggregate population of the area or of whatever
characteristics are desired, as well as of the precision of these estimates,
and will indicate whether there is a need for increasing the size of the
sample.

It i+ of interest to examine what modifications in the illustrative distri-
bution of the population per dwelling place already shown would have led
to marked changes in the coefficient of variation and . This type of
examination provides a guide in speculating on the possible range in
magnitude of the coefficient of variation or of 5. A sample estimate is
sensitive to the relative magnitude and frequency of extreme items, so let
us see how a change in these-might affect the coefficient of variation and §.



140 ' SIMPLE RANDOM SAMPLING Ch. 4

Suppose, for example, that the actual distribution is as shown in Table 3
except that about 4 out of 1000 dwelling places contained 40 people each.
Then the coefficient of variation would increase from .73 to .8, and #
would increase from 5.94 to 15. Thus, changes in the frequencies of
extreme items can have a substantial effect on the precision of the estimate
of the variance. Yet, with this modification, the sample of 330 dwelling
places would have a precision of about 44 per cent, which is not far from
the 4 per cent precision aimed at, and the estimated variance would still
be of acceptable precision—10 per cent.

It is interesting to note that, even with V' = .73, # = 15, and a sample
of only # = 150, the precision of the estimate of total population is 6 per
cent and the precision of the estimated standard error is 15 per cent,
which are still accurate enough for many purposes.

From the above remarks, it 1s clear that moderate errors in original
assumptions concerning the nature of the population from which a sample
is to be drawn will not lead to scrious difficulties in specifying the size
of sample required. It hardly needs pointing out, though, that without
reasonable care in these original speculations one can easily be led into
very serious errors in the sample design or in the size of sample required,
and in the final conclusions from the sample.

The effect of more extreme variations in the distribution of the popula-
tion being sampled will bé indicated in the further examples that follow.
These examples illustrate some of the other types of populations that have
been encountered in practical sample surveys.

Figures 2-7 show* (a) the distribution of blocks in Los Angeles by
 number of dwelling units in 1940; () the distribution of farms in the
United States by size (in acres) in 1940; (c) the distribution of sales of
retail trade establishments in the United States in 1939; (d) the family
income distribution of the population of Atlanta, Ga., in 1933; (e) the
age distribution of the population of the United States in 1940; and (f)
the distribution of weights of bales of cotton in Marshall County, Ala.,
for 1945. Let us examine these distributions from the point of view of
drawing simple random samples from each.

The distribution of blocks by size in the city of Los Ange'es, Table 4
and Fig. 2, shows the effect of a somewhat more extreme tail on a distri-
bution than that for the distribution of dwelling places in Charleston.
The use of a simple random sample from this population to estimate total
dwellings in the city or average dwellings per block would call for rather

* Tables 4-9 show the data on which the figures are based. The values
X, 0, V, and 8 were computed with smaller intervals, in some cases, than are
shown in the tables, and consequently they will differ somewhat from the results
obtained by computing with the data shown.
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Table 4. Number of dwelling units per block in city of

50l Los Angeles: 1940
= N;vrvr;llal?; of Per cent of N;\:;%?; of Per cent of
- units egr blocks having units egr blocks having
e bloce | X: dwelling bloce | X dwelling
[} X, units X, units
50| 1 i |
E 0- 4 25.44 70— 79 2.04
2 5-9 9.52 80- 89 1.73
% 10-14 8.60 90- 99 1.29
2 15-19 7.76 100-149 2.95
5 20-24 7.62 150-199 .86
= 304 2529 - 701 200-249 36
2 30-39 10.66 250-299 .16
5 40-49 6.42 300-399 A1
S 50-59 4.47 400+ .05
z 60-69 2.95 ‘
c mn
S 20l Source: A sample of blocks from U.S. Bureau of the
g Census, Census of Population and Housing: 1940, Supple-
g ment to the First Series Housing Bulletin for California,
g Los Angeles Block Statistics.
= X =290

o =379
10— Ve 13
p =265
0 ] T ! T 1
0 100 200 300 400 500

Number of dwelling units per block

FiG. 2. Number of dwelling units per block in city of Los Angeles: 1940,
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(per cent of farms for intervals of 20 acres)
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Table 5. Farms by size in the United States: 1940

Size of farm Per cent of Per cent of

(acres) farms total acreage
Under 10 8.3 3
10- 29 16.6 1.7
30- 49 12.6 2.8
50— 69 8.4 2.8
70- 99 12.8 6.0
100- 139 11.3 7.5
140~ 179 10.2 9.2
180- 219 4.6 5.2
220- 259 34 4.6
260- 379 5.3 9.5
380- 999 4.9 16.1
1000-4999 1.4 15.4
5000 and over 2 18.9

Source: U.S. Bureau of the Census, Census of Agriculture:
1940, Vol. III, General Information.

X =192
o = 869
V= 453
f = 603
— % .
i \ T 1
1,000 2,000 3,000 16,000 17,000

Size of farm (acres)

FiG. 3. Farms by size in the United States: 1940.
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(per cent of stores for intervals of $50.000)
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Table 6. Independent retail stores by sales size in the
United States: 1939

Sales size group Per cent Per cent
($1000) of stores of sales
Under 50 93.36 48.7
50- 99 4.11 14.0
100~ 299 2.03 16.1
300~ 499 .28 43
500- 999 .16 4.6
1000-4999 .05 6.4
5000+ .01 59

Source: U.S. Bureau of the Census, Census of Business:

Bl Retail Trade: 1939, Vol. 1, Part I, and unpublished tables for
el stores with sales over £300,000.
X = 22,348
4 o == 153,067
V= 6.85
2 f= 5905
. o
0 T l T LT T
0 1.000 2,000 3,000 4,000 13,000 14,000

Sales (thousands of dollars)

FiG. 4. Independent retail stores by sales size in the United States: 1939.
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Table 7. Families by income in Atlanta, Ga.: 1933
Income of families Per cent of
(dollars) families
30+
0- 499 34.449
500- 999 21.963
1,000- 1,499 13.833
25 I 1,500- 1,999 10.974
2,000- 2,999 10.923
3,000- 4,499 5.080
4,500- 7,499 1.994
7,500-12,499 652
201t 12.500-17,499 103
17,500-24,999 .015
25,000-49,999 .007
50,000-75,000 007

[y
o
I
1

(per cent of families for intervals of $500)

Source: H. Mendershausen, Changes in Income Distribu-
tion during the Great Depression, National Bureau of
Economic Research, New York, 1946; a sample of 13,641

families. _
101- X = 1273
o= 1572
V= 1.24
B = 207
5 b
0 3

I I I I I |
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Income of families (dollars)

FiG. 5. Families by income in Atlanta, Ga.: 1933,



Table 8. Population of the United States by age: 1940

Age of the Per cent of Age of the Per cent of
population persons in given population persons in given
(years) age group (years) age group
Under 1 1.53 50-54 5.51
1- 4 6.47 55-59 4.44
-9 8.12 60-64 3.59
10-14 8.92 65-69 2.89
15-19 9.37 70-74 1.95
20-24 3.80 75-79 114
25-29 8.43 80-84 .59
30-34 7.78 85-89 21
35-39 7.25 90-94 .05
40-44 6.68 95+ .01
45-49 6.27

1

Source: U.S. Bureau of the Census, Census of Population: 1940, Vol. 1V,
Part I, Characteristics by Age.

,_.
o
i

<)
f

~
l

Frequency density
(per cent of persons
for intervals of 5 years)

N
|

L

X =316
=202
V= .64
B = 237

40 50 60
Age (years)

Fi16. 6. Population of the United States by age: 1940.
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Table 9. Cotton bales by weight in Marshall County, Ala.: 1945

Weight of bales Per cent Weight of bales Per cent

(pounds) of bales (pounds) of bales
Under 390 13 520-529 14.79
390-399 A3 530-539 12.01
400-409 .20 540-549 9.12
410-419 .10 550-559 6.07
420-429 .30 560-569 3.89
430-439 34 570-579 2.35
440-449 .57 580-589 1.34
+50-459 1.04 590-599 47
460-469 1.61 600-609 34
470-479 2.98 610-619 23
480-489 5.50 620-629 .20
490-499 7.41 630-639 13
500-509 13.18 640-649 .07
510-519 15.39 650 and over 10

Source: Sample of 2982 Bales of Cotton, Marshall County, Alabama, from
U.S. Bureau of the Census (unpublished report on cotton ginned before Novem--
ber 1, 1945).

WA
{1 T
W
w o
[T
WO
[oe]

12—

Frequency density
(per cent of bales for intervals of 10 1b)
(0]
[

[ ! [ I I I |
350 400 450 500 550 600 650 700

Weight of bales (pounds)

FiG. 7. Cotton bales by weight in Marshall County, Ala.: 1945,
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large samples, if any reasonably high degree of precision were wanted in
estimating the total. Moreover, samples of more than 600 would be
required to yicld reliable estimates of the standard deviation from the
sample. These results suggest that it would be desirable to use a method
of sampling other than unrestricted random sampling of blocks if one
wanted to make a simple unbiased estimate of the total number of
dwelling units in the city.

From Fig. 3 and 4, we see that for the distributions both of size of farm
and of retail sales there is an exceedingly heavy concentration of small
establishments and then a very, very long tail in the distribution. The
large establishments are tremendously large in comparison with the small
ones. There are only a few of them, but they account for a substantial
part of total acres or total sales. In the case of farms, for example, farms
of 1000 acres or more constitute only 1.6 per cent of all farms but account
for more than a third of all land in farms; and the situation with retail
trade is even more striking. The consequence is a very large coefficient
of variation for each of these distributions. In using a simple random
sample from such distributions, exceedingly large samples would be
required to achieve reasonably reliable estimates of average size of farm
or of average sales per establishment or of the corresponding totals. The
figures show more clearly than do the tables that the distributions are
exceedingly skewed with a high proportion of the farms or establishments
in the small size groups and a small proportion of exceedingly large ones.

Not only is the coeflicient of variation very large for these distributions,
but also f is so large that, with simple random sampling, large samples
would have to be used to obtain a reliable estimate of the standard
deviation. In sampling from the farm distribution, the average number
of acres per farm estimated from a simple random sample of 1000 farms
would have a coefficient of variation of about 14 per cent. Further, if
we estimated the standard deviation from the sample, it would have a
coeflicient of variation of nearly 40 per cent. It is clear that one would
hardly be able to place any reliance at all in such an estimate, even with a
sample as large as a thousand.

The distribution of retail sales is still more extreme if one is considering
using simple random sampling. The coeflicient of variation of the
estimated total sales, estimated from a simple random sample of 1000
establishments, would be greater than 20 per cent, and the coefficient
of variation of the estimated standard deviation of this estimate would be
more than 100 per cent.

These results are rather striking, but perhaps not unusual. Such types
of distributions are often encountered in dealing with economic data.
Actually, the use of simple random sampling from such distributions gives
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results that might have been anticipated. The proper approach to follow
(as we shall see in Chapter 5) with such distributions is to make special
provision for sampling the extreme elements of the population.

The situation involved in the family income distribution shown in
Fig. 5 is only slightly different. Here it turns out that the 2.5 per cent of
the families which have the highest incomes receive about 15 per cent of
the total income. The extreme incomes shown in the long tail of the
distribution have a marked effect in considerably increasing the variance
of the estimate. However, this is somewhat less serious than the case of
the retail sales or size of farm distribution.

In this instance, a simple random sample of about a thousand families
is required to provide an estimate of aggregate or average income with a
coefficient of variation of 4 per cent. For a sample of 1000, the coefficient
of variation of the estimated standard deviation is greater than 20 per cent.
Thus, this estimate of the standard deviation is still too unreliable to be
satisfactory for measuring precision. One would need a simple random
sample of between 4500 and 5500 families in order to have what we have
agreed to regard as an accurate estimate of precision from the sample
itself. 1In this instance, too, the error can be reduced considerably by
avoiding unrestricted random sampling or a method that approximates
it.

The age distribution of the population and the distribution of weights
of bales of cotton, shown in Fig. 6 and 7, provide a very different picture.
Both these distributions lack the unusually extreme items present in the
distributions just described. For the two populations now under con-
sideration, as for the distribution of persons per dwelling place first
introduced, simple random sampling may or may not be the most efficient
sampling method, depending upon the resources available for designing
the sample. In any event, samples of moderate size will lead to sound
conclusions regarding the precision of the sample estimates made from
the sample and will provide reasonably reliable estimates of means and
totals. In both these instances samples of 50-100 will be quite adequate.
for evaluating precision from the sample results alone.

We cannot infer from the fact that a distribution is skewed that it will
have a high value of §, and thus that a small sample will necessarily give
poor estimates of means or standard deviations. Nevertheless, in practice
it is often found that difficulties with simple random sampling are associ-
ated with badly skewed distributions (with a long tail of extreme values).
Finally, although simple random sampling is very unsatisfactory for such
distributions, methods of sampling are available that turn the peculiar
nature of the distribution to advantage in improving the efficiency of the
sample.
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15. Computations for an illustration, with some supplemental remarks.
Let us now examine an illustrative sample survey of a city: Ashland,
Ohio. The sample for this illustration was drawn from 1940 Census of
Population schedules for Ashland. A 5 per cent simple random sample
of 498 adults (persons 14 years of age and over) was selected from the
population. The information for the members of the sample was obtained
from their 1940 census schedules.

We shall carry through at this point some computations that can be
made in order to estimate different items from the sample. We shall then
show the computations for estimating measures of precision (variances,
standard errors, and coefficients of variation) of the estimates.

The items for which we shall assume that estimates are wanted are
listed in Table 10. The figures shown in this table are the aggregate
values of the specified characteristics for the individuals in the sample.
The table contains the raw data needed from the sample to estimate the
desired averages or totals and their variances.

Table 10, Raw data from a sample of the aduit population of
Ashland, Ohio: April 1940

i

i

Item Total Male Female

Number of persons 498 232 266
Number receiving wage and salary

income 249 168 81
Total wage and salary income* (dol-

lars) 242,717 204,724 37,993

Sum of squares (Zx?) 380,418,813 354,742,266 25,676,547
Number receiving wage and salary

income but less than $1000 141 63 78

Number having less than $50 income
from sources other than wages or
salaries 371 167 204
Number receiving wage and salary
income but with less than $50 in-
come from other sources 215 140 75
Total wage and salary income (dollars)
of persons having less than $50
income from other sources* 191,049 156,320 34,729
Sum of squares (S23) 254,509,813 231,102,762 23,407,051

*Excluding the wage and salary income in excess of $5000 received by any
individual.

Source: Data from a 5 per cent sample of returns in the 1940 Census of
Population.
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The estimates computed from the data in Table 10 are given in Table 11.
The estimated averages and percentages were computed by Eq. 3.4 or 3.8.
The estimated total for a characteristic is equal to 1/f multiplied by the
sample total for the characteristic (see Eq. 7.1 or 7.2). Thus, the estimated
proportion of males in the adult population of Ashland is

or 46.6 per cent, and the estimated total number of males is

1 7
@' = — S, = 20(232) = 4640

Table 11. Estimates of selected characteristics of the adult population
of Ashland, Ohio

Based on data presented in Table 10

Item Total Male Female
. Number of persons 9960 4640 5320
. Per cent of total persons 100.0 46.6 53.4

. Total wage and salary income* (dollars) 4,854,000 4,094,000 760,000
. Average wage and salary income (dol-

lars) per adult person* 487 382 143
5. Average wage and salary income* (dol-
lars) for those receiving wage or

BWN—

salary income 975 1219 469
6. Number receiving wage and salary
income but less than $1000 2820 1260 1560

7. Per cent of those receiving wage and

salary income with income less than

$1000 56.6 37.5 96.3
8. Number having less than $50 income

from sources other than wages or

salaries 7420 3340 4080
9. Number receiving wage and salary

income but with less than $50 income

from other sources 4300 2800 1500
10. Total wage and salary income (dollars)

of individuals having less than $50

income from other sources* 3,821,000 3,126,000 695,000
11. Average wage and salary income (dol-

lars) of individuals receiving such

income and having less than §50

income from other sources* 889 117 463

* Excluding the wage and salary income in excess of $5000 received by any
individual.
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Table 12. Estimated standard errors of the estimates given in Table 11

Item : Total Male Female

1. Number of persons .. 217 217
2. Per cent of total persons .. 22 2.2
3. Total wage and salary income (dollars) 316,000 321,000 93,000
4. Average wage and salary income (dollars)

per adult person 32 56 17
5. Average wage and salary income (dollars)

for those receiving wage or salary income 47 60 34*
6. Number receiving wage and salary income

but less than $1000 196 145 158
7. Per cent of those receiving wage and salary

income with income less than $1000 3.1 3.7 2.1%
8. Number having less than $50 income from

sources other than wages or salaries 190 206 214

9. Number receiving wage and salary income

but with less than $50 income from other

sources 216 196 156
10. Total wage and salary income (dollars) of

individuals having less than $50 income

from other sources 263,000 263,000 89,000
11. Average wage and salary income (dollars)

of individuals receiving such income and

having less than $50 from other sources 42 53 35*

T

* Sample not large enough to give reliable estimates of the standard crror
for thesc items.

In Table 12 are given the estimated standard errors of each of the
estimates given in Table 11. We shall illustrate the computation of some
of them.

(a) The estimated per cent male is 46.6, and the estimated standard
error of this estimate is obtained by substituting in Eq. 12.4 (or substituting
sample estimates in Eq. 9.1) to obtain

J(l — 05)(.466)(.534)
S, = -
? 497

= .022

Actually, in this illustration, the finite multiplier (1 — /') is close enough
to I so that for all practical purposes it could have been assumed to be
equal to 1, and its effect ignored. This holds for the computation of all
the standard deviations shown in Table 12.

(b) The situation is slightly different in estimating the standard deviation
of the proportion of a subgroup that has a characteristic. Thus, the
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estimate of the proportion of the population receiving less than $1000
income, from the subgroup of those receiving wage or salary income, is
.566. But now, in applying Eq. 12.4, we must remember that the size of
sample, #, is in this instance the number of persons in the sample who
receive wage or salary income. The estimate of the standard deviation
of the proportion of .persons with wage and salary income of less than

$1000 is
.566)(.434
= U 2o [o5EHBD_ oy

where p, is the proportion of the subgroup having the specified character-
istic, and ¢, = 1 — p,.

To estimate the variance of a mean, &, or total, ', where the characteristic
takes on values other than 0 and 1, we need the terms indicated in

n n
Dot D

n— 1 n—1

(3.12)

n
Therefore, we need >z? from the sample for each such characteristic, and
these values are also given in Table 10.
(¢) For the average wage and salary income of the total adult popula-
tion, as an example, we find from Table 10 that n == 498, ¥ — 487, and

>x? = 380,418,813. From Eq. 3.12,
3

380,418,813 - 498(487)2
2 = = 527,784
s 497 7

52 527,784
55 = A/(1 —== A/.95—4—98—= 32

(d) For an average of a subgroup the procedure is the same as was
illustrated above for the proportion of a subgroup having a specified

n
characteristic, except that > 7 is now the sum of squares of the income
or other characteristic of those individuals in the particular subgroup, and
Z is for the subgroup. Thus, for estimating the standard deviation of the
average income of males receiving wage or salary income:

n=168, &= 1218.60, Sa - 354,742,266

n
o Sa? — ni® 354,742,266 — 168(1,484,986)
T oon—1 167

= 630,327
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and

52 A/ 630,327
5_.5_&/(“/)’—1_ 95 5 = 970

Here, n is the number of males in the sample who receive wage and
salary income. Note that

s = V630,327 = 793.9

793.9
= —— = 6513
MR !
and
59.7
Vp = '1—1‘—9 = .0490

Remark 1. The standard errors of estimated totals can be estimated
from Eq. 12.2 (p. 129), or, if the estimated total is for a subgroup, Eq. 10.6
may be more converient. The estimate of the rel-variance for a total of a
subgroup from Eq. 10.6 is obtained by substituting sample estimates for
Vi, P,and Q in this equation, and the estimate of the variance is then equal
to this result multiplied by 22, We shall iilustrate the estimation of the
standard error of an estimated total of a subgroup with each formula.
The advantages of using Eq. 10.6 were indicated in the remark in Sec. 10,

(e) To estimate the standard error of estimated total income for males,
using Eq. 12.2, we have

04,724 ”
no-a98, F =22 Ser  354742,066
498 L

54,742,266 — 498(168,92
o I5HTA2266 — O168.921) _ (o
497
544,506
=,/.95 =2 = 3203
S A/95 e = 322

and
S = 9960(32.23) = 321,000

(f) To estimate the standard error of estimated total income for males,
using Eq. 10.6, we shall assume that the subgroup refers to males receiving
(wage and salary) income. In this case from Table 10 we find that
n =498, n, == 168. From illustration d, we find that

v, = .6513, o2 = 4242

168
P= g5 =BT q—1—p= 662
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2" = 4,094,000

o v 1 g
s‘,,—af,\/(l D) =

4242 + .6627
= 4,004,000 /.95 { ===

== 4,094,000(.0785) = 321,000

Alternatively the estimate based on Eq. 10.6 can be stated in the form
z' ) v3, + (1 —f);]q;l = 4,094,000 V/.00240 - .00375 = 321,000

where v} = (1 — f)v}/pn = (.0490)* from illustration d.

(g) Now, let us assume that the subgroup referred to is total males,
instead of males receiving wage and salary income, as was the situation
in f. In this case, n is still 498 but », is 232.

Z, = $882 from Table 11

p= ;’ =198 = .4659
g=1-—p=.5341
Then
354,742,266 — @2’—37224—)2
§% = 31 = 754,389
2 & —
vy = 72 = .9697
v, :A/(l -1 v—?;?i—q = .0785
and !

s,y = x'v, = 321,000 as illustrated in e and f

(h) To estimate the standard error of estimated number of males
receiving wage and salary income, but less than $1000, using Eq. 12.2,
we have

n =498, f=.05

p = 63/498 = 1265, q=1—p = 8735
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and from Eq. 12.2
ns®

o i amst(498)(1107)
2 = (1 f)fzﬁ.% 0 20,956

or
5, = 145

Remark 2. The reader should compute the standard errors shown in
Table 12. He should then convert these to coefficients of variation,
remembering that the coefficient of variation of each estimate is simply
equal to the standard error of the estimate given in Table 12 divided by the
corresponding estimated quantity given in Table 11.

Remark 3. If N, for the particular subgroup under consideration were
known in ¢, f, g, and /i, above, then we could estimate the subgroup total
with Eq. 7.1a instead of Eq. 7.1. The variance of the estimate based on
Eq. 7.1a is smaller than that based on Eq. 7.1. In estimating the total with
Eq. 7.1 we are, in effect, estimating both the proportion in the subgroup
and the average value of the characteristic for the subgroup, whereas with
Eq. 7.1a we are estimating only the average value for the subgroup. The
comparison between Eq. 10.6 and 10.8 makes it possible to see the reduction
in variance that results from making use of a known number in a subgroup.
The reader should estimate both these variances for some of the items given
in Tables 10, 11, and 12.

Exercises

15.1. In a certain city a sample of 1000 households provides the following
information on number of persons per household:

NUMBER NUMBER AVERAGE
TENURE AND OF OF ch'l: ER o,
PERSONS %
RACE HOUSF;HOLDS . PERSONS 2
! Z'Te' z ,

All households 1,000 3,323 3.32 15,318
White 766 2,442 3.19 10,380
Nonwhite 234 831 3.76 4,938

Owner-occupied
White 350 1,177 3.36 5,138
Nonwhite 57 245 4.30 1,466

Tenant-occupied
White 416 1,265 3.04 5,242
Nonwhite 177 636 3.59 3,472

If the sampling fraction used in selecting the sample was 1 in 16, what are
the estimates from this sample of (a) the number of households in the city,
(b) the number of white households, (¢) the number of nonwhite households,
(d) the number of owner-occupied households, etc.? What is the estimated
total number of persons, number of persons in white households, number of
persons in tenant-occupied households, etc. ?
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15.2. Using the data in Ex. 15.1, estimate the per cent of dwelling units of
white families that are owner-occupied; also the per cent of owner-occupied
dwelling units that are occupied by white families.

15.3. Find the standard deviations of the per cent of households in each
category in Ex. 15.1, and also the standard deviations of the percentages in
Ex. 15.2.

15.4. Find the variances and standard deviations of the estimated average
number of persons (a) in all households, (6) in white households, and (c) in
nonwhite owner-occupied households.

15.5. Compute the coefficients of variation for the estimates whose standard
deviations were found in Ex. 15.3 and 15.4.

15.6.  Using the rules of Sec. 12, determine which of the standard deviations
of the percentages in Ex. 15.1-15.3 are estimated reliably from the sample. If
the value of 5 for the distribution of family size is not more than 12, determine
which of the standard deviations of the averages in Ex. 15.4 are estimated reliably
(coefficient of variation less than 10 per cent) by the sample.

Remark 4. Additional comments on above computations. (1) In Table
12 the standard error of the per cent male as estimated from the sample is
exactly the same as for the per cent female, This will always be true of two
proportions, p and ¢, where p + ¢ = 1. The maximum possible value of
the standard error of p or ¢ for any given size of sample occurs when P = Q,
and the absolute standard error decreases for either larger or smaller values
of either P or Q. On the other hand, the relative precision of p and g may
be quite different, since the relative coefficient of variation of p is g,/p

= V'O/nP, whereas that of q is VPinQ. From this it is clear that the
coefficient of variation, for a given size of sample, is smaller for large values

of P than for smaller ones. It is equal to V1jn when P = Q. When P
tecomes small, @ becomes close to 1, and it is a quite satisfactory approxi-

mation to take the relative error of the proportion or total as V'1/nP.
Thus, since nP = =, the frequency in the sample, the coefficient of variation
of a percentage or total in a class which constitutes a small proportion of

the total population under consideration is approximately equal to V'1/x.

(2) Certain items in Table 12 are footnoted to indicate that for these
items the sample is not large enough to yield a reasonably reliable estimate
of the standard deviation. Where the estimate to which the standard
deviation relates is a simple percentage or the estimated total number of
elements having a characteristic, the confidence in a reliable estimate of the
standard deviation of the estimate is determined by applying the rules given
in Sec. 12.  Where the estimate involved is an average or total of a charac-
teristic that takes on values different from 1 or 0, the decision as to whether
the estimated standard deviation is reliable is not so obvious. It was
indicated earlier that this decision depends on the distribution of the
population from which the sample was drawn, and of course this distribution
is not ordinarily known to us. In this particular instance, however, the
problem is not especially difficult because the incomes being considered
are only the wage and salary incomes up to $5000. Any incomes in excess
of $5000 are recorded as incomes of $5000 in this anaylsis. The reader
can readily ascertain, by a little manipulation of reasonable alternatives,
that, whatcver shape the tail of this distribution may be, so long as incomes
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in excess of $5000 are not allowed, the value of § is probably no greater than
5-10. Tf f3 is no larger than 10, then samples of 250 or more are adequate
for this purpose. Smaller samples are subject to some question—but not
too serious question unless the sample is less than 150.

(3) In carrying through computations we did not apply formula 3.12
as first written down, but manipulated it into a very commonly used and
simple form. The reader should expect to do this in carrying through
computations for most formulas that have been or will be presented. The
particular form that is most convenient for computation depends upon
whether one is computing by hand or with a calculating machine, slide rule,
tabulating machine, computer, or other facilities, and we shall not attempt
to present the most convenient form for actually carrying through
computations of formulas but shall leave this step to the reader.

(4) All the formulas in this chapter have been presented for computing
from ungrouped data instead of from frequency distributions. Where
the original data are given by a frequency distribution, or where the amount
of computation can be reduced by converting the data into frequency
distributions, the modification of the formulas to make them applicable to
frequency distributions is direct. Thus, wherever ZX; or Z(X; — X)? or
any similar type of sum is shown for the original observatlons the appro-
priate form for grouped data is obtained by thinking of each observation
in a group as a separate observation. Thus, for a frequency distribution
of two classes with a frequency of 4 in the first class and of 3 in the second,
with X, the mean or midpoint of the first class, and X, the mean or midpoint
of the second class, we would have

i‘x%: X+ X34+ Xi+ X3+ Xi+ X3+ X3
Thus, our sum contains X? 4 times and X2 3 times. We may therefore
write ZXZ s ZN X3
More generally, we may write
%X‘ = SN X:

where there are C classes or groups in the frequency distribution, and N,
is the number in the group, and X, the midpoint or average value for the
pa

group. Then N is equal to > N, and
(j

% = 2NX,
2N,
Also,
N N
E(X X)" TN (X X2 DX — )?)4 S‘N (X X
N SN, o SN,

Similar modifications are called for in computing other values from the
sample or for the population. The use of grouping in such computations
will give satisfactory results provided the group intervals are not too large.
Usually at least a dozen or more groups are desirable.
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Exercises
15.7. According to the 1945 Census of Agriculture, there were in the United
States 15,954 farms classified as “horticultural—specialty.” These farms were
distributed by value of farm products sold or used by the farm households as
shown below.

VALUE MEAN VALUE OF FARM

(dollars) NO. OF FARMS PRODUCTS SOLD
(dollars)

Under 250 240 162
250- 399 547 318
400- 599 875 489
600- 999 1,243 768
1,000-1,499 1,203 1,193
1,500-2,499 1,726 1,931
2,500-3,999 1,666 3,131
4,000-5,999 1,668 4,856
6,000-9,999 1,804 7,620
10,000 and over 4,982 39,982

Compute the variance of the population of farms having less than $10,000
value of products, using the mean values of the classes.

Remark. Because of the large variability in value of products of farms
over 510,000, the computation of the variance by the method of Ex. 15.7
for all farms would lead to an understatement of the variance, since the
contribution due to the farms over $10,000 would not be well approximated
by the mean value for these farms. Moreover, as will be seen in Chapter 5,
simple random sampling of farms would be inefficient. Improved methods
of sampling such a population will be discussed in that chapter.

15.8. What would be the variance of the estimated mean based on a simple

random sample of 1000 farms drawn from the farms having less than $10,000
value of products?

C. SAMPLE ESTIMATES AND THEIR PRECISION-—
RATIOS OF RANDOM VARIABLES

16. Ratios of random variables. We now wish to consider estimates
that involve the ratio of two random variables, i.e., ratios whose numerator
and denominator are both subject to sampling errors. The need for such
estimates arises frequently.

In some instances, the sample estimates, their variances, and the esti-
mates of variances presented in the preceding sections are directly appli-
cable, and no theory beyond that already presented is necessary. Ratios
of random variables have already been introduced in the earlier sections
of this chapter in estimating averages for subgroups. For example, in
the illustration given earlier we computed the percentage of the ma'z
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population that earned less than $1000 income. The numerator of this
expression was the number of males earning less than $1000 income in a
sample of n cases from the adult population. The denominator was the
number of males in the sample. Thus, both the numerator and the de-
nominator were subject to random sampling errors, since we had a random
sample of the whole adult population. This ratio, then, was the ratio of
two random variables. Its sampling variance could be computed as
though it were a simple percentage, however, because the following three
conditions were met:* (1) the sample was a simple random sample of
elementary units; (2) the denominator of the ratio was the number of
clementary units of a specified class in the sample; and (3) the numerator
was the aggregate value of some characteristic for the units included in
the denominator. Thus the theory in the earlier sections can be applied
whenever we deal with the estimation of an average value per element
for a subset of elements provided the elements are drawn with simple
random sampling.

For many ratio estimates used in practice the conditions just stated are
not met. For example, suppose that we have a simple random sample
of n families and obtain information on the number of people in each
family, by sex. If we compute the proportion of the total persons
enumerated in the sample that are male, we again have a ratio of random
variables. Both the total number of persons and the number of males
in the sample depend on the particular set of » families that happens to
be selected. In this instance, although the denominator is a count of the
number of the people in the sample, these people are not a simple random
sample of people, and therefore the formulas in the preceding sections
cannot be used. This type of sampling is called cluster sampling and is
considered in Chapters 6-9. As another illustration of a situation where
the formulas of the previous sections do not apply, suppose that we
estimate from our sample the ratio of aggregate rent to aggregate income.
Here the denominator is a random variable and refers to a characteristic
of a simple random sample, but the denominator is not the size of a
simple random sample of elementary units.

We need now to develop formulas to evaluate the precision of such
types of estimates. The formulas given later in this section apply to all
types of ratios. They involve more computation than the formulas given
in the preceding sections, and hence it is desirable to recognize the instances

* If we consider the average sampling error over ail possible samples of
size n, the answer is a little different, but the difference is of no importance if
the expected number in the subgroup is not too small, or if we are evaluating
the precision of an estimate from a particular sample. For proof, see Vol. II.
Ch. 4, Sec. 17.  Sece also Deming (1), pp. 449-454.
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when the simpler computations of the last section are applicable. The
class of problems considered in the previous section occurs so frequently
in practice that there may be considerable wasted effort if the more general
formulas of this section are applied when the simpler formulas will give
the same answers. It may, however, be pointed out that, if it is not
immediately apparent which formula should be used, the safer formulas
are the more general ones, since the formulas in the preceding sections
are special cases of those which follow.

A question that may arise in the reader’s mind is: Why use estimates
that involve the ratio of random variables? At least a part of the answer
should be fairly obvious. As suggested earlier, if we want to find the
proportion of the population that is male, or the proportion of family
income that goes for rent, and if we have a simple random sample of
families, the simplest estimate will be the ratio of the sample totals. In
fact, often we have no feasible alternative to the use of the ratio of random
variables, as would be the case, for example, if we were estimating the
ratio of rent to income and total income was not known from independent
sources.

But even if we knew from independent sources the total that could be
used in the denominator we might still wish to estimate the ratio from the
sample. Suppose, for example, that we consider the alternatives of esti-
mating the ratio of rent to income (@) by computing the ratio of rent to
income for the sample families, or (b) by estimating the total rent from
the sample and dividing it by a known independent total income. Which
way should be prefer to estimate the ratio?

First, let us suppose that we estimate the percentage of income paid
for rent by estimating the total rent from the sample and dividing this
estimate by the known total income. How reliable would this estimate
be? If the average rent paid by the sample of families is higher than the
average for the whole population, the total rent bill estimated from this
sample would be correspondingly high; and, if we divide this total by
the known total income, we obtain an overestimate of the percentage of
income paid for rent. Conversely, if our sample happened to be too low
in average rent, then we should expect our percentage estimated from the
sample to be too low.

But, now, suppose that instead of estimating the ratio in this way we
took the income from those families included in the sample as the denomi-
nator of the ratio and the rent paid by those families as the numerator.
It is often true that there is a fairly high correlation between rent paid and
family income, so that if we have families in our sample that pay above-
average rentals we shall probably also have families with above-average
incomes. If the average rent bill is overestimated, the average income is
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likely to be overestimated also; and the ratio of the two, which is the
proportion of income paid for rent, may be relatively much closer to the
true figures. Similarly, if the average rent in the sample is low, the
average income is likely to be low also, and the percentage of income spent
for rent may again be relatively much closer to the true ratio being
estimated. Thus, if there is a high correlation between rent and income,
we may be able to do a good deal better in estimating the percentage of
income that goes for rent if we compute the ratio from the sample, even
though we know the total income from independent sources.

If, on the other hand, there is only a low correlation or no correlation
between rent and income, this would not be true at all. In this case, if
we had a known independent figure for income we would want to use it
in estimating the ratio because that estimate would be likely to be the
more reliable one. Often, however, we do not have the choice of em-
ploying known independent totals for our ratios; and we must use the
data from the sample because independent information is not available.
The purpose of these remarks is merely to give an intuitive basis for
understanding how ratio estimates behave and how they might be utilized
by choice in some instances even though it were not necessary to use a
ratio of random variables.

If supplementary information is available for the denominator of the
ratio, the investigator often has other alternatives that make effective use
of this independent information, and that will yield results at least as good
as or better than the simple ratio estimates discussed here. Thus, other
techniques of introducing supplementary information to increase the
reliability of sample results include the use of regression or difference
estimates (Ch. 11, Sec. 2), stratification (Ch. 5), and varying probabilities
of selection (Ch. 8, Sec. 14).

17. Estimates of totals derived from estimates of ratios. There is
another application for a ratio estimate; this occurs where we are
interested, not in the ratio itself, but rather in an estimated total. Suppose,
for example, that for a particular population we want, not an estimate of
the percentage of income paid for rent, but rather an estimate of the total
rent bill of the community. One way we might estimate this total rent
bill would be to compute the unbiased estimate of the total by the pro-
cedures already described earlier in this chapter (Sec. 7). But now
suppose that the total income of the population is known. We are likely
to get a more reliable estimate of the total rent in the community from a
sample of a given size, if, instead of computing the simple unbiased
estimate indicated earlier, we compute the ratio of rent to income for our
sample of families and then apply this ratio to the known total income of
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the population. If there is a high correlation between rent and income,
this total is likely to be estimated more accurately from a sample of a
given size in this way than by multiplying the average rent from the sample
by the known number of families (using Eq. 7.1). A

There are other ways of estimating total rent for the population under
consideration. For example, we might have for a recent earlier year a
complete housing census with information on the rental value of each
dwelling unit as well as the total of these rental values for the entire area.*
Then, for the dwelling units in the sample, we could find the ratio of
current rental value to rental value at the date of the census and apply
this ratio to the total rental value of dwellings in the population of the
previous census. If there were a very high correlation between rental
value of a dwelling unit at the time of the census and rental value when
the sample survey was being made, as might be expected, this latter
estimate might be a more reliable one than a simple unbiased estimate
(Eq. 7.1 or 7.1a).

There are many other illustrations of how ratio estimates and other
special types of estimates may be introduced to improve estimates of
totals. Some of these will be brought out in subsequent examples in
this chapter. N

Although such approaches often make it possible to improve the
reliability of totals estimated from a sample, sometimes they may lead to
a less reliable estimate of a total. As will be seen later, whether a ratio
estimate will be more accurate depends in part on the correlation between
the estimate of the numerator of the ratio and the estimate of the denomi-
nator and in part on the variability in the numerator as compared with
that in the denominator.

18. Ratio estimates and their precision. Let us examine the ratio of
two random variables more carefully, indicate how to evaluate its precision,
and ascertain when we should use it in preference to the simple unbiased
estimate given in Eq. 3.4 or 7.1.

Consider a population of ¥ individuals or elementary units. Each unit
in this population may have many different characteristics,. We shall let
X, stand for one of the characteristics of the /th unit, and ¥, for another
characteristic of that same unit. For example, X; might be the rent paid
by the /th family and Y; the income of that family, or X might be the
sales of a particular business establishment in one month and Y; the sales

* We shall assume, for present purposes, that no dwellings were built or
none destroyed during this period, to simplify the illustration, although with
certain modifications in the sampling and estimating procedures one could
avoid making these assumptions (as illustrated in Ch. 3, Sec. 6).
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of the same establishment in a prior month. If we assume as an illustra-
tion that X, is the rental paid by the ith family and Y, is the income of
that same family, then:
"\7
Y = > Y,is the total income of all families in the population under
consideration.

N
X = > X, is the total rent paid by all families in that population.
R = X/Yis the proportion of income paid for rent in this population.

Since X/Y = NX/NY = X/Y, R is the ratio either of the means or of
the totals. We shall assume that we want to estimate the characteristic
X/Y from a sample of size n, i.e., from a sample of n families. We can
compute the ratio of rent to income in the sample as an estimate of this
ratio in the population; thus:

r = Zf§ = x[y is an estimate from the sample of R; where

¥ is the average rent paid by the families in the sample and
is the estimate from the sample of the average rent paid.
Similarly, ‘

7 is the average income of the families in the sample and is

the estimate from the sample of the average income
received.

We want to know something about the reliability of r as an estimate of R.
Although r is not an unbiased estimate of R, it is a consistent estimate,
and with simple random sampling and a moderately large sample the bias
of r will be negligible in relation to its standard error.* Consequently,
for most practical purposes one can and should ignore the bias.
The variance of r is approximatelyt

Vi + V% — 2oV Vy
o = R(1—f) ( xt — ") (18.1)
and the rel-variance of r is approximately
02 V2 ’+‘ Vzr“* ZPV -V
o Z e ( )
r= R (1—=5 . (18.2)

where, as before, V'x (Eq. 10.1) and V- are the coefficients of variation
of the X, and Y, respectively, and

N N
X=X =T (X = X)(Y,—T)
B Noyoy  (N—DSSy

* For proof, see Vol. II, Ch. 4, Sec. 15 and 21.
T For proof se: Vol. II, Ch. 4, Sec. 13.

(18.3)
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is the coefficient of correlation between the X, and ;.

In applying the formula for the standard error or coefficient of variation
of r there is no assumption that the average relationship between X, and
Y, can be represented approximately by a straight line or that it has any
other particular form. These formulas are good approximations, what-
ever the nature of the distributions of the original populations, provided
large enough samples are used. However, for certain distributions
larger samples may be required for the approximations to be good than
for others. An approximate rule* as to what is a large enough sample
for these relationships to hold with simple random sampling, for any
kind of population, is that the sample be large enough that the coefficient
of variation of §, the denominator of the ratio, should be less than .05,
1.e., that
vy
n

Vi={-/)

should be less than (.05)% = .0025. if for the population under consider-
ation p = V-/Vy, then the approximations will be reasonably good if the
coefficient of variation of § is less than .15. The condition that
p = Vy/Vx will be approximately met whenever the average relationship
between the X; and Y,, when plotted on a scatter chart, can be reasonably
well represented by a straight line through the origin.

Remark. The rel-variance of the ratio of two sample means is similar
in form to the variance of the difference between two sample means. Thus,

Sz, Q2.
& has a variance of —n‘ (1 — f) and ¥ has a variance of % (1 —f); if the

correlation between X; and Y} is equal to p, the variance of the difference
between Z and ¥ is equal to

0?2—17=(1—f)(

This is the same form as that for the rel-variance of the ratio of the sample
means, except that here we have Sy and Sy instead of V'x and V.

(18.4)

YAZ,{—{— Sy — 2,0 S_Xsy)
n

If the correlation between X; and Y; is zero, then the rel-variance of
the ratio becomes merely the sum of the rel-variances of the numerator
and denominator. Thus, when there is no correlation, the coefficient of
variation of a ratio of random variables will be larger than that of either
the numerator or the denominator of the ratio; but when there is a high
positive correlation it may be very much smaller.

Each of the above formulas 18.1-18.4 is based on the assumption that
Z and § are computed for an identical sample. This, of course, is not

* For proof, see Vol. II, Ch. 4, Sec. 12.
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necessary—& might be computed from one sample of, say, size n, and 7
might be computed from an independent sample of, say, size m. Then
we should have as the rel-variance of the ratio (ignoring the finite multi-
pliers, although they could be readily introduced if the proportion of cases
in the sample were large enough)

Ve vl
ye = X X (18.5)
n m

It is obvious that, if feasible, there is an advantage in using an identical
sample for the estimate of the numerator and denominator of the ratio
provided there is a positive correlation between X; and Y.

The variance and rel-variance of the ratio » == #/§ can be stated in
other forms that may be helpful in visualizing what the sampling error of
a ratio of means or totals may be when sampled from various kinds of
populations. It is easily shown that

¥

2 YR, — Ry

X,
RAVE + VS —2pV V) = where R; = 2 (18.6)

(N—1¥2 "’
and also N
X;— RY)*
= ZEN ENE L (18.7)

and, therefore, if Z and § are means of two different characteristics based
on an identical sample, then

N
S YR, — R}

= I — — .
1=x (N— 1)V (18.8)
or
N 2
— RY)?
= (1 — .
( f) TP (18.9)
or, if we define
Z, = X,— RY,
then
S2
2 =(-NF (18.10)
where
8% = XV + Vi~ 2pxy Vi Vy) = 8% 4 R3S} — 2RpxySxSy
(18.11)

In Eq. 18.8 we have the variance of the ratio, r, stated in terms of the
deviations of the ratios of the individual observations around the ratio
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of the population means. Each deviation from the over-all ratio is
weighted by the square of the denominator of the individual ratio.

We also see from Eq. 18.9 that the variance of the ratio can be stated in
terms of the variance of the deviations of the X, from RY,. Let us see
what this means by considering a scatter chart in which the X; and Y,
are plotted as points. First, it should be noted that X = RY describes
a straight line through the origin on the chart, and the amount by which
the X, for any specified Y, fails to fall exactly on this straight line is equal
toZ, = X;— RY, Thisisillustrated in Fig. 8. If the ratios R; = X,/ Y;

X
$¢Y:{
(%,.X,) . .
!' .
Zy=X,—-RY, [: ¢ .
. * ‘
:}Xl—RYI Z,
b
¢ (,X))

0 Y

FiG. 8. Scatter chart of Y, X, illustrating graphically
the meaning of X; — RY,; = Z,

were all exactly equal to R, all the points on the scatter chart would fall
on the line. It is the deviations of these ratios from R that determine
the deviations of the X, from RY,, and the variance of r is approximately
equal to the variance of these deviations divided by n Y2

As indicated by Eq. 18.6 and 18.7, each of these formulas for the
variance of r is identical with that given by Eq. 18.1, and they can be used
interchangeably. In sampling from any particular population, some
advantage may be found in each one in studying sources of contribution
to the variance of the ratio of two sample means or totals.

In general, the rel-variance of u/w, the ratio of two random variables,
is approximately*

VR s VR VR 2p WV, = V4 VR 2V, (18.12)

(ufw) —

The results already given are special cases of this more general formula.

* For proof, see Vol. II, Ch. 4, Sec. 11.
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Thus, Eq. 18.2 is the variance when we have a simple random sample
of n observations, have measured two characteristics, X; and Y,, for each
observation, and have computed the ratio #/§#. The rel-variance of &
(which takes the place of u in Eq. 18.12) is given by (1 — f)V5/n; the
rel-variance of 7 (indicated by w in Eq. 18.12) is (1 — f)¥3./n; and the
correlation between & and # turns out to be exactly the same as the
correlation between X; and Y.* Similarly, in Eq. 18.5, we have the
rel-variance of the ratio of sample means, Z and j, but here the means are
from independently selected samples and the correlation between them is
zero, so that the third term involving p;; disappears. Ordinarily we shall
deal with one of these two special cases, i.e., identical samples or indepen-
dent samples; but other cases can arise and Eq. 18.12 can be'applied in
general. It is necessary, in general, to evaluate pg; or V,; whereas in the
simpler cases presented p;; is equal to p in the original population (Eq.
18.3), and V; is then simply equal to pV,;V;.

Remark. It should be pointed out that the variance of the ratio of
random variables can be obtained very readily in cases where the ratio is
based on a sample of 1, i.e., based on a single observation. In this instance
the sample estimate is » = x,/y; = r,, which can be regarded as an estimate
of R. The variance in this instance is simply

N -
Z(R1 - R)2
N-—-1
where N
v P pLY
N

The bias in this instance is (R — X/ ), which may be large.

19. Conditions under which supplementary data with ratio estimates are
useful in improving estimates of totals and ratios. Let us consider further
the question of choosing (when a choice is available) between the estimate
given by Eq. 7.1 and the ratio estimate of Eq. 19.1 below.

Suppose that we want to estimate the total rental value for all dwellings
in a particular population. We have seen that one way to estimate this
total is to compute the simple unbiased estimate

x = Nx (7.1

if & represents the average rent per family in the sample. But if we know
7, the average income per family in our sample, and also know from

* For proof, see Vol. TI, Ch. 4, Sec. 3.
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independent sources the value of ¥, the total income of the families in
the population, then we might compute

r_
y

:L‘” ? =z

I~

Y=z (19.1)

’

<

as another estimate of X. ‘

How can we determine which is the better estimate? One would want
to choose the estimate having the smaller expected error, which we will
measure by the coefficient of variation (or the standard error).

We have already seen that, if a total is estimated by multiplying a
sample mean by N, a figure which is known, then the estimated total has
the same coefficient of variation as the sample mean, and the variance of
the total is N2 times the variance of the sample mean. This is a special
case of the rule given in Sec. 9, p. 123.  The application of this rule makes
it a simple matter to arrive at the variance or the coefficient of variation
of totals or ratios that are derived by multiplying or dividing a sample
estimate by some known total or average.

Thus, if Y is known, without sampling error, and if 2" = Y7, then

o2 = Yo? (19.2)
and
Ve, — pe (19.3)
Similarly, if we compute the ratio &/ ¥, where ¥ is known, then
2
o2
Oy = 37—2 (19.4)
and - :
Vg = V2 (19.5)

We shall now compare the sampling: error of an estimated total such
as z”, based on the estimate of a ratio of random variables, with that of
@', in which a simple expansion of the sample total is made, multiplying
x by 1/f, the reciprocal of the sampling fraction.

We have seen that

2
Vi=(1~-f) K}f (10.3)

and
(V.z\: +- V%; —2pVxVy)
n

(19.6)

vy = (- p)

and we can examine these to see under what circumstances one will be
smaller than the other. If we take T = V2/VZ, we have

vy Vy
T=1+——2p-— 19.7
+ A (19.7)
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and «’ will have the smaller variance whenever this expression is greater
than 1, and will have the larger variance when it is less than 1. This
expression will always be greater than 1 unless p, the correlation between

3

=]
S~
W=
il
&

/=2

T \
\V}/VX =5 \
N
1 = \
\
ViV =2 T~
\ ——
A §
0
0 1 2 3 4 5 6 7 8 9 1.0
Pxy
Fic.9. T Vi 1+ Vi 2 Vy S for various values
. 9. =— = — — 20xy — = — vari
Ve Ve Ty, s%

of Vy/Vyand pyy.

X; and Y,, is equal to or greater than Vy/2V y.* Since the correlation
coefficient cannot be greater than 1, the ratio estimate will have a larger
coefficient of variation than the unbiased estimate, even with perfect
correlation, whenever Vy is greater than 2V .

Figure 9 shows the value of T =14 (V4/V%) — 2p(Vy/Vx) for

* For proof, see Vol. II, Ch. 4, Sec. 19.
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several different values of V./Vy and for different levels of the correlation,
and makes it readily apparent for a number of different values of V[V
whether a particular ratio-type estimate (of the form x”) or the unbiased
estimate (x') will have a smaller variance.

From Fig. 9 it is clear that when V' y = V- the ratio estimate will have
a smaller variance than the unbiased estimate if the correlation between
X, and Y, is greater than .5, and will have a /arger variance if it is less
than .5. Moreover, with ¥y equal to V- the ratio estimate has a sub-
stantially smaller variance if the correlation is high, and in this case
(ie., Vy = Vy) its variance approaches zero as a perfect correlation is
approached. The chart shows, as has already been indicated, that for
V[V greater than 2 there will be a loss in using the ratio estimate as
compared with the unbiased estimate, even with perfect correlation.
With smaller values of Vy-/Vy there will be a gain in using the ratio
estimate provided the correlation is high enough.

Figure 9 also shows that for very small values of Vy/Vy, i.e., where
the coefficient of variation of the denominator is quite small compared
with that of the numerator of the ratio being estimated, some gain results
from using the ratio estimate, as compared with the unbiased estimate,
even with a very low correlation.

But when V-/Vx is small, the gains are not very striking even with a
high correlation. Thus, if V/Vy = .2, and at the same time the correla-
tion is zero, only a very slight loss will be taken; but, on the other hand,
even with a perfect correlation one can reduce the variance of the unbiased
estimate by only about a third when Vy/Vy = .2. Thus, with very
small values for Vy./Vy, it can make little difference whether the ratio
estimate or the unbiased estimate is used.

When the correlation is negative, a loss will always be taken by using
the ratio estimate; a ratio estimate should be avoided if possible under
these conditions.

Let us now return to the illustrative problem of determining which
estimate to choose in estimating X, the total rental value of dwellings in
~a community, when Y, the total family income, is known. Figure 10
shows roughly the kind of relationship between rent and income that
sometimes might be found.

With the data shown in this figure there is a noticeable increase in
rental paid, on the average, as income increases, until a certain level of
income is achieved, after which the increase in rental value with increasing
income is not very consistent or very marked. Clearly, such a population
can be so distributed that V', will be less than half of V-, in which event
there is no chance of gaining by using the ratio estimate—one can only
lose.
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Suppose that for the data shown in the chart
V=65 V=19, p=.8

300~ .
200 - ‘
& .
100 .
0 t i |
10,000 50,000 100,000
N Income

Fic. 10. Family income and family rent (hypothetical data).

Since ¥y is more than 2V, we would lose by using 2" as our estimate
even were p as large as .99. But, if those families with incomes of more
than $10,000 were excluded, then we might find that, say,

Ve=5 V,=28 p=.90

and since p is greater than V. /2V = .8, we would gain, in this instance,
by using the ratio estimate, and in fact would reduce the variance of the
estimated total rental value.to about 70 per cent of what it would be if
we had used the simple unbiased estimate.

Remark. Figure 9 and the illustration above point to the need for
finding ways of reducing the coefficient of variation of the denominator
when it is larger than that of the numerator. One way of accomplishing
this is to use stratification. In the income illustration above, for example,
stratification by size of income might have the effect of reducing the variance
of the denominator more than that of the numerator. Sometimes a
transformation such as Z; = V'Y, for the variable in the denominator of
the ratio estimate will achieve the desired result. Thus, whereas z”
= (x/y)Y may lose over the unbiased estimate, the ratio estimate

"
—3VY

V'

Pz

may gain over the unbiased estimate. Fortunately the common situation
in the use of ratio estimates is one where the coefficient of variation of the
denominator is smaller than that of the numerator, and the need for such
precaution is not great.
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One important point should be brought out in distinguishing between
the use of a ratio of sample means as an intermediate step in estimating
a total and its use in estimating a ratio from a sample for the sake of
obtaining the ratio itself. If one wants an estimate of a particular ratio,
say X/Y = R, he may use Z/§ = r from the sample as the estimate; or,
if ¥ is known, he may use &/ Y as the estimate. But the only condition
under which one has the choice of using an estimate of the form &/ ¥
occurs when the specific characteristic, ¥, is in fact known for the total
population and is not merely a related characteristic. This is very
different from what happens when the objective is to estimate the total, X.
Then we have a choice of N, (£/§)Y, (¥/2)Z, or any other similar type of
estimate for which the necessary data from the sample and from indepen-
dent sources are available, and should choose the one that has the smallest
expected error.

To illustrate this principle let us consider a sample design planned for
Haiti that was worked out at the request of a consultant to the Haitian
government a few years ago. Although at that time Haiti had never had
a population census, it was desired to work out a sample design that
would provide a reliable estimate of the total population and of certain
characteristics of the population. The proposed design indicates how
available resources can be put to work in arriving at a sample design,
and at the same time provides an excellent illustration of the principle
just mentioned: that data which may be more or less seriously in error
can be effectively utilized in a ratio estimate to improve the efficiency of
an estimated total.

In the case of the proposed Haiti sample, discussion brought out the
fact that there were no accurate maps of Haiti that could be used to
divide the-country into small areas that might serve as sampling units.
But it was also learned that the country was divided into approximately
500 administrative units, referred to as sections, and that each of these
administrative units had a head man or chief who knew the territory
fairly well and whose duties included, among other things, periodically
visiting each family in the unjt. In addition, although no satisfactory
maps were available showing the boundaries of these units, it was stated
that the head of the section knew which families were in his section (such
an assumption would need further investigation before its final accept-
ance). Although the section chiefs were often illiterate, it was thought
that a little careful working with the head of a section, perhaps with the
assistance of a priest or teacher in the area, would make it possible to
get an approximate estimate of the total number of families in the section
(based on local knowledge without any field work). If such estimates
were not too wild, and if they were available for all sections in the country,
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it would be possible to make use of them to increase greatly the precision
of estimates from a sample. Moreover, a person or persons traveling
around the country could visit the sections and obtain such an estimate
of the total families in the section at a small fraction of the cost of taking
a census of the section. Thus, it was expected that in a period of about
four months four or five people could cover the country, obtain various
data that were desired as background information for other purposes,
and obtain the estimates of the numbers of dwellings in each section
throughout the country. The sample design proposed provided for
obtaining such estimates of the numbers of families in every section in the
country.

Now, let us suppose that a simple random sample of 20 per cent of the
sections is drawn, i.e., N/u = 1/f == 5, and a complete census is taken in
each of these sampled sections. We will then have the following
information:

(a) The estimated number of families living in each section in the

country. Let us designate this figure for the ith section by the
n
symbol ¥,. In addition, we will have y = 2,, the total estimated
N

families in the sections included in the sample, and ¥ = > ¥, the
total estimated families for all sections in the country.

(b) For each section included in the sample we will have the total
population, obtained by actual enumeration of the section. We
will designate this figure for the ith section by the symbol X;. We

n
will also have x = 2z, i.e., the total population enumerated in the
sections included in the sample.

The simple unbiased estimate of the total population is obtained by
computing (Eq. 7.1)
, N
X = —=Xx
n

But, since the section chiefs’ estimates would be known both for the
sections included in the sample and for the entire country, we could also
use as our estimate:

=2y (19.1)
Y
This estimate would have the smaller variance provided there was a fairly
high correlation between the X, and Y;, as was anticipated.
There will undoubtedly be biases, perhaps very serious ones, in the
advance estimates of the numbers of families in the sections, and the
question arises whether the biases in the advance estimates used to obtain
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an “‘expansion factor” for arriving at our final estimate introduce a bias
into the final estimate. Actually, a little examination wiil show that they
do not. Suppose, as a very simple illustration of this, that each ¥, was
in fact 10 per cent larger than the true number of families in the ith
section, which we willcall Z,. Then Y, = 1.1Z,,y = l.1z,and Y = 1.1Z,
and from these X" = (z/y) ¥ = (z/1.12) 1.1Z = (x/2)Z, and the consistent
overestimates of the numbers of families made by the section chiefs have
in no way biased the final estimate of X. Of course, in practice, errors
such as in the section chiefs’ estimates will not be consistent. In any
event, since we have a random sample of the sections, N§ is an unbiased
estimate of Y. Consequently, if Y is greater than the true number of
families, then, on the average over all possible samples, 7 will be too high
in exactly the same proportion; and if Y is too low, then, on the average,
4 will be too low in the same proportion. Therefore, any biases in the
Y, will appear in both the numerator and denominator of the expansion
factor, Y/y, and will cancel out and not affect the value of the whole
expansion factor. Thus, no matter what the bias in the original estimates
used in obtaining the expansion factor, such biases will not introduce
similar biases in the final estimate. This latter statement will be true
even though the original estimates had no correlation with the final
population enumerations. However, in such an instance the use of an
estimate without the ratio adjustment would be preferable.

Of course, the gain, if any, that will be achieved through the use of the
ratio estimate will depend in part upon the reliability of the advance
estimates. In designing the Haiti sample, a fairly high correlation of the
advance estimate of families with the actual enumerated populations was
anticipated because it was known that there was a large variability in the
sizes of the sections, and it was felt that the advance estimate would
roughly but effectively indicate the approximate sizes of the sections. If
this were so, then V- would probably be roughly equal to Vi, and it was
anticipated that a correlation of perhaps .9 with the actual populations
enumerated would be achieved. Under these circumstances, we find that
the ratio estimate has about 20 per cent as large a variance, or less than
one-half as large a standard deviation, as the unbiased estimate. If the
conditions outlined above hold, we will have achieved the effect of a
‘much larger sample by the introduction of the ratio estimate based on the
estimated numbers of households.

Another principle involved in this illustration needs emphasis. It
would be essential, in carrying out the above design, not to select the
sample sections before the work was carried through of obtaining estimates
from the section chiefs for all sections in Haiti. If the sample selection
were made first, the knowledge of which sections were included in the
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sample might affect the character of the advance estimates for these
particular units. In this event, the estimates for these units would not
constitute an unbiased sample of the estimates for all sections, and as a
consequence biases of a more or less serious sort would be introduced
into the final estimated totals.

20. Certain lessons for original design of samples. Some of the results
we have obtained have very important implications in connection with
the original design of samples. Thus, suppose that one is interested in
estimating relative changes in the sales of retail stores from one year to
the next. One way of sampling for this relative change would be to
obtain a sample of establishments the first year and obtain the estimated
average sales per establishment from this sample for that year; then
another independently selected sample might be taken the following year
and the average sales estimated from this sample for the second year;
and the relative change in sales could be estimated by computing the ratio
of these two sample averages. The rel-variance of this ratio would be
V2 + V2, where V2 represents the rel-variance of the estimated total sales
in the first year, and V2 represents the rel-variance of the estimated total
sales in the second year. But now suppose that instead we include the
same stores in the sample for each year, and obtain the average sales
each year for these identical stores. Then the sample estimates for the
two years would not be independent; in fact, in this particular instance a
very high correlation between them would be expected. Moreover, V,
would be approximately equal to V,. Consequently, the coefficient of
variation of the ratio would be very much smalier with the identical
sample. Thus, in this instance, the theory points to the practice commonly
followed of using an identical sample for estimating changes.

Let us consider, however, another and quite different illustration.
Suppose that we. are estimating unemployment from a sample of families.
We might have a sample of, say, 3000 families at one date and estimate the
number of unemployed from this sample; then perhaps a year later we
might take the same sample of 3000 families and again estimate unemploy-
ment from this sample. Now, if our primary interest is in measuring
change in unemployment, it might be expected by some that the sample
of identical households would be much superior to an independent
sample taken at each date. However, when the rate of unemployment is
relatively low, it turns out, in our experience, that the individuals unem-
ployed at one date are not, for the most part, the individuals who were
unemployed, say, a year earlier. Consequently, the correlation of un-
employment is so low between successive periods that both methods are
equally good.
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21. Evaluation of the precision of ratio estimates from the sample. A
consistent* estimate of o2 or V72 is obtained by making estimates from the
sample of exactly the same form as the values we want for the population,
i.e., by computing (from Eq. 12.3)

2 S(2' S2
=2 = 3—/—’5 @L.1)
Z(ﬁv — )y — Pt
PsxSy = Sxy = N (21.2)
or
’ = Sxv
pUxVy = 7
and
x
po=-
Y
and, by putting these together, obtain
2 12 2 fay o,
— -y L= 20 0aty) @13)

n

Just as 0% can be stated in several different ways, we find that s? can also
be stated in several ways, e.g.,

Z'l/?(r r3?

Ep (21.4)

ss=(0—f )
which can also be written as

E(x ry )’

f) — Dng?

2
~(A—f) :sz (21.5)

where z; = 2, — ry;. These equations for s2 all give identically the same
results.

They aid in determining the circumstances under which one may expect
a reasonably reliable estimate of the s? from the sample. To indicate the
reliability of the estimate we write, as before (Sec. 18), Z, = X, — RY,.
Since R = X/Y, the mean of Z, is equal to zero.

* For proof, see Vol. 11, Ch. 4, Sec. 21.
t We use p’ to distinguish the correlation computed from sample data from
the p for the population.
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An approximation to the rel-variance of s, is given by*

pe iﬁz_l_,{___ff pzy VB —1Vy

4n n n
where N

(21.6)

i.e., B, is the ratio of u, of the Z; to 0%, and pg.p is the coefficient of
correlation between Z2 and Y.

Formula 21.6, when solved for #, provides a guide in determining the
size of sample required to obtain a satisfactory estimate of o, or V, from
the sample. In order to evaluate the size of sample required to achieve,
say, no more than a 10 per cent coefficient of variation in the estimate s,,
we set V'3 = .01 and solve for n. In order to obtain an answer we need
to be able to speculate roughly on the values of 8., Vy, and py.p, and
often this can be done on the basis of past knowledge and experience or
of pretesting and experimentation. The plotting of a scatter chart (such
as Fig. 8, p. 166) based on data available from past experience, showing
the approximate relationship between X; and Y,, may be helpful, with the
line approximating X = RY drawn on it.

The following rules may prove useful in speculating on the accuracy of
55 as an estimate of S,.  If the relationship between X; and Y as indicated
on the scatter chart is such that a line through the origin and through the
point (¥, X)is a pretty good fit to the data, i.e., if there are no exceedingly
atypical values of Z, shown on the chart or reasonably likely to exist in
the population, then the size of sample required probably will be small,
perhaps no more than 50-100. On the other hand, if a few highly
atypical values of Z, may reasonably occur, a considerably larger sample
may be required to provide from the sample itself a reliable estimate of
the precision of an estimated ratio.

Where exceedingly atypical values of the Z; may be expected, then the
presumed distribution of the Z; can be compared with the distributions of
other characteristics discussed in an earlier section (see Sec. 14), and this
examination may provide a basis for speculating on reasonable values
of 8.

It should be pointed out, also, that the fact that the distributions of
X; and Y, are badly skewed does not necessarily mean that Z; will or will
not be well behaved. A very badly skewed distribution with respect to
X and Y may be well approximated by a line through the origin, and Z
may be nicely distributed with a relatively small value for .

* For proof, see Vol. 11, Ch. 4, Sec. 18.
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CHAPTER 5

Stratified Simple Random Sampling

A. NOTATION, AND SELECTION OF A
STRATIFIED SAMPLE

1. Some notation and general considerations. This chapter deals with
stratified sampling in the case when the selection of the sample within
each stratum is accomplished by simple random sampling of specified
sampling units. Ordinarily those specified sampling units will be the
elementary units. Chapter 7 and subsequent chapters cover the more
general case of stratification with cluster sampling.

Notation. Some of the extensions or modifications in notation that
will be needed in dealing with stratified sampling are as follows:

The number of strata into which the population under consideration is
divided will be designated by L. N will represent the total numbcr of
elementary units (or sampling umts) in the entire population, and N, will
represent the number in the Ath stratum. Therefore,

L
N=2N, =N +Ny+-+++ Ny
h

Similarly, the size of the sample drawn from the Ath stratum will be
designated by n,, and

I
n==>n,
h

is the total size of the sample drawn from all strata.

This notation is similar to that for simple random sampling except that
the subscript / indicates a particular stratum. The subscript / will
designate the individual sampling unit, but the sampling units will be
regarded as numbered separately within each stratum instead of through-
out the population. Thus, the value of a characteristic X of the ith
sampling unit in the Ath stratum will be designated by X,,;. For example,
if families are the units being sampled and the incomes of families are
under consideration, and if we have a population consisting of 10 families

179
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grouped into 3 strata, with 2 of the families in the first stratum, 4 in the
second, and 4 in the ‘third, then:

N=10
Ny= 2
Ny= 4
Ny= 4

In addition, X;; and X, represent the respective incomes of the 2 families
in the first stratum; Xy, X0, X3, and X,, represent the respective incomes
of the 4 families in the second stratum; and Xy, X3, X3, and Xy, repre-
sent the respective incomes of the 4 families in the third stratum.

Now the total income of the families in the first stratum is

Xy = Xy + Xp
and, using the summation notation in which we drop a subscript to indicate
a summation, we may write this total as

M
X, = > Xy,
1

Notice that to indicate the sum of the items in the first stratum we have

merely dropped the subscript 7, which amounts to saying that we have

summed over all the elements that have “1” as the stratum designation.
Similarly, the total income for the second stratum is

Xo = Xoy + Xpo + Xog + Xy

which, again, is indicated by

X2 = ZXM

v

and similarly e
X3 = 2X3z

More generally, if the subscript / designates the hth stratum, then the
total of a characteristic added over all units in that stratum will be

N,
X, = ZXhz'
1

Thus, as in Chapter 1, a summation is indicated by dropping the subscript
over which the sum is taken. When the sum is taken over all units in a
population (or in a stratum), it will be indicated by a capital letter, and
the sum over the units in a sample will be indicated by a small letter.
Thus:
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X, is the value of some characteristic for the'ith unit in the population
within the Ath stratum, and z,, is the value of the characteristic for the
ith unit in the sample from the Ath stratum, so that

Ny Ry
= Z.XM’ and ZX;, = thi
1 T

Similarly, A
X= ZX = 22Xy
hod
represents the sum of the stratum totals over all strata, or the sum over
all units in the entire population; and

L oy

A
T =28, = D D%y
h h i

is the total value of the characteristic under consideration for all the units
in a sample of size
n=2n,
7

Sometimes, to distinguish whether a summation is over strata, or over
units within a stratum, the summation sign will have a subscript placed
under it. Thus:

Ny

> X, designates that the summation is over the units within the Ath

= h
stratum. Often the subscript under the summation will not be necessary
because the symbol at the top of the summation will indicate what is

Ny
included in the summation. Thus, the fact that > X, is the sum over
all the units within the Ath stratum is clear because N, designates the total
number of units-in the Ath stratum. Similarly:

me. denotes the sum over a sample of #n, units from the Ath stratum.
-The symbol at the top of the summation may be omitted when the limits
of summation are obvious.

With this notation X, as before, represents the mean over the entire
population, so that

.

The mean within the Ath stratum will be designated by

X—X"
h_Nh
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and the mean of a sample of #, units from that stratum will be designated
by
@
ih = =
"y,
The variance of the characteristic between elementary units within the

hth stratum will be designated by o2, so that

N}s

S(X— X2
02 = i—~N—h——~ (1.1)
and
NI Z(Xlu Xh
Sz _~h e 4 1.2
h Nh -1 O, N;I, —1 ( )
The corresponding rel-variance is
NH
V:= X;ZL (1.3)

Also, the variance over the entire population without regard to strata is

L N, . L N,
; Z(Xhz' - X)2 Z Z(Xhz
9 i Jor e N 1.4
a N , or 1 (1.4)
and the rel-variance is
) S2
|2 T (1.5)

which are exactly the same variance and rel-variance as for simple random
sampling, but now a summation over two subscripts is indicated to get
the total over the entire population, because the observations are regarded
as numbered first by strata and then serially within strata.

Exercise 1.1. Suppose that a population of 12 elementary units is divided
into 3 strata, with 5 units in the first stratum, 3 in the second, and 4 in the third,
and with values as indicated in the table below.

STRATUM 1 STRATUM 2 STRATUM 3
X].l: 6 X21—’: 9 X31:20
X, =10 Xoo = 18 X390 = 26
Xis= 2 Xog = 12 X33 = 16
Xy = 4 Xqq = 26
X5 = 8
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Show that the means of the strata are respectively 6, 13, and.22, and the mean
of the population is 13.08. Show that

0= 8, ot=14, and o= 18
and that
S3=10, Si=21, and S;=24
and finally
0% = 60.24, S? = 65.72

The role of stratification. We have already seen in Chapter 1 that
stratification can be used to increase the reliability of sample results.
We shall now explore stratified sampling more fully, to find out how to
draw a stratified sample and how to prepare estimates from such a sample.
We shall also consider the precision of results that can be expected from
stratified samples, and the guiding principles in the choice of a stratified
sample to achieve maximum precision per unit of cost.

The amount of increase in precision of sample estimates accomplished
by stratification will depend on the degree of homogeneity that is achieved
within strata, or, saying the same thing in another way, on how much of
the variability in the characteristic being estimated is reflected in the
differences among the strata. This in turn depends on how effectively
the strata have been defined. '

In establishing stratum boundaries, use should be made of all informa-
tion that helps classify members of the population into groups which
differ from one another with respect to the characteristic being measured,
or with respect to the cost of collecting data. But, within each stratum,
the sample must be a probability sample; we do not permit judgment to
enter into the selection of the individual sampling units.

Judgment in establishing the strata used in selecting a sample is a mark
of good sampling procedure. Such a sample must be distinguished from
a judgment sample, in which the units included are selected in some
purposive fashion, with the result that it is impossible to attach a prob-
ability of selection to the units that come into the sample.

There seems to be some belief that the method of stratification that is
used is the only factor that determines whether a sample is good or bad,
and that sampling without stratification is never good. However, as was
suggested in Chapter 1, there are many instances where stratification, even
though carried through with great care, can have only a trivial effect in
increasing the reliability of the results from a sample. On the other hand,
there are important instances in which stratification is a highly effective
and important device for obtaining a reliable sample at a minimum cpst.

Besides presenting the general theory of stratified sampling, we shall in
this chapter attempt to distinguish between cases where stratification is
important and where it is not. We shall indicate the principles to be
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followed where stratification is important, in order to make it as effective
as possible. It should be pointed out, also, that even where trivial gains
are to be expected, stratification is often used because it can be introduced
at little or no cost.

Important topics to be discussed in stratified simple random sampling.
The important topics to be discussed are: (@) defining the strata to be
used; (b) determining the size of sample to be taken from each stratum;
(c) selecting the sample from the strata as defined; (d) preparing the
estimates from the sample; and (e) evaluating the reliability of the sample
estimates. We shall postpone consideration of the first two topics to a
later section of this chapter, since the problem involved there can be
considered more adequately after the theory of stratified sampling has
been examined. :

2. Selection of a stratified sample. Once the strata have been deter-
mined and the size of sample to be taken from each stratum has been
specified, the sample is selected in exactly the same way as a simple
random sample, except that the sampling is done independently within
each stratum; i.e., each stratum is treated as a population from which a
simple random sample is selected. Thus, if simple random samples of
Ny, Hg, * * *y My, * + *, By, Units are drawn from the L strata, respectively,
we have a stratified simple random sample. Sometimes the sample is
drawn from the strata in such a way that the sampling fraction is the same
for all strata, in which event we say that we have a proportionate stratified
sample. It is not necessary, however, that the same proportion be
included from each stratum. The proportion in the sample from the Ath
stratum is equal to f;, = »,/N,, and in any particular problem this fraction
in the sample may vary slightly, widely, or not at all, from one stratum
to the next.

B. SAMPLE ESTIMATES AND THEIR PRECISION

3. Simple unbiased estimates of means, percentages, and totals. In this
chapter we shall again consider first the computation of simple unbiased
estimates of means, percentages, and totals, after which we shall consider
the use of ratio estimates.

Preparing estimates from the sample. The mean of the population, X, is

L

X SN,X

¥ é# 3.1
ZNh

X =
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and, thus, is the weighted average of the stratum means where the weight
used in the Ath stratum is N, the number of units in the stratum.

Since we are assuming that simple random sampling is used within each
stratum, we know from Ch. 4, Sec. 7, that

&, = 2
i3
ny,

is a consistent (and unbiased) estimate of X,, the true stratum mean.
Consequently, our estimate of the mean for the entire population will be
the weighted average of the estimates for the individual strata

L
N
- EL 2% (3.2)

and will be an unbiased estimate of X. The proof that & is an unbiased
estimate of X follows from the fact that N,&, is an unbiased estimate of
N, X, and from the fact that the expected value of the sum, ZN,&,, is
equal to the sum of the expected values of the individual terms. It will be
unbiased no matter what sampling fractions are used in the various strata,
provided at least some sample is taken from each stratum and provided,
of course, that the estimate used is that given by Eq. 3.2 and is not merely
a simple mean of the sample observations.

Exercises

3.1. Using the data in Ex. 1.1, with a sample of 1 element from each stratum,
compute the 60 possible sample estimates of the true mean and show that their
average is 13.08, i.e., that the estimate is unbiased.

3.2. Show that a sample of 2 elements from each stratum will lead to 180
possible sample estimates.

3.3. Suppose that the sample again has 6 elements as in Ex. 3.2, but now that
there are 2 observations in stratum 1, 3 in stratum 2, and 1 in stratum 3. Find
all possible sample estimates, and show that the sample estimate is unbiased.

The estimated total for a stratum is
x; = N,

and the estimated total for the population is

L
&’ = SN, = NE (3.3)
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If we have a proportionate sample with a uniform sampling fraction
for each stratum, i.e., f), = f, where f, = n,/N, and f = n/N, then

L @,
EN]L r I L n,
T = N”h::%_‘_hzzz hi (34)
n n

and, therefore, with proportionate sampling, the estimate of the mean is
merely the simple unweighted mean of all the observations included in
the sample. This is important because the process of applying different
weights to different strata is sometimes laborious and expensive, but with
proportionate sampling the use of a stratified sample calls for the same
procedure for making estimates from the sample as does simple random
sampling. Proportionate stratified sampling is one of a class of designs
which lead to self-weighting samples. The identifying characteristic of
self-weighting samples is that each element “of the population has’ the same

If the samphng fractlon is not uniform, one must take the weighted
average of the sample means for the respective strata or the estimate will
be biased. The magnitude of the bias depends on how widely the weights
actually used differ from the correct weights, and on how widely the
stratum means differ from each other. If the means of the different
strata are all alike, then the bias will be zefo no matter what weights are
used in arriving at the average.

Remark. In practice we seldom have exactly the same proportion
included from all strata with proportionate stratified sampling, but treat
the results as though proportionate sampling were actually accomplished.

Ordinarily the total number of units in a stratum is not an even multiple
of the sampling fraction, and it is not possible to draw a sample that is
exactly proportionate from each stratum. Thus, a population might be
divided into 5 strata as indicated below, and an effort made to draw a

5 per cent sample from each stratum. This might Jead to results such as
the following:

No. oF NoO. ACTUALLY ACTUAL
STRATUM UNITS IN SELECTED FOR PROPORTION
STRATUM SAMPLE IN SAMPLE
Total 4523 226 .04997
1 550 27 04909
2 1517 76 .05010
3 912 46 05044
4 420 21 .05000
5 1124 56 .04982

The actual sampling ratios obtained vary from .04909 in the first stratum
to .05044 in the third stratum. In practice it is usually acceptable to
disregard small departures from uniformity and to use a uniform factor
equal to the over-all sampling fraction for the entire population.
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Exercise 3.4. Suppose that the data in the table above refer to tenant-
occupied households, and that the 5 strata have aggregate rents as shown in
column 4 below.

No. oF No. oF AGGREGATE RENT
STRATUM HOUSEHOLDS HOUSEHOLDS FROM SAMPLE
IN STRATUM IN SAMPLE (dollars)
(1) 2 (3) “4)
Total 4523 226 8695
1 550 27 1325
2 1517 76 4532
3 912 46 1917
4 420 21 570
5 1124 56 351

(@) Compute the estimated average rent from the sample, using the exact
sampling fraction in each stratum (Eq. 3.2).

(b) Compute and compare the estimated average rent on the assumption
that the sampling fraction was uniform and equal to 226/4523 in all strata, i.e.,
using Eq. 3.4 to estimate the average.

Precision of simple unbiased estimates. Applying the formula from
Ch. 4, Eq. 9.3, for the variance of an estimated total, we see that the
variance of ;v;,, the estimated total for a stratum, is

SZ
oy = Ni(l = fi) (3.5)
A

where f;, is the sampling fraction in the Ath stratum and S is given by
Eq. 1.2,

Two simple and widely used theorems will enable us to put together
the variance of a simple unbiased estimate of a total or a mean from a
stratified sample.*

(1) The first of these theorems is that the variance of the sum of inde-
pendently selected samples is the sum of their variances. In stratified
sampling (with simple random sampling within strata) the sample drawn
in one stratum is entirely independent of that drawn in another stratum.
The sampling from each stratum is carried out as a separate simple
random sampling process, and the fact that an overestimate or an under-
estimate is made in one stratum has no influence on whether the estimate
for another stratum is an over- or underestimate. Consequently, the
sample estimates from the various strata are independent, and therefore
the variance of the estimated total over all strata is simply the sum of the
variances of the estimated totals within each of the strata separately.
Thus, P g2

Gr%' = ZNﬁ(I _fie -

n,

(3.6)

* Given in Theorem 11, Corollaries | and 4, Sec. 4, Ch. 3, Vol. II.



188 STRATIFIED SIMPLE RANDOM SAMPLING Ch. 5

Now suppose that we have used proportionate sampling so that f, = £,
then n, = fN,, and

S2
0% = N¥1—~f) - (3.7
where I
>N,S2
82 = =Lk 3.8
w N (3.8)

and where 82 is given by Eq. 1.2.

(2) The second theorem referred to is that, if a random variable is
multiplied by a constant, the variance of the product is the constant
squared multiplied by the variance of the variable. In the case of
stratified sampling we multiply the estimated total for all strata combined
by 1/N to obtain the estimated mean. Since N is known and not obtained
from the sample, and not subject to any sampling error, the variance of
the mean is 1/N? times the variance of the estimated total.

Thus the variance of the sample mean estimated from a stratified
sample is given by*

P SR Si
o= i 2N —f) 3.9
and with proportionate sampling this becomes simply
S2
o =(1—f)~* (3.10)

Note (from Eq. 9.4a, Ch. 4) that, if the mean or total being estimated
is the proportion of the population having a specified characteristic or
the total number having the characteristic, then

2:

h Nh_ 1 Pth (3‘11)

and if the N, are even moderately large (perhaps 20 or more)

8121. = Pth (312)

and L

§2 = ZNhPth
b N

Similarly, if f, is not large, i.e., if the proportion of the population
included in the sample is less than, say, 5 per cent for all strata, the finite

* For proof, see Vol. II, Ch. 5, Sec. 1.
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multipliers (1 — f,) in Eq. 3.5-3.10 can be regarded as equal to 1, and we
have, for the variance of the sample mean,

1L 82
o =T ,3’_1;" (3.13)
and with proportionate sampling this becomes simply
S,
03 = —* (3.14)

n

In measuring the precision of the result from a stratified random
sample the only assumption involved was that the sampling within strata
was simple random sampling. There was no assumption as to how the
strata were made up. The gains that we get depend entirely on how
effectively the stratification is accomplished, no matter whether it is done
by grouping the units into strata on the basis of some objective criteria,
or on a judgment basis.

Exercise 3.5. Using the income data in Table 1, Sec. 5, Ch. 1, set up one of
the possible stratifications of the 12 incomes into 3 strata of 4 elements each
(different from that illustrated in Ch. 1), show that a simple random sample of

1 elementary unit from each stratum provides an unbiased estimate of the mean,
and find the variance of your estimate. Review illustrations in Sec. 16, Ch. 1.

4. Ratio estimates. The reasons for computing an estimate based on
a ratio of random variables were summarized in Ch. 4, Sec. 16 and 17,
in connection with simple random sampling. The same considerations
apply to stratified sampling. We shall now present some methods for
making estimates from a stratified sample where ratios of random
variables are involved, and shall consider how to evaluate the reliability
of such estimates.

As an illustration, suppose that the problem is to estimate the ratio of
rent paid to income, for families in a particular area, from a stratified
random sample of families. If X, is the rent paid by the ith family in
the hth stratum, and Y, is the income of that family, then X, is the total
rent paid by all families in the Ath stratum, and Y, is their aggregate
income. Similarly, X is the aggregate rent paid by all families in the
entire population and Y is the aggregate income.

Then the desired ratio of rent to income for all families in the area is
R = X/Y. We want to obtain an estimate of this ratio from a stratified
sample of families. We shall consider two ways of estimating the ratio
from the sample: one involves taking the ratio of estimated totals or
averages computed from a stratified sample; the second involves com-
puting a ratio of random variables for each stratum, and then obtaining
a weighted average of these.
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Ratio of estimated totals or averages. One estimate of R is obtained
by computing the ratio

LNL”"
T ’ Z—! Z‘,’vhi
r=‘-=—,:————— (4.1)
gy "N
hzyhz

“n n

where, as has already been seen, & and 7 are the averages estimated from

Eq. 3.2, and 2’ and ¥’ are the simple unbiased estimates of the totals X

and 7, obtained from Eq. 3.3. This estimate has the same form as the

estimate if simple random sampling is used, except that now the totals

or averages from which the ratio is computed are from a stratified sample.
The variance is obtained by applying Eq. 18.12, Ch. 4, as follows:

= RAVZ+ VZ—2p45V V) 4.2)
where
\ 4.3)
ol
Vi=Vi=7%;

are the rel-variances of & and 7, respectively; o2 and o3 are the variances
(as given by Eq. 3.9) of & and # from a stratified simple random sample;
and

N, _ _

n, N,—1

0305

PkXYShXShY

12 1—f
— SN2 h
sz 13 nh

l

4.9)

0405

is the coefficient of correlation between & and 7 in stratified simple random
samples. Equation 4.2 for the variance of r (Eq. 4.1) can be restated to
show the contributions of the various strata as follows:*

o2 = e zN f"s;‘fz 4.5)

ny,

where
ShZ = ShY + R ShY 2RPhXYShXShY (4.6)

* For proof, see Vol. I, Ch. 5, Sec. 2.
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where 8%, and S3, are given by Eq. 1.2, and p,xy is the correlation
between X, and Y, in the Ath stratum.

Remark. The expression p,xpSyxSyy in Eq. 4.6 is the covariance
between X),; and Y, in the Ath stratum. If we let the covariance between
X,; and Y, be equal to S, xy, then

Suxy
ShXShY

Prxy =
The variance is a special case of the covariance. Thus,

Ny ~
S — Z(Xhl - Xh)( Yhi - h)
rXY N,—1

and when X, is substituted for Y,,;, we have S,xp = Six as given by
Eq. 1.2. Similarly, when Y, is substituted for X;, we have Sjy. It
follows that S, x x = Six and S,y = Siy.

Equations 4.2 and 4.5 are algebraically identical. One form or the
other may be more convenient to use in a particular situation. Equation
4.5 is of the same form as Eq. 3.9, with S2,/ Y2 replacing S;. Equation
4.5 becomes identical with Eq. 3.9 when all Y, are equal to 1. Then ¥2
is equal to 1, and the terms involving Y in Eq. 4.6 are equal to 0.

When the sample over all strata is sufficiently large so that & and 7 are
approximately normally distributed, and when p;; is approximately
equal to V,/V;, the approximation to the variance of r is a good approx-
imation provided ¥ is no greater than .15. It will be a good approxima-
tion when V; is less than .05 for any value of pz;. (For a fuller statement
of the conditions when the approximation is good, see Vol. II, Ch. 4,
Sec. 12.) The variance of r given above in Eq. 4.2 or 4.5 applies whether
a proportionate or disproportionate sample is taken from the strata.

If a proportionate sample is taken so that f, = f is constant for all
strata, the approximation to the variance of r becomes

o o 1=
ot = R 4 V= 2y VexVir) @)
where
L
2 ZN. hS_ 72l_X — §2_M
vETONXT X2
. 4.8)
o SNt _ Sk
wY -

NY? Y2
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are rel-variances based on the average within-stratum variances; and
e o -
Sy 2K — X)X — 1)

>N,
p - " Nh_— 1 :ZN]LSILXY
wx NS-wXSu,’Y NSwXSwY

4.9

is the average coefficient of correlation within strata. The subscript w
on the variances, coefficients of correlation, and coefflicients of variation
denotes an “average within strata.”

From Eq. 4.2 it follows that the coefficient of variation of-the ratio
estimate with stratification will be smaller than V, the coefficient of
variation of the unbiased estimate of a mean or total from the same
stratified sample when pz; > (V;/2V,), or, if a proportionate sample is
taken from each stratum, when* p,xy > (V,»/2V,,x), and thus that the
occasions for using the ratio estimate of a total in preference to the simple
unbiased estimate of the same total are essentially the same as when
simple random sampling is used (see Sec. 19, Ch. 4).

Weighted sum or average of ratios. Instead of computing the ratio of
the averages & and § (or of the totals 2" and y’), we might as an alternative
method of estimating the ratio R compute the ratio r, = &,/%, = x,/y,
as an estimate of R, = X,/Y;, for each stratum, and then take the
weighted average of these individual stratum estimates. Thus, returning
to the illustration of estimating the ratio of rent to income, if the total
rent paid by all families in the sample from the Ath stratum is z, and the
aggregate income of these families is y,, then r,, is the estimate of the ratio
of rent to income for the Ath stratum, and

is the estimated total rent for that stratum. Consequently,

E ” L
¥ = Jm, = 2 Y, (4.10)
is an estimate of the total rent based on the ratio estimates for the respec-
tive strata. Similarly, L
DY,
rl:_zl_.. h (411)
Y Y

is the estimate of the ratio of rent to income obtained from the sample
by taking the weighted average of the estimated ratios in the respective

strata.

* The reader can verify that these follow directly from Eq. 42 or 4.7.
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The variance of this estimate of the ratio (Eq. 4.11) is approximately*

1 s
b = i SNyt Ly, @“.12)
where
S/;? == ‘th =+ R IzY 2RhPhXYShXShY (4.13)

where R, = X,/Y,, and where the remaining terms in this expression are
defined as for Eq. 4.6. Equations 4.6 and 4.13 are identical except for
R, in Eq. 4.13, which replaces R in Eq. 4.6.

Remark. In Eq. 18.10 of Ch. 4 the variance of » was expressed in terms
of the variance of Z;, where Z; = X;— RY,. Similarly, with stratified
sampling, if we define Z,; = X, — R, Y3;, we have within the Ath stratum
the variance of Z,; equal to Sjz, i.e.,

N?l

Z(Xhi — RyY3)?

Sty = T —
Np—1

Also, the S}z defined by Eq. 4.6 can be put into the related form
Ny

N,,, — I
where

and

The approximation to the variance is good with large enough samples
in each stratum. The sample is large enough for the variance approxima-
tion to be good for each stratum separately provided the coefficient of
variation of the denominator of the ratio in each stratum does not exceed
.05-.15. Values up to .15 are all right if p,xp = Vip/Vix-

Two points that have been mentioned in connection with ratio estimates
are to be emphasized in dealing with this particular estimate of the ratio:
first, the fact that the ratio of random variables r, is a biased estimate of
R,; and, second, the fact that formulas for the variance as given by
Eq. 4.12 and 4.13 are approximations and do not hold exactly, being
good approximations only under certain conditions. We shall examine
these points more fully.

The bias of ratio estimates from stratified samples. In the discussion
until now we have dismissed the bias of a ratio estimate as trivial if a

* For proof,'sce Vol. II, Ch. 5, Sec. 3.



194 STRATIFIED SIMPLE RANDOM SAMPLING Ch. 5

moderately large total sample is used. This will be so with an estimate
based on a ratio of averages or totals (Eq. 4.1) but may not be so with
an estimate based on a weighted sum or average of ratios as given by
Eq. 4.10 or 4.11.

The bias of estimate 4.1 is given approximately by

Bias = R(Vg— V) (4.14)
where
V.. = V Vi

Ty

The bias of estimate 4.11 is given approximately by

R ]
Bias = —)—,ZXh " f’ (Viy — paxyVaxVar) (4.15)

h

When there are no strata (L = 1) both reduce to

1 —_
Bias = R (V3 — oy vi) (4.16)

the bias for simple random sampling without stratification. If the
sample from each of the strata is reasonably large, say 50-100 or more
units, then for most populations ordinarily encountered the bias of either
estimate is indeed trivial, and no further attention need be given to it
than formerly. But if the stratification is carried to such a point that
only a few units are included in the sample from each stratum, and then
the stratum-by-stratum ratio estimates are made and weighted up to
obtain an estimated total, average, or ratio, there is a danger that the
bias in each stratum will be relatively large and that it will be more or
less consistent from stratum to stratum, and therefore that the increase in
the size of sample resulting from combining the sample over the strata
will not have the effect of reducing the bias to a negligible size.*

Hlustration 4.1. To illustrate the bias which may arise when we use
the stratum-by-stratum estimate with a small sample in some or all of the
strata, let us consider a hypothetical population that consists of 100 strata;
50 strata are exactly alike and are of type 1, and the other 50 are also
exactly afike and are of type 2.  In each stratum there are 4000 elementary
units, 1000 of each class, a, b, ¢, and d, as shown in the accompanying
table. Each elementary unit has an » value and a y value, and these
values are as shown in the table.

* For proof, see Vol. 1I, Ch. 5, Sec. 4.
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Type of stratum
Class Type 1 Type 2
of _
unit Number Number
of x Y of x Y
units units
a 1000 10 20 1000 10 40
b 1000 10 5 1000 10 10
c 1000 20 10 1000 20 20
d 1000 5 10 1000 5 20
Totals 4000 45 45 4000 45 90
R, =10 R, =.5

These strata have the following properties: for strata of type 1, the ratio
R, = Xj/Y,=1; for strata of type 2, R,=- X,/Y, =.5; for both
types of strata, V% = V% = 2346 and p = — .003.

Suppose that we sample by selecting 2 units at random from each
stratum. There are 10 possible sample types, with the relative frequencies
shown in the table.

L

Possible Expected Ratio @/y, = r
53;1;5:3 fr?(lliggzy Stratumrof type 1 Stratumrof type 2
h n
aa i S 25
ab 'l‘zg .8 .40
ac T 1.0 .50
ad T 5 .25
bb T 2.0 1.00
be " 2.0 1.00
bd 5 1.0 .50
cc 5 2.0 1.00
cd = 1.25 625
dd % 5 25
Average of sample
estimates 1.00 1.13125 565625

In each stratum the sample of 2 units gives, on the average, an over-
estimate of the true ratio R, with a bias of 13 per cent. Hence the estimate
from all 100 strata, ' = ZY,r,/ Y, will be an overestimate of R, and the
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relative bias will be 13 per cent, even with an over-all sample of 200 cases.

If, however, we use the ratio of estimated totals r’ = 2'/y’, the bias is
of the order of .09 per cent, or about one-hundredth as large.

Let us now consider the variances for the two types of ratio estimates.
In this illustration the ratios of the stratum totals vary between the types
of strata, being equal to 1 in half the strata, and being equal to 1/2 in the
remaining strata. This is the case in which we may expect to gain when
using the stratum-by-stratum estimate; and indeed we do, the standard

Xh

1

Yy

13

FiG. 1. A stratum for which the relationship between X
and Y is represented approximately by a straight line
through the origin.

error for this estimate being 5.1 per cent from the total sample of 200, as
compared with a standard error of approximately 5.6 per cent for the
ratio of estimated totals or estimated means. The true ratio over all
strata is .6667, so that the coefficient of variation of either type of estimate
is about 8 per cent. The relative bias of the stratum-by-stratum estimate
is considerably larger than this coefficient of variation. This illustrates
the danger of a stratum-by-stratum estimate when a relatively few cases
are taken from each stratum, no matter how large the over-all sample
size. On the other hand, the bias in the ratio of estimated totals depends
on the over-all sample size.

There will be no bias or only a trivial bias in an estimate of r,, no
matter how small the sample, if the stratum population from which the
sample is being drawn is such that the X,,/Y,; and Y, are uncorrelated.
This will be approximately true when p, = V,y/V,x, i.e,, when the
regression of X),; and Y, is reasonably well represented by a straight line
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through the origin.* Thus, if the relationship between X,; and Y,
within each stratum has approximately the form shown in Fig. 1, so that
a line through the origin is a roughly good fit, there need be little concern
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FiG. 2. Three strata for which the relationship between X
and Y is not represented by a straight line through the
origin.

about the bias, even with small samples from each stratum and an
estimate based on a weighted sum or average of ratios. But, if the
relationship is something like one of those shown in Fig. 2, or one of

* For proof, see Vol. TI, Ch. 5, Sec. 4.
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many other possible relationships where the line of relationship departs
in a significant way from going through the origin, then the ratio estimates
for individual strata based on small samples may have a serious bias.

Exercises

4.1, (a) Compute the approximation to the variance and to the bias for the
data given in Illustration 4.1 for both types of estimates illustrated. Compare
the approximation to the bias for the stratum-by-stratum estimate (Eq. 4.15)
with the actual variance and bias given in Illustration 4.1, which were obtained
by listing the possible samples. The data for the ratio of the estimated totals
quoted in the illustration were based on the approximations to the bias and
to the variance (Eq. 4.14 and 4.2). Verify these results,

(b) Plot the data from Illustration 4.1, separately for each type of stratum, and
indicate which of the charts in Fig. 1 and 2 they most closely resemble.

4.2. Look at the income data in Table 15, Sec. 16, Ch. 1, and plot these data;
which of the charts in Fig. 1 and 2 do the data most nearly resemble? Compute
the variance and exact bias for a sample of 2 units and the approximations to
them.

4.3. Using the data in Table 15, Ch. 1, compute the exact bias and variance
for a sample of 10 elements; compute also the approximations to them.

4.4, If the 1950 incomes for individuals B and K were $500 and $300, respec-
tively, what would the chart look like? Compute the bias and variance, and
the approximations to them, for a sample of 2 elements, using the 1950 incomes
for B and K given in this exercise.

Which ratio estimate to use. It can be readily shown that, for popula-
tions for which the bias of the ratio estimate based upon the weighted
average of stratum-by-stratum ratios is negligible, the estimate will have
a variance as small as or smaller than that of the ratio of averages or of
totals over all strata combined.* However, the difference between the
two will be trivial unless the stratification is sufficiently effective to produce
a very wide variability in the ratios R, from stratum to stratum. Highly
effective stratification may mean that these ratios will vary widely, but
the more usual situation in practice is that the variation in the R, is
sufficiently small that one method will be about as reliable as the other.
In THustration 4.1 given earlier even considerable differences between
the stratum ratios do not have a striking effect. Thus, the rules for
choice between the two methods should be:

(1) If the sample taken from each stratum is relatively small, then the
ratio of estimated totals (Eq. 4.1) should be used unless there are wide
differences between the strata in the ratios R,. In the event that there
are such differences, it will ordinarily be possible to group the strata in
advance into sets of strata for which the ratio within each group will not
differ too widely from stratum to stratum, and such that each group has a

* For proof, see Vol. II, Ch. 5, Sec. 5.
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large sample size. The estimates can be made for these groups of strata.

(2) If there is a reasonably large number of units in the sample from
each stratum, the method of taking an average of the ratio estimates
stratum by stratum (Eq. 4.10 or 4.11) is to be preferred unless it involves
extra work. If it does, then one should be reasonably sure of gaining
considerably by this estimate before he actually uses it; otherwise the
gain may not offset the extra work involved.

(3) 1f the sampling units are the elementary units, and the denominator
of the ratio is simply the number of units in the sample, for a subgroup,
both methods yield unbiased estimates, and the choice of estimate is
determined by consideration of the variances of the estimate, and the
work involved in preparing them (cf. Ch. 4, Sec. 16). This special case
is one for which p, = ¥V}, /V,x, and each stratum estimate is unbiased.

(4) The method of averaging the ratio estimates stratum by stratum
(Eq. 4.10 or 4.11) may be used as a method of estimation only provided
that the Y, are known independently or provided the Y, = N,, in which
event the weighted sum or average of ratios becomes equivalent to the
ratio of estimated totals or averages, and there is no problem of bias
from the stratum estimate.

An experience often encountered is that the difference between the
variances of the two estimates is trivial. However, the reader should be
aware of the differences in the two and be able to detect the conditions
where one is likely to be unreliable compared with the other. Thus, in
sampling to estimate change in sales of business establishments, either
method is satisfactory, as the ratio for the stratum of large stores does not
usually differ by more than perhaps 20 per cent from the ratio for medium-
sized or small stores. We customarily use the ratio of estimated totals,
as it is easier to compute. The variance with this type of estimate is
ordinarily not measurably greater, and we avoid any danger of a sub-
stantial bias from any of the strata.

In contrast, in a quarterly survey of employment in state and local
governmental units,* the estimate of total employment is made by using
a weighted average of the ratios of present employment in the reporting
units to the employment in the same units in a previous base period,
stratum by stratum. The governmental units are stratified by type of
employment (school, nonschool, and higher education), by type of unit
(state, city, county, township, special district), and by size of unit. The
ratio of present employment to employment in the previous period
varies from .6 to 2.4, a sufficiently wide variation to suggest that the

* U.S. Bureau of the Census, Public Employment in
(Government Employment), Washington, D.C.

(quarterly),
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stratum-by-stratum estimate is preferable. Moreover, the number of
cases in each stratum is very large. This method yields separate esti-
mates for different types of governmental units as a by-product, since
each type of unit is a separate stratum.

5. Gains by using proportionate stratified sampling as compared with
simple random sampling. We have already seen (Ch. 4, Eq. 9.2) that the
variance of a sample mean, Z, based on a simple random sample is equal to

S2
(l—f); (5.1)

and with proportionate stratified sampling the variance of the sample
mean is equal to

S2
a-59 ;w (3.10)

Therefore, the absolute reduction of the variance of the sample mean due
to stratification with proportionate sampling is obtained by subtracting
formula 3.10 from formula 5.1, which gives

Sz — 82
1 —f)— (5.2)
and this is approximately equal to*
(a5
— — = 5.3
‘ n \?T W -3)
where N = NJ/L, and L
X, — X)?

N

is the variance between the stratum means, X, = X,/N,.

The relative gain for a simple unbiased estimate achieved through
proportionate stratified sampling is obtained by dividing the absolute gain
as given in Eq. 5.2 or 5.3 by the variance of the estimate from a simple
random sample (Eq. 5.1). This gives a relative gain due to stratification of

af — (S/N)
82
which, in turn, is approximately equal to the measure of homogeneity

within strata, d, discussed in Chapter 6.}
It is easily shown, also, that}

(5.5)

* See Vol. II, Ch. 5, Sec. 7.
t See Ch. 6, Sec. 8, for a discussion of this measure of homogeneity.
I For proof, see Vol. 11, Ch. 5, .Sec. 6.
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0§+0§,=02=N—1S2 (5.6)
where
1 LN,
=X}ZZ X — Xn)2 (5.7
and that
N
82 = o o2 (5.8)

will be a good approximation whenever the N, are large enough or very
nearly equal so that (N, — 1)/N,, = (N — 1)/N.

We see from Eq. 5.4 and Eq. 5.6 that, in sampling from any particular
population, the larger the differences between the means of the various
strata, the larger will be the variance between strata and the smaller will
be the average variance within strata. Thus, if we can group the units
of the population into strata such that the differences between the stratum
means are large and account for most of the variation of the characteristic
being measured, then we can gain quite a lot by stratification. On the
other hand, Eq. 5.5 shows that, unless the variance between stratum means
is large relative to the total variance, not very much will be gained by
stratification.

If the strata were made perfectly homogeneous with® respect to the
characteristic being measured so that all elements within a stratum were
exactly alike with respect to that characteristic, then the variance within
strata would be equal to zero, the variance between strata would account
for all the variability of the characteristic being measured, and there
would be no sampling error from such a stratified sample. If we knew
enough about the population to stratify so effectively as to have perfect
homogeneity within strata, however, we would know enough about the
population in advance that there might be little need to take a sample.

The redder may find it profitable to examine some populations stratified
on the basis of different characteristics, and observe how the differences
between the stratum means affect the gains due to stratification. It will
be found that, unless exceedingly large differences are accomplished
between the strata and only small amounts of variation remain within the
strata, the gains will be only moderate or perhaps barely noticeable.

Exercises

5.1. Suppose that it is desired to estimate the value of farm products in the
United States, and data are available from which farms may be classified by
size, by type, or by tenure of operator. Using the information shown below,
determine which of the three methods of stratification is most effective. Com-
pare the variance of a sample of 1000 farms, using proportional sampling and
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the most effective stratification, with that of a simple random sample of 1000
farms.

Average
Nu(r)nfber value %f Variance

Stratification P product (thousands)

arms 2

N (dollars) S;

12 ‘Xk )
All farms 5,858,889 3,472 47,393*
I. Size of farm (acres)

Under 10 593,937 1,137 17,910
10- 29 944,379 1,471 12,709
30~ 49 707,544 1,734 13,891
50~ 69 472,598 2,007 15,179
70~ 99 685,146 2,425 16,631

100-139 634,611 3,100 24,821
140-179 566,248 4,145 33,118
180-219 283,091 5,081 51,362
220-259 210,058 6,288 63,914
260-499 473,923 7,719 97,223
500-999 173,547 10,875 180,767

1000 and over 113,807 17,366 394,343

II.  Type of farm

Not classified by type 106,929 398 1,125

Fruit and nut 132,873 8,557 222,300

Vegetable 93,646 5,351 143,303

Horticultural—specialty 14,841 14,378 424,325

All other crops 1,860,644 3,659 41,571

Dairy . 558,667 4,727 48,739

Poultry 273,129 3,850 69,594

Livestock 809,817 5,971 90,392

Forest products 30,645 1,916 8,807

General farms 688,807 3,748 24,502

Subsistence 1,288,891 488 146

III. Tenure of operator

Full owners 3,292,063 2,736 35,683

Part owners 661,156 6,904 106,153

Managers 47,357 18,420 509,610

Tenants
Cash 410,091 2,690 36,205
Share—cash 137,330 5,725 48,164
Share 682,561 4,223 40,052
Croppers (South only) 446,850 1,736 2,696
Other and unspecified 181,481 2,753 29,438

* This is approximately the variance of value of product for snmple random
sampling without stratification.
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5.2. Determine which of the following stratifications is the most efficient
with proportionate sampling for estimating the proportion of stores with sales
under $10,000 in 1939; which is least efficient ? ;

(B

Number of stores
Stratification Tota Stores under
$10,000 sales
Total 1,770,355 958,972
I. Type of operation
Chain stores 123,195 15,439
Independent stores 1,647,160 943,533
I1. Kind of business
Food 560,549 317,869
Eating and drinking, filling stations, :
drugs 605,147 359,768
General merchandise, apparel, furni-
ture 210,053 88,521
Automotive, lumber-building group 139,445 41,025
Other retail 255,161 151,789
III.  Geographic
North East 534,707 269,859
North Central 562,417 302,552
South 460,204 279,696
West 213,027 106,865
1V. Number of employees
10 or more 80,478 0
4-9 211,122 50,000
0-3 1,478,755 908,972

It is worth observing the circumstances under which there is no gain
at all by stratification with proportionate sampling. This happens when
o% is approximately equal to 82/N. To see what this means, let us suppose
that, instead of grouping the population into strata in a purposeful way,
the stratification was actually accomplished by distributing the members
of the population at random among the strata. Then the mean for the
Ath stratum would be the mean of a random sample (of size N,) from the
entire population. It turns out that with strata formed by a random
grouping of elements the variance between the stratum means, o}, would
be approximately equal to S2/N, which, under these circumstances, would
be approximately equal to §2/N.* Thus, when strata are set up in such

* For proof, see Vol. II, Ch. 5, Sec. 8.
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a way that they are little or no more effective in accomplishing homo-
geneity within strata than would be a random grouping, no gain will
result from stratification (and the measure of homogeneity will be
approximately zero).

From Eq. 5.3 above, it is apparent, too, that sometimes a loss can
actually be taken by using stratification with proportionate sampling.
This would occur when the differences between strata were even less than
would be expected if the strata were made up through a random selection
of the population, i.e., if there were smaller differences between strata
than would be expected by a random grouping. In practice, this has very
little importance, but it is worth knowing that there are circumstances
where such loss can occur. The amount of possible loss is trivial if the
strata are reasonably large. If, however, one is taking a sample from
each of a number of very small strata, it can be shown that there is a
possibility of serious loss by stratification.

Exercise 5.3. Consider a population consisting of 8 families with 4 persons
in each family, the persons being the parents and 2 children, with half the
families having a son and a daughter, a fourth having 2 sons, and a fourth
having 2 daughters. (This assumed distribution of sons and daughters is
approximately a random distribution.) Let us consider each family a stratum,
and select a sample of 1 person from each family in corder to estimate the pro-
portion male. Show that the variance with stratified sampling is greater than
with simple random sampling.

Remark. Note that the loss is encountered, with proportionate sampling,
when the size of the stratum is small, because the factor N,/(N,, — 1) which
multiplies the o} in the Ath stratum is greater than 1. The maximum
possible loss occurs when N, = 2, for all #; and here, when the maximum
possible loss occurs, the variance for a proportionate stratified sample is
about double the variance of a simple random sample of the same size.

When the estimate is a ratio of random variables, the gains due to
stratification with proportionate sampling arise under essentially the same
circumstances as those just described for the simple unbiased estimate.
Thus, there will be substantial gains from stratification when there are
large differences in the R, = X,/ ¥, between strata as compared with the
variation of the R,; = X,,/Y,, within strata. However, it is no longer
true that the variance within strata is necessarily less than the variance
without stratification, even for large strata, if the estimate is based on
the weighted sum of ratios.

The common situation with proportionate stratified sampling is a gain
over simple random sampling, although frequently the gain is relatively
unimportant. Sometimes significant gains can be achieved through
effective stratification. Often, in such cases, still more substantial gains
can be accomplished with the same size of sample if a disproportionate
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sample is drawn from the various strata. It is necessary, however, that
the variations from proportionate sampling be properly determined. If
disproportionate sampling is used and the variation from proportionate
samples is improperly determined, one may lose considerably over either
proportionate stratified sampling or even simple random sampling. We
shall turn now to a consideration of proper and improper use of dis-
proportionate sampling.

C. OPTIMUM ALLOCATION OF SAMPLE TO STRATA

6. Gains or losses from stratification when the sampling is dispropor-
tionate. Tormula 3.9 gives the variance for a mean estimated from a
stratified sample with disproportionate sampling as well as with propor-
tionate sampling. We shall now examine, with a simple illustration, the
kinds of gains or losses that may result with disproportionate sampling.

Suppose that we are sampling to estimate the total production of saw-
mills, and we have from independent sources a listing of the sawmills
from which to sample, as well as information on the production of each
mill at an earlier date. One might draw a sample from such a source in
order to estimate total production in a more recent period, average pro-
duction per mill, or other characteristics. Table 1 shows the distribution
of the numbers of sawmills in various production size groups in the base
year, 1942, and the average 1942 production for each group. The
standard deviation of the production within each group is for 1943 and
. would be unknown in advance of drawing the sample, but is assumed
known here for purposes of illustration.

Table 1. Lumber production in the East
. — i

Stratum Annual Numb Total Average gta.nc::drd Coefﬁ;:icnt

(produc- production, "m;. cr production,|production, 8‘1134‘3()“’ o
tion 1942 moills 1942 1942 (estimated) Vafll;l‘ttl:;)n,
class) (M bd. ft.) (M bd. ft.) | (M bd. ft.) (M bd. ft.) | (estimated)

) @ ® @ ® © ©)

1 5000 and over 538 | 5,934,000 11,029.7 9,000 .98

2 10004999 4,756 | 8,464,000 1,779.6 1,200 3

3 Under 1000 30,964 | 6,311,000 203.8 300 1.44

Total for all
classes 36,258 | 20,709,000 571.2 1,684 3.17

With a simple random sample of 1000 mills from this population we
have a coefficient of variation of the estimated total of 9.9 per cent. By
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taking a proportionate sample from each of #he 3 groups this coefficient
of variation is reduced to 7.1 per cent.

Now let us examine what happens when we take different fractions from
the various strata but still retain the same total number of sawmills in the
sample, in an effort to learn when we will lose or gain with dispropor-
tionate sampling. 'We will explore the effect of variable sampling fractions
by a systematic set of steps.

In Table 2, alternative allocations of the sample are listed for strata 1,
2, and 3, but with stratum 2 always having the same fraction as stratum 1.
The table begins with stratum 3 having a substantially higher fraction
than the others, and then successively lower proportions are listed for
stratum 3 and higher proportions for the other two. Presented in
Table 2, also, are the variances of the estimated mean based on a sample
of 1000 for each set of sampling fractions shown. These results are
summarized in graphic form in Fig. 3, curve I.

Table 2. Variance of estimated mean, with variable sampling fractions,
such that #;/N; = ny/N,, and n, - ns + ny = 1000, for sawmill data
from Table 1

Alternative scts of allocations of sample

Stratum
(production " P " n
Jacs ] M I n fn I
class) n;, 100 N, n, 100 N, i, 100 N, n, 100 N, n, 100 N,
1 5 .93 15 2.8 30 5.6 61 113 90 16.7
2 44 93 131 2.8 265 5.6 539 113 ; 795 16.7
3 951 3.1 854 2.8 705 2.3 400 1.3 | 115 .37

Variance of
mean 4158 1414 746 462 762
(1000 bd, ft.)?

The illustration points to two important principles. It is seen, first,
that a smaller variance can be achieved by departing from proportionate
sampling, and, more than that, for estimating such items as total pro-
duction, a considerable gain is achieved by the departure from propor-
tionate sampling if the right kind of departure is taken. It is seen also,
however, that very much larger variances than with proportionate sampling
may result for some of the allocations to strata. These increases in
variance will accompany substantial departures from proportionate
sampling unless the departures are in the proper direction.

7. Optimum allocation of sample to strata. From Table 2 and Fig. 3,
we see that the smallest variance among the samples of 1000 mills listed
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in Table 2 is accomplished when the proportion included in the sample
is about 11.3 per cent for strata 1 and 2 and 1.3 per cent for stratum 3.

Suppose, now, that we keep a sampling fraction of 1.3 per cent (400
mills) from stratum 3 and let the fractions differ as between strata 1 and 2,
but still consider ouly those different sampling fractions that give us a
total sample size of 1000. The results of such alternative compilations
are summarized in Fig. 3, curve II. For certain of the allocations the
variance is stilf further reduced, and for others it is increased. At this

2500 g
2000 | -—
“‘;\ Variance for
X proportionate
5 1500 sampling when |
= ny = 854 /’
g 1000 /
g Curve I
>
500 \ E¥’( ~ Cuve I/
Curve III
0 [

0 200 400 600 800 1000 © 200 400 600
ng ny .

"Fic. 3. Variance of estimated mean production, for sample
of 1000 sawmills, with alternative allocations of the sample
to strata.

stage we find the best results if about 325 miils or 6.8 per cent are taken
from the second stratum, and if about 275 or 51.1 per cent are taken
from the first stratum, :

This process can be extended by again varying the sampling fraction in
stratum 3 and at the same time varying the fractions taken from strata 1
and 2 but in such a way that », has the same ratio to n, as was found to
be best in the preceding step; i.e.,

m_2B e =y = 2 i
n, 325 17600 T TP 600 3
and
325
ny = o ()

The results of this final step are summarized in Fig. 3, curve III. Here,
again, we find that further reduction of the variance of a mean estimated
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from a sample of 1000 mills is accomplished when appropriate sampling
fractions are used, and, also, that serious losses may result if the wrong
fractions are selected.

If we now try making further adjustments in the sampling fractions, it
is found that no additional gains are achieved. We say, then, that for a
total sample of 1000 the “optimum” allocation of our sample among the
strata is that which gives the minimum variance, which is to take n; = 244
mills from the first stratum, n, = 288 mills from the second stratum, and
ng = 468 mills from the third stratum. These are the values that give
the minimum point on curve III, Fig. 3, and result in a variance of 259.
No other allocation of a sample of size » = 1000 can be found for which
the estimates Z or 2’ will have a smaller variance.

Figure 3 also shows that the variance has a broad minimum in the
neighborhood of the optimum values of #;, n,, and »;. For example,
from curve Il in Fig. 3, any value of »; between 350 and 600 leads to a
variance not more than 10 per cent greater than the optimum variance.
The fact that moderate deviations of the sample allocation from the
optimum allocation do not substantially increase the variance is of real
importance.

To summarize, we assumed, first, that we knew the variances of the
production of mills in each of the different strata, so that we could
compute the variance of a sample mean for a sample of 1000 mills
allocated in various ways among the 3 strata. With this knowledge we
determined the optimum allocation of the sample to each stratum, and
found that the variance of the mean based on this optimum allocation
was 259 compared with 1414 for proportionate stratified sampling. Thus,
very substantial gains were obtained by the optimum allocation.

Let us now consider how these results can be introduced into the
practical job of sample design. One problem is to recognize the circum-
stances when disproportionate sampling is desirable. A second problem
is to reduce the amount of work involved in carrying through the operation
to obtain the optimum allocation of the sample; the process of computing
successive approximations followed in the illustration above would be
very laborious if there were a large number of strata. A third problem
is to know what to do when the variances within the strata are not known
in advance of designing the sample. A fourth and particularly trouble-
some problem is to determine what to do when, from a single sample, a
number of different characteristics are to be estimated. Another problem
of considerable practical importance is to take into account differences
in the cost of collecting or processing the data. We shall consider the
first two of these problems together, and then the remaining three
separately.
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8. Ascertaining the optimum allocation and determining when to use it.
It is possible, mathematically, to show that the optimum allocation for a
given size of sample, with equal costs per unit for all strata, is accom-
plished by allocating the sample as follows between whatever strata have
been set up:

If n is the total size of sample that is to be drawn, then the optimum
values for the n, will be given by:*

N,
opt.n, == n 8.1)

where S, is defined as in (a), (b), or (c) below.
(@) For sample estimate 3.2 or 3.3,

Sh = Sn (8‘2)

with S, defined in Eq. 1.2 (or, for a proportion, in Eq. 3.11).
(b) For sample estimate 4.1 or for an estimated total obtained by
multiplying the estimated ratio by a known total,

S ShZ‘ E
Sh - )—, (8‘3}

with S, given by Eq. 4.6.
(c) For sample estimate 4.10 or 4.11,

S

=

8y =~ 84

~l

with 8, given by Eq. 4.13.
The variance, using the optimum values of #,, is given by

a® (opt.) = N—L2 [(ZNhSh)z

2] 6.9

Under certain circumstances opt. », (Eq. 8.1) is subject to the following
modification. An initial computation may sometimes give a result such
that the computed optimum value of #, is greater than the total number
of units in the stratum, N,; i.e., the equation for the optimum seems to
say that a sample of more than 100 per cent should be taken, which, of
course, is impossible. In this instance the procedure to follow is merely
to take n, equal to N, for each such stratum, and then to distribute the
remainder of the sample among the other strata in accordance with the
optimum equation. Equation 8.5 must be modified, also, when some of

* For proof, see Vol. II, Ch. 3, Sec. 9.
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the initial »n,, are greater than the &,. In this instance only the strata for
which #,, are less than N, are included in computing o? (opt.) with Eq. 8.5,
and the value for » in ¢ (opt.) is the total number of cases in the sample
from these strata.

Remark. The variance with optimum allocation (Eq. 8.5) is equal to
the variance given by Eq. 3.9, 4.2, or 4.5 when the optimum values for the
ny, (as given by Eq. 8.1) are substituted in the appropriate variance formula.
In practice, when an effort at optimum allocation has been made, it is
usually desirable to compute the variance for that allocation by substitution
directly in the original variance formula instead of using Eq. 8.5, especially
because Eq. 8.5 is applicable only if the optimum is accurately determined,
whereas usually it will be only approximated, at best.

The reader can check the results obtained from Eq. 8.1 with the sawmill
data against the optimum results found experimentally above, and he
will find that the formula gives exactly the results obtained by the more
laborious experimental process if the successive approximation method is
carried far enough. This experimental process, incidentally, would have
been much more laborious had there been a larger number of strata, and
we find, therefore, that our formula for the allocation of the sample,
which gives us the optimum allocation directly, is very economical in
terms of time spent. Thus, for the illustration above the optimum values
of the #,, are computed as follows:

NS, 4,842
"= NS " 1983 (1,000) = 244
NS, 5,707
s = o = 1,000) = 288
= Sns 1 Tog3s (000
NS ~ 9,289
nyg = =22 = (1,000) = 468

SN, T 19,838

and these results agree with those obtained above.

To illustrate the procedure when the optimum #, computed with Eq. 8.1
exceeds N,, suppose, in the above illustration, that §; had been equal to
36,000, and that S, and the S5 had been equal; respectively, to 1200 and
300 as before. Then the direct application of Eq. 8.1 gives as the optimum
values for the respective strata:

m = 564
ny, = 166
ng= 270

n == 1000
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This tells us to take more units out of the first stratum than there are in
that stratum. To deal with this we simply adjust the values obtained
from Eq. 8.1, making n; = N;, and then recompute the optimum values
for the remaining strata by assigning (7 — N;) units to the sample from
the other strata, and distributing the remaining sample ovér those strata
proportionately to the N,S,. Thus, in this instance we obtain the
optimum by taking

i’Il == N]_ = 538
NS,

Hy = ———tfe (n — N,) = 176

ETON,S, + N3S3( V
N3S,

=—"22_— (p—N) =
M= NS, 4 NS, T M) = 286
Exercises

8.1. Using the data in Table 1, Sec. 6, find the optimum allocation of a
sample of 2500 mills. Notice that increasing the sample size to this extent
makes the sample of mills producing over 5000 M bd. ft. larger than the total
number of such mills, Compute the variance for the optimum allocation.

8.2. For a survey of pig iron scrap, the following information is available:

. AVERAGE ESTIMATED
Towwor Nommor | owan st
BASE YEAR DEVIATION
0- 799 1280 311 253
800-2499 890 1369 448
2500-4999 370 3838 716
5000 and over 180 9448 4688
Totals 2720 1741

Determine the optimum allocation of a sample of 500 establishments.

8.3. Using the data in Ex. 5.1, compute the optimum allocation for a sample
of 1000 farms for the 3 sets of strata, compute the variance for the optimum
allocation, and compare it with the proportionate stratified sampling variance.

Gains by using optimum allocation as compared with proportionate
stratified sampling. Equations 8.1 and 8.2 tell us that for a simple
unbiased estimate of a mean or total the optimum size of sample to take
out of a stratum is determined jointly by the N,, the number of units in
the stratum, and the S,, the standard deviation between those units of
the characteristic being sampled. The larger the number of units in the
stratum the larger the sample from the stratum, and also the greater
the variability within the stratum (the greater the S;) the larger will be the
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optimum sample from the stratum. Similarly, where ratio estimates are
involved, it is seen from Eq. 8.1, 8.3, and 8.4 that N, and 8,z or S,
(Eq. 4.6 and 4.13) determine the optimum allocation.

The fact that a higher sampling fraction should be taken from a stratum
if the variability within the stratum is large than if it is small seems
reasonable if we consider the extreme case where there is no variability
within a stratum. We would know the mean for such a stratum perfectly
if a sample of only 1 were taken from the stratum, and nothing whatever
would be gained by increasing the size of the sample from the stratum.
The reliability of the sample estimate could be increased by taking all the
rest of the sample from the strata within which the variability is large.

If the S, were the same for all the strata, the optimum allocation would
be a proportionate sample, since Eq. 8.1 then says that the optimum value
for the n;, will be to make them proportionate to the N,.

With the simple unbiased estimate (Eq. 3.2 or 3.3), disproportionate
sampling will gain when the 8, differ, and with the ratio estimate when
the S, or the §,, differ. Worth-whlle gains will result only xf they
differ widely. In fact, the relative gain achieved by using optimum
allocation (assuming all n;, << N,) is*

14
Relative gain = ———— 50 (8.6)
(I=1+Vz)
143
A 3 3.7
Iz
where
1
,zgk = X,ENh(Sh Sy (8.8)

2
2 Ugh
vy =2 (8.9)

is the rel-variance of the 3,.

Thus, the greater the coeflicient of variation of the 3, the greater will
be the relative gain due to optimum allocation. This coefficient of
variation must be as large as 4 in order to reduce the variance below that
for proportionate sampling by 10 per cent; if it is equal to 1 a gain of
50 per cent will result. In the sawmill illustration above, the coefficient
of variation of the S, was equal to 1.98, and consequently a reduction in
variance of 80 per cent over proportionate sampling was achieved.

* See Vol. II, Ch. 35, Sec. 10.
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Remark. There are many practical sampling problems from which little
is to be gained in the way or reduction of sampling variance through opti-
mum allocation of the sample to the strata. Moreover, optimum allocation
may introduce some problems in tabulation and preparing estimates, since,
instead of a simple aggregate of the results from the sample, the results
from each stratum need to be weighted separately, which may add to the
cost of tabulation.

In practice the situation usually reduces to something like this: If there
are very large variations in the within-strata standard deviations, then
worth-while gains will be achieved by a rough approximation to the opti-
mum allocation, and often when the standard deviations vary widely it is
possible to obtain such rough approximations. On the other hand, where
the variations in the within-strata standard deviations are not large, then
rough approximations to the standard deviations may lead to results no
better than proportionate sampling, and perhaps worse—and at best only
small gains are to be achieved if the approximations turn out to be good.*

The next sections discuss methods of approximating the standard
deviation when the variability of the within-strata standard deviation is
large (i.e., gains from disproportionate allocation may be large).

9. Problem created because the variances may be unknown. The third
problem mentioned above (Sec. 7) in the application of optimum sampling
theory to strata was that the determination of the optimum allocation of
the sample depends upon knowledge of the variance of the characteristic
under consideration for each stratum. The fact is that these variances
will seldom be known accurately. Sometimes they can be estimated only
very roughly, if at all, in advance of drawing a sample, and at best we
must deal with approximations. Fortunately, rough estimates will
squeeze out almost all the possible saving: exact values are not needed.

Sometimes one can derive from prior experience a fairly accurate idea
of the relative sizes of the standard deviations in the different strata. If
we do not know the values of Sl, Sg, oy S’L, but do know some numbers
proportional to them, kS’l, kﬁz, RIS kSL, we find that exactly the same
optimum allocation of the sample to strata will result. Thus, it is sufficient
to know the relative magnitudes of the standard deviations in the various
strata, and to know them only roughly.

The reader should notice in Fig. 3 that, while the optimum values for
the n, lead to substantial reductions in the variance as compared to the
use of proportionate sampling, nevertheless they do not lead to very
different results from those obtained with moderate deviations from the
optimum. The minimum on each of the curves is broad and not very

* Sukhatme (1) gives a treatment which indicates the effect of allocations
based on estimates of the strata standard deviations.

auuy LIBRARY
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sensitive to moderate departures from the optimum values for the #,.
In the lumber problem, for example, with n remaining equal to 1000,
deviations of 20 per cent in the n, increase the variance by at most
10 per cent. This means that, if one can find reasonably good approx-
imate values for the standard deviations, or for numbers proportionate
to them, from prior information or from a pretest, the approximations
should lead to results nearly as good as would result if the standard
deviations were known exactly.

An illustration of how one can go about obtaining rough approximate
values for the variances for use in determining the optimum allocation is
contained in the following discussion of the sawmill example used earlier.
In the presentation of that illustration we assumed that the variances
within the strata were known at the time the sample was being designed.
Now let us suppose that they were not, and that we were approaching
the job of designing the sample.

The information available in such a problem might be a listing of
sawmills together with information on the size of each establishment at
some prior date, such as total production, total employees, or total wages
paid during some recent earlier period, that can be used as a rough
measure of current size. With this type of information the three size
groups assumed in the earlier illustration were set up. We shall assume
that these same size groups are to be used, and now we want to explore
how, without knowing the variances, we can approximate an optimum
allocation.

There are two lines of approach that we can follow. One approach is
to use a rough rule of thumb that has been found helpful in similar
problems; and the other is to carry out preliminary samples or pretests,
or to make a careful study of past experience with specific information
that is closely related to the present problem. The rule to be given
provides a useful guide for optimum allocation when the units to be
sampled have a very large variability in size and at the same time have
some relative stability of size over the period of time under consideration,
so that the size of the unit at one period of time provides a rough prediction
of its relative size at another period. For example, the total sales of a
business establishment tend to have some stability through time. A store
that was very large last year will ordinarily be of roughly the same relative
size this year, in terms of its sales, number of employees, and related
items. Similarly, a city or county large one year will be large in near-by
years, and a small one will be small. Again, the farms or families with
large incomes in one year will tend to have large incomes the following
year, and most of those with small incomes one year will have small
incomes the following year, although the stability of farm or family
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incomes will be considerably less than that of sales of stores in most
kinds of business; and the stability of both of these will be less than that
of the size of city or county. An illustration where little stability may be
expected is an inventory item such as the amount of grain held on a farm,
which may vary quite widely from year to year as well as from month to
month within a year, or the inventory on hand of a particular type of
commodity in a manufacturing establishment or retail store. The
traditional methods of doing business mean that these latter types of
items fluctuate much more widely than the earlier ones named, and for
such inventory items one would expect relatively small correlations from
year to year as compared with those for the more stable types of items
mentioned.

10. Sampling fractions proportionate to average measure of size as
approximation to optimum. Where there is stability in the size of the
units to be sampled, a rough approximation to the optimum allocation
for estimating the characteristics that are highly correlated with the
measure of size may be provided by assuming that the S, in Eq. 8.1 are
proportionate to the average measure of size of the units in that stratum.

Suppose that Y, is the aggregate measure of size for the Ath stratum,
and ¥, = Y,/N,. If we assume that the ¥, are proportionate to the 8,
and substitute ¥, for S, in Eq. 8.1, then

. Yh
nh - _Y
Notice, with this allocation, that
n, _ H
Ly —
N, Yy

which says that the proportion of the units included in the sample from a
stratum is proportionate to the average measure of size of the establish-
ments in that stratum. With this allocation the chance of a particular
unit being included in the sample is approximately proportionate to its
measure of size.

In our sawmill illustration it may be reasonable to assume that there
is some stability in the production of lumber from one year to the next—
most large mills will continue large and most small mills will continue
small. Moreover, there is a wide variation in the size of unit as measured
by the production during the prior period. Also, since this measure of
size was known at the time of planning the sample, it would be used as
the basis for classifying establishments into size groups, and the ¥,, the
average sizes needed to apply the above rule, can be readily computed.
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For the sawmill illustration (Table 1, Sec. 6), with n = 1000, our guessed
optimum values are:

Y, 5,934
2l (1,000) 228 g
m=ng = )20 700 ~ 286
Y, 8,464
— 22— (1,000 _
ny =1 = (1,000) 3725 = 409

T 6311
s =123 = (1,000) 22— — 3
ny =1 = (1,000) 3555 = 305

With this allocation of the sample the variance of the estimated average
production is 298, as compared with 259 for the optimum allocation,
and with 1414 for proportionate sampling. A substantial amount of
the decrease in variance that could have been obtained with the
optimum has been accomplished with this approximation to it. Table 3
shows the allocation of a sample of 1000 mills by the different methods
discussed in this chapter, and the corresponding variances.

Table 3. Allocation of a sample of 1000 mills

Stratified sampling
Straéum Simple Pro portipnate O] 1ptlmtt.lm E)rol% 2;“&22}
(produc- | 7 hdom sampiing atlocation production
tion amplin
Jass) sampling
¢ Number Per cent | Number Per cent | Number Per cent
of of of of of of
mills stratum mills stratum mills stratum
1 15 2.8 244 454 286 53.2
2 131 2.8 288 6.1 409 ‘8.6
3 854 2.8 468 1.5 305 i.0
Variance of
estimated
mean (0%) 2758 1414 259 298
Vg 9.9% 7.19% 3.0% 3.3%

The same kind of approximation to the optimum would have resulted
if the characteristic to be estimated were either the total production or the
total, or average, value of any of a number of items that are highly
correlated with the measure of size used. Thus, total or average current
employment, total or average wages paid, total or average expenses, total
or average value of assets, or other similar items might have been expected
to give similar results.

The basis for the rule just given is the assumption that with the simple
unbiased estimate of a mean or total the coefficients of variation are
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about the same for all strata, in which event it follows that the S, are
roughly proportionate to the X,. We do not know the X,, of course,
since it is the average value of these that we are trying to estimate from
the sample; but if the X, are roughly proportionate to their measures of
size, Y,,;, on the average, then the Y, will be roughly proportionate to
the X,, and this assumption, along with the assumption that the S,/X,
are roughly constant, gives the rule used above. If the average measures
of size differ widely between strata (for many important populations they
will vary by more than a factor of 10), the coefficients of variation can be
assumed to be close enough to equality if they (the coefficients of variation)
vary by no more than a factor of perhaps 2 or at most 3.

The rule for approximating the optimum is applicable, also, if the
characteristic being estimated is an estimate of a ratio, such as the ratio
of current sales to sales during a prior period or the ratio of wages paid
to total sales, whether the estimate of the ratio involves the application
of Eq. 4.1 or Eq. 4.11. In fact, it is seen from Eq. 8.1 and 8.3 or 8.4
that, if the 8,/ ¥, or S,/ ¥, are constant for the strata, which may be a
reasonably valid assumption, the optimum sampling fractions are pro-
portionate to the ¥,/ 7.

Exercise 10.1. Consider the problem of estimating the change in sales of
independent retail stores in New York City, from one month to the next, with
a sample of 1000 stores. Table 4 shows stores classified by size, using as the
measure of size the number of persons employed at an earlier date (in this case

1939).
' Th)e table also shows the total number of employees in 1939 for each stratum,
the change in sales from one month to the next as a ratio (R)), and the S, ,/ 7,
and S,/ 7, where the values given are estimates that have been made separately
for each stratum. The values given in the last four columns would be available
only after completion of the sample, or on the basis of advance speculations.

Table 4. Independent retail stores in New York City

Ratio of
sales in
) Total | Number | present
Size Nu";be‘ of | em- of month to | Sy Sy Sz
group em;;go}ygees, ployees, ; stores sales in 7. 4 Ny 4
1939 N, preceding
month
Ry
(1) @ ) S (5) (6) M
1 100 and over | 55,315 95 1.102 2199 | 60.016 5,701.5
2 10-99 58,085 2,175 1.069 1642 | 1.6274 | 3,539.7
3 Under 10 148,157 | 104,517 1.053 4543 .25785126,950.0
Totals 261,557 | 106,809 1.068
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Compute and compare the variances for the following three designs:

(a) Distribute the 1000 cases proportionately to the number of stores, i.e.,
proportionately to column 3 of Table 4.

(b) Distribute the 1000 cases proportionately to the total measure of size
(column 2 of Table 4). We term this allocation proportionate to a measure of
size. This is the allocation based on the rule of thumb given above.

(c) Distribute the 1000 cases proportionately to column 7. This design we
term optimum allocation.

Remark. In all three cases, the variance of the estimate is given by
Eq. 4.12 with the substitution of the appropriate values of #,. Note that,
in the estimation of the variance for the design with allocation proportionate
to a measure of size, the measures of sizes are known or estimated from
past data, whereas the S, z, R,, and perhaps the Y} to be used in Eq. 4.12
and 4.13 are estimated from current data. The measures of size do not
enter into the computations except in determining the sample allocation.

The principal thing to avoid in connection with approximating an
optimum allocation is an exceedingly serious under-representation of
some particular stratum. If a stratum is seriously under-represented,
with perhaps only a third (or a fourth) or fewer cases from the stratum
than would be provided by the optimum, then the variance of the estimate
may be increased very considerably. It can be seen from Fig. 3 (p. 207),
for example, that if a stratum is badly under-represented the variance
may be very much larger than the minimum.

This consideration leads to a modification of the rule given at the
beginning of this section which says to make the sampling fractions
proportionate to average measures of size for the strata. It may be
noted in the retail store illustration, Table 4 (p. 217), that S,/ ¥, is con-
siderably larger for the stratum of small establishments than for the other
two strata. Similarly, in Table 2 (p. 206) (the sawmill illustration), the
stratum with the smallest size of establishments has a considerably larger
coeflicient of variation than the others. It is not uncommon to find this
situation. It arises because the smaller establishments may be going in
and out of business more frequently, and because moderate absolute
changes in size make for big relative changes and consequently a large
coefficient of variation.

A possible modification of the rule, therefore, is arbitrarily to over-
sample the smallest size stratum, perhaps by a factor of 2 as compared
with the result that would be obtained by the rule as originally given.
This oversampling can be accomplished by arbitrarily doubling the
measure of size for the smallest size stratum before applying the rule of
allocating in proportion to measures of size.

Exercise 10.2. Recompute the approximation to the optimum, using the
rule of having.the sampling fractions proportionate to average measures of size,
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but doubling the measure of size for the smallest size group, for: (a) the retail
store data in Ex. 10.1 (Table 4); (b) the tonnage of pig iron scrap data in
Ex. 8.2; (c) the sawmill data in Table 1, Sec. 6; (d) the income data in Table 5,
Sec. 17, as grouped into 3 strata in Ex. 17.3. Compare the variances with the
variances when the original measures of size are used for the allocations, and
with the optimum allocations.

Remark. Sometimes a situation arises where the measure of size for a
group is zero, or even negative, as in the income illustration of Sec. 17,
Table 5. In this case, some families had no income in the base period. A
similar situation might occur for new establishments, not in existence in a
past period. Insuch cases, where the group is treated as a separate stratum,
a straight application of measure-of-size rule would lead to no sample from
the group, so the rule must be modified. In fact, especial care must be
exercised not to undersample such a group because it often has a larger-
than-average coefficient of variation. It is sometimes sufficient to give
the group the same sampling fraction as that assigned to the next smallest
size group. It is desirable, for such a group, however, to approximate
in advance the optimum sampling fraction. Otherwise, the group may
make a substantial contribution to the total variance.

11. Fixing pumber and boundaries of strata with optimum allocation.
Were it not for comparatively intangible factors of cost and other
difficulties that arise from the use of a great many different sampling
fractions in processing the sampling returns and preparing estimates, the
rule would be to have a great many strata. Little attention would need
to be given to the determination of the boundaries beyond considerations
of maximum homogeneity already indicated. In practice, however, costs
and problems of control often make it desirable to have only a very limited
number of different sampling fractions, perhaps only 2 or 3, or perhaps a
half dozen or so. There may, of course, be additional strata, but without
further variations in the sampling fractions. It is important, with such
a limited number of sampling fractions, to give some attention to the
location of the stratum boundaries for which varying sampling fractions
are used, in order to achieve the maximum gains from optimum alloca-
tion. A theory for determining the optimum boundaries for any fixed
number of strata, where stratification is by size of establishment, is given
by Dalenius and Gurney.*

An approximate rule that is often a reasonably good guide is to deﬁne
the strata so that the aggregate measures of size of the respective strata
are about the same. For example, in the sawmill illustration (Table 1,
p. 205), in which three strata were used, the strata were roughly equal
with respect to the aggregate measure of size, the total production in
1942 (column 4). This rule is often a reasonably satisfactory one to

* Tore Dalenius and Margaret Gurney, “The Problem of Optimum Strati-
fication, II,” Skandinavisk Aktuarietidskrift, 1951, pp. 133-148. '
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follow in establishing the boundaries of the major strata that distinguish
sampling fractions. Some special modification of this rule may occasion-
ally be needed, as in the case mentioned in the preceding section where the
measure of size is zero for a class of establishments. Such a group, if it
is of any significant size, usually should be set up as a separate stratum,
whether or not it has a separate sampling fraction.

Another group that may need special consideration and modification
of the above rule is the stratum of largest establishments. Whenever any
establishment is large enough that it individually accounts for 1/nth of
the aggregate size of all establishments combined (where # is the total size
of sample), the rules given in the preceding section for approximating the
allocation will indicate that such a unit should be included in the sample
with certainty. If n is the sample size and Y the total measure of size
for the population of the characteristic we are measuring, then all units
which are larger than Y/n will be in the sample, and the top size class
should include all these units. Some units smaller than Y/n should be
included with certainty also, since an optimum allocation of the remainder
of the sample among the remaining members of the population will
generally result in additional units being large enough to be selected with
certainty. In addition, there will be other units for which the optimum
would be to have a sampling fraction of perhaps .9 or .8, and if only a
limited number of distinct sampling fractions is to be used it is desirable
to include with certainty establishments for which the optimum fraction
would be close to 1. A possible rule is that the largest size class shall
consist of all units which are greater in size than ¥/2n.

Tlustration 17.1 and Ex. 17.1-17.6 illustrate the loss in precision from
reducing the number of different sampling fractions and the effect of
different stratification groupings. ’

12. Taking account of costs in optimum allocation. The discussion of
optimum allocation of the sample thus far has been in terms of getting
the most reliable results for a given total size of sample. The approach
can be modified to take account of differencés in the costs of sampling
from different strata. If such differences are large, the size of the sample
is not a good measure of the total cost involved. Thus, suppose that in
Table 1, p. 205, we further subdivided the mills into those that are in
locations more or less readily accessible to an existing field organization
and those that are not. For example, it might be that the cost of obtaining
the returns from those in outlying rural areas, if personal interviews were
called for to get the information, would be about 4 times the cost of
getting a sample from those more conveniently located. It would turn
out, then, that the best allocation would involve taking account of these
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costs as well as of the standard deviation in the various strata. Or, again,
it might cost more to obtain a schedule from a small mill'than a large one,
or vice versa. If the differences in such costs are large (say a factor of
3 or 4 or more), then it will pay to have the stratification provide, among
other things, for segregating the groups that have important differences
in cost levels, and to give attention to these differences in costs.

If we are to take account of cost, we must ascertain or estimate what the
differences in cost are in sampling from the various strata. In this section
we shall assume that the cost per unit of including a unit in the sample
from any particular stratum is the same no matter how many units are
included in the sample from that stratum.* There may be, in addition,
a fixed overhead cost that does not depend upon how the sample is
allocated among the strata. The actual cost situation may be found to
be more complex. However, a simple cost relationship may provide a
useful guide to what happens in more complex situations.

With these assumptions as to the cost relationship, we shall let C
represent the total cost, excluding any fixed overhead costs, and let C;
represent the cost per unit of including a unit in the sample from the first
stratum, C, the corresponding cost for the second stratum, etc. Then
the part of the total cost of the sample which can be affected by the sample
size will be

C=0Cm+ Cong -+ + + 4+ Cyny,

L
= 2.Cyny,

With this cost function it turns out that the optimum allocation of the
sample to strata that gives the most information per dollar is obtained
when the number in the sample taken from the Ath stratum is given byt

NSWVE,
SNV

m = (12

where , is given by Eq. 8.2, 8.3, or 8.4, depending on the sample estimate.
If the total cost of a survey is fixed, # is given by

C L NS,
> et
zNhShVCIL \/Ch

n =

(12.2)

* Chapters 6, 7, and 9 cover the case where this assumption is not made,
together with other aspects of more complex designs.
1 For proof, see Vol. II, Ch. 5, Sec. 11.
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If, however, an estimate with a specified variance, &%, is required, n is

given by I

SNV G ENS,

"= Y

NQ‘SZ + ZNIISIZL n

Whichever requirement is used, a fixed cost or a fixed precision, the
total variance is given by

1 Z .
o? (opt.) = — SN,
nN

(12.3)

” L .
A /C é« NhSh o ZNILSIZI
h £ '\/C~h N2

(12.4)

where 7 is given by either Eq. 12.2 or 12.3.

Some modification is needed in Eq. 12.1, 12.2, 12.3, and 12.4 whenever
the opt. n, > N, for one or more of the strata, along the lines discussed
in Sec. 8, p. 209.

If the S, and the cost function are not known, they must be approx-
imated if the optimum allocation is to be attempted.

Notice that only the relative cost factors and not their absolute size
affect the proportion of the sample allocated to the strata. Also, the
optimum allocation formula specifies that the sample taken from a high-
unit-cost stratum will be smaller and from a low-unit-cost stratum will be
larger than would result by minimizing the variance for a given total size
of sample without regard to cost, as was done earlier (Eq. 8.1).

Two points should be emphasized with respect to optimum allocation
of the sampling to strata, in connection with differences of costs in the
various strata.

(a) Since the differences in cost affect the allocation of the sample only
in proportion to the square root of the relative costs per unit involved,
the allocation is not very sensitive to small differences in cost. Unless the
cost differences between strata are of a highly significant character, say a
factor of 3 or more, little will be gained by introducing a cost function
into the determination of the optimum sampling ratios.

(b) It was indicated earlier that, unless there are very substantial
differences in standard deviations between strata, little is to be gained by
optimum allocation to strata. However, if the differences in costs are
large enough, it may be worth while to establish strata for which cost
differences are substantial and to have differential allocations to them,
even though the standard deviations may not differ substantially. Thus,
suppose that the standard deviations in two strata are the same, but that
the cost of obtaining the sample in one stratum is 10 times that in the
other; then the optimum allocation will involve taking approximately 3
times as large a sampling fraction from one stratum as from the other, and
fairiy worth-while gains in information per unit of cost may result.
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Illustration 12.1. The optimum allocation, with variable costs per
stratum, was found useful in the following problem.* A population of
260,000 schedules, each a report of an accident, was at hand. Using a
sample, it was desired to estimate the average, X, of a certain character-
istic, for example, the number of days of work lost, of the accidents
reported.

As only about half the schedules were coded for punching and the
processing costs would be different for coded and uncoded schedules, the
population was divided into 2 groups. The first, containing N; = 150,000
coded schedules, was estimated to cost roughly .15 kr. per schedule. The
second group, containing N, = 110,000 noncoded schedules, was esti-
mated to cost .50 kr. per schedule. The standard deviations S, and S,
were unknown, but there was reason to expect that they were of the same
order of magnitude.

The total budget C for the survey was 5000 kr., excluding fixed costs.
Using formulas 12.1 and 12.2 for the determination of optimum #;, with
the following simplifying assumptions:

VC =4, VG=.1, 8,=8=3=S

we find
(150,000)(S) 5000
S 4 " (150,000)(S)(-4) -+ (110,000)(S)(.7)
== 13,700
ny = 5700

These values would result in sampling fractions in the 2 strata of approxi-
mately 7t and 5. However, because the optimum is broad, it was
decided to modify these slightly in order to make possible a less costly
weighting procedure. By changing these ratios to 15 and 3%, respectively,
i.e., taking 15,000 in the sample from the first stratum and 5500 from the
second, then the punch cards for the noncoded schedules in the sample
could be duplicated (an inexpensive operation) and X could be estimated
directly from the enlarged deck of punch cards.

FExercises

12.1. Compute the total cost in Illustration 2.1, using sampling fractions of
5 and 4, respectively, in the 2 strata. Compare the relative precision in
Illustration 12.1 with that for the same total cost with proportionate sampling.

12.2. In the lumber illustration in Table 1, Sec. 6, suppose that the cost of
collecting each schedule is $1 for mills over 5000 M bd. ft. annual production,
&4 for mills producing 1000-4999 M bd. ft., and 89 for mills under 1000 M bd. ft.

* Tore Dalenius, “Kostnadsproblemet vid Sampling,” Den Svenska Mark-
naden, No. 3, 1950, pp. 1-15.
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What is the total expenditure for the optimum allocation according to Table 3,
Sec. 10, of a sample of 1000 mills? Using the same total expenditure, what
allocation would give the smallest error, taking account of costs? What would
be the sample size with this allocation? Compare the variances of the 2
allocations.

13. Problem of sampling for many characteristics with optimum alloca-
tion. Suppose that, in the illustrations we have considered thus far in
connection with optimum sampling, we were sampling not for a single
characteristic but for several or perhaps a great many characteristics.
What effect will sampling for many characteristics have on our use of
optimum allocation ?

The formula for optimum allocation we have presented deals with only
a single characteristic. No simple solution to an optimum design is
available when more than one characteristic is to be estimated, but useful
guidance can be found from the results already presented. Consider the
problem of estimating the average sales of retail stores. Suppose that
in addition to estimating the sales from the sample we wish also to
estimate the following characteristics:

Total employment.

Total wages paid.

Total inventory.

Ratio of wages paid to sales, i.e., per cent of gross receipts spent for
wages.

Ratio of inventory to sales. ,

Ratio of sales for current month to sales for prior month.

Proportion of stores that handie fresh meats.

Proportion of stores that are incorporated.

Proportion of stores operated by veterans.

Proportion of stores that were in business 10 years ago.

Proportion of stores whose proprietors have a certain opinion on a
given question.

In addition, we shall consider the problem of estimating such charac-
teristics by size groups of stores, where size is based, say, on total employees
or total sales; that is to say, the problem may involve ascertaining the
above characteristics separately for (a) the large establishments (perhaps
100 or more employees); (b) the medium-sized establishments (perhaps
10-99 employees); (c) the small establishments (fewer than 10 employees).

Employment wages paid, and inventory may be expected to vary from
store to store in about the same way as sales, and it may be expected that
the §, for these items will vary roughly in direct proportion to the S, for
sales. If this is true, the optimum allocation for estimating sales will be
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very close to that for wages paid, and the same should be roughly true
for total inventory.* This is a fortunate situation if we wish to estimate
a number of such characteristics from a single sample because a good
sample design for one such characteristic is also a reasonably good sample
for the others.

Let us consider now the estimation of a characteristic like the ratio of
wages to sales, or the ratio of sales this month to sales in a prior month.
For such characteristics, we are dealing with a ratio estimate. It was seen
in Sec. 10 that an allocation of the sample that is reasonably good for
estimating total sales and total wages will probably be reasonably good
for estimating the ratio of wages to sales also and for other similar items.
We are still fortunate in that each of the items thus far examined calls
for roughly the same allocation of the sample.

Now let us examine the problem of estimating attributes, such as the
per cent of stores that handle fresh meats, the per cent incorporated, or
the per cent of establishments in which the proprietor has a certain
opinion on a particular subject. Notice that in this latter class of
estimates the characteristic of the small establishment has the same
importance in determining the over-all percentage as does the character-
istic of a very large establishment. This was not true in the earlier illus-
trations, where large establishments individually had a vastly greater
influence on the total, average, or ratio that was being estimated, and
where giving an establishment a chance of being included that was pro-
portionate to its size was found to be roughly the optimum design.

If one were to pick one of these percentages and design the sample to
estimate that particular percentage with the smallest possible variance,
there is the possibility that substantial gains could be achieved by the best
allocation for that particular item—-although even this would be doubtful.
It will be illustrated (Illustration 17.2 and subsequent exercises) that in
sampling for attributes optimum allocation will often give only trivial
gains over proportionate sampling. When sampling for several of such
percentages, the optimum allocation for one of them will ordinarily be
different from that for another, and where the whole set is involved it is
often true that proportionate sampling will be the best allocation. Other-
wise the effort to make an optimum allocation for one item may result in
a less reliable result for another item. Therefore, unless the sample is to
be picked primarily for the purpose of estimating a single one of the
attributes, it would appear desirable to use proportionate sampling.

* It was remarked above that inventories for some commeodities are likely
to be very unstable and not highly correlated with aggregate size, but the
aggregate inventory in a retail store should ordinarily have a rough correspond-
ence with aggregate employment or aggregate sales.
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In our illustration we now have a problem because the use of optimum
allocation for the items which are aggregates or ratios of aggregates is
exceedingly important if they are to be estimated well, and the optimum
allocation for them will be far from proportionate, whereas the sample for
attributes should be proportionate. How can this apparent dilemma be
resolved? There is no unique answer to this question that can be pointed
to in the theory. The following approach, however, seems reasonably
satisfactory.

Let us assume that it is important to estimate accurately aggregative
items (such as total inventories) as well as selected attribute items (e.g.,
the percentage of stores having specified characteristics). Then the
approach might be to allocate the sample first in what will be approximately
the optimum for purposes of estimating the aggregative items. Then we
can examine how good this sample will be for estimating some of the
percentages. If such items are estimated well enough from the sample as
allocated already, then no more need be done. If it appears that more
reliable results are needed for the percentage items, we should next
ascertain which stratum or strata may be expected to make the principal
contribution to the variance of these latter items. Probably it will be
desirable to increase the sample sufficiently in the strata that have the
smaller relative representation from the original optimum allocation, to
give these items the necessary reliability.

Had there been other aggregative types of items for which statistics
were needed, and with which it was clear that the original allocation
proportional to average sizes of the establishment in the respective strata
did not deal satisfactorily, it might be essential to do some special supple-
mentation for such items in the strata where the principal contributions
to the variances for these items arise, )

The suggestions above have been made on the assumption that the
statistics desired are only over-all percentages of the establishments that
have a particular characteristic. We suggested earlier that it might be
desired to have the data separately for the large, the medium-sized, and
the small establishments. One of the important aspects of the investiga-
tion may be to make such comparisons, and they may be equally or even
more important than knowing the over-all characteristics for the group
as a whole.

Let us see what happens in such an instance. Notice that in optimum
allocation for estimating sales or change in sales a much higher sampling
ratio is used in the larger size groups than in the smaller ones; and that,
at the same time, the number of stores in a size group decreases sharply
as the size of store increases. The optimum allocation increases the
number of stores from the larger size groups while it decreases the numbers
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included in the sample from the smaller ones, as compared with propor-
tionate sampling. It gives a more nearly uniform number of stores from
the various size groups, instead of a uniform proportion in each size
group. This is what is needed in order to make comparisons of certain
percentages or other characteristics between size groups. Thus, if one
were setting out to sample the opinions for large, medium, and small
stores separately in order to compare them, he would have to take a
considerably larger sampling ratio from the larger stores than from the
smaller size classes, in order to achieve reasonable accuracy for each of
the groups separately. We see that a good design for estimating average
sales or change in sales, and related characteristics may also be a reason-
ably good design for making comparisons of percentages and other
characteristics between the size groups.

In summary, we have seen that optimum allocation for one character-
istic is often very good for a number of related characteristics, but
certainly may not be for all. If comparisons are needed between the size
classes, and the aggregate for all size groups combined is also needed,
then optimum allocation is likely to give satisfactory results for both types
of purposes. More than that, exceedmgly worth-while gains in sampling
efficiency may result from using stratification together with optimum
allocation for many problems of this type—gains sufficient to much more
than offset any additional work involved in the special weighting of the
sample returns. For this type of problem optimum allocation is an
exceedingly useful tool for increasing sampling efficiency. ‘

Tustration 13.1. In allocating a sample of 1000 farms in the province
of Soedermanland, Sweden, the following allocations were proposed for
four acreage groups:*

Comparison of several methods for determining the sample allocation

Size No. | Propor- .Pro};ort. Optimum allocation, based on data for
class of tionate tf\?eax;;geo Winter|Winter! Pota-
(hectares) | farms | sampling acreage |wheat| rye Barley| Oats toes Hay
2-19 4101 658 268 260 | 293 157 | 311 541 322
20-49 1414 227 263 270 | 297 | 142 | 257 211 269
50-149 609 98 313 311 281 472 296 150 | 295
150 and
over 112 17 156 151 129 | 230 136 98 114
All farms | 6236 1000 1000 1000 | 1000 | 1000 { 1000 | 1000 | 1000

* Tore Dalenius, “Anvaendmingen av Stickprovsmetodik vid 1950 Ars
Arealinventering och Kreatursraekning,” Jordbruksekonomiska Meddelanden,
February 1951, pp. 59-75.
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Notice that for the four grain crops and hay the optimum allocations are
similar, and much like the allocation proportionate to average acreage.
We conclude that a sample good for one of these crops would provide
satisfactory estimates for the others. Potatoes, however, lead to an
allocation closer to proportionate sampling, since generally potatoes are
grown only for home use and are not closely related to the size of farm.
Also notice that the optimum allocation requires (except for potatoes)
that the sample in the size class of largest farms be larger than the number
of such farms. In practice we would include all 112 of the largest farms
in the sample and redistribute the balance of the sample (888 farms)
among the other strata.

Exercises

13.1. Using the lumber data in Table 3, Sec. 10, compare the reliability of
the estimates of average production for the three strata separately, using the
sample allocations of proportionate sampling, optimum allocation, and allo-
cation proportional to a measure of size (1942 total production in this case).

13.2. How would a sample of 1000 mills be allocated if we wish to achieve
the same accuracy in each stratum? Compare the variance of an estimated
total, using this sample, with that for the optimum allocation.

13.3. Compare the reliability of estimates of change in sales for large, medium,
and small retail stores separately, using the data for New York City in Table 4,
Sec. 10, with the optimum allocation and with the samples allocated propor-
tionately to 1939 employees.

D. OTHER CONSIDERATIONS WITH STRATIFIED
SAMPLING

14. Estimation of variance from the sample.* The precision of a sample
estimate is estimated from the sample itself by applying to each stratum
the simple procedures already described in Ch. 4, Sec. 12.

Thus,

Ty — & ( i 3
%X—Z(h_lh)’ Slgty__zthih) (14.1)

is a consistent (and unbiased) estimate of S} (see Eq. 1.2). Similarly,
§2y = siy + riiy — s, xv (14.2)
and

2 ___ 2 202
Shz = Six + FiSiy — 2NSnxy (14.3)

* For proofs, see Vol. II, Ch. 5, Sec. 12.



Sec. 15 DEFINING THE STRATA 229

are, respectively, consistent estimates of S}, and S}, as given by Eq. 4.6
and 4.13, where

r,=— and r=- (14.9)
and |

N
Z(xm' — &) Wni — Fn)
Shxy = PrShxSny = 7 1 (14.5)

is the estimated covariance.

- Consequently we substitute s3, s2,., or s7,, respectively, for S3, S3,., or
82, in the formulas given in preceding sections to obtain consistent
estimates of the desired variances.

Notice that variance estimates can be computed only if two or more
units have been included in the sample from each stratum. The question
of how large a sample is needed in the aggregate over all strata or from
the strata individually in order to obtain a reliable estimate of the variance
from a sample will be considered in Chapter 10.

15. Defining the strata. It was indicated at the beginning of the
chapter that, although defining the strata is one of the first steps to be
taken, the explanation of the principles for setting up the strata would be
deferred until after the theory was presented. A few remarks are now
in order on this point.

The determination of the strata is a matter in which effective use can
be made of prior knowledge, personal intuition, and judgment, as well as
of objective statistical information that may be available. Whether
objective information is available or not, 1he“ﬁnal determination of the
strata is a subjective matter, in which the decxslons must be judgments.
Statistical theory does not provide a general series of procedures or steps
for dntermmmg the one best set of strata. It does provide some guldmg
principles and gives a method for comparing and choosing among
alternatives.

The most effective variable on which to stratify would be the character-
isic to be measured; and, since in practice this is not feasible, stratification
on the most highly correlated data available will lead to the greatest
reduction in variance. However, the cost of accomplishing the stratifica-
tion must be taken into account, and this may lead to simpler stratification
systems.

Thus, in sampling for distribution of income among families in a city,
zones or areas of the city might be delimited such that there are sub-
stantial differences in income between the areas, and as much similarity
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in income as feasible among families within the areas. This approach is
quite often very simple and satisfactory, but there are many other and
sometimes better ways.

For example, the Census of Housing provides certain information for
each block in cities having 50,000 or more population. The information
available for each block from the Census includes the number of dwelling
units in the block, the average rental value of the dwelling units, the
proportion of dwelling units occupied by white or nonwhite families, and
the proportion having certain facilities. One might use such information
to stratify families according to the kind of block that they live in, blocks
being classified as dominantly white or nonwhite, and containing dwelling
units with average rental values within specified ranges; other similar
types of criteria based upon the block statistics might be used. As there
is a tendency for the dwellings within a block to be within the same general
economic level and to be either white or nonwhite as the case may be,
such a stratification based upon the characteristics of whole blocks might
be a fairly effective stratification of the individual dwellings in the block.
By the use of such information, some system of classification involving
both geography and block characteristics could be evolved.

On the other hand, the stratification might be carried out on the basis
of a casual external inspection of each structure and of classifying the
structure on the basis of its external appearance as presumably in one class
or another. Another source of information for stratification might result
from records of one sort or another that might be available on individual
units.

The stratification of clusters would be less effective than direct stratifica-
tion of elementary units on the same characteristic, if we are estimating a
characteristic of the elementary unit. For example, the stratification of
blocks into average rental groups as a device for selecting a sample to
estimate the income of households is not as effective as stratification of
individual households into rental groups would be if equally reliable
information were available for the individual units.

Examples of more objective approaches to the problem of stratification
are the methods for setting boundaries of strata designed by Tore
Dalenius and Margaret Gurney and referred to in Sec. 11, and the use by
Hagood and Bernert* of factor analysis in classifying counties into strata.
However, even with a mathematical formula for assigning strata bound-
aries or for assigning units to strata judgment is necessary in determining

* Margaret Jarman Hagood and Eleanor H. Bernert, “Component Indexes
as a Basis for Stratification in Sampling,” J. Amer. Stat. Assn., 40 (1945),
330-341.
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which social and economic characteristics to use as control variables.
Moreover, strictly judgment methods may yield either more or less
stratification gains, depending on the quality of judgment used. Addi-
tional theoretical work may provide further guidance on this problem.

Depth of stratification. 1t should be pointed out that there is a practical
limit, often reached very early, as to the number of strata that can be
introduced, since at least one unit must be included in the sample from
each stratum. Although some (and sometimes very small) reductions in
variance may be expected by stratifying deeper and deeper, the first steps
of stratification, if they are well chosen, are likely to be the most important,
and further stratification often will yield very small gains.

From the point of view of sampling theory, if the stratification is carried
to the point of including in the sample only one unit from a stratum, then
there is no way of preparing a consistent estimate of the sampling variance
from the sample itself. This may or may not be regarded as a serious
disadvantage in any particular problem—the implications of estimating a
variance under such circumstances (by a method of combining strata)
are discussed in Ch. 9, Sec. 15, and in Ch. 10, Sec. 13.

It is worth emphasizing that nowhere in the theory is there anything
that limits the kind of criteria of stratification that can be used. Thus,
we may stratify by size of establishment, geography, age, occupation,
amount of education, or any other characteristic we like. There is no
assumption of ““homogeneity” within strata. Whatever strata are set up
and no matter how they are arrived at, the theory for measuring the
precision is applicable, and unbiased or consistent estimates can be made
from the sample if a method of random sampling is used for selecting
two or more units from each stratum. -

16. Some additional remarks. A few other aspects of stratified sampling
are mentioned in the following remarks.

Remark 1. Cut-off sampling. It frequently happens that in estimating
a characteristic a very small proportion of the units account for nearly the
entire aggregate value of the characteristic. In such situations it may be
satisfactory to make an estimate based on the larger establishments only.
This is equivalent to making an estimate for the whole population from the
- stratum of larger elementary units, neglecting other strata made up of
smaller units. Such a method is called a ““cut-off method.” We shall see
in Ch. 11, Sec. 6, that the method can be useful and may be fairly accurate
if we are estimating a ratio such as the ratio of totals in two time periods,
and the larger firms account for perhaps 90-95 per cent or more of the total
whose ratio is being estimated. .
Remark 2. Stratification sometimes ineffective for subgroups. The
effect of stratification may deteriorate for detailed statistics. A rather
common situation is the one in which estimates ate desired for some
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subpopulation. In such a situation, the stratification that was introduced
initially in the selection of the sample may have much or little effect. Sup-
pose, for example, that the population has initially been stratified by income
at some earlier date. This stratification may have a marked effect in
reducing the variance of estimated rent for the population as a whole.
However, if one now wishes to estimate average rent for a small subgroup
of the population, say those in a particular occupational group, the reduction
in variance by virtue of the original stratification may be extremely small,
since the control on income for all classes combined has insured practically
no control on the rental distribution of persons in the specified occupation.
In general, one should not expect much of a gain from stratification when he
estimates the characteristics of a relatively small subpopulation that was
not controlled directly in the stratification.

Remark 3. Stratification after sampling. In some cases it may be
difficult or impossible to set up strata, but we may still be able to achieve
some of the gains of stratified sampling by means of the device of “strati-
fication after sampling.” For example, we may have a file which is in no
particular order, but for which we know the totals of certain groups or
subclasses. In such a case we may sclect a simple random sample from
the whole population, classify the sample into the groups whose totals are
known, and then weight the sample estimate for each group by the known
totals. For this estimating procedure to be efficient it is necessary that the
weights be known. The estimate of an average from the sample is given
by Eq. 3.4, and the variance of the estimate is approximately*

L

1 fw  1—=f28
0% = ——I—'—fS;‘.; + Tﬁ—f:]i;Q’—L (16.1)
where 71 = n/L is the average number of units in the sample per stratum
used for weighting, P, = N, /N is the proportion of the population included
in the sample for the Ath stratum, Q, == 1 — P;, and the other terms are as
defined in Sec. 3. 1t is seen that, if 7 is large, say 25-50 or more, one might
achieve nearly all the gains of initial stratification, but if the strata are made
too small so that i is small, one might lose considerably by the introduction
of stratification after sampling. The terms in Eq. 16.1 can be estimated
from the sample, so that the precision of alternative estimates can be
compared.

Remark 4. Weighting by random substitution or elimination. In Illus-
tration 12,1 we mentioned the device of duplicating cards (or schedules)
as a method for avoiding a special weighting operation. If the cards to
be duplicated are all the sample cards for a given stratum, as in that illus-
tration, the variance is not changed by the procedure. If, however, we
wish to weight by a factor such as 132, we might accomplish this by selecting
at random 32 per cent of the cards (or schedules) and duplicating them, and
then applying the weight 100 to all the cards. Or, if we wish to weight by a
factor 2.32, we might triplicate 32 per cent of the cards and duplicate the
remaining 68 per cent. The effective weighting factor is then 3(.32) + 2(.68)
= 2.32. More generally, we may accomplish weighting by including the

* For proof of these results, see Vol. II, Ch. 5, Sec. 13.
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proportion a of the cards (w - 1) times, and the remaining proportion
(1 — a) of the cards w times. This gtves the effect of weighting by
w(l —a) + (w -+ Da=w+ a. Thus, in the illustration above, w =2
and a == .32.

When « differs from zero for a stratum, i.e., when some cards in a stratum
are included more times than others, there will be an increase in variance
over the variance that we should have if the correct weight were applied to
all cards. When the total number of elements in the stratum is large, the
increase in variance is a(l — a)/(a -+ w)?® times the contribution to the
variance from the stratum if the correct weight were used.* If w = 1 and
a i3 less than 10 per cent, the relative increase in the variance is nearly equal
toa. The maximum relative increase in the variance forany a is 12} per cent.

The related process of eliminating schedules may also be used; if, for
example, we wish to weight by a factor 9, we may reject at random one-tenth
of the schedules and then weight by 10. This obviously increases the
variance, as we are throwing away the information on the schedules which
are discarded. If b is the proportion of schedules discarded, the relative
increase in the variance is b/(1 -~ b).

Remark 5. Bias introduced when weighting by approximations to the
appropriate strata weights, with either stratified sampling or stratification
after sampling. An estimate of the form

SVl ¥ (16.2)
is sometimes used as an estimate of X/Y where the #, = x,/y, are consistent
estimates from a sample of the X,/Y; and the ¥,/Y are known from other
sources.

Equation 16.2 is a consistent estimate of X/Y if the ¥,/ ¥ are equal to
the Y,/Y, but otherwise is usually inconsistent. The bias of estimate 16.2
is approximately equal to?

s (L Yi\ X
[Z( % Y) Y, (16.3)
The mean square error of this estimate is approximately equal to
}/}I? a Q ?f i\ X 2 ’
> =of = - .
2 5u0n {z(y Y) Y, (16.4)
where
Xi

U;):n = (Vgn + V;]n - 2P1L Vlﬂth/a)

Y
The second term in Eq. 16.4 is approximately the square of the bias.

The loss in efficiency from the errors in the weights is primarily the square
of the bias, although the variance, too, will reflect to some extent the errors
in the weights. Of course, the bias, for any specified set of weights, is not
reduced by increasing the size of sample. Consequently, with large enough
samples, the use of such weights may result in a larger mean square error
than the variance that would result from simple random sampling without
such weighting.t

* For proof, see Vol. IT, Ch. 5, Sec. 14.
t Cochran (2), p. 102.
1 Some additional consideration is given to this problem by F. F. Stephan (3).
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Remark 6. Comparison of estimates for two strata. A variation in the
problem of optimum allocation arises when the primary purpose of the
survey design is to compare estimates for two classes of the population (i.e.,
for two strata). Thus, suppose that the primary purpose of a survey is to
estimate the difference between two means, for example, to compare the
per cent of one class of the population, say those reading a certain magazine,
with that of another.

If the total cost of the sample is given by

C = Ciny + Cony

where C; is the cost per unit of selecting the sample and making the estimate
from the first group, and n, is the size of sample from that group, and
C, and n, are similarly defined for the second group, then the most reliable
comparison between the two groups will result when the sample from the
two classes is drawn so that

.S

VG,
S, &S,
——= -+ —=
VG VG,

Sy
VG
B, S
VG VG

where S and S, are the standard deviations in the respective strata.

n =

(16.5)

n

o

17. Some additional illustrations and exercises. Some illustrations and
exercises will be presented now to provide a further guide as to what to
expect from stratification under various circumstances and to illustrate
the conditions when gains may be expected to be large or small in dealing
with various types of problems.

Illustration 17.1.  Suppose that the problem is to estimate the average
family income in a city during a particular year, when we have information
on income in some earlier year to use as a basis for stratification. Basic
data for eleven income groups, taken from Mendershausen,* are shown in
Table 5. Actually column 5 of the table presents the average income
that is to be estimated, but we shail assume that it is unknown, and
consider the effect of some variations in sample design on the estimate of

_average income. We shall assume also, for illustration purposes, that the
standard deviations in column 6 are known.

* H. Mendershausen, Changes in Income Distribution during the Great
Depression, National Bureau of Economic Research, New York, 1946.
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Table 5. Income in Atlanta in 1933 by 1929 income groups

Total 1933 income (dollars)

1929 No. of 1929 :
income |Group| families | income | Average | Standard _
(dollars) . N (1000’s of | income | deviation [V}, = S,/X,

dollars) X S
(M (2 3) @ 5) 6 (7
0 1 340 0 486 1,202 2.473

1- 249 2 659 109 236 205 .869
250-- 499 3 1,650 642 ©335 282 .842
500~ 749 4 1,684 1,029 448 309 .690
750-- 999 5 1,443 1,263 | 606 374 617

1,000-1,499 6 1,975 2,419 869 549 .632
1,500-1,999 7 1,635 2,869 1,248 589 472
2,000-2,999 8 2,251 5,515 1,753 850 485
3,000-4,499 9 1,200 4,264 2,372 1,084 457
4,500-7,499 | 10 563 3,063 3,558 1,937 544
7,500+ 11 241 3,072 6,766 4,008 .592
All families 13,641 24,245 1,223* 1,428 1.168

* This mean is not the same as that given in Table 7, Ch. 4. The mean in
the table above is the true mean of the ungrouped data. The mean in Chapter 4
is estimated from grouped data.

Exercises

17.1. Compute the optimum allocation for a sample of 1000 families, assuming
uniform costs and using the 11 income groups shown in Table 5 as separate
strata, and show that the variance for this allocation is 413, as compared with
a variance of 761 for a proportionate stratified sample with the same strata.
Compute and compare, also, the approximations to the optimum allocation
obtained by allocating the sample proportionately to the measure of size (1929
income), but using the same sampling fraction for the zero income class as for
the second group. Note that rigid adherence to an allogation proportionate
to a measure of size would have led to a zero allocation for the zero group and
therefore an infinite variance.

17.2. Suppose that 3 groups are established from Table 5, consisting, respec-
tively, of families having no income in 1929, income of $1-2999 in 1929, and
income of $3000 and over in 1929. Compute the optimum allocation (using
the variance formulas in the note below) for a sample of 1000 and compare the
variance with that from Ex. 17.1. Show that the variance with optimum allo-
cation to these strata, using simple random sampling within the groups, is 911;
and show that the variance with optimum allocation to these strata, using
proportionate stratified sampling within the groups, is 518.

Note. In computing the optimum allocation for the grouped strata one has
a choice of using proportionate stratified sampling within the groups or simple
random sampling within each of the 3 groups. For proportionate stratified



236 STRATIFIED SIMPLE RANDOM SAMPLING Ch. 5

sampling within a group the variance in the population for a group, Sj, is
obtained from the data in Table 6 by computing

5 — XN,S;

Ng
where the sum is over the strata included in the group, and N, is the number of
families in the group. For simple random sampling within the group the
variance for a group is obtained from the data in Table 6 by computing

73 ZMLX,IL ?
. ENSE n ZN”(Xhﬁ
N!/ N.’l

and the variance of &, is approximately Sy/n,.

17.3. Establish 3 groups of strata that have roughly equivalent aggregate
measures of size by consolidating low, medium, and high income size groups in
such a way as to equalize roughly the aggregate 1929 income for the 3 groups.
Ascertain the optimum allocation of the sample to the groups where propor-
tionate stratified sampling is used within the groups, and show that the variance
for this estimate with a sample of 1000 families is 472. Show that the vuriance,
when the allocation to groups is proportionate to the measure of size (with
proportionate stratified sampling within groups), is 501. The variance when
the allocation is proportionate to the measure of size, but with the measure of
size arbitrarily doubled for the low income group, has already been computed
in Ex. 10.2 (d) and is equal to 479.

17.4. Transfer the group with no income in 1929 from the low income stratum
to the middle income stratum, and compute and compare the variance with the
allocation proportionate to the aggregate size with this grouping of strata (and
using proportionate stratified sampling within strata) to the results for Ex. 17.3.
The variance in this case turns out to be 458. Explain why this is smaller than
the variance with the optimum allocation in Ex. 17.3.

17.5. Another grouping will be obtained if we require that the 3 strata have
variances so that the N,S, are approximately equal for the 3 groups. The
grouping which comes closest to meeting this condition is to combine groups
1-6, 7-9, and 10-11. Here the variance for the optimum allocation with
proportionate sampling within combined groups is 478. The variance with
allocation proportionate to 1929 size and proportionate sampling within strata
is 528.

17.6. For the groups of strata given in Ex. 17.5, assume that the cost of
obtaining a questionnaire from the low and medium income groups is $2, and
from the high income groups is $4, and that a total budget of $3000 is available
in addition to overhead costs. Ascertain the optimum allocation of the sample
and the total sample size and show that the variance of the estimate from the
sample will be 367.

g2 =

4 (see Eq. 5.8)

Illustration 17.2. Review the ijllustration given in Ch. 1, Sec. 19, in
which, for the population specified by Table 20 of that section, a sample
estimate is to be made of th- proportion of persons 25 years of age or
more who have completed 2 or more years of high school.
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Exercises

17.7. Compute the standard errors of the estimated proportion of the popu-
lation 25 years of age or more completing 2 or more years of high school:
(a) if a simple random sample of 1000 is drawn; (b} if a proportionate stratified
sample of 1000 is drawn, where the strata are the age-sex-color groups shown
in the table; (c) if a stratified sample of 1000 is drawn with optimum allocation
to the strata. Note that neither proportionate stratification nor optimum
allocation to strata results in very substantial gains.

Note that the gain from optimum allocation over proportionate stratified
sampling is very small and in practice might not pay for the additional work
involved in introducing the optimum allocation procedure. In fact, because
we would not know, in advance, the standard deviations of the respective strata
needed in order to introduce the optimum allocation illustrated above, the use
of optimum allocation with estimated standard deviations might result in a
larger variance than proportionate stratified sampling.

17.8. Compute the variance of the estimated per cent completing 2 or more
years of high school for a sample of 1000 drawn from the assumed population
given in the table below, where: (@) a simple random sample is drawn; (b) a
proportionate stratificd sample is drawn; (c) a sample is drawn with optimum
allocation of the sample to strata.

NUMBER OF PER CENT COMPLETING
AGE GROUP PERSONS OVER 25 2 OR MORE YEARS OF
YEARS OF AGE HIGH SCHOOL
25-34 _ 19,110 50.0
35-49 36,333 25.0
50 and over 19,333 1.0
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