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Preface

This is a book on data analysis with a specific focus on the practice of
predictive modeling. The term predictive modeling may stir associations such
as machine learning, pattern recognition, and data mining. Indeed, these as-
sociations are appropriate and the methods implied by these terms are an
integral piece of the predictive modeling process. But predictive modeling
encompasses much more than the tools and techniques for uncovering pat-
terns within data. The practice of predictive modeling defines the process of
developing a model in a way that we can understand and quantify the model’s
prediction accuracy on future, yet-to-be-seen data. The entire process is the
focus of this book.

We intend this work to be a practitioner’s guide to the predictive mod-
eling process and a place where one can come to learn about the approach
and to gain intuition about the many commonly used and modern, powerful
models. A host of statistical and mathematical techniques are discussed, but
our motivation in almost every case is to describe the techniques in a way
that helps develop intuition for its strengths and weaknesses instead of its
mathematical genesis and underpinnings. For the most part we avoid complex
equations, although there are a few necessary exceptions. For more theoret-
ical treatments of predictive modeling, we suggest Hastie et al. (2008) and
Bishop (2006). For this text, the reader should have some knowledge of basic
statistics, including variance, correlation, simple linear regression, and basic
hypothesis testing (e.g. p-values and test statistics).

The predictive modeling process is inherently hands-on. But during our re-
search for this work we found that many articles and texts prevent the reader
from reproducing the results either because the data were not freely avail-
able or because the software was inaccessible or only available for purchase.
Buckheit and Donoho (1995) provide a relevant critique of the traditional
scholarly veil:

An article about computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship. The actual
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scholarship is the complete software development environment and the com-
plete set of instructions which generated the figures.

Therefore, it was our goal to be as hands-on as possible, enabling the readers
to reproduce the results within reasonable precision as well as being able to
naturally extend the predictive modeling approach to their own data. Fur-
thermore, we use the R language (Thaka and Gentleman 1996; R Development
Core Team 2010), a freely accessible software for statistical and mathematical
calculations, for all stages of the predictive modeling process. Almost all of
the example data sets are available in R packages. The AppliedPredictiveMod-
eling R package contains many of the data sets used here as well as R scripts
to reproduce the analyses in each chapter.

We selected R as the computational engine of this text for several reasons.
First R is freely available (although commercial versions exist) for multiple op-
erating systems. Second, it is released under the General Public License (Free
Software Foundation June 2007), which outlines how the program can be re-
distributed. Under this structure anyone is free to examine and modify the
source code. Because of this open-source nature, dozens of predictive models
have already been implemented through freely available packages. Moreover
R contains extensive, powerful capabilities for the overall predictive modeling
process. Readers not familiar with R can find numerous tutorials online. We
also provide an introduction and start-up guide for R in the Appendix.

There are a few topics that we didn’t have time and/or space to add, most
notably: generalized additive models, ensembles of different models, network
models, time series models, and a few others.

There is also a web site for the book:

http://appliedpredictivemodeling.com/

that will contain relevant information.

This work would not have been possible without the help and men-
toring from many individuals, including: Walter H. Carter, Jim Garrett,
Chris Gennings, Paul Harms, Chris Keefer, William Klinger, Daijin Ko, Rich
Moore, David Neuhouser, David Potter, David Pyne, William Rayens, Arnold
Stromberg, and Thomas Vidmar. We would also like to thank Ross Quinlan
for his help with Cubist and C5.0 and vetting our descriptions of the two. At
Springer, we would like to thank Marc Strauss and Hannah Bracken as well as
the reviewers: Vini Bonato, Thomas Miller, Ross Quinlan, Eric Siegel, Stan
Young, and an anonymous reviewer. Lastly, we would like to thank our fam-
ilies for their support: Miranda Kuhn, Stefan Kuhn, Bobby Kuhn, Robert
Kuhn, Karen Kuhn, and Mary Ann Kuhn; Warren and Kay Johnson; and
Valerie and Truman Johnson.

Groton, CT, USA Max Kuhn
Saline, MI, USA Kjell Johnson
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Chapter 1
Introduction

Every day people are faced with questions such as “What route should I take
to work today?” “Should I switch to a different cell phone carrier?” “How
should I invest my money?” or “Will I get cancer?” These questions indicate
our desire to know future events, and we earnestly want to make the best
decisions towards that future.

We usually make decisions based on information. In some cases we have
tangible, objective data, such as the morning traffic or weather report. Other
times we use intuition and experience like “I should avoid the bridge this
morning because it usually gets bogged down when it snows” or “I should
have a PSA test because my father got prostate cancer.” In either case, we
are predicting future events given the information and experience we currently
have, and we are making decisions based on those predictions.

As information has become more readily available via the internet and
media, our desire to use this information to help us make decisions has in-
tensified. And while the human brain can consciously and subconsciously
assemble a vast amount of data, it cannot process the even greater amount of
easily obtainable, relevant information for the problem at hand. To aid in our
decision-making processes, we now turn to tools like Google to filter billions of
web pages to find the most appropriate information for our queries, WebMD
to diagnose our illnesses based on our symptoms, and E¥*TRADE to screen
thousands of stocks and identify the best investments for our portfolios.

These sites, as well as many others, use tools that take our current informa-
tion, sift through data looking for patterns that are relevant to our problem,
and return answers. The process of developing these kinds of tools has evolved
throughout a number of fields such as chemistry, computer science, physics,
and statistics and has been called “machine learning,” “artificial intelligence,”
“pattern recognition,” “data mining,” “predictive analytics,” and “knowledge
discovery.” While each field approaches the problem using different perspec-
tives and tool sets, the ultimate objective is the same: to make an accurate
prediction. For this book, we will pool these terms into the commonly used
phrase predictive modeling.

M. Kuhn and K. Johnson, Applied Predictive Modeling, 1
DOI 10.1007/978-1-4614-6849-3_1,
© Springer Science+Business Media New York 2013



2 1 Introduction

Geisser (1993) defines predictive modeling as “the process by which a model
is created or chosen to try to best predict the probability of an outcome.” We
tweak this definition slightly:

Predictive modeling: the process of developing a mathematical tool or model
that generates an accurate prediction

Steve Levy of Wired magazine recently wrote of the increasing presence of
predictive models (Levy 2010), “Examples [of artificial intelligence] can be
found everywhere: The Google global machine uses Al to interpret cryptic
human queries. Credit card companies use it to track fraud. Netflix uses it to
recommend movies to subscribers. And the financial system uses it to handle
billions of trades (with only the occasional meltdown).” Examples of the types
of questions one would like to predict are:

How many copies will this book sell?

Will this customer move their business to a different company?
How much will my house sell for in the current market?

Does a patient have a specific disease?

Based on past choices, which movies will interest this viewer?
Should I sell this stock?

Which people should we match in our online dating service?

Is an e-mail spam?

Will this patient respond to this therapy?

Insurance companies, as another example, must predict the risks of po-
tential auto, health, and life policy holders. This information is then used to
determine if an individual will receive a policy, and if so, at what premium.
Like insurance companies, governments also seek to predict risks, but for the
purpose of protecting their citizens. Recent examples of governmental predic-
tive models include biometric models for identifying terror suspects, models of
fraud detection (Westphal 2008), and models of unrest and turmoil (Shacht-
man 2011). Even a trip to the grocery store or gas station [everyday places
where our purchase information is collected and analyzed in an attempt to
understand who we are and what we want (Duhigg 2012)] brings us into the
predictive modeling world, and we’re often not even aware that we’ve entered
it. Predictive models now permeate our existence.

While predictive models guide us towards more satisfying products, better
medical treatments, and more profitable investments, they regularly generate
inaccurate predictions and provide the wrong answers. For example, most of
us have not received an important e-mail due to a predictive model (a.k.a.
e-mail filter) that incorrectly identified the message as spam. Similarly, pre-
dictive models (a.k.a. medical diagnostic models) misdiagnose diseases, and
predictive models (a.k.a. financial algorithms) erroneously buy and sell stocks
predicting profits when, in reality, finding losses. This final example of pre-
dictive models gone wrong affected many investors in 2010. Those who follow
the stock market are likely familiar with the “flash crash” on May 6, 2010,
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in which the market rapidly lost more than 600 points, then immediately
regained those points. After months of investigation, the Commodity Futures
Trading Commission and the Securities and Exchange Commission identified
an erroneous algorithmic model as the cause of the crash (U.S. Commodity
Futures Trading Commission and U.S. Securities & Exchange Commission
2010).

Stemming in part from the flash crash and other failures of predictive
models, Rodriguez (2011) writes, “Predictive modeling, the process by which a
model is created or chosen to try to best predict the probability of an outcome
has lost credibility as a forecasting tool.” He hypothesizes that predictive
models regularly fail because they do not account for complex variables such
as human behavior. Indeed, our abilities to predict or make decisions are
constrained by our present and past knowledge and are affected by factors
that we have not considered. These realities are limits of any model, yet these
realities should not prevent us from seeking to improve our process and build
better models.

There are a number of common reasons why predictive models fail, and we
address each of these in subsequent chapters. The common culprits include (1)
inadequate pre-processing of the data, (2) inadequate model validation, (3)
unjustified extrapolation (e.g., application of the model to data that reside in
a space which the model has never seen), or, most importantly, (4) over-fitting
the model to the existing data. Furthermore, predictive modelers often only
explore relatively few models when searching for predictive relationships. This
is usually due to either modelers’ preference for, knowledge of, or expertise
in, only a few models or the lack of available software that would enable them
to explore a wide range of techniques.

This book endeavors to help predictive modelers produce reliable, trust-
worthy models by providing a step-by-step guide to the model building pro-
cess and to provide intuitive knowledge of a wide range of common models.
The objectives of this book are to provide:

e Foundational principles for building predictive models

e Intuitive explanations of many commonly used predictive modeling meth-
ods for both classification and regression problems

e Principles and steps for validating a predictive model
Computer code to perform the necessary foundational work to build and
validate predictive models

To illustrate these principles and methods, we will use a diverse set of
real-world examples ranging from finance to pharmaceutical which we de-
scribe in detail in Sect. 1.4. But before describing the data, we first explore a
reality that confronts predictive modeling techniques: the trade-off between
prediction and interpretation.
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1.1 Prediction Versus Interpretation

For the examples listed above, historical data likely exist that can be used
to create a mathematical tool to predict future, unseen cases. Furthermore,
the foremost objective of these examples is not to understand why something
will (or will not) occur. Instead, we are primarily interested in accurately pro-
jecting the chances that something will (or will not) happen. Notice that the
focus of this type of modeling is to optimize prediction accuracy. For example,
we don’t really care why an e-mail filter thinks a message is spam. Rather, we
only care that the filter accurately trashes spam and allows messages we care
about to pass through to our mailbox. As another example, if I am selling a
house, my primary interest is not how a web site (such as zillow.com) esti-
mated its value. Instead, I am keenly interested that zillow.com has correctly
priced the home. An undervaluation will yield lower bids and a lower sale
price; alternatively, an overvaluation may drive away potential buyers.

The tension between prediction and interpretation is also present in the
medical field. For example, consider the process that a cancer patient and
physician encounter when contemplating changing treatment therapies. There
are many factors for the physician and patient to consider such as dosing
schedule, potential side effects, and survival rates. However, if enough patients
have taken the alternative therapy, then data could be collected on these
patients related to their disease, treatment history, and demographics. Also,
laboratory tests could be collected related to patients’ genetic background or
other biological data (e.g., protein measurements). Given their outcome, a
predictive model could be created to predict the response to the alternative
therapy based on these data. The critical question for the doctor and patient
is a prediction of how the patient will react to a change in therapy. Above
all, this prediction needs to be accurate. If a model is created to make this
prediction, it should not be constrained by the requirement of interpretability.
A strong argument could be made that this would be unethical. As long as
the model can be appropriately validated, it should not matter whether it is
a black box or a simple, interpretable model.

While the primary interest of predictive modeling is to generate accurate
predictions, a secondary interest may be to interpret the model and under-
stand why it works. The unfortunate reality is that as we push towards higher
accuracy, models become more complex and their interpretability becomes
more difficult. This is almost always the trade-off we make when prediction
accuracy is the primary goal.
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1.2 Key Ingredients of Predictive Models

The colloquial examples thus far have illustrated that data, in fact very large
data sets, can now be easily generated in an attempt to answer almost any
type of research question. Furthermore, free or relatively inexpensive model
building software such as JMP, WEKA, and many packages in R, as well as
powerful personal computers, make it relatively easy for anyone with some
computing knowledge to begin to develop predictive models. But as Rodriguez
(2011) accurately points out, the credibility of model building has weakened
especially as the window to data access and analysis tools has widened.

As we will see throughout this text, if a predictive signal exists in a set
of data, many models will find some degree of that signal regardless of the
technique or care placed in developing the model. Naive model application
can therefore be effective to an extent; as the saying goes, “even a blind
squirrel finds a nut.” But the best, most predictive models are fundamentally
influenced by a modeler with expert knowledge and context of the prob-
lem. This expert knowledge should first be applied in obtaining relevant data
for the desired research objectives. While vast databases of information can
be used as substrate for constructing predictions, irrelevant information can
drive down predictive performance of many models. Subject-specific knowl-
edge can help separate potentially meaningful information from irrelevant
information, eliminating detrimental noise and strengthening the underlying
signal. Undesirable, confounding signal may also exist in the data and may
not be able to be identified without expert knowledge. As an extreme example
of misleading signal and the need for an expert understanding of the problem,
consider the U.S. Food and Drug Administration’s Adverse Event Reporting
System database which provides information on millions of reported occur-
rences of drugs and their reported side effects. Obvious biases abound in this
collection of data; for example, a search on a drug for treating nausea may re-
flect that a large proportion of the patients using the treatment had leukemia.
An uninformed analysis may identify leukemia as a potential side effect of the
drug. The more likely explanation is that the subjects were taking the nausea
medication to mitigate the side effects of the cancer therapy. This may be
intuitively obvious, but clearly the availability of large quantities of records
is not a protection against an uninformed use of the data.

Ayres (2007) extensively studies the interplay between expert opinion and
empirical, data-driven models makes two important observations bolstering
the need for problem-specific knowledge. Firstly,

“In the end, [predictive modeling] is not a substitute for intuition, but rather a
complement”

Simply put, neither data-driven models nor the expert relying solely on in-
tuition will do better than a combination of the two. Secondly,

“Traditional experts make better decisions when they are provided with the
results of statistical prediction. Those who cling to the authority of traditional
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experts tend to embrace the idea of combining the two forms of ‘knowledge’ by
giving the experts ‘statistical support’ ... Humans usually make better predic-
tions when they are provided with the results of statistical prediction.”

In some cases, such as spam detection, it may be acceptable to let computers
do most of the thinking. When the consequences are more serious, such as
predicting patient response, a combined approach often leads to better results.

To summarize, the foundation of an effective predictive model is laid with
intuition and deep knowledge of the problem context, which are entirely vi-
tal for driving decisions about model development. That process begins with
relevant data, another key ingredient. The third ingredient is a versatile com-
putational toolbox which includes techniques for data pre-processing and vi-
sualization as well as a suite of modeling tools for handling a range of possible
scenarios such as those that are described in Table 1.1.

1.3 Terminology

As previously noted, “predictive modeling” is one of the many names that
refers to the process of uncovering relationships within data for predicting
some desired outcome. Since many scientific domains have contributed to
this field, there are synonyms for different entities:

e The terms sample, data point, observation, or instance refer to a single,
independent unit of data, such as a customer, patient, or compound.
The term sample can also refer to a subset of data points, such as the
training set sample. The text will clarify the appropriate context when
this term is used.

e The training set consists of the data used to develop models while the test
or validation sets are used solely for evaluating the performance of a final
set of candidate models.

e The predictors, independent variables, attributes, or descriptors are the
data used as input for the prediction equation.

e Qutcome, dependent variable, target, class, or response refer to the outcome
event or quantity that is being predicted.

e (Continuous data have natural, numeric scales. Blood pressure, the cost of
an item, or the number of bathrooms are all continuous. In the last case,
the counts cannot be a fractional number, but is still treated as continuous
data.

e (lategorical data, otherwise known as nominal, attribute, or discrete data,
take on specific values that have no scale. Credit status (“good” or “bad”)
or color (“red,” “blue,” etc.) are examples of these data.

o Model building, model training, and parameter estimation all refer to the
process of using data to determine values of model equations.



1.4 Example Data Sets and Typical Data Scenarios 7

1.4 Example Data Sets and Typical Data Scenarios

In later chapters, case studies are used to illustrate techniques. Before pro-
ceeding, it may be instructive to briefly explore a few examples of predictive
modeling problems and the types of data used to solve them. The focus here is
on the diversity of the problems as well as the characteristics of the collected
data. Several example data sets originate from machine learning competi-
tions, which provide real-world problems with an (often monetary) incentive
for providing the best solution. Such competitions have a long history in
predictive modeling and have greatly stimulated the field.

Music Genre

This data set was published as a contest data set on the TunedlT web
site (http://tunedit.org/challenge/music-retrieval/genres). In this competi-
tion, the objective was to develop a predictive model for classifying music
into six categories. In total, there were 12,495 music samples for which 191
characteristics were determined. The response categories were not balanced
(Fig. 1.1), with the smallest segment coming from the heavy metal category
(7%) and the largest coming from the classical category (28 %). All predic-
tors were continuous; many were highly correlated and the predictors spanned
different scales of measurement. This data collection was created using 60 per-
formers from which 15-20 pieces of music were selected for each performer.
Then 20 segments of each piece were parameterized in order to create the
final data set. Hence, the samples are inherently not independent of each
other.

3000 o

2000 L

Frequency

1000 L

Blues Classical Jazz Metal Pop Rock
Genre

Fig. 1.1: The frequency distribution of genres in the music data


http://tunedit.org/challenge/music-retrieval/genres

8 1 Introduction

Grant Applications

This data set was also published for a competition on the Kaggle web site
(http://www.kaggle.com). For this competition, the objective was to develop
a predictive model for the probability of success of a grant application. The
historical database consisted of 8,707 University of Melbourne grant appli-
cations from 2009 and 2010 with 249 predictors. Grant status (either “un-
successful” or “successful”) was the response and was fairly balanced (46 %
successful). The web site notes that current Australian grant success rates
are less than 25 %. Hence the historical database rates are not representative
of Australian rates. Predictors include measurements and categories such as
Sponsor ID, Grant Category, Grant Value Range, Research Field, and De-
partment and were continuous, count, and categorical. Another notable char-
acteristic of this data set is that many predictor values were missing (83 %).
Furthermore, the samples were not independent since the same grant writers
occurred multiple times throughout the data. These data are used throughout
the text to demonstrate different classification modeling techniques.

We will use these data extensively throughout Chaps. 12 through 15, and a
more detailed explanation and summary of the data can be found in Sect. 12.1.

Hepatic Injury

A data set from the pharmaceutical industry was used to develop a model
for predicting compounds’ probability of causing hepatic injury (i.e., liver
damage). This data set consisted of 281 unique compounds; 376 predictors
were measured or computed for each. The response was categorical (either
“does not cause injury,” “mild injury,” or “severe injury”) and was highly un-
balanced (Fig.1.2). This variety of response often occurs in pharmaceutical
data because companies steer away from creating molecules that have unde-
sirable safety characteristics. Therefore, well-behaved molecules often greatly
outnumber undesirable molecules. The predictors consisted of measurements
from 184 biological screens and 192 chemical feature predictors. The biolog-
ical predictors represent activity for each screen and take values between 0
and 10 with a mode of 4. The chemical feature predictors represent counts of
important substructures as well as measures of physical properties that are
thought to be associated with hepatic injury. A more extensive description
of these types of predictors is given in Chap. 5.

Permeability

This pharmaceutical data set was used to develop a model for predicting com-
pounds’ permeability. In short, permeability is the measure of a molecule’s
ability to cross a membrane. The body, for example, has notable membranes
between the body and brain, known as the blood—brain barrier, and between
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the gut and body in the intestines. These membranes help the body guard
critical regions from receiving undesirable or detrimental substances. For an
orally taken drug to be effective in the brain, it first must pass through the
intestinal wall and then must pass through the blood—brain barrier in order
to be present for the desired neurological target. Therefore, a compound’s
ability to permeate relevant biological membranes is critically important to
understand early in the drug discovery process. Compounds that appear to
be effective for a particular disease in research screening experiments but
appear to be poorly permeable may need to be altered in order to improve
permeability and thus the compound’s ability to reach the desired target.
Identifying permeability problems can help guide chemists towards better
molecules.
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Permeability assays such as PAMPA and Caco-2 have been developed to
help measure compounds’ permeability (Kansy et al. 1998). These screens are
effective at quantifying a compound’s permeability, but the assay is expen-
sive labor intensive. Given a sufficient number of compounds that have been
screened, we could develop a predictive model for permeability in an attempt
to potentially reduce the need for the assay. In this project there were 165
unique compounds; 1,107 molecular fingerprints were determined for each.
A molecular fingerprint is a binary sequence of numbers that represents the
presence or absence of a specific molecular substructure. The response is
highly skewed (Fig.1.3), the predictors are sparse (15.5% are present), and
many predictors are strongly associated.

Chemical Manufacturing Process

This data set contains information about a chemical manufacturing process,
in which the goal is to understand the relationship between the process and
the resulting final product yield. Raw material in this process is put through
a sequence of 27 steps to make the final pharmaceutical product. The start-
ing material is generated from a biological unit and has a range of quality
and characteristics. The objective in this project was to develop a model to
predict percent yield of the manufacturing process. The data set consisted of
177 samples of biological material for which 57 characteristics were measured.
Of the 57 characteristics, there were 12 measurements of the biological start-
ing material and 45 measurements of the manufacturing process. The process
variables included measurements such as temperature, drying time, washing
time, and concentrations of by-products at various steps. Some of the pro-
cess measurements can be controlled, while others are observed. Predictors
are continuous, count, categorical; some are correlated, and some contain
missing values. Samples are not independent because sets of samples come
from the same batch of biological starting material.

Fraudulent Financial Statements

Fanning and Cogger (1998) describe a data set used to predict management
fraud for publicly traded companies. Using public data sources, such as U.S.
Securities and Exchange Commission documents, the authors were able to
identify 102 fraudulent financial statements. Given that a small percentage
of statements are fraudulent, they chose to sample an equivalent number!
of non-fraudulent companies, which were sampled to control for important
factors (e.g., company size and industry type). Of these data, 150 data points
were used to train models and the remaining 54 were used to evaluate them.

1 This type of sampling is very similar to case-control studies in the medical field.
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The authors started the analysis with an unidentified number of predictors
derived from key areas, such as executive turnover rates, litigation, and debt
structure. In the end, they used 20 predictors in their models. Examples
include the ratio of accounts receivable to sales, the ratio of inventory to
sales, and changes in the gross margins between years. Many of the predictor
variables of ratios share common denominators (e.g., the ratio of accounts re-
ceivable to sales and the ratio of inventory to sales). Although the actual data
points were not published, there is likely to be strong correlations between
predictors.

From a modeling perspective, this example is interesting for several reasons.
First, because of the large class imbalance, the frequencies of the two classes
in the data sets were very different from the population that will be predicted
with severe imbalances. This is a common strategy to minimize the conse-
quences of such an imbalance and is sometimes referred to as “down-sampling”
the data. Second, the number of possible predictors was large compared to
the number of samples. In this situation, the selection of predictors for the
models is delicate as there are only a small number of samples for selecting
predictors, building models, and evaluating their performance. Later chapters
discuss the problem of over-fitting, where trends in the training data are not
found in other samples of the population. With a large number of predictors
and a small number of data points, there is a risk that a relevant predictor
found in this data set will not be reproducible.

Comparisons Between Data Sets

These examples illustrate characteristics that are common to most data sets.
First, the response may be continuous or categorical, and for categorical re-
sponses there may be more than two categories. For continuous response
data, the distribution of the response may be symmetric (e.g., chemical man-
ufacturing) or skewed (e.g., permeability); for categorical response data, the
distribution may be balanced (e.g., grant applications) or unbalanced (e.g.,
music genre, hepatic injury). As we will show in Chap. 4, understanding the
distribution of the response is critically necessary for one of the first steps in
the predictive modeling process: splitting the data into training and testing
sets. Understanding the response distribution will guide the modeler towards
better ways of partitioning the data; not understanding response character-
istics can lead to computational difficulties for certain kinds of models and
to models that have less-than-optimal predictive ability.

The data sets summarized in Table 1.1 also highlight characteristics of
predictors that are universal to most data sets. Specifically, the values of pre-
dictors may be continuous, count, and/or categorical; they may have miss-
ing values and could be on different scales of measurement. Additionally,
predictors within a data set may have high correlation or association, thus
indicating that the predictor set contains numerically redundant information.
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Furthermore, predictors may be sparse, meaning that a majority of samples
contain the same information while only a few contain unique information.
Like the response, predictors can follow a symmetric or skewed distribution
(for continuous predictors) or be balanced or unbalanced (for categorical pre-
dictors). Lastly, predictors within a data set may or may not have an under-
lying relationship with the response.

Different kinds of models handle these types of predictor characteristics
in different ways. For example, partial least squares naturally manages cor-
related predictors but is numerically more stable if the predictors are on
similar scales. Recursive partitioning, on the other hand, is unaffected by
predictors of different scales but has a less stable partitioning structure when
predictors are correlated. As another example of predictor characteristics’
impact on models, multiple linear regression cannot handle missing predictor
information, but recursive partitioning can be used when predictors contain
moderate amounts of missing information. In either of these example scenar-
ios, failure to appropriately adjust the predictors prior to modeling (known
as pre-processing) will produce models that have less-than-optimal predic-
tive performance. Assessing predictor characteristics and addressing them
through pre-processing is covered in Chap. 3.

Finally, each of these data sets illustrates another fundamental character-
istic that must be considered when building a predictive model: the relation-
ship between the number of samples (n) and number of predictors (P). In the
case of the music genre data set, the number of samples (n = 12,496) is much
greater than the number of predictors (P = 191). All predictive models handle
this scenario, but computational time will vary among models and will likely
increase as the number of samples and predictors increase. Alternatively, the
permeability data set has significantly fewer samples (n = 165) than predic-
tors (P = 1,107). When this occurs, predictive models such as multiple linear
regression or linear discriminant analysis cannot be directly used. Yet, some
models [e.g., recursive partitioning and K-nearest neighbors (KNNs)] can be
used directly under this condition. As we discuss each method in later chap-
ters, we will identify the method’s ability to handle data sets where n < P.
For those that cannot operate under this condition, we will suggest alterna-
tive modeling methods or pre-processing steps that will effectively reduce the
dimension of the predictor space.

In summary, we must have a detailed understanding of the predictors and
the response for any data set prior to attempting to build a model. Lack of
understanding can lead to computational difficulties and less than optimal
model performance. Furthermore, most data sets will require some degree of
pre-processing in order to expand the universe of possible predictive models
and to optimize each model’s predictive performance.
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1.5 Overview

This book consists of four parts that walk the reader through the process
of building and critically evaluating predictive models. Because most readers
will likely desire to implement these concepts, we provide a computing section
at the end of each chapter that contains code for implementing the topics cov-
ered in that chapter. Throughout the text, we focus on the R programming
language (R Development Core Team 2010). For those readers who are not
familiar with R, we provide an introduction to this software in Appendix B.
The goal of Appendix B is to supply an overview and quick reference for
the primary R programming constructs. However, this text may not contain
enough information for those who are new to R. In this case, many other
tutorials exist in print and on the web; for additional instruction, we recom-
mend Verzani (2002); Venables et al. (2003); Maindonald and Braun (2007);
Muenchen (2009), and Spector (2008).

In Part I, we explain approaches for laying strong foundations onto
which models can be built. The cornerstone concepts of data pre-processing
(Chap.3) and resampling (Chap.4) should be well understood before at-
tempting to model any data. Chapter 3 explains common methods of pre-
processing such as data transformations, the addition and/or removal of vari-
ables, and binning continuous variables. This chapter also details why most
models require data to be preprocessed prior to modeling. Chapter 4 will
introduce the idea of data spending and methods for spending data in order
to appropriately tune a model and assess its performance. Furthermore, this
chapter illustrates that the practitioner should always try a diverse set of
models for any given problem.

Upon laying the foundation for predictive modeling, we survey traditional
and modern regression techniques in Part II. This portion of the book be-
gins with ways to measure performance when modeling a continuous outcome
(Chap. 5). Chapter 6 provides a working understanding and intuition for re-
gression models that seek the underlying structure of the data using linear
combinations of the predictors. These models include linear regression, partial
least squares, and L; regularization. Subsequently (Chap.7), we present an
explanation of regression models that are not based on simple linear combina-
tions of the predictors, which include neural networks, multivariate adaptive
regression splines (MARS), support vector machines (SVMs), and KNNs.
Tree-based models also do not rely on linear combinations of the predictors.
Because of their popularity and because of their use in ensemble methods,
we have devoted a separate chapter to these techniques (Chap.8). In this
chapter we give an overview of regression trees, bagged trees, random forests,
boosting, and Cubist. We end Part II with a case study (Chap.10) which
compares and contrasts all of the above techniques on a specific problem:
modeling the compressive strength of concrete to obtain formulations with
better properties.
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Predictive classification models naturally follow an explanation of regression
models and are covered in Part III. Measures of performance for classification
problems are different than regression; we define these metrics in Chap. 11.
Following the same structure as in Part II, we then supply a working un-
derstanding and intuition for classification models (Chap. 12) that are based
on linear combinations of the predictors such as linear, quadratic, regular-
ized, and partial least squares discriminant analysis. We additionally review
penalized methods for classification. In Chap. 13, we explore classification
methods that are highly nonlinear functions of the predictors. These include
flexible discriminant analysis, neural networks, SVMs, KNNs, Naive Bayes,
and nearest shrunken centroids. Parallel to Part II, tree-based methods for
classification are addressed in Chap. 14, and a classification case study and
method comparison are presented in Chap. 17.

We conclude this work in Part IV by addressing other important consid-
erations when building a model or evaluating its performance. In an attempt
to find only the most relevant predictors in a given problem, many different
types of feature selection methods have been proposed. While these methods
have the potential to uncover practically meaningful information, they often
help the user to understand the data’s noise rather than its structure. Chap-
ter 18 illustrates various methods for quantifying predictor importance while
Chap. 19 provides an introduction and guide to properly utilizing feature se-
lection techniques. Also, an array of elements can affect model performance
and mislead the practitioner into believing that either the model has poor
predictive performance (when it truly has good performance) or the model
has good predictive performance (when the opposite is true). Some com-
mon factors affecting model performance are excess noise in the predictor
set and/or response and predictive extrapolation. These topics are covered in
Chap. 20.

1.6 Notation

One goal of this text is to provide intuitive descriptions of many techniques.
Whenever possible, words are used in place of equations. Many models can
be described in algorithmic terms, but others require more mathematical
explanations. Generally, the characters x and y in their various fonts and
case types represent the predictors and the response, respectively. Here are
the specific forms they take in this text:

n = the number of data points
P = the number of predictors
y; = the ith observed value of the outcome, i =1...n

~

y; = the predicted outcome of the ith data point, i =1...n
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= the average or sample mean of the n observed values of the outcome

Yy
y = a vector of all n outcome values

x;; = the value of the jth predictor for the ith data point, i =1...n and

j=1...P

Z; = the average or sample mean of n data points for the jth predictor,

j=1...P

x; = a collection (i.e., vector) of the P predictors for the ith data point,

i=1...n

X = a matrix of P predictors for all data points; this matrix has n rows

and P columns

X' = the transpose of X; this matrix has P rows and n columns

Other notational guidelines used in equations throughout the text are:

C = the number of classes in a categorical outcome
Cy = the value of the /th class level

p = the probability of an event
pe = the probability of the /th event

.] = the probability of event

= the summation operator over the index i

> = the theoretical covariance matrix

-] = the expected value of -

-) = a function of .; g(-) and h(-) also represent functions throughout

the text

B = an unknown or theoretical model coefficient

b = an estimated model coefficient based on a sample of data points

The reader should note that we use other symbols throughout the text
that may be unique to a specific topic or model. In these cases we define that
notation locally.
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Chapter 2

A Short Tour of the Predictive Modeling
Process

Before diving in to the formal components of model building, we present a
simple example that illustrates the broad concepts of model building. Specif-
ically, the following example demonstrates the concepts of data “spending,”
building candidate models, and selecting the optimal model.

2.1 Case Study: Predicting Fuel Economy

The fueleconomy.gov web site, run by the U.S. Department of Energy’s Of-
fice of Energy Efficiency and Renewable Energy and the U.S. Environmental
Protection Agency, lists different estimates of fuel economy for passenger cars
and trucks. For each vehicle, various characteristics are recorded such as the
engine displacement or number of cylinders. Along with these values, lab-
oratory measurements are made for the city and highway miles per gallon
(MPG) of the car.

In practice, we would build a model on as many vehicle characteristics as
possible in order to find the most predictive model. However, this introductory
illustration will focus high-level concepts of model building by using a single
predictor, engine displacement (the volume inside the engine cylinders), and
a single response, unadjusted highway MPG for 2010-2011 model year cars.

The first step in any model building process is to understand the data,
which can most easily be done through a graph. Since we have just one
predictor and one response, these data can be visualized with a scatter plot
(Fig.2.1). This figure shows the relationship between engine displacement
and fuel economy. The “2010 model year” panel contains all the 2010 data
while the other panel shows the data only for new 2011 vehicles. Clearly,
as engine displacement increases, the fuel efficiency drops regardless of year.
The relationship is somewhat linear but does exhibit some curvature towards
the extreme ends of the displacement axis.

M. Kuhn and K. Johnson, Applied Predictive Modeling, 19
DOI 10.1007/978-1-4614-6849-3_2,
© Springer Science+Business Media New York 2013
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Fig. 2.1: The relationship between engine displacement and fuel efficiency of
all 2010 model year vehicles and new 2011 car lines

If we had more than one predictor, we would need to further understand
characteristics of the predictors and the relationships among the predictors.
These characteristics may suggest important and necessary pre-processing
steps that must be taken prior to building a model (Chap. 3).

After first understanding the data, the next step is to build and evaluate
a model on the data. A standard approach is to take a random sample of
the data for model building and use the rest to understand model perfor-
mance. However, suppose we want to predict the MPG for a new car line.
In this situation, models can be created using the 2010 data (containing
1,107 vehicles) and tested on the 245 new 2011 cars. The common terminol-
ogy would be that the 2010 data are used as the model “training set” and the
2011 values are the “test” or “validation” set.

Now that we have defined the data used for model building and evaluation,
we should decide how to measure performance of the model. For regression
problems where we try to predict a numeric value, the residuals are important
sources of information. Residuals are computed as the observed value minus
the predicted value (i.e., y; — ;). When predicting numeric values, the root
mean squared error (RMSE) is commonly used to evaluate models. Described
in more detail in Chap.7, RMSE is interpreted as how far, on average, the
residuals are from zero.

At this point, the modeler will try various techniques to mathematically
define the relationship between the predictor and outcome. To do this, the
training set is used to estimate the various values needed by the model equa-
tions. The test set will be used only when a few strong candidate models
have been finalized (repeatedly using the test set in the model build process
negates its utility as a final arbitrator of the models).

Suppose a linear regression model was created where the predicted MPG
is a basic slope and intercept model. Using the training data, we estimate the
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Fig. 2.2: Quality of fit diagnostics for the linear regression model. The training
set data and its associated predictions are used to understand how well the
model works

intercept to be 50.6 and the slope to be —4.5 MPG/liters using the method of
least squares (Sect. 6.2). The model fit is shown in Fig. 2.2 for the training set
data.! The left-hand panel shows the training set data with a linear model fit
defined by the estimated slope and intercept. The right-hand panel plots the
observed and predicted MPG. These plots demonstrate that this model misses
some of the patterns in the data, such as under-predicting fuel efficiency when
the displacement is less than 2L or above 6 L.

When working with the training set, one must be careful not to simply
evaluate model performance using the same data used to build the model.
If we simply re-predict the training set data, there is the potential to pro-
duce overly optimistic estimates of how well the model works, especially if
the model is highly adaptable. An alternative approach for quantifying how
well the model operates is to use resampling, where different subversions of
the training data set are used to fit the model. Resampling techniques are
discussed in Chap.4. For these data, we used a form of resampling called
10-fold cross-validation to estimate the model RMSE to be 4.6 MPG.

Looking at Fig.2.2, it is conceivable that the problem might be solved
by introducing some nonlinearity in the model. There are many ways to
do this. The most basic approach is to supplement the previous linear re-
gression model with additional complexity. Adding a squared term for en-
gine displacement would mean estimating an additional slope parameter
associated with the square of the predictor. In doing this, the model equation
changes to

1 One of our graduate professors once said “the only way to be comfortable with your
data is to never look at it.”
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Fig. 2.3: Quality of fit diagnostics for the quadratic regression model (using
the training set)

efficiency = 63.2 — 11.9 x displacement + 0.94 x displacement?

This is referred to as a quadratic model since it includes a squared term; the
model fit is shown in Fig. 2.3. Unquestionably, the addition of the quadratic
term improves the model fit. The RMSE is now estimated to be 4.2 MPG
using cross-validation. One issue with quadratic models is that they can per-
form poorly on the extremes of the predictor. In Fig. 2.3, there may be a
hint of this for the vehicles with very high displacement values. The model
appears to be bending upwards unrealistically. Predicting new vehicles with
large displacement values may produce significantly inaccurate results.

Chapters 6-8 discuss many other techniques for creating sophisticated
relationships between the predictors and outcome. One such approach is
the multivariate adaptive regression spline (MARS) model (Friedman 1991).
When used with a single predictor, MARS can fit separate linear regression
lines for different ranges of engine displacement. The slopes and intercepts
are estimated for this model, as well as the number and size of the separate
regions for the linear models. Unlike the linear regression models, this tech-
nique has a tuning parameter which cannot be directly estimated from the
data. There is no analytical equation that can be used to determine how many
segments should be used to model the data. While the MARS model has in-
ternal algorithms for making this determination, the user can try different
values and use resampling to determine the appropriate value. Once the value
is found, a final MARS model would be fit using all the training set data and
used for prediction.
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Fig. 2.5: Quality of fit diagnostics for the MARS model (using the training
set). The MARS model creates several linear regression fits with change points
at 2.3, 3.5, and 4.3L

For a single predictor, MARS can allow for up to five model terms (similar
to the previous slopes and intercepts). Using cross-validation, we evaluated
four candidate values for this tuning parameter to create the resampling
profile which is shown in Fig.2.4. The lowest RMSE value is associated with
four terms, although the scale of change in the RMSE values indicates that
there is some insensitivity to this tuning parameter. The RMSE associated
with the optimal model was 4.2 MPG. After fitting the final MARS model
with four terms, the training set fit is shown in Fig. 2.5 where several linear
segments were predicted.
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Fig. 2.6: The test set data and with model fits for two models

Based on these three models, the quadratic regression and MARS models
were evaluated on the test set. Figure 2.6 shows these results. Both models fit
very similarly. The test set RMSE values for the quadratic model was 4.72
MPG and the MARS model was 4.69 MPG. Based on this, either model
would be appropriate for the prediction of new car lines.

2.2 Themes

There are several aspects of the model building process that are worth dis-
cussing further, especially for those who are new to predictive modeling.

Data Splitting

Although discussed in the next chapter, how we allocate data to certain
tasks (e.g., model building, evaluating performance) is an important aspect
of modeling. For this example, the primary interest is to predict the fuel
economy of new vehicles, which is not the same population as the data used
to build the model. This means that, to some degree, we are testing how
well the model extrapolates to a different population. If we were interested in
predicting from the same population of vehicles (i.e., interpolation), taking
a simple random sample of the data would be more appropriate. How the
training and test sets are determined should reflect how the model will be
applied.
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How much data should be allocated to the training and test sets? It gener-
ally depends on the situation. If the pool of data is small, the data splitting
decisions can be critical. A small test would have limited utility as a judge
of performance. In this case, a sole reliance on resampling techniques (i.e.,
no test set) might be more effective. Large data sets reduce the criticality of
these decisions.

Predictor Data

This example has revolved around one of many predictors: the engine dis-
placement. The original data contain many other factors, such as the number
of cylinders, the type of transmission, and the manufacturer. An earnest at-
tempt to predict the fuel economy would examine as many predictors as
possible to improve performance. Using more predictors, it is likely that the
RMSE for the new model cars can be driven down further. Some investi-
gation into the data can also help. For example, none of the models were
effective at predicting fuel economy when the engine displacement was small.
Inclusion of predictors that target these types of vehicles would help improve
performance.

An aspect of modeling that was not discussed here was feature selection:
the process of determining the minimum set of relevant predictors needed by
the model. This common task is discussed in Chap. 19.

Estimating Performance

Before using the test set, two techniques were employed to determine the
effectiveness of the model. First, quantitative assessments of statistics (i.e.,
the RMSE) using resampling help the user understand how each technique
would perform on new data. The other tool was to create simple visualizations
of a model, such as plotting the observed and predicted values, to discover
areas of the data where the model does particularly good or bad. This type
of qualitative information is critical for improving models and is lost when
the model is gauged only on summary statistics.

Evaluating Several Models

For these data, three different models were evaluated. It is our experience
that some modeling practitioners have a favorite model that is relied on
indiscriminately. The “No Free Lunch” Theorem (Wolpert 1996) argues that,



26 2 A Short Tour of the Predictive Modeling Process

without having substantive information about the modeling problem, there
is no single model that will always do better than any other model. Because
of this, a strong case can be made to try a wide variety of techniques, then
determine which model to focus on. In our example, a simple plot of the
data shows that there is a nonlinear relationship between the outcome and
the predictor. Given this knowledge, we might exclude linear models from
consideration, but there is still a wide variety of techniques to evaluate. One
might say that “model X is always the best performing model” but, for these
data, a simple quadratic model is extremely competitive.

Model Selection

At some point in the process, a specific model must be chosen. This example
demonstrated two types of model selection. First, we chose some models over
others: the linear regression model did not fit well and was dropped. In this
case, we chose between models. There was also a second type of model selection
shown. For MARS, the tuning parameter was chosen using cross-validation.
This was also model selection where we decided on the type of MARS model
to use. In this case, we did the selection within different MARS models.

In either case, we relied on cross-validation and the test set to produce
quantitative assessments of the models to help us make the choice. Because
we focused on a single predictor, which will not often be the case, we also
made visualizations of the model fit to help inform us. At the end of the pro-
cess, the MARS and quadratic models appear to give equivalent performance.
However, knowing that the quadratic model might not do well for vehicles
with very large displacements, our intuition might tell us to favor the MARS
model. One goal of this book is to help the user gain intuition regarding the
strengths and weakness of different models to make informed decisions.

2.3 Summary

At face value, model building appears straightforward: pick a modeling tech-
nique, plug in data, and generate a prediction. While this approach will gener-
ate a predictive model, it will most likely not generate a reliable, trustworthy
model for predicting new samples. To get this type of model, we must first
understand the data and the objective of the modeling. Upon understand-
ing the data and objectives, we then pre-process and split the data. Only
after these steps do we finally proceed to building, evaluating, and selecting
models.



Chapter 3
Data Pre-processing

Data pre-processing techniques generally refer to the addition, deletion, or
transformation of training set data. Although this text is primarily concerned
with modeling techniques, data preparation can make or break a model’s
predictive ability. Different models have different sensitivities to the type of
predictors in the model; how the predictors enter the model is also important.
Transformations of the data to reduce the impact of data skewness or outliers
can lead to significant improvements in performance. Feature extraction, dis-
cussed in Sect. 3.3, is one empirical technique for creating surrogate variables
that are combinations of multiple predictors. Additionally, simpler strategies
such as removing predictors based on their lack of information content can
also be effective.

The need for data pre-processing is determined by the type of model being
used. Some procedures, such as tree-based models, are notably insensitive to
the characteristics of the predictor data. Others, like linear regression, are
not. In this chapter, a wide array of possible methodologies are discussed. For
modeling techniques described in subsequent chapters, we will also discuss
which, if any, pre-processing techniques can be useful.

This chapter outlines approaches to unsupervised data processing: the out-
come variable is not considered by the pre-processing techniques. In other
chapters, supervised methods, where the outcome is utilized to pre-process
the data, are also discussed. For example, partial least squares (PLS) models
are essentially supervised versions of principal component analysis (PCA).
We also describe strategies for removing predictors without considering how
those variables might be related to the outcome. Chapter 19 discusses tech-
niques for finding subsets of predictors that optimize the ability of the model
to predict the response.

How the predictors are encoded, called feature engineering, can have a
significant impact on model performance. For example, using combinations
of predictors can sometimes be more effective than using the individual values:
the ratio of two predictors may be more effective than using two independent
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predictors. Often the most effective encoding of the data is informed by the
modeler’s understanding of the problem and thus is not derived from any
mathematical technique.

There are usually several different methods for encoding predictor data.
For example, in Chaps. 12 through 15, an illustrative data set is described
for predicting the success of academic grants. One piece of information in
the data is the submission date of the grant. This date can be represented in
myriad ways:

The number of days since a reference date

Isolating the month, year, and day of the week as separate predictors
The numeric day of the year (ignoring the calendar year)

Whether the date was within the school year (as opposed to holiday or
summer sessions)

The “correct” feature engineering depends on several factors. First, some en-
codings may be optimal for some models and poor for others. For example,
tree-based models will partition the data into two or more bins. Theoretically,
if the month were important, the tree would split the numeric day of the year
accordingly. Also, in some models, multiple encodings of the same data may
cause problems. As will be illustrated several times in later chapters, some
models contain built-in feature selection, meaning that the model will only
include predictors that help maximize accuracy. In these cases, the model can
pick and choose which representation of the data is best.

The relationship between the predictor and the outcome is a second factor.
For example, if there were a seasonal component to these data, and it appears
that there is, then the numeric day of the year would be best. Also, if some
months showed higher success rates than others, then the encoding based on
the month is preferable.

As with many questions of statistics, the answer to “which feature engi-
neering methods are the best?” is that it depends. Specifically, it depends on
the model being used and the true relationship with the outcome. A broad
discussion regarding how the data were encoded for our analyses is given in
Sect. 12.1.

Prior to delving into specific techniques, an illustrative data set that is
used throughout the chapter is introduced.

3.1 Case Study: Cell Segmentation in High-Content
Screening

Medical researchers often seek to understand the effects of medicines or dis-
eases on the size, shape, development status, and number of cells in a living
organism or plant. To do this, experts can examine the target serum or tis-
sue under a microscope and manually assess the desired cell characteristics.
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This work is tedious and requires expert knowledge of the cell type and
characteristics.

Another way to measure the cell characteristics from these kinds of samples
is by using high-content screening (Giuliano et al. 1997). Briefly, a sample
is first dyed with a substance that will bind to the desired characteristic of
the cells. For example, if a researcher wants to quantify the size or shape of
cell nuclei, then a stain can be applied to the sample that attaches to the
cells’” DNA. The cells can be fixed in a substance that preserves the nature
state of the cell. The sample is then interrogated by an instrument (such as a
confocal microscope) where the dye deflects light and the detectors quantify
the degree of scattering for that specific wavelength. If multiple characteristics
of the cells are desired, then multiple dyes and multiple light frequencies can
be used simultaneously. The light scattering measurements are then processed
through imaging software to quantify the desired cell characteristics.

Using an automated, high-throughput approach to assess samples’ cell
characteristics can sometimes produce misleading results. Hill et al. (2007)
describe a research project that used high-content screening to measure sev-
eral aspects of cells. They observed that the imaging software used to deter-
mine the location and shape of the cell had difficulty segmenting cells (i.e.,
defining cells’ boundaries). Consider Fig. 3.1, which depicts several example
cells from this study. In these images, the bright green boundaries identify
the cell nucleus, while the blue boundaries define the cell perimeter. Clearly
some cells are well segmented, while others are not. Cells that are poorly
segmented appear to be damaged, when in reality they are not. If cell size,
shape, and/or quantity are the endpoints of interest in a study, then it is
important that the instrument and imaging software can correctly segment
cells.

For this research, Hill et al. (2007) assembled a data set consisting of 2,019
cells. Of these cells, 1,300 were judged to be poorly segmented (PS) and 719
were well segmented (WS); 1,009 cells were reserved for the training set.!

For a particular type of cell, the researchers used different stains that
would be visible to different optical channels. Channel one was associated
with the cell body and can be used to determine the cell perimeter, area,
and other qualities. Channel two interrogated the cell nucleus by staining the
nuclear DNA (shown in blue shading in Fig.3.1). Channels three and four
were stained to detect actin and tubulin, respectively. These are two types
of filaments that transverse the cells in scaffolds and are part of the cell’s
cytoskeleton. For all cells, 116 features (e.g., cell area, spot fiber count) were
measured and were used to predict the segmentation quality of cells.?

! The individual data points can be found on the journal web site or in the R Applied-
PredictiveModeling package. See the Computing section at the end of this chapter.

2 The original authors included several “status” features that are binary representa-
tions of other features in the data set. We excluded these from the analysis in this
chapter.
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Fig. 3.1: An image showing cell segmentation from Hill et al. (2007). The red
bozes [panels (d) and (e)] show poorly segmented cells while the cells in the
blue boxes are examples of proper segmentation

This chapter will use the training set samples identified by the original
authors to demonstrate data pre-processing techniques.

3.2 Data Transformations for Individual Predictors

Transformations of predictor variables may be needed for several reasons.
Some modeling techniques may have strict requirements, such as the predic-
tors having a common scale. In other cases, creating a good model may be
difficult due to specific characteristics of the data (e.g., outliers). Here we
discuss centering, scaling, and skewness transformations.

Centering and Scaling

The most straightforward and common data transformation is to center scale
the predictor variables. To center a predictor variable, the average predictor
value is subtracted from all the values. As a result of centering, the predictor
has a zero mean. Similarly, to scale the data, each value of the predictor
variable is divided by its standard deviation. Scaling the data coerce the
values to have a common standard deviation of one. These manipulations are
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generally used to improve the numerical stability of some calculations. Some
models, such as PLS (Sects. 6.3 and 12.4), benefit from the predictors being
on a common scale. The only real downside to these transformations is a loss
of interpretability of the individual values since the data are no longer in the
original units.

Transformations to Resolve Skewness

Another common reason for transformations is to remove distributional skew-
ness. An un-skewed distribution is one that is roughly symmetric. This means
that the probability of falling on either side of the distribution’s mean is
roughly equal. A right-skewed distribution has a large number of points on
the left side of the distribution (smaller values) than on the right side (larger
values). For example, the cell segmentation data contain a predictor that
measures the standard deviation of the intensity of the pixels in the actin
filaments. In the natural units, the data exhibit a strong right skewness;
there is a greater concentration of data points at relatively small values and
small number of large values. Figure 3.2 shows a histogram of the data in the
natural units (left panel).

A general rule of thumb to consider is that skewed data whose ratio of the
highest value to the lowest value is greater than 20 have significant skewness.
Also, the skewness statistic can be used as a diagnostic. If the predictor
distribution is roughly symmetric, the skewness values will be close to zero. As
the distribution becomes more right skewed, the skewness statistic becomes
larger. Similarly, as the distribution becomes more left skewed, the value
becomes negative. The formula for the sample skewness statistic is

>(zi —3)°

skewness = m
L =)\2
where v = 72(% 7) ,
(n—1)

where x is the predictor variable, n is the number of values, and T is the
sample mean of the predictor. For the actin filament data shown in Fig. 3.2,
the skewness statistic was calculated to be 2.39 while the ratio to the largest
and smallest value was 870.

Replacing the data with the log, square root, or inverse may help to remove
the skew. For the data in Fig. 3.2, the right panel shows the distribution of the
data once a log transformation has been applied. After the transformation,
the distribution is not entirely symmetric but these data are better behaved
than when they were in the natural units.
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Fig. 3.2: Left: a histogram of the standard deviation of the intensity of the
pixels in actin filaments. This predictor has a strong right skewness with a
concentration of points with low values. For this variable, the ratio of the
smallest to largest value is 870 and a skewness value of 2.39. Right: the
same data after a log transformation. The skewness value for the logged data
was —0.4

Alternatively, statistical methods can be used to empirically identify an
appropriate transformation. Box and Cox (1964) propose a family of trans-
formations® that are indexed by a parameter, denoted as A:

zr— :
o 1 Tf A#0
log(z) ifA=0

In addition to the log transformation, this family can identify square trans-
formation (A = 2), square root (A = 0.5), inverse (A = —1), and others
in-between. Using the training data, A can be estimated. Box and Cox (1964)
show how to use maximum likelihood estimation to determine the transfor-
mation parameter. This procedure would be applied independently to each
predictor data that contain values greater than zero.

For the segmentation data, 69 predictors were not transformed due to
zero or negative values and 3 predictors had A\ estimates within 1 £ 0.02,
so no transformation was applied. The remaining 44 predictors had val-
ues estimated between —2 and 2. For example, the predictor data shown
in Fig. 3.2 have an estimated transformation value of 0.1, indicating the log

3 Some readers familiar with Box and Cox (1964) will know that this transformation
was developed for outcome data while Box and Tidwell (1962) describe similar meth-
ods for transforming a set of predictors in a linear model. Our experience is that the
Box—Cox transformation is more straightforward, less prone to numerical issues, and
just as effective for transforming individual predictor variables.
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Fig. 3.3: Left: a histogram of the cell perimeter predictor. Right: the same
data after a Box—Cox transformation with A estimated to be —1.1

transformation is reasonable. Another predictor, the estimated cell perimeter,
had a A estimate of —1.1. For these data, the original and transformed values
are shown in Fig. 3.3.

3.3 Data Transformations for Multiple Predictors

These transformations act on groups of predictors, typically the entire set
under consideration. Of primary importance are methods to resolve outliers
and reduce the dimension of the data.

Transformations to Resolve Outliers

We will generally define outliers as samples that are exceptionally far from
the mainstream of the data. Under certain assumptions, there are formal sta-
tistical definitions of an outlier. Even with a thorough understanding of the
data, outliers can be hard to define. However, we can often identify an un-
usual value by looking at a figure. When one or more samples are suspected
to be outliers, the first step is to make sure that the values are scientifically
valid (e.g., positive blood pressure) and that no data recording errors have
occurred. Great care should be taken not to hastily remove or change val-
ues, especially if the sample size is small. With small sample sizes, apparent
outliers might be a result of a skewed distribution where there are not yet
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enough data to see the skewness. Also, the outlying data may be an indica-
tion of a special part of the population under study that is just starting to be
sampled. Depending on how the data were collected, a “cluster” of valid points
that reside outside the mainstream of the data might belong to a different
population than the other samples.?

There are several predictive models that are resistant to outliers. Tree-
based classification models create splits of the training data and the predic-
tion equation is a set of logical statements such as “if predictor A is greater
than X, predict the class to be Y,” so the outlier does not usually have
an exceptional influence on the model. Also, support vector machines for
classification generally disregard a portion of the training set samples when
creating a prediction equation. The excluded samples may be far away from
the decision boundary and outside of the data mainstream.

If a model is considered to be sensitive to outliers, one data transformation
that can minimize the problem is the spatial sign (Serneels et al. 2006). This
procedure projects the predictor values onto a multidimensional sphere. This
has the effect of making all the samples the same distance from the center of
the sphere. Mathematically, each sample is divided by its squared norm:

Tij
iJ 2 .
D et x?;
J= )

Since the denominator is intended to measure the squared distance to the
center of the predictor’s distribution, it is important to center and scale the
predictor data prior to using this transformation. Note that, unlike centering
or scaling, this manipulation of the predictors transforms them as a group.
Removing predictor variables after applying the spatial sign transformation
may be problematic.

Figure 3.4 shows another data set with two correlated predictors. In these
data, at least eight samples cluster away from the majority of other data.
These data points are likely a valid, but poorly sampled subpopulation of the
data. The modeler would investigate why these points are different; perhaps
they represent a group of interest, such as highly profitable customers. The
spatial sign transformation is shown on the right-hand panel where all the
data points are projected to be a common distance away from the origin.
The outliers still reside in the Northwest section of the distribution but are
contracted inwards. This mitigates the effect of the samples on model training.

4 Section 20.5 discusses model extrapolation—where the model predicts samples out-
side of the mainstream of the training data. Another concept is the applicability
domain of the model, which is the population of samples that can be effectively pre-
dicted by the model.
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Fig. 3.4: Left: An illustrative example with a group of outlying data points.
Right: When the original data are transformed, the results bring the outliers
towards the majority of the data

Data Reduction and Feature Extraction

Data reduction techniques are another class of predictor transformations.
These methods reduce the data by generating a smaller set of predictors that
seek to capture a majority of the information in the original variables. In
this way, fewer variables can be used that provide reasonable fidelity to the
original data. For most data reduction techniques, the new predictors are
functions of the original predictors; therefore, all the original predictors are
still needed to create the surrogate variables. This class of methods is often
called signal extraction or feature extraction techniques.

PCA is a commonly used data reduction technique (Abdi and Williams
2010). This method seeks to find linear combinations of the predictors, known
as principal components (PCs), which capture the most possible variance. The
first PC is defined as the linear combination of the predictors that captures
the most variability of all possible linear combinations. Then, subsequent PCs
are derived such that these linear combinations capture the most remaining
variability while also being uncorrelated with all previous PCs. Mathemati-
cally, the jth PC can be written as:

PC; = (a;1 x Predictor 1) + (ajo x Predictor 2) +-- -+ (a;p x Predictor P).

P is the number of predictors. The coefficients a;1, ajo,. . ., a;p are called com-
ponent weights and help us understand which predictors are most important
to each PC.
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Fig. 3.5: An example of the principal component transformation for the cell
segmentation data. The shapes and colors indicate which cells were poorly
segmented or well segmented

To illustrate PCA, consider the data in Fig. 3.5. This set contains a subset
of two correlated predictors, average pixel intensity of channel 1 and entropy
of intensity values in the cell (a measure of cell shape), and a categorical
response. Given the high correlation between the predictors (0.93), we could
infer that average pixel intensity and entropy of intensity values measure
redundant information about the cells and that either predictor or a linear
combination of these predictors could be used in place of the original pre-
dictors. In this example, two PCs can be derived (right plot in Fig. 3.5); this
transformation represents a rotation of the data about the axis of greatest
variation. The first PC summarizes 97 % of the original variability, while the
second summarizes 3 %. Hence, it is reasonable to use only the first PC for
modeling since it accounts for the majority of information in the data.

The primary advantage of PCA, and the reason that it has retained its
popularity as a data reduction method, is that it creates components that are
uncorrelated. As mentioned earlier in this chapter, some predictive models
prefer predictors to be uncorrelated (or at least low correlation) in order
to find solutions and to improve the model’s numerical stability. PCA pre-
processing creates new predictors with desirable characteristics for these kinds
of models.

While PCA delivers new predictors with desirable characteristics, it must
be used with understanding and care. Notably, practitioners must under-
stand that PCA seeks predictor-set variation without regard to any further
understanding of the predictors (i.e., measurement scales or distributions)
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or to knowledge of the modeling objectives (i.e., response variable). Hence,
without proper guidance, PCA can generate components that summarize
characteristics of the data that are irrelevant to the underlying structure of
the data and also to the ultimate modeling objective.

Because PCA seeks linear combinations of predictors that maximize
variability, it will naturally first be drawn to summarizing predictors that
have more variation. If the original predictors are on measurement scales that
differ in orders of magnitude [consider demographic predictors such as income
level (in dollars) and height (in feet)], then the first few components will fo-
cus on summarizing the higher magnitude predictors (e.g., income), while
latter components will summarize lower variance predictors (e.g., height).
This means that the PC weights will be larger for the higher variability pre-
dictors on the first few components. In addition, it means that PCA will be
focusing its efforts on identifying the data structure based on measurement
scales rather than based on the important relationships within the data for
the current problem.

For most data sets, predictors are on different scales. In addition, predic-
tors may have skewed distributions. Hence, to help PCA avoid summarizing
distributional differences and predictor scale information, it is best to first
transform skewed predictors (Sect. 3.2) and then center and scale the predic-
tors prior to performing PCA. Centering and scaling enables PCA to find the
underlying relationships in the data without being influenced by the original
measurement scales.

The second caveat of PCA is that it does not consider the modeling objec-
tive or response variable when summarizing variability. Because PCA is blind
to the response, it is an unsupervised technique. If the predictive relationship
between the predictors and response is not connected to the predictors’ vari-
ability, then the derived PCs will not provide a suitable relationship with the
response. In this case, a supervised technique, like PLS (Sects. 6.3 and 12.4),
will derive components while simultaneously considering the corresponding
response.

Once we have decided on the appropriate transformations of the predictor
variables, we can then apply PCA. For data sets with many predictor vari-
ables, we must decide how many components to retain. A heuristic approach
for determining the number of components to retain is to create a scree plot,
which contains the ordered component number (z-axis) and the amount of
summarized variability (y-axis) (Fig.3.6). For most data sets, the first few
PCs will summarize a majority of the variability, and the plot will show a
steep descent; variation will then taper off for the remaining components.
Generally, the component number prior to the tapering off of variation is the
maximal component that is retained. In Fig. 3.6, the variation tapers off at
component 5. Using this rule of thumb, four PCs would be retained. In an
automated model building process, the optimal number of components can
be determined by cross-validation (see Sect. 4.4).
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Fig. 3.6: A “scree plot” where the percentage of the total variance explained
by each component is shown

Visually examining the principal components is a critical step for assessing
data quality and gaining intuition for the problem. To do this, the first few
principal components can be plotted against each other and the plot symbols
can be colored by relevant characteristics, such as the class labels. If PCA
has captured a sufficient amount of information in the data, this type of plot
can demonstrate clusters of samples or outliers that may prompt a closer ex-
amination of the individual data points. For classification problems, the PCA
plot can show potential separation of classes (if there is a separation). This
can set the initial expectations of the modeler; if there is little clustering of
the classes, the plot of the principal component values will show a significant
overlap of the points for each class. Care should be taken when plotting the
components; the scale of the components tend to become smaller as they
account for less and less variation in the data. For example, in Fig. 3.5, the
values of component one range from —3.7 to 3.4 while the component two
ranges from —1 to 1.1. If the axes are displayed on separate scales, there is
the potential to over-interpret any patterns that might be seen for compo-
nents that account for small amounts of variation. See Geladi, Manley, and
Lestander (2003) for other examples of this issue.

PCA was applied to the entire set of segmentation data predictors. As
previously demonstrated, there are some predictors with significant skewness.
Since skewed predictors can have an impact on PCA, there were 44 variables
that were transformed using the Box—Cox procedure previously described.
After the transformations, the predictors were centered and scaled prior to
conducting PCA.

Figure 3.6 shows the percentage of the total variation in the data which was
accounted for by each component. Notice that the percentages decrease as
more components are added. The first three components accounted for 14 %,
12.6 %, and 9.4 % of the total variance, respectively. After four components,
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Fig. 3.7: A plot of the first three principal components for the cell segmenta-
tion data, colored by cell type

there is a sharp decline in the percentage of variation being explained, al-
though these four components describe only 42.4 % of the information in the
data set.

Figure 3.7 shows a scatter plot matrix for the first three principal compo-
nents. The points are colored by class (segmentation quality). Since the per-
centages of variation explained are not large for the first three components, it
is important not to over-interpret the resulting image. From this plot, there
appears to be some separation between the classes when plotting the first and
second components. However, the distribution of the well-segmented cells is
roughly contained within the distribution of the poorly identified cells. One
conclusion to infer from this image is that the cell types are not easily sepa-
rated. However, this does not mean that other models, especially those which
can accommodate highly nonlinear relationships, will reach the same conclu-
sion. Also, while there are some cells in the data that are not completely
within the data mainstream, there are no blatant outliers.

Another exploratory use of PCA is characterizing which predictors are as-
sociated with each component. Recall that each component is a linear com-
bination of the predictors and the coefficient for each predictor is called the
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Fig. 3.8: A plot of the loadings of the first three principal components for the
cell segmentation data, colored by optical channel. Recall that channel one
was associated with the cell body, channel two with the cell nucleus, channel
three with actin, and channel four with tubulin

loading. Loadings close to zero indicate that the predictor variable did not
contribute much to that component. Figure 3.8 shows the loadings for the
first three components in the cell segmentation data. Each point corresponds
to a predictor variable and is colored by the optical channel used in the ex-
periment. For the first principal component, the loadings for the first channel
(associated with the cell body) are on the extremes. This indicates that cell
body characteristics have the largest effect on the first principal component
and by extension the predictor values. Also note that the majority of the load-
ings for the third channel (measuring actin and tubulin) are closer to zero
for the first component. Conversely, the third principal component is mostly
associated with the third channel while the cell body channel plays a minor
role here. Even though the cell body measurements account for more varia-
tion in the data, this does not imply that these variables will be associated
with predicting the segmentation quality.
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3.4 Dealing with Missing Values

In many cases, some predictors have no values for a given sample. These
missing data could be structurally missing, such as the number of children a
man has given birth to. In other cases, the value cannot or was not determined
at the time of model building.

It is important to understand why the values are missing. First and fore-
most, it is important to know if the pattern of missing data is related to
the outcome. This is called “informative missingness” since the missing data
pattern is instructional on its own. Informative missingness can induce sig-
nificant bias in the model. In the introductory chapter, a short example was
given regarding predicting a patient’s response to a drug. Suppose the drug
was extremely ineffective or had significant side effects. The patient may be
likely to miss doctor visits or to drop out of the study. In this case, there
clearly is a relationship between the probability of missing values and the
treatment. Customer ratings can often have informative missingness; people
are more compelled to rate products when they have strong opinions (good
or bad). In this case, the data are more likely to be polarized by having few
values in the middle of the rating scale. In the Netflix Prize machine learning
competition to predict which movies people will like based on their previous
ratings, the “Napoleon Dynamite Effect” confounded many of the contestants
because people who did rate the movie Napoleon Dynamite either loved or
hated it.

Missing data should not be confused with censored data where the exact
value is missing but something is known about its value. For example, a
company that rents movie disks by mail may use the duration that a customer
has kept a movie in their models. If a customer has not yet returned a movie,
we do not know the actual time span, only that it is as least as long as the
current duration. Censored data can also be common when using laboratory
measurements. Some assays cannot measure below their limit of detection.
In such cases, we know that the value is smaller than the limit but was not
precisely measured.

Are censored data treated differently than missing data? When building
traditional statistical models focused on interpretation or inference, the cen-
soring is usually taken into account in a formal manner by making assump-
tions about the censoring mechanism. For predictive models, it is more com-
mon to treat these data as simple missing data or use the censored value as
the observed value. For example, when a sample has a value below the limit
of detection, the actual limit can be used in place of the real value. For this
situation, it is also common to use a random number between zero and the
limit of detection.

In our experience, missing values are more often related to predictor vari-
ables than the sample. Because of this, amount of missing data may be con-
centrated in a subset of predictors rather than occurring randomly across all
the predictors. In some cases, the percentage of missing data is substantial
enough to remove this predictor from subsequent modeling activities.
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There are cases where the missing values might be concentrated in specific
samples. For large data sets, removal of samples based on missing values is
not a problem, assuming that the missingness is not informative. In smaller
data sets, there is a steep price in removing samples; some of the alternative
approaches described below may be more appropriate.

If we do not remove the missing data, there are two general approaches.
First, a few predictive models, especially tree-based techniques, can specifi-
cally account for missing data. These are discussed further in Chap. 8.

Alternatively, missing data can be imputed. In this case, we can use in-
formation in the training set predictors to, in essence, estimate the values
of other predictors. This amounts to a predictive model within a predictive
model.

Imputation has been extensively studied in the statistical literature, but
in the context of generating correct hypothesis testing procedures in the pres-
ence of missing data. This is a separate problem; for predictive models we
are concerned about accuracy of the predictions rather than making valid
inferences. There is a small literature on imputation for predictive models.
Saar-Tsechansky and Provost (2007b) examine the issue of missing values
and delve into how specific models deal with the issue. Jerez et al. (2010)
also look at a wide variety of imputation methods for a specific data set.

As previously mentioned, imputation is just another layer of modeling
where we try to estimate values of the predictor variables based on other
predictor variables. The most relevant scheme for accomplishing this is to
use the training set to built an imputation model for each predictor in the
data set. Prior to model training or the prediction of new samples, missing
values are filled in using imputation. Note that this extra layer of models adds
uncertainty. If we are using resampling to select tuning parameter values or
to estimate performance, the imputation should be incorporated within the
resampling. This will increase the computational time for building models,
but it will also provide honest estimates of model performance.

If the number of predictors affected by missing values is small, an ex-
ploratory analysis of the relationships between the predictors is a good idea.
For example, visualizations or methods like PCA can be used to determine if
there are strong relationships between the predictors. If a variable with miss-
ing values is highly correlated with another predictor that has few missing
values, a focused model can often be effective for imputation (see the example
below).

One popular technique for imputation is a K-nearest neighbor model.
A new sample is imputed by finding the samples in the training set “closest”
to it and averages these nearby points to fill in the value. Troyanskaya et al.
(2001) examine this approach for high-dimensional data with small sample
sizes. One advantage of this approach is that the imputed data are confined
to be within the range of the training set values. One disadvantage is that the
entire training set is required every time a missing value needs to be imputed.
Also, the number of neighbors is a tuning parameter, as is the method for de-
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Fig. 3.9: After simulating 50 missing test set values at random for the cell
perimeter data, two different imputation models were built with the training
set and applied to the missing test set values. This plot shows the centered
and scaled values before and after imputation

termining “closeness” of two points. However, Troyanskaya et al. (2001) found
the nearest neighbor approach to be fairly robust to the tuning parameters,
as well as the amount of missing data.

In Sect. 3.2, a predictor that measures the cell perimeter was used to illus-
trate skewness (see Fig.3.3). As an illustration, a 5-nearest neighbor model
was created using the training set values. In the test set, missing values were
randomly induced in 50 test set cell perimeter values and then imputed us-
ing the model. Figure 3.9 shows a scatter plot of the samples set to missing.
The left-hand panel shows the results of the 5-nearest neighbor approach.
This imputation model does a good job predicting the absent samples; the
correlation between the real and imputed values is 0.91.

Alternatively, a simpler approach can be used to impute the cell perime-
ter. The cell fiber length, another predictor associated with cell size, has a
very high correlation (0.99) with the cell perimeter data. We can create a
simple linear regression model using these data to predict the missing values.
These results are in the right-hand panel of Fig. 3.9. For this approach, the
correlation between the real and imputed values is 0.85.

3.5 Removing Predictors

There are potential advantages to removing predictors prior to modeling.
First, fewer predictors means decreased computational time and complexity.
Second, if two predictors are highly correlated, this implies that they are
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measuring the same underlying information. Removing one should not com-
promise the performance of the model and might lead to a more parsimonious
and interpretable model. Third, some models can be crippled by predictors
with degenerate distributions. In these cases, there can be a significant im-
provement in model performance and/or stability without the problematic
variables.

Consider a predictor variable that has a single unique value; we refer to
this type of data as a zero variance predictor. For some models, such an un-
informative variable may have little effect on the calculations. A tree-based
model (Sects.8.1 and 14.1) is impervious to this type of predictor since it
would never be used in a split. However, a model such as linear regression
would find these data problematic and is likely to cause an error in the com-
putations. In either case, these data have no information and can easily be
discarded. Similarly, some predictors might have only a handful of unique
values that occur with very low frequencies. These “near-zero variance pre-
dictors” may have a single value for the vast majority of the samples.

Consider a text mining application where keyword counts are collected
for a large set of documents. After filtering out commonly used “stop words,”
such as the and of, predictor variables can be created for interesting keywords.
Suppose a keyword occurs in a small group of documents but is otherwise
unused. A hypothetical distribution of such a word count distribution is given
in Table 3.1. Of the 531 documents that were searched, there were only four
unique counts. The majority of the documents (523) do not have the key-
word; while six documents have two occurrences, one document has three
and another has six occurrences. Since 98 % of the data have values of zero,
a minority of documents might have an undue influence on the model. Also,
if any resampling is used (Sect.4.4), there is a strong possibility that one of
the resampled data sets (Sect.4.4) will only contain documents without the
keyword, so this predictor would only have one unique value.

How can the user diagnose this mode of problematic data? First, the num-
ber of unique points in the data must be small relative to the number of
samples. In the document example, there were 531 documents in the data
set, but only four unique values, so the percentage of unique values is 0.8 %.
A small percentage of unique values is, in itself, not a cause for concern as
many “dummy variables” (Sect.3.6 below) generated from categorical pre-
dictors would fit this description. The problem occurs when the frequency
of these unique values is severely disproportionate. The ratio of the most
common frequency to the second most common reflects the imbalance in
the frequencies. Most of the documents in the data set (n = 523) do not
have the keyword. After this, the most frequent case is documents with two
occurrences (n = 6). The ratio of these frequencies, 523/6 = 87, is rather
high and is indicative of a strong imbalance.

Given this, a rule of thumb for detecting near-zero variance predictors is:
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Table 3.1: A predictor describing the number of documents where a keyword
occurred

#Documents
Occurrences: 0 523
Occurrences: 2 6
Occurrences: 3 1
Occurrences: 6 1

e The fraction of unique values over the sample size is low (say 10 %).
e The ratio of the frequency of the most prevalent value to the frequency of
the second most prevalent value is large (say around 20).

If both of these criteria are true and the model in question is susceptible to
this type of predictor, it may be advantageous to remove the variable from
the model.

Between-Predictor Correlations

Collinearity is the technical term for the situation where a pair of pre-
dictor variables have a substantial correlation with each other. It is also
possible to have relationships between multiple predictors at once (called
multicollinearity).

For example, the cell segmentation data have a number of predictors that
reflect the size of the cell. There are measurements of the cell perimeter,
width, and length as well as other, more complex calculations. There are also
features that measure cell morphology (i.e., shape), such as the roughness of
the cell.

Figure 3.10 shows a correlation matrix of the training set. Each pairwise
correlation is computed from the training data and colored according to its
magnitude. This visualization is symmetric: the top and bottom diagonals
show identical information. Dark blue colors indicate strong positive corre-
lations, dark red is used for strong negative correlations, and white implies
no empirical relationship between the predictors. In this figure, the predictor
variables have been grouped using a clustering technique (Everitt et al. 2011)
so that collinear groups of predictors are adjacent to one another. Looking
along the diagonal, there are blocks of strong positive correlations that indi-
cate “clusters” of collinearity. Near the center of the diagonal is a large block
of predictors from the first channel. These predictors are related to cell size,
such as the width and length of the cell.

When the data set consists of too many predictors to examine visually,
techniques such as PCA can be used to characterize the magnitude of the
problem. For example, if the first principal component accounts for a large
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Fig. 3.10: A visualization of the cell segmentation correlation matrix. The
order of the variables is based on a clustering algorithm

percentage of the variance, this implies that there is at least one group of pre-
dictors that represent the same information. For example, Fig. 3.6 indicates
that the first 3-4 components have relative contributions to the total vari-
ance. This would indicate that there are at least 3—4 significant relationships
between the predictors. The PCA loadings can be used to understand which
predictors are associated with each component to tease out this relationships.
In general, there are good reasons to avoid data with highly correlated
predictors. First, redundant predictors frequently add more complexity to the
model than information they provide to the model. In situations where ob-
taining the predictor data is costly (either in time or money), fewer variables
is obviously better. While this argument is mostly philosophical, there are
mathematical disadvantages to having correlated predictor data. Using highly
correlated predictors in techniques like linear regression can result in highly
unstable models, numerical errors, and degraded predictive performance.
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Classical regression analysis has several tools to diagnose multicollinearity
for linear regression. Since collinear predictors can impact the variance of
parameter estimates in this model, a statistic called the variance inflation
factor (VIF) can be used to identify predictors that are impacted (Myers
1994). Beyond linear regression, this method may be inadequate for several
reasons: it was developed for linear models, it requires more samples than
predictor variables, and, while it does identify collinear predictors, it does
not determine which should be removed to resolve the problem.

A less theoretical, more heuristic approach to dealing with this issue is
to remove the minimum number of predictors to ensure that all pairwise
correlations are below a certain threshold. While this method only identify
collinearities in two dimensions, it can have a significantly positive effect on
the performance of some models.

The algorithm is as follows:

1. Calculate the correlation matrix of the predictors.

2. Determine the two predictors associated with the largest absolute pairwise
correlation (call them predictors A and B).

3. Determine the average correlation between A and the other variables.
Do the same for predictor B.

4. If A has a larger average correlation, remove it; otherwise, remove predic-
tor B.

5. Repeat Steps 2—4 until no absolute correlations are above the threshold.

The idea is to first remove the predictors that have the most correlated rela-
tionships.

Suppose we wanted to use a model that is particularly sensitive to between-
predictor correlations, we might apply a threshold of 0.75. This means that we
want to eliminate the minimum number of predictors to achieve all pairwise
correlations less than 0.75. For the segmentation data, this algorithm would
suggest removing 43 predictors.

As previously mentioned, feature extraction methods (e.g., principal com-
ponents) are another technique for mitigating the effect of strong correlations
between predictors. However, these techniques make the connection between
the predictors and the outcome more complex. Additionally, since signal ex-
traction methods are usually unsupervised, there is no guarantee that the
resulting surrogate predictors have any relationship with the outcome.

3.6 Adding Predictors

When a predictor is categorical, such as gender or race, it is common to
decompose the predictor into a set of more specific variables. For example,
the credit scoring data discussed in Sect.4.5 contains a predictor based on
how much money was in the applicant’s savings account. These data were
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Table 3.2: A categorical predictor with five distinct groups from the credit
scoring case study. The values are the amount in the savings account (in
Deutsche Marks)

Dummy variables
Value n <100 100-500 500-1,000 >1,000 Unknown

<100 DM 103 1
100-500 DM 603
500-1,000 DM 48
>1,000 DM 63
Unknown 183

O O OO
oo o~ O
OO = OO
O = O OO
O O OO

encoded into several groups, including a group for “unknown.” Table 3.2 shows
the values of this predictor and the number of applicants falling into each bin.

To use these data in models, the categories are re-encoded into smaller bits
of information called “dummy variables.” Usually, each category get its own
dummy variable that is a zero/one indicator for that group. Table 3.2 shows
the possible dummy variables for these data. Only four dummy variables are
needed here; once you know the value of four of the dummy variables, the fifth
can be inferred. However, the decision to include all of the dummy variables
can depend on the choice of the model. Models that include an intercept term,
such as simple linear regression (Sect.6.2), would have numerical issues if
each dummy variable was included in the model. The reason is that, for each
sample, these variables all add up to one and this would provide the same
information as the intercept. If the model is insensitive to this type of issue,
using the complete set of dummy variables would help improve interpretation
of the model.

Many of the models described in this text automatically generate highly
complex, nonlinear relationships between the predictors and the outcome.
More simplistic models do not unless the user manually specifies which pre-
dictors should be nonlinear and in what way. For example, logistic regression
is a well-known classification model that, by default, generates linear classi-
fication boundaries. Figure 3.11 shows another illustrative example with two
predictors and two classes. The left-hand panel shows the basic logistic re-
gression classification boundaries when the predictors are added in the usual
(linear) manner. The right-hand panel shows a logistic model with the basic
linear terms and an additional term with the square of predictor B. Since
logistic regression is a well-characterized and stable model, using this model
with some additional nonlinear terms may be preferable to highly complex
techniques (which may overfit).

Additionally, Forina et al. (2009) demonstrate one technique for augment-
ing the prediction data with addition of complex combinations of the data.
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Fig. 3.11: Classification boundaries from two logistic regression models. The
left panel has linear terms for the two predictors while the right panel has an
additional quadratic term for predictor B. This model is discussed in more
detail in Chap. 12

For classification models, they calculate the “class centroids,” which are the
centers of the predictor data for each class. Then for each predictor, the dis-
tance to each class centroid can be calculated and these distances can be
added to the model.

3.7 Binning Predictors

While there are recommended techniques for pre-processing data, there are
also methods to avoid. One common approach to simplifying a data set is
to take a numeric predictor and pre-categorize or “bin” it into two or more
groups prior to data analysis. For example, Bone et al. (1992) define a set
of clinical symptoms to diagnose Systemic Inflammatory Response Syndrome
(SIRS). SIRS can occur after a person is subjected to some sort of physical
trauma (e.g., car crash). A simplified version of the clinical criteria for SIRS
are:

e Temperature less than 36 °C or greater than 38 °C.
o Heart rate greater than 90 beats per minute.
e Respiratory rate greater than 20 breaths per minute.
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e White blood cell count less than 4,000 cells/mm3 or greater than 12,000
cells/mm3.

A person who shows two or more of these criteria would be diagnosed as
having SIRS.
The perceived advantages to this approach are:

e The ability to make seemingly simple statements, either for sake of having
a simple decision rule (as in the SIRS example) or the belief that there
will be a simple interpretation of the model.

e The modeler does not have to know the exact relationship between the
predictors and the outcome.

e A higher response rate for survey questions where the choices are binned.
For example, asking the date of a person’s last tetanus shot is likely to
have fewer responses than asking for a range (e.g., in the last 2 years, in
the last 4 years).

There are many issues with the manual binning of continuous data. First,
there can be a significant loss of performance in the model. Many of the mod-
eling techniques discussed in this text are very good at determining complex
relationships between the predictors and outcomes. Manually binning the
predictors limits this potential. Second, there is a loss of precision in the pre-
dictions when the predictors are categorized. For example, if there are two
binned predictors, only four combinations exist in the data set, so only sim-
ple predictions can be made. Third, research has shown (Austin and Brunner
2004) that categorizing predictors can lead to a high rate of false positives
(i.e., noise predictors determined to be informative).

Unfortunately, the predictive models that are most powerful are usually
the least interpretable. The bottom line is that the perceived improvement in
interpretability gained by manual categorization is usually offset by a signifi-
cant loss in performance. Since this book is concerned with predictive models
(where interpretation is not the primary goal), loss of performance should
be avoided. In fact, in some cases it may be unethical to arbitrarily catego-
rize predictors. For example, there is a great deal of research on predicting
aspects of disease (e.g., response to treatment, screening patients). If a med-
ical diagnostic is used for such important determinations, patients desire the
most accurate prediction possible. As long as complex models are properly
validated, it may be improper to use a model that is built for interpretation
rather than predictive performance.

Note that the argument here is related to the manual categorization of
predictors prior to model building. There are several models, such as clas-
sification/regression trees and multivariate adaptive regression splines, that
estimate cut points in the process of model building. The difference between
these methodologies and manual binning is that the models use all the predic-
tors to derive bins based on a single objective (such as maximizing accuracy).
They evaluate many variables simultaneously and are usually based on sta-
tistically sound methodologies.
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3.8 Computing

This section uses data from the AppliedPredictiveModeling package and
functions from the caret, corrplot, 1071, and lattice packages.
There are two locations where relevant R code can be found:

e The chapters directory of the AppliedPredictiveModeling package contains
specific code to reproduce the specific models used in the chapter. This is
intended to allow the reader to see exactly how the models used here were
created.

e Many chapters in this book contain sections at the end of the chapter that
detail how of the computations can be performed in R more generally. For
example, there are individual functions that correspond to the data pre-
processing methods shown in this chapter. While the computing section
provides these details, the individual functions might not be used directly
in practice. For example, when using the train function, the pre-processing
steps are specified in a single argument and the individual functions are
not utilized. These sections do relate to the models created in each chapter,
but as discussion points for the functions.

As such, the Computing sections in each chapter explains how to generally
do the computations while the code in the chapters directory of the Ap-
pliedPredictiveModeling package is the best source for the calculations for the
specific models in each chapter.

As discussed in Appendix B, there are a few useful R functions that can be
used to find existing functions or classes of interest. The function apropos will
search any loaded R packages for a given term. For example, to find functions
for creating a confusion matrix within the currently loaded packages:

> apropos ("confusion")

[1] "confusionMatrix" "confusionMatrix.train"

To find such a function in any package, the RSiteSearch function can help.
Running the command:

> RSiteSearch("confusion", restrict = "functions")

will search online to find matches and will open a web browser to display the
results.

The raw segmentation data set is contained in the AppliedPredictiveMod-
eling package.® To load the data set into R:

> library (AppliedPredictiveModeling)
> data(segmentationOriginal)

There were fields that identified each cell (called cel1l) and a factor vector
that indicated which cells were well segmented (Class). The variable Case

5 A preprocessed version of these data can also be found in the caret package and is
used in later chapters.
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indicated which cells were originally used for the training and test sets. The
analysis in this chapter focused on the training set samples, so the data are
filtered for these cells:

> segData <- subset (segmentationOriginal, Case == "Train")

The class and cCell fields will be saved into separate vectors, then removed
from the main object:

cellID <- segData$Cell

class <- segData$Class

case <- segData$Case

# Now remove the columns
segData <- segDatal, -(1:3)]

vV V. Vv Vv Vv

The original data contained several “status” columns which were binary ver-
sions of the predictors. To remove these, we find the column names containing
"Status" and remove them:

> statusColNum <- grep("Status", names (segData))
> statusColNum

[1] 2 4 9 10 11 12 14 16 20 21 22 26 27 28 30 32 34
[18] 36 38 40 43 44 46 48 51 52 55 56 59 60 63 64 68 69
[356] 70 72 73 74 76 78 80 82 84 86 88 92 93 94 97 98 103
[52] 104 105 106 110 111 112 114

> segData <- segDatal, -statusColNum]

Transformations

As previously discussed, some features exhibited significantly skewness. The
skewness function in the e1071 package calculates the sample skewness statis-
tic for each predictor:

> library(e1071)
> # For one predictor:
skewness (segData$AngleCh1)

[1] -0.0243

v

> # Since all the predictors are numeric columns, the apply function can
> # be used to compute the skewness across columns.
> skewValues <- apply(segData, 2, skewness)
> head (skewValues)
AngleChl AreaChl AvgIntenChl AvgIntenCh2 AvgIntenCh3 AvgIntenCh4
-0.0243 3.5251 2.9592 0.8482 2.2023 1.9005

Using these values as a guide, the variables can be prioritized for visualizing
the distribution. The basic R function hist or the histogram function in the
lattice can be used to assess the shape of the distribution.

To determine which type of transformation should be used, the MASS
package contains the boxcox function. Although this function estimates A, it
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does not create the transformed variable(s). A caret function, BoxCoxTrans,
can find the appropriate transformation and apply them to the new data:

> library(caret)
> ChlAreaTrans <- BoxCoxTrans(segData$AreaChl)
> ChlAreaTrans

Box-Cox Transformation
1009 data points used to estimate Lambda

Input data summary:
Min. 1st Qu. Median Mean 3rd Qu. Max.
150 194 256 325 376 2190

Largest/Smallest: 14.6
Sample Skewness: 3.53

Estimated Lambda: -0.9
> # The original data
> head(segData$AreaChl)
[1] 819 431 298 256 258 358
> # After transformation
> predict (ChlAreaTrans, head(segData$AreaChi))
[1] 1.1085 1.1064 1.1045 1.1036 1.1036 1.1055
> (8197(-.9) - 1)/(-.9)
[1] 1.1085

Another caret function, preProcess, applies this transformation to a set of
predictors. This function is discussed below. The base R function prcomp can
be used for PCA. In the code below, the data are centered and scaled prior
to PCA.

> pcaObject <- prcomp(segData,

+ center = TRUE, scale. = TRUE)

> # Calculate the cumulative percentage of variance which each component
> # accounts for.

> percentVariance <- pcalObject$sd”2/sum(pcaObject$sd"2)*100

> percentVariance[1:3]

[1] 20.9 17.0 11.9

The transformed values are stored in pcaObject as a sub-object called x:

> head(pcaObject$x[, 1:5])

PC1 PC2 PC3 PC4 PC5
2 5.099 4.551 -0.0335 -2.64 1.278
3 -0.255 1.198 -1.0206 -3.73 0.999
4 1.293 -1.864 -1.2511 -2.41 -1.491
12 -1.465 -1.566 0.4696 -3.39 -0.330
156 -0.876 -1.279 -1.3379 -3.52 0.39%4
16 -0.862 -0.329 -0.15565 -2.21 1.473
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The another sub-object called rotation stores the variable loadings, where
rows correspond to predictor variables and columns are associated with the
components:

> head(pcaObject$rotation[, 1:3])

PC1 PC2 PC3
AngleChil 0.00121 -0.0128 0.00682
AreaChl 0.22917 0.1606 0.08981
AvgIntenChl -0.10271 0.1797 0.06770
AvgIntenCh2 -0.15483 0.1638 0.07353
AvgIntenCh3 -0.05804 0.1120 -0.18547
AvgIntenCh4 -0.11734 0.2104 -0.10506

The caret package class spatialSign contains functionality for the spatial sign
transformation. Although we will not apply this technique to these data, the
basic syntax would be spatialSign(segData).

Also, these data do not have missing values for imputation. To impute
missing values, the impute package has a function, impute.knn, that uses K-
nearest neighbors to estimate the missing data. The previously mentioned
preProcess function applies imputation methods based on K-nearest neigh-
bors or bagged trees.

To administer a series of transformations to multiple data sets, the caret
class preProcess has the ability to transform, center, scale, or impute values,
as well as apply the spatial sign transformation and feature extraction. The
function calculates the required quantities for the transformation. After call-
ing the preProcess function, the predict method applies the results to a set
of data. For example, to Box—Cox transform, center, and scale the data, then
execute PCA for signal extraction, the syntax would be:

> trans <- preProcess(segData,

+ method = c("BoxCox", "center", "scale", '"pca"))
> trans
Call:
preProcess.default(x = segData, method = c("BoxCox", "center",
"scale", "pca"))

Created from 1009 samples and 58 variables
Pre-processing: Box-Cox transformation, centered, scaled,
principal component signal extraction

Lambda estimates for Box-Cox transformation:
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-2.00 -0.50 -0.10 0.05 0.30 2.00 11

PCA needed 19 components to capture 95 percent of the variance

# Apply the transformations:

transformed <- predict(trans, segData)

# These values are different than the previous PCA components since
# they were transformed prior to PCA

head (transformed[, 1:5])

vV V. Vv Vv Vv
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PC1
2 1.568
3 -0.666

PC2
6.291 -0.
2.046 -1.

4 3.750 -0.392 -0.
12 0.377 -2.190 1.
15 1.064 -1.465 -0.

16 -0.380

0.217 0.

PC3
333
442
669
438
990
439

PC4
.06
.70
.02
.33
.63
.07

-1.

-0.
-0.
-1.

PC5
342

.742
.793

407
865
936
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The order in which the possible transformation are applied is transformation,

centering, scaling, imputation, feature extraction, and then spatial sign.

Many of the modeling functions have options to center and scale prior
to modeling. For example, when using the train function (discussed in later
chapters), there is an option to use preProcess prior to modeling within the
resampling iterations.

Filtering

To filter for near-zero variance predictors, the caret package function nearzero
Var will return the column numbers of any predictors that fulfill the conditions
outlined in Sect. 3.5. For the cell segmentation data, there are no problematic

predictors:

> nearZeroVar (segData)

integer (0)

> # When predictors should be removed, a vector of integers is
> # returned that indicates which columns should be removed.

Similarly, to filter on between-predictor correlations, the cor function can
calculate the correlations between predictor variables:

> correlations <- cor(segData)
> dim(correlations)

[1] 58 58

> correlations[1:4, 1:4]

AngleChl
AreaChl
AvgIntenChl
AvgIntenCh2

AngleChil

1.00000
-0.00263
-0.04301
-0.01945

AreaChl AvgIntenChl AvgIntenCh2
-0.00263
1.00000
-0.02530
-0.15330

-0.0430 -0.0194
-0.0253 -0.1533
1.0000 0.5252
0.5252 1.0000

To visually examine the correlation structure of the data, the corrplot pack-
age contains an excellent function of the same name. The function has many
options including one that will reorder the variables in a way that reveals
clusters of highly correlated predictors. The following command was used to
produce Fig. 3.10:

> library(corrplot)
> corrplot(correlations, order

"hclust")
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The size and color of the points are associated with the strength of correlation
between two predictor variables.

To filter based on correlations, the findCorrelation function will apply the
algorithm in Sect. 3.5. For a given threshold of pairwise correlations, the func-
tion returns column numbers denoting the predictors that are recommended
for deletion:

> highCorr <- findCorrelation(correlations, cutoff = .75)
> length(highCorr)

[1] 33
> head(highCorr)

[1] 23 40 43 36 7 15
> filteredSegData <- segDatal, -highCorr]

There are also several functions in the subselect package that can accomplish
the same goal.

Creating Dummy Variables

Several methods exist for creating dummy variables based on a particular
model. Section 4.9 discusses different methods for specifying how the predic-
tors enter into the model. One approach, the formula method, allows great
flexibility to create the model function. Using formulas in model functions pa-
rameterizes the predictors such that not all categories have dummy variables.
This approach will be shown in greater detail for linear regression.

As previously mentioned, there are occasions when a complete set of
dummy variables is useful. For example, the splits in a tree-based model
are more interpretable when the dummy variables encode all the information
for that predictor. We recommend using the full set if dummy variables when
working with tree-based models.

To illustrate the code, we will take a subset of the cars data set in the
caret package. For 2005, Kelly Blue Book resale data for 804 GM cars were
collected (Kuiper 2008). The object of the model was to predict the price of
the car based on known characteristics. This demonstration will focus on the
price, mileage, and car type (e.g., sedan) for a subset of vehicles:

> head(carSubset)

Price Mileage Type
214 19981 24323 sedan
299 21757 1853 sedan
460 15047 12305 sedan
728 15327 4318 sedan
162 20628 20770 sedan
718 16714 26328 sedan

> levels(carSubset$Type)

[1] "convertible" "coupe" "hatchback"  "sedan" "wagon"
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To model the price as a function of mileage and type of car, we can use
the function dummyVars to determine encodings for the predictors. Suppose
our first model assumes that the price can be modeled as a simple additive
function of the mileage and type:
> simpleMod <- dummyVars(~Mileage + Type,

+ data = carSubset,

+ ## Remove the variable name from the

+ ## column name

+
>

levelsOnly = TRUE)
simpleMod

Dummy Variable Object

Formula: "Mileage + Type
2 variables, 1 factors
Factor variable names will be removed

To generate the dummy variables for the training set or any new samples,
the predict method is used in conjunction with the dummyvars object:

> predict (simpleMod, head(carSubset))

Mileage convertible coupe hatchback sedan wagon

214 24323 0 0 0 1 0
299 1853 0 0 0 1 0
460 12305 0 0 0 1 0
728 4318 0 0 0 1 0
162 20770 0 0 0 1 0
718 26328 0 0 0 1 0

The type field was expanded into five variables for five factor levels. The
model is simple because it assumes that effect of the mileage is the same for
every type of car. To fit a more advance model, we could assume that there
is a joint effect of mileage and car type. This type of effect is referred to as
an interaction. In the model formula, a colon between factors indicates that
an interaction should be generated. For these data, this adds another five
predictors to the data frame:

> withInteraction <- dummyVars(“Mileage + Type + Mileage:Type,
+ data = carSubset,

+ levelsOnly = TRUE)

> withInteraction

Dummy Variable Object

Formula: "Mileage + Type + Mileage:Type
2 variables, 1 factors
Factor variable names will be removed

> predict (withInteraction, head(carSubset))

Mileage convertible coupe hatchback sedan wagon Mileage:convertible

214 24323 0 0 0 1 0 0
299 1853 0 0 0 1 0 0
460 12305 0 0 0 1 0 0
728 4318 0 0 0 1 0 0
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162 20770 0 0 0 1 0 0

718 26328 0 0 0 1 0 0
Mileage:coupe Mileage:hatchback Mileage:sedan Mileage:wagon

214 0 0 24323 0

299 0 0 1853 0

460 0 0 12305 0

728 0 0 4318 0

162 0 0 20770 0

718 0 0 26328 0

Exercises

3.1. The UC Irvine Machine Learning Repository® contains a data set related

to glass identification. The data consist of 214 glass samples labeled as one

of seven class categories. There are nine predictors, including the refractive

index and percentages of eight elements: Na, Mg, Al, Si, K, Ca, Ba, and Fe.
The data can be accessed via:

> library(mlbench)
> data(Glass)
> str(Glass)

'data.frame': 214 obs. of 10 variables:

$RI : num 1.52 1.52 1.52 1.52 1.52 ...

$ Na : num 13.6 13.9 13.5 13.2 13.3 ...

$ Mg : num 4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...

$A1 :num 1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...

$Si : num 71.8 72.7 73 72.6 73.1 ...

$K :num 0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...

$ Ca : num 8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...

$Ba :num 0000000000

$Fe :num 000000.260000.11 ...

$ Type: Factor w/ 6 levels "1","2","3","5" ..: 1111111111 ...

(a) Using visualizations, explore the predictor variables to understand their
distributions as well as the relationships between predictors.

(b) Do there appear to be any outliers in the data? Are any predictors skewed?

(c) Are there any relevant transformations of one or more predictors that
might improve the classification model?

3.2. The soybean data can also be found at the UC Irvine Machine Learning
Repository. Data were collected to predict disease in 683 soybeans. The 35
predictors are mostly categorical and include information on the environmen-
tal conditions (e.g., temperature, precipitation) and plant conditions (e.g., left
spots, mold growth). The outcome labels consist of 19 distinct classes.

6 http://archive.ics.uci.edu/ml/index.html.
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The data can be loaded via:

> library(mlbench)
> data(Soybean)
> ## See 7Soybean for details

(a) Investigate the frequency distributions for the categorical predictors. Are
any of the distributions degenerate in the ways discussed earlier in this
chapter?

(b) Roughly 18 % of the data are missing. Are there particular predictors that
are more likely to be missing? Is the pattern of missing data related to
the classes?

(c) Develop a strategy for handling missing data, either by eliminating
predictors or imputation.

3.3. Chapter 5 introduces Quantitative Structure-Activity Relationship
(QSAR) modeling where the characteristics of a chemical compound are used
to predict other chemical properties. The caret package contains a QSAR
data set from Mente and Lombardo (2005). Here, the ability of a chemical
to permeate the blood-brain barrier was experimentally determined for 208
compounds. 134 descriptors were measured for each compound.

(a) Start R and use these commands to load the data:

> library(caret)
> data(BloodBrain)
> # use 7BloodBrain to see more details

The numeric outcome is contained in the vector 10gBBB while the predic-
tors are in the data frame bbbDescr.

(b) Do any of the individual predictors have degenerate distributions?

(c) Generally speaking, are there strong relationships between the predic-
tor data? If so, how could correlations in the predictor set be reduced?
Does this have a dramatic effect on the number of predictors available for
modeling?



Chapter 4
Over-Fitting and Model Tuning

Many modern classification and regression models are highly adaptable; they
are capable of modeling complex relationships. However, they can very easily
overemphasize patterns that are not reproducible. Without a methodological
approach to evaluating models, the modeler will not know about the problem
until the next set of samples are predicted.

Over-fitting has been discussed in the fields of forecasting (Clark 2004),
medical research (Simon et al. 2003; Steyerberg 2010), chemometrics (Gowen
et al. 2010; Hawkins 2004; Defernez and Kemsley 1997), meteorology (Hsieh
and Tang 1998), finance (Dwyer 2005), and marital research (Heyman and
Slep 2001) to name a few. These references illustrate that over-fitting is a
concern for any predictive model regardless of field of research. The aim of this
chapter is to explain and illustrate key principles of laying a foundation onto
which trustworthy models can be built and subsequently used for prediction.
More specifically, we will describe strategies that enable us to have confidence
that the model we build will predict new samples with a similar degree of
accuracy on the set of data for which the model was evaluated. Without this
confidence, the model’s predictions are useless.

On a practical note, all model building efforts are constrained by the exist-
ing data. For many problems, the data may have a limited number of samples,
may be of less-than-desirable quality, and/or may be unrepresentative of fu-
ture samples. While there are ways to build predictive models on small data
sets, which we will describe in this chapter, we will assume that data quality
is sufficient and that it is representative of the entire sample population.

Working under these assumptions, we must use the data at hand to find
the best predictive model. Almost all predictive modeling techniques have
tuning parameters that enable the model to flex to find the structure in
the data. Hence, we must use the existing data to identify settings for the
model’s parameters that yield the best and most realistic predictive perfor-
mance (known as model tuning). Traditionally, this has been achieved by
splitting the existing data into training and test sets. The training set is used
to build and tune the model and the test set is used to estimate the model’s
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predictive performance. Modern approaches to model building split the data
into multiple training and testing sets, which have been shown to often find
more optimal tuning parameters and give a more accurate representation of
the model’s predictive performance.

To begin this chapter we will illustrate the concept of over-fitting through
an easily visualized example. To avoid over-fitting, we propose a general
model building approach that encompasses model tuning and model evalua-
tion with the ultimate goal of finding the reproducible structure in the data.
This approach entails splitting existing data into distinct sets for the purposes
of tuning model parameters and evaluating model performance. The choice
of data splitting method depends on characteristics of the existing data such
as its size and structure. In Sect. 4.4, we define and explain the most versa-
tile data splitting techniques and explore the advantages and disadvantages
of each. Finally, we end the chapter with a computing section that provides
code for implementing the general model building strategy.

4.1 The Problem of Over-Fitting

There now exist many techniques that can learn the structure of a set of data
so well that when the model is applied to the data on which the model was
built, it correctly predicts every sample. In addition to learning the general
patterns in the data, the model has also learned the characteristics of each
sample’s unique noise. This type of model is said to be over-fit and will usually
have poor accuracy when predicting a new sample. To illustrate over-fitting
and other concepts in this chapter, consider the simple classification example
in Fig. 4.1 that has two predictor variables (i.e., independent variables). These
data contain 208 samples that are designated either as “Class 1” or “Class 2.”
The classes are fairly balanced; there are 111 samples in the first class and 97
in the second. Furthermore, there is a significant overlap between the classes
which is often the case for most applied modeling problems.

One objective for a data set such as this would be to develop a model to
classify new samples. In this two-dimensional example, the classification mod-
els or rules can be represented by boundary lines. Figure 4.2 shows example
class boundaries from two distinct classification models. The lines envelop the
area where each model predicts the data to be the second class (blue squares).
The left-hand panel (“Model #1”) shows a boundary that is complex and at-
tempts to encircle every possible data point. The pattern in this panel is not
likely to generalize to new data. The right-hand panel shows an alternative
model fit where the boundary is fairly smooth and does not overextend itself
to correctly classify every data point in the training set.

To gauge how well the model is classifying samples, one might use the
training set. In doing so, the estimated error rate for the model in the left-
hand panel would be overly optimistic. Estimating the utility of a model
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Fig. 4.1: An example of classification data that is used throughout the chapter
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Fig. 4.2: An example of a training set with two classes and two predictors.

The panels show two different classification models and their associated class
boundaries
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by re-predicting the training set is referred to apparent performance of the
model (e.g., the apparent error rate). In two dimensions, it is not difficult to
visualize that one model is over-fitting, but most modeling problems are in
much higher dimensions. In these situations, it is very important to have a
tool for characterizing how much a model is over-fitting the training data.

4.2 Model Tuning

Many models have important parameters which cannot be directly estimated
from the data. For example, in the K-nearest neighbor classification model,
a new sample is predicted based on the K-closest data points in the training
set. An illustration of a 5-nearest neighbor model is shown in Fig. 4.3. Here,
two new samples (denoted by the solid dot and filled triangle) are being
predicted. One sample (o) is near a mixture of the two classes; three of the
five neighbors indicate that the sample should be predicted as the first class.
The other sample (A) has all five points indicating the second class should
be predicted. The question remains as to how many neighbors should be
used. A choice of too few neighbors may over-fit the individual points of the
training set while too many neighbors may not be sensitive enough to yield

Class 1 Class 2
1 1
0.6 — -
.._ &
m
B e ©
5 0.4+ ' -
C R kel
Z [ ]
A e
024 | wl" :"{ ¥ m .
3 - 5
= R .
v na®e
0.0 - ! =
I I I I
0.0 0.2 0.4 0.6
Predictor A

Fig. 4.3: The K-nearest neighbor classification model. Two new points, sym-
bolized by filled triangle and solid dot, are predicted using the training set
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reasonable performance. This type of model parameter is referred to as a
tuning parameter because there is no analytical formula available to calculate
an appropriate value.

Several models discussed in this text have at least one tuning parameter.
Since many of these parameters control the complexity of the model, poor
choices for the values can result in over-fitting. Figure 4.2 illustrates this
point. A support vector machine (Sect.13.4) was used to generate the class
boundaries in each panel. One of the tuning parameters for this model sets
the price for misclassified samples in the training set and is generally referred
to as the “cost” parameter. When the cost is large, the model will go to great
lengths to correctly label every point (as in the left panel) while smaller
values produce models that are not as aggressive. The class boundary in
the left panel was created by manually setting the cost parameter to a very
high number. In the right panel, the cost value was determined using cross-
validation (Sect.4.4).

There are different approaches to searching for the best parameters. A gen-
eral approach that can be applied to almost any model is to define a set of
candidate values, generate reliable estimates of model utility across the can-
didates values, then choose the optimal settings. A flowchart of this process
is shown in Fig.4.4.

Once a candidate set of parameter values has been selected, then we must
obtain trustworthy estimates of model performance. The performance on the
hold-out samples is then aggregated into a performance profile which is then
used to determine the final tuning parameters. We then build a final model
with all of the training data using the selected tuning parameters. Using
the K-nearest neighbor example to illustrate the procedure of Fig.4.4, the
candidate set might include all odd values of K between 1 and 9 (odd values
are used in the two-class situation to avoid ties). The training data would then
be resampled and evaluated many times for each tuning parameter value.
These results would then be aggregated to find the optimal value of K.

The procedure defined in Fig. 4.4 uses a set of candidate models that are
defined by the tuning parameters. Other approaches such as genetic algo-
rithms (Mitchell 1998) or simplex search methods (Olsson and Nelson 1975)
can also find optimal tuning parameters. These procedures algorithmically
determine appropriate values for tuning parameters and iterate until they ar-
rive at parameter settings with optimal performance. These techniques tend
to evaluate a large number of candidate models and can be superior to a
defined set of tuning parameters when model performance can be efficiently
calculated. Cohen et al. (2005) provides a comparison of search routines for
tuning a support vector machine model.

A more difficult problem is obtaining trustworthy estimates of model per-
formance for these candidate models. As previously discussed, the apparent
error rate can produce extremely optimistic performance estimates. A bet-
ter approach is to test the model on samples that were not used for training.
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Define a set of candidate
values for tuning
parameter(s)

For each candidate set:

Resample Predict

Data

Hold—outs

Aggregate the resampling
into a performance profile

Determine the final
tuning parameters

Using the final tuning

parameters, refit the

model with the entire
training set

Fig. 4.4: A schematic of the parameter tuning process. An example of a
candidate set of tuning parameter values for K-nearest neighbors might be
odd numbers between 1 and 9. For each of these values, the data would be
resampled multiple times to assess model performance for each value

Evaluating the model on a test set is the obvious choice, but, to get reasonable
precision of the performance values, the size of the test set may need to be
large.

An alternate approach to evaluating a model on a single test set is to
resample the training set. This process uses several modified versions of the
training set to build multiple models and then uses statistical methods to
provide honest estimates of model performance (i.e., not overly optimistic).
Section 4.4 illustrates several resampling techniques, and Sect. 4.6 discusses
approaches to choose the final parameters using the resampling results.
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4.3 Data Splitting

Now that we have outlined the general procedure for finding optimal tuning
parameters, we turn to discussing the heart of the process: data splitting.
A few of the common steps in model building are:

Pre-processing the predictor data

Estimating model parameters

Selecting predictors for the model

Evaluating model performance

Fine tuning class prediction rules (via ROC curves, etc.)

Given a fixed amount of data, the modeler must decide how to “spend” their
data points to accommodate these activities.

One of the first decisions to make when modeling is to decide which samples
will be used to evaluate performance. Ideally, the model should be evaluated
on samples that were not used to build or fine-tune the model, so that they
provide an unbiased sense of model effectiveness. When a large amount of
data is at hand, a set of samples can be set aside to evaluate the final model.
The “training” data set is the general term for the samples used to create the
model, while the “test” or “validation” data set is used to qualify performance.

However, when the number of samples is not large, a strong case can
be made that a test set should be avoided because every sample may be
needed for model building. Additionally, the size of the test set may not
have sufficient power or precision to make reasonable judgements. Several
researchers (Molinaro 2005; Martin and Hirschberg 1996; Hawkins et al. 2003)
show that validation using a single test set can be a poor choice. Hawkins
et al. (2003) concisely summarize this point: “holdout samples of tolerable size
[...] do not match the cross-validation itself for reliability in assessing model
fit and are hard to motivate.” Resampling methods, such as cross-validation,
can be used to produce appropriate estimates of model performance using the
training set. These are discussed in length in Sect. 4.4. Although resampling
techniques can be misapplied, such as the example shown in Ambroise and
McLachlan (2002), they often produce performance estimates superior to a
single test set because they evaluate many alternate versions of the data.

If a test set is deemed necessary, there are several methods for splitting
the samples. Nonrandom approaches to splitting the data are sometimes
appropriate. For example,

e If a model was being used to predict patient outcomes, the model may be
created using certain patient sets (e.g., from the same clinical site or disease
stage), and then tested on a different sample population to understand how
well the model generalizes.

e In chemical modeling for drug discovery, new “chemical space” is constantly
being explored. We are most interested in accurate predictions in the chem-
ical space that is currently being investigated rather than the space that
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was evaluated years prior. The same could be said for spam filtering; it
is more important for the model to catch the new spamming techniques
rather than prior spamming schemes.

However, in most cases, there is the desire to make the training and test sets
as homogeneous as possible. Random sampling methods can be used to create
similar data sets.

The simplest way to split the data into a training and test set is to take a
simple random sample. This does not control for any of the data attributes,
such as the percentage of data in the classes. When one class has a dispro-
portionately small frequency compared to the others, there is a chance that
the distribution of the outcomes may be substantially different between the
training and test sets.

To account for the outcome when splitting the data, stratified random
sampling applies random sampling within subgroups (such as the classes).
In this way, there is a higher likelihood that the outcome distributions will
match. When the outcome is a number, a similar strategy can be used; the
numeric values are broken into similar groups (e.g., low, medium, and high)
and the randomization is executed within these groups.

Alternatively, the data can be split on the basis of the predictor values.
Willett (1999) and Clark (1997) propose data splitting based on mazimum
dissimilarity sampling. Dissimilarity between two samples can be measured
in a number of ways. The simplest method is to use the distance between
the predictor values for two samples. If the distance is small, the points are
in close proximity. Larger distances between points are indicative of dissim-
ilarity. To use dissimilarity as a tool for data splitting, suppose the test set
is initialized with a single sample. The dissimilarity between this initial sam-
ple and the unallocated samples can be calculated. The unallocated sample
that is most dissimilar would then be added to the test set. To allocate more
samples to the test set, a method is needed to determine the dissimilarities
between groups of points (i.e., the two in the test set and the unallocated
points). One approach is to use the average or minimum of the dissimilari-
ties. For example, to measure the dissimilarities between the two samples in
the test set and a single unallocated point, we can determine the two dissim-
ilarities and average them. The third point added to the test set would be
chosen as having the maximum average dissimilarity to the existing set. This
process would continue until the targeted test set size is achieved.

Figure 4.5 illustrates this process for the example classification data. Dis-
similarity sampling was conducted separately within each class. First, a sam-
ple within each class was chosen to start the process (designated as B and
® in the figure). The dissimilarity of the initial sample to the unallocated
samples within the class was computed and the most dissimilar point was
added to the test set. For the first class, the most dissimilar point was in the
extreme Southwest of the initial sample. On the second round, the dissimilar-
ities were aggregated using the minimum (as opposed to the average). Again,
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Fig. 4.5: An example of maximum dissimilarity sampling to create a test set.
After choosing an initial sample within a class, 14 more samples were added

for the first class, the chosen point was far in the Northeast of the predictor
space. As the sampling proceeds, samples were selected on the periphery of
the data then work inward.

Martin et al. (2012) compares different methods of splitting data, including
random sampling, dissimilarity sampling, and other methods.

4.4 Resampling Techniques

Generally, resampling techniques for estimating model performance operate
similarly: a subset of samples are used to fit a model and the remaining sam-
ples are used to estimate the efficacy of the model. This process is repeated
multiple times and the results are aggregated and summarized. The differ-
ences in techniques usually center around the method in which subsamples
are chosen. We will consider the main flavors of resampling in the next few
subsections.

k-Fold Cross-Validation

The samples are randomly partitioned into k& sets of roughly equal size. A
model is fit using the all samples except the first subset (called the first
fold). The held-out samples are predicted by this model and used to estimate
performance measures. The first subset is returned to the training set and
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procedure repeats with the second subset held out, and so on. The k resam-
pled estimates of performance are summarized (usually with the mean and
standard error) and used to understand the relationship between the tuning
parameter(s) and model utility. The cross-validation process with k = 3 is
depicted in Fig. 4.6.

A slight variant of this method is to select the k partitions in a way that
makes the folds balanced with respect to the outcome (Kohavi 1995). Strati-
fied random sampling, previously discussed in Sect. 4.3, creates balance with
respect to the outcome.

Another version, leave-one-out cross-validation (LOOCYV), is the special
case where k is the number of samples. In this case, since only one sam-
ple is held-out at a time, the final performance is calculated from the k in-
dividual held-out predictions. Additionally, repeated k-fold cross-validation
replicates the procedure in Fig.4.6 multiple times. For example, if 10-fold
cross-validation was repeated five times, 50 different held-out sets would be
used to estimate model efficacy.

The choice of k is usually 5 or 10, but there is no formal rule. As k gets
larger, the difference in size between the training set and the resampling
subsets gets smaller. As this difference decreases, the bias of the technique
becomes smaller (i.e., the bias is smaller for ¥ = 10 than k¥ = 5). In this
context, the bias is the difference between the estimated and true values of
performance.

Another important aspect of a resampling technique is the uncertainty
(i.e., variance or noise). An unbiased method may be estimating the correct
value (e.g., the true theoretical performance) but may pay a high price in
uncertainty. This means that repeating the resampling procedure may pro-
duce a very different value (but done enough times, it will estimate the true
value). k-fold cross-validation generally has high variance compared to other
methods and, for this reason, might not be attractive. It should be said that
for large training sets, the potential issues with variance and bias become
negligible.

From a practical viewpoint, larger values of k£ are more computationally
burdensome. In the extreme, LOOCYV is most computationally taxing because
it requires as many model fits as data points and each model fit uses a subset
that is nearly the same size of the training set. Molinaro (2005) found that
leave-one-out and k& =10-fold cross-validation yielded similar results, indicat-
ing that £k = 10 is more attractive from the perspective of computational
efficiency. Also, small values of k, say 2 or 3, have high bias but are very
computationally efficient. However, the bias that comes with small values of
k is about the same as the bias produced by the bootstrap (see below), but
with much larger variance.

Research (Molinaro 2005; Kim 2009) indicates that repeating k-fold cross-
validation can be used to effectively increase the precision of the estimates
while still maintaining a small bias.
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Fig. 4.6: A schematic of threefold cross-validation. Twelve training set sam-
ples are represented as symbols and are allocated to three groups. These
groups are left out in turn as models are fit. Performance estimates, such as
the error rate or R? are calculated from each set of held-out samples. The aver-
age of the three performance estimates would be the cross-validation estimate
of model performance. In practice, the number of samples in the held-out sub-
sets can vary but are roughly equal size

Generalized Cross-Validation

For linear regression models, there is a formula for approximating the leave-
one-out error rate. The generalized cross-validation (GCV) statistic (Golub
et al. 1979) does not require iterative refitting of the model to different data
subsets. The formula for this statistic is the 4;, training set outcome

N
chzlzn:< Yi — Ui )
n<=\1—df/n
where y; is the i*" in the training set set outcome, §J; is the model prediction
of that outcome, and df is the degrees of freedom of the model. The degrees
of freedom are an accounting of how many parameters are estimated by the
model and, by extension, a measure of complexity for linear regression models.
Based on this equation, two models with the same sums of square errors (the
numerator) would have different GCV values if the complexities of the models
were different.

Repeated Training/Test Splits

Repeated training/test splits is also known as “leave-group-out cross-
validation” or “Monte Carlo cross-validation.” This technique simply creates
multiple splits of the data into modeling and prediction sets (see Fig.4.7).
The proportion of the data going into each subset is controlled by the prac-
titioner as is the number of repetitions. As previously discussed, the bias
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Fig. 4.7: A schematic of B repeated training and test set partitions. Twelve
training set samples are represented as symbols and are allocated to B subsets
that are 2/3 of the original training set. One difference between this procedure
and k-fold cross-validation are that samples can be represented in multiple
held-out subsets. Also, the number of repetitions is usually larger than in
k-fold cross-validation

of the resampling technique decreases as the amount of data in the subset
approaches the amount in the modeling set. A good rule of thumb is about
75-80 %. Higher proportions are a good idea if the number of repetitions
is large.

The number of repetitions is important. Increasing the number of subsets
has the effect of decreasing the uncertainty of the performance estimates.
For example, to get a gross estimate of model performance, 25 repetitions will
be adequate if the user is willing to accept some instability in the resulting
values. However, to get stable estimates of performance, it is suggested to
choose a larger number of repetitions (say 50-200). This is also a function
of the proportion of samples being randomly allocated to the prediction set;
the larger the percentage, the more repetitions are needed to reduce the
uncertainty in the performance estimates.

The Bootstrap

A bootstrap sample is a random sample of the data taken with replace-
ment (Efron and Tibshirani 1986). This means that, after a data point is
selected for the subset, it is still available for further selection. The bootstrap
sample is the same size as the original data set. As a result, some samples
will be represented multiple times in the bootstrap sample while others will
not be selected at all. The samples not selected are usually referred to as the
“out-of-bag” samples. For a given iteration of bootstrap resampling, a model
is built on the selected samples and is used to predict the out-of-bag samples
(Fig. 4.8).

In general, bootstrap error rates tend to have less uncertainty than k-fold
cross-validation (Efron 1983). However, on average, 63.2 % of the data points
the bootstrap sample are represented at least once, so this technique has bias
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Fig. 4.8: A schematic of bootstrap resampling. Twelve training set samples
are represented as symbols and are allocated to B subsets. Each subset is
the same size as the original and can contain multiple instances of the same
data point. Samples not selected by the bootstrap are predicted and used to
estimate model performance

similar to k-fold cross-validation when k = 2. If the training set size is small,
this bias may be problematic, but will decrease as the training set sample
size becomes larger.

A few modifications of the simple bootstrap procedure have been devised
to eliminate this bias. The “632 method” (Efron 1983) addresses this issue by
creating a performance estimate that is a combination of the simple boot-
strap estimate and the estimate from re-predicting the training set (e.g., the
apparent error rate). For example, if a classification model was characterized
by its error rate, the 632 method would use

(0.632 x simple bootstrap estimate) + (0.368 x apparent error rate).

The modified bootstrap estimate reduces the bias, but can be unstable with
small samples sizes. This estimate can also result in unduly optimistic results
when the model severely over-fits the data, since the apparent error rate will
be close to zero. Efron and Tibshirani (1997) discuss another technique, called
the “632+ method,” for adjusting the bootstrap estimates.

4.5 Case Study: Credit Scoring

A straightforward application of predictive models is credit scoring. Existing
data can be used to create a model to predict the probability that applicants
have good credit. This information can be used to quantify the risk to the
lender.

The German credit data set is a popular tool for benchmarking machine
learning algorithms. It contains 1,000 samples that have been given labels
of good and bad credit. In the data set, 70% were rated as having good
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credit. As discussed in Sect. 11.2, when evaluating the accuracy of a model,
the baseline accuracy rate to beat would be 70 % (which we could achieve by
simply predicting all samples to have good credit).

Along with these outcomes, data were collected related to credit history,
employment, account status, and so on. Some predictors are numeric, such as
the loan amount. However, most of the predictors are categorical in nature,
such as the purpose of the loan, gender, or marital status. The categorical
predictors were converted to “dummy variables” that related to a single cat-
egory. For example, the applicant’s residence information was categorized as
either “rent,” “own,” or “free housing.” This predictor would be converted to
three yes/no bits of information for each category. For example, one predic-
tor would have a value of one if the applicant rented and is zero otherwise.
Creation of dummy variables is discussed at length in Sect. 3.6. In all, there
were 41 predictors used to model the credit status of an individual.

We will use these data to demonstrate the process of tuning models us-
ing resampling, as defined in Fig.4.4. For illustration, we took a stratified
random sample of 800 customers to use for training models. The remaining
samples will be used as a test set to verify performance when a final model is
determined. Section 11.2 will discuss the results of the test set in more detail.

4.6 Choosing Final Tuning Parameters

Once model performance has been quantified across sets of tuning parame-
ters, there are several philosophies on how to choose the final settings. The
simplest approach is to pick the settings associated with the numerically best
performance estimates.

For the credit scoring example, a nonlinear support vector machine model
was evaluated over cost values ranging from 272 to 27. Each model was eval-
uated using five repeats of 10-fold cross-validation. Figure 4.9 and Table 4.1
show the accuracy profile across the candidate values of the cost parameter.
For each model, cross-validation generated 50 different estimates of the accu-
racy; the solid points in Fig. 4.9 are the average of these estimates. The bars
reflect the average plus/minus two-standard errors of the mean. The pro-
file shows an increase in accuracy until the cost value is one. Models with
cost values between 1 and 16 are relatively constant; after which, the accu-
racy decreases (likely due to over-fitting). The numerically optimal value of
the cost parameter is 8, with a corresponding accuracy rate of 75 %. Notice
that the apparent accuracy rate, determined by re-predicting the training set
samples, indicates that the model improves as the cost is increased, although
more complex models over-fit the training set.

1 This model uses a radial basis function kernel, defined in Sect. 13.4. Although not
explored here, we used the analytical approach discussed later for determining the
kernel parameter and fixed this value for all resampling techniques.
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Fig. 4.9: The performance profile of a radial basis function support vec-
tor machine for the credit scoring example over different values of the cost
parameter. The vertical lines indicate 4+ two-standard errors of the accuracy

In general, it may be a good idea to favor simpler models over more
complex ones and choosing the tuning parameters based on the numerically
optimal value may lead to models that are overly complicated. Other schemes
for choosing less complex models should be investigated as they might lead
to simpler models that provide acceptable performance (relative to the nu-
merically optimal settings).

The “one-standard error” method for choosing simpler models finds the nu-
merically optimal value and its corresponding standard error and then seeks
the simplest model whose performance is within a single standard error of
the numerically best value. This procedure originated with classification and
regression trees (Breiman et al. (1984) and Sects. 8.1 and 14.1). In Fig.4.10,
the standard error of the accuracy values when the cost is 8 is about 0.7 %.
This technique would find the simplest tuning parameter settings associated
with accuracy no less than 74.3 % (75 %—0.7 %). This procedure would choose
a value of 2 for the cost parameter.

Another approach is to choose a simpler model that is within a certain
tolerance of the numerically best value. The percent decrease in performance
could be quantified by (X — O)/O where X is the performance value and O
is the numerically optimal value. For example, in Fig. 4.9, the best accuracy
value across the profile was 75 %. If a 4 % loss in accuracy was acceptable as
a trade-off for a simpler model, accuracy values greater than 71.2 % would
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Table 4.1: Repeated cross-validation accuracy results for the support vector
machine model

Resampled accuracy (%)

Cost  Mean Std. error % Tolerance
0.25 70.0 0.0 —6.67
0.50 71.3 0.2 —4.90
1.00 74.0 0.5 -1.33
2.00 74.5 0.7 -0.63
4.00 T4.1 0.7 -1.20
8.00 75.0 0.7 0.00
16.00 74.9 0.8 -0.13
32.00 725 0.7 —3.40
64.00 72.0 0.8 —4.07
128.00 72.0 0.8 —4.07

The one-standard error rule would select the simplest model with accuracy no less
than 74.3 % (75 %—0.7 %). This corresponds to a cost value of 2. The “pick-the-best”
solution is shown in bold

be acceptable. For the profile in Fig.4.9, a cost value of 1 would be chosen
using this approach.

As an illustration, additional resampling methods were applied to the same
data: repeated 10-fold cross-validation, LOOCV, the bootstrap (with and
without the 632 adjustment), and repeated training/test splits (with 20 %
held-out). The latter two methods used 50 resamples to estimate performance.

The results are shown in Fig.4.10. A common pattern within the cross-
validation methods is seen where accuracy peaks at cost values between 4
and 16 and stays roughly constant within this window.

In each case, performance rapidly increases with the cost value and then,
after the peak, decreases at a slower rate as over-fitting begins to occur.
The cross-validation techniques estimate the accuracy to be between 74.5 %
and 76.6 %. Compared to the other methods, the simple bootstrap is slightly
pessimistic, estimating the accuracy to be 74.2 % while the 632 rule appears
to overcompensate for the bias and estimates the accuracy to be 82.3%.
Note that the standard error bands of the simple 10-fold cross-validation
technique are larger than the other methods, mostly because the standard
error is a function of the number of resamples used (10 versus the 50 used by
the bootstrap or repeated splitting).

The computational times varied considerably. The fastest was 10-fold
cross-validation, which clocked in at 0.82 min. Repeated cross-validation, the
bootstrap, and repeated training-test splits fit the same number of models
and, on average, took about 5-fold more time to finish. LOOCV, which fits
as many models as there are samples in the training set, took 86-fold longer
and should only be considered when the number of samples is very small.
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Fig. 4.10: The performance profile of nonlinear support vector machine over
different values of the cost parameter for the credit scoring example using
several different resampling procedures. The wvertical lines indicate + two-

standard errors of the accuracy

4.7 Data Splitting Recommendations

As previously discussed, there is a strong technical case to be made against

a single, independent test set:

e A test set is a single evaluation of the model and has limited ability to
characterize the uncertainty in the results.
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e Proportionally large test sets divide the data in a way that increases bias
in the performance estimates.
e With small sample sizes:

— The model may need every possible data point to adequately determine
model values.

— The uncertainty of the test set can be considerably large to the point
where different test sets may produce very different results.

e Resampling methods can produce reasonable predictions of how well the
model will perform on future samples.

No resampling method is uniformly better than another; the choice should
be made while considering several factors. If the samples size is small, we
recommend repeated 10-fold cross-validation for several reasons: the bias and
variance properties are good and, given the sample size, the computational
costs are not large. If the goal is to choose between models, as opposed to
getting the best indicator of performance, a strong case can be made for
using one of the bootstrap procedures since these have very low variance.
For large sample sizes, the differences between resampling methods become
less pronounced, and computational efficiency increases in importance. Here,
simple 10-fold cross-validation should provide acceptable variance, low bias,
and is relatively quick to compute.

Varma and Simon (2006) and Boulesteix and Strobl (2009) note that there
is a potential bias that can occur when estimating model performance during
parameter tuning. Suppose that the final model is chosen to correspond to the
tuning parameter value associated with the smallest error rate. This error rate
has the potential to be optimistic since it is a random quantity that is chosen
from a potentially large set of tuning parameters. Their research is focused on
scenarios with a small number of samples and a large number of predictors,
which exacerbates the problem. However, for moderately large training sets,
our experience is that this bias is small. In later sections, comparisons are
made between resampled estimates of performance and those derived from a
test set. For these particular data sets, the optimization bias is insubstantial.

4.8 Choosing Between Models

Once the settings for the tuning parameters have been determined for each
model, the question remains: how do we choose between multiple models?
Again, this largely depends on the characteristics of the data and the type
of questions being answered. However, predicting which model is most fit
for purpose can be difficult. Given this, we suggest the following scheme for
finalizing the type of model:
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1. Start with several models that are the least interpretable and most flexible,
such as boosted trees or support vector machines. Across many problem
domains, these models have a high likelihood of producing the empirically
optimum results (i.e., most accurate).

2. Investigate simpler models that are less opaque (e.g., not complete black
boxes), such as multivariate adaptive regression splines (MARS), partial
least squares, generalized additive models, or naive Bayes models.

3. Consider using the simplest model that reasonably approximates the per-
formance of the more complex methods.

Using this methodology, the modeler can discover the “performance ceiling”
for the data set before settling on a model. In many cases, a range of models
will be equivalent in terms of performance so the practitioner can weight the
benefits of different methodologies (e.g., computational complexity, easy of
prediction, interpretability). For example, a nonlinear support vector machine
or random forest model might have superior accuracy, but the complexity
and scope of the prediction equation may prohibit exporting the prediction
equation to a production system. However, if a more interpretable model,
such as a MARS model, yielded similar accuracy, the implementation of the
prediction equation would be trivial and would also have superior execution
time.

Consider the credit scoring support vector machine classification model
that was characterized using resampling in Sect. 4.6. Using repeated 10-fold
cross-validation, the accuracy for this model was estimated to be 75 % with
most of the resampling results between 66 % and 82 %.

Logistic regression (Sect. 12.2) is a more simplistic technique than the non-
linear support vector machine model for estimating a classification boundary.
It has no tuning parameters and its prediction equation is simple and easy to
implement using most software. Using the same cross-validation scheme, the
estimated accuracy for this model was 74.9% with most of the resampling
results between 66 % and 82 %.

The same 50 resamples were used to evaluate each model. Figure 4.11 uses
box plots to illustrate the distribution of the resampled accuracy estimates.
Clearly, there is no performance loss by using a more straightforward model
for these data.

Hothorn et al. (2005) and Eugster et al. (2008) describe statistical methods
for comparing methodologies based on resampling results. Since the accura-
cies were measured using identically resampled data sets, statistical methods
for paired comparisons can be used to determine if the differences between
models are statistically significant. A paired t¢-test can be used to evaluate
the hypothesis that the models have equivalent accuracies (on average) or,
analogously, that the mean difference in accuracy for the resampled data sets
is zero. For these two models, the average difference in model accuracy was
0.1 %, with the logistic regression supplying the better results. The 95 % con-
fidence interval for this difference was (—1.2%, 1%), indicating that there
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Fig. 4.11: A comparison of the cross-validated accuracy estimates from a
support vector machine model and a logistic regression model for the credit
scoring data described in Sect. 4.5

is no evidence to support the idea that the accuracy for either model is
significantly better. This makes intuitive sense; the resampled accuracies in
Fig.4.11 range from 61.3% to 85 %; given this amount of variation in the
results, a 0.1 % improvement of accuracy is not meaningful.

When a model is characterized in multiple ways, there is a possibility that
comparisons between models can lead to different conclusions. For example,
if a model is created to predict two classes, sensitivity and specificity may
be used to characterize the efficacy of models (see Chap.11). If the data
set includes more events than nonevents, the sensitivity can be estimated
with greater precision than the specificity. With increased precision, there is
a higher likelihood that models can be differentiated in terms of sensitivity
than for specificity.

4.9 Computing

The R language is used to demonstrate modeling techniques. A concise review
of R and its basic usage are found in Appendix B. Those new to R should
review these materials prior to proceeding. The following sections will refer-
ence functions from the AppliedPredictiveModeling, caret, Design, e1071, ipred
and MASS packages. Syntax will be demonstrated using the simple two-class
example shown in Figs. 4.2 and 4.3 and the data from the credit scoring case
study.
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Data Splitting

The two-class data shown in Fig.4.1 are contained in the AppliedPredictive-
Modeling package and can be obtained using

> library(AppliedPredictiveModeling)
> data(twoClassData)

The predictors for the example data are stored in a data frame called
predictors. There are two columns for the predictors and 208 samples in
rows. The outcome classes are contained in a factor vector called classes.

> str(predictors)
'data.frame': 208 obs. of 2 variables:
$ PredictorA: num 0.158 0.655 0.706 0.199 0.395 ...
$ PredictorB: num 0.1609 0.4918 0.6333 0.0881 0.4152 ...

> str(classes)

Factor w/ 2 levels "Class1","Class2": 2222222222 ...

The base R function sample can create simple random splits of the data.
To create stratified random splits of the data (based on the classes), the
createDataPartition function in the caret package can be used. The percent
of data that will be allocated to the training set should be specified.

> # Set the random number seed so we can reproduce the results
> set.seed (1)

> # By default, the numbers are returned as a list. Using
> # list = FALSE, a matrix of row numbers is generated.
> # These samples are allocated to the training set.
> trainingRows <- createDataPartition(classes,

+ p = .80,

+ list= FALSE)
>

head (trainingRows)
Resamplel

[1,] 99

[2,] 100

[3,] 101

[4,] 102

[5,] 103

[6,] 104

# Subset the data into objects for training using

# integer sub-setting.

trainPredictors <- predictors[trainingRows, ]
trainClasses <- classes[trainingRows]

# Do the same for the test set using negative integers.
testPredictors <- predictors[-trainingRows, ]
testClasses <- classes[-trainingRows]

V VVVVVYyV

> str(trainPredictors)
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'data.frame': 167 obs. of 2 variables:
$ PredictorA: num 0.226 0.262 0.52 0.577 0.426 ...
$ PredictorB: num 0.291 0.225 0.547 0.553 0.321 ...

> str(testPredictors)
'data.frame': 41 obs. of 2 variables:

$ PredictorA: num 0.0658 0.1056 0.2909 0.4129 0.0472 ...
$ PredictorB: num 0.1786 0.0801 0.3021 0.2869 0.0414 ...

To generate a test set using maximum dissimilarity sampling, the caret func-
tion maxdissim can be used to sequentially sample the data.

Resampling

The caret package has various functions for data splitting. For example, to
use repeated training/test splits, the function createDataPartition could be
used again with an additional argument named times to generate multiple
splits.
> set.seed(1)
> # For illustration, generate the information needed for three
> # resampled versions of the training set.
> repeatedSplits <- createDataPartition(trainClasses, p = .80,
+ times = 3)
> str(repeatedSplits)
List of 3

$ Resamplel: int [1:135] 1 23456 7 9 11 12 ...

$ Resample2: int [1:135] 4 6 7 8 9 10 11 12 13 14 ...

$ Resample3: int [1:135] 2 346 7 8 9 10 11 12 ...

Similarly, the caret package has functions createResamples (for bootstrapping),
createFolds (for k-old cross-validation) and createMultiFolds (for repeated
cross-validation). To create indicators for 10-fold cross-validation,

> set.seed(1)

> cvSplits <- createFolds(trainClasses, k = 10,

+ returnTrain = TRUE)

> str(cvSplits)

List of 10

$ FoldO1: int [1:151] 1 234567 8 9 11 ...
$ Fold02: int [1:150] 1 2 3456 8 9 10 12 ...
$ Fold03: int [1:150] 1 23 46 7 8 10 11 13 ...
$ Fold04: int [1:151] 1 234567 8 9 10 ...
$ Fold05: int [1:150] 1 23457 8 9 10 11 ...
$ Fold06: int [1:150] 24 56 7 8 9 10 11 12 ...
$ Fold07: int [1:150] 1 234567 89 10 ...
$ Fold08: int [1:151] 1 234567 8 9 10 ...
$ Fold09: int [1:150] 1 3456 7 9 10 11 12 ...
$ Fold10: int [1:150] 1 2356 7 8 9 10 11 ...

> # Get the first set of row numbers from the list.
> foldl <- cvSplits[[1]]
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To get the first 90 % of the data (the first fold):

> cvPredictorsl <- trainPredictors[foldl,]
> cvClassesl <- trainClasses[fold1]
> nrow(trainPredictors)

[1] 167
> nrow(cvPredictors1)

[1] 151

In practice, functions discussed in the next section can be used to automati-
cally create the resampled data sets, fit the models, and evaluate performance.

Basic Model Building in R

Now that we have training and test sets, we could fit a 5-nearest neighbor
classification model (Fig. 4.3) to the training data and use it to predict the test
set. There are multiple R functions for building this model: the knn function
in the MASS package, the ipredknn function in the ipred package, and the knn3
function in caret. The xnn3 function can produce class predictions as well as
the proportion of neighbors for each class.

There are two main conventions for specifying models in R: the formula
interface and the non-formula (or “matrix”) interface. For the former, the
predictors are explicitly listed. A basic R formula has two sides: the left-hand
side denotes the outcome and the right-hand side describes how the predictors
are used. These are separated with a tilde (~). For example, the formula

> modelFunction(price ~ numBedrooms + numBaths + acres,
+ data = housingData)

would predict the closing price of a house using three quantitative character-
istics. The formula y ~ . can be used to indicate that all of the columns in the
data set (except y) should be used as a predictor. The formula interface has
many conveniences. For example, transformations such as log(acres) can be
specified in-line. Unfortunately, R does not efficiently store the information
about the formula. Using this interface with data sets that contain a large
number of predictors may unnecessarily slow the computations.

The non-formula interface specifies the predictors for the model using a
matrix or data frame (all the predictors in the object are used in the model).
The outcome data are usually passed into the model as a vector object.
For example,

> modelFunction(x = housePredictors, y = price)

Note that not all R functions have both interfaces.
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For knn3, we can estimate the 5-nearest neighbor model with

> trainPredictors <- as.matrix(trainPredictors)
knnFit <- knn3(x = trainPredictors, y = trainClasses, k = 5)
> knnFit

v

b-nearest neighbor classification model

Call:
knn3.matrix(x = trainPredictors, y = trainClasses, k = 5)

Training set class distribution:

Classl Class2
89 78

At this point, the knn3 object is ready to predict new samples. To assign
new samples to classes, the predict method is used with the model object.
The standard convention is
> testPredictions <- predict(knnFit, newdata = testPredictors,
+ type = "class")
> head(testPredictions)
[1] Class2 Class2 Classl Classl Class2 Class2
Levels: Classl Class2
> str(testPredictions)
Factor w/ 2 levels "Class1","Class2": 2211222222 ...

The value of the type argument varies across different modeling functions.

Determination of Tuning Parameters

To choose tuning parameters using resampling, sets of candidate values are
evaluated using different resamples of the data. A profile can be created to
understand the relationship between performance and the parameter values.
R has several functions and packages for this task. The e1071 package contains
the tune function, which can evaluate four types of models across a range of
parameters. Similarly, the errorest function in the ipred package can resample
single models. The train function in the caret package has built-in modules
for 144 models and includes capabilities for different resampling methods,
performances measures, and algorithms for choosing the best model from the
profile. This function also has capabilities for parallel processing so that the
resampled model fits can be executed across multiple computers or processors.
Our focus will be on the train function.

Section 4.6 illustrated parameter tuning for a support vector machine using
the credit scoring data. Using resampling, a value of the cost parameter was
estimated. As discussed in later chapters, the SVM model is characterized
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by what type of kernel function the model uses. For example, the linear
kernel function specifies a linear relationship between the predictors and the
outcome. For the credit scoring data, a radial basis function (RBF) kernel
function was used. This kernel function has an additional tuning parameter
associated with it denoted as o, which impacts the smoothness of the decision
boundary. Normally, several combinations of both tuning parameters would
be evaluated using resampling. However, Caputo et al. (2002) describe an
analytical formula that can be used to get reasonable estimates of o. The
caret function train uses this approach to estimate the kernel parameter,
leaving only the cost parameter for tuning.

To tune an SVM model using the credit scoring training set samples, the
train function can be used. Both the training set predictors and outcome are
contained in an R data frame called GermanCreditTrain.

> library(caret)
> data(GermanCredit)

The chapters directory of the AppliedPredictiveModeling package contains
the code for creating the training and test sets. These data sets are contained
in the data frames GermanCreditTrain and GermanCreditTest, respectively.

We will use all the predictors to model the outcome. To do this, we use
the formula interface with the formula Class ~ . the classes are stored in the

data frame column called class. The most basic function call would be
> set.seed(1056)
> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> # The "method" argument indicates the model type.
> # See 7train for a list of available models.

> method = "svmRadial")

However, we would like to tailor the computations by overriding several of
the default values. First, we would like to pre-process the predictor data by
centering and scaling their values. To do this, the preProc argument can be

used:
> set.seed(1056)

> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"))

Also, for this function, the user can specify the exact cost values to investigate.
In addition, the function has algorithms to determine reasonable values for
many models. Using the option tuneLength = 10, the cost values 272, 272

...27 are evaluated.
> set.seed(1056)
> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,

> method = "svmRadial",

> preProc = c("center", "scale"),
> tuneLength = 10)



86 4 Over-Fitting and Model Tuning

By default, the basic bootstrap will be used to calculate performance mea-
sures. Repeated 10-fold cross-validation can be specified with the trainControl

function. The final syntax is then
> set.seed(1056)
> svmFit <- train(Class ~ .,

> data = GermanCreditTrain,
> method = "svmRadial",
> preProc = c("center", "scale"),
> tunelLength = 10,
> trControl = trainControl (method = "repeatedcv",
> repeats = 5,
> classProbs = TRUE))
> svmFit

800 samples

41 predictors

2 classes: 'Bad', 'Good'

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 720, 720, 720, 720, 720, 720,

Resampling results across tuning parameters:

C Accuracy Kappa Accuracy SD Kappa SD
0.25 0.7 0 0 0

0.5 0.724 0.141 0.0218 0.0752
1 0.75 0.326 0.0385 0.106
2 0.75 0.363 0.0404 0.0984
4 0.754 0.39 0.0359 0.0857
8 0.738 0.361 0.0404 0.0887
16 0.738 0.361 0.0458 0.1

32 0.732 0.35 0.043 0.0928
64 0.732 0.352 0.0453 0.0961
128 0.731 0.349 0.0451 0.0936

Tuning parameter 'sigma' was held constant at a value of 0.0202
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were C = 4 and sigma = 0.0202.

A different random number seed and set of cost values were used in the
original analysis, so the results are not exactly the same as those shown in
Sect. 4.6. Using a “pick the best” approach, a final model was fit to all 800
training set samples with a ¢ value of 0.0202 and a cost value of 4. The plot
method can be used to visualize the performance profile. Figure 4.12 shows
an example visualization created from the syntax

> # A line plot of the average performance
> plot(svmFit, scales = list(x = list(log = 2)))

To predict new samples with this model, the predict method is called

> predictedClasses <- predict(svmFit, GermanCreditTest)
> str(predictedClasses)



4.9 Computing 87

0.75 L

0.74 o

0.73 -

0.72 + L

0.71 L

Accuracy (Repeated Cross—Validation)

0.70 o

T T
/-2 270 2/2 274 26
Cost

Fig. 4.12: A visualization of the average performance profile of an SVM clas-
sification model produced from the plot method for the train class

Factor w/ 2 levels "Bad","Good": 1122122211 ...

> # Use the "type" option to get class probabilities
> predictedProbs <- predict(svmFit, newdata = GermanCreditTest,

+ type = "prob")
> head (predictedProbs)
Bad Good
1 0.5351870 0.4648130
2 0.5084049 0.4915951
3 0.3377344 0.6622656
4 0.1092243 0.8907757
5 0.6024404 0.3975596
6 0.1339467 0.8660533

There are other R packages that can estimate performance via resampling.
The validate function in the Design package and the errorest function in the
ipred package can be used to estimate performance for a model with a single
candidate set of tuning parameters. The tune function of the €1071 package
can also determine parameter settings using resampling.

Between-Model Comparisons

In Sect. 4.6, the SVM model was contrasted with a logistic regression model.
While basic logistic regression has no tuning parameters, resampling can still
be used to characterize the performance of the model. The train function is
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once again used, with a different method argument of "gim" (for generalized
linear models). The same resampling specification is used and, since the ran-
dom number seed is set prior to modeling, the resamples are exactly the same

as those in the SVM model.

+ 4+ + + VvV Vv

>
>

set.seed(1056)
logisticReg <- train(Class ~ .,
data = GermanCreditTrain,
method = "glm",
trControl = trainControl (method =

logisticReg

800 samples
41 predictors
2 classes: 'Bad', 'Good'

No pre-processing
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 720, 720, 720, 720, 720, 720,
Resampling results

Accuracy Kappa Accuracy SD Kappa SD
0.749 0.365 0.0516 0.122

To compare these two models based on their cross-validation statistics,
the resamples function can be used with models that share a common set of
resampled data sets. Since the random number seed was initialized prior to
running the SVM and logistic models, paired accuracy measurements exist
for each data set. First, we create a resamples object from the models:

resamp <- resamples(list(SVM = svmFit, Logistic = logisticReg))
summary (resamp)
Call:
summary .resamples(object = resamp)
Models: SVM, Logistic
Number of resamples: 50
Accuracy

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
SVM 0.6500 0.7375 0.7500 0.754 0.7625 0.85 0
Logistic 0.6125 0.7250 0.7562 0.749 0.7844 0.85 0
Kappa

Min. 1st Qu. Median Mean 3rd Qu. Max. NA'
SVM 0.18920 0.3519 0.3902 0.3897 0.4252 0.5946
Logistic 0.07534 0.2831 0.3750 0.3648 0.4504 0.6250

4 Over-Fitting and Model Tuning

"repeatedcv”,
repeats = 5))

s
0
0
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The summary indicates that the performance distributions are very similar.
The NA column corresponds to cases where the resampled models failed (usu-
ally due to numerical issues). The resamples class has several methods for
visualizing the paired values (see ?xyplot.resamples for a list of plot types).
To assess possible differences between the models, the diff method is used:
> modelDifferences <- diff (resamp)

> summary (modelDifferences)

Call:
summary.diff.resamples(object = modelDifferences)

p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for HO: difference = 0

Accuracy

SVM Logistic
SVM 0.005
Logistic 0.5921

Kappa

SVM Logistic
SVM 0.02498
Logistic 0.2687

The p-values for the model comparisons are large (0.592 for accuracy and
0.269 for Kappa), which indicates that the models fail to show any difference
in performance.

Exercises

4.1. Consider the music genre data set described in Sect.1.4. The objective
for these data is to use the predictors to classify music samples into the
appropriate music genre.

(a) What data splitting method(s) would you use for these data? Explain.
(b) Using tools described in this chapter, provide code for implementing your
approach(es).

4.2. Consider the permeability data set described in Sect. 1.4. The objective
for these data is to use the predictors to model compounds’ permeability.

(a) What data splitting method(s) would you use for these data? Explain.
(b) Using tools described in this chapter, provide code for implementing your
approach(es).

4.3. Partial least squares (Sect. 6.3) was used to model the yield of a chemical
manufacturing process (Sect. 1.4). The data can be found in the AppliedPre-
dictiveModeling package and can be loaded using
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Resampled R?
Components Mean Std. Error

1 0.444 0.0272
2 0.500 0.0298
3 0.533 0.0302
4 0.545 0.0308
5 0.542 0.0322
6 0.537 0.0327
7 0.534 0.0333
8 0.534 0.0330
9 0.520 0.0326
10 0.507 0.0324

> library(AppliedPredictiveModeling)
> data(ChemicalManufacturingProcess)

The objective of this analysis is to find the number of PLS components
that yields the optimal R? value (Sect.5.1). PLS models with 1 through 10
components were each evaluated using five repeats of 10-fold cross-validation
and the results are presented in the following table:

(a) Using the “one-standard error” method, what number of PLS components
provides the most parsimonious model?

(b) Compute the tolerance values for this example. If a 10% loss in R? is
acceptable, then what is the optimal number of PLS components?

(c) Several other models (discussed in Part II) with varying degrees of com-
plexity were trained and tuned and the results are presented in Fig.4.13.
If the goal is to select the model that optimizes R?, then which model(s)
would you choose, and why?

(d) Prediction time, as well as model complexity (Sect.4.8) are other factors
to consider when selecting the optimal model(s). Given each model’s pre-
diction time, model complexity, and R? estimates, which model(s) would
you choose, and why?

4.4. Brodnjak-Vonina et al. (2005) develop a methodology for food laborato-
ries to determine the type of oil from a sample. In their procedure, they used
a gas chromatograph (an instrument that separate chemicals in a sample) to
measure seven different fatty acids in an oil. These measurements would then
be used to predict the type of oil in a food samples. To create their model,
they used 96 samples? of seven types of oils.

These data can be found in the caret package using data(oil). The oil
types are contained in a factor variable called 0ilType. The types are pumpkin

2 The authors state that there are 95 samples of known oils. However, we count 96
in their Table 1 (pp. 33-35 of the article).
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Fig. 4.13: A plot of the estimated model performance against the time to
predict 500,000 new samples using the chemical manufacturing data

(coded as a), sunflower (B), peanut (c), olive (D), soybean (E), rapeseed (F)
and corn (G). In R,

> data(oil)
> str(oilType)

Factor w/ 7 levels "A","B","C","D",..: 1111111111 ...
> table(0ilType)

0ilType

AAB CDE F G

37 26 3 71110 2

(a) Use the sample function in base R to create a completely random sample
of 60 oils. How closely do the frequencies of the random sample match
the original samples? Repeat this procedure several times of understand
the variation in the sampling process.

(b) Use the caret package function createDataPartition to create a stratified
random sample. How does this compare to the completely random sam-
ples?
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(c) With such a small samples size, what are the options for determining
performance of the model? Should a test set be used?

(d) One method for understanding the uncertainty of a test set is to use a
confidence interval. To obtain a confidence interval for the overall accu-
racy, the based R function binom.test can be used. It requires the user
to input the number of samples and the number correctly classified to
calculate the interval. For example, suppose a test set sample of 20 oil
samples was set aside and 76 were used for model training. For this test
set size and a model that is about 80 % accurate (16 out of 20 correct),
the confidence interval would be computed using

> binom.test (16, 20)

Exact binomial test

data: 16 and 20
number of successes = 16, number of trials = 20, p-value = 0.01182
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.563386 0.942666
sample estimates:
probability of success
0.8

In this case, the width of the 95% confidence interval is 37.9 %. Try
different samples sizes and accuracy rates to understand the trade-off
between the uncertainty in the results, the model performance, and the
test set size.



Part 11
Regression Models



Chapter 5

Measuring Performance in Regression
Models

For models predicting a numeric outcome, some measure of accuracy is
typically used to evaluate the effectiveness of the model. However, there are
different ways to measure accuracy, each with its own nuance. To understand
the strengths and weaknesses of a particular model, relying solely on a sin-
gle metric is problematic. Visualizations of the model fit, particularly residual
plots, are critical to understanding whether the model is fit for purpose. These
techniques are discussed in this chapter.

5.1 Quantitative Measures of Performance

When the outcome is a number, the most common method for characteriz-
ing a model’s predictive capabilities is to use the root mean squared error
(RMSE). This metric is a function of the model residuals, which are the ob-
served values minus the model predictions. The mean squared error (MSE)
is calculated by squaring the residuals, summing them and dividing by the
number of samples. The RMSE is then calculated by taking the square root
of the MSE so that it is in the same units as the original data. The value
is usually interpreted as either how far (on average) the residuals are from
zero or as the average distance between the observed values and the model
predictions.

Another common metric is the coeflicient of determination, commonly
written as R2. This value can be interpreted as the proportion of the in-
formation in the data that is explained by the model. Thus, an R? value of
0.75 implies that the model can explain three-quarters of the variation in the
outcome. There are multiple formulas for calculating this quantity (Kvalseth
1985), although the simplest version finds the correlation coefficient between
the observed and predicted values (usually denoted by R) and squares it.

M. Kuhn and K. Johnson, Applied Predictive Modeling, 95
DOI 10.1007/978-1-4614-6849-3_5,
© Springer Science+Business Media New York 2013
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Fig. 5.1: A plot of the observed and predicted outcomes where the R? is
moderate (51 %), but predictions are not uniformly accurate. The diagonal
grey reference line indicates where the observed and predicted values would
be equal

While this is an easily interpretable statistic, the practitioner must re-
member that R? is a measure of correlation, not accuracy. Figure 5.1 shows
an example where the R? between the observed and predicted values is high
(51 %), but the model has a tendency to overpredict low values and underpre-
dict high ones. This phenomenon can be common to some of the tree-based
regression models discussed in Chap. 8. Depending on the context, this sys-
tematic bias in the predictions may be acceptable if the model otherwise
works well.

It is also important to realize that R? is dependent on the variation in the
outcome. Using the interpretation that this statistic measures the proportion
of variance explained by the model, one must remember that the denominator
of that proportion is calculated using the sample variance of the outcome. For
example, suppose a test set outcome has a variance of 4.2. If the RMSE of a
predictive model were 1, the R? would be roughly 76 %. If we had another test
set with exactly the same RMSE, but the test outcomes were less variable,
the results would look worse. For example, if the test set variance were 3, the
R? would be 67 %.

Practically speaking, this dependence on the outcome variance can also
have a drastic effect on how the model is viewed. For example, suppose we
were building a model to predict the sale price of houses using predictors such
as house characteristics (e.g., square footage, number of bedrooms, number
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of bathrooms), as well as lot size and location. If the range of the houses in
the test set was large, say from $60K to $2M, the variance of the sale price
would also be very large. One might view a model with a 90 % R? positively,
but the RMSE may be in the tens of thousands of dollars—poor predictive
accuracy for anyone selling a moderately priced property.

In some cases, the goal of the model is to simply rank new samples. As
previously discussed, pharmaceutical scientists may screen large numbers of
compounds for their activity in an effort to find “hits.” The scientists will
then follow up on the compounds predicted to be the most biologically ac-
tive. Here, the focus is on the ranking ability of the model rather than its
predictive accuracy. In this situation, determining the rank correlation be-
tween the observed and predicted values might be a more appropriate metric.
The rank correlation takes the ranks of the observed outcome values (as op-
posed to their actual numbers) and evaluates how close these are to ranks
of the model predictions. To calculate this value, the ranks of the observed
and predicted outcomes are obtained and the correlation coefficient between
these ranks is calculated. This metric is commonly known as Spearman’s rank
correlation.

5.2 The Variance-Bias Trade-off

The MSE can be decomposed into more specific pieces. Formally, the MSE
of a model is

ln
MSE = — i — 0i)°
S nE(y 9i)”,

=1

where y; is the outcome and ¢; is the model prediction of that sample’s
outcome. If we assume that the data points are statistically independent and
that the residuals have a theoretical mean of zero and a constant variance
of 02, then

E[MSE] = 02 + (Model Bias)? + Model Variance, (5.1)

where E is the expected value. The first part (02) is usually called “irreducible
noise” and cannot be eliminated by modeling. The second term is the squared
bias of the model. This reflects how close the functional form of the model
can get to the true relationship between the predictors and the outcome.
The last term is the model variance. Figure 5.2 shows extreme examples of
models that are either high bias or high variance. The data are a simulated
sin wave. The model fit shown in red splits the data in half and predicts each
half with a simple average. This model has low variance since it would not
substantially change if another set of data points were generated the same
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Fig. 5.2: Two model fits to a sin wave. The red line predicts the data using
simple averages of the first and second half of the data. The blue line is a
three-point moving average

way. However, it is ineffective at modeling the data since, due to its simplicity
and for this reason, it has high bias. Conversely, the blue line is a three-point
moving average. It is flexible enough to model the sin wave (i.e., low bias),
but small perturbations in the data will significantly change the model fit.
Because of this, it has high variance.

It is generally true that more complex models can have very high vari-
ance, which leads to over-fitting. On the other hand, simple models tend not
to over-fit, but under-fit if they are not flexible enough to model the true
relationship (thus high bias). Also, highly correlated predictors can lead to
collinearity issues and this can greatly increase the model variance. In sub-
sequent chapters, models will be discussed that can increase the bias in the
model to greatly reduce the model variance as a way to mitigate the problem
of collinearity. This is referred to as the variance-bias trade-off.

5.3 Computing

The following sections will reference functions from the caret package.

To compute model performance, the observed and predicted outcomes
should be stored in vectors. For regression, these vectors should be numeric.
Here, two example vectors are manually created to illustrate the techniques
(in practice, the vector of predictions would be produced by the model func-
tion):
> # Use the 'c' function to combine numbers into a vector
> observed <- ¢(0.22, 0.83, -0.12, 0.89, -0.23, -1.30, -0.15, -1.4,
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Fig. 5.3: Left: a plot of the observed and predicted values. Right: the residuals

versus the predicted values

+ 0.62, 0.99,
+
> predicted <- c(0.24, 0.78,
+ 0.49, 0.79,
+ -0.25, -0.64,
>
>

summary (residualValues)
Min. 1st Qu. Median

-0.18, 0.32, 0.34,

-0.66,
-1.19,
-1.26,

0.55, -1.30, -1.15, 0.20)

0.53, 0.70,
0.06, 0.75,
-0.07)

residualValues <- observed - predicted

Mean 3rd Qu. Max.

-0.9700 -0.4200 0.0800 -0.0310 0.2625 1.0100

-0.30,

-0.75,
-0.07,

0.04,

-0.41,
0.43,

-0.87,

-0.43,
-0.42,

An important step in evaluating the quality of the model is to visualize
the results. First, a plot of the observed values against the predicted values
helps one to understand how well the model fits. Also, a plot of the residuals
versus the predicted values can help uncover systematic patterns in the model
predictions, such as the trend shown in Fig. 5.1. The following two commands
were used to produce the images in Fig. 5.3:

plot(observed, predicted,
ylim = axisRange,
xlim = axisRange)

VV+ + VVvVvVyV

vV Vv Vv

# Add a 45 degree reference line
abline(0, 1, col = "darkgrey", 1ty = 2)

# Predicted values versus residuals
plot(predicted, residualValues, ylab = "residual")
abline(h = 0, col = "darkgrey", lty = 2)

# Observed values versus predicted values
# It is a good idea to plot the values on a common scale.
axisRange <- extendrange (c(observed, predicted))

The caret package contains functions for calculating the RMSE and the

R? value:
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> R2(predicted, observed)
[1] 0.5170123
> RMSE(predicted, observed)

[1] 0.5234883

There are different formulas for R?; Kvalseth (1985) provides a survey of
these. By default, the r2 function uses the square of the correlation coefficient.
Base R contains a function to compute the correlation, including Spearman’s
rank correlation.
> # Simple correlation
> cor(predicted, observed)

[1] 0.7190357
> # Rank correlation

> cor(predicted, observed, method = "spearman")

[1] 0.7554552



Chapter 6
Linear Regression and Its Cousins

In this chapter we will discuss several models, all of which are akin to linear
regression in that each can directly or indirectly be written in the form

Yi = bo +b1751 + boxio + - + bpxip + €4, (6.1)

where y; represents the numeric response for the ¢th sample, by represents the
estimated intercept, b; represents the estimated coefficient for the jth pre-
dictor, x;; represents the value of the jth predictor for the ith sample, and
e; represents random error that cannot be explained by the model. When a
model can be written in the form of Eq.6.1, we say that it is linear in the
parameters. In addition to ordinary linear regression, these types of mod-
els include partial least squares (PLS) and penalized models such as ridge
regression, the lasso, and the elastic net.

Each of these models seeks to find estimates of the parameters so that the
sum of the squared errors or a function of the sum of the squared errors is
minimized. Section 5.2 illustrated that the mean squared error (MSE) can
be divided into components of irreducible variation, model bias, and model
variance. The objectives of the methods presented in this chapter find pa-
rameter estimates that fall along the spectrum of the bias-variance trade-off.
Ordinary linear regression, at one extreme, finds parameter estimates that
have minimum bias, whereas ridge regression, the lasso, and the elastic net
find estimates that have lower variance. The impact of this trade-off on the
predictive ability of these models will be illustrated in the sections to follow.

A distinct advantage of models that follow the form of Eq.6.1 is that
they are highly interpretable. For example, if the estimated coefficient of
a predictor is 2.5, then a 1 unit increase in that predictor’s value would, on
average, increase the response by 2.5 units. Furthermore, relationships among
predictors can be further interpreted through the estimated coefficients.

Another advantage of these kinds of models is that their mathematical
nature enables us to compute standard errors of the coefficients, provided that
we make certain assumptions about the distributions of the model residuals.

M. Kuhn and K. Johnson, Applied Predictive Modeling, 101
DOI 10.1007/978-1-4614-6849-3_6,
© Springer Science+Business Media New York 2013
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These standard errors can then be used to assess the statistical significance of
each predictor in the model. This inferential view can provide a greater degree
of understanding of the model, as long as the distributional assumptions are
adequately met. Because this work focuses on model prediction, we will not
spend much time on the inferential nature of these models.

While linear regression-type models are highly interpretable, they can be
limited in their usefulness. First, these models are appropriate when the re-
lationship between the predictors and response falls along a hyperplane. For
example, if the data had just one predictor, then the techniques would be
appropriate if the relationship between the predictor and response fell along
a straight line. With more predictors, the relationship would need to fall close
to a flat hyperplane. If there is a curvilinear relationship between the pre-
dictors and response (e.g., such as quadratic, cubic, or interactions among
predictors), then linear regression models can be augmented with additional
predictors that are functions of the original predictors in an attempt to cap-
ture these relationships. More discussion about strategies for augmenting
the original predictors will follow in the sections below. However, nonlinear
relationships between predictors and the response may not be adequately
captured with these models. If this is the case for the data, then the meth-
ods detailed in Chaps. 7 and 8 will better uncover the predictive relationship
between the predictors and the response.

6.1 Case Study: Quantitative Structure-Activity
Relationship Modeling

Chemicals, including drugs, can be represented by chemical formulas. For
example, Fig. 6.1 shows the structure of aspirin, which contains nine carbon,
eight hydrogen, and four oxygen atoms. From this configuration, quantita-
tive measurements can be derived, such as the molecular weight, electrical
charge, or surface area. These quantities are referred to as chemical descrip-
tors, and there are myriad types of descriptors that can be derived from a
chemical equation. Some are simplistic, such as the number of carbon atoms,
while others could be described as arcane (e.g., the coefficient sum of the last
eigenvector from Barysz matrix weighted by the van der Waals volume).
Some characteristics of molecules cannot be analytically determined from
the chemical structure. For example, one way a compound may be of medi-
cal value is if it can inhibit production of a specific protein. This is usually
called the biological activity of a compound. The relationship between the
chemical structure and its activity can be complex. As such, the relationship
is usually determined empirically using experiments. One way to do this is to
create a biological assay for the target of interest (i.e., the protein). A set of
compounds can then be placed into the assay and their activity, or inhibition,
is measured. This activity information generates data which can be used as
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Fig. 6.1: A representation of aspirin, which contains carbon atoms (shown
as black balls) and hydrogen (white) and oxygen atoms (red). The chemical
formula for this molecule is 0=C(0Oc1lccccc1C(=0)0)C, from which molecular
descriptors can be determined, such as a molecular weight of 180.2 g/mol

the training set for predictive modeling so that compounds, which may not
yet exist, can be screened for activity. This process is referred to as quan-
titative structure-activity relationship (QSAR) modeling. Leach and Gillet
(2003) provide a high-level introduction to QSAR modeling and molecular
descriptors.

While activity is important, other characteristics need to be assessed to
determine if a compound is “drug-like” (Lipinski et al. 1997). Physical qual-
ities, such as the solubility or lipophilicity (i.e., “greasiness”), are evaluated
as well as other properties, such as toxicity. A compound’s solubility is very
important if it is to be given orally or by injection. We will demonstrate var-
ious regression modeling techniques by predicting solubility using chemical
structures.

Tetko et al. (2001) and Huuskonen (2000) investigated a set of compounds
with corresponding experimental solubility values using complex sets of de-
scriptors. They used linear regression and neural network models to estimate
the relationship between chemical structure and solubility. For our analyses,
we will use 1,267 compounds and a set of more understandable descriptors
that fall into one of three groups:

e Two hundred and eight binary “fingerprints” that indicate the presence or
absence of a particular chemical substructure.

e Sixteen count descriptors, such as the number of bonds or the number of
bromine atoms.

e Four continuous descriptors, such as molecular weight or surface area.

On average, the descriptors are uncorrelated. However, there are many pairs
that show strong positive correlations; 47 pairs have correlations greater than
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Fig. 6.2: The relationship between solubility and two descriptors. Left: As
molecular weight of a molecule increases, the solubility generally decreases.
The relationship is roughly log-linear, except for several compounds with low
solubility and large weight and solubility between 0 and —5. Right: For a
particular fingerprint descriptor, there is slightly higher solubility when the
substructure of interest is absent from the molecule

0.90. In some cases, we should expect correlations between descriptors. In the
solubility data, for example, the surface area of a compound is calculated for
regions associated with certain atoms (e.g., nitrogen or oxygen). One de-
scriptor in these data measures the surface area associated with two specific
elements while another uses the same elements plus two more. Given their
definitions, we would expect that the two surface area predictors would be
correlated. In fact, the descriptors are identical for 87 % of the compounds.
The small differences between surface area predictors may contain some im-
portant information for prediction, but the modeler should realize that there
are implications of redundancy on the model. Another relevant quality of the
solubility predictors is that the count-based descriptors show a significant
right skewness, which may have an impact on some models (see Chap. 3 for
a discussion of these issues).

The outcome data were measured on the logy scale and ranged from
—11.6 to 1.6 with an average log solubility value of —2.7. Figure 6.2 shows
the relationship between the experimentally derived solubility values and two
types of descriptors in the example data.

The data were split using random sampling into a training set (n = 951)
and test set (n = 316). The training set will be used to tune and estimate
models, as well as to determine initial estimates of performance using repeated
10-fold cross-validation. The test set will be used for a final characterization
of the models of interest.
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It is useful to explore the training set to understand the characteristics
of the data prior to modeling. Recall that 208 of the predictors are binary
fingerprints. Since there are only two values of these variables, there is very
little that pre-processing will accomplish.

Moving on, we can evaluate the continuous predictors for skewness. The
average skewness statistic was 1.6 (with a minimum of 0.7 and a maximum
of 3.8), indicating that these predictors have a propensity to be right skewed.
To correct for this skewness, a Box—Cox transformation was applied to all
predictors (i.e., the transformation parameter was not estimated to be near
one for any of the continuous predictors).

Using these transformed predictors, is it safe to assume that the rela-
tionship between the predictors and the outcome is linear? Figure 6.3 shows
scatter plots of the predictors against the outcome along with a regression line
from a flexible “smoother” model called loess (Cleveland 1979). The smoothed
regression lines indicate that there are some linear relationships between the
predictors and the outcome (e.g., molecular weight) and some nonlinear rela-
tionships (e.g., the number of origins or chlorines). Because of this, we might
consider augmenting the predictor set with quadratic terms for some vari-
ables.

Are there significant between-predictor correlations? To answer this ques-
tion, principal component analysis (PCA) was used on the full set of trans-
formed predictors, and the percent of variance accounted for by each compo-
nent is determined. Figure 6.4 is commonly known as a scree plot and displays
a profile of the variability accounted for by each component. Notice that the
amount of variability summarized by component drops sharply, with no one
component accounting for more than 13 % of the variance. This profile indi-
cates that the structure of the data is contained in a much smaller number of
dimensions than the number of dimensions of the original space; this is often
due to a large number of collinearities among the predictors. Figure 6.5 shows
the correlation structure of the transformed continuous predictors; there are
many strong positive correlations (indicated by the large, dark blue circles).
As previously discussed, this could create problems in developing some mod-
els (such as linear regression), and appropriate pre-processing steps will need
to be taken to account for this problem.

6.2 Linear Regression

The objective of ordinary least squares linear regression is to find the plane
that minimizes the sum-of-squared errors (SSE) between the observed and
predicted response:

SSE = (yi — 9:)°,
i=1
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Fig. 6.4: A scree plot from a PCA analysis of the solubility predictors
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where y; is the outcome and ¢; is the model prediction of that sample’s
outcome. Mathematically, the optimal plane can be shown to be

(XTX) " Xy, (6.2)

where X is the matrix of predictors and y is the response vector. Equation 6.2
is also known as 3 (“beta-hat”) in statistical texts and is a vector that con-
tains the parameter estimates or coeflicients for each predictor. This quan-
tity (6.2) is easy to compute, and the coefficients are directly interpretable.
Making some minimal assumptions about the distribution of the residuals,
it is straightforward to show that the parameter estimates that minimize
SSE are the ones that have the least bias of all possible parameter estimates
(Graybill 1976). Hence, these estimates minimize the bias component of the
bias-variance trade-off.

The interpretability of coefficients makes it very attractive as a modeling
tool. At the same time, the characteristics that make it interpretable also
make it prone to potentially fatal flaws. Notice that embedded in Eq. (6.2)

is the term (XTX)_l, which is proportional to the covariance matrix of the
predictors. A unique inverse of this matrix exists when (1) no predictor can
be determined from a combination of one or more of the other predictors and
(2) the number of samples is greater than the number of predictors. If the
data fall under either of these conditions, then a unique set of regression co-
efficients does not exist. However, a unique set of predicted values can still be
obtained for data that fall under condition (1) by either replacing (X”X) -
with a conditional inverse (Graybill 1976) or by removing predictors that
are collinear. By default, when fitting a linear model with R and collinearity
exists among predictors, “...R fits the largest identifiable model by removing
variables in the reverse order of appearance in the model formula” (Faraway
2005). The upshot of these facts is that linear regression can still be used for
prediction when collinearity exists within the data. But since the regression
coefficients to determine these predictions are not unique, we lose our ability
to meaningfully interpret the coefficients.

When condition (2) is true for a data set, the practitioner can take several
steps to attempt to build a regression model. As a first step we suggest using
pre-processing techniques presented in Sect. 3.3 to remove pairwise correlated
predictors, which will reduce the number of overall predictors. However, this
pre-processing step may not completely eliminate collinearity, since one or
more of the predictors may be functions of two or more of the other predictors.
To diagnose multicollinearity in the context of linear regression, the variance
inflation factor can be used (Myers 1994). This statistic is computed for each
predictor and a function of the correlation between the selected predictor and
all of the other predictors.

After pre-processing the data, if the number of predictors still outnumbers
the number of observations, then we will need to take other measures to re-
duce the dimension of the predictor space. PCA pre-processing (Sect. 3.3)
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is one possible remedy. Other remedies include simultaneous dimension
reduction and regression via PLS or employing methods that shrink param-
eter estimates such as ridge regression, the lasso, or the elastic net.

Another drawback of multiple linear regression is that its solution is linear
in the parameters. This means that the solution we obtain is a flat hyperplane.
Clearly, if the data have curvature or nonlinear structure, then regression will
not be able to identify these characteristics. One visual clue to understand-
ing if the relationship between predictors and the response is not linear is
to examine the basic diagnostic plots illustrated in Fig. 5.3. Curvature in the
predicted-versus-residual plot is a primary indicator that the underlying rela-
tionship is not linear. Quadratic, cubic, or interactions between predictors can
be accommodated in regression by adding quadratic, cubic, and interactions
of the original predictors. But the larger the number of original predictors, the
less practical including some or all of these terms becomes. Taking this ap-
proach can cause the data matrix to have more predictors than observations,
and we then again cannot invert the matrix.

If easily identifiable nonlinear relationships exist between the predictors
and the response, then those additional predictors can be added to the de-
scriptor matrix. If, however, it is not possible to identify these relationships
or the relationships between the predictors and the response is highly non-
linear, then more complex methods such as those discussed in Chap.7 will
more effectively and efficiently find this structure.

A third notable problem with multiple linear regression is that it is prone
to chasing observations that are away from the overall trend of the majority
of the data. Recall that linear regression seeks to find the parameter esti-
mates that minimize SSE; hence, observations that are far from the trend of
the majority of the data will have exponentially large residuals. In order to
minimize SSE, linear regression will adjust the parameter estimates to better
accommodate these unusual observations. Observations that cause significant
changes in the parameter estimates are called influential, and the field of ro-
bust regression has been developed to address these kinds of problems. One
common approach is to use an alternative metric to SSE that is less sensitive
to large outliers. For example, finding parameter estimates that minimize the
sum of the absolute errors is more resistant to outliers, as seen in Fig.6.6.
Also, the Huber function uses the squared residuals when they are “small”
and the simple different between the observed and predicted values when the
residuals are above a threshold. This approach can effectively minimize the
influence of observations that fall away from the overall trend in the data.

There are no tuning parameters for multiple linear regression. This fact,
however, does not impugn the practitioner from using rigorous model valida-
tion tools, especially when using this model for prediction. In fact, we must
use the same training and validation techniques described in Chap.4 to un-
derstand the predictive ability of this model on data which the model has
not seen.
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Fig. 6.6: The relationship between a model residual and its contribution to the
objective function for several techniques. For the Huber approach, a threshold
of 2 was used

When using resampling techniques such as bootstrapping or cross-vali-
dation, the practitioner must still be conscious of the problems described
above. Consider, for example, a data set where there are 100 samples and 75
predictors. If we use a resampling scheme that uses two-thirds of the data for
training, then we will be unable to find a unique set of regression coefficients,
since the number of predictors in the training set will be larger than the
number of samples. Therefore for multiple linear regression, the practitioner
must be aware of its pitfalls not only when working with the original data set
but also when working with subsets of data created during model training
and evaluation.

To illustrate the problem of correlated predictors, linear models were fit
with combinations of descriptors related to the number of non-hydrogen
atoms and the number of hydrogen bonds. In the training set, these predictors
are highly correlated (correlation: 0.994). Figure 6.3 shows their relationship
with the outcome, which is almost identical. First, we fit two separate re-
gression models with the individual terms and then a third model with both
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Table 6.1: Regression coefficients for two highly correlated predictors across
four separate models

Model NumNonHAtoms NumNonHBonds
NumNonHAtoms only —1.2 (0.1)

NumNonHBonds only —1.2 (0.1)
Both —0.3 (0.5) —0.9 (0.5)
All predictors 8.2 (1.4) —9.1 (1.6)

terms. The predictors were centered and scaled prior to modeling so that
their units would be the same. Table 6.1 shows the regression coefficients and
their standard errors in parentheses. For the individual models, the regression
coefficients are almost identical as are their standard errors. However, when
fitting a model with both terms, the results differ; the slope related to the
number of non-hydrogen atoms is greatly decreased. Also, the standard errors
are increased fivefold when compared to the individual models. This reflects
the instability in the regression linear caused by the between-predictor rela-
tionships and this instability is propagated directly to the model predictions.
Table 6.1 also shows the coefficients for these two descriptors when all of the
predictors are put into the model. Recall from Fig.6.5 that there are many
collinear predictors in the data and we would expect the effect of collinearity
to be exacerbated. In fact, for these two predictors, the values become wildly
large in magnitude and their standard errors are 14—16-fold larger than those
from the individual models.

In practice, such highly correlated predictors might be managed manually
by removing one of the offending predictors. However, if the number of pre-
dictors is large, this may be difficult. Also, on many occasions, relationships
among predictors can be complex and involve many predictors. In these cases,
manual removal of specific predictors may not be possible and models that
can tolerate collinearity may be more useful.

Linear Regression for Solubility Data

Recall that in Sect. 6.1 we split the solubility data into training and test sets
and that we applied a Box—Cox transformation to the continuous predictors
in order to remove skewness. The next step in the model building process for
linear regression is to identify predictors that have high pairwise correlations
and to remove predictors so that no absolute pairwise correlation is greater
than some pre-specified level. In this case we chose to remove predictors that
have pairwise correlations greater than 0.9 (see Sect.3.3). At this level, 38
predictors were identified and removed. Upon removing these predictors, a
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Fig. 6.7: Left: Observed versus predicted values for the solubility test set.
Right: Residuals versus the predicted values. The residuals appear to be ran-
domly scattered about 0 with respect to the predicted values

linear model was fit to the training data.! The linear model was resampled
using 10-fold cross-validation and the estimated root mean squared error
(RMSE) was 0.71 with a corresponding R? value of 0.88.

Predictors that were removed from the training data were then also re-
moved from the test data and the model was then applied to the test set.
The R? value between the observed and predicted values was 0.87, and the
basic regression diagnostic plots are displayed in Fig.6.7. There does not
appear to be any bias in the prediction, and the distribution between the
predicted values and residuals appears to be random about zero.

6.3 Partial Least Squares

For many real-life data sets, predictors can be correlated and contain similar
predictive information like illustrated with the solubility data. If the corre-
lation among predictors is high, then the ordinary least squares solution for
multiple linear regression will have high variability and will become unstable.

1 In practice, the correlation threshold would need to be smaller to have a significant
effect on collinearity. In these data, it would also remove important variables. Also,
one would investigate how the terms fit into the model. For example, there may be
interactions between predictors that are important and nonlinear transformations
of predictors may also improve the model. For these data, this set of activities is
examined more closely in Chap. 19.
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For other data sets, the number of predictors may be greater than the number
of observations. In this case, too, ordinary least squares in its usual form will
be unable to find a unique set of regression coefficients that minimize the SSE.

A couple of common solutions to the regression problem under these con-
ditions include pre-processing the predictors by either (1) removal of the
highly correlated predictors using techniques as described in Sect. 3.3 or (2)
conducting PCA on the predictors as described in Sect. 3.3. Removing highly
correlated predictors ensures that pairwise correlations among predictors are
below a pre-specified threshold. However, this process does not necessarily
ensure that linear combinations of predictors are uncorrelated with other
predictors. If this is the case, then the ordinary least squares solution will
still be unstable. Therefore it is important to understand that the removal of
highly correlated pairwise predictors may not guarantee a stable least squares
solution. Alternatively, using PCA for pre-processing guarantees that the re-
sulting predictors, or combinations thereof, will be uncorrelated. The trade-off
in using PCA is that the new predictors are linear combinations of the orig-
inal predictors, and thus, the practical understanding of the new predictors
can become murky.

Pre-processing predictors via PCA prior to performing regression is known
as principal component regression (PCR) (Massy 1965); this technique has
been widely applied in the context of problems with inherently highly corre-
lated predictors or problems with more predictors than observations. While
this two-step regression approach (dimension reduction, then regression) has
been successfully used to develop predictive models under these conditions,
it can easily be misled. Specifically, dimension reduction via PCA does not
necessarily produce new predictors that explain the response. As an example
of this scenario, consider the data in Fig. 6.8 which contains two predictors
and one response. The two predictors are correlated, and PCA summarizes
this relationship using the direction of maximal variability. The right-hand
plot of this figure, however, illustrates that the first PCA direction contains
no predictive information about the response.

As this simple example illustrates, PCA does not consider any aspects
of the response when it selects its components. Instead, it simply chases the
variability present throughout the predictor space. If that variability happens
to be related to the response variability, then PCR has a good chance to
identify a predictive relationship. If, however, the variability in the predictor
space is not related to the variability of the response, then PCR can have
difficulty identifying a predictive relationship when one might actually exist.
Because of this inherent problem with PCR, we recommend using PLS when
there are correlated predictors and a linear regression-type solution is desired.

PLS originated with Herman Wold’s nonlinear iterative partial least
squares (NIPALS) algorithm (Wold 1966, 1982) which linearized models that
were nonlinear in the parameters. Subsequently, Wold et al. (1983) adapted
the NIPALS method for the regression setting with correlated predictors and
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Fig. 6.8: An example of principal component regression for a simple data
set with two predictors and one response. Left: A scatter plot of the two
predictors shows the direction of the first principal component. Right: The
first PCA direction contains no predictive information for the response

called this adaptation “PLS.” Briefly, the NIPALS algorithm iteratively seeks
to find underlying, or latent, relationships among the predictors which are
highly correlated with the response. For a univariate response, each iteration
of the algorithm assesses the relationship between the predictors (X) and
response (y) and numerically summarizes this relationship with a vector of
weights (w); this vector is also known as a direction. The predictor data are
then orthogonally projected onto the direction to generate scores (t). The
scores are then used to generate loadings (p), which measure the correlation
of the score vector to the original predictors. At the end of each iteration,
the predictors and the response are “deflated” by subtracting the current esti-
mate of the predictor and response structure, respectively. The new deflated
predictor and response information are then used to generate the next set
of weights, scores, and loadings. These quantities are sequentially stored in
matrices W, T, and P, respectively, and are used for predicting new samples
and computing predictor importance. A schematic of the PLS relationship
between predictors and the response can be seen in Fig. 6.9, and a thorough
explanation of the algorithm can be found in Geladi and Kowalski (1986).
To obtain a better understanding of the algorithm’s function, Stone and
Brooks (1990) linked it to well-known statistical concepts of covariance and
regression. In particular, Stone and Brooks showed that like PCA, PLS finds
linear combinations of the predictors. These linear combinations are com-
monly called components or latent variables. While the PCA linear combi-
nations are chosen to maximally summarize predictor space variability, the
PLS linear combinations of predictors are chosen to maximally summarize
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Fig. 6.9: A diagram depicting the structure of a PLS model. PLS finds compo-
nents that simultaneously summarize variation of the predictors while being
optimally correlated with the outcome

covariance with the response. This means that PLS finds components that
maximally summarize the variation of the predictors while simultaneously
requiring these components to have maximum correlation with the response.
PLS therefore strikes a compromise between the objectives of predictor space
dimension reduction and a predictive relationship with the response. In other
words, PLS can be viewed as a supervised dimension reduction procedure;
PCR is an unsupervised procedure.

To better understand how PLS works and to relate it to PCR, we will
revisit the data presented in Fig. 6.8. This time we seek the first PLS compo-
nent. The left-hand scatter plot in Fig. 6.10 contrasts the first PLS direction
with the first PCA direction. For this illustration the two directions are nearly
orthogonal, indicating that the optimal dimension reduction direction was not
related to maximal variation in the predictor space. Instead, PLS identified
the optimal predictor space dimension reduction for the purpose of regression
with the response.

Clearly this example is designed to show an important flaw with PCR. In
practice, PCR does not fail this drastically; rather, PCR produces models
with similar predictive ability to PLS. Based on our experience, the number
of components retained via cross-validation using PCR is always equal to
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Fig. 6.10: An example of partial least squares regression for a simple data set
with two predictors and one response. Left: The first PLS direction is nearly
orthogonal to the first PCA direction. Right: Unlike PCA, the PLS direction
contains highly predictive information for the response

or greater than the number of components retained by PLS. This is due to
the fact that dimensions retained by PLS have been chosen to be optimally
related to the response, while those chosen with PCR are not.

Prior to performing PLS, the predictors should be centered and scaled,
especially if the predictors are on scales of differing magnitude. As described
above, PLS will seek directions of maximum variation while simultaneously
considering correlation with the response. Even with the constraint of corre-
lation with the response, it will be more naturally drawn towards predictors
with large variation. Therefore, predictors should be adequately preprocessed
prior to performing PLS.

Once the predictors have been preprocessed, the practitioner can model the
response with PLS. PLS has one tuning parameter: the number of components
to retain. Resampling techniques as described in Sect.4.4 can be used to
determine the optimal number of components.

PCR and PLSR for Solubility Data

To demonstrate the model building process with PLS, let’s return to the
solubility data from Sect.6.1. Although there are 228 predictors, Figs. 6.4
and 6.5 show that many predictors are highly correlated and that the overall
information within the predictor space is contained in a smaller number of
dimensions. These predictor conditions are very favorable for applying PLS.
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Fig. 6.11: Cross-validated RMSE by component for PLS and PCR. RMSE is
minimized with ten PLS components and 35 PCR components

Cross-validation was used to determine the optimal number of PLS compo-
nents to retain that minimize RMSE. At the same time, PCR was performed
using the same cross-validation sets to compare its performance to PLS. Fig-
ure 6.11 contains the results, where PLS found a minimum RMSE (0.682)
with ten components and PCR found a minimum RMSE (0.731) with 35
components. We see with these data that the supervised dimension reduction
finds a minimum RMSE with significantly fewer components than unsuper-
vised dimension reduction. Using the one-standard error rule (Sect. 4.6) would
reduce the number of required PLS components to 8.

Figure 6.12 contrasts the relationship between each of the first two PCR
and PLS components with the response. Because the RMSE is lower for
each of the first two PLS components as compared to the first two PCR
components, it is no surprise that the correlation between these components
and the response is greater for PLS than PCR. This figure illustrates that
PLS is more quickly being steered towards the underlying relationship with
the response.

Prediction of the test set using the optimal PCR and PLS models can
be seen in Fig.6.13. The predictive ability of each method is good, and the
residuals appear to be randomly scattered about zero. Although the predic-
tive ability of these models is close, PLS finds a simpler model that uses far
fewer components than PCR.
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Fig. 6.12: A contrast of the relationship between each of the first two PCR
and PLS components with the solubility response. Because the dimension
reduction offered by PLS is supervised by the response, it is more quickly
steered towards the underlying relationship between the predictors and the
response

The PLS regression coefficients for the solubility data are presented in
Table 6.2 (page 127), and the magnitudes are similar to the linear regression
model that includes only those two predictors.

Because the latent variables from PLS are constructed using linear combi-
nations of the original predictors, it is more difficult to quantify the relative
contribution of each predictor to the model. Wold et al. (1993) introduced
a heuristic way to assess variable importance when using the NIPALS algo-
rithm and termed this calculation variable importance in the projection. In
the simple case, suppose that the relationship between the predictors and
the response can be adequately summarized by a one-component PLS model.
The importance of the jth predictor is then proportional to the value of
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Fig. 6.13: Left side: Observed versus predicted values for the solubility test set
for PCR (upper) and PLS (lower). Right side: Residuals versus the predicted
values for PCR and PLS. The residuals appear to be randomly scattered
about 0 with respect to the predicted values. Both methods have similar
predictive ability, but PLS does so with far fewer components

the normalized weight vector, w, corresponding to the jth predictor. When
the relationship between predictors and the response requires more than one
component, the variable importance calculation becomes more involved. In
this case, the numerator of the importance of the jth predictor is a weighted
sum of the normalized weights corresponding to the jth predictor. The jth
normalized weight of the kth component, wy;, is scaled by the amount of
variation in the response explained by the kth component. The denominator
of the variable importance is the total amount of response variation explained
by all k£ components. Therefore, the larger the normalized weight and amount
of response variation explained by the component, the more important pre-
dictor is in the PLS model.



120 6 Linear Regression and Its Cousins

1 1
MolWeight .
NumCarbon
NumNonHAtoms L]
NumNonHBonds
FPO76 °
FP089 °
NumMultBonds
NumBonds d
NumRings
FP044 .
NumAtoms —o
FP172 ——e
NumAromaticBonds —— e
FP112 ———e
FPO14 ——eo
FP065 ———e
FPO13 ———e
HydrophilicFactor ———e
092 ——e
NumChlorine ——e
NumHalogen ——e
FP168 ——e
FPO79 —e
FPO70 —e
FP164 —e

2.0 25
Importance

Fig. 6.14: Partial least squares variable importance scores for the solubility
data

For the solubility data, the top 25 most important predictors are shown
in Fig. 6.14. The larger the VIP value, the more important the predictor is in
relating the latent predictor structure to the response. By its construction, the
squared VIP values sum to the total number of predictors. As a rule-of-thumb,
VIP values exceeding 1 are considered to contain predictive information for
the response. Wold (1995) further suggests that predictors with small PLS
regression coefficients and small VIP values are likely not important and
should be considered as candidates for removal from the model.

Algorithmic Variations of PLS

The NIPALS algorithm works fairly efficiently for data sets of small-to-
moderate size (e.g., < 2,500 samples and < 30 predictors) (Alin 2009). But
when the number of samples (n) and predictors (P) climbs, the algorithm
becomes inefficient. This inefficiency is due to the way the matrix operations
on the predictors and the response are performed. Specifically, both the pre-
dictor matrix and the response must be deflated (i.e., information must be
subtracted from each matrix, thus creating new versions of each matrix) for
each latent variable. This implies that different versions of the predictor ma-
trix and response must be kept at each iteration of the algorithm. Therefore
an n X P matrix and an n x 1 vector must be recomputed, operated on, and
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stored in each iteration. As n and P grow, so do the memory requirements,
and operations on these matrices must be performed throughout the iterative
process.

In a computational step forward, Lindgren et al. (1993) showed that the
constructs of NIPALS could be obtained by working with a “kernel” matrix of
dimension P x P, the covariance matrix of the predictors (also of dimension
PxP), and the covariance matrix of the predictors and response (of dimension
P x1). This adjustment improved the speed of the algorithm, especially as the
number of observations became much larger than the number of predictors.

At nearly the same time as the kernel approach was developed, de Jong
(1993) improved upon the NIPALS algorithm by viewing the underlying prob-
lem as finding latent orthogonal variables in the predictor space that maxi-
mize the covariance with the response. This perspective shift led to a different
algorithm that focused on deflating the covariance matrix between the pre-
dictors and the response rather than deflating both the predictor matrix and
the response. de Jong (1993) termed the new approach “SIMPLS” because
it was a simple modification of the PLS algorithm that was framed through
statistics. Because the SIMPLS approach deflates the covariance matrix, it re-
quires storing just the deflated covariance matrix at each iteration which has
dimension P x 1—a significant computational improvement over the storage
requirements of NIPALS. Although the SIMPLS approach solves the opti-
mization in a different way, de Jong (1993) showed that the SIMPLS latent
variables are identical to those from NIPALS when there is only one response.
(More will be discussed below when modeling a multivariate response.)

Other authors have also proposed computational modifications to the NI-
PALS algorithm through adjustments to the kernel approach (de Jong and
Ter Braak 1994; Dayal and MacGregor 1997). Dayal and MacGregor (1997)
developed two efficient modifications, especially when n >> P, and, similar
to SIMPLS, only require a deflation of the covariance matrix between the
predictors and the response at each step of the iterative process. In their
first alteration to the inner workings of the algorithm, the original predictor
matrix is used in the computations (without deflation). In the second alter-
ation, the covariance matrix of the predictors is used in the computations
(also without deflation).

Alin (2009) provided a comprehensive computational efficiency comparison
of NIPALS to other algorithmic modifications. In this work, Alin used a vary-
ing number of samples (500-10,000), predictors (10-30), responses (1-15),
and number of latent variables to derive (3-10). In nearly every scenario, the
second kernel algorithm of Dayal and MacGregor was more computationally
efficient than all other approaches and provided superior performance when
n > 2,500 and P > 30. And in the cases where the second algorithm did not
provide the most computational efficiency, the first algorithm did.

The above approaches to implementing PLS provide clear computational
advantages over the original algorithm. However, as the number of predictors
grows, each becomes less efficient. To address this scenario when P > n,
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Rénnar et al. (1994) constructed a kernel based on the predictor matrix
and response that had dimension n x n. A usual PLS analysis can then be
performed using this kernel, the outer products of the predictors, and the
outer products of the response (each with dimension n x n). Hence, this
algorithm is computationally more efficient when there are more predictors
than samples.

As noted in Fig.6.9, the PLS components summarize the data through
linear substructures (i.e., hyperplanes) of the original predictor space that
are related to the response. But for many problems, the underlying structure
in the predictor space that is optimally related to the response is not linear
but curvilinear or nonlinear. Several authors have attempted to address this
shortcoming of PLS in order to find this type of predictor space/response re-
lationship. While many methods exist, the most easily adaptable approaches
using the algorithms explained above are provided by Berglund and Wold
(1997) and Berglund et al. (2001). In Berglund and Wold (1997), the au-
thors show that adding squared predictors (and cubic, if necessary) can be
included with the original predictors. PLS is then applied to the augmented
data set. The authors also show that there is no need to add cross-product
terms, thus greatly reducing the number of new predictors added to the orig-
inal data. Subsequently, Berglund et al. (2001) employ the use of the GIFI
approach (Michailidis and de Leeuw 1998) which splits each predictor into
two or more bins for those predictors that are thought to have a nonlinear
relationship with the response. Cut points for the bins are selected by the
user and are based on either prior knowledge or characteristics of the data.
The original predictors that were binned are then excluded from the data set
that includes the binned versions of the predictors. PLS is then applied to
the new predictor set in usual way.

Both of these approaches have successfully found nonlinear relationships
between the predictors and the response. But there can be a considerable
amount of effort required in constructing the data sets for input to PLS,
especially as the number of predictors becomes large. As we will show in sub-
sequent sections, other predictive modeling techniques can more naturally
identify nonlinear structures between predictors and the response without
having to modify the predictor space. Therefore, if a more intricate relation-
ship between predictors and response exists, then we suggest employing one
of the other techniques rather than trying to improve the performance of PLS
through this type of augmentation.

6.4 Penalized Models

Under standard assumptions, the coefficients produced by ordinary least
squares regression are unbiased and, of all unbiased linear techniques, this
model also has the lowest variance. However, given that the MSE is a
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combination of variance and bias (Sect.5.2), it is very possible to produce
models with smaller MSEs by allowing the parameter estimates to be biased.
It is common that a small increase in bias can produce a substantial drop in
the variance and thus a smaller MSE than ordinary least squares regression
coefficients. One consequence of large correlations between the predictor vari-
ances is that the variance can become very large. Combatting collinearity by
using biased models may result in regression models where the overall MSE
is competitive.

One method of creating biased regression models is to add a penalty to
the sum of the squared errors. Recall that original least squares regression
found parameter estimates to minimize the sum of the squared errors:

n

SSE =Y (yi — i)

i=1

When the model over-fits the data, or when there are issues with collinearity
(as in Table 6.1), the linear regression parameter estimates may become in-
flated. As such, we may want to control the magnitude of these estimates to
reduce the SSE. Controlling (or regularizing) the parameter estimates can be
accomplished by adding a penalty to the SSE if the estimates become large.
Ridge regression (Hoerl 1970) adds a penalty on the sum of the squared re-
gression parameters:

n

,
SSEL, = > (i —0:)> +A>_B;.
j=1

i=1

The “Lo” signifies that a second-order penalty (i.e., the square) is being used
on the parameter estimates. The effect of this penalty is that the parameter
estimates are only allowed to become large if there is a proportional reduction
in SSE. In effect, this method shrinks the estimates towards 0 as the A penalty
becomes large (these techniques are sometimes called “shrinkage methods”).

By adding the penalty, we are making a trade-off between the model vari-
ance and bias. By sacrificing some bias, we can often reduce the variance
enough to make the overall MSE lower than unbiased models.

For example, Fig. 6.15 shows the path of the regression coefficients for the
solubility data over different values of A. Each line corresponds to a model
parameter and the predictors were centered and scaled prior to this analysis
so that their units are the same. When there is no penalty, many parameters
have reasonable values, such as the predictor for the number of multiple
bonds (shown in orange). However, some parameter estimates are abnormally
large, such as the number of non-hydrogen atoms (in green) and the number
of non-hydrogen bonds (purple) previously singled out in Table 6.1. These
large values are indicative of collinearity issues. As the penalty is increased,
the parameter estimates move closer to 0 at different rates. By the time
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Fig. 6.15: The ridge-regression coefficient path

the penalty has a value of A = 0.002, these two predictors are much more
well behaved, although other coefficient values are still relatively large in
magnitude.

Using cross-validation, the penalty value was optimized. Figure 6.16 shows
how the RMSE changes with \. When there is no penalty, the error is inflated.
When the penalty is increased, the error drops from 0.72 to 0.69. As the
penalty increases beyond 0.036, the bias becomes to large and the model
starts to under-fit, resulting in an increase in MSE.

While ridge regression shrinks the parameter estimates towards 0, the
model does not set the values to absolute 0 for any value of the penalty.
Even though some parameter estimates become negligibly small, this model
does not conduct feature selection.

A popular alternative to ridge regression is the least absolute shrinkage
and selection operator model, frequently called the lasso (Tibshirani 1996).
This model uses a similar penalty to ridge regression:

n

P
SSEg, = Z(yi — )% + /\Z ;-
j=1

i=1

While this may seem like a small modification, the practical implications
are significant. While the regression coeflicients are still shrunk towards 0,
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Fig. 6.16: The cross-validation profiles for a ridge regression model

a consequence of penalizing the absolute values is that some parameters are
actually set to 0 for some value of A\. Thus the lasso yields models that si-
multaneously use regularization to improve the model and to conduct feature
selection. In comparing, the two types of penalties, Friedman et al. (2010)
stated

“Ridge regression is known to shrink the coefficients of correlated predictors
towards each other, allowing them to borrow strength from each other. In the
extreme case of k identical predictors, they each get identical coefficients with
1/kth the size that any single one would get if fit alone.][...]

lasso, on the other hand, is somewhat indifferent to very correlated predictors,
and will tend to pick one and ignore the rest.”

Figure 6.17 shows the paths of the lasso coefficients over different penalty
values. The z-axis is the fraction of the full solution (i.e., ordinary least
squares with no penalty). Smaller values on the z-axis indicate that a large
penalty has been used. When the penalty is large, many of the regression
coefficients are set to 0. As the penalty is reduced, many have nonzero co-
efficients. Examining the trace for the number of non-hydrogen bonds (in
purple), the coefficient is initially 0, has a slight increase, then is shrunken
towards 0 again. When the fraction is around 0.4, this predictor is entered
back into the model with a nonzero coefficient that consistently increases
(most likely due to collinearity). Table 6.2 shows regression coefficients for
ordinary least squares, PLS, ridge-regression, and the lasso model. The ridge-
regression penalty used in this table is 0.036 and the lasso penalty was 0.15.
The ridge-regression model shrinks the coefficients for the non-hydrogen atom
and non-hydrogen bond predictors significantly towards 0 in comparison to
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Fig. 6.17: The lasso coefficient path for the solubility data. The z-axis is the
fraction of the full least squares solution. As the fraction increases, the lasso
penalty (A\) decreases

the ordinary least squares models while the lasso model shrinks the non-
hydrogen atom predictor out of the model. Between these models, the lasso
model had the smallest cross-validation error of 0.67, slightly better than the
PLS model (0.68) and ridge regression (0.69).

This type of regularization has been a very active area of research. The
lasso model has been extended to many other techniques, such as linear dis-
criminant analysis (Clemmensen et al. 2011; Witten and Tibshirani 2011),
PLS (Chun and Keles 2010), and PCA (Jolliffe et al. 2003; Zou et al. 2004).
A significant advancement for this model was Efron et al. (2004). Their model,
least angle regression (LARS), is a broad framework that encompasses the
lasso and similar models. The LARS model can be used to fit lasso mod-
els more efficiently, especially in high-dimensional problems. Friedman et al.
(2010) and Hesterberg et al. (2008) provide a survey of these techniques.

A generalization of the lasso model is the elastic net (Zou and Hastie 2005).
This model combines the two types of penalties:

n

P P
SSEEnet = Y (i — 9:)° + M Y _ B + X2 > [B;l.
j=1 j=1

i=1
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Table 6.2: Regression coefficients for two highly correlated predictors for PLS,
ridge regression, the elastic net and other models

Model NumNonHAtoms NumNonHBonds
NumNonHAtoms only —1.2 (0.1)

NumNonHBonds only —1.2 (0.1)

Both —0.3 (0.5) —0.9 (0.5)

All predictors 8.2 (1.4) —9.1 (1.6)

PLS, all predictors —-0.4 —0.8

Ridge, all predictors -0.3 -0.3
lasso/elastic net 0.0 —0.8

The ridge penalty used for this table was 0.036 and the lasso penalty was
0.15. The PLS model used ten components.
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Fig. 6.18: The cross-validation profiles for an elastic net model

The advantage of this model is that it enables effective regularization via the
ridge-type penalty with the feature selection quality of the lasso penalty. The
Zou and Hastie (2005) suggest that this model will more effectively deal with
groups of high correlated predictors.

Both the penalties require tuning to achieve optimal performance. Again,
using resampling, this model was tuned for the solubility data. Figure 6.18
shows the performance profiles across three values of the ridge penalty and 20
values of the lasso penalty. The pure lasso model (with A; = 0) has an initial
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drop in the error and then an increase when the fraction is greater than 0.2.
The two models with nonzero values of the ridge penalty have minimum errors
with a larger model. In the end, the optimal performance was associated with
the lasso model with a fraction of 0.15, corresponding to 130 predictors out
of a possible 228.

6.5 Computing

The R packages elasticnet, caret, lars, MASS, pls and stats will be referenced.
The solubility data can be obtained from the AppliedPredictiveModeling R

package. The predictors for the training and test sets are contained in data

frames called solTrainX and solTestX, respectively. To obtain the data in R,

> library(AppliedPredictiveModeling)

> data(solubility)

> ## The data objects begin with "sol":
> ls(pattern = "“solT")

[1] "solTestX" "solTestXtrans" "solTestY" "solTrainX"
[6] "solTrainXtrans" "solTrainY"

Each column of the data corresponds to a predictor (i.e., chemical descriptor)
and the rows correspond to compounds. There are 228 columns in the data.
A random sample of column names is

> set.seed(2)
> sample(names(solTrainX), 8)

[1] "FP0O43" "FP160" "FP130" "FP038" "NumBonds"
[6] "NumNonHAtoms" "FP029" "FP185"

The “FP” columns correspond to the binary 0/1 fingerprint predictors that
are associated with the presence or absence of a particular chemical struc-
ture. Alternate versions of these data that have been Box—Cox transformed
are contained in the data frames solTrainXtrans and solTestXtrans. These
modified versions were used in the analyses in this and subsequent chapters.

The solubility values for each compound are contained in numeric vectors
named solTrainY and solTestY.

Ordinary Linear Regression

The primary function for creating linear regression models using simple least
squares is 1m. This function takes a formula and data frame as input. Because
of this, the training set predictors and outcome should be contained in the
same data frame. We can create a new data frame for this purpose:
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> trainingData <- solTrainXtrans

> ## Add the solubility outcome
> trainingData$Solubility <- solTrainY

129

To fit a linear model with all the predictors entering in the model as simple,
independent linear terms, the formula shortcut Solubility ~

> ImFitAllPredictors <- 1lm(Solubility ~

., data

. can be used:

trainingData)

An intercept term is automatically added to the model. The summary method
displays model summary statistics, the parameter estimates, their standard
errors, and p-values for testing whether each individual coefficient is different

than 0:

> summary (1lmFitAllPredictors)

Call:
Im(formula =

Residuals:
Min

-1.75620 -0.28304 0.01165 0.30030

Coefficients:

(Intercept)
FP0OO1
FP002
FP003
FP004
FP0O0O5
FP0O06
FPOO7
FP0O0O8
FP009

MolWeight
NumAtoms
NumNonHAtoms
NumBonds
NumNonHBonds
NumMultBonds
NumRotBonds
NumDblBonds

NumAromaticBonds

NumHydrogen
NumCarbon
NumNitrogen
NumOxygen
NumSulfer
NumChlorine
NumHalogen
NumRings

HydrophilicFactor

Solubility ~ .,

Median

3Q

Max
1.54887

Estimate Std. Error t value

1.
1.
1.

.431e+00
.594e-01
.456e-01
.969e-02
.049e-01
.837e+00
.886e-02
.044e-02
.121e-01
.242e-01

.232e+00
.478e+01
.795e+01
.843e+00
.030e+01
.107e-01
.213e-01
.492e-01
.364e+00
.347e-01
.730e-02
.125e+00
.389e+00
.508e+00
.449e+00

408e+00
276e+00
099e-02

N

W = = N O R = N W

H ONEFE WD WWE OWERE P EFPRNDWWN

.162e+00
.185e-01
.637e-01
.314e-01
.371e-01
.598e-01
.041e-01
.152e-01
.636e-01
.395e-01

.296e-01
.473e+00
.166e+00
.681e+00
.793e+00
.754e-01
.334e-01
.163e-01
.232e-01
.880e-01
.763e-01
.045e+00
.523e-01
.619e+00
.989e+00
.109e+00
.716e-01
.137e-01

1.

-2.
-3.

0.
1.
0.

124

.128
.552
.302
.223
.956
.337
.351
.685
.982

.365
.257
.670
.671
.746
.201
.908
.369
.794
.439
.046
.011
.283

351
744
668
901
097

data = trainingData)

Pr(>ltl)

O OO OO HFH OO, OO0OO0OOFr ONNHH

0.261303
0.259635
0.580960
0.762617
0.026520
0.
0
0
0
0

003223

. 735917
. 725643
.493331
.326536

.09e-07
.35e-05
.07e-08
.000260
.35e-08
.229990
.000102
.018111
.000161
.04e-05
.963335
.044645
.69e-07
.018994
.000195
.504615
.057731 .
.922998

* %

koK ok
*kk
koK ok
* %k %k
koK ok

koK ok

koK ok

*kk

kK%

kK k
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SurfaceAreal 8.825e-02 6.058e-02 1.457 0.145643
SurfaceArea2 9.555e-02 5.615e-02 1.702 0.089208 .
Signif. codes: O 'x**' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5524 on 722 degrees of freedom
Multiple R-squared: 0.9446, Adjusted R-squared: 0.9271
F-statistic: 54.03 on 228 and 722 DF, p-value: < 2.2e-16

(Since there are 229 predictors in the model, the output is very long and
the results have been trimmed.) A more comprehensive discussion of linear
models in R can be found in Faraway (2005).

The simple estimates of the RMSE and R? were 0.55 and 0.945, respec-
tively. Note that these values are likely to be highly optimistic as they have
been derived by re-predicting the training set data.

To compute the model solubility values for new samples, the predict
method is used:
> lmPredl <- predict(lmFitAllPredictors, solTestXtrans)
> head (1mPred1)

20 21 23 25 28 31
0.99370933 0.06834627 -0.69877632 0.84796356 -0.16578324 1.40815083

We can collect the observed and predicted values into a data frame, then use
the caret function defaultSummary to estimate the test set performance:

> lmValuesl <- data.frame(obs = solTestY, pred = lmPred1)
> defaultSummary(1lmValues1)

RMSE Rsquared
0.7455802 0.8722236

Based on the test set, the summaries produced by the summary function for
1m were optimistic.

If we wanted a robust linear regression model, then the robust linear model
function (rim) from the MASS package could be used, which by default em-
ploys the Huber approach. Similar to the 1m function, rim is called as follows:

> rlmFitAllPredictors <- rlm(Solubility ~ ., data = trainingData)

The train function generates a resampling estimate of performance. Be-
cause the training set size is not small, 10-fold cross-validation should produce
reasonable estimates of model performance. The function trainControl spec-
ifies the type of resampling:

> ctrl <- trainControl(method = "cv", number = 10)
train will accept a model formula or a non-formula interface (see Sect.4.9

for a summary of different methods for specifying predictor models). The
non-formula interface is
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> set.seed(100)
> ImFitl <- train(x = solTrainXtrans, y = solTrainV,
+ method = "Im", trControl = ctrl)

The random number seed is set prior to modeling so that the results can be
reproduced. The results are:

> ImFitl

951 samples
228 predictors

No pre-processing
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855,
Resampling results

RMSE  Rsquared RMSE SD Rsquared SD
0.721 0.877 0.07 0.0247

For models built to explain, it is important to check model assumptions,
such as the residual distribution. For predictive models, some of the same
diagnostic techniques can shed light on areas where the model is not predict-
ing well. For example, we could plot the residuals versus the predicted values
for the model. If the plot shows a random cloud of points, we will feel more
comfortable that there are no major terms missing from the model (such as
quadratic terms, etc.) or significant outliers. Another important plot is the
predicted values versus the observed values to assess how close the predic-
tions are to the actual values. Two methods of doing this (using the training
set samples are

> xyplot(solTrainY ~ predict(1mFit1),

+ ## plot the points (type = 'p') and a background grid ('g')
+ type = c("p", "g"),

+ xlab = "Predicted", ylab = "Observed")

> xyplot(resid(ImFit1) ~ predict(1mFit1),

+ type = c("p", "g"),

+ xlab = "Predicted", ylab = "Residuals")

The results are shown in Fig. 6.19. Note that the resid function generates the
model residuals for the training set and that using the predict function with-
out an additional data argument returns the predicted values for the training
set. For this model, there are no obvious warning signs in the diagnostic plots.

To build a smaller model without predictors with extremely high correla-
tions, we can use the methods of Sect. 3.3 to reduce the number of predictors
such that there are no absolute pairwise correlations above 0.9:

corThresh <- .9
tooHigh <- findCorrelation(cor(solTrainXtrans), corThresh)
corrPred <- names (solTrainXtrans) [tooHigh]

>
>
>
> trainXfiltered <- solTrainXtrans[, -tooHigh]
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Fig. 6.19: Diagnostic plots for the linear model using the training set. Left:
A plot of the observed values versus the predicted values. This plot can show
outliers or areas where the model is not calibrated. Right: A plot of the
residuals versus predicted values. If the model has been well specified, this
plot should be a random cloud of points with no outliers or patterns (e.g., a
funnel shape)

testXfiltered <- solTestXtrans[, -tooHigh]

set.seed(100)

ImFiltered <- train(testXfiltered, solTrainY, method = "lm",
trControl = ctrl)

vV + Vv Vv Vv

ImFiltered

951 samples
228 predictors

No pre-processing
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855,
Resampling results

RMSE Rsquared RMSE SD Rsquared SD
0.721 0.877 0.07 0.0247

Robust linear regression can also be performed using the train function which
employs the rim function. However, it is important to note that rim does not
allow the covariance matrix of the predictors to be singular (unlike the im
function). To ensure that predictors are not singular, we will pre-process
the predictors using PCA. Using the filtered set of predictors, the robust
regression model performance is

> set.seed(100)
> rlmPCA <- train(solTrainXtrans, solTrainY,
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+ method = "rlm",
+ preProcess = "pca",
+ trControl = ctrl)
> r1lmPCA

951 samples

228 predictors

Pre-processing: principal component signal extraction, scaled, centered
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855,
Resampling results

RMSE  Rsquared RMSE SD Rsquared SD
0.782 0.854 0.0372  0.0169

Partial Least Squares

The pls package (Mevik and Wehrens 2007) has functions for PLS and
PCR. SIMPLS, the first Dayal and MacGregor algorithm, and the algo-
rithm developed by Rénnar et al. (1994) are each available. By default, the
pls package uses the first Dayal and MacGregor kernel algorithm while the
other algorithms can be specified using the method argument using the val-
ues "oscorespls", "simpls", Or "widekernelpls". The plsr function, like the 1m
function, requires a model formula:

> plsFit <- plsr(Solubility ~ ., data = trainingData)

The number of components can be fixed using the ncomp argument or, if
left to the default, the maximum number of components will be calculated.
Predictions on new samples can be calculated using the predict function.
Predictions can be made for a specific number of components or for several
values at a time. For example

> predict(plsFit, solTestXtrans[1:5,], ncomp = 1:2)

, » 1 comps

Solubility
20 -1.789335
21 -1.427551
23 -2.268798
25 -2.269782
28 -1.867960

, » 2 comps

Solubility
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20 0.2520469
21 0.3555028
23 -1.8795338
25 -0.6848584
28 -1.5531552

The pisr function has options for either K-fold or leave-one-out cross-
validation (via the validation argument) or the PLS algorithm to use, such
as SIMPLS (using the method argument).

There are several helper functions to extract the PLS components (in the
function loadings), the PLS scores (scores), and other quantities. The plot
function has visualizations for many aspects of the model.

train can also be used with method values of pls, such as "oscorespls",
"simpls", Or "widekernelpls". For example

> set.seed(100)
> plsTune <- train(solTrainXtrans, solTrainY,

+ method = "pls",

+ ## The default tuning grid evaluates
+ ## components 1... tunelength

+ tunelLength = 20,

+ trControl = ctrl,

+ preProc = c("center", "scale"))

This code reproduces the PLS model displayed in Fig.6.11.

Penalized Regression Models

Ridge-regression models can be created using the 1m.ridge function in the
MASS package or the enet function in the elasticnet package. When calling
the enet function, the lambda argument specifies the ridge-regression penalty:

> ridgeModel <- enet (x = as.matrix(solTrainXtrans), y = solTrainY,
+ lambda = 0.001)

Recall that the elastic net model has both ridge penalties and lasso penalties
and, at this point, the R object ridgeModel has only fixed the ridge penalty
value. The lasso penalty can be computed efficiently for many values of the
penalty. The predict function for enet objects generates predictions for one
or more values of the lasso penalty simultaneously using the s and mode argu-
ments. For ridge regression, we only desire a single lasso penalty of 0, so we
want the full solution. To produce a ridge-regression solution we define s=1
with mode = "fraction". This last option specifies how the amount of penal-
ization is defined; in this case, a value of 1 corresponds to a faction of 1, i.e.,
the full solution:

> ridgePred <- predict(ridgeModel, newx = as.matrix(solTestXtrans),
+ s = 1, mode = "fraction",
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+ + + + 4+ +VVVyV

type = "fit")

head (ridgePred$fit)

20 21 23 25 28 31
0.96795590 0.06918538 -0.54365077 0.96072014 -0.03594693 1.59284535
To tune over the penalty, train can be used with a different method:

## Define the candidate set of values
ridgeGrid <- data.frame(.lambda = seq(0, .1, length = 15))
set.seed(100)
ridgeRegFit <- train(solTrainXtrans, solTrainY,
method = "ridge",
## Fir the model over many penalty values
tuneGrid = ridgeGrid,
trControl = ctrl,
## put the predictors on the same scale
preProc = c("center", "scale"))

ridgeRegFit

951 samples
228 predictors

Pre-processing: centered, scaled
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855,

Resampling results across tuning parameters:

lambda RMSE Rsquared RMSE SD Rsquared SD
0 0.721 0.877 0.0699  0.0245
0.00714 0.705 0.882 0.045 0.0199
0.0143 0.696 0.885 0.0405 0.0187
0.0214 0.693 0.886 0.0378 0.018
0.0286 0.691 0.887 0.0359 0.0175
0.0357 0.69 0.887 0.0346 0.0171
0.0429 0.691 0.888 0.0336 0.0168
0.05 0.692 0.888 0.0329 0.0166
0.0571 0.693 0.887 0.0323 0.0164
0.0643 0.695 0.887 0.032 0.0162
0.0714 0.698 0.887 0.0319 0.016
0.0786 0.7 0.887 0.0318 0.0159
0.0857 0.703 0.886 0.0318 0.0158
0.0929 0.706 0.886 0.032 0.0157
0.1 0.709 0.885 0.0321 0.0156

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was lambda = 0.0357.

The lasso model can be estimated using a number of different functions.

The lars package contains the lars function, the elasticnet package has enet,
and the glmnet package has a function of the same name. The syntax for
these functions is very similar. For the enet function, the usage would be
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> enetModel <- enet(x = as.matrix(solTrainXtrans), y = solTrainyY,
+ lambda = 0.01, normalize = TRUE)

The predictor data must be a matrix object, so the data frame solTrainXtrans
needs to be converted for the enet function. The predictors should be cen-
tered and scaled prior to modeling. The normalize argument will do this stan-
dardization automatically. The parameter 1ambda controls the ridge-regression
penalty and, setting this value to 0, fits the lasso model. The lasso penalty
does not need to be specified until the time of prediction:

> enetPred <- predict(enetModel, newx = as.matrix(solTestXtrans),
+ s = .1, mode = "fraction",

+ type = "fit")

> ## A list is returned with several items:

> names (enetPred)

[1] "s" "fraction" "mode" "fit"

v

## The 'fit' component has the predicted values:
> head(enetPred$fit)

20 21 23 25 28 31
-0.60186178 -0.42226814 -1.20465564 -1.23652963 -1.25023517 -0.05587631

To determine which predictors are used in the model, the predict method is
used with type = "coefficients":

> enetCoef<- predict(enetModel, newx = as.matrix(solTestXtrans),
+ s = .1, mode = "fraction",
+ type = "coefficients")
> tail (enetCoef$coefficients)
NumChlorine NumHalogen NumRings HydrophilicFactor
0.00000000 0.00000000 0.00000000 0.12678967
SurfaceAreal SurfaceArea?2
0.09035596 0.00000000

More than one value of s can be used with the predict function to generate
predictions from more than one model simultaneously.

Other packages to fit the lasso model or some alternate version of the
model are biglars (for large data sets), FLLat (for the fused lasso), grplasso
(the group lasso), penalized, relaxo (the relaxed lasso), and others. To tune
the elastic net model using train, we specify method = "enet". Here, we tune
the model over a custom set of penalties:

> enetGrid <- expand.grid(.lambda = c(0, 0.01, .1),

+ .fraction = seq(.05, 1, length = 20))
> set.seed(100)

> enetTune <- train(solTrainXtrans, solTrainY,

+ method = "enet",

+ tuneGrid = enetGrid,

+ trControl = ctrl,

+ preProc = c("center", "scale"))

Figure 6.18 can be created from this object using plot(enetTune).
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Fig. 6.20: A sample of ten spectra of the Tecator data. The colors of the
curves reflect the absorption values, where yellow indicates low absorption
and red is indicative of high absorption

Exercises

6.1. Infrared (IR) spectroscopy technology is used to determine the chemi-
cal makeup of a substance. The theory of IR spectroscopy holds that unique
molecular structures absorb IR frequencies differently. In practice a spectrom-
eter fires a series of IR frequencies into a sample material, and the device
measures the absorbance of the sample at each individual frequency. This
series of measurements creates a spectrum profile which can then be used to
determine the chemical makeup of the sample material.

A Tecator Infratec Food and Feed Analyzer instrument was used to analyze
215 samples of meat across 100 frequencies. A sample of these frequency pro-
files is displayed in Fig. 6.20. In addition to an IR profile, analytical chemistry
determined the percent content of water, fat, and protein for each sample.
If we can establish a predictive relationship between IR spectrum and fat
content, then food scientists could predict a sample’s fat content with IR
instead of using analytical chemistry. This would provide costs savings, since
analytical chemistry is a more expensive, time-consuming process:

(a) Start R and use these commands to load the data:

> library(caret)
> data(tecator)
> # use 7tecator to see more details
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The matrix absorp contains the 100 absorbance values for the 215 samples,
while matrix endpoints contains the percent of moisture, fat, and protein
in columns 1-3, respectively.

(b) In this example the predictors are the measurements at the individual fre-
quencies. Because the frequencies lie in a systematic order (850-1,050 nm),
the predictors have a high degree of correlation. Hence, the data lie in a
smaller dimension than the total number of predictors (100). Use PCA
to determine the effective dimension of these data. What is the effective
dimension?

(c) Split the data into a training and a test set, pre-process the data, and
build each variety of models described in this chapter. For those mod-
els with tuning parameters, what are the optimal values of the tuning
parameter(s)?

(d) Which model has the best predictive ability? Is any model significantly
better or worse than the others?

(e) Explain which model you would use for predicting the fat content of a
sample.

6.2. Developing a model to predict permeability (see Sect. 1.4) could save sig-
nificant resources for a pharmaceutical company, while at the same time more
rapidly identifying molecules that have a sufficient permeability to become a
drug:

(a) Start R and use these commands to load the data:

> library(AppliedPredictiveModeling)
> data(permeability)

The matrix fingerprints contains the 1,107 binary molecular predic-
tors for the 165 compounds, while permeability contains permeability
response.

(b) The fingerprint predictors indicate the presence or absence of substruc-
tures of a molecule and are often sparse meaning that relatively few of the
molecules contain each substructure. Filter out the predictors that have
low frequencies using the nearZeroVar function from the caret package.
How many predictors are left for modeling?

(c) Split the data into a training and a test set, pre-process the data, and
tune a PLS model. How many latent variables are optimal and what is
the corresponding resampled estimate of R??

(d) Predict the response for the test set. What is the test set estimate of R??

(e) Try building other models discussed in this chapter. Do any have better
predictive performance?

(f) Would you recommend any of your models to replace the permeability
laboratory experiment?

6.3. A chemical manufacturing process for a pharmaceutical product was
discussed in Sect. 1.4. In this problem, the objective is to understand the re-
lationship between biological measurements of the raw materials (predictors),



6.5 Computing 139

measurements of the manufacturing process (predictors), and the response of
product yield. Biological predictors cannot be changed but can be used to
assess the quality of the raw material before processing. On the other hand,
manufacturing process predictors can be changed in the manufacturing pro-
cess. Improving product yield by 1% will boost revenue by approximately
one hundred thousand dollars per batch:

(a) Start R and use these commands to load the data:

> library(AppliedPredictiveModeling)
> data(chemicalManufacturingProcess)

The matrix processPredictors contains the 57 predictors (12 describing
the input biological material and 45 describing the process predictors)
for the 176 manufacturing runs. yield contains the percent yield for each
run.

(b) A small percentage of cells in the predictor set contain missing values. Use
an imputation function to fill in these missing values (e.g., see Sect. 3.8).

(c) Split the data into a training and a test set, pre-process the data, and
tune a model of your choice from this chapter. What is the optimal value
of the performance metric?

(d) Predict the response for the test set. What is the value of the performance
metric and how does this compare with the resampled performance metric
on the training set?

(e) Which predictors are most important in the model you have trained? Do
either the biological or process predictors dominate the list?

(f) Explore the relationships between each of the top predictors and the re-
sponse. How could this information be helpful in improving yield in future
runs of the manufacturing process?



Chapter 7
Nonlinear Regression Models

The previous chapter discussed regression models that were intrinsically
linear. Many of these models can be adapted to nonlinear trends in the data
by manually adding model terms (e.g., squared terms). However, to do this,
one must know the specific nature of the nonlinearity in the data.

There are numerous regression models that are inherently nonlinear in
nature. When using these models, the exact form of the nonlinearity does not
need to be known explicitly or specified prior to model training. This chapter
looks at several models: neural networks, multivariate adaptive regression
splines (MARS), support vector machines (SVMs), and K-nearest neighbors
(KNNs). Tree-based models are also nonlinear. Due to their popularity and
use in ensemble models, we have devoted the next chapter to those methods.

7.1 Neural Networks

Neural networks (Bishop 1995; Ripley 1996; Titterington 2010) are power-
ful nonlinear regression techniques inspired by theories about how the brain
works. Like partial least squares, the outcome is modeled by an intermedi-
ary set of unobserved variables (called hidden variables or hidden units here).
These hidden units are linear combinations of the original predictors, but,
unlike PLS models, they are not estimated in a hierarchical fashion (Fig.7.1).
As previously stated, each hidden unit is a linear combination of some or
all of the predictor variables. However, this linear combination is typically
transformed by a nonlinear function g(-), such as the logistic (i.e., sigmoidal)
function:

P
hip(x) =g <ﬁ0k + Zx_jﬁjk> ,  Where

=1
1
u) = ——m.
9(u) = 7 =
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Fig. 7.1: A diagram of a neural network with a single hidden layer. The hidden
units are linear combinations of the predictors that have been transformed
by a sigmoidal function. The output is modeled by a linear combination of
the hidden units

The 3 coefficients are similar to regression coefficients; coefficient ;. is the
effect of the jth predictor on the kth hidden unit. A neural network model
usually involves multiple hidden units to model the outcome. Note that, unlike
the linear combinations in PLS, there are no constraints that help define
these linear combinations. Because of this, there is little likelihood that the
coefficients in each unit represent some coherent piece of information.
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Once the number of hidden units is defined, each unit must be related to
the outcome. Another linear combination connects the hidden units to the
outcome:

H
F&) =10+ Y ha.

k=1

For this type of network model and P predictors, there are a total of H(P +
1) 4+ H + 1 total parameters being estimated, which quickly becomes large as
P increases. For the solubility data, recall that there are 228 predictors. A
neural network model with three hidden units would estimate 691 parameters
while a model with five hidden units would have 1,151 coefficients.

Treating this model as a nonlinear regression model, the parameters are
usually optimized to minimize the sum of the squared residuals. This can be
a challenging numerical optimization problem (recall that there are no con-
straints on the parameters of this complex nonlinear model). The parameters
are usually initialized to random values and then specialized algorithms for
solving the equations are used. The back-propagation algorithm (Rumelhart
et al. 1986) is a highly efficient methodology that works with derivatives to
find the optimal parameters. However, it is common that a solution to this
equation is not a global solution, meaning that we cannot guarantee that the
resulting set of parameters are uniformly better than any other set.

Also, neural networks have a tendency to over-fit the relationship between
the predictors and the response due to the large number of regression coeffi-
cients. To combat this issue, several different approaches have been proposed.
First, the iterative algorithms for solving for the regression equations can be
prematurely halted (Wang and Venkatesh 1984). This approach is referred to
as early stopping and would stop the optimization procedure when some esti-
mate of the error rate starts to increase (instead of some numerical tolerance
to indicate that the parameter estimates or error rate are stable). However,
there are obvious issues with this procedure. First, how do we estimate the
model error? The apparent error rate can be highly optimistic (as discussed
in Sect. 4.1) and further splitting of the training set can be problematic. Also,
since the measured error rate has some amount of uncertainty associated with
it, how can we tell if it is truly increasing?

Another approach to moderating over-fitting is to use weight decay, a pe-
nalization method to regularize the model similar to ridge regression discussed
in the last chapter. Here, we add a penalty for large regression coefficients
so that any large value must have a significant effect on the model errors to
be tolerated. Formally, the optimization produced would try to minimize a
alternative version of the sum of the squared errors:

n

H P H
Do i @) FAD D B A A R
k=0

i=1 k=1;j=0
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for a given value of X. As the regularization value increases, the fitted model
becomes more smooth and less likely to over-fit the training set. Of course,
the value of this parameter must be specified and, along with the number of
hidden units, is a tuning parameter for the model. Reasonable values of \
range between 0 and 0.1. Also note that since the regression coefficients are
being summed, they should be on the same scale; hence the predictors should
be centered and scaled prior to modeling.

The structure of the model described here is the simplest neural network
architecture: a single-layer feed-forward network. There are many other kinds,
such as models where there are more than one layer of hidden units (i.e.,
there is a layer of hidden units that models the other hidden units). Also,
other model architectures have loops going both directions between layers.
Practitioners of these models may also remove specific connections between
objects to further optimize the model. There have also been several Bayesian
approaches to neural networks (Neal 1996). The Bayesian framework outlined
in Neal (1996) for these models automatically incorporates regularization
and automatic feature selection. This approach to neural networks is very
powerful, but the computational aspects of the model become even more
formidable. A model very similar to neural networks is self-organizing maps
(Kohonen 1995). This model can be used as an unsupervised, exploratory
technique or in a supervised fashion for prediction (Melssen et al. 2006).

Given the challenge of estimating a large number of parameters, the fit-
ted model finds parameter estimates that are locally optimal; that is, the
algorithm converges, but the resulting parameter estimates are unlikely to
be the globally optimal estimates. Very often, different locally optimal solu-
tions can produce models that are very different but have nearly equivalent
performance. This model instability can sometimes hinder this model. As
an alternative, several models can be created using different starting values
and averaging the results of these model to produce a more stable prediction
(Perrone and Cooper 1993; Ripley 1995; Tumer and Ghosh 1996). Such model
averaging often has a significantly positive effect on neural networks.

These models are often adversely affected by high correlation among the
predictor variables (since they use gradients to optimize the model parame-
ters). Two approaches for mitigating this issue is to pre-filter the predictors
to remove the predictors that are associated with high correlations. Alterna-
tively a feature extraction technique, such as principal component analysis,
can be used prior to modeling to eliminate correlations. One positive side ef-
fect of both these approaches is that fewer model terms need to be optimized,
thus improving computation time.

For the solubility data, model averaged neural networks were used. Three
different weight decay values were evaluated (A = 0.00,0.01,0.10) along with
a single hidden layer with sizes ranging between 1 and 13 hidden units. The
final predictions are the averages of five different neural networks created
using different initial parameter values. The cross-validated RMSE profiles of
these models are displayed in Fig. 7.2. Increasing the amount of weight decay
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Fig. 7.2: RMSE profiles for the neural network model. The optimal model
used A = 0.1 and 11 hidden units

clearly improved model performance, while more hidden units also reduce the
model error. The optimal model used 11 hidden units with a total of 2,531
coefficients. The performance of the model is fairly stable for a high degree
of regularization (i.e., A = 0.1), so smaller models could also be effective for
these data.

7.2 Multivariate Adaptive Regression Splines

Like neural networks and partial least squares, MARS (Friedman 1991) uses
surrogate features instead of the original predictors. However, whereas PLS
and neural networks are based on linear combinations of the predictors,
MARS creates two contrasted versions of a predictor to enter the model.
Also, the surrogate features in MARS are usually a function of only one or
two predictors at a time. The nature of the MARS features breaks the pre-
dictor into two groups and models linear relationships between the predictor
and the outcome in each group. Specifically, given a cut point for a predictor,
two new features are “hinge” or “hockey stick” functions of the original (see
Fig. 7.3). The “left-hand” feature has values of zero greater than the cut point,
while the second feature is zero less than the cut point. The new features are
added to a basic linear regression model to estimate the slopes and intercepts.
In effect, this scheme creates a piecewise linear model where each new feature
models an isolated portion of the original data.
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How was the cut point determined? Each data point for each predictor
is evaluated as a candidate cut point by creating a linear regression model
with the candidate features, and the corresponding model error is calcu-
lated. The predictor/cut point combination that achieves the smallest er-
ror is then used for the model. The nature of the predictor transformation
makes such a large number of linear regressions computationally feasible.
In some MARS implementations, including the one used here, the utility
of simple linear terms for each predictor (i.e., no hinge function) is also
evaluated.

After the initial model is created with the first two features, the model
conducts another exhaustive search to find the next set of features that,
given the initial set, yield the best model fit. This process continues until a
stopping point is reached (which can be set by the user).

In the initial search for features in the solubility data, a cut point of 5.9 for
molecular weight had the smallest error rate. The resulting artificial predic-
tors are shown in the top two panels of Fig. 7.3. One predictor has all values
less than the cut point set to zero and values greater than the cut point are
left unchanged. The second feature is the mirror image of the first. Instead of
the original data, these two new predictors are used to predict the outcome in
a linear regression model. The bottom panel of Fig. 7.3 shows the result of the
linear regression with the two new features and the piecewise nature of the
relationship. The “left-hand” feature is associated with a negative slope when
the molecular weight is less than 5.9 while the “right-hand” feature estimates
a positive slope for larger values of the predictor.

Mathematically, the hinge function for new features can be written as

h(z) = {x v>0 (7.1)

0 =<0

A pair of hinge functions is usually written as h(z — a) and h(a — z). The
first is nonzero when x > a, while the second is nonzero when x < a. Note
that when this is true the value of the function is actually —x. For the MARS
model shown in Fig. 7.3, the actual model equation would be

—5+ 2.1 x h(MolWeight — 5.94516) + 3 x h(5.94516 — MolW eight).

The first term in this equation (—5) is the intercept. The second term is
associated with the right-hand feature shown in Fig. 7.3, while the third term
is associated with the left-hand feature.

Table 7.1 shows the first few steps of the feature generation phase (prior
to pruning). The features were entered into the linear regression model from
top to bottom. Here the binary fingerprint descriptor enters the model as
a plain linear term (splitting a binary variable would be nonsensical). The
generalized cross-validation (GCV) column shows the estimated RMSE for
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Fig. 7.3: An example of the features used by MARS for the solubility data.
After finding a cut point of 5.9 for molecular weight, two new features are
created and used in a linear regression model. The top two panels show the
relationship between the original predictor and the two resulting features.
The bottom panel shows the predicted relationship when using these two
features in a linear regression model. The red line indicates the contribution
of the “left-hand” hinge function while the blue line is associated with the
other feature
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Table 7.1: The results of several iterations of the MARS algorithm prior to
pruning

Predictor Type Cut RMSE Coeflicient

Intercept 4.193 —-9.33
MolWeight Right 5.95 2.351 —-3.23
MolWeight Left 5.95 1.148 0.66
SurfaceAreal Right 1.96 0.935 0.19
SurfaceAreal Left 1.96 0.861 —0.66
NumNonHAtoms Right 3.00 0.803 —7.51
NumNonHAtoms Left 3.00 0.761 8.53
FP137 Linear 0.727 1.24
NumOxygen Right 1.39 0.701 2.22
NumOxygen Left 1.39 0.683 —0.43
NumNonHBonds Right 2.58 0.670 2.21
NumNonHBonds Left 2.58 0.662 —-3.29

The root mean squared error was estimated using the GCV statistic

the model containing terms on the current row and all rows above. Prior to
pruning, each pair of hinge functions is kept in the model despite the slight
reduction in the estimated RMSE.

Once the full set of features has been created, the algorithm sequentially
removes individual features that do not contribute significantly to the model
equation. This “pruning” procedure assesses each predictor variable and esti-
mates how much the error rate was decreased by including it in the model.
This process does not proceed backwards along the path that the features
were added; some features deemed important at the beginning of the process
may be removed while features added towards the end might be retained. To
determine the contribution of each feature to the model, the GCV statistic
is used. This value is a computational shortcut for linear regression models
that produces an error value that approximates leave-one-out cross-validation
(Golub et al. 1979). GCV produces better estimates than the apparent error
rate for determining the importance of each feature in the model. The num-
ber of terms to remove can be manually set or treated as a tuning parameter
and determined using some other form of resampling.

The process above is a description of an additive MARS model where
each surrogate feature involves a single predictor. However, MARS can build
models where the features involve multiple predictors at once. With a second-
degree MARS model, the algorithm would conduct the same search of a single
term that improves the model and, after creating the initial pair of features,
would instigate another search to create new cuts to couple with each of the
original features. Suppose the pair of hinge functions are denoted as A and B.
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The search procedure attempts to find hinge functions C and D that, when
multiplied by A, result in an improvement in the model; in other words, the
model would have terms for A, A x B and A x C'. The same procedure would
occur for feature B. Note that the algorithm will not add additional terms if
the model is not improved by their addition. Also, the pruning procedure may
eliminate the additional terms. For MARS models that can include two or
more terms at a time, we have observed occasional instabilities in the model
predictions where a few sample predictions are wildly inaccurate (perhaps an
order of magnitude off of the true value). This problem has not been observed
with additive MARS models.

To summarize, there are two tuning parameters associated with the MARS
model: the degree of the features that are added to the model and the number
of retained terms. The latter parameter can be automatically determined us-
ing the default pruning procedure (using GCV), set by the user or determined
using an external resampling technique. For our analysis of the solubility data,
we used 10-fold cross-validation to characterize model performance over first-
and second-order models and 37 values for the number of model terms, rang-
ing from 2 to 38. The resulting performance profile is shown in Fig. 7.4. There
appears to be very little difference in the first- and second-degree models in
terms of RMSE.

The cross-validation procedure picked a second-degree model with 38
terms. However, because the profiles of the first- and second-order model
are almost identical, the more parsimonious first-order model was chosen as
the final model. This model used 38 terms but was a function of only 30
predictors (out of a possible 228).

Cross-validation estimated the RMSE to be 0.7 log units and the R? to
be 0.887. Recall that the MARS procedure internally uses GCV to estimate
model performance. Using GCV, the RMSE was estimated to be 0.4 log
units and an R? of 0.908. Using the test set of 316 samples, the RMSE was
determined to be 0.7 with a corresponding R? of 0.879. Clearly, the GCV
estimates are more encouraging than those obtained by the cross-validation
procedure or the test set. However, note that the internal GCV estimate
that MARS employs evaluates an individual model while the external cross-
validation procedure is exposed to the variation in the entire model building
process, including feature selection. Since the GCV estimate does not reflect
the uncertainty from feature selection, it suffers from selection bias (Ambroise
and McLachlan 2002). This phenomenon will be discussed more in Chap. 19.

There are several advantages to using MARS. First, the model automat-
ically conducts feature selection; the model equation is independent of pre-
dictor variables that are not involved with any of the final model features.
This point cannot be underrated. Given a large number of predictors seen in
many problem domains, MARS potentially thins the predictor set using the
same algorithm that builds the model. In this way, the feature selection rou-
tine has a direct connection to functional performance. The second advantage
is interpretability. Each hinge feature is responsible for modeling a specific
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Fig. 7.4: RMSE profiles for the MARS model. The cross-validation procedure
picked a second-degree model with 38 terms, although there is little difference
between the first- and second-degree models. Given this equivalence, the more
simplistic first-order model was chosen as the final model

region in the predictor space using a (piecewise) linear model. When the
MARS model is additive, the contribution of each predictor can be isolated
without the need to consider the others. This can be used to provide clear
interpretations of how each predictor relates to the outcome. For nonaddi-
tive models, the interpretive power of the model is not reduced. Consider a
second-degree feature involving two predictors. Since each hinge function is
split into two regions, three of the four possible regions will be zero and offer
no contribution to the model. Because of this, the effect of the two factors
can be further isolated, making the interpretation as simple as the additive
model. Finally, the MARS model requires very little pre-processing of the
data; data transformations and the filtering of predictors are not needed. For
example, a zero variance predictor will never be chosen for a split since it
offers no possible predictive information. Correlated predictors do not drasti-
cally affect model performance, but they can complicate model interpretation.
Suppose the training set contained two predictors that were nearly perfectly
correlated. Since MARS can select a predictor more than once during the
iterations, the choice of which predictor is used in the feature is essentially
random. In this case, the model interpretation is hampered by two redun-
dant pieces of information that show up in different parts of the model under
different names.

Another method to help understand the nature of how the predictors affect
the model is to quantify their importance to the model. For MARS, one tech-
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nique for doing this is to track the reduction in the root mean squared error
(as measured using the GCV statistic) that occurs when adding a particular
feature to the model. This reduction is attributed to the original predictor(s)
associated with the feature. These improvements in the model can be aggre-
gated for each predictor as a relative measure of the impact on the model. As
seen in Table 7.1, there is a drop in the RMSE from 4.19 to 1.15 (a reduction
of 3.04) after the two molecular weight features were added to the model.
After this, adding terms for the first surface area predictor decreases the er-
ror by 0.29. Given these numbers, it would appear that the molecular weight
predictor is more important to the model than the first surface area predictor.
This process is repeated for every predictor used in the model. Predictors that
were not used in any feature have an importance of zero. For the solubility
model, the predictors MolWeight, NumNonHAtoms, and SurfaceArea2 appear
to be have the greatest influence on the MARS model (see the Computing
section at the end of the chapter for more details).

Figure 7.5 illustrates the interpretability of the additive MARS model with
the continuous predictors. For each panel, the line represents the prediction
profile for that variable when all the others are held constant at their mean
level. The additive nature of the model allows each predictor to be viewed in
isolation; changing the values of the other predictor variables will not alter
the shape of the profile, only the location on the y-axis where the profile
starts.

7.3 Support Vector Machines

SVMs are a class of powerful, highly flexible modeling techniques. The theory
behind SVMs was originally developed in the context of classification models.
Later, in Chap. 13, the motivation for this technique is discussed in its more
natural form. For regression, we follow Smola (1996) and Drucker et al. (1997)
and motivate this technique in the framework of robust regression where we
seek to minimize the effect of outliers on the regression equations. Also, there
are several flavors of support vector regression and we focus on one particular
technique called e-insensitive regression.

Recall that linear regression seeks to find parameter estimates that mini-
mize SSE (Sect. 6.2). One drawback of minimizing SSE is that the parameter
estimates can be influenced by just one observation that falls far from the
overall trend in the data. When data may contain influential observations,
an alternative minimization metric that is less sensitive, such as the Huber
function, can be used to find the best parameter estimates. This function uses
the squared residuals when they are “small” and uses the absolute residuals
when the residuals are large. See Fig.6.6 on p. 110 for an illustration.

SVMs for regression use a function similar to the Huber function, with
an important difference. Given a threshold set by the user (denoted as €),
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Fig. 7.5: The predicted relationship between the outcome and the continu-
ous predictors using the MARS model (holding all other predictors at their
mean value). The additive nature of the model allows each predictor to be
viewed in isolation. Note that the final predicted values are the summation of
each individual profile. The panels are ordered from top to bottom by their
importance to the model
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data points with residuals within the threshold do not contribute to the
regression fit while data points with an absolute difference greater than the
threshold contribute a linear-scale amount. There are several consequences to
this approach. First, since the squared residuals are not used, large outliers
have a limited effect on the regression equation. Second, samples that the
model fits well (i.e., the residuals are small) have no effect on the regression
equation. In fact, if the threshold is set to a relatively large value, then the
outliers are the only points that define the regression line! This is somewhat
counterintuitive: the poorly predicted points define the line. However, this
approach has been shown to be very effective in defining the model.

To estimate the model parameters, SVM uses the € loss function shown in
Fig. 7.6 but also adds a penalty. The SVM regression coefficients minimize

n P
Cost Z Lo(y; — 9;) + Z 5?;
i=1 j=1

where L.(-) is the e-insensitive function. The Cost parameter is the cost
penalty that is set by the user, which penalizes large residuals.

Recall that the simple linear regression model predicted new samples using
linear combinations of the data and parameters. For a new sample, u, the
prediction equation is

9= P00+ Piur + ...+ Bpup

P
Bo+ > Biu,
j=1

The linear support vector machine prediction function is very similar. The pa-
rameter estimates can be written as functions of a set of unknown parameters
(a;) and the training set data points so that

7= pPo+ Biur + ...+ Bpup

P
=Bo+ Y Bju;

j=1

P n
= 60 + Z Z Q; T55 U5

j=11i=1

n P
=fo+ Z o Z Zijuj | - (7.2)
i=1 j=1

1 The penalty here is written as the reverse of ridge regression or weight decay in
neural networks since it is attached to residuals and not the parameters.
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Fig. 7.6: The relationship between a model residual and its contribution to
the regression line for several techniques. For the Huber approach, a threshold
of 2 was used while for the support vector machine, a value of ¢ = 1 was used.
Note that the y-axis scales are different to make the figures easier to read

There are several aspects of this equation worth pointing out. First,
there are as many « parameters as there are data points. From the stand-
point of classical regression modeling, this model would be considered over-
parameterized; typically, it is better to estimate fewer parameters than data
points. However, the use of the cost value effectively regularizes the model to
help alleviate this problem.

Second, the individual training set data points (i.e., the x;;) are required
for new predictions. When the training set is large, this makes the prediction
equations less compact than other techniques. However, for some percentage
of the training set samples, the «; parameters will be exactly zero, indicat-
ing that they have no impact on the prediction equation. The data points
associated with an «; parameter of zero are the training set samples that
are within +e of the regression line (i.e., are within the “funnel” or “tube”
around the regression line). As a consequence, only a subset of training set



7.3 Support Vector Machines 155

data points, where a # 0, are needed for prediction. Since the regression line
is determined using these samples, they are called the support vectors as they
support the regression line.

Figure 7.7 illustrates the robustness of this model. A simple linear model
was simulated with a slope of 4 and an intercept of 1; one extreme outlier
was added to the data. The top panel shows the model fit for a linear regres-
sion model (black solid line) and a support vector machine regression model
(blue dashed line) with € = 0.01. The linear regression line is pulled towards
this point, resulting in estimates of the slope and intercept of 3.5 and 1.2,
respectively. The support vector regression fit is shown in blue and is much
closer to the true regression line with a slope of 3.9 and an intercept of 0.9.
The middle panel again shows the SVM model, but the support vectors are
solid black circles and the other points are shown in red. The horizontal grey
reference lines indicate zero 4+ €. Out of 100 data points, 70 of these were
support vectors.

Finally, note that in the last form of Eq. 7.2, the new samples enter into
the prediction function as sum of cross products with the new sample values.
In matrix algebra terms, this corresponds to a dot product (i.e., x'u). This is
important because this regression equation can be rewritten more generally
as

F) =B+ K (xi,u),
1=1

where K(-) is called the kernel function. When predictors enter the model
linearly, the kernel function reduces to a simple sum of cross products shown
above:

P
K(x;,u) = Zaﬁijuj = x;u.
j=1

However, there are other types of kernel functions that can be used to general-
ize the regression model and encompass nonlinear functions of the predictors:

POlynomial = (qﬁ (X/ll) + 1)d€gree

exp(—ol|x — ul|*)
hyperbolic tangent = tanh (¢ (x'u) + 1),

radial basis function

where ¢ and o are scaling parameters. Since these functions of the predictors
lead to nonlinear models, this generalization is often called the “kernel trick.”

To illustrate the ability of this model to adapt to nonlinear relationships,
we simulated data that follow a sin wave in the bottom of Fig. 7.7. Outliers
were also added to these data. A linear regression model with an intercept and
a term for sin(z) was fit to the model (solid black line). Again, the regression
line is pulled towards the outlying points. An SVM model with a radial basis
kernel function is represented by the blue dashed line (without specifying the
sin functional form). This line better describes the overall structure of the
data.
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Fig. 7.7: The robustness qualities of SVM models. Top: a small simulated
data set with a single large outlier is used to show the difference between an
ordinary regression line (red) and the linear SVM model (blue). Middle: the
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was reduced to make the plot more readable). The plot symbols indicate the
support vectors (shown as grey colored circles) and the other samples (red
crosses). The horizontal lines are +¢ = 0.01. Bottom: A simulated sin wave
with several outliers. The red line is an ordinary regression line (intercept and
a term for sin(x)) and the blue line is a radial basis function SVM model
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Which kernel function should be used? This depends on the problem. The
radial basis function has been shown to be very effective. However, when the
regression line is truly linear, the linear kernel function will be a better choice.

Note that some of the kernel functions have extra parameters. For example,
the polynomial degree in the polynomial kernel must be specified. Similarly,
the radial basis function has a parameter (o) that controls the scale. These
parameters, along with the cost value, constitute the tuning parameters for
the model. In the case of the radial basis function, there is a possible com-
putational shortcut to estimating the kernel parameter. Caputo et al. (2002)
suggested that the parameter can be estimated using combinations of the
training set points to calculate the distribution of ||z — 2’||?, then use the
10th and 90th percentiles as a range for o. Instead of tuning this parame-
ter over a grid of candidate values, we can use the midpoint of these two
percentiles.

The cost parameter is the main tool for adjusting the complexity of the
model. When the cost is large, the model becomes very flexible since the
effect of errors is amplified. When the cost is small, the model will “stiffen”
and become less likely to over-fit (but more likely to underfit) because the
contribution of the squared parameters is proportionally large in the modified
error function. One could also tune the model over the size of the funnel (e.g.,
over €). However, there is a relationship between e and the cost parameter.
In our experience, we have found that the cost parameter provides more
flexibility for tuning the model. So we suggest fixing a value for € and tuning
over the other kernel parameters.

Since the predictors enter into the model as the sum of cross products,
differences in the predictor scales can affect the model. Therefore, we recom-
mend centering and scaling the predictors prior to building an SVM model.

SVMs were applied to the solubility data. First, a radial basis function
kernel was used. The kernel parameter was estimated analytically to be
o = 0.0039 and the model was tuned over 14 cost values between 0.25 and
2048 on the logs scale (Fig. 7.8). When the cost values are small, the model
under-fits the data, but, as the error starts to increase when the cost ap-
proaches 2'°, over-fitting begins. The cost value associated with the smallest
RMSE was 128. A polynomial model was also evaluated. Here, we tuned over
the cost, the polynomial degree, and a scale factor. In general, quadratic mod-
els have smaller error rates than the linear models. Also, models associated
with larger-scale factors have better performance. The optimal model was
quadratic with a scale factor of 0.01 and a cost value of 2 (Fig.7.9).

As a comparison, both the optimal radial basis and the polynomial SVM
models use a similar number of support vectors, 623 and 627, respectively (out
of 951 training samples). Also it is important to point out that tuning the
radial basis function kernel parameter was easier than tuning the polynomial
model (which has three tuning parameters).

The literature on SVM models and other kernel methods has been vi-
brant and many alternate methodologies have been proposed. One method,
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the relevance vector machine (Tipping 2001), is a Bayesian analog to the
SVM model. In this case, the o parameters described above have associated
prior distributions and the selection of relevance vectors is determined using
their posterior distribution. If the posterior distribution is highly concen-
trated around zero, the sample is not used in the prediction equation. There
are usually less relevance vectors in this model than support vectors in an
SVM model.

7.4 K-Nearest Neighbors

The KNN approach simply predicts a new sample using the K-closest sam-
ples from the training set (similar to Fig.4.3). Unlike other methods in this
chapter, KNN cannot be cleanly summarized by a model like the one pre-
sented in Eq.7.2. Instead, its construction is solely based on the individual
samples from the training data. To predict a new sample for regression, K NN
identifies that sample’s K NNs in the predictor space. The predicted response
for the new sample is then the mean of the K neighbors’ responses. Other
summary statistics, such as the median, can also be used in place of the mean
to predict the new sample.

The basic KNN method as described above depends on how the user
defines distance between samples. Euclidean distance (i.e., the straight-line
distance between two samples) is the most commonly used metric and is
defined as follows:

P 2

D (way =) |

Jj=1

where x, and xy, are two individual samples. Minkowski distance is a gener-
alization of Euclidean distance and is defined as

P q

D lwas — el |

Jj=1

where ¢ > 0 (Liu 2007). It is easy to see that when ¢ = 2, then Minkowski
distance is the same as Euclidean distance. When ¢ = 1, then Minkowski dis-
tance is equivalent to Manhattan (or city-block) distance, which is a common
metric used for samples with binary predictors. Many other distance metrics
exist, such as Tanimoto, Hamming, and cosine, and are more appropriate
for specific types of predictors and in specific scientific contexts. Tanimoto
distance, for example, is regularly used in computational chemistry prob-
lems when molecules are described using binary fingerprints (McCarren et al.
2011).



160 7 Nonlinear Regression Models

Because the KNN method fundamentally depends on distance between
samples, the scale of the predictors can have a dramatic influence on the
distances among samples. Data with predictors that are on vastly different
scales will generate distances that are weighted towards predictors that have
the largest scales. That is, predictors with the largest scales will contribute
most to the distance between samples. To avoid this potential bias and to
enable each predictor to contribute equally to the distance calculation, we
recommend that all predictors be centered and scaled prior to performing
KNN.

In addition to the issue of scaling, using distances between samples can
be problematic if one or more of the predictor values for a sample is miss-
ing, since it is then not possible to compute the distance between samples.
If this is the case, then the analyst has a couple of options. First, either the
samples or the predictors can be excluded from the analysis. This is the least
desirable option; however, it may be the only practical choice if the sam-
ple(s) or predictor(s) are sparse. If a predictor contains a sufficient amount
of information across the samples, then an alternative approach is to impute
the missing data using a naive estimator such as the mean of the predictor,
or a nearest neighbor approach that uses only the predictors with complete
information (see Sect. 3.4).

Upon pre-processing the data and selecting the distance metric, the next
step is to find the optimal number of neighbors. Like tuning parameters from
other models, K can be determined by resampling. For the solubility data,
20 values of K ranging between 1 and 20 were evaluated. As illustrated in
Fig.7.10, the RMSE profile rapidly decreases across the first four values of
K, then levels off through K = 8, followed by a steady increase in RMSE as
K increases. This performance profile is typical for KNN, since small values
of K usually over-fit and large values of K underfit the data. RMSE ranged
from 1.041 to 1.23 across the candidate values, with the minimum occurring
at K = 4; cross-validated R? at the optimum K is 0.747.

The elementary version of KNN is intuitive and straightforward and can
produce decent predictions, especially when the response is dependent on
the local predictor structure. However, this version does have some notable
problems, of which researchers have sought solutions. Two commonly noted
problems are computational time and the disconnect between local structure
and the predictive ability of KA NN.

First, to predict a sample, distances between the sample and all other
samples must be computed. Computation time therefore increases with n
because the training data must be loaded into memory and because distances
between the new sample and all of the training samples must be computed. To
mitigate this problem, one can replace the original data with a less memory-
intensive representation of the data that describes the locations of the original
data. One specific example of this representation is a k-dimensional tree (or k-
d tree) (Bentley 1975). A k-d tree orthogonally partitions the predictor space
using a tree approach but with different rules than the kinds of trees described
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Fig. 7.10: The RMSE cross-validation profile for a KNN model applied to
the solubility data. The optimal number of neighbors is 4

in Chap. 8. After the tree has been grown, a new sample is placed through
the structure. Distances are only computed for those training observations in
the tree that are close to the new sample. This approach provides significant
computational improvements, especially when the number of training samples
is much larger than the number of predictors.

The KNN method can have poor predictive performance when local pre-
dictor structure is not relevant to the response. Irrelevant or noisy predictors
are one culprit, since these can cause similar samples to be driven away from
each other in the predictor space. Hence, removing irrelevant, noise-laden pre-
dictors is a key pre-processing step for KNN. Another approach to enhancing
KNN predictivity is to weight the neighbors’ contribution to the prediction
of a new sample based on their distance to the new sample. In this variation,
training samples that are closer to the new sample contribute more to the
predicted response, while those that are farther away contribute less to the
predicted response.

7.5 Computing

This section will reference functions from the caret, earth, kernlab, and nnet
packages.

R has a number of packages and functions for creating neural networks.
Relevant packages include nnet, neural, and RSNNS. The nnet package is the
focus here since it supports the basic neural network models outlined in this
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chapter (i.e., a single layer of hidden units) and weight decay and has sim-
ple syntax. RSNNS supports a wide array of neural networks. Bergmeir and
Benitez (2012) outline the various neural network packages in R and contain
a tutorial on RSNNS.

Neural Networks

To fit a regression model, the nnet function takes both the formula and non-
formula interfaces. For regression, the linear relationship between the hidden
units and the prediction can be used with the option linout = TRUE. A basic
neural network function call would be

> nnetFit <- nnet(predictors, outcome,

+ size = 5,

+ decay = 0.01,

+ linout = TRUE,

+ ## Reduce the amount of printed output

+ trace = FALSE,

+ ## Expand the number of iterations to find

+ ## parameter estimates..

+ maxit = 500,

+ ## and the number of parameters used by the model
+ MaxNWts = 5 * (ncol(predictors) + 1) + 5 + 1)

This would create a single model with 5 hidden units. Note, this assumes that
the data in predictors have been standardized to be on the same scale.

To use model averaging, the aviiNet function in the caret package has nearly
identical syntax:

> nnetAvg <- avllNet (predictors, outcome,

+ size = 5,

+ decay = 0.01,

+ ## Specify how many models to average

+ repeats = 5,

+ linout = TRUE,

+ ## Reduce the amount of printed output

+ trace = FALSE,

+ ## Expand the number of iterations to find

+ ## parameter estimates..

+ maxit = 500,

+ ## and the number of parameters used by the model
+ MaxNWts = 5 * (ncol(predictors) + 1) + 5 + 1)

Again, new samples are processed using

> predict(nnetFit, newData)
> ## or
> predict(nnetAvg, newData)

To mimic the earlier approach of choosing the number of hidden units and
the amount of weight decay via resampling, the train function can be applied
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using either method = "nnet" or method = "avNNet". First, we remove predic-
tors to ensure that the maximum absolute pairwise correlation between the
predictors is less than 0.75.

## The findCorrelation takes a correlation matrix and determines the
## column numbers that should be removed to keep all pair-wise
## correlations below a threshold
tooHigh <- findCorrelation(cor(solTrainXtrans), cutoff = .75)
trainXnnet <- solTrainXtrans[, -tooHigh]
testXnnet <- solTestXtrans[, -tooHigh]
## Create a specific candidate set of models to evaluate:
nnetGrid <- expand.grid(.decay = c(0, 0.01, .1),
.size = ¢(1:10),
## The next option is to use bagging (see the
## next chapter) instead of different random
## seeds.
.bag = FALSE)
set.seed(100)
nnetTune <- train(solTrainXtrans, solTrainY,
method = "avNNet",
tuneGrid = nnetGrid,
trControl = ctrl,
## Automatically standardize data prior to modeling
## and prediction
preProc = c("center", "scale"),
linout = TRUE,
trace = FALSE,
MaxNWts = 10 * (ncol(trainXnnet) + 1) + 10 + 1,
maxit = 500)

+ + ++++++++VV++t+++VVVVVVVY

Multivariate Adaptive Regression Splines

MARS models are in several packages, but the most extensive implementation
is in the earth package. The MARS model using the nominal forward pass
and pruning step can be called simply

> marsFit <- earth(solTrainXtrans, solTrainY)

> marsFit

Selected 38 of 47 terms, and 30 of 228 predictors

Importance: NumNonHAtoms, MolWeight, SurfaceArea2, SurfaceAreal, FP142,
Number of terms at each degree of interaction: 1 37 (additive model)
GCV 0.3877448 RSS 312.877 GRSq 0.907529 RSq 0.9213739

Note that since this model used the internal GCV technique for model selec-
tion, the details of this model are different than the one used previously in
the chapter. The summary method generates more extensive output:

> summary (marsFit)
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Call: earth(x=solTrainXtrans, y=solTrainY)

coefficients
(Intercept) -3.223749
FP002 0.517848
FP0O03 -0.228759
FP059 -0.582140
FP065 -0.273844
FPO75 0.285520
FP083 -0.629746
FP085 -0.235622
FP099 0.325018
FP111 -0.403920
FP135 0.394901
FP142 0.407264
FP154 -0.620757
FP172 -0.514016
FP176 0.308482
FP188 0.425123
FP202 0.302688
FP204 -0.311739
FP207 0.457080
h(MolWeight-5.77508) -1.801853
h(5.94516-MolWeight) 0.813322
h (NumNonHAtoms-2.99573) -3.247622
h(2.99573-NumNonHAtoms) 2.520305
h(2.57858-NumNonHBonds) -0.564690
h(NumMultBonds-1.85275) -0.370480
h(NumRotBonds-2.19722) -2.753687
h(2.19722-NumRotBonds) 0.123978
h(NumAromaticBonds-2.48491) -1.453716
h(NumNitrogen-0.584815) 8.239716
h(0.584815-NumNitrogen) -1.542868
h(NumOxygen-1.38629) 3.304643
h(1.38629-NumOxygen) -0.620413
h(NumChlorine-0.46875) -50.431489
h(HydrophilicFactor- -0.816625) 0.237565
h(-0.816625-HydrophilicFactor) -0.370998
h(SurfaceAreal-1.9554) 0.149166
h(SurfaceArea2-4.66178) -0.169960
h(4.66178-SurfaceArea?2) -0.157970

Selected 38 of 47 terms, and 30 of

GCV 0.3877448 RSS 312.877 GRSq 0.907529

7 Nonlinear Regression Models

228 predictors
Importance: NumNonHAtoms, MolWeight, SurfaceArea2, SurfaceAreal, FP142,
Number of terms at each degree of interaction: 1 37 (additive model)

RSq 0.9213739

In this output, h(:) is the hinge function. In the output above, the term
h(MolWeight-5.77508) is zero when the molecular weight is less than 5.77508
(i.e., similar to the top panel of Fig.7.3). The reflected hinge function would

be shown as h(5.77508 - MolWeight).
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The plotmo function in the earth package can be used to produce plots
similar to Fig. 7.5. To tune the model using external resampling, the train
function can be used. The following code reproduces the results in Fig. 7.4:

> # Define the candidate models to test
> marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)
> # Fix the seed so that the results can be reproduced
> set.seed(100)
> marsTuned <- train(solTrainXtrans, solTrainY,
+ method = "earth",
+ # Explicitly declare the candidate models to test
+ tuneGrid = marsGrid,
+ trControl = trainControl (method = "cv"))
> marsTuned
951 samples

228 predictors

No pre-processing
Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 856, 857, 855, 856, 856, 855,
Resampling results across tuning parameters:

degree nprune RMSE Rsquared RMSE SD Rsquared SD

1 2 1.54 0.438 0.128 0.0802
1 3 1.12 0.7 0.0968  0.0647
1 4 1.06 0.73 0.0849  0.0594
1 5 1.02 0.75 0.102 0.0551
1 6 0.984 0.768 0.0733  0.042

1 7 0.919 0.796 0.0657  0.0432
1 8 0.862 0.821 0.0418  0.0237
2 33 0.701 0.883 0.068 0.0307
2 34 0.702 0.883 0.0699  0.0307
2 35 0.696 0.885 0.0746  0.0315
2 36 0.687 0.887 0.0604 0.0281
2 37 0.696 0.885 0.0689  0.0291
2 38 0.686 0.887 0.0626  0.029

RMSE was used to select the optimal model using the smallest value.
The final values used for the model were degree = 1 and nprune = 38.

> head(predict (marsTuned, solTestXtrans))
[1] 0.3677522 -0.1503220 -0.5051844 0.5398116 -0.4792718 0.7377222

There are two functions that estimate the importance of each predictor in
the MARS model: evimp in the earth package and varImp in the caret package
(although the latter calls the former):
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> varImp(marsTuned)

earth variable importance
only 20 most important variables shown (out of 228)

Overall
MolWeight 100.00
NumNonHAtoms 89.96
SurfaceArea2 89.51
SurfaceAreal 57.34

FP142 44 .31
FP002 39.23
NumMultBonds 39.23
FP204 37.10
FP172 34.96
NumOxygen 30.70
NumNitrogen 29.12
FP083 28.21
NumNonHBonds 26.58
FP0O59 24.76
FP135 23.51
FP154 21.20
FP207 19.05
FP202 17.92
NumRotBonds 16.94
FP0O85 16.02

These results are scaled to be between 0 and 100 and are different than those
shown in Table 7.1 (since the model in Table 7.1 did not undergo the full
model growing and pruning process). Note that after the first few variables,
the remainder have much smaller importance to the model.

Support Vector Machines

There are a number of R packages with implementations of support vector
machine models. The svm function in the 1071 package has an interface to
the LIBSVM library (Chang and Lin 2011) for regression. A more compre-
hensive implementation of SVM models for regression is the kernlab package
(Karatzoglou et al. 2004). In that package, the ksvm function is available for
regression models and a large number of kernel functions. The radial basis
function is the default kernel function. If appropriate values of the cost and
kernel parameters are known, this model can be fit as

> svmFit <- ksvm(x = solTrainXtrans, y = solTrainY,
+ kernel ="rbfdot", kpar = "automatic",
+ C =1, epsilon = 0.1)

The function automatically uses the analytical approach to estimate o. Since
y is a numeric vector, the function knows to fit a regression model (instead
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of a classification model). Other kernel functions can be used, including the

polynomial (using kernel = "polydot") and linear (kernel = "vanilladot").
If the values are unknown, they can be estimated through resampling. In

train, the method values of "svmRadial", "svmLinear", or "svmPoly" fit different

kernels:

>
+
+
+
+

The tuneLength argument will use the default grid search of 14 cost values
between 272,271, ... 211, Again, o is estimated analytically by default.

> svmRTuned

951 samples

228 predictors

Pre-processing: centered, scaled

svmRTuned <- train(solTrainXtrans, solTrainY,

method = "svmRadial",
= c("center",
tunelength = 14,

preProc

trControl = trainControl(method = "cv"))

Resampling: Cross-Validation (10-fold)

Summary of sample sizes: 855, 858, 856, 855, 855, 856,

Resampling results across tuning parameters:

512
1020
2050

Tuning parameter
RMSE was used to
The final values

The subobject named finalModel contains the model created by the ksvm
function:
> svmRTuned$finalModel

Support Vector Machine object of class "ksvm"

SV type: eps-svr

O O O OO OO OO0 OO O oo

RMSE

.793
.708
.664
.642
.629
.621
.617
.613

611

.609
.609
.61

.613
.618

parameter :

O O O OO OO0 OO0 OO oo

911

.911
911
.911
.91

.909

'sigma' was held constant at a value of 0.00387
select the optimal model using the smallest value.
used for the model were C = 256 and sigma

0.
.0936
.0834
.0725
.067
.0634
.0602
.06

O OO O OO0 OO OO OO OO

Rsquared RMSE SD
.87
.889
.898
.903
.906
.908
.909
.91

105

0586

.0561
.056

.0563
.0563
.0541

(regression)
cost C = 256

epsilon

0.1

O O O OO OO0 O0O OO O OoOOo

Rsquared SD
.0396
.0345
.0306
.0277
.0253
.0238
.0232
.0234

0231

.0223
.0224
.0226
.023
.023
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Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.00387037424967707

Number of Support Vectors : 625

Objective Function Value : -1020.558
Training error : 0.009163

Here, we see that the model used 625 training set data points as support
vectors (66 % of the training set).

kernlab has an implementation of the RVM model for regression in the
function rvm. The syntax is very similar to the example shown for ksvm.

K -Nearest Neighbors

The knnreg function in the caret package fits the K NN regression model; train
tunes the model over K:

> # Remove a few sparse and unbalanced fingerprints first

> knnDescr <- solTrainXtrans[, -nearZeroVar(solTrainXtrans)]
> set.seed(100)

> knnTune <- train(knnDescr,

+ solTrainY,

+ method = "knn",

+ # Center and scaling will occur for new predictions too
+ preProc = c("center", "scale"),

+ tuneGrid = data.frame(.k = 1:20),

+ trControl = trainControl(method = "cv"))

When predicting new samples using this object, the new samples are auto-
matically centered and scaled using the values determined by the training set.

Exercises

7.1. Simulate a single predictor and a nonlinear relationship, such as a sin
wave shown in Fig. 7.7, and investigate the relationship between the cost, ¢,
and kernel parameters for a support vector machine model:

> set.seed(100)

> x <- runif (100, min = 2, max = 10)

> y <= sin(x) + rnorm(length(x)) * .25

> sinData <- data.frame(x = x, y = y)

> plot(x, y)

> ## Create a grid of x values to use for prediction
> dataGrid <- data.frame(x = seq(2, 10, length = 100))
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(a) Fit different models using a radial basis function and different values of
the cost (the ¢ parameter) and e. Plot the fitted curve. For example:

library(kernlab)
rbfSVM <- ksvm(x = x, y =y, data = sinData,
kernel ="rbfdot", kpar = "automatic",

C =1, epsilon = 0.1)
modelPrediction <- predict(rbfSVM, newdata = dataGrid)
## This is a matrix with one column. We can plot the
## model predictions by adding points to the previous plot
points(x = dataGrid$x, y = modelPrediction[,1],
type = "1", col = "blue")
## Try other parameters

vV + VVVYV + + VYV

(b) The o parameter can be adjusted using the kpar argument, such as
kpar = list(sigma = 1). Try different values of ¢ to understand how this
parameter changes the model fit. How do the cost, €, and o values affect
the model?

7.2. Friedman (1991) introduced several benchmark data sets create by sim-
ulation. One of these simulations used the following nonlinear equation to
create data:

y = 10sin(rz122) + 20(z3 — 0.5)% + 1024 + 5z5 + N (0, 0%)

where the z values are random variables uniformly distributed between [0, 1]
(there are also 5 other non-informative variables also created in the simula-
tion). The package mlbench contains a function called mlbench.friedmani that
simulates these data:

library(mlbench)

set.seed(200)

trainingData <- mlbench.friedmani1 (200, sd = 1)

## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)

## Look at the data using

featurePlot (trainingData$x, trainingData$y)

## or other methods.

## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedmanl (5000, sd = 1)

testData$x <- data.frame(testData$x)

VVVVVVVVVVVVVVYVYV

Tune several models on these data. For example:

library(caret)

knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",

+ + Vv Vv
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+ preProc = c("center", "scale"),
+ tuneLength = 10)
> knnModel

200 samples

10 predictors

Pre-processing: centered, scaled
Resampling: Bootstrap (25 reps)

Summary of sample sizes: 200, 200, 200, 200, 200, 200,

Resampling results across tuning parameters:

k  RMSE Rsquared RMSE SD Rsquared SD
5 3.51 0.496 0.238 0.0641
7 3.36 0.536 0.24 0.0617
9 3.3 0.559 0.251 0.0546
11 3.24 0.586 0.252 0.0501
13 3.2 0.61 0.234 0.0465
15 3.19 0.623 0.264 0.0496
17 3.19 0.63 0.286 0.0528
19 3.18 0.643 0.274 0.048
21 3.2 0.646 0.269 0.0464
23 3.2 0.652 0.267 0.0465

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was k = 19.

> knnPred <- predict(knnModel, newdata = testData$x)

> ## The function 'postResample' can be used to get the test set
> ## perforamnce values

> postResample(pred = knnPred, obs = testData$y)

RMSE Rsquared
3.2286834 0.6871735

Which models appear to give the best performance? Does MARS select the
informative predictors (those named x1-x5)?

7.3. For the Tecator data described in the last chapter, build SVM, neural
network, MARS, and KNN models. Since neural networks are especially sen-
sitive to highly correlated predictors, does pre-processing using PCA help the
model?

7.4. Return to the permeability problem outlined in Exercise 6.2. Train sev-
eral nonlinear regression models and evaluate the resampling and test set
performance.

(a) Which nonlinear regression model gives the optimal resampling and test
set performance?

(b) Do any of the nonlinear models outperform the optimal linear model you
previously developed in Exercise 6.27 If so, what might this tell you about
the underlying relationship between the predictors and the response?
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(¢) Would you recommend any of the models you have developed to replace
the permeability laboratory experiment?

7.5. Exercise 6.3 describes data for a chemical manufacturing process. Use
the same data imputation, data splitting, and pre-processing steps as before
and train several nonlinear regression models.

(a) Which nonlinear regression model gives the optimal resampling and test
set performance?

(b) Which predictors are most important in the optimal nonlinear regres-
sion model? Do either the biological or process variables dominate the
list? How do the top ten important predictors compare to the top ten
predictors from the optimal linear model?

(c) Explore the relationships between the top predictors and the response for
the predictors that are unique to the optimal nonlinear regression model.
Do these plots reveal intuition about the biological or process predictors
and their relationship with yield?



Chapter 8
Regression Trees and Rule-Based Models

Tree-based models consist of one or more nested if-then statements for the
predictors that partition the data. Within these partitions, a model is used
to predict the outcome. For example, a very simple tree could be defined as

if Predictor A >= 1.7 then

| if Predictor B >= 202.1 then Outcome = 1.3
| else Outcome = 5.6

else Outcome = 2.5

In this case, two-dimensional predictor space is cut into three regions, and,
within each region, the outcome is predicted by a single number (either 1.3,
2.5, or 5.6). Figure 8.1 presents these rules in the predictor space.

In the terminology of tree models, there are two splits of the data into three
terminal nodes or leaves of the tree. To obtain a prediction for a new sample,
we would follow the if-then statements defined by the tree using values of
that sample’s predictors until we come to a terminal node. The model formula
in the terminal node would then be used to generate the prediction. In the
illustration above, the model is a simple numeric value. In other cases, the
terminal node may be defined by a more complex function of the predictors.
Trees for regression will be discussed in Sects. 8.1 and 8.2.

Notice that the if-then statements generated by a tree define a unique
route to one terminal node for any sample. A rule is a set of if-then condi-
tions (possibly created by a tree) that have been collapsed into independent
conditions. For the example above, there would be three rules:

if Predictor A >= 1.7 and Predictor B >= 202.1 then Outcome = 1.3
if Predictor A >= 1.7 and Predictor B < 202.1 then Outcome = 5.6
if Predictor A < 1.7 then Outcome = 2.5

Rules can be simplified or pruned in a way that samples are covered by
multiple rules. This approach can have some advantages over simple tree-
based models; rule-based models will be discussed in Sects. 8.3 and 8.7.

M. Kuhn and K. Johnson, Applied Predictive Modeling, 173
DOI 10.1007/978-1-4614-6849-3_8,
© Springer Science+Business Media New York 2013
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Fig. 8.1: An example of the predicted values within regions defined by a
tree-based model

Tree-based and rule-based models are popular modeling tools for a num-
ber of reasons. First, they generate a set of conditions that are highly inter-
pretable and are easy to implement. Because of the logic of their construction,
they can effectively handle many types of predictors (sparse, skewed, contin-
uous, categorical, etc.) without the need to pre-process them. In addition,
these models do not require the user to specify the form of the predictors’ re-
lationship to the response like, for example, a linear regression model requires.
Furthermore, these models can effectively handle missing data and implicitly
conduct feature selection, characteristics that are desirable for many real-life
modeling problems.

Models based on single trees or rules, however, do have particular weak-
nesses. Two well-known weaknesses are (1) model instability (i.e., slight
changes in the data can drastically change the structure of the tree or rules
and, hence, the interpretation) and (2) less-than-optimal predictive perfor-
mance. The latter is due to the fact that these models define rectangular
regions that contain more homogeneous outcome values. If the relationship
between predictors and the response cannot be adequately defined by rectan-
gular subspaces of the predictors, then tree-based or rule-based models will
have larger prediction error than other kinds of models.
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To combat these problems, researchers developed ensemble methods that
combine many trees (or rule-based models) into one model. Ensembles tend
to have much better predictive performance than single trees (and this is
generally true for rule-based models, too). Ensembles will be discussed in
Sects. 8.4-8.7.

8.1 Basic Regression Trees

Basic regression trees partition the data into smaller groups that are more
homogenous with respect to the response. To achieve outcome homogeneity,
regression trees determine:

e The predictor to split on and value of the split
e The depth or complexity of the tree
e The prediction equation in the terminal nodes

In this section, we focus on techniques where the model in the terminal nodes
are simple constants.

There are many techniques for constructing regression trees. One of the
oldest and most utilized is the classification and regression tree (CART)
methodology of Breiman et al. (1984). For regression, the model begins with
the entire data set, S, and searches every distinct value of every predictor
to find the predictor and split value that partitions the data into two groups
(S1 and Ss) such that the overall sums of squares error are minimized:

SSE = Z (yi —)* + Z (yi — §2)% (8.1)

1€S1 1€Ss

where 71 and 72 are the averages of the training set outcomes within groups
S1 and Sy, respectively. Then within each of groups S7 and S, this method
searches for the predictor and split value that best reduces SSE. Because of
the recursive splitting nature of regression trees, this method is also known
as recursive partitioning.

Returning to the solubility data, Fig. 8.2 shows the SSFE for the continuum
of splits for the number of carbon atoms (on a transformed scale). Using the
regression tree approach, the optimal split point for this variable is 3.78. The
reduction in the SSFE associated with this split is compared to the optimal
values for all of the other predictors and the split corresponding to the abso-
lute minimum error is used to form subsets S; and Ss. After considering all
other variables, this variable was chosen to be the best (see Fig.8.3). If the
process were stopped at this point, all sample with values for this predictor
less than 3.78 would be predicted to be —1.84 (the average of the solubility
results for these samples) and samples above the splits all have a predicted
value of —4.49:
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Fig. 8.2: Top: A scatter plot of the solubility values (y-axis) versus the number
of carbon atoms (on a transformed scale). Bottom: The SSE profile across
all possible splits for this predictor. The splits used here are the midpoints
between two distinct data points

if the number of carbon atoms >= 3.78 then Solubility = -4.49
else Solubility = -1.84

In practice, the process then continues within sets S; and S5 until the number
of samples in the splits falls below some threshold (such as 20 samples). This
would conclude the tree growing step. Figure 8.4 shows the second set of splits
for the example data.

When the predictor is continuous, the process for finding the optimal split-
point is straightforward since the data can be ordered in a natural way. Binary
predictors are also easy to split, because there is only one possible split point.
However, when a predictor has more than two categories, the process for
finding the optimal split point can take a couple of justifiable paths. For a
detailed discussion on this topic, see Sect. 14.1.
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Fig. 8.3: Top: The initial splits of the solubility data. Bottom: After the first
split, the two groups are split further into four partitions

Once the full tree has been grown, the tree may be very large and is likely to
over-fit the training set. The tree is then pruned back to a potentially smaller
depth. The processed used by Breiman et al. (1984) is cost—complezity tuning.
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The goal of this process is to find a “right-sized tree” that has the smallest
error rate. To do this, we penalize the error rate using the size of the tree:

SSE., = SSE + ¢, x (# Terminal Nodes),

where ¢, is called the complexity parameter. For a specific value of the
complexity parameter, we find the smallest pruned tree that has the lowest
penalized error rate. Breiman et al. (1984) show the theory and algorithms
for finding the best tree for a particular value of ¢,. As with other regulariza-
tion methods previously discussed, smaller penalties tend to produce more
complex models, which, in this case, result in larger trees. Larger values of
the complexity parameter may result in a tree with one split (i.e., a stump)
or, perhaps, even a tree with no splits. The latter result would indicate that
no predictor adequately explains enough of the variation in the outcome at
the chosen value of the complexity parameter.

To find the best pruned tree, we evaluate the data across a sequence of
cp values. This process generates one SSE for each chosen c, value. But
we know that these SSFE values will vary if we select a different sample of
observations. To understand variation in SSFEs at each ¢, value, Breiman
et al. (1984) suggest using a cross-validation approach similar to the method
discussed in Chap. 4. They also propose using the one-standard-error rule on
the optimization criteria for identifying the simplest tree: find the smallest
tree that is within one standard error of the tree with smallest absolute error
(see Sect. 4.6, page 74). Another approach selects the tree size associated with
the numerically smallest error (Hastie et al. 2008).

Using the one-standard-error rule, the regression tree built on the solubility
data had 11 terminal nodes (¢, = 0.01) and the cross-validation estimate of
the RMSE was 1.05. Figure 8.4 shows the regression tree for the model. All
of the splits retained in the model involve the continuous or count predictors
and several paths through the tree use some of the same predictors more than
once.

On the surface, the tree in Fig. 8.4 appears to be fairly interpretable. For
example, one could say that if a compound has a moderately large number
of carbon atoms, has very lower surface area, and has a large number of
non-hydrogen atoms, then it has the lowest solubility. However, there are
many partitions in the data that overlap. For example, nodes 12 and 16 have
roughly the same distribution of solubility values, although one of these paths
has low surface area and another has high surface area.

Alternatively, the model can be tuned by choosing the value of the com-
plexity parameter associated with the smallest possible RMSE value. The
cross-validation profile is shown in Fig.8.5. In this case, the tuning process
chose a larger tree with a ¢, value of 0.003 and 25 terminal nodes. The esti-
mated RMSE from this model was 0.97. Although this model more accurately
fits the data, it is much deeper than the tree shown in Fig. 8.4. Interpreting
this model will be much more difficult.



179

8.1 Basic Regression Trees

syord xoq o) ut sejdures a1} Jo aSeIoA® o1} U0 paseq ST uolldrpald [euy oy [, "senfea AIqnios jos Sururery
oY} JO UONNGLYSIP Y} MOYS SOPOU [RUIMLINY oY) UL §70)d 209 ST, "eyep AN[IGNOS 97} 10J [PpOW TV [eUY oY, 7’8 "SI

o
- ok - oL- - ok - oL- - oL- - ok - oL- - ok - oL- - oL - [0k
o
R - 3 8 — m.r
- s s s s - ~ |5 ° s s - |5 e =N -
- 2 = = = = = E3 T
s to = Fo + ko = Lo o T Lo o ~ Lo Lo Lo Lo
(6GL=U)L8PON  (92=U)GOPON (8 =U) ¥ OPON

(58=U) 1ZOPON (98 =U) 02PON (kg =U)8LOPON (18=U) 9} ®PON  (,€=U)GLOPON  (L9=U)ZLBPON (€y=U) LL OPON (8 =U) 8 8PON

/ \
mom.uvwom.wu / \
61]

€18 > ey =< 159'8=< /598> L61°0=< L6}O> €08'¢> €08C=<
[£1] (1]

8.6'0 =< 860>

gealyaoeung |ealyeoeung 10108491)1ydoIpAH é
(1] {01} (€]

€L8°G> €L8°G =< 816°0 =< 860>

(6] 2]

LLL'€> LLLE=<




180 8 Regression Trees and Rule-Based Models

1.8 o

1.4 L

1.2 4 o

RMSE (Cross-Validation)

1.0 + -

I I I I I
10r-2.5 10n-2.0 10~-1.5 107-1.0 107-0.5
Complexity Parameter

Fig. 8.5: Cross-validated RMSE profile for the regression tree

This particular tree methodology can also handle missing data. When
building the tree, missing data are ignored. For each split, a variety of alter-
natives (called surrogate splits) are evaluated. A surrogate split is one whose
results are similar to the original split actually used in the tree. If a surrogate
split approximates the original split well, it can be used when the predictor
data associated with the original split are not available. In practice, several
surrogate splits may be saved for any particular split in the tree.

Once the tree has been finalized, we begin to assess the relative importance
of the predictors to the outcome. One way to compute an aggregate measure
of importance is to keep track of the overall reduction in the optimization
criteria for each predictor (Breiman et al. 1984). If SSE is the optimization
criteria, then the reduction in the SSFE for the training set is aggregated
for each predictor. Intuitively, predictors that appear higher in the tree (i.e.,
earlier splits) or those that appear multiple times in the tree will be more
important than predictors that occur lower in the tree or not at all. Figure 8.6
shows the importance values for the 16 predictors in the more complex final
solubility model.

An advantage of tree-based models is that, when the tree is not large, the
model is simple and interpretable. Also, this type of tree can be computed
quickly (despite using multiple exhaustive searches). Tree models intrinsically
conduct feature selection; if a predictor is never used in a split, the prediction
equation is independent of these data. This advantage is weakened when there
are highly correlated predictors. If two predictors are extremely correlated,
the choice of which to use in a split is somewhat random. For example, the
two surface area predictors have an extremely high correlation (0.96) and each
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Fig. 8.6: Variable importance scores for the 16 predictors used in the regres-
sion tree model for solubility

is used in the tree shown in Fig.8.4. It is possible that the small difference
between these predictors is strongly driving the choice between the two, but
it is more likely to be due to small, random differences in the variables.
Because of this, more predictors may be selected than actually needed. In
addition, the variable importance values are affected. If the solubility data
only contained one of the surface area predictors, then this predictor would
have likely been used twice in the tree, therefore inflating its importance
value. Instead, including both surface area predictors in the data causes their
importance to have only moderate values.

While trees are highly interpretable and easy to compute, they do have
some noteworthy disadvantages. First, single regression trees are more likely
to have sub-optimal predictive performance compared to other modeling
approaches. This is partly due to the simplicity of the model. By construction,
tree models partition the data into rectangular regions of the predictor space.
If the relationship between predictors and the outcome is not adequately
described by these rectangles, then the predictive performance of a tree will
not be optimal. Also, the number of possible predicted outcomes from a tree
is finite and is determined by the number of terminal nodes. For the solubil-
ity data, the optimal tree has 11 terminal nodes and consequently can only
produce 11 possible predicted values. This limitation is unlikely to capture
all of the nuances of the data. For example, in Fig. 8.4, Node 21 corresponds
to the highest solubility prediction. Note, however, that the training set data
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falling within this path of the tree vary across several log units of data. If new
data points are consistent with the training data, many of the new samples
falling along this path will not be predicted with a high degree of accuracy.
The two regression tree models shown thus far have RMSE values that are
appreciably larger than the RMSE produced by the simple linear regression
model shown in Chap. 6.

An additional disadvantage is that an individual tree tends to be unstable
[see Breiman (1996b) and Hastie et al. (2008, Chap. 8)]. If the data are slightly
altered, a completely different set of splits might be found (i.e., the model
variance is high). While this is a disadvantage, ensemble methods (discussed
later in this chapter) exploit this characteristic to create models that tend to
have extremely good performance.

Finally, these trees suffer from selection bias: predictors with a higher
number of distinct values are favored over more granular predictors (Loh and
Shih 1997; Carolin et al. 2007; Loh 2010). Loh and Shih (1997) remarked that

“The danger occurs when a data set consists of a mix of informative and noise
variables, and the noise variables have many more splits than the informative
variables. Then there is a high probability that the noise variables will be chosen
to split the top nodes of the tree. Pruning will produce either a tree with
misleading structure or no tree at all.”

Also, as the number of missing values increases, the selection of predictors
becomes more biased (Carolin et al. 2007).

It is worth noting that the variable importance scores for the solubility
regression tree (Fig.8.6) show that the model tends to rely more on contin-
uous (i.e., less granular) predictors than the binary fingerprints. This could
be due to the selection bias or the content of the variables.

There are several unbiased regression tree techniques. For example, Loh
(2002) proposed the generalized, unbiased, interaction detection and estima-
tion (GUIDE) algorithm which solves the problem by decoupling the process
of selecting the split variable and the split value. This algorithm ranks the
predictors using statistical hypothesis testing and then finds the appropriate
split value associated with the most important factor.

Another approach is conditional inference trees of Hothorn et al. (2006).
They describe a unified framework for unbiased tree-based models for regres-
sion, classification, and other scenarios. In this model, statistical hypothesis
tests are used to do an exhaustive search across the predictors and their pos-
sible split points. For a candidate split, a statistical test is used to evaluate
the difference between the means of the two groups created by the split and
a p-value can be computed for the test.

Utilizing the test statistic p-value has several advantages. First, predictors
that are on disparate scales can be compared since the p-values are on the
same scale. Second, multiple comparison corrections (Westfall and Young
1993) can be applied to the raw p-values within a predictor to reduce the
bias resulting from a large number of split candidates. These corrections
attempt to reduce the number of false-positive test results that are incurred by
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Fig. 8.7: Cross-validated RMSE profile for the conditional inference regression
trees

conducting a large number of statistical hypothesis tests. Thus, predictors are
increasingly penalized by multiple comparison procedures as the number of
splits (and associated p-values) increases. For this reason, the bias is reduced
for highly granular data. A threshold for statistical significance is used to
determine whether additional splits should be created [Hothorn et al. (2006)
use one minus the p-value].

By default, this algorithm does not use pruning; as the data sets are fur-
ther split, the decrease in the number of samples reduces the power of the
hypothesis tests. This results in higher p-values and a lower likelihood of
a new split (and over-fitting). However, statistical hypothesis tests are not
directly related to predictive performance, and, because of this, it is still ad-
visable to choose the complexity of the tree on the basis of performance (via
resampling or some other means).

With a significance threshold of 0.05 (i.e., a 5% false-positive rate for
statistical significance), a conditional inference tree for the solubility data
had 32 terminal nodes. This tree is much larger than the basic regression
tree shown in Fig. 8.4. We also treated the significance threshold as a tuning
parameter and evaluated 16 values between 0.75 and 0.99 (see Fig.8.7 for
the cross-validation profile). The tree size associated with the smallest error
had 36 terminal nodes (using a threshold of 0.853). Tuning the threshold
improved the estimated RMSE to a value of 0.92 compared to an RMSE of
0.94 associated with a significance threshold of 0.05.
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8.2 Regression Model Trees

One limitation of simple regression trees is that each terminal node uses the
average of the training set outcomes in that node for prediction. As a conse-
quence, these models may not do a good job predicting samples whose true
outcomes are extremely high or low. In Chap. 5, Fig. 5.1 showed an example
plot of the observed and predicted outcomes for a data set. In this figure,
the model tends to underpredict samples in either of the extremes. The pre-
dictions used in this figure were produced using a regression tree ensemble
technique called random forests (described later in this chapter) which also
uses the average of the training data in the terminal nodes and suffers from
the same problem, although not as severe as with a single tree.

One approach to dealing with this issue is to use a different estimator in
the terminal nodes. Here we focus on the model tree approach described in
Quinlan (1992) called M5, which is similar to regression trees except:

e The splitting criterion is different.

e The terminal nodes predict the outcome using a linear model (as opposed
to the simple average).

e When a sample is predicted, it is often a combination of the predictions
from different models along the same path through the tree.

The main implementation of this technique is a “rational reconstruction” of
this model called M5, which is described by Wang and Witten (1997) and is
included in the Weka software package. There are other approaches to trees
with models in the leaves, such as Loh (2002) and Zeileis et al. (2008).

Like simple regression trees, the initial split is found using an exhaustive
search over the predictors and training set samples, but, unlike those models,
the expected reduction in the node’s error rate is used. Let S denote the
entire set of data and let Sy, ...,Sp represent the P subsets of the data after
splitting. The split criterion would be

P
reduction = SD(S) — Z % x SD(S;), (8.2)

i=1

where SD is the standard deviation and n; is the number of samples in parti-
tion ¢. This metric determines if the total variation in the splits, weighted by
sample size, is lower than in the presplit data. This scheme is similar to the
methodology for classification trees discussed in Quinlan (1993b). The split
that is associated with the largest reduction in error is chosen and a linear
model is created within the partitions using the split variable in the model.
For subsequent splitting iterations, this process is repeated: an initial split is
determined and a linear model is created for the partition using the current
split variable and all others that preceded it. The error associated with each
linear model is used in place of SD(S) in Eq. 8.2 to determine the expected
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reduction in the error rate for the next split. The tree growing process contin-
ues along the branches of the tree until there are no further improvements in
the error rate or there are not enough samples to continue the process. Once
the tree is fully grown, there is a linear model for every node in the tree.

Figure 8.8 shows an example of a model tree with four splits and eight
linear regression models. Model 5, for instance, would be created using all
the predictors that were in splits 1-3 and with the training set data points
satisfying conditions la, 2b, and 3b.

Once the complete set of linear models have been created, each undergoes
a simplification procedure to potentially drop some of the terms. For a given
model, an adjusted error rate is computed. First, the absolute differences
between the observed and predicted data are calculated then multiplied by a
term that penalizes models with large numbers of parameters:

* n”
Adjusted Error Rate = n* +p Z lyi — Gil, (8.3)
TP

where n* is the number of training set data points that were used to build the
model and p is the number of parameters. Each model term is dropped and
the adjusted error rate is computed. Terms are dropped from the model as
long as the adjusted error rate decreases. In some cases, the linear model may
be simplified to having only an intercept. This procedure is independently
applied to each linear model.

Model trees also incorporate a type of smoothing to decrease the potential
for over-fitting. The technique is based on the “recursive shrinking” method-
ology of Hastie and Pregibon (1990). When predicting, the new sample goes
down the appropriate path of the tree, and moving from the bottom up, the
linear models along that path are combined. Using Fig.8.8 as a reference,
suppose a new sample goes down the path associated with Model 5. The tree
generates a prediction for this sample using Model 5 as well as the linear
model in the parent node (Model 3 in this case). These two predictions are
combined using
o Y )

Yw) = ot C ;
(k)

where ¢y is the prediction from the child node (Model 5), n(x) is the number
of training set data points in the child node, §,) is the prediction from the
parent node, and c is a constant with a default value of 15. Once this combined
prediction is calculated, it is similarly combined with the next model along
the tree (Model 1) and so on. For our example, the new sample falling under
conditions la, 2b, and 3b would use a combination of three linear models.
Note that the smoothing equation is a relatively simple linear combination
of models.

This type of smoothing can have a significant positive effect on the model
tree when the linear models across nodes are very different. There are several
possible reasons that the linear models may produce very different predic-
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Condition la Condition 1b

Condition 2a Condition 2b

Condition 4a Condition 4b

Condition 3a Condition 3b

Model 2 Model 4 Model 5 Model 7 Model 8

Fig. 8.8: An example of a regression model tree

tions. Firstly, the number of training set samples that are available in a node
will decrease as new splits are added. This can lead to nodes which model
very different regions of the training set and, thus, produce very different
linear models. This is especially true for small training sets. Secondly, the
linear models derived by the splitting process may suffer from significant
collinearity. Suppose two predictors in the training set have an extremely
high correlation with one another. In this case, the algorithm may choose
between the two predictors randomly. If both predictors are eventually used
in splits and become candidates for the linear models, there would be two
terms in the linear model for effectively one piece of information. As discussed
in previous chapters, this can lead to substantial instability in the model co-
efficients. Smoothing using several models can help reduce the impact of any
unstable linear models.

Once the tree is fully grown, it is pruned back by finding inadequate sub-
trees and removing them. Starting at the terminal nodes, the adjusted error
rate with and without the sub-tree is computed. If the sub-tree does not
decrease the adjusted error rate, it is pruned from the model. This process is
continued until no more sub-trees can be removed.

Model trees were built on the solubility data under the conditions of with
and without pruning and with and without smoothing. Figure 8.9 shows a
plot of the cross-validation profiles for these data. The unpruned tree has
159 paths through the tree, which may over-fit the training data. When the
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Fig. 8.9: Cross-validated RMSE profiles for the model tree

tree is not pruned, model smoothing significantly improves the error rate.
For these data, the effect of pruning on the model was also substantial: the
number of paths through the tree dropped from 159 to 18. For the pruned
trees, smoothing produced a slight gain in performance, and, as a result, the
optimal model used pruning and smoothing.

The resulting model tree (Fig.8.10) shows that many of the splits involve
the same predictors, such as the number of carbons. Also, for these data,
the splits tend to favor the continuous predictors instead of the fingerprints.’
For these data, splits based on the SSE and the error rate reduction produce
almost identical results. The details of the linear models are shown in Fig. 8.11
(the model coefficients have been normalized to be on the same scale). We
can see from this figure that the majority of models use many predictors,
including a large number of the fingerprints. However, the coefficients of the
fingerprints are small relative to the continuous predictors.

Additionally, this model can be used to demonstrate issues with collinear-
ity. In the figure, linear model 5 (in the lower left of the tree) is associated
with the following conditions:

NumCarbon <= 3.777 &
MolWeight <= 4.83 &
SurfaceAreal > 0.978 &
NumCarbon <= 2.508 &

1 Also, note that the first three splits here involve the same predictors as the regression
tree shown in Fig. 8.4 (and two of the three split values are identical).
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Fig. 8.11: Linear model coefficients for the model tree seen in Fig.8.10. The
coefficients have been normalized to be on the same scale. White blocks indi-
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NumRotBonds <= 0.347 &
SurfaceArea2 > 10.065

After model reduction and smoothing, there were 57 coefficients in the corre-
sponding linear model, including both surface area predictors. In the training
set, these two predictors are highly correlated (0.96). We would expect severe
collinearity as a result. The two scaled coefficients for these predictors are al-
most complete opposites: 0.9 for SurfaceAreal and —0.8 for SurfaceArea?2.
Since the two predictors are almost identical, there is a contradiction: in-
creasing the surface area equally increases and decreases the solubility. Many
of the models that are shown in Fig.8.11 have opposite signs for these two
variables. Despite this, the performance for this model is fairly competitive;
smoothing the models has the effect of minimizing the collinearity issues.
Removing the correlated predictors would produce a model that has less in-
consistencies and is more interpretable. However, there is a measurable drop
in performance by using the strategy.

8.3 Rule-Based Models

A rule is defined as a distinct path through a tree. Consider the model tree
shown in the last section and the path to get to linear model 15 in the lower
right of Fig. 8.10:

TTT &
0.978 &
8.404 &

NumCarbon >
SurfaceArea?2
SurfaceAreal
FP009 <= 0.5
FP0O75 <= 0.5
NumRotBonds > 1.498 &
NumRotBonds > 1.701

RV VW

For the model tree shown in Fig.8.10, there are a total of 18 rules. For the
tree, a new sample can only travel down a single path through the tree defined
by these rules. The number of samples affected by a rule is called its coverage.

In addition to the pruning algorithms described in the last section, the
complexity of the model tree can be further reduced by either removing entire
rules or removing some of the conditions that define the rule. In the previous
rule, note that the number of rotatable bonds is used twice. This occurred
because another path through the tree determined that modeling the data
subset where the number of rotatable bonds is between 1.498 and 1.701 was
important. However, when viewed in isolation, the rule above is unnecessarily
complex because of this redundancy. Also, it may be advantageous to remove
other conditions in the rule because they do not contribute much to the
model.
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Quinlan (1993b) describes methodologies for simplifying the rules gener-
ated from classification trees. Similar techniques can be applied to model
trees to create a more simplistic set of rules from an initial model tree. This
specific approach is described later in this chapter in the context of Cubist
models (Sect.8.7).

Another approach to creating rules from model trees is outlined in Holmes
et al. (1993) that uses the “separate and conquer” strategy. This procedure
derives rules from many different model trees instead of from a single tree.
First, an initial model tree is created (they recommend using unsmoothed
model trees). However, only the rule with the largest coverage is saved from
this model. The samples covered by the rule are removed from the training
set and another model tree is created with the remaining data. Again, only
the rule with the maximum coverage is retained. This process repeats until
all the training set data have been covered by at least one rule. A new sample
is predicted by determining which rule(s) it falls under then applies the linear
model associated with the largest coverage.

For the solubility data, a rule-based model was evaluated. Similar to the
model tree tuning process, four models were fit using all combinations for
pruning and smoothing. The same resampling data sets were used in the
model tree analysis, so direct comparisons can be made. Figure 8.12 shows
the results of this process. The right panel is the same as Fig. 8.9 while the
left panel shows the results when the model trees are converted to rules. For
these data, when smoothing and pruning are used, the model tree and rule-
based version had equivalent error rates. As with the model trees, pruning
had a large effect on the model and smoothing had a larger impact on the
unpruned models.

The best fitting model tree was associated with a cross-validated RMSE
of 0.737. The best rule-based model resulted in an RMSE value of 0.741.
Based on this alone, the model tree would be used for prediction. However,
for illustration, the rule-based model will be examined in more detail.

In all, nine rules were used to model these data, although the final rule
has no associated conditions. The conditions for the rules are

Rule 1: NumCarbon <= 3.777 & MolWeight > 4.83

Rule 2: NumCarbon > 2.999

Rule 3: SurfaceAreal > 0.978 & NumCarbon > 2.508 & NumRotBonds > 0.896
Rule 4: SurfaceAreal > 0.978 & MolWeight <= 4.612 & FP063 <= 0.5

Rule 5: SurfaceAreal > 0.978 & MolWeight <= 4.612

Rule 6: SurfaceAreal <= 4.159 & NumHydrogen <= 3.414

Rule 7: SurfaceAreal > 2.241 & FP046 <= 0.5 & NumBonds > 2.74

Rule 8: NumHydrogen <= 3.414

Looking back at the full model tree in Fig.8.10, the rule corresponding to
Model 10 has the largest coverage using the conditions NumCarbon > 3.77
and MolWeight > 4.83. This rule was preserved as the first rule in the new
model. The next model tree was created using the remaining samples. Here,
the rule with the largest coverage has a condition similar to the previous rule:
NumCarbon > 2.99. In this case, a sample with NumCarbon > 2.99 would be
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Fig. 8.12: Cross-validated RMSE profiles for the model trees before and after
the conversion to rules

covered by at least two rules. The other rules used many of the same pre-
dictors: SurfaceAreal (five times), MolWeight (three times), and NumCarbon
(also three times). Figure 8.13 shows the coefficients of the linear models for
each rule (similar to Fig.8.11 for the full model tree). Here, the linear models
are more sparse; the number of terms in the linear models decreases as more
rules are created. This makes sense because there are fewer data points to
construct deep trees.

8.4 Bagged Trees

In the 1990s, ensemble techniques (methods that combine many models’ pre-
dictions) began to appear. Bagging, short for bootstrap aggregation, was orig-
inally proposed by Leo Breiman and was one of the earliest developed en-
semble techniques (Breiman 1996a). Bagging is a general approach that uses
bootstrapping (Sect. 4.4) in conjunction with any regression (or classification;
see Sect. 14.3) model to construct an ensemble. The method is fairly simple
in structure and consists of the steps in Algorithm 8.1. Each model in the
ensemble is then used to generate a prediction for a new sample and these m
predictions are averaged to give the bagged model’s prediction.

Bagging models provide several advantages over models that are not
bagged. First, bagging effectively reduces the variance of a prediction through
its aggregation process (see Sect.5.2 for a discussion of the bias-variance
trade-off). For models that produce an unstable prediction, like regression
trees, aggregating over many versions of the training data actually reduces
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1 fori =1 tom do
2 Generate a bootstrap sample of the original data
3 Train an unpruned tree model on this sample

4 end

Algorithm 8.1: Bagging

the variance in the prediction and, hence, makes the prediction more stable.
Consider the illustration of trees in Fig.8.14. In this example, six bootstrap
samples of the solubility data were generated and a tree of maximum depth
was built for each sample. These trees vary in structure (compare Fig. 8.14b,
d, which have different structures on the right- and left-hand sides of each
tree), and hence the prediction for samples will vary from tree to tree. When
the predictions for a sample are averaged across all of the single trees, the
average prediction has lower variance than the variance across the individual
predictions. This means that if we were to generate a different sequence of
bootstrap samples, build a model on each of the bootstrap samples, and aver-
age the predictions across models, then we would likely get a very similar pre-
dicted value for the selected sample as with the previous bagging model. This
characteristic also improves the predictive performance of a bagged model
over a model that is not bagged. If the goal of the modeling effort is to find
the best prediction, then bagging has a distinct advantage.

Bagging stable, lower variance models like linear regression and MARS,
on the other hand, offers less improvement in predictive performance. Con-
sider Fig. 8.15, in which bagging has been applied to trees, linear models, and
MARS for the solubility data and also for data from a study of concrete mix-
tures (see Chap. 10). For each set of data, the test set performance based on
RMSE is plotted by number of bagging iterations. For the solubility data,
the decrease in RMSE across iterations is similar for trees, linear regression,
and MARS, which is not a typical result. This suggests that either the model
predictions from linear regression and MARS have some inherent instabil-
ity for these data which can be improved using a bagged ensemble or that
trees are less effective at modeling the data. Bagging results for the concrete
data are more typical, in which linear regression and MARS are least im-
proved through the ensemble, while the predictions for regression trees are
dramatically improved.

As a further demonstration of bagging’s ability to reduce the variance of
a model’s prediction, consider the simulated sin wave in Fig.5.2. For this
illustration, 20 stn waves were simulated, and, for each data set, regression
trees and MARS models were computed. The red lines in the panels show the
true trend while the multiple black lines show the predictions for each model.
Note that the CART panel has more noise around the true sin curve than
the MARS model, which only shows variation at the change points of the
pattern. This illustrates the high variance in the regression tree due to model
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NumCarbon>=3.41 NumCarbon>=3.78

SurfaceArea2< 0.978 SurfaceArea?= 5.61 MolWeight>=4.83

SurfaceAreal< 0.978

c d
NumCarbon>=3.41 NumCarbon>=3.78

SurfaceArea2< 0.978 SurfaceAreal< 0.978 SurfacoBreal< 3.46

MolWeight>=5.39
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MolWeight>=4.83 MolWeight>=5.22

Fig. 8.14: Example of trees of maximum depth from bagging for the solubility
data. Notice that the trees vary in structure, and hence the predictions will
vary from tree to tree. The prediction variance for the ensemble of trees will
be less than the variance of predictions from individual trees. (a) Sample 1.
(b) Sample 2. (c) Sample 3. (d) Sample 4. (e) Sample 5. (f) Sample 6

instability. The bottom panels of the figure show the results for 20 bagged
regression trees and MARS models (each with 50 model iterations). The
variation around the true curve is greatly reduced for regression trees, and,
for MARS, the variation is only reduced around the curvilinear portions on
the pattern. Using a simulated test set for each model, the average reduction
in RMSE by bagging the tree was 8.6 % while the more stable MARS model
had a corresponding reduction of 2% (Fig. 8.16).
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Fig. 8.15: Test set RMSE performance profiles for bagging trees, linear mod-
els, and MARS for the solubility data (top plot) and concrete data (bottom
plot; see Chap. 10 for data details) by number of bootstrap samples. Bagging
provides approximately the same magnitude of improvement in RMSE for
all three methods for the solubility data, which is atypical. A more typical
pattern of improvement from bagging is shown for the concrete data. In this
case, trees benefit the most
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Another advantage of bagging models is that they can provide their own
internal estimate of predictive performance that correlates well with either
cross-validation estimates or test set estimates. Here’s why: when construct-
ing a bootstrap sample for each model in the ensemble, certain samples are
left out. These samples are called out-of-bag, and they can be used to assess
the predictive performance of that specific model since they were not used
to build the model. Hence, every model in the ensemble generates a measure
of predictive performance courtesy of the out-of-bag samples. The average
of the out-of-bag performance metrics can then be used to gauge the pre-
dictive performance of the entire ensemble, and this value usually correlates
well with the assessment of predictive performance we can get with either
cross-validation or from a test set. This error estimate is usually referred to
as the out-of-bag estimate.

In its basic form, the user has one choice to make for bagging: the number
of bootstrap samples to aggregate, m. Often we see an exponential decrease
in predictive improvement as the number of iterations increases; the most
improvement in prediction performance is obtained with a small number of
trees (m < 10). To illustrate this point, consider Fig. 8.17 which displays pre-
dictive performance (RMSE) for varying numbers of bootstrapped samples
for CART trees. Notice predictive performance improves through ten trees
and then tails off with very limited improvement beyond that point. In our
experience, small improvements can still be made using bagging ensembles
up to size 50. If performance is not at an acceptable level after 50 bagging
iterations, then we suggest trying other more powerfully predictive ensemble
methods such as random forests and boosting which will be described the
following sections.

For the solubility data, CART trees without bagging produce an optimal
cross-validated RMSE of 0.97 with a standard error of 0.021. Upon bag-
ging, the performance improves and bottoms at an RMSE of 0.9, with a
standard error of 0.019. Conditional inference trees, like CART trees, can
also be bagged. As a comparison, conditional inference trees without bagging
have an optimal RMSE and standard error of 0.93 and 0.034, respectively.
Bagged conditional inference trees reduce the optimal RMSE to 0.8 with a
standard error of 0.018. For both types of models, bagging improves perfor-
mance and reduces variance of the estimate. In this specific example, bagging
conditional inference trees appears to have a slight edge over CART trees in
predictive performance as measured by RMSE. The test set R? values parallel
the cross-validated RMSE performance with conditional inference trees doing
slightly better (0.87) than CART trees (0.85).

Although bagging usually improves predictive performance for unstable
models, there are a few caveats. First, computational costs and memory
requirements increase as the number of bootstrap samples increases. This
disadvantage can be mostly mitigated if the modeler has access to parallel
computing because the bagging process can be easily parallelized. Recall that
each bootstrap sample and corresponding model is independent of any other
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Fig. 8.17: Cross-validated performance profile for bagging CART trees for
the solubility data by number of bootstrap samples. Vertical lines indicate +
one-standard error of RMSE. Most improvement in predictive performance
is obtained aggregating across ten bootstrap replications

sample and model. This means that each model can be built separately and
all models can be brought together in the end to generate the prediction.

Another disadvantage to this approach is that a bagged model is much
less interpretable than a model that is not bagged. Convenient rules that we
can get from a single regression tree like those displayed in Fig. 8.4 cannot be
attained. However, measures of variable importance can be constructed by
combining measures of importance from the individual models across the en-
semble. More about variable importance will be discussed in the next section
when we examine random forests.

8.5 Random Forests

As illustrated with the solubility data, bagging trees (or any high variance,
low bias technique) improves predictive performance over a single tree by re-
ducing variance of the prediction. Generating bootstrap samples introduces
a random component into the tree building process, which induces a distri-
bution of trees, and therefore also a distribution of predicted values for each
sample. The trees in bagging, however, are not completely independent of
each other since all of the original predictors are considered at every split of
every tree. One can imagine that if we start with a sufficiently large number
of original samples and a relationship between predictors and response that
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can be adequately modeled by a tree, then trees from different bootstrap
samples may have similar structures to each other (especially at the top of
the trees) due to the underlying relationship. This characteristic is known
as tree correlation and prevents bagging from optimally reducing variance of
the predicted values. Figure 8.14 provides a direct illustration of this phe-
nomenon. Despite taking bootstrap samples, each tree starts splitting on the
number of carbon atoms at a scaled value of approximately 3.5. The second-
level splits vary a bit more but are restricted to both of the surface area
predictors and molecular weight. While each tree is ultimately unique—no
two trees are exactly the same—they all begin with a similar structure and
are consequently related to each other. Therefore, the variance reduction pro-
vided by bagging could be improved. For a mathematical explanation of the
tree correlation phenomenon, see Hastie et al. (2008). Reducing correlation
among trees, known as de-correlating trees, is then the next logical step to
improving the performance of bagging.

From a statistical perspective, reducing correlation among predictors can
be done by adding randomness to the tree construction process. After
Breiman unveiled bagging, several authors tweaked the algorithm by adding
randomness into the learning process. Because trees were a popular learner
for bagging, Dietterich (2000) developed the idea of random split selection,
where trees are built using a random subset of the top k predictors at each
split in the tree. Another approach was to build entire trees based on random
subsets of descriptors (Ho 1998; Amit and Geman 1997). Breiman (2000) also
tried adding noise to the response in order to perturb tree structure. After
carefully evaluating these generalizations to the original bagging algorithm,
Breiman (2001) constructed a unified algorithm called random forests. A gen-
eral random forests algorithm for a tree-based model can be implemented as
shown in Algorithm 8.2.

Each model in the ensemble is then used to generate a prediction for a new
sample and these m predictions are averaged to give the forest’s prediction.
Since the algorithm randomly selects predictors at each split, tree correlation
will necessarily be lessened. As an example, the first splits for the first six trees
in the random forest for the solubility data are NumNonHBonds, NumCarbon,
NumNonHAtoms, NumCarbon, NumCarbon, and NumCarbon, which are different
from the trees illustrated in Fig. 8.14.

Random forests’ tuning parameter is the number of randomly selected
predictors, k, to choose from at each split, and is commonly referred to as
Myry. In the regression context, Breiman (2001) recommends setting m,,
to be one-third of the number of predictors. For the purpose of tuning the
Myry Parameter, since random forests is computationally intensive, we suggest
starting with five values of k that are somewhat evenly spaced across the range
from 2 to P. The practitioner must also specify the number of trees for the
forest. Breiman (2001) proved that random forests is protected from over-
fitting; therefore, the model will not be adversely affected if a large number
of trees are built for the forest. Practically speaking, the larger the forest, the



200 8 Regression Trees and Rule-Based Models

1 Select the number of models to build, m
2 fori = 1 to m do
3 Generate a bootstrap sample of the original data
4 Train a tree model on this sample
5 for each split do
6 Randomly select k (< P) of the original predictors
7 Select the best predictor among the k predictors and
partition the data
8 end
9 Use typical tree model stopping criteria to determine when a
tree is complete (but do not prune)
10 end

Algorithm 8.2: Basic Random Forests

more computational burden we will incur to train and build the model. As
a starting point, we suggest using at least 1,000 trees. If the cross-validation
performance profiles are still improving at 1,000 trees, then incorporate more
trees until performance levels off.

Breiman showed that the linear combination of many independent learners
reduces the variance of the overall ensemble relative to any individual learner
in the ensemble. A random forest model achieves this variance reduction
by selecting strong, complex learners that exhibit low bias. This ensemble
of many independent, strong learners yields an improvement in error rates.
Because each learner is selected independently of all previous learners, ran-
dom forests is robust to a noisy response. We elaborate more on this point in
Sect. 20.2 and provide an illustration of the effect of noise on random forests
as well as many other models. At the same time, the independence of learners
can underfit data when the response is not noisy (Fig.5.1).

Compared to bagging, random forests is more computationally efficient
on a tree-by-tree basis since the tree building process only needs to evaluate
a fraction of the original predictors at each split, although more trees are
usually required by random forests. Combining this attribute with the ability
to parallel process tree building makes random forests more computationally
efficient than boosting (Sect. 8.6).

Like bagging, CART or conditional inference trees can be used as the base
learner in random forests. Both of these base learners were used, as well
as 10-fold cross-validation and out-of-bag validation, to train models on the
solubility data. The my,, parameter was evaluated at ten values from 10 to
228. The RMSE profiles for these combinations are presented in Fig.8.18.
Contrary to bagging, CART trees have better performance than conditional
inference trees at all values of the tuning parameter. Each of the profiles
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Fig. 8.18: Cross-validated RMSE profile for the CART and conditional infer-
ence approaches to random forests

shows a flat plateau between my,., = 58 and my,, = 155. The CART-based
random forest model was numerically optimal at m;,, = 131 regardless of the
method of estimating the RMSE. Our experience is that the random forest
tuning parameter does not have a drastic effect on performance. In these
data, the only real difference in the RMSE comes when the smallest value
is used (10 in this case). It is often the case that such a small value is not
associated with optimal performance. However, we have seen rare examples
where small tuning parameter values generate the best results. To get a quick
assessment of how well the random forest model performs, the default tuning
parameter value for regression (my., = P/3) tends to work well. If there is
a desire to maximize performance, tuning this value may result in a slight
improvement.

In Fig. 8.18, also notice that random forest models built with CART trees
had extremely similar RMSE results with the out-of-bag error estimate and
cross-validation (when compared across tuning parameters). It is unclear
whether the pattern seen in these data generalizes, especially under differ-
ent circumstances such as small sample sizes. Using the out-of-bag error rate
would drastically decrease the computational time to tune random forest
models. For forests created using conditional inference trees, the out-of-bag
error was much more optimistic than the cross-validated RMSE. Again, the
reasoning behind this pattern is unclear.
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The ensemble nature of random forests makes it impossible to gain an
understanding of the relationship between the predictors and the response.
However, because trees are the typical base learner for this method, it is
possible to quantify the impact of predictors in the ensemble. Breiman (2000)
originally proposed randomly permuting the values of each predictor for the
out-of-bag sample of one predictor at a time for each tree. The difference in
predictive performance between the non-permuted sample and the permuted
sample for each predictor is recorded and aggregated across the entire forest.
Another approach is to measure the improvement in node purity based on the
performance metric for each predictor at each occurrence of that predictor
across the forest. These individual improvement values for each predictor are
then aggregated across the forest to determine the overall importance for the
predictor.

Although this strategy to determine the relative influence of a predictor
is very different from the approach described in Sect. 8 for single regression
trees, it suffers from the same limitations related to bias. Also, Strobl et al.
(2007) showed that the correlations between predictors can have a significant
impact on the importance values. For example, uninformative predictors with
high correlations to informative predictors had abnormally large importance
values. In some cases, their importance was greater than or equal to weakly
important variables. They also demonstrated that the my,, tuning parameter
has a serious effect on the importance values.

Another impact of between-predictor correlations is to dilute the impor-
tances of key predictors. For example, suppose a critical predictor had an
importance of X. If another predictor is just as critical but is almost per-
fectly correlated as the first, the importance of these two predictors will be
roughly X /2. If three such predictors were in the model, the values would
further decrease to X/3 and so on. This can have profound implications for
some problems. For example, RNA expression profiling data tend to measure
the same gene at many locations, and, as a result, the within-gene variables
tend to have very high correlations. If this gene were important for predicting
some outcome, adding all the variables to a random forest model would make
the gene appear to be less important than it actually is.

Strobl et al. (2007) developed an alternative approach for calculating im-
portance in random forest models that takes between-predictor correlations
into account. Their methodology reduces the effect of between-predictor
redundancy. It does not adjust for the aforementioned dilution effect.

Random forest variable importance values for the top 25 predictors of
the solubility data are presented in Fig.8.19. For this model, MolWeight,
NumCarbon, SurfaceArea2, and SurfaceAreal percolate to the top of the
importance metric, and importance values begin to taper with fingerprints.
Importance values for fingerprints 116 and 75 are top fingerprint performers
for importance, which may indicate that the structures represented by these
fingerprints have an impact on a compound’s solubility.
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Fig. 8.19: Variable importance scores for the top 25 predictors used in the
random forest CART tree model for solubility

Contrasting random forest importance results to a single CART tree
(Fig.8.6) we see that 2 of the top 4 predictors are the same (SurfaceArea2
and NumCarbon) and 14 of the top 16 are the same. However, the importance
orderings are much different. For example NumNonHBonds is the top predictor
for a CART tree but ends up ranked 14th for random forests; random forests
identify MolWeight as the top predictor, whereas a CART tree ranks it 5th.
These differences should not be disconcerting; rather they emphasize that a
single tree’s greediness prioritizes predictors differently than a random forest.

8.6 Boosting

Boosting models were originally developed for classification problems and
were later extended to the regression setting. Readers unfamiliar with boost-
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ing may benefit by first reading about boosting for classification (Sect. 14.5)
and then returning to this section. For completeness of this section, we will
give a history of boosting to provide a bridge from boosting’s original develop-
ment in classification to its use in the regression context. This history begins
with the AdaBoost algorithm and evolves to Friedman’s stochastic gradient
boosting machine, which is now widely accepted as the boosting algorithm
of choice among practitioners.

In the early 1990s boosting algorithms appeared (Schapire 1990; Freund
1995; Schapire 1999), which were influenced by learning theory (Valiant 1984;
Kearns and Valiant 1989), in which a number of weak classifiers (a classifier
that predicts marginally better than random) are combined (or boosted) to
produce an ensemble classifier with a superior generalized misclassification
error rate. Researchers struggled for a time to find an effective implementa-
tion of boosting theory, until Freund and Schapire collaborated to produce
the AdaBoost algorithm (Schapire 1999). AdaBoost (see Algorithm 14.2) pro-
vided a practical implementation of Kerns and Valiant’s concept of boosting
a weak learner into a strong learner (Kearns and Valiant 1989).

Boosting, especially in the form of the AdaBoost algorithm, was shown to
be a powerful prediction tool, usually outperforming any individual model.
Its success drew attention from the modeling community and its use became
widespread with applications in gene expression (Dudoit et al. 2002; Ben-Dor
et al. 2000), chemometrics (Varmuza et al. 2003), and music genre identifica-
tion (Bergstra et al. 2006), to name a few.

The AdaBoost algorithm clearly worked, and after its successful arrival,
several researchers (Friedman et al. 2000) connected the AdaBoost algorithm
to statistical concepts of loss functions, additive modeling, and logistic re-
gression and showed that boosting can be interpreted as a forward stagewise
additive model that minimizes exponential loss. This fundamental under-
standing of boosting led to a new view of boosting that facilitated several
algorithmic generalizations to classification problems (Sect. 14.5). Moreover,
this new perspective also enabled the method to be extended to regression
problems.

Friedman’s ability to see boosting’s statistical framework yielded a sim-
ple, elegant, and highly adaptable algorithm for different kinds of problems
(Friedman 2001). He called this method “gradient boosting machines” which
encompassed both classification and regression. The basic principles of gra-
dient boosting are as follows: given a loss function (e.g., squared error for
regression) and a weak learner (e.g., regression trees), the algorithm seeks
to find an additive model that minimizes the loss function. The algorithm
is typically initialized with the best guess of the response (e.g., the mean of
the response in regression). The gradient (e.g., residual) is calculated, and a
model is then fit to the residuals to minimize the loss function. The current
model is added to the previous model, and the procedure continues for a
user-specified number of iterations.
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As described throughout this text, any modeling technique with tuning
parameters can produce a range of predictive ability—from weak to strong.
Because boosting requires a weak learner, almost any technique with tuning
parameters can be made into a weak learner. Trees, as it turns out, make
an excellent base learner for boosting for several reasons. First, they have
the flexibility to be weak learners by simply restricting their depth. Second,
separate trees can be easily added together, much like individual predictors
can be added together in a regression model, to generate a prediction. And
third, trees can be generated very quickly. Hence, results from individual
trees can be directly aggregated, thus making them inherently suitable for an
additive modeling process.

When regression tree are used as the base learner, simple gradient boosting
for regression has two tuning parameters: tree depth and number of iterations.
Tree depth in this context is also known as interaction depth, since each
subsequential split can be thought of as a higher-level interaction term with
all of the other previous split predictors. If squared error is used as the loss
function, then a simple boosting algorithm using these tuning parameters can
be found in Algorithm 8.3.

1 Select tree depth, D, and number of iterations, K

2 Compute the average response, 7, and use this as the initial
predicted value for each sample
3 for k =1 to K do

4 Compute the residual, the difference between the observed value
and the current predicted value, for each sample

5 Fit a regression tree of depth, D, using the residuals as the
response

6 Predict each sample using the regression tree fit in the previous
step

7 Update the predicted value of each sample by adding the
previous iteration’s predicted value to the predicted value
generated in the previous step

8 end

Algorithm 8.3: Simple Gradient Boosting for Regression

Clearly, the version of boosting presented in Algorithm 8.3 has similarities
to random forests: the final prediction is based on an ensemble of models,
and trees are used as the base learner. However, the way the ensembles are
constructed differs substantially between each method. In random forests, all
trees are created independently, each tree is created to have maximum depth,
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and each tree contributes equally to the final model. The trees in boosting,
however, are dependent on past trees, have minimum depth, and contribute
unequally to the final model. Despite these differences, both random forests
and boosting offer competitive predictive performance. Computation time for
boosting is often greater than for random forests, since random forests can
be easily parallel processed given that the trees are created independently.

Friedman recognized that his gradient boosting machine could be suscep-
tible to over-fitting, since the learner employed—even in its weakly defined
learning capacity—is tasked with optimally fitting the gradient. This means
that boosting will select the optimal learner at each stage of the algorithm.
Despite using weak learners, boosting still employs the greedy strategy of
choosing the optimal weak learner at each stage. Although this strategy gen-
erates an optimal solution at the current stage, it has the drawbacks of not
finding the optimal global model as well as over-fitting the training data.
A remedy for greediness is to constrain the learning process by employing
regularization, or shrinkage, in the same manner as illustrated in Sect. 6.4.
In Algorithm 8.3, a regularization strategy can be injected into the final line
of the loop. Instead of adding the predicted value for a sample to previous
iteration’s predicted value, only a fraction of the current predicted value is
added to the previous iteration’s predicted value. This fraction is commonly
referred to as the learning rate and is parameterized by the symbol, A. This
parameter can take values between 0 and 1 and becomes another tuning
parameter for the model. Ridgeway (2007) suggests that small values of the
learning parameter (< 0.01) work best, but he also notes that the value of
the parameter is inversely proportional to the computation time required to
find an optimal model, because more iterations are necessary. Having more
iterations also implies that more memory is required for storing the model.

After Friedman published his gradient boosting machine, he considered
some of the properties of Breiman’s bagging technique. Specifically, the ran-
dom sampling nature of bagging offered a reduction in prediction variance for
bagging. Friedman updated the boosting machine algorithm with a random
sampling scheme and termed the new procedure stochastic gradient boosting.
To do this, Friedman inserted the following step before line within the loop:
randomly select a fraction of the training data. The residuals and models in
the remaining steps of the current iteration are based only on the sample
of data. The fraction of training data used, known as the bagging fraction,
then becomes another tuning parameter for the model. It turns out that this
simple modification improved the prediction accuracy of boosting while also
reducing the required computational resources. Friedman suggests using a
bagging fraction of around 0.5; this value, however, can be tuned like any
other parameter.

Figure 8.20 presents the cross-validated RMSE results for boosted trees
across tuning parameters of tree depth (1-7), number of trees (100-1,000),
and shrinkage (0.01 or 0.1); the bagging fraction in this illustration was fixed
at 0.5. When examining this figure, the larger value of shrinkage (right-hand
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Fig. 8.20: Cross-validated RMSE profiles for the boosted tree model

plot) has an impact on reducing RMSE for all choices of tree depth and
number of trees. Also, RMSE decreases as tree depth increases when shrinkage
is 0.01. The same pattern holds true for RMSE when shrinkage is 0.1 and the
number of trees is less than 300.

Using the one-standard-error rule, the optimal boosted tree has depth 3
with 400 trees and shrinkage of 0.1. These settings produce a cross-validated
RMSE of 0.616.

Variable importance for boosting is a function of the reduction in squared
error. Specifically, the improvement in squared error due to each predictor
is summed within each tree in the ensemble (i.e., each predictor gets an im-
provement value for each tree). The improvement values for each predictor are
then averaged across the entire ensemble to yield an overall importance value
(Friedman 2002; Ridgeway 2007). The top 25 predictors for the model are
presented in Fig. 8.21. NumCarbon and MolWeight stand out in this example
as most important followed by SurfaceAreal and SurfaceArea2; importance
values tail off after about 7 predictors. Comparing these results to random
forests we see that both methods identify the same top 4 predictors, albeit in
different order. The importance profile for boosting has a much steeper im-
portance slope than the one for random forests. This is due to the fact that
the trees from boosting are dependent on each other and hence will have
correlated structures as the method follows by the gradient. Therefore many
of the same predictors will be selected across the trees, increasing their con-
tribution to the importance metric. Differences between variable importance
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Fig. 8.21: Variable importance scores for the top 25 predictors used in the
stochastic gradient boosting model for solubility

ordering and magnitude between random forests and boosting should not be
disconcerting. Instead, one should consider these as two different perspectives
of the data and use each view to provide some understanding of the gross
relationships between predictors and the response.

8.7 Cubist

Cubist is a rule-based model that is an amalgamation of several methodolo-
gies published some time ago (Quinlan 1987, 1992, 1993a) but has evolved
over this period. Previously, Cubist was only available in a commercial capac-
ity, but in 2011 the source code was released under an open-source license.
At this time, the full details of the current version of the model became
public. Our description of the model stems from the open-source version



8.7 Cubist 209

of the model.? Some specific differences between Cubist and the previously
described approaches for model trees and their rule-based variants are:

e The specific techniques used for linear model smoothing, creating rules,
and pruning are different

e An optional boosting—like procedure called committees

e The predictions generated by the model rules can be adjusted using nearby
points from the training set data

The model tree construction process is almost identical to the process
described in Sect. 8.2, although the smoothing process between linear models
is more complex than the approach described in Quinlan (1992). In Cubist,
the models are still combined using a linear combination of two models:

gpar =aXx g(k) + (1 - Cl) X g(p)v

where ¢ is the prediction from the current model and §,) is from parent
model above it in the tree. Compared to model trees, Cubist calculates the
mixing proportions using a different equation. Let e() be the collection of
residuals of the child model (i.e., y — ¢)) and e(,) be similar values for
the parent model. The smoothing procedure first determines the covariance
between the two sets of model residuals (denoted as Covle(,), e(y)]). This is an
overall measure of the linear relation between the two sets of residuals. If the
covariance is large, this implies that the residuals generally have the same
sign and relative magnitude, while a value near 0 would indicate no (linear)
relationship between the errors of the two models. Cubist also calculates the
variance of the difference between the residuals, e.g., Var[e(p) — e(k)]. The
smoothing coefficient used by Cubist is then

_ Var(e(,)] — Covle(), ]

Varle,y — €]

The first part of the numerator is proportional to the parent model’s RMSE.
If variance of the parent model’s errors is larger than the covariance, the
smoothing procedure tends to weight the child more than the parent. Con-
versely, if the variance of the parent model is low, that model is given more
weight.

In the end, the model with the smallest RMSE has a higher weight in the
smoothed model. When the models have the same RMSE, they are equally
weighted in the smooth procedure (regardless of the covariance).

Unlike the previously discussed “separate and conquer” methodology, the
final model tree is used to construct the initial set of rules. Cubist collects the
sequence of linear models at each node into a single, smoothed representation
of the models so that there is one liner model associated with each rule. The

2 We are indebted to the work of Chris Keefer, who extensively studied the Cubist
source code.
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adjusted error rate (Eq.8.3) is the criterion for pruning and/or combining
rules. Starting with splits made near the terminal nodes, each condition of
the rules is tested using the adjusted error rate for the training set. If the
deletion of a condition in the rule does not increase the error rate, it is
dropped. This can lead to entire rules being removed from the overall model.
Once the rule conditions have been finalized, a new sample is predicted using
the average of the linear models from the appropriate rules (as opposed to
the rule with the largest coverage).

Model committees can be created by generating a sequence of rule-based
models. Like boosting, each model is affected by the result of the previous
models. Recall that boosting uses new weights for each data point based
on previous fits and then fits a new model utilizing these weights. Commit-
tees function differently. The training set outcome is adjusted based on the
prior model fit and then builds a new set of rules using this pseudo-response.
Specifically, the mth committee model uses an adjusted response:

yfm) =Y = (Jm-1) —¥)-

Basically, if a data point is underpredicted, the sample value is increased in
the hope that the model will produce a larger prediction in the next iteration.
Similarly, over-predicted points are adjusted so that the next model will lower
its prediction. Once the full set of committee models are created, new samples
are predicted using each model and the final rule-based prediction is the
simple average of the individual model predictions (recall that boosting uses
stage weights for the average).

Once the rule-based model is finalized (either using a single model or a
committee), Cubist has the ability to adjust the model prediction with sam-
ples from the training set (Quinlan 1993a). When predicting a new sample,
the K most similar neighbors are determined from the training set. Suppose
that the model predicts the new sample to be § and then the final prediction
would be

j(zw [te+ (5 —12)] -

where t; is the observed outcome for a training set neighbor, #, is the model
prediction of that neighbor, and wy is a weight calculated using the distance
of the training set neighbors to the new sample. As the difference between
the predictions of the new sample and its closest neighbor increases, the
adjustment becomes larger.

There are several details that must be specified to enact this process. First,
a distance metric to define the neighbors is needed. The implementation of
Cubist uses Manhattan (a.k.a. city block) distances to determine the nearest
neighbors. Also, neighbors are only included if they are “close enough” to the
prediction sample. To filter the neighbors, the average pairwise distance of
data points in the training set is used as a threshold. If the distance from
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Fig. 8.22: Cross-validated RMSE profiles for the number of committees and
neighbors used in Cubist

the potential neighbor to the prediction samples is greater than this average
distance, the neighbor is excluded. The weights w, also use the distance to
the neighbors. The raw weights are computed as

1

we= D, +0.5’

where D, is the distance of the neighbor to the prediction sample. These
weights are normalized to sum to one. Weighting has the effect of emphasizing
neighbors that are more similar to the prediction sample. Quinlan (1993a)
provides more information and further details can be found in the Cubist
source code at www.RuleQuest.com.

To tune this model, different numbers of committees and neighbors were
assessed. Figure 8.22 shows the cross-validation profiles. Independent of the
number of neighbors used, there is a trend where the error is significantly
reduced as the number of committees is increased and then stabilizes around
50 committees. The use of the training set to adjust the model predictions is
interesting: a purely rule-based model does better than an adjustment with
a single neighbor, but the error is reduced the most when nine neighbors are
used. In the end, the model with the lowest error (0.57 log units) was associ-
ated with 100 committees and an adjustment using nine neighbors, although
fewer committees could also be used without much loss of performance. For
the final Cubist model, the average number of rules per committee was 5.1
but ranged from 1 to 15.
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We can compare the Cubist model with a single committee member and
no neighbor adjustment to the previous rule-based model. The M5 rule-based
model had an estimated cross-validation error of 0.74 whereas the correspond-
ing Cubist model had error rate of 0.71. Based on the variation in the results,
this difference is slightly statistically significant (p-value: 0.0485). This might
indicate that the methodological differences between the two methods for
constructing rule-based models are not large, at least for these data.

There is no established technique for measuring predictor importance for
Cubist models. Each linear model has a corresponding slope for each pre-
dictor, but, as previously shown, these values can be gigantic when there
is significant collinearity in the data. A metric that relied solely on these
values would also ignore which predictors were used in the splits. However,
one can enumerate how many times a predictor variable was used in either
a linear model or a split and use these tabulations to get a rough idea the
impact each predictor has on the model. However, this approach ignores the
neighbor-based correction that is sometimes used by Cubist. The modeler
can choose how to weight the counts for the splits and the linear models in
the overall usage calculation.

For the solubility data, predictor importance values were calculated for the
model with 100 committees and correct the prediction using the 9-nearest
neighbors. Figure 8.23 shows a visualization of the values, where the x-axis is
the total usage of the predictor (i.e., the number of times it was used in a split
or a linear model). Like many of the other models discussed for these data,
the continuous predictors appear to have a greater impact on the model than
the fingerprint descriptors. Unlike the boosted tree model, there is a more
gradual decrease in importance for these data; there is not a small subset of
predictors that are dominating the model fit.

8.8 Computing

The R packages used in this section are caret, Cubist, gbm, ipred, party, partykit,
randomForest, rpart, RWeka.

Single Trees

Two widely used implementations for single regression trees in R are rpart and
party. The rpart package makes splits based on the CART methodology using
the rpart function, whereas the party makes splits based on the conditional
inference framework using the ctree function. Both rpart and ctree functions
use the formula method:
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Fig. 8.23: Variable importance scores for the top 25 predictors used in the

Cubist model for solubility

> library(rpart)

> rpartTree <- rpart(y ~ ., data = trainData)
> # or,
> ctreeTree <- ctree(y ~ ., data = trainData)

The rpart function has several control parameters that can be accessed
through the rpart.control argument. Two that are commonly used in train-
ing and that can be accessed through the train function are the complex-
ity parameter (cp) and maximum node depth (maxdepth). To tune an CART
tree over the complexity parameter, the method option in the train function
should be set to method = "rpart". To tune over maximum depth, the method
option should be set to method="rpart2":

> set.seed(100)

> rpartTune <- train(solTrainXtrans, solTrainY,

+ method = "rpart2",
+ tunelLength = 10,
+ trControl = trainControl(method = "cv"))
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Likewise, the party package has several control parameters that can be
accessed through the ctree_control argument. Two of these parameters are
commonly used in training: mincriterion and maxdepth. mincriterion defines
the statistical criterion that must be met in order to continue splitting;
maxdepth is the maximum depth of the tree. To tune a conditional inference
tree over mincriterion, the method option in the train function should be
set to method = "ctree". To tune over maximum depth, the method option
should be set to method="ctree2".

The plot method in the party package can produce the tree diagrams shown
in Fig. 8.4 via

> plot(treeObject)

To produce such plots for rpart trees, the partykit can be used to first convert
the rpart object to a party object and then use the plot function:
> library(partykit)

> rpartTree2 <- as.party(rpartTree)
> plot(rpartTree2)

Model Trees

The main implementation for model trees can be found in the Weka software
suite, but the model can be accessed in R using the RWeka package. There
are two different interfaces: Msp fits the model tree, while M5Rules uses the rule-
based version. In either case, the functions work with formula methods:

> library(RWeka)

> mbtree <- M5P(y ~ ., data = trainData)

> # or, for rules:

> mbrules <- M5Rules(y ~ ., data = trainData)

In our example, the minimum number of training set points required to
create additional splits was raised from the default of 4-10. To do this, the
control argument is used:

> mbtree <- M5P(y ~ ., data = trainData,
+ control = Weka_control(M = 10))

The control argument also has options for toggling the use of smoothing and
pruning. If the full model tree is used, a visualization similar to Fig. 8.10 can
be created by the plot function on the output from Msp.

To tune these models, the train function in the caret package has two
options: using method = "M5" evaluates model trees and the rule-based versions
of the model, as well as the use of smoothing and pruning. Figure 8.12 shows
the results of evaluating these models from the code:
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> set.seed(100)
> m5Tune <- train(solTrainXtrans, solTrainV,

+ method = "M5",

+ trControl = trainControl (method = "cv"),

+ ## Use an option for M5() to specify the minimum
+ ## number of samples needed to further splits the
+ ## data to be 10

+ control = Weka_control(M = 10))

followed by plot(m5Tune). train with method = "MSRules" evaluates only the
rule-based version of the model.

Bagged Trees

The ipred package contains two functions for bagged trees: bagging uses the
formula interface and ipredbagg has the non-formula interface:

> library(ipred)

> baggedTree <- ipredbagg(solTrainY, solTrainXtrans)
> ## or

> baggedTree <- bagging(y ~ ., data = trainData)

The function uses the rpart function and details about the type of tree can
be specified by passing rpart.control to the control argument for bagging and
ipredbagg. By default, the largest possible tree is created.

Several other packages have functions for bagging. The aforementioned
RWeka package has a function called Bagging and the caret package has a
general framework for bagging many model types, including trees, called bag.
Conditional inference trees can also be bagged using the cforest function in
the party package if the argument mtry is equal to the number of predictors:
> library(party)
> ## The mtry parameter should be the number of predictors (the
> ## number of columns minus 1 for the outcome).
>
>

bagCtrl <- cforest_control(mtry = ncol(trainData) - 1)
baggedTree <- cforest(y ~ ., data = trainData, controls = bagCtrl)

Random Forest

The primary implementation for random forest comes from the package with
the same name:

> library(randomForest)

> rfModel <- randomForest(solTrainXtrans, solTrainY)
> ## or

> rfModel <- randomForest(y ~ ., data = trainData)
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The two main arguments are mtry for the number of predictors that are ran-
domly sampled as candidates for each split and ntrees for the number of
bootstrap samples. The default for mtry in regression is the number of predic-
tors divided by 3. The number of trees should be large enough to provide a
stable, reproducible results. Although the default is 500, at least 1,000 boot-
strap samples should be used (and perhaps more depending on the number of
predictors and the values of mtry). Another important option is importance;
by default, variable importance scores are not computed as they are time
consuming; importance = TRUE will generate these values:

> library(randomForest)

> rfModel <- randomForest(solTrainXtrans, solTrainY,
+ importance = TRUE,

+ ntrees = 1000)

For forests built using conditional inference trees, the cforest function in
the party package is available. It has similar options, but the controls argu-
ment (note the plural) allows the user to pick the type of splitting algorithm
to use (e.g., biased or unbiased).

Neither of these functions can be used with missing data.

The train function contains wrappers for tuning either of these models by
specifying either method = "rf" or method = "cforest". Optimizing the mtry
parameter may result in a slight increase in performance. Also, train can use
standard resampling methods for estimating performance (as opposed to the
out-of-bag estimate).

For randomForest models, the variable importance scores can be accessed
using a function in that package called importance. For cforest objects, the
analogous function in the party package is varimp.

Each package tends to have its own function for calculating importance
scores, similar to the situation for class probabilities shown in Table B.1 of the
first Appendix. caret has a unifying function called varImp that is a wrapper
for variable importance functions for the following tree-model objects: rpart,
classbagg (produced by the ipred package’s bagging functions) randomForest,
cforest, gbm, and cubist.

Boosted Trees

The most widely used package for boosting regression trees via stochastic
gradient boosting machines is gbm. Like the random forests interface, models
can be built in two distinct ways:

> library(gbm)

> gbmModel <- gbm.fit(solTrainXtrans, solTrainY, distribution = "gaussian")
> ## or

> gbmModel <- gbm(y ~ ., data = trainData, distribution = "gaussian")
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The distribution argument defines the type of loss function that will be
optimized during boosting. For a continuous response, distribution should
be set to “gaussian.” The number of trees (n.trees), depth of trees (interac-
tion.depth), shrinkage (shrinkage), and proportion of observations to be sam-
pled (bag.fraction) can all be directly set in the call to gbm.

Like other parameters, the train function can be used to tune over these
parameters. To tune over interaction depth, number of trees, and shrinkage,
for example, we first define a tuning grid. Then we train over this grid as
follows:

> gbmGrid <- expand.grid(.interaction.depth = seq(l, 7, by = 2),
+ .n.trees = seq(100, 1000, by = 50),

+ .shrinkage = ¢(0.01, 0.1))

> set.seed(100)

> gbmTune <- train(solTrainXtrans, solTrainY,

+ method = "gbm",

+ tuneGrid = gbmGrid,

+ ## The gbm() function produces copious amounts
+ ## of output, so pass in the verbose option
+ ## to avoid printing a lot to the screen.

+ verbose = FALSE)

Cubist

As previously mentioned, the implementation for this model created by Rule-
Quest was recently made public using an open-source license. An R package
called Cubist was created using the open-source code. The function does not
have a formula method since it is desirable to have the Cubist code manage
the creation and usage of dummy variables. To create a simple rule-based
model with a single committee and no instance-based adjustment, we can
use the simple code:

> library(Cubist)
> cubistMod <- cubist(solTrainXtrans, solTrainY)

An argument, committees, fits multiple models. The familiar predict method
would be used for new samples:

> predict (cubistMod, solTestXtrans)

The choice of instance-based corrections does not need to be made until
samples are predicted. The predict function has an argument, neighbors, that
can take on a single integer value (between 0 and 9) to adjust the rule-based
predictions from the training set.

Once the model is trained, the summary function generates the exact rules
that were used, as well as the final smoothed linear model for each rule. Also,
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as with most other models, the train function in the caret package can tune
the model over values of committees and neighbors through resampling:

> cubistTuned <- train(solTrainXtrans, solTrainY, method = "cubist")

Exercises

8.1. Recreate the simulated data from Exercise 7.2:

library(mlbench)

set.seed (200)

simulated <- mlbench.friedmani (200, sd = 1)
simulated <- cbind(simulated$x, simulated$y)
simulated <- as.data.frame(simulated)
colnames(simulated) [ncol (simulated)] <- "y"

V V.V Vv VvV

(a) Fit a random forest model to all of the predictors, then estimate the
variable importance scores:

> library(randomForest)

> library(caret)

> modell <- randomForest(y ~ ., data = simulated,
+ importance = TRUE,

+ ntree = 1000)

> rfImpl <- varImp(modell, scale = FALSE)

Did the random forest model significantly use the uninformative predic-
tors (ve — v10)?

(b) Now add an additional predictor that is highly correlated with one of the
informative predictors. For example:

> simulated$duplicatel <- simulated$Vl + rnorm(200) * .1
> cor(simulated$duplicatel, simulated$V1)

Fit another random forest model to these data. Did the importance score
for vi change? What happens when you add another predictor that is
also highly correlated with v1?

(c) Use the cforest function in the party package to fit a random forest model
using conditional inference trees. The party package function varimp can
calculate predictor importance. The conditional argument of that func-
tion toggles between the traditional importance measure and the modified
version described in Strobl et al. (2007). Do these importances show the
same pattern as the traditional random forest model?

(d) Repeat this process with different tree models, such as boosted trees and
Cubist. Does the same pattern occur?
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Fig. 8.24: A comparison of variable importance magnitudes for differing values
of the bagging fraction and shrinkage parameters. Both tuning parameters
are set to 0.1 in the left figure. Both are set to 0.9 in the right figure

8.2. Use a simulation to show tree bias with different granularities.

8.3. In stochastic gradient boosting the bagging fraction and learning rate
will govern the construction of the trees as they are guided by the gradi-
ent. Although the optimal values of these parameters should be obtained
through the tuning process, it is helpful to understand how the magnitudes
of these parameters affect magnitudes of variable importance. Figure 8.24
provides the variable importance plots for boosting using two extreme values
for the bagging fraction (0.1 and 0.9) and the learning rate (0.1 and 0.9) for
the solubility data. The left-hand plot has both parameters set to 0.1, and
the right-hand plot has both set to 0.9:

(a) Why does the model on the right focus its importance on just the first few
of predictors, whereas the model on the left spreads importance across
more predictors?

(b) Which model do you think would be more predictive of other samples?

(¢) How would increasing interaction depth affect the slope of predictor im-
portance for either model in Fig. 8.247



220 8 Regression Trees and Rule-Based Models

8.4. Use a single predictor in the solubility data, such as the molecular weight
or the number of carbon atoms and fit several models:

(a) A simple regression tree

(b) A random forest model

(c) Different Cubist models with a single rule or multiple committees (each
with and without using neighbor adjustments)

Plot the predictor data versus the solubility results for the test set. Overlay
the model predictions for the test set. How do the model differ? Does changing
the tuning parameter(s) significantly affect the model fit?

8.5. Fit different tree- and rule-based models for the Tecator data discussed
in Exercise 6.1. How do they compare to linear models? Do the between-
predictor correlations seem to affect your models? If so, how would you trans-
form or re-encode the predictor data to mitigate this issue?

8.6. Return to the permeability problem described in Exercises 6.2 and 7.4.
Train several tree-based models and evaluate the resampling and test set
performance:

(a) Which tree-based model gives the optimal resampling and test set per-
formance?

(b) Do any of these models outperform the covariance or non-covariance
based regression models you have previously developed for these data?
What criteria did you use to compare models’ performance?

(c) Of all the models you have developed thus far, which, if any, would you
recommend to replace the permeability laboratory experiment?

8.7. Refer to Exercises 6.3 and 7.5 which describe a chemical manufacturing
process. Use the same data imputation, data splitting, and pre-processing
steps as before and train several tree-based models:

(a) Which tree-based regression model gives the optimal resampling and test
set performance?

(b) Which predictors are most important in the optimal tree-based regression
model? Do either the biological or process variables dominate the list?
How do the top 10 important predictors compare to the top 10 predictors
from the optimal linear and nonlinear models?

(c) Plot the optimal single tree with the distribution of yield in the terminal
nodes. Does this view of the data provide additional knowledge about the
biological or process predictors and their relationship with yield?



Chapter 9
A Summary of Solubility Models

Across the last few chapters, a variety of models have been fit to the solubility
data set. How do the models compare for these data and which one should
be selected for the final model? Figs. 9.1 and 9.2 show scatter plots of the
performance metrics calculated using cross-validation and the test set data.

With the exception of poorly performing models, there is a fairly high
correlation between the results derived from resampling and the test set (0.9
for the RMSE and 0.88 for R?). For the most part, the models tend to rank
order similarly. K-nearest neighbors were the weakest performer, followed by
the two single tree-based methods. While bagging these trees did help, it
did not make the models very competitive. Additionally, conditional random
forest models had mediocre results.

There was a “pack” of models that showed better results, including model
trees, linear regression, penalized linear models, MARS, and neural networks.
These models are more simplistic but would not be considered interpretable
given the number of predictors involved in the linear models and the com-
plexity of the model trees and MARS. For the most part, they would be
easy to implement. Recall that this type of model might be used by a phar-
maceutical company to screen millions of potential compounds, so ease of
implementation should not be taken lightly.

The group of high-performance models include support vector machines
(SVMs), boosted trees, random forests, and Cubist. Each is essentially a
black box with a highly complex prediction equation. The performance of
these models is head and shoulders above the rest so there is probably some
value in finding computationally efficient implementations that can be used
to predict large numbers of new samples.

Are there any real differences between these models? Using the resampling
results, a set of confidence intervals were constructed to characterize the
differences in RMSE in the models using the techniques shown in Sect. 4.8.
Figure 9.3 shows the intervals. There are very few statistically significant
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Fig. 9.1: A plot of the R? solubility models estimated by 10-fold cross-
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Fig. 9.3: Confidence intervals for the differences in RMSE for the high-
performance models

differences. Additionally, most of the estimated mean differences are less than
0.05 log units, which are not scientifically meaningful. Given this, any of these
models would be a reasonable choice.



Chapter 10

Case Study: Compressive Strength
of Concrete Mixtures

Thus far, the focus has been on observational data sets where the values of the
predictors were not pre-specified. For example, the QSAR data used in the
previous chapters involved a collection of diverse compounds that captured
a sufficient amount of the “chemical space.” This particular data set was
not created by specifying exact values for the chemical properties (such as
molecular weight). Instead compounds were sampled from an appropriate
population for use in the model.

Designed experiments are created by planning the exact values of the pre-
dictors (referred to as the factors in this context) using some sort of strategic
methodology. The configurations of predictor settings are created so that they
have good mathematical and experimental properties. One such property is
balance. A balanced design is one where no one experimental factor (i.e., the
predictors) has more focus than the others. In most cases, this means that
each predictor has the same number of possible levels and that the frequen-
cies of the levels are equivalent for each factor. The properties used to choose
the best experimental design are driven by the stage of experimentation.

Box et al. (1978) popularized the concept of sequential experimentation
where a large number of possible experimental factors are screened with low
resolution (i.e., “casting a wide net”) to determine the active or important
factors that relate to the outcome. Once the importance of the predictors
are quantified, more focused experiments are created with the subset of im-
portant factors. In subsequent experiments, the nature of the relationship
between the important factors can be further elucidated. The last step in the
sequence of experiments is to fine-tune a small number of important factors.
Response surface experiments (Myers and Montgomery 2009) use a smaller
set of predictor values. Here, the primary goal is to optimize the experimental
settings based on a nonlinear model of the experimental predictors.
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Designed experiments and predictive models have several differences!:

e A sequence of studies is preferred over a single, comprehensive data set that
attempts to include all possible predictors (i.e., experimental factors) with
many values per predictor. The iterative paradigm of planning, designing,
and then analyzing an experiment is, on the surface, different than most
predictive modeling problems.

e Until the final stages of sequential experimentation, the focus is on un-
derstanding which predictors affect the outcome and how. Once response
surface experiments are utilized, the focus of the activities is solely about
prediction.

This case study will focus on the prediction of optimal formulations of
concrete mixture-based data from designed experiments.

Concrete is an integral part of most industrialized societies. It is used to
some extent in nearly all structures and in many roads. One of the main
properties of interest (beside cost) is the compressive strength of the hard-
ened concrete. The composition of many concretes includes a number of dry
ingredients which are mixed with water and then are allowed to dry and
harden. Given its abundance and critical role in infrastructure, the composi-
tion is important and has been widely studied. In this chapter, models will
be created to help find potential recipes to maximize compressive strength.

Yeh (2006) describes a standard type of experimental setup for this sce-
nario called a mizture design (Cornell 2002; Myers and Montgomery 2009).
Here, boundaries on the upper and lower limits on the mixture proportion
for each ingredient are used to create multiple mixtures that methodically fill
the space within the boundaries. For a specific type of mixture design, there
is a corresponding linear regression model that is typically used to model the
relationship between the ingredients and the outcome. These linear models
can include interaction effects and higher-order terms for the ingredients. The
ingredients used in Yeh (2006) were:

e Cement (kg/m?)

e Fly ash (kg/m?), small particles produced by burning coal
e Blast furnace slag (kg/m?)

e Water (kg/m?)

1 There are cases where specialized types of experimental designs are utilized with
predictive models. In the field of chemometrics, an orthogonal array-type design fol-
lowed by the sequential elimination of level combination algorithm has been shown
to improve QSAR models (Mandal et al. 2006, 2007). Also, the field of active learn-
ing sequentially added samples based on the training set using the predictive model
results (Cohn et al. 1994; Saar-Tsechansky and Provost 2007a).
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e Superplasticizer (kg/m?), an additive that reduces particle aggregation
e Coarse aggregate (kg/m?)
e Fine aggregate (kg/m?)

Yeh (2006) also describes an additional non-mixture factor related to com-
pressive strength: the age of the mixture (at testing). Since this is not an
ingredient, it is usually referred to as a process factor. Specific experimental
designs (and linear model forms) exist for experiments that combine mixture
and process variables (see Cornell (2002) for more details).

Yeh (1998) takes a different approach to modeling concrete mixture exper-
iments. Here, separate experiments from 17 sources with common experimen-
tal factors were combined into one “meta-experiment” and the author used
neural networks to create predictive models across the whole mixture space.
Age was also included in the model. The public version of the data set in-
cludes 1030 data points across the different experiments, although Yeh (1998)
states that some mixtures were removed from his analysis due to nonstandard
conditions. There is no information regarding exactly which mixtures were
removed, so the analyses here will use all available data points. Table 10.1
shows a summary of the predictor data (in amounts) and the outcome.

Figure 10.1 shows scatter plots of each predictor versus the compressive
strength. Age shows a strong nonlinear relationship with the predictor, and
the cement amount has a linear relationship. Note that several of the in-
gredients have a large frequency of a single amount, such as zero for the
superplasticizer and the amount of fly ash. In these cases, the compressive
strength varies widely for those values of the predictors. This might indi-
cate that some of the partitioning methods, such as trees or MARS, may
be able to isolate these mixtures within the model and more effectively pre-
dict the compressive strength. For example, there are 53 mixtures with no
superplasticizer or fly ash but with exactly 228kg/m? of water. This may
represent an important sub-population of mixtures that may benefit from a
model that is specific to these types of mixtures. A tree- or rule-based model
has the ability to model such a sub-group while classical regression models
would not.

Although the available data do not denote which formulations came from
each source, there are 19 distinct mixtures with replicate data points. The
majority of these mixtures had only two or three duplicate conditions, al-
though some conditions have as many as four replicates. When modeling
these data, the replicate results should not be treated as though they are in-
dependent observations. For example, having replicate mixtures in both the
training and test sets can result in overly optimistic assessments of how well
the model works. A common approach here is to average the outcomes within
each unique mixture. Consequentially, the number of mixtures available for
modeling drops from 1030 to 992.
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Table 10.1: Data for the concrete mixtures

9 Variables 1030 Observations

Cement oottt Lo L b L e L v
n missin unic2{ue Mean 0.05 0.10 0.25 0.50 0.7 . .95

1,030 % 78 281.2 143.7 153.5 192.4 272.9 350.0 425.0 480.0

lowest : 102.0 108.3 116.0 122.6 132.0

highest: 522.0 525.0 528.0 531.3 540.0

BlastFurnaceSlag Lo
n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1,030 g %85 73.9 0.0 0.0 0.022.0 142.9 192.0 236.0

17.2

59.4

0
lowest : 0.0 11.0 13.6 _15.0
highest: 290.2 305.3 316.1 342.1

FlyAsh [ .

n missin% uni(ilue Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1,030 56 54.19 0.0 0.0 0.0 0.0 118.3 141.1 167.0
lowest : 0.0 24.5 59.0 60.0 71. O
highest: 194.0 194.9 195.0 200.0 200.

Water [ 15 W

n missing unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1030 % ?95 181.6 146.1 154.6 164.9 185.0 192.0 203.5 228.0
lowest : 121.8 126.6 127.0 127.3 137.8
highest: 228.0 236.7 237.0 246.9 247.0
Superplasticizer |

n missing uni ue Mean 0.75 0.90 O 95
1,030 % 1 6. 0.20 12.21 16.05

lowest : 0.0 1.7 1.9
highest: 22.0 22.1 23.4 2

oo:\)

CoarseAggregate .I il b1
n missin umc21ue Mean 0.05 0.10 0.25 0.50 0.75 O 0.95
1,030 84 972.9 842.0 852.1 932.0 968.0 1029.4 1076 51104.0

lowest : 801.0 801.1 801.4 811.0 814.0
highest: 1124.4 1125.0 1130.0 1134.3 1145.0

FineAggregate Lttt g,

n missing unique Mean 0.05 0.10 0.25 .50 0.75 .90 0.95
1030 g 302 773.6 613.0 664.1 730.9 779.5 824.0 880.8 898.1

lowest : 594.0 605 0 611. 8 612. 0 613.0
highest: 925.7 942.0 943.1 945.0 992.6

Age

n mlssm% unique Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1,030 14 4566 3 3 7 28 56 100 180

7 14 28 56 90 91 100 120 180 270 360 365

Frequency 2 134 126 62 425 91 54 22 52 3 26 13 6 14
yA 0O 13 12 6 41 9 5 2 5 0 3 1 1 1
CompressiveStrength st

n missin% umgue Mean 0.05 0.10 0.25 0.50 0.75 0.90 0.95
1,030 45 35.82 10.96 14.20 23.71 34.45 46.14 58.82 66.80
lowest : _2.33 _3. 32 4.57 4.78 4.83
highest: 79.40 79.99 80.20 81.75 82.60
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Fig. 10.1: Scatter plots of the concrete predictors versus the compressive
strength

10.1 Model Building Strategy

The neural network models used in Yeh (1998) were single-layer networks
with eight hidden units. Multiple data splitting approaches were used by the
original author. Four models were fit with different training sets such that all
the data from a single source were held out each time. These models resulted
in test set R? values ranging from 0.814 to 0.895. They also used a random
sample of 25 % of the data for holdout test sets. This was repeated four times
to produce test set R? values between 0.908 and 0.922.

Although an apples-to-apples comparison cannot be made with the anal-
yses of Yeh (1998), a similar data splitting approach will be taken for this
case study. A random holdout set of 25 % (n = 247) will be used as a test set
and five repeats of 10-fold cross-validation will be used to tune the various
models.

In this case study, a series of models will be created and evaluated. Once
a final model is selected, the model will be used to predict mixtures with
optimal compressive strength within practical limitations.
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How should the predictors be used to model the outcome? Yeh (1998)
discusses traditional approaches, such as relying on the water-to-cement
ratio, but suggests that the existing experimental data are not consistent
with historical strategies. In this chapter, the predictors will enter the mod-
els as the proportion of the total amount. Because of this, there is a built-in
dependency in the predictor values (any predictor can be automatically de-
termined by knowing the values of the other seven). Despite this, the pairwise
correlations are not large, and, therefore, we would not expect methods that
are designed to deal with collinearity (e.g., PLS, ridge regression) to have
performance that is superior to other models.

A suite of models were tested:

e Linear regression, partial least squares, and the elastic net. Each model
used an expanded set of predictors that included all two-factor interactions
(e.g., age x water) and quadratic terms.

Radial basis function support vector machines (SVMs).

Neural network models.

MARS models.

Regression trees (both CART and conditional inference trees), model trees
(with and without rules), and Cubist (with and without committees and
neighbor-based adjustments).

e Bagged and boosted regression trees, along with random forest models.

The details of how the models were tuned are given in the Computing section
at the end of the chapter.

10.2 Model Performance

The same cross-validation folds were used for each model. Figure 10.2 shows
parallel-coordinate plots for the resampling results across the models. Each
line corresponds to a common cross-validation holdout. From this, the top
performing models were tree ensembles (random forest and boosting), rule
ensembles (Cubist), and neural networks. Linear models and simple trees did
not perform well. Bagged trees, SVMs, and MARS showed modest results but
are clearly worse than the top cluster of models. The averaged R? statistics
ranged from 0.76 to 0.92 across the models. The top three models (as ranked
by resampling) were applied to the test set. The RMSE values are roughly
consistent with the cross-validation rankings: 3.9 (boosted tree), 4.2 (neural
networks), and 4.5 (cubist).

Figure 10.3 shows plots of the raw data, predictions, and residuals for the
three models. The plots for each model are fairly similar; each shows good
concordance between the observed and predicted values with a slight “fanning
out” at the high end of compressive strength. The majority of the residuals
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Fig. 10.2: Parallel coordinate plots for the cross-validated RMSE and R?
across different models. Each line represents the results for a common cross-
validation holdout set

are within +£2.8 MPa with the largest errors slightly more than 15 MPa.
There is no clear winner or loser in the models based on these plots.

The neural network model used 27 hidden units with a weight decay value
of 0.1. The performance profile for this model (not shown, but can be re-
produced using syntax provided in the Computing section below) showed
that weight decay had very little impact on the effectiveness of the model.
The final Cubist model used 100 committees and adjusted the predic-
tions with 3-nearest neighbors. Similar to the Cubist profiles shown for the
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computational chemistry data (see the figure on page 211), performance
suffered when the number of neighbors was either too low or too high. The
boosted tree preferred a fast learning rate and deep trees.

10.3 Optimizing Compressive Strength

The neural network and Cubist models were used to determine possible
mixtures with improved compressive strength. To do this, a numerical search
routine can be used to find formulations with high compressive strength (as
predicted by the model). Once a candidate set of mixtures is found, addi-
tional experiments would then be executed for the mixtures to verify that
the strength has indeed improved. For illustrative purposes, the age of the
formulation was fixed to a value of 28 days (there are a large number of data
points in the training set with this value) and only the mixture ingredients
will be optimized.

How, exactly, should the search be conducted? There are numerous numer-
ical optimization routines that can search seven-dimensional space. Many rely
on determining the gradient (i.e., first derivative) of the prediction equation.
Several of the models have smooth prediction equations (e.g., neural net-
works and SVMs). However, others have many discontinuities (such as tree-
and rule-based models and multivariate adaptive regression splines) that are
not conducive to gradient-based search methods.

An alternative is to use a class of optimizers called direct methods that
would not use derivatives to find the settings with optimal compressive
strength and evaluate the prediction equation many more times than derivative-
based optimizers. Two such search procedures are the Nelder—-Mead simplex
method (Nelder and Mead 1965; Olsson and Nelson 1975) and simulated
annealing (Bohachevsky et al. 1986). Of these, the simplex search procedure
had the best results for these data.? The Nelder-Mead method has the poten-
tial to get “stuck” in a sub-optimal region of the search space, which would
generate poor mixtures. To counter-act this issue, it is common to repeat
the search using different starting points and choosing the searches that are
associated with the best results. To do this, 15—28-day-old mixtures were se-
lected from the training set. The first of the 15 was selected at random and
the remaining starting points were selected using the maximum dissimilarity
sampling procedure discussed in Sect. 4.3.

Before beginning the search, constraints were used to avoid searching parts
of the formulation space that were impractical or impossible. For example,
the amount of water ranged from 5.1 % to 11.2 %. The search procedure was
set to only consider mixtures with at least 5% water.

2 The reader can also try simulated annealing using the code at the end of the chapter.
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Table 10.2: The top three optimal mixtures predicted from two models where
the age was fixed at a value of 28. In the training set, matching on age, the
strongest mixtures had compressive strengths of 81.75, 79.99, and 78.8

Model Cement Slag Ash Plast. C. Agg. F. Agg. Water Prediction
Cubist
New mix 1 127149 6.8 0.5 34.0 25.7 54 89.1
New mix 2 21.7 34 57 0.3 33.7 299 53 88.4
New mix 3 14.6 13.7 0.4 2.0 35.8 275 6.0 88.2
Neural network
New mix 4 344 79 02 0.3 31.1 21.1 5.1 88.7
New mix 5 21.2116 0.1 1.1 324 278 5.8 85.7
New mix 6 40.8 4.9 6.7 0.7 20.3 205 6.1 83.9

In the training set, there were 416 formulations that were tested at 28 days.
Of these, the top three mixtures had compressive strengths of 81.75, 79.99,
and 78.8. Table 10.2 shows the top three predicted mixtures for a smooth and
non-smooth model (neural networks and Cubist, respectively). The models
are able to find formulations that are predicted to have better strength than
those seen in the data.

The Cubist mixtures were predicted to have similar compressive strengths.
Their formulations were differentiated by the cement, slag, ash, and plasticizer
components. The neural network mixtures were in a nearby region of mix-
ture space and had predicted values that were lower than the Cubist model
predictions but larger than the best-observed mixtures. In each of the six
cases, the mixtures have very low proportions of water. Principal component
analysis was used to represent the training set mixture (in seven-dimensional
space) using two components. A PCA plot of the 28-day data is shown in
Fig. 10.4. The principal component values for the 15 mixtures used as start-
ing points for the search procedure are shown (as x symbols) as are the
other 401 time-matched data points in the training set (shown as small grey
dots). The top three predictions from the two models are also shown. Many
of the predicted mixtures are near the outskirts of the mixture space and are
likely to suffer some model inaccuracy due to extrapolation. Given this, it
is extremely important to validate these new formulations scientifically and
experimentally.

More complex approaches to finding optimal mixtures can also be used.
For example, it may be important to incorporate the cost of the mixture (or
other factors) into the search. Such a multivariate or multiparameter optimiza-
tion can be executed a number of ways. One simple approach is desirability
functions (Derringer and Suich 1980; Costa et al. 2011). Here, the impor-
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Fig. 10.4: A PCA plot of the training set data where the mixtures were aged
28 days. The search algorithm was executed across 15 different training set
mixtures (shown as x in the plot). The top three optimal mixtures predicted
from two models are also shown

tant characteristics of a mixture (e.g., strength and cost) are mapped to a
common desirability scale between 0 and 1, where one is most desirable and
zero is completely undesirable. For example, mixtures above a certain cost
may be unacceptable. Mixtures associated with costs at or above this value
would have zero desirability (literally). As the cost decreases the relationship
between cost and desirability might be specified to be linearly decreasing.
Figure 10.5 shows two hypothetical examples of desirability function for cost
and strength. Here, formulations with costs greater than 20 and strength less
than 70 are considered completely unacceptable. Once desirability functions
are created by the user for every characteristic to be optimized, the overall
desirability is combined, usually using a geometric mean. Note that, since the
geometric mean multiplies values, if any one desirability function has a score
of 0, all other characteristics would be considered irrelevant (since the over-
all value is also 0). The overall desirability would be optimized by a search
procedure to find a solution that takes all the characteristics into account.
Wager et al. (2010) and Cruz-Monteagudo et al. (2011) show examples of this
approach.
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10.4 Computing

This section uses functions from the caret, desirability, Hmisc, and plyr
packages.

The concrete data can be found in the UCI Machine Learning repository.
The AppliedPredictiveModeling package contains the original data
(in amounts) and an alternate version that has the mixture proportions:

> library(AppliedPredictiveModeling)
> data(concrete)
> str(concrete)

'data.frame’: 1030 obs. of 9 variables:

$ Cement : num 540 540 332 332 199 ...

$ BlastFurnaceSlag : num O O 142 142 132 ...

$ FlyAsh :num 0000000000 ...

$ Water : num 162 162 228 228 192 228 228 228 228 228 ...
$ Superplasticizer :num 2.52.500000000 ...

$ CoarseAggregate : num 1040 1055 932 932 978 ...

$ FineAggregate : num 676 676 594 594 826 ...

$ Age : int 28 28 270 365 360 90 365 28 28 28 ...

$ CompressiveStrength: num 80 61.9 40.3 41 44.3 ...

> str(mixtures)

'data.frame’: 1030 obs. of 9 variables:

$ Cement : num 0.2231 0.2217 0.1492 0.1492 0.0853 ...
$ BlastFurnaceSlag :num O 0 0.0639 0.0639 0.0569 ...

$ FlyAsh :num 0000000000 ...

$ Water : num 0.0669 0.0665 0.1023 0.1023 0.0825 ...
$ Superplasticizer : num 0.00103 0.00103 0 0 O ...

$ CoarselAggregate : num 0.43 0.433 0.418 0.418 0.42 ...
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$ FineAggregate : num 0.279 0.278 0.266 0.266 0.355 ...
$ Age : int 28 28 270 365 360 90 365 28 28 28 ...
$ CompressiveStrength: num 80 61.9 40.3 41 44.3 ...

Table 10.1 was created using the describe function in the Hmisc package,
and Fig. 10.1 was create using the featurePlot function in caret:

> featurePlot(x = concrete[, -9],

+ y = concrete$CompressiveStrength,

+ ## Add some space between the panels

+ between = list(x =1, y = 1),

+ ## Add a background grid ('g') and a smoother ('smooth')
+ type = C("g”, ”P”; "SHZOOth”))

The code for averaging the replicated mixtures and splitting the data into
training and test sets is

> averaged <- ddply(mixtures,

+ . (Cement, BlastFurnaceSlag, FlyAsh, Water,
+ Superplasticizer, CoarseAggregate,

+ FineAggregate, Age),

+ function(x) c(CompressiveStrength =

+ mean (x$CompressiveStrength)))
> set.seed(975)

> forTraining <- createDataPartition(averaged$CompressiveStrength,
+ p =3/4)[[1]]

> trainingSet <- averaged[ forTraining,]

> testSet <- averaged[-forTraining,]

To fit the linear models with the expanded set of predictors, such as inter-
actions, a specific model formula was created. The dot in the formula below
is shorthand for all predictors and (.)-2 expands into a model with all the
linear terms and all two-factor interactions. The quadratic terms are created
manually and are encapsulated inside the 1() function. This “as-is” function
tells R that the squaring of the predictors should be done arithmetically (and
not symbolically).

The formula is first created as a character string using the paste command,
then is converted to a bona fide R formula.

> modFormula <- paste("CompressiveStrength ~ (.)"2 + I(Cement~2) + ",

+ "I (BlastFurnaceSlag~2) + I(FlyAsh~2) + I(Water~2) +",
+ " I(Superplasticizer~2) + I(CoarseAggregate~2) + ",
+ "I(FineAggregate~2) + I(Age~2)")

> modFormula <- as.formula(modFormula)

Each model used repeated 10-fold cross-validation and is specified with
the trainControl function:
> controlObject <- trainControl (method = "repeatedcv",

+ repeats = 5,
+ number = 10)
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To create the exact same folds, the random number generator is reset to a
common seed prior to running train. For example, to fit the linear regression
model:

> set.seed(669)

> linearReg <- train(modFormula,

+ data = trainingSet,

+ method = "1m",

+ trControl = controlObject)
> linearReg

745 samples
44 predictors

No pre-processing
Resampling: Cross-Validation (10-fold, repeated 5 times)

Summary of sample sizes: 671, 671, 672, 670, 669, 669,
Resampling results

RMSE Rsquared RMSE SD Rsquared SD
7.85 0.771 0.647 0.0398

The output shows that 44 predictors were used, indicating the expanded
model formula was used.
The other two linear models were created with:

tuneGrid = enetGrid,
trControl = controlObject)

> set.seed(669)

> plsModel <- train(modForm, data = trainingSet,

+ method = "pls",

+ preProc = c("center", "scale"),

+ tunelLength = 15,

+ trControl = controlObject)

> enetGrid <- expand.grid(.lambda = c(0, .001, .01, .1),
+ .fraction = seq(0.05, 1, length = 20))
> set.seed(669)

> enetModel <- train(modForm, data = trainingSet,

+ method = "enet",

+ preProc = c("center", "scale"),

+

+

MARS, neural networks, and SVMs were created as follows:

> set.seed(669)

> earthModel <- train(CompressiveStrength ~ ., data = trainingSet,
+ method = "earth",

+ tuneGrid = expand.grid(.degree = 1,

+ .nprune = 2:25),

+ trControl = controlObject)

> set.seed(669)

> svmRModel <- train(CompressiveStrength ~ ., data = trainingSet,
+ method = "svmRadial",

+ tunelLength = 15,

+ preProc = c("center", "scale"),
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trControl = controlObject)
nnetGrid <- expand.grid(.decay = c(0.001, .01, .1),
.size = seq(1l, 27, by = 2),
.bag = FALSE)
set.seed(669)
nnetModel <- train(CompressiveStrength ~ .,
data = trainingSet,
method = "avlNNet",
tuneGrid = nnetGrid,
preProc = c("center", "scale"),
linout = TRUE,
trace = FALSE,
maxit = 1000,
trControl = controlObject)

+ 4+ + + ++ ++VV++V+

The regression and model trees were similarly created:

set.seed(669)

rpartModel <- train(CompressiveStrength ~ .,
data = trainingSet,
method = "rpart",
tunelLength = 30,
trControl = controlObject)

+ + + + VvV Vv

set.seed(669)

ctreeModel <- train(CompressiveStrength ~ .,
data = trainingSet,
method = "ctree",
tunelLength = 10,
trControl = controlObject)

+ + + + VvV Vv

> set.seed(669)
> mtModel <- train(CompressiveStrength ~ .,
+ data = trainingSet,
+ method = "M5",
+ trControl = controlObject)
The following code creates the remaining model objects:
> set.seed(669)
> treebagModel <- train(CompressiveStrength ~ .,
+ data = trainingSet,
+ method = "treebag",
+ trControl = controlObject)
> set.seed(669)
> rfModel <- train(CompressiveStrength ~ .,
+ data = trainingSet,
+ method = "rf",
+ tunelLength = 10,
+ ntrees = 1000,
+ importance = TRUE,
+ trControl = controlObject)
> gbmGrid <- expand.grid(.interaction.depth = seq(1, 7, by = 2),
+ .n.trees = seq(100, 1000, by = 50),

239
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.shrinkage = c(0.01, 0.1))
set.seed (669)
gbmModel <- train(CompressiveStrength ~ .,
data = trainingSet,
method = "gbm",
tuneGrid = gbmGrid,
verbose = FALSE,
trControl = controlObject)
cubistGrid <- expand.grid(.committees = c(1, 5, 10, 50, 75, 100),
.neighbors = c(0, 1, 3, 5, 7, 9))
set.seed(669)
cbModel <- train(CompressiveStrength ~ .,
data = trainingSet,
method = "cubist",
tuneGrid = cubistGrid,
trControl = controlObject)

+ 4+ ++VV+V+ A+t o+t VYV o+

The resampling results for these models were collected into a single object
using caret’s resamples function. This object can then be used for visualiza-
tions or to make formal comparisons between the models.

> allResamples <- resamples(list("Linear Reg" = lmModel,

+ "PLS" = plsModel,

+ "Elastic Net" = enetModel,

+ MARS = earthModel,

+ SVM = svmRModel,

+ "Neural Networks" = nnetModel,
+ CART = rpartModel,

+ "Cond Inf Tree" = ctreeModel,
+ "Bagged Tree'" = treebaglModel,
+ "Boosted Tree" = gbmModel,

+ "Random Forest" = rfModel,

+ Cubist = cbModel))

Figure 10.2 was created from this object as

> ## Plot the RMSE values

> parallelPlot(allResamples)

> ## Using R-squared:

> parallelplot(allResamples, metric = "Rsquared")

Other visualizations of the resampling results can also be created (see
7xyplot.resamples for other options).

The test set predictions are achieved using a simple application of the
predict function:

> nnetPredictions <- predict(nnetModel, testData)
> gbmPredictions <- predict(gbmModel, testData)
> cbPredictions <- predict(cbModel, testData)

To predict optimal mixtures, we first use the 28-day data to generate a set
of random starting points from the training set.

Since distances between the formulations will be used as a measure of
dissimilarity, the data are pre-processed to have the same mean and variance
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for each predictor. After this, a single random mixture is selected to initialize
the maximum dissimilarity sampling process:

> age28Data <- subset(trainingData, Age == 28)

> ## Remove the age and compressive strength columns and

> ## then center and scale the predictor columns

> ppl <- preProcess(age28Datal, -(8:9)], c("center", "scale"))
> scaledTrain <- predict(ppl, age28Datal, 1:71)

> set.seed(91)

> startMixture <- sample(1:nrow(age28Data), 1)

> starters <- scaledTrain[startMixture, 1:7]

After this, the maximum dissimilarity sampling method from Sect. 4.3 selects
14 more mixtures to complete a diverse set of starting points for the search
algorithms:

> pool <- scaledTrain

> index <- maxDissim(starters, pool, 14)
> startPoints <- c(startMixture, index)
> starters <- age28DatalstartPoints,1:7]

Since all seven mixture proportions should add to one, the search procedures
will conduct the search without one ingredient (water), and the water propor-
tion will be determined by the sum of the other six ingredient proportions.
Without this step, the search procedures would pick candidate mixture values
that would not add to one.

> ## Remove water
> startingValues <- starters[, -4]

To maximize the compressive strength, the R function optim searches the
mixture space for optimal formulations. A custom R function is needed to
translate a candidate mixture to a prediction. This function can find settings
to minimize a function, so it will return the negative of the compressive
strength. The function below checks to make sure that (a) the proportions
are between 0 and 1 and (b) the proportion of water does not fall below 5 %.
If these conditions are violated, the function returns a large positive number
which the search procedure will avoid (as optim is for minimization).

> ## The inputs to the function are a vector of six mixture proportions
> ## (in argument 'x') and the model used for prediction ('mod')
> modelPrediction <- function(x, mod)

+ {

+  ## Check to make sure the mixture proportions are
+ ## in the correct range

+ if(x[1] < 0 | x[1] > 1) return(10°38)
+ if(x[2] < 0 | x[2] > 1) return(10°38)
+ if(x[3] <0 | x[3] > 1) return(10°38)
+ if(x[4] < 0 | x[4] > 1) return(10°38)
+ if(x[5] < 0 | x[5] > 1) return(10°38)
+ if(x[6] < 0 | x[6] > 1) return(10°38)
+

+  ## Determine the water proportion
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x <- c(x, 1 - sum(x))

## Check the water range
if(x[7] < 0.05) return(10°38)

## Convert the vector to a data frame, assign names

## and fix age at 28 days

tmp <- as.data.frame(t(x))

names (tmp) <- c('Cement','BlastFurnaceSlag','FlyAsh',
'Superplasticizer','CoarseAggregate',
'FineAggregate', 'Water')

tmp$Age <- 28

## Get the model prediction, square them to get back to the

## original units, then return the negative of the result

-predict (mod, tmp)

}

+ 4+ + + F o+ F o+ o+t o+ o+ o+ o+

First, the Cubist model is used:

cbResults <- startingValues
cbResults$Water <- NA
cbResults$Prediction <- NA
## Loop over each starting point and conduct the search
for(i in 1:nrow(cbResults))
{
results <- optim(unlist(cbResults[i,1:6]),
modelPrediction,
method = "Nelder-Mead",
## Use method = 'SANN' for simulated annealing
control=list (maxit=5000),
## The next option is passed to the
## modelPrediction() function
mod = cbModel)
## Save the predicted compressive strength
cbResults$Prediction[i] <- -results$value
## Also save the final mixture values
cbResults[i,1:6] <- results$par
}
## Calculate the water proportion
cbResults$Water <- 1 - apply(cbResults[,1:6], 1, sum)
## Keep the top three mixtures
cbResults <- cbResults[order (-cbResults$Prediction),][1:3,]
cbResults$Model <- "Cubist"

VVVVYV4++4++++++++++++VVVVYVY

We then employ the same process for the neural network model:

> nnetResults <- startingValues
> nnetResults$Water <- NA

> nnetResults$Prediction <- NA

> for(i in 1:nrow(nnetResults))

+ f

+ results <- optim(unlist(nnetResults([i, 1:6,]),
+ modelPrediction,

+ method = "Nelder-Mead",

+ control=list(maxit=5000),
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+
+
+
+
>

>
>

mod = nnetModel)
nnetResults$Prediction[i] <- -results$value
nnetResults[i,1:6] <- results$par
F
nnetResults$Water <- 1 - apply(nnetResults[,1:6], 1, sum)
nnetResults <- nnetResults[order (-nnetResults$Prediction),][1:3,]
nnetResults$Model <- "NNet"

To create Fig. 10.4, PCA was conducted on the 28-day-old mixtures and

the six predicted mixtures were projected. The components are combined and

plotted:

> ## Run PCA on the data at 28\,days

> pp2 <- preProcess(age28Datal, 1:7], "pca")

> ## Get the components for these mixtures

> pcal <- predict(pp2, age28Datal[, 1:7])

> pcal$Data <- "Training Set"

> ## Label which data points were used to start the searches
> pcal$Data[startPoints] <- "Starting Values"

+ +VVVVVVVVYV

+ + + VvV Vv

## Project the new mixtures in the same way (making sure to
## re-order the columns to match the order of the age28Data object).
pca3 <- predict(pp2, cbResults[, names(age28Datal, 1:7])1)
pca3$Data <- "Cubist"
pca4d <- predict(pp2, nnetResults[, names(age28Datal, 1:71)])
pcad$Data <- "Neural Network"
## Combine the data, determine the axis ranges and plot
pcaData <- rbind(pcal, pca3, pca4)
pcaData$Data <- factor(pcaData$Data,

levels = c(”Training Set","Starting Values",

"Cubist", "Neural Network"))

lim <- extendrange(pcaDatal[, 1:2])

xyplot(PC2 ~ PC1l, data = pcaData, groups = Data,
auto.key = list(columns = 2),
x1im = 1im, ylim = lim,
type = C(”g", npu))

Desirability functions can be calculated with the desirability package. The

functions dMin and dMax can be used to create desirability function curve
definitions for minimization and maximization, respectively.
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Chapter 11

Measuring Performance in Classification
Models

In the previous part of this book we focused on building and evaluating
models for a continuous response. We now turn our focus to building and
evaluating models for a categorical response. Although many of the regression
modeling techniques can also be used for classification, the way we evaluate
model performance is necessarily very different since metrics like RMSE and
R? are not appropriate in the context of classification. We begin this part
of the book by discussing metrics for evaluating classification model perfor-
mance. In the first section of this chapter we take an in-depth look at the
different aspects of classification model predictions and how these relate to
the question of interest. The two subsequent sections explore strategies for
evaluating classification models using statistics and visualizations.

11.1 Class Predictions

Classification models usually generate two types of predictions. Like regres-
sion models, classification models produce a continuous valued prediction,
which is usually in the form of a probability (i.e., the predicted values of
class membership for any individual sample are between 0 and 1 and sum
to 1). In addition to a continuous prediction, classification models generate
a predicted class, which comes in the form of a discrete category. For most
practical applications, a discrete category prediction is required in order to
make a decision. Automated spam filtering, for example, requires a definitive
judgement for each e-mail.

Although classification models produce both of these types of predictions,
often the focus is on the discrete prediction rather than the continuous predic-
tion. However, the probability estimates for each class can be very useful for
gauging the model’s confidence about the predicted classification. Returning
to the spam e-mail filter example, an e-mail message with a predicted prob-
ability of being spam of 0.51 would be classified the same as a message with
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a predicted probability of being spam of 0.99. While both messages would be
treated the same by the filter, we would have more confidence that the sec-
ond message was, in fact, truly spam. As a second example, consider building
a model to classify molecules by their in-vivo safety status (i.e., non-toxic,
weakly toxic, and strongly toxic; e.g., Piersma et al. 2004). A molecule with
predicted probabilities in each respective toxicity category of 0.34, 0.33, and
0.33, would be classified the same as a molecule with respective predicted
probabilities of 0.98, 0.01, and 0.01. However in this case, we are much more
confident that the second molecule is non-toxic as compared to the first.

In some applications, the desired outcome is the predicted class proba-
bilities which are then used as inputs for other calculations. Consider an
insurance company that wants to uncover and prosecute fraudulent claims.
Using historical claims data, a classification model could be built to predict
the probability of claim fraud. This probability would then be combined with
the company’s investigation costs and potential monetary loss to determine
if pursuing the investigation is in the best financial interest of the insurance
company. As another example of classification probabilities as inputs to a sub-
sequent model, consider the customer lifetime value (CLV) calculation which
is defined as the amount of profit associated with a customer over a period
of time (Gupta et al. 2006). To estimate the CLV, several quantities are re-
quired, including the amount paid by a consumer over a given time frame,
the cost of servicing the consumer, and the probability that the consumer
will make a purchase in the time frame.

As mentioned above, most classification models generate predicted class
probabilities. However, when some models are used for classification, like neu-
ral networks and partial least squares, they produce continuous predictions
that do not follow the definition of a probability-the predicted values are not
necessarily between 0 and 1 and do not sum to 1. For example, a partial least
squares classification model (described in more detail in Sect. 12.4) would
create 0/1 dummy variables for each class and simultaneously model these
values as a function of the predictors. When samples are predicted, the model
predictions are not guaranteed to be within 0 and 1. For classification mod-
els like these, a transformation must be used to coerce the predictions into
“probability-like” values so that they can be interpreted and used for classifi-
cation. One such method is the softmazx transformation (Bridle 1990) which
is defined as .

eyt
Zlczl et
where g, is the numeric model prediction for the class and pj; is the
transformed value between 0 and 1. Suppose that an outcome has three classes
and that a PLS model predicts values of g1 = 0.25, g5 = 0.76, and g3 =-0.1.
The softmax function would transform these values to p; = 0.30, p5 = 0.49,
and p3 = 0.21. To be clear, no probability statement is being created by
this transformation; it merely ensures that the predictions have the same
mathematical qualities as probabilities.

i =

gth
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Well-Calibrated Probabilities

Whether a classification model is used to predict spam e-mail, a molecule’s
toxicity status, or as inputs to insurance fraud or customer lifetime value
calculations, we desire that the estimated class probabilities are reflective of
the true underlying probability of the sample. That is, the predicted class
probability (or probability-like value) needs to be well-calibrated. To be well-
calibrated, the probabilities must effectively reflect the true likelihood of the
event of interest. Returning to the spam filter illustration, if a model produces
a probability or probability-like value of 20 % for the likelihood of a particular
e-mail to be spam, then this value would be well-calibrated if similar types
of messages would truly be from that class on average in 1 of 5 samples.

One way to assess the quality of the class probabilities is using a calibration
plot. For a given set of data, this plot shows some measure of the observed
probability of an event versus the predicted class probability. One approach
for creating this visualization is to score a collection of samples with known
outcomes (preferably a test set) using a classification model. The next step
is to bin the data into groups based on their class probabilities. For example,
a set of bins might be [0, 10 %], (10 %, 20%], ..., (90 %, 100 %]. For each
bin, determine the observed event rate. Suppose that 50 samples fell into
the bin for class probabilities less than 10 % and there was a single event.
The midpoint of the bin is 5% and the observed event rate would be 2 %.
The calibration plot would display the midpoint of the bin on the z-axis and
the observed event rate on the y-axis. If the points fall along a 45° line, the
model has produced well-calibrated probabilities.

As an illustration, a data set was simulated in a way that the true event
probabilities are known. For two classes (classes 1 and 2) and two predic-
tors (A and B), the true probability (p) of the event is generated from the
equation:

-D

Figure 11.1 shows a simulated test set along with the a contour line for
a p = 0.50 event probability. Two models were fit to the training set:
quadratic discriminant analysis (QDA, Sect. 13.1) and a random forest model
(Sect. 14.4). A test set of n = 1000 samples was used to score the model and
create the calibration plot also shown in Fig. 11.1. Both classification mod-
els have similar accuracy for the test set (about 87.1% for either model).
The calibration plot shows that the QDA class probabilities tend to perform
poorly compared to the random forest model. For example, in the bin with
class probabilities ranging from 20 to 30 %, the observed percentage of events
for QDA was 4.6 %, far lower than the percentage in the random forest model
(35.4%).

The class probabilities can be calibrated to more closely reflect the like-
lihood of the event (or, at least the likelihood seen in the actual data).

log <1p> = 124 24% 4 2B?
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Fig. 11.1: Left: A simulated two-class data set with two predictors. The solid
black line denotes the 50 % probability contour. Right: A calibration plot
of the test set probabilities for random forest and quadratic discriminant
analysis models

For example, Fig. 11.1 shows a sigmoidal pattern such that the QDA model
under-predicts the event probability when the true likelihood is moderately
high or low. An additional model could be created to adjust for this pattern.
One equation that is consistent with this sigmoidal pattern is the logistic
regression model (described in Sect. 12.2). The class predictions and true
outcome values from the training set can be used to post-process the proba-
bly estimates with the following formula (Platt 2000):

5 = ! (11.1)
P T exp (—Bo — Bup) '

where the § parameters are estimated by predicting the true classes as a
function of the uncalibrated class probabilities (p). For the QDA model, this
process resulted in estimates BO = —5.7 and 51 = 11.7. Figure 11.2 shows the
results for the test set samples using this correction method. The results show
improved calibration with the test set data. Alternatively, an application of
Bayes’ Rule (described model is Sect. 13.6) can be similarly applied to recal-
ibrate the predictions. The Bayesian approach also improves the predictions
(Fig. 11.2). Note that, after calibration, the samples must be reclassified to
ensure consistency between the new probabilities and the predicted classes.
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Fig. 11.2: The original QDA class probabilities and recalibrated versions using
two different methodologies

Presenting Class Probabilities

Visualizations of the class probabilities are an effective method of commu-
nicating model results. For two classes, histograms of the predicted classes
for each of the true outcomes illustrate the strengths and weaknesses of a
model. In Chap. 4 we introduced the credit scoring example. Two classifi-
cation models were created to predict the quality of a customer’s credit: a
support vector machine (SVM) and logistic regression. Since the performance
of the two models were roughly equivalent, the logistic regression model was
favored due to its simplicity. The top panel of Fig. 11.3 shows histograms of
the test set probabilities for the logistic regression model (the panels indicate
the true credit status). The probability of bad credit for the customers with
good credit shows a skewed distribution where most customers’ probabili-
ties are quite low. In contrast, the probabilities for the customers with bad
credit are flat (or uniformly distributed), reflecting the model’s inability to
distinguish bad credit cases.

This figure also presents a calibration plot for these data. The accuracy of
the probability of bad credit degrades as it becomes larger to the point where
no samples with bad credit were predicted with a probability above 82.7 %.
This pattern is indicative of a model that has both poor calibration and poor
performance.

When there are three or more classes, a heat map of the class probabilities
can help gauge the confidence in the predictions. Figure 11.4 shows the test
set results with eight classes (denotes A through I) and 48 samples. The
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Fig. 11.3: Top: Histograms for a set of probabilities associated with bad credit.
The two panels split the customers by their true class. Bottom: A calibration
plot for these probabilities

true classes are shown in the rows (along with the sample identifiers) and the
columns reflect the class probabilities. In some cases, such as Sample 20, there
was a clear signal associated with the predicted class (the class C probability
was 78.5 %), while in other cases, the situation is murky. Consider Sample 7.
The four largest probabilities (and associated classes) were 19.6 % (B), 19.3%
(C), 17.7% (&), and 15% (E). While the model places the highest individual
probability for this sample in the correct class, it is uncertain that it could
also be of class C, A, or E.
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Fig. 11.4: A heat map of a test set with eight classes. The true classes are
shown in the row labels while columns quantify the probabilities for each
category (labeled as A through I)
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Table 11.1: The confusion matrix for the two-class problem (“events” and
“nonevents.” The table cells indicate number of the true positives (T'P), false
positives (F'P), true negatives (T'N), and false negatives (F'N)

Predicted Observed
Event Nonevent

Event TP FP
Nonevent FN TN

Equivocal Zones

An approach to improving classification performance is to create an equivocal
or indeterminate zone where the class is not formally predicted when the
confidence is not high. For a two-class problem that is nearly balanced in the
response, the equivocal zone could be defined as 0.50 & z. If z were 0.10, then
samples with prediction probabilities between 0.40 and 0.60 would be called
“equivocal.” In this case, model performance would be calculated excluding
the samples in the indeterminate zone. The equivocal rate should also be
reported with the performance so that the rate of unpredicted results is well
understood. For data sets with more than 2 classes (C' > 2), similar thresholds
can be applied where the largest class probability must be larger than (1/C)+
z to make a definitive prediction. For the data shown in Fig. 11.4, if (1/C)+z
is set to 30 %, then 5 samples would be designated as equivocal.

11.2 Evaluating Predicted Classes

A common method for describing the performance of a classification model
is the confusion matriz. This is a simple cross-tabulation of the observed
and predicted classes for the data. Table 11.1 shows an example when the
outcome has two classes. Diagonal cells denote cases where the classes are
correctly predicted while the off-diagonals illustrate the number of errors for
each possible case.

The simplest metric is the overall accuracy rate (or, for pessimists, the
error rate). This reflects the agreement between the observed and predicted
classes and has the most straightforward interpretation. However, there are a
few disadvantages to using this statistic. First, overall accuracy counts make
no distinction about the type of errors being made. In spam filtering, the cost
of erroneous deleting an important email is likely to be higher than incorrectly
allowing a spam email past a filter. In situations where the costs are different,
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accuracy may not measure the important model characteristics. Provost et al.
(1998) provide a comprehensive discussion of this issue, which is examined
further below.

Second, one must consider the natural frequencies of each class. For
example, in the USA, pregnant women routinely have blood drawn for alpha-
fetoprotein testing, which attempts to detect genetic problems such as Down
syndrome. Suppose the rate of this disorder! in fetuses is approximately 1 in
800 or about one-tenth of one percent. A predictive model can achieve almost
perfect accuracy by predicting all samples to be negative for Down syndrome.

What benchmark accuracy rate should be used to determine whether a
model is performing adequately? The no-information rate is the accuracy
rate that can be achieved without a model. There are various ways to define
this rate. For a data set with C' classes, the simplest definition, based on pure
randomness, is 1/C. However, this does not take into account the relative
frequencies of the classes in the training set. For the Down syndrome exam-
ple, if 1,000 random samples are collected from the population who would
receive the test, the expected number of positive samples would be small
(perhaps 1 or 2). A model that simply predicted all samples to be negative
for Down syndrome would easily surpass the no-information rate based on
random guessing (50 %). An alternate definition of the no-information rate is
the percentage of the largest class in the training set. Models with accuracy
greater than this rate might be considered reasonable. The effect of severe
class imbalances and some possible remedies are discussed in Chap. 16.

Rather than calculate the overall accuracy and compare it to the no-
information rate, other metrics can be used that take into account the class
distributions of the training set samples. The Kappa statistic (also known as
Cohen’s Kappa) was originally designed to assess the agreement between two
raters (Cohen 1960). Kappa takes into account the accuracy that would be
generated simply by chance. The form of the statistic is

O-F

K =
appe=1"p

where O is the observed accuracy and FE' is the expected accuracy based on
the marginal totals of the confusion matrix. The statistic can take on val-
ues between —1 and 1; a value of 0 means there is no agreement between
the observed and predicted classes, while a value of 1 indicates perfect con-
cordance of the model prediction and the observed classes. Negative values
indicate that the prediction is in the opposite direction of the truth, but large
negative values seldom occur, if ever, when working with predictive models.?

! In medical terminology, this rate is referred to as the prevalence of a disease while
in Bayesian statistics it would be the prior distribution of the event.

2 This is true since predictive models seek to find a concordant relationship with
the truth. A large negative Kappa would imply that there is relationship between
the predictors and the response and the predictive model would seek to find the
relationship in the correct direction.



256 11 Measuring Performance in Classification Models

When the class distributions are equivalent, overall accuracy and Kappa are
proportional. Depending on the context, Kappa values within 0.30 to 0.50
indicate reasonable agreement. Suppose the accuracy for a model is high
(90 %) but the expected accuracy is also high (85 %), the Kappa statistic
would show moderate agreement (Kappa = 1/3) between the observed and
predicted classes.

The Kappa statistic can also be extended to evaluate concordance in prob-
lems with more than two classes. When there is a natural ordering to the
classes (e.g., “low,” “medium,” and “high”), an alternate form of the statistic
called weighted Kappa can be used to enact more substantial penalties on er-
rors that are further away from the true result. For example, a “low” sample
erroneously predicted as “high” would reduce the Kappa statistic more than
an error were “low” was predicted to be “medium.” See (Agresti 2002) for
more details.

Two-Class Problems

Consider the case where there are two classes. Table 11.1 shows the confusion
matrix for generic classes “event” and “nonevent.” The top row of the table
corresponds to samples predicted to be events. Some are predicted correctly
(the true positives, or T'P) while others are inaccurately classified (false posi-
tives or F'P). Similarly, the second row contains the predicted negatives with
true negatives (T'N) and false negatives (F'N).

For two classes, there are additional statistics that may be relevant when
one class is interpreted as the event of interest (such as Down syndrome in
the previous example). The sensitivity of the model is the rate that the event
of interest is predicted correctly for all samples having the event, or

# samples with the event and predicted to have the event

Sensitivity =
4 # samples having the event

The sensitivity is sometimes considered the true positive rate since it measures
the accuracy in the event population. Conversely, the specificity is defined as
the rate that nonevent samples are predicted as nonevents, or

. # samples without the event and predicted as nonevents
Speci ficity =

# samples without the event

The false-positive rate is defined as one minus the specificity. Assuming a
fixed level of accuracy for the model, there is typically a trade-off to be made
between the sensitivity and specificity. Intuitively, increasing the sensitivity
of a model is likely to incur a loss of specificity, since more samples are being
predicted as events. Potential trade-offs between sensitivity and specificity
may be appropriate when there are different penalties associated with each
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Table 11.2: Test set confusion matrix for the logistic regression model training
with the credit scoring data from Sect. 4.5

Predicted Observed

Bad Good
Bad 24 10
Good 36 130

type of error. In spam filtering, there is usually a focus on specificity; most
people are willing to accept seeing some spam if emails from family members
or coworkers are not deleted. The receiver operating characteristic (ROC)
curve is one technique for evaluating this trade-off and is discussed in the
next section.

In Chap. 4 we introduced the credit scoring example. Two classification
models were created to predict the quality of a customer’s credit: a SVM and
logistic regression. Since the performance of the two models were roughly
equivalent, the logistic regression model was favored due to its simplicity.
Using the previously chosen test set of 200 customers, Table 11.2 shows the
confusion matrix associated with the logistic regression model. The overall
accuracy was 77 %, which is slightly better than the no-information rate of
70%. The test set had a Kappa value of 0.375, which suggests moderate
agreement. If we choose the event of interest to be a customer with bad
credit, the sensitivity from this model would be estimated to be 40 % and
the specificity to be 92.9%. Clearly, the model has trouble predicting when
customers have bad credit. This is likely due to the imbalance of the classes
and a lack of a strong predictor for bad credit.

Often, there is interest in having a single measure that reflects the false-
positive and false-negative rates. Youden’s J Index (Youden 1950), which is

J = Sensitivity + Specificity — 1

measures the proportions of correctly predicted samples for both the event
and nonevent groups. In some contexts, this may be an appropriate method
for summarizing the magnitude of both types of errors. The most common
method for combining sensitivity and specificity into a single value uses the
receiver operating characteristic (ROC) curve, discussed below.

One often overlooked aspect of sensitivity and specificity is that they are
conditional measures. Sensitivity is the accuracy rate for only the event popu-
lation (and specificity for the nonevents). Using the sensitivity and specificity,
the obstetrician can make statements such as “assuming that the fetus does
not have Down syndrome, the test has an accuracy of 95 %.” However, these
statements might not be helpful to a patient since, for new samples, all that
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is known is the prediction. The person using the model prediction is typically
interested in unconditional queries such as “what are the chances that the
fetus has the genetic disorder?” This depends on three values: the sensitiv-
ity and specificity of the diagnostic test and the prevalence of the event in
the population. Intuitively, if the event is rare, this should be reflected in
the answer. Taking the prevalence into account, the analog to sensitivity is
the positive predicted value, and the analog to specificity is the negative pre-
dicted value. These values make unconditional evaluations of the data.® The
positive predicted value answers the question “what is the probability that
this sample is an event?” The formulas are

PPV — Sensitivity X Prevalence

(Sensitivity x Prevalence) + ((1 — Speci ficity) x (1 — Prevalence))

NPV — Specificity x (1 — Prevalence)

(Prevalence x (1 — Sensitivity)) + (Speci ficity x (1 — Prevalence))

Clearly, the predictive values are nontrivial combinations of performance
and the rate of events. The top panel in Fig. 11.5 shows the effect of prevalence
on the predictive values when the model has a specificity of 95% and a
sensitivity of either 90 % or 99 %. Large negative predictive values can be
achieved when the prevalence is low. However, as the event rate becomes high,
the negative predictive value becomes very small. The opposite is true for the
positive predictive values. This figure also shows that a sizable difference in
sensitivity (90 % versus 99 %) has little effect on the positive predictive values.

The lower panel of Fig. 11.5 shows the positive predictive value as a func-
tion of sensitivity and specificity when the event rate is balanced (50 %). In
this case, the positive predicted value would be

Sensitivity TP

PPV = =
Sensitivity(1 — Speci ficity) TP+ FP

This figure also shows that the value of the sensitivity has a smaller effect
than specificity. For example, if specificity is high, say >90 %, a large positive
predicted value can be achieved across a wide range of sensitivities.
Predictive values are not often used to characterize the model. There are
several reasons why, most of which are related to prevalence. First, prevalence
is hard to quantify. Our experience is that very few people, even experts, are
willing to propose an estimate of this quantity based on prior knowledge.
Also, the prevalence is dynamic. For example, the rate of spam emails in-
creases when new schemes are invented but later fall off to baseline levels.
For medical diagnoses, the prevalence of diseases can vary greatly depend-

3 In relation to Bayesian statistics, the sensitivity and specificity are the conditional
probabilities, the prevalence is the prior, and the positive/negative predicted values
are the posterior probabilities.
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Fig. 11.5: Top: The effect of prevalence on the positive and negative predictive
values. The PPV was computed using a specificity of 95 % and two values of
sensitivity. The NPV was computed with 90 % sensitivity and 95 % specificity.
Bottom: For a fixed prevalence of 50 %, positive predictive values are shown
as a function of sensitivity and specificity

ing on the geographic location (e.g., urban versus rural). For example, in a
multicenter clinical trial of a diagnostic test for Neisseria gonorrhoeae, the
prevalence within the patient population varied from 0% to 42.9% across
nine clinical sites (Becton Dickinson and Company 1991).
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Table 11.3: The confusion matrix and profit costs/benefits for the direct mail-
ing example of Larose (2006)

Predicted Observed Observed
Response Nonresponse Response Nonresponse

Response TP FP $26.40 —$2.00

Nonresponse FN TN —$28.40 -

Non-Accuracy-Based Criteria

For many commercial applications of predictive models, accuracy is not the
primary goal for the model. Often, the purpose of the model might be to:

Predict investment opportunities that maximize return

Improve customer satisfaction by market segmentation

Lower inventory costs by improving product demand forecasts or
Reduce costs associated with fraudulent transactions

While accuracy is important, it only describes how well the model predicts
the data. If the model is fit for purpose, other more direct metrics of per-
formance should be considered. These metrics quantify the consequences of
correct and incorrect predictions (i.e., the benefits and costs). For example,
in fraud detection, a model might be used to quantify the likelihood that a
transaction is fraudulent. Suppose that fraud is the event of interest. Any
model predictions of fraud (correct or not) have an associated cost for a more
in-depth review of the case. For true positives, there is also a quantifiable
benefit to catching bad transactions. Likewise, a false negative results in a
loss of income.

Consider the direct marketing application in Larose (2006, Chap. 7) where
a clothing company is interested in offering promotions by mail to its cus-
tomers. Using existing customer data on shopping habits, they wish to predict
who would respond (i.e., the two classes and “responders” and “nonrespon-
ders”). The 2x2 table of possible outcomes is shown in Table 11.3 where the
type of decisions is presented on the left and the revenue or cost per deci-
sion is on the right. For example, if the model were to accurately predict a
responder, the average profit when the customer responds to the promotion
is estimated to be $28.40. There is a small $2.00 cost for mailing the pro-
motion, so the net profit of a correct decision is $26.40. If we inaccurately
predict that a customer will respond (a false positive), the only loss is the
cost of the promotion ($2.00).
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Table 11.4: Left: A hypothetical test confusion matrix for a predictive model
with a sensitivity of 75% and a specificity of 94.4 %. Right: The confusion
matrix when a mass mailing is used for all customers

Predicted Observed Observed
Response Nonresponse Response Nonresponse

Response 1,500 1,000 2,000 18,000

Nonresponse 500 17,000 0 0

If the model accurately predicts a nonresponse, there is no gain or loss since
they would not have made a purchase and the mailer was not sent.* However,
incorrectly predicting that a true responder would not respond means that
a potential $28.40 was lost, so this is the cost of a false-negative. The total
profit for a particular model is then

profit = $26.40TP — $2.00F P — $28.40F N (11.2)

However, the prevalence of the classes should be taken into account. The
response rate in direct marketing is often very low (Ling and Li 1998) so
the expected profit for a given marketing application may be driven by the
false-negative costs since this value is likely to be larger than the other two
in Eq. 11.2.

Table 11.4 shows hypothetical confusion matrices for 20,000 customers
with a 10 % response rate. The table on the left is the result of a predicted
model with a sensitivity of 75 % and a specificity of 94.4 %. The total profit
would be $23,400 or $1.17 per customer. Suppose another model had the same
sensitivity but 100 % specificity. In this case, the total profit would increase
to $25,400, a marginal gain given a significant increase in model performance
(mostly due to the low cost of mailing the promotion).

The right side of Table 11.4 shows the results when a mass mailing for all
the customers is used. This approach has perfect sensitivity and the worst
possible specificity. Here, due to the low costs, the profit is $16,800 or $0.84
per customer. This should be considered the baseline performance for any
predictive model to beat. The models could alternatively be characterized
using the profit gain or lift, estimated as the model profit above and beyond
the profit from a mass mailing.

With two classes, a general outline for incorporating unequal costs with
performance measures is given by Drummond and Holte (2000). They define
the probability-cost function (PCF) as

4 This depends on a few assumptions which may or may not be true. Section 20.1
discusses this aspect of the example in more detail in the context of net lift modeling.
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P x C(+]-)

PO = e T a=P) <)

where P is the (prior) probability of the event, C'(—|+) is the cost associated
with incorrectly predicting an event (+) as a nonevent, and C(+4|—) is the
cost of incorrectly predicting a nonevent. The PCF is the proportion of the
total costs associated with a false-positive sample. They suggest using the
normalized expected cost (NEC) function to characterize the model

NEC = PCF x (1-TP) + (1 — PCF) x FP

for a specific set of costs. Essentially, the N EC takes into account the preva-
lence of the event, model performance, and the costs and scales the total
cost to be between 0 and 1. Note that this approach only assigns costs to
the two types of errors and might not be appropriate for problems where
there are other cost or benefits (such as the direct marketing costs shown in
Table 11.3).

11.3 Evaluating Class Probabilities

Class probabilities potentially offer more information about model predictions
than the simple class value. This section discussed several approaches to using
the probabilities to compare models.

Receiver Operating Characteristic (ROC) Curves

ROC curves (Altman and Bland 1994; Brown and Davis 2006; Fawcett 2006)
were designed as a general method that, given a collection of continuous data
points, determine an effective threshold such that values above the threshold
are indicative of a specific event. This tool will be examined in this context
in Chap. 19, but here, we describe how the ROC curve can be used for
determining alternate cutoffs for class probabilities.

For the credit model test set previously discussed, the sensitivity was poor
for the logistic regression model (40 %), while the specificity was fairly high
(92.9 %). These values were calculated from classes that were determined with
the default 50 % probability threshold. Can we improve the sensitivity by
lowering the threshold® to capture more true positives? Lowering the thresh-
old for classifying bad credit to 30 % results in a model with improved sensi-

5 In this analysis, we have used the test set to investigate the effects of alternative
thresholds. Generally, a new threshold should be derived from a separate data set
than those used to train the model or evaluate performance.
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Fig. 11.6: A receiver operator characteristic (ROC) curve for the logistic
regression model results for the credit model. The dot indicates the value
corresponding to a cutoff of 50% while the green square corresponds to a
cutoff of 30 % (i.e., probabilities greater than 0.30 are called events)

tivity (60 %) but decrease specificity (79.3 %). Referring to Fig. 11.3, we see
that decreasing the threshold begins to capture more of the customers with
bad credit but also begins to encroach on the bulk of the customers with
good credit.

The ROC curve is created by evaluating the class probabilities for the
model across a continuum of thresholds. For each candidate threshold, the
resulting true-positive rate (i.e., the sensitivity) and the false-positive rate
(one minus the specificity) are plotted against each other. Figure 11.6 shows
the results of this process for the credit data. The solid black point is the de-
fault 50 % threshold while the green square corresponds to the performance
characteristics for a threshold of 30 %. In this figure, the numbers in paren-
theses are (specificity, sensitivity). Note that the trajectory of the curve
between (0, 0) and the 50 % threshold is steep, indicating that the sensitivity
is increasing at a greater rate than the decrease in specificity. However, when
the sensitivity is greater than 70 %, there is a more significant decrease in
specificity than the gain in sensitivity.

This plot is a helpful tool for choosing a threshold that appropriately
maximizes the trade-off between sensitivity and specificity. However, altering
the threshold only has the effect of making samples more positive (or negative
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as the case may be). In the confusion matrix, it cannot move samples out
of both off-diagonal table cells. There is almost always a decrease in either
sensitivity or specificity as 1 is increased.

The ROC curve can also be used for a quantitative assessment of the model.
A perfect model that completely separates the two classes would have 100 %
sensitivity and specificity. Graphically, the ROC curve would be a single step
between (0, 0) and (0, 1) and remain constant from (0, 1) to (1, 1). The area
under the ROC curve for such a model would be one. A completely ineffective
model would result in an ROC curve that closely follows the 45° diagonal
line and would have an area under the ROC curve of approximately 0.50. To
visually compare different models, their ROC curves can be superimposed
on the same graph. Comparing ROC curves can be useful in contrasting two
or more models with different predictor sets (for the same model), different
tuning parameters (i.e., within model comparisons), or complete different
classifiers (i.e., between models).

The optimal model should be shifted towards the upper left corner of the
plot. Alternatively, the model with the largest area under the ROC curve
would be the most effective. For the credit data, the logistic model had an
estimated area under the ROC curve of 0.78 with a 95% confidence inter-
val of (0.7, 0.85) determined using the bootstrap confidence interval method
(Hall et al. 2004). There is a considerable amount of research on methods
to formally compare multiple ROC curves. See Hanley and McNeil (1982),
DeLong et al. (1988), Venkatraman (2000), and Pepe et al. (2009) for more
information.

One advantage of using ROC curves to characterize models is that, since it
is a function of sensitivity and specificity, the curve is insensitive to disparities
in the class proportions (Provost et al. 1998; Fawcett 2006). A disadvantage
of using the area under the curve to evaluate models is that it obscures
information. For example, when comparing models, it is common that no
individual ROC curve is uniformly better than another (i.e., the curves cross).
By summarizing these curves, there is a loss of information, especially if
one particular area of the curve is of interest. For example, one model may
produce a steep ROC curve slope on the left but have a lower AUC than
another model. If the lower end of the ROC curve was of primary interest,
then AUC would not identify the best model. The partial area under the
ROC curve (McClish 1989) is an alternative that focuses on specific parts of
the curve.

The ROC curve is only defined for two-class problems but has been ex-
tended to handle three or more classes. Hand and Till (2001), Lachiche and
Flach (2003), and Li and Fine (2008) use different approaches extending the
definition of the ROC curve with more than two classes.
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Lift Charts

Lift charts (Ling and Li 1998) are a visualization tool for assessing the ability
of a model to detect events in a data set with two classes. Suppose a group
of samples with M events is scored using the event class probability. When
ordered by the class probability, one would hope that the events are ranked
higher than the nonevents. Lift charts do just this: rank the samples by
their scores and determine the cumulative event rate as more samples are
evaluated. In the optimal case, the M highest-ranked samples would contain
all M events. When the model is non-informative, the highest-ranked X %
of the data would contain, on average, X events. The [lift is the number of
samples detected by a model above a completely random selection of samples.
To construct the lift chart we would take the following steps:

1. Predict a set of samples that were not used in the model building process
but have known outcomes.

2. Determine the baseline event rate, i.e., the percent of true events in the
entire data set.

3. Order the data by the classification probability of the event of interest.

4. For each unique class probability value, calculate the percent of true events
in all samples below the probability value.

5. Divide the percent of true events for each probability threshold by the
baseline event rate.

The lift chart plots the cumulative gain/lift against the cumulative percentage
of samples that have been screened. Figure 11.7 shows the best and worse
case lift curves for a data set with a 50 % event rate. The non-informative
model has a curve that is close to the 45° reference line, meaning that the
model has no benefit for ranking samples. The other curve is indicative of
a model that can perfectly separate two classes. At the 50 % point on the
z-axis, all of the events have been captured by the model.

Like ROC curves, the lift curves for different models can be compared to
find the most appropriate model and the area under the curve can be used as
a quantitative measure of performance. Also like ROC curves, some parts of
the lift curve are of more interest than others. For example, the section of the
curve associated with the highest-ranked samples should have an enriched
true-positive rate and is likely to be the most important part of the curve.

Consider the direct marketing application. Using this curve, a quasi-
threshold can be determined for a model. Again, suppose there is a 10%
response rate and that most of the responders are found in the top 7% of
model predictions. Sending the promotions to this subset of customers effec-
tively imposes a new threshold for customer response since samples below
the threshold will not be acted on.

In this application, recall that a predictive model would have to generate
more profit than the baseline profit associated with sending the promotion
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Fig. 11.7: An example lift plot with two models: one that perfectly separates
two classes and another that is completely non-informative

to all customers. Using the lift plot, the expected profit can be calculated
for each point on the curve to determine if the lift is sufficient to beat the
baseline profit.

11.4 Computing

The R packages AppliedPredictiveModeling, caret, klaR, MASS, pROC, and
randomForest will be utilized in this section.

For illustration, the simulated data set shown in Fig. 11.1 will be used in
this section. To create these data, the quadBoundaryFunc function in the Ap-
pliedPredictiveModeling package is used to generate the predictors and out-
comes:

> library (AppliedPredictiveModeling)
> set.seed(975)
> simulatedTrain <- quadBoundaryFunc(500)
> simulatedTest <- quadBoundaryFunc(1000)
> head(simulatedTrain)
X1 X2 prob class
1 2.4685709 2.28742015 0.9647251 Classi
2 -0.1889407 -1.63949455 0.9913938 Classl
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-1.9101460 -2.89194964 1.0000000 Classl
0.3481279 0.06707434 0.1529697 Classil
0.1401153 0.86900555 0.5563062 Classl
0.7717148 -0.91504835 0.2713248 Class2

o O W

The random forest and quadratic discriminant models will be fit to the data:

> library(randomForest)
> rfModel <- randomForest(class ~ X1 + X2,
+ data = simulatedTrain,
+ ntree = 2000)
> library(MASS) ## for the gda() function
> gdaModel <- gda(class ~ X1 + X2, data = simulatedTrain)
The output of the predict function for qda objects includes both the predicted
classes (in a slot called c1lass) and the associated probabilities are in a matrix
called posterior. For the QDA model, predictions will be created for the
training and test sets. Later in this section, the training set probabilities
will be used in an additional model to calibrate the class probabilities. The
calibration will then be applied to the test set probabilities:
> gdaTrainPred <- predict(qdaModel, simulatedTrain)
> names (qdaTrainPred)

[1] "class" "posterior"
> head(qdaTrainPred$class)

[1] Classl Classl Classl Class2 Classl Class2
Levels: Classl Class2
> head(qdaTrainPred$posterior)

Classl1 Class2
1 0.7313136 0.268686374
2 0.8083861 0.191613899
3 0.9985019 0.001498068
4 0.3549247 0.645075330
5 0.5264952 0.473504846
6 0.3604055 0.639594534

> gdaTestPred <- predict(qdaModel, simulatedTest)
> simulatedTrain$@DAprob <- gdaTrainPred$posterior[,"Class1"]
> simulatedTest$@DAprob <- gdaTestPred$posterior[,"Classi"]

The random forest model requires two calls to the predict function to get the
predicted classes and the class probabilities:
> rfTestPred <- predict(rfModel, simulatedTest, type = "prob")
> head(rfTestPred)
Classl Class2

1 0.4300 0.5700
2 0.5185 0.4815
3 0.9970 0.0030
4 0.9395 0.0605
5 0.0205 0.9795

6 0.2840 0.7160

> simulatedTest$RFprob <- rfTestPred[,"Class1"]
> simulatedTest$RFclass <- predict(rfModel, simulatedTest)
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Sensitivity and Specificity

caret has functions for computing sensitivity and specificity. These functions
require the user to indicate the role of each of the classes:

> # Class 1 will be used as the event of interest
> sensitivity(data = simulatedTest$RFclass,
+ reference = simulatedTest$class,
+ positive = "Classi")
[1] 0.8278867
> specificity(data = simulatedTest$RFclass,
reference = simulatedTest$class,
+ negative = "Class2")

[1] 0.8946396

+

Predictive values can also be computed either by using the prevalence found
in the data set (46 %) or by using prior judgement:
> posPredValue(data = simulatedTest$RFclass,
+ reference = simulatedTest$class,
+ positive = "Class1")
[1] 0.8695652
> negPredValue(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,
+ positive = "Class2")
[1] 0.8596803
> # Change the prevalence manually
> posPredValue(data = simulatedTest$RFclass,
+ reference = simulatedTest$class,
+ positive = "Classl",
+ prevalence = .9)

[1] 0.9860567

Confusion Matrix

There are several functions in R to create the confusion matrix. The
confusionMatrix function in the caret package produces the table and associ-
ated statistics:

> confusionMatrix(data = simulatedTest$RFclass,

+ reference = simulatedTest$class,
+ positive = "Class1")

Confusion Matrix and Statistics

Reference
Prediction Classl Class2
Classl 380 57

Class2 79 484
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Accuracy : 0.864

957 CI :

No Information Rate : 0.541
P-Value [Acc > NIR] : < 2e-16

Kappa : 0.7252

Mcnemar's Test P-Value : 0.07174
Sensitivity : 0.8279
Specificity : 0.8946

Pos Pred Value : 0.8696

Neg Pred Value : 0.8597
Prevalence : 0.4590
Detection Rate : 0.3800
Detection Prevalence : 0.4370

'Positive'

Class : Classl

(0.8412, 0.8846)
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There is also an option in this function to manually set the prevalence. If there
were more than two classes, the sensitivity, specificity, and similar statistics
are calculated on a “one-versus-all” basis (e.g., the first class versus a pool of
classes two and three).

Receiver Operating Characteristic Curves

The pROC package (Robin et al. 2011) can create the curve and derive various
statistics.® First, an R object must be created that contains the relevant
information using the pROC function roc. The resulting object is then used
to generate the ROC curve or calculate the area under the curve. For example,

> library(pROC)

> rocCurve <- roc(response = simulatedTest$class,
predictor = simulatedTest$RFprob,

## This function assumes that the second
## class is the event of interest, so we

+

+ o+ + +

## reverse the labels.

levels = rev(levels(simulatedTest$class)))

From this object, we can produce statistics (such as the area under the ROC
curve and its confidence interval):

> auc (rocCurve)

Area under the curve: 0.9328

> ci.roc(rocCurve)

95% CI: 0.9176-0.948 (DeLong)

6 R has a number of packages that can compute the ROC curve, including ROCR,
caTools, PresenceAbsence, and others.
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Fig. 11.8: An example of an ROC curve produced using the roc and plot.roc
functions in the pROC package

We can also use the plot function to produce the ROC curve itself:

> plot(rocCurve, legacy.axes = TRUE)
## By default, the x-axis goes backwards, used
## the option legacy.axes = TRUE to get 1-spec
## on the x-axis moving from O to 1

## Also, another curve can be added using

>
>
>
>
>
> ## add = TRUE the next time plot.auc is used.

Figure 11.8 shows the results of this function call.

Lift Charts

The lift curve can be created using the 1ift function in the caret package.
It takes a formula as the input where the true class is on the left-hand side
of the formula, and one or more columns for model class probabilities are on
the right. For example, to produce a lift plot for the random forest and QDA
test set probabilities,
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> labs <- c(RFprob = "Random Forest",

+ @DAprob = "Quadratic Discriminant Analysis")

> liftCurve <- lift(class ~ RFprob + (DAprob, data = simulatedTest,
+ labels = labs)

> 1liftCurve

Call:
lift.formula(x = class ~ RFprob + QDAprob, data = simulatedTest, labels
= labs)

Models: Random Forest, Quadratic Discriminant Analysis
Event: Classl (45.9%)

To plot two lift curves, the xyplot function is used to create a lattice plot:

> ## Add lattice options to produce a legend on top
> xyplot (liftCurve,

+ auto.key = list(columns = 2,

+ lines = TRUE,

+ points = FALSE))
See Fig. 11.9.

Calibrating Probabilities

Calibration plots as described above are available in the calibration.plot
function in the PresenceAbsence package and in the caret function calibration
(details below). The syntax for the calibration function is similar to the 1ift
function:

> calCurve <- calibration(class ~ RFprob + QDAprob, data = simulatedTest)
> calCurve

Call:
calibration.formula(x = class ~ RFprob + QDAprob, data = simulatedTest)

Models: RFprob, QDAprob
Event: Classl
Cuts: 11

> xyplot(calCurve, auto.key = list(columns = 2))

Figure 11.9 also shows this plot. An entirely different approach to calibration
plots that model the observed event rate as a function of the class probabilities
can be found in the calibrate.plot function of the gbm package.

To recalibrate the QDA probabilities, a post-processing model is created
that models the true outcome as a function of the class probability. To fit
a sigmoidal function, a logistic regression model is used (see Sect. 12.2 for
more details) via the gim function in base R. This function is an interface
to a broad set of methods called generalized linear models (Dobson 2002),
which includes logistic regression. To fit the model, the function requires the
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Fig. 11.9: Examples of lift and calibration curves for the random forest and
QDA models

family argument to specify the type of outcome data being modeled. Since
our outcome is a discrete category, the binomial distribution is selected:
> ## The glm() function models the probability of the second factor

> ## level, so the function relevel() is used to temporarily reverse the
> ## factors levels.
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> sigmoidalCal <- glm(relevel(class, ref = "Class2") ~ QDAprob,

+ data = simulatedTrain,
+ family = binomial)
> coef (summary (sigmoidalCal))
Estimate Std. Error z value Pr(>lzl)
(Intercept) -5.701055 0.5005652 -11.38924 4.731132e-30
QDAprob 11.717292 1.0705197 10.94542 6.989017e-28

The corrected probabilities are created by taking the original model and
applying Eq. 11.1 with the estimated slope and intercept. In R, the predict
function can be used:

> sigmoidProbs <- predict(sigmoidalCal,

+ newdata = simulatedTest[, "QDAprob", drop = FALSE],
+ type = "response')

> simulatedTest$(DAsigmoid <- sigmoidProbs

The Bayesian approach for calibration is to treat the training set class prob-
abilities to estimate the probabilities Pr[X] and Pr[X|Y = C/] (see Eq. 13.5
on page 354). In R, the naive Bayes model function NaiveBayes in the klaR
package can be used for the computations:

> BayesCal <- NaiveBayes(class ~ QDAprob, data = simulatedTrain,

+ usekernel = TRUE)

> ## Like qda(), the predict function for this model creates

> ## both the classes and the probabilities

> BayesProbs <- predict (BayesCal,

+ newdata = simulatedTest[, "QDAprob", drop = FALSE])
> simulatedTest$@DABayes <- BayesProbs$posterior[, "Class1"]

> ## The probability values before and after calibration

> head(simulatedTest[, c(5:6, 8, 9)]1)

QDAprob RFprob QDAsigmoid QDABayes

1 0.3830767 0.4300 0.22927068 0.2515696
2 0.5440393 0.5185 0.66231139 0.6383383
3 0.9846107 0.9970 0.99708776 0.9995061
4 0.5463540 0.9395 0.66835048 0.6430232
5 0.2426705 0.0205 0.05428903 0.0566883
6 0.4823296 0.2840 0.48763794 0.5109129

The option usekernel = TRUE allows a flexible function to model the probabil-
ity distribution of the class probabilities.

These new probabilities are evaluated using another plot:
> calCurve2 <- calibration(class ~ (DAprob + QDABayes + QDAsigmoid,

+ data = simulatedTest)
> xyplot(calCurve2)



Chapter 12

Discriminant Analysis and Other Linear
Classification Models

In general, discriminant or classification techniques seek to categorize samples
into groups based on the predictor characteristics, and the route to achieving
this minimization is different for each technique. Some techniques take a
mathematical path [e.g., linear discriminant analysis (LDA)], and others take
an algorithmic path (e.g., k-nearest neighbors).

Classical methods such as LDA and its closely related mathematical
cousins (partial least squares discriminant analysis (PLSDA), logistic regres-
sion, etc.) will be discussed in this chapter and will focus on separating sam-
ples into groups based on characteristics of predictor variation.

12.1 Case Study: Predicting Successful Grant
Applications

These data are from a 2011 Kaggle competition sponsored by the University
of Melbourne where there was interest in predicting whether or not a grant
application would be accepted. Since public funding of grants had decreased
over time, triaging grant applications based on their likelihood of success
could be important for estimating the amount of potential funding to the
university. In addition to predicting grant success, the university sought to
understand factors that were important in predicting success. As we have dis-
cussed throughout the regression chapters, there is often a trade-off between
models that are developed for understanding and models that are developed
for prediction. The same is true for classification models; this will be illus-
trated in this and the following chapters.

In the contest, data on 8,708 grants between the years 2005 and 2008 were
available for model building and the test set contained applications from 2009
to 2010. The winning entry achieved an area under the ROC curve of 0.968
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on the test set. The first and second place winners discuss their approaches
to the data and modeling on the Kaggle blog."

The data can be found at the Kaggle web site,? but only the training set
data contain the outcomes for the grants. Many pieces of information were
collected across grants, including whether or not the grant application was
successful. The original data contained many predictors such as:

e The role of each individual listed on the grant. Possible values include
chief investigator (shortened to “CI” in the data), delegated researcher
(DR), principal supervisor (PS), external advisor (EA), external chief in-
vestigator (ECI), student chief investigator (SCI), student researcher (SR),
honorary visitor (HV), or unknown (UNK). The total number of individ-
uals listed on the grant ranged from 1 to 14.

e Several characteristics of each individual on the grant, such as their date of
birth, home language, highest degree, nationality, number of prior success-
ful (and unsuccessful) grants, department, faculty status, level of seniority,
length of employment at the university, and number of publications in four
different grades of journals.

e One or more codes related to Australia’s research fields, courses and dis-
ciplines (RFCD) classification. Using this, the grant can be classified into
subgroups, such as Applied Economics, Microbiology, and Librarianship.
There were 738 possible values of the RFCD codes in the data. If more
than one code was specified for a grant, their relative percentages were
recorded. The RFCD codes listed by the Australian Bureau of Statistics®
range from 210,000 to 449,999. There were many grants with nonsensical
codes (such as 0 or 999,999) that were grouped into an unknown category
for these analyses.

e Omne or more codes corresponding to the socio-economic objective (SEO)
classification. This classification describes the intended purpose of the
grant, such as developing construction activities or health services. If more
than one code was specified for a grant, their relative percentages were
recorded. Like the RFCD codes, there were some values in the data that
did not map to any of the codes listed by the Australian government and
were grouped into an unknown category.

e The submission date of the grant

e The monetary value of the grant, binned into 17 groups

e A grant category code which describes the type sponsor as well as a code
for the specific sponsor

One of the first steps in the model building process is to transform, or encode,
the original data structure into a form that is most informative for the model
(i.e., feature engineering). This encoding process is critical and must be done

I http://blog.kaggle.com/.
2 http://www.kaggle.com/c/unimelb.

3 The RFCD codes can be found at http://tinyurl.com/25zvts while the SEO codes
can be found at http://tinyurl.com/8435ae4.
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with foresight into the analyses that will be performed so that appropriate
predictors can be elucidated from the original data. Failure to appropriately
format the predictors can prevent developing effective predictive models.

The original form of the grant data is not conducive to modeling. For
example, many fields are broken down for each individual involved in the
grant. As such, there are 15 columns in the data for each individual. Since
there could be as many as 14 individuals associated with a grant, there are a
large number of columns for a grant, many of which have no data.

How to encode these data is a primary first question. For example, since
there are often multiple individuals associated with the grant, how should
this information be represented in the data? Similarly, when there are mul-
tiple RFCD codes and associated percentages, in what manner should these
data enter the models? Additionally, these data contain many missing values
which we must also handle before building a predictive model. We must think
through all of these questions while keeping in mind the goal of predicting
the success of a grant application.

Given this goal, we took the following steps. First, a group of predictors
was created that describe how many investigators were on the grant broken
up by role (e.g., chief investigator). Second, groups of role-specific count vari-
ables were also created for the home language, nationality, degree, birth year,
department, and grant history. For example, one variable counts the number
of chief investigators from Australia while another counts the total number of
successful grants from all delegated researchers on the grant. For publication
data, the total number of publications in the four tiers of journals was aggre-
gated across all roles. The duration of employment was similarly aggregated
across all roles.

Indicator variables for each sponsor code and grant category were also
created. For the RFCD and SEO codes, the number of non-zero percentages
for each grant was used. Finally, indicators were generated for the month and
day or the week that the grant was submitted. In all, 1,784 possible predictors
were created using this encoding scheme.

As a result, the vast majority of these predictors are discrete in nature
(i.e., either 0/1 dummy variables or counts) with many 0 values. Since many
of the predictors are categorical in nature, missing values were encoded as
“unknown.” For example, 912 grants had missing category codes. A binary
predictor for missing grant categories was created to capture this information.

As described in Chap. 3, some predictive models have different constraints
on the type of predictors that they can utilize. For example, in these data,
a significant number of predictors had pair-wise absolute correlations that
were larger than 0.99. Because of this, a high-correlation filter was used on
the predictor set to remove these highly redundant predictors from the data.
In the end, 56 predictors were eliminated from the data for this reason. The
binary nature of many of predictors also resulted in many cases where the data
were very sparse and unbalanced. For the RFCD codes, 95 % of the predictors
had less than 50 non-zero indicators. This high degree of class imbalance
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Fig. 12.1: The top two continuous predictors associated with grant success
based on the pre-2008 data. Prior success in receiving a grant by the chief
investigator as well as prior failure in receiving a grant are most highly as-
sociated with the success or failure of receiving a future grant. The z-axis
is truncated to 15 grants so that the long tails of the distribution do not
obfuscate the differences

indicates that many of the predictors could be classified as near-zero variance
predictors described in Chap. 3, which can lead to computational issues in
many of the models.

Since not all models are affected by this issue, two different sets of predic-
tors were used, depending on the model. The “full set” of predictors included
all the variables regardless of their distribution (1,070 predictors). The “re-
duced set” was developed for models that are sensitive to sparse and unbal-
anced predictors and contained 252 predictors. In subsequent chapters and
sections, the text will describe which predictor set was used for each model.*
As a reminder, the process of removing predictors without measuring their
association with the outcome is unsupervised feature selection. Although a few
models that use supervised feature selection are described in this chapter, a
broader discussion of feature selection is tabled until Chap. 19.

A cursory, univariate review of the newly encoded data uncovers a few
interesting relationships with the response. Two continuous predictors, the
number of prior successful and unsuccessful grant applications by the chief
investigator, were highly associated with grant application success. The distri-
butions of these predictors by current grant application success are displayed
in Fig.12.1. Not surprisingly these histograms suggest that prior success or

4 However, there are several tree-based methods described in Chap. 14 that are more
effective if the categorical predictors are not converted to dummy variables. In these
cases, the full set of categories are used.
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Table 12.1: Statistics for the three categorical predictors with highest uni-
variate association with the success funding of a grant

Grant success
Yes No N Percent Odds Odds ratio

Contract value band

A 1,501 818 2,319 64.7 1.835 2.84
Other bands 2,302 3,569 5,871 39.2 0.645

Sponsor

Unknown 732 158 890 82.2 4.633 6.38
Known 3,071 4,229 7,300 42.1 0.726

Month

January 480 45 525 91.4 10.667 13.93

Other months 3,323 4,342 7,665 43.4 0.765

failure shifts the respective distribution towards current success or failure.
Given this knowledge, we would expect these predictors to play significant
roles for most any classification model.

Three categorical predictors (Contract Value Band A, Sponsor Unknown,
and January) had the highest univariate associations with grant application
success. The associations for these three predictors were not strong but do
reveal some useful patterns. Table 12.1 shows the data and suggests that
grant submissions with a large monetary value, an unknown sponsor, or a
submission in January are associated with greater funding success. Looking
at the problem a different way, unsuccessful grant applications are likely to
have a smaller monetary value, to have a known sponsor, and are submitted
in a month other than January. The table has the success rates for each group
and also the odds, which is ratio of the probability of a success grant over
the probability of an unsuccessful grant. One common method for quanti-
fying the predictive ability of a binary predictor (such as these) is the odds
ratio. For example, when a grant is submitted in January the odds are much
higher (10.7) than other months (0.8). The ratio of the odds for this predictor
suggests that grants submitted in January are 13.9 times more likely to be
successful than the other months. Given the high odds ratios, we would ex-
pect that these predictors will also have impact on the development of most
classification models.

Finally, we must choose how to split the data which is not directly obvious.
Before deciding on the splitting approach, it is important to note that the per-
centage of successful grants varied over the years: 45 % (2005), 51.7 % (2006),
47.2% (2007), and 36.6 % (2008). Although 2008 had the lowest percentage
in the data, there is not yet enough information to declare a downward trend.
The data splitting scheme should take into account the application domain of
the model: how will it be used and what should the criterion be to assess if it



280 12 Discriminant Analysis and Other Linear Classification Models

is fit for purpose? The purpose of the model exercise is to create a predictive
model to quantify the likelihood of success for new grants, which is why the
competition used the most recent data for testing purposes.

If the grant success rate were relatively constant over the years, a reason-
able data splitting strategy would be relatively straightforward: take all the
available data from 2005 to 2008, reserve some data for a test set, and use
resampling with the remainder of the samples for tuning the various models.
However, a random test sample across all of the years is likely to lead to a
substantially less relevant test set; in effect, we would be building models that
are focused on the past grant application environment.

An alternative strategy would be to create models using the data before
2008, but tune them based on how well they fit the 2008 data. Essentially,
the 2008 data would serve as a single test set that is more relevant in time
to the original test set of data from 2009 to 2010. However, this is a single
“look” at the data that do not provide any real measure of uncertainty for
model performance. More importantly, this strategy may lead to substantial
over-fitting to this particular set of 2008 data and may not generalize well
to subsequent years. For example, as with regression models, there are a
number of classification models that automatically perform feature selection
while building the model. One potential methodology error that may occur
with a single test set that is evaluated many times is that a set of predictors
may be selected that work only for these particular 2008 grant applications.
We would have no way of knowing if this is the case until another set of recent
grant applications are evaluated.

How do these two approaches compare for these data? Figure 12.2 shows
the results for a support vector machine classification model discussed in
detail in Sect.13.4 but is similar to the support vector regression model
described in Sect. 7.3. Using the radial basis function kernel previously dis-
cussed, the tuning parameters are the kernel parameter, o, and the cost value,
C, used to control for over-fitting. Several values of the radial basis function
kernel parameter were evaluated as well as several values of the cost function.

Figure 12.2 shows both approaches to tuning the model. Two tuning
parameter profiles for the support vector machine are shown:

e The first model is built on 8,189 grants that include all the pre-2008 data
and 25 % of the 2008 data (n = 290). To choose the regularization and ker-
nel parameter(s), 10-fold cross-validation is used. The performance profile
across the cost parameter is shown as a blue line in Fig.12.2 (this pro-
file uses the optimal value of the kernel parameter). A set of 2008 grants
(n =1,785) is held back to validate the choice of the final tuning param-
eter (blue profile).

e The second model is exclusively built on pre-2008 data, and the value of
the tuning parameter is chosen to maximize the area under the ROC curve
for the 2008 grants. No additional samples are held back for verifying the
parameter choice (red profile).
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Fig. 12.2: Two models for grant success based on the pre-2008 data but with
different data sets used to tune the model

The blue profile suggests that a value of 32 for the cost parameter will yield
an area under the ROC curve of 0.88. The red profile shows the results of
evaluating only the 2008 data (i.e., no resampling). Here, the tuning process
suggests that a smaller cost value is needed (4) to achieve an optimal model
with an area under the ROC curve of 0.89. Firstly, given the amount of data
to evaluate the model, it is problematic that the curves suggest different
tuning parameters. Secondly, when the cross-validated model is evaluated on
the 2008 data, the area under the ROC curve is substantially smaller (0.83)
than the cross-validation results indicate.

The compromise taken here is to build models on the pre-2008 data and
tune them by evaluating a random sample of 2,075 grants from 2008. Once
the optimal parameters are determined, final model is built using these pa-
rameters and the entire training set (i.e., the data prior to 2008 and the
additional 2,075 grants). A small holdout set of 518 grants from 2008 will be
used to ensure that no gross methodology errors occur from repeatedly eval-
uating the 2008 data during model tuning. In the text, this set of samples is
called the 2008 holdout set. This small set of year 2008 grants will be referred
to as the test set and will not be evaluated until set of candidate models are
identified (in Chap. 15). These strategies are summarized in Table 12.2.

To be clear, there is no single, clean approach to handling this issue for
data that appear to be evolving over time. Therefore the practitioner must
understand the modeling objectives and carefully craft a plan for training and
testing models. In this case, the grant data have the luxury of a moderate
amount of recent data; there are enough data to split out a small holdout set
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Table 12.2: A schematic for the data splitting strategy for the grant applica-
tion data used in this and subsequent chapters

Model tuning Final model
Training  Holdout Training Holdout
Pre-2008 (n = 6,633) X X
2008 (n =1,557) X X
2008 (n = 518) X

without significantly impairing the tuning process. The disadvantages of this
approach are:

1. An assumption is being made that the model parameters derived from the
tuning process will be appropriate for the final model, which uses pre-2008
data as well as the 2,075 grants from 2008.

2. Since the final model uses some 2008 grants, the performance on the test
set is likely to be better than the results generated in the tuning process
(where the model parameters were not exposed to year 2008 grants).

In Chap. 15, the test set results will be compared to those generated during
model tuning.

12.2 Logistic Regression

Linear regression (Sect.6.2) forms a model that is linear in the parameters,
and these parameters are obtained by minimizing the sum of the squared
residuals. It turns out that the model that minimizes the sum of the squared
residuals also produces mazximum likelihood estimates of the parameters when
it is reasonable to assume that the model residuals follow a normal (i.e.,
Gaussian) distribution.

Maximum likelihood parameter estimation is a technique that can be used
when we are willing to make assumptions about the probability distribution of
the data. Based on the theoretical probability distribution and the observed
data, the likelihood function is a probability statement that can be made
about a particular set of parameter values. If two sets of parameters values
are being identified, the set with the larger likelihood would be deemed more
consistent with the observed data.
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The probability distribution that is most often used when there are two
classes is the binomial distribution.? This distribution has a single parameter,
p, that is the probability of an event or a specific class. For the grant data,
suppose p is the probability of a successful grant. In the pre-2008 grants,
there were a total of 6,633 grants and, of these, 3,233 were successful. Here,
the form of the binomial likelihood function would be

— 6633 3233 _ 6633—3233
L(5) = (o )51 = 5555, (121)

where the exponents for p and 1 — p reflect the frequencies of the classes in
the observed data. The first part of the equation is “n choose r” and accounts
for the possible ways that there could be 3,233 successes and 3,400 failures
in the data.

The maximum likelihood estimator would find a value of p that pro-
duces the largest value for f(p). It turns out that the sample proportion,
3233/6633 = 0.487, is the maximum likelihood estimate in this situation.

However, we know that the success rate is affected by multiple factors
and we would like to build a model that uses those factors to produce a
more refined probability estimate. In this case, we would re-parameterize the
model so that p is a function of these factors. Like linear regression, the
logistic regression model has an intercept in addition to slope parameters for
each model term. However, since the probability of the event is required to be
between 0 and 1, we cannot be guaranteed that a slope and intercept model
would constrain values within this range. As discussed earlier in the chapter,
if p is the probability of an event, the odds of the event are then p/(1 — p).
Logistic regression models the log odds of the event as a linear function:

log (&)) =Bo+ frx1+ -+ Bpxp. (12.2)
Here, P is the number of predictors. The right-hand side of the equation is
usually referred to as the linear predictor. Since the log of the odds can range
from —oo to oo, there is no concern about the range of values that the linear
predictors may produce. By moving some terms around,