

Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda

Applied Text Analysis with Python
Enabling Language-Aware Data Products with

Machine Learning

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96304-3

[LSI]

Applied Text Analysis with Python
by Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda

Copyright © 2018 Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Nicole Tache
Production Editor: Nicholas Adams
Copyeditor: Jasmine Kwityn
Proofreader: Christina Edwards

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2018: First Edition

Revision History for the First Edition
2018-06-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491963043 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Applied Text Analysis with Python, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491963043

Table of Contents

Preface. ix

1. Language and Computation. 1
The Data Science Paradigm 2
Language-Aware Data Products 4

The Data Product Pipeline 5
Language as Data 8

A Computational Model of Language 8
Language Features 10
Contextual Features 13
Structural Features 15

Conclusion 16

2. Building a Custom Corpus. 19
What Is a Corpus? 19

Domain-Specific Corpora 20
The Baleen Ingestion Engine 21

Corpus Data Management 22
Corpus Disk Structure 24

Corpus Readers 27
Streaming Data Access with NLTK 28
Reading an HTML Corpus 31
Reading a Corpus from a Database 34

Conclusion 36

3. Corpus Preprocessing and Wrangling. 37
Breaking Down Documents 38

Identifying and Extracting Core Content 38

iii

Deconstructing Documents into Paragraphs 39
Segmentation: Breaking Out Sentences 42
Tokenization: Identifying Individual Tokens 43
Part-of-Speech Tagging 44
Intermediate Corpus Analytics 45

Corpus Transformation 47
Intermediate Preprocessing and Storage 48
Reading the Processed Corpus 51

Conclusion 53

4. Text Vectorization and Transformation Pipelines. 55
Words in Space 56

Frequency Vectors 57
One-Hot Encoding 59
Term Frequency–Inverse Document Frequency 62
Distributed Representation 65

The Scikit-Learn API 68
The BaseEstimator Interface 68
Extending TransformerMixin 70

Pipelines 74
Pipeline Basics 75
Grid Search for Hyperparameter Optimization 76
Enriching Feature Extraction with Feature Unions 77

Conclusion 79

5. Classification for Text Analysis. 81
Text Classification 82

Identifying Classification Problems 82
Classifier Models 84

Building a Text Classification Application 85
Cross-Validation 86
Model Construction 89
Model Evaluation 91
Model Operationalization 94

Conclusion 95

6. Clustering for Text Similarity. 97
Unsupervised Learning on Text 97
Clustering by Document Similarity 99

Distance Metrics 99
Partitive Clustering 102
Hierarchical Clustering 107

iv | Table of Contents

Modeling Document Topics 111
Latent Dirichlet Allocation 111
Latent Semantic Analysis 119
Non-Negative Matrix Factorization 121

Conclusion 123

7. Context-Aware Text Analysis. 125
Grammar-Based Feature Extraction 126

Context-Free Grammars 126
Syntactic Parsers 127
Extracting Keyphrases 128
Extracting Entities 131

n-Gram Feature Extraction 132
An n-Gram-Aware CorpusReader 133
Choosing the Right n-Gram Window 135
Significant Collocations 136

n-Gram Language Models 139
Frequency and Conditional Frequency 140
Estimating Maximum Likelihood 143
Unknown Words: Back-off and Smoothing 145
Language Generation 147

Conclusion 149

8. Text Visualization. 151
Visualizing Feature Space 152

Visual Feature Analysis 152
Guided Feature Engineering 162

Model Diagnostics 170
Visualizing Clusters 170
Visualizing Classes 172
Diagnosing Classification Error 173

Visual Steering 177
Silhouette Scores and Elbow Curves 177

Conclusion 180

9. Graph Analysis of Text. 183
Graph Computation and Analysis 185

Creating a Graph-Based Thesaurus 185
Analyzing Graph Structure 186
Visual Analysis of Graphs 187

Extracting Graphs from Text 189
Creating a Social Graph 189

Table of Contents | v

Insights from the Social Graph 192
Entity Resolution 200

Entity Resolution on a Graph 201
Blocking with Structure 202
Fuzzy Blocking 202

Conclusion 205

10. Chatbots. 207
Fundamentals of Conversation 208

Dialog: A Brief Exchange 210
Maintaining a Conversation 213

Rules for Polite Conversation 215
Greetings and Salutations 216
Handling Miscommunication 220

Entertaining Questions 222
Dependency Parsing 223
Constituency Parsing 225
Question Detection 227
From Tablespoons to Grams 229

Learning to Help 233
Being Neighborly 235
Offering Recommendations 238

Conclusion 240

11. Scaling Text Analytics with Multiprocessing and Spark. 241
Python Multiprocessing 242

Running Tasks in Parallel 244
Process Pools and Queues 249
Parallel Corpus Preprocessing 251

Cluster Computing with Spark 253
Anatomy of a Spark Job 254
Distributing the Corpus 255
RDD Operations 257
NLP with Spark 259

Conclusion 270

12. Deep Learning and Beyond. 273
Applied Neural Networks 274
Neural Language Models 274

Artificial Neural Networks 275
Deep Learning Architectures 280

Sentiment Analysis 284

vi | Table of Contents

Deep Structure Analysis 286
The Future Is (Almost) Here 291

Glossary. 293

Index. 303

Table of Contents | vii

Preface

We live in a world increasingly filled with digital assistants that allow us to connect
with other people as well as vast information resources. Part of the appeal of these
smart devices is that they do not simply convey information; to a limited extent, they
also understand it—facilitating human interaction at a high level by aggregating, fil‐
tering, and summarizing troves of data into an easily digestible form. Applications
such as machine translation, question-and-answer systems, voice transcription, text
summarization, and chatbots are becoming an integral part of our computing lives.

If you have picked up this book, it is likely that you are as excited as we are by the
possibilities of including natural language understanding components into a wider
array of applications and software. Language understanding components are built on
a modern framework of text analysis: a toolkit of techniques and methods that com‐
bine string manipulation, lexical resources, computation linguistics, and machine
learning algorithms that convert language data to a machine understandable form
and back again. Before we get started discussing these methods and techniques, how‐
ever, it is important to identify the challenges and opportunities of this framework
and address the question of why this is happening now.

The typical American high school graduate has memorized around 60,000 words and
thousands of grammatical concepts, enough to communicate in a professional con‐
text. While this may seem like a lot, consider how trivial it would be to write a short
Python script to rapidly access the definition, etymology, and usage of any term from
an online dictionary. In fact, the variety of linguistic concepts an average American
uses in daily practice represents merely one-tenth the number captured in the Oxford
dictionary, and only 5% of those currently recognized by Google.

And yet, instantaneous access to rules and definitions is clearly not sufficient for text
analysis. If it were, Siri and Alexa would understand us perfectly, Google would
return only a handful of search results, and we could instantly chat with anyone in
the world in any language. Why is there such a disparity between computational ver‐
sions of tasks humans can perform fluidly from a very early age—long before they’ve

ix

accumulated a fraction of the vocabulary they will possess as adults? Clearly, natural
language requires more than mere rote memorization; as a result, deterministic com‐
puting techniques are not sufficient.

Computational Challenges of Natural Language
Rather than being defined by rules, natural languages are defined by use and must be
reverse-engineered to be computed on. To a large degree, we are able to decide what
the words we use mean, though this meaning-making is necessarily collaborative.
Extending “crab” from a marine animal to a person with a sour disposition or a spe‐
cific sidewise form of movement requires both the speaker/author and the listener/
reader to agree on meaning for communication to occur. Language is therefore usu‐
ally constrained by community and region—converging on meaning is often much
easier with people who inhabit similar lived experiences to our own.

Unlike formal languages, which are necessarily domain specific, natural languages are
general purpose and universal. We use the same word to order seafood for lunch,
write a poem about a malcontent, and discuss astronomic nebulae. In order to cap‐
ture the extent of expression across a variety of discourse, language must be redun‐
dant. Redundancy presents a challenge—since we cannot (and do not) specify a
literal symbol for every association, every symbol is ambiguous by default. Lexical
and structural ambiguity is the primary achievement of human language; not only
does ambiguity give us the ability to create new ideas, it also allows people with
diverse experiences to communicate, across borders and cultures, in spite of the near
certainty of occasional misunderstandings.

Linguistic Data: Tokens and Words
In order to fully leverage the data encoded in language, we must retrain our minds to
think of language not as intuitive and natural but as arbitrary and ambiguous. The
unit of text analysis is the token, a string of encoded bytes that represent text. By con‐
trast, words are symbols that are representative of meaning, and which map a textual
or verbal construct to a sound and sight component. Tokens are not words (though it
is hard for us to look at tokens and not see words). Consider the token "crab", shown
in Figure P-1. This token represents the word sense crab-n1—the first definition of
the noun use of the token, a crustacean that can be food, lives near an ocean, and has
claws that can pinch.

x | Preface

1 Fred Benenson, Emoji Dick, (2013) http://bit.ly/2GKft1n
2 Google, Google Books Ngram Viewer, (2013) http://bit.ly/2GNlKtk

Figure P-1. Words map symbols to ideas

All of these other ideas are somehow attached to this symbol, and yet the symbol is
entirely arbitrary; a similar mapping to a Greek reader will have slightly different
connotations yet maintain the same meaning. This is because words do not have a
fixed, universal meaning independent of contexts such as culture and language. Read‐
ers of English are used to adaptive word forms that can be prefixed and suffixed to
change tense, gender, etc. Chinese readers, on the other hand, recognize many picto‐
graphic characters whose order decides meaning.

Redundancy, ambiguity, and perspective mean that natural languages are dynamic,
quickly evolving to encompass current human experience. Today we don’t bat an eye
at the notion that there could be a linguistic study of emoticons sufficiently complete
to translate Moby Dick!1 Even if we could systematically come up with a grammar
that defines how emoticons work, by the time we finish, language will have moved on
—even the language of emoticons! For example, since we started writing this book,
the emoji symbol for a pistol (🔫) has evolved from a weapon to a toy (at least when
rendered on a smartphone), reflecting a cultural shift in how we perceive the use of
that symbol.

It’s not just the inclusion of new symbols and structures that adapt language, but also
the inclusion of new definitions, contexts, and usages. The token “battery” has shifted
in meaning as a result of the electronic age to mean a repository for converting chem‐
ical energy to electricity. However, according to the Google Books Ngram Viewer2

“battery” enjoyed far more usage, meaning also a connected array of machines or a
fortified emplacement for heavy guns during the last part of the 19th century and

Preface | xi

http://bit.ly/2GKft1n
http://bit.ly/2GNlKtk

beginning of the 20th. Language is understood in context, which goes beyond just the
surrounding text to include also the time period. Clearly identifying and recognizing
the meaning of words requires more computation than simply looking up an entry in
a dictionary.

Enter Machine Learning
The same qualities that make natural language such a rich tool for human communi‐
cation also make it difficult to parse using deterministic rules. The flexibility that
humans employ in interpretation is why, with a meager 60,000 symbolic representa‐
tions, we can far outperform computers when it comes to instant understanding of
language. Therefore in a software environment, we need computing techniques that
are just as fuzzy and flexible, and so the current state-of-the-art for text analysis is
statistical machine learning techniques. While applications that perform natural lan‐
guage processing have been around for several decades, the addition of machine
learning enables a degree of flexibility and responsiveness that would not otherwise
be possible.

The goal of machine learning is to fit existing data to some model, creating a repre‐
sentation of the real world that is able to make decisions or generate predictions on
new data based on discovered patterns. In practice, this is done by selecting a model
family that determines the relationship between the target data and the input, specify‐
ing a form that includes parameters and features, then using some optimization pro‐
cedure to minimize the error of the model on the training data. The fitted model can
now be introduced to new data on which it will make a prediction—returning labels,
probabilities, membership, or values based on the model form. The challenge is to
strike a balance between being able to precisely learn the patterns in the known data
and being able to generalize so the model performs well on examples it has never seen
before.

Many language-aware software applications are comprised of not just a single
machine-trained model but a rich tapestry of models that interact and influence each
other. Models can also be retrained on new data, target new decision spaces, and even
be customized per user so that they can continue to develop as they encounter new
information and as different aspects of the application change over time. Under the
hood of the application, competing models can be ranked, age, and eventually perish.
This means that machine learning applications implement life cycles that can keep up
with dynamism and regionality associated with language with a routine maintenance
and monitoring workflow.

Tools for Text Analysis
Because text analysis techniques are primarily applied machine learning, a language
that has rich scientific and numeric computing libraries is necessary. When it comes

xii | Preface

to tools for performing machine learning on text, Python has a powerhouse suite that
includes Scikit-Learn, NLTK, Gensim, spaCy, NetworkX, and Yellowbrick.

• Scikit-Learn is an extension of SciPy (Scientific Python) that provides an API for
generalized machine learning. Built on top of Cython to include high-
performance C-libraries such as LAPACK, LibSVM, Boost, and others, Scikit-
Learn combines high performance with ease of use to analyze small- to medium-
sized datasets. Open source and commercially usable, it provides a single
interface to many regression, classification, clustering, and dimensionality reduc‐
tion models along with utilities for cross-validation and hyperparameter tuning.

• NLTK, the Natural Language Tool-Kit, is a “batteries included” resource for NLP
written in Python by experts in academia. Originally a pedagogical tool for teach‐
ing NLP, it contains corpora, lexical resources, grammars, language processing
algorithms, and pretrained models that allow Python programmers to quickly get
started processing text data in a variety of languages.

• Gensim is a robust, efficient, and hassle-free library that focuses on unsupervised
semantic modeling of text. Originally designed to find similarity between docu‐
ments (generate similarity), it now exposes topic modeling methods for latent
semantic techniques, and includes other unsupervised libraries such as
word2vec.

• spaCy provides production-grade language processing by implementing the aca‐
demic state-of-the-art into a simple and easy-to-use API. In particular, spaCy
focuses on preprocessing text for deep learning or to build information extrac‐
tion or natural language understanding systems on large volumes of text.

• NetworkX is a comprehensive graph analytics package for generating, serializing,
analyzing, and manipulating complex networks. Although not specifically a
machine learning or text analysis library, graph data structures are able to encode
complex relationships that graph algorithms can traverse or find meaning in, and
is therefore a critical part of the text analysis toolkit.

• Yellowbrick is a suite of visual diagnostic tools for the analysis and interpretation
of machine learning workflows. By extending the Scikit-Learn API, Yellowbrick
provides intuitive and understandable visualizations of feature selection, model‐
ing, and hyperparameter tuning, steering the model selection process to find the
most effective models of text data.

What to Expect from This Book
In this book, we focus on applied machine learning for text analysis using the Python
libraries just described. The applied nature of the book means that we focus not on

Preface | xiii

the academic nature of linguistics or statistical models, but instead on how to be
effective at deploying models trained on text inside of a software application.

The model for text analysis we propose is directly related to the machine learning
workflow—a search process to find a model composed of features, an algorithm, and
hyperparameters that best operates on training data to produce estimations on
unknown data. This workflow starts with the construction and management of a
training dataset, called a corpus in text analysis. We will then explore feature extrac‐
tion and preprocessing methodologies to compose text as numeric data that machine
learning can understand. With some basic features in hand, we explore techniques for
classification and clustering on text, concluding the first few chapters of the book.

The latter chapters focus on extending models with richer features to create text-
aware applications. We begin by exploring how context can be embedded as features,
then move on to a visual interpretation of text to steering the model selection process.
Next, we examine how to analyze complex relationships extracted from text using
graph analysis techniques. We then change focus to explore conversational agents and
deepen our understanding of syntactic and semantic analysis of text. We conclude the
book with a practical discussion of scaling text analysis with multiprocessing and
Spark, and finally, we explore the next phase of text analytics: deep learning.

Who This Book Is For
This book is for Python programmers who are interested in applying natural lan‐
guage processing and machine learning to their software development toolkit. We
don’t assume any special academic background or mathematical knowledge from our
readers, and instead focus on tools and techniques rather than lengthy explanations.
We do primarily analyze the English language in this book, so basic grammatical
knowledge such as how nouns, verbs, adverbs, and adjectives are related to each other
is helpful. Readers who are completely new to machine learning and linguistics but
have a solid understanding of Python programming will not feel overwhelmed by the
concepts we present.

Code Examples and GitHub Repository
The code examples found in this book are meant to be descriptive of how to imple‐
ment Python code to execute particular tasks. Because they are targeted toward read‐
ers, they are concise, often omitting key statements required during execution; for
example, import statements from the standard library. Additionally they often build
on code from other parts of the book or the chapter and occasionally pieces of code
that must be modified slightly in order to work in the new context. For example, we
may define a class as follows:

xiv | Preface

class Thing(object):

 def __init__(self, arg):
 self.property = arg

This class definition serves to describe the basic properties of the class and sets up the
structure of a larger conversation about implementation details. Later we may add
methods to the class as follows:

...

 def method(self, *args, **kwargs):
 return self.property

Note the ellipsis at the top of the snippet, indicating that this is a continuation from
the class definition in the previous snippet. This means that simply copying and past‐
ing example snippets may not work. Importantly, the code also is designed to operate
on data that must be stored on disk in a location readable by the executing Python
program. We have attempted to be as general as possible, but cannot account for all
operating systems or data sources.

In order to support our readers who may want to run the examples found in this
book, we have implemented complete, executable examples on our GitHub reposi‐
tory. These examples may vary slightly from the text but should be easily runnable
with Python 3 on any system. Also note that the repository is kept up-to-date; check
the README to find any changes that have occurred. You can of course fork the
repository and modify the code for execution in your own environment—which we
strongly encourage you to do!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Preface | xv

https://github.com/foxbook/atap
https://github.com/foxbook/atap

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/foxbook/atap.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Applied Text Analysis with Python by
Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (O’Reilly). 978-1-491-96304-3.”

The BibTex for this book is as follows:

@book{
 title = {Applied {{Text Analysis}} with {{Python}}},
 subtitle = {Enabling Language Aware {{Data Products}}},
 shorttitle = {Applied {{Text Analysis}} with {{Python}}},
 publisher = {{O'Reilly Media, Inc.}},
 author = {Bengfort, Benjamin and Bilbro, Rebecca and Ojeda, Tony},
 month = jun,
 year = {2018}
}

xvi | Preface

https://github.com/foxbook/atap

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/applied-text-analysis-with-
python.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/applied-text-analysis-with-python
http://bit.ly/applied-text-analysis-with-python
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank our technical reviewers for the time and commitment they
spent on our first drafts and for the feedback they provided, which dramatically sha‐
ped the book. Dan Chudnov and Darren Cook provided excellent technical feedback
that helped us stay on track, and Nicole Donnelly provided a perspective that allowed
us to tailor our content to our readers. We would also like to thank Lev Konstantinov‐
skiy and Kostas Xirogiannopoulos who provided academic feedback to ensure that
our discussion was the state-of-the-art.

To our ever-smiling and unfailingly encouraging editor, Nicole Tache, we can’t say
enough nice things. She shepherded this project from the very beginning and
believed in us even as the finish line seemed to get further away. Her commitment to
us and our writing process, her invaluable feedback and advice, and her timely sug‐
gestions are the reasons this book exists.

To our friends and families, we could not do our work without your support and
encouragement. To our parents, Randy and Lily, Carla and Griff, and Tony and Ter‐
esa; you have instilled in us the creative minds, work ethic, technical ability, and love
of learning that made this book possible. To our spouses, Jacquelyn, Jeff, and Nikki;
your steadfast resolve even in the face of missed deadlines and late nights and week‐
ends writing means the world to us. And finally, to our children, Irena, Henry, Oscar,
and Baby Ojeda, we hope that you will someday find this book and think “Wow, our
parents wrote books about when computers couldn’t talk like a normal person…how
old are they?”

xviii | Preface

CHAPTER 1

Language and Computation

Applications that leverage natural language processing to understand text and audio
data are becoming fixtures of our lives. On our behalf, they curate the myriad of
human-generated information on the web, offering new and personalized mecha‐
nisms of human-computer interaction. These applications are so prevalent that we
have grown accustomed to a wide variety of behind-the-scenes applications, from
spam filters that groom our email traffic, to search engines that take us right where
we want to go, to virtual assistants who are always listening and ready to respond.

Language-aware features are data products built at the intersection of experimenta‐
tion, research, and practical software development. The application of text and
speech analysis is directly experienced by users whose response provides feedback
that tailors both the application and the analysis. This virtuous cycle often starts
somewhat naively, but over time can grow into a deep system with rewarding out‐
comes.

Ironically, while the potential for integrating language-based features into applica‐
tions continues to multiply, a disproportionate number are being rolled out by the
“big guys.” So why aren’t more people doing it? Perhaps it is in part because as these
features become increasingly prevalent, they also become increasingly invisible,
masking the complexity required to implement them. But it’s also because the rising
tide of data science hasn’t yet permeated the prevailing culture of software develop‐
ment.

We believe applications that rely on natural language interfaces are only going to
become more common, replacing much of what is currently done with forms and
clicks. To develop these future applications, software development must embrace
hypothesis-driven data science techniques. To ensure that language-aware data prod‐
ucts become more robust, data scientists must employ software engineering practices
that create production-grade code. These efforts are integrated by a newly evolving

1

1 Hillary Mason, The Next Generation of Data Products, (2017) http://bit.ly/2GOF894

paradigm of data science, which leads to the creation of language-aware data prod‐
ucts, the primary focus of this book.

The Data Science Paradigm
Thanks to innovations in machine learning and scalable data processing, the past
decade has seen “data science” and “data product” rapidly become household terms. It
has also led to a new job description, data scientist—one part statistician, one part
computer scientist, and one part domain expert. Data scientists are the pivotal value
creators of the information age, and so this new role has become one of the most sig‐
nificant, even sexy, jobs of the 21st century, but also one of the most misunderstood.

Data scientists bridge work traditionally done in an academic context, research and
experimentation, to the workflow of a commercial product. This is in part because
many data scientists have previously spent time in postgraduate studies (giving them
the jack-of-all-trades and creative skills required for data science), but is primarily
because the process of data product development is necessarily experimental.

The challenge, which prominent voices in the field have begun to signal, is that the
data science workflow is not always compatible with software development practices.
Data can be unpredictable, and signal is not always guaranteed. As Hilary Mason says
of data product development, data science isn’t always particularly agile.1

Or, said another way:
There is a fundamental difference between delivering production software and action‐
able insights as artifacts of an agile process. The need for insights to be actionable cre‐
ates an element of uncertainty around the artifacts of data science—they might be
“complete” in a software sense, and yet lack any value because they don’t yield real,
actionable insights….agile software methodologies don’t handle this uncertainty well.

—Russell Jurney, Agile Data Science 2.0

As a result, data scientists and data science departments often operate autonomously
from the development team in a work paradigm described in Figure 1-1. In this con‐
text, data science work produces business analytics for senior management, who
communicate changes to the technology or product leadership; those changes are
eventually passed on to the development team for implementation.

Figure 1-1. The current data science paradigm

2 | Chapter 1: Language and Computation

http://bit.ly/2GOF894

While this structure may be sufficient for some organizations, it is not particularly
efficient. If data scientists were integrated with the development team from the start
as in Figure 1-2, improvements to the product would be much more immediate and
the company much more competitive. There aren’t many companies that can afford
to build things twice! More importantly, the efforts of data science practice are direc‐
ted toward users, requiring an in-the-loop approach alongside frontend development.

Figure 1-2. Toward a better paradigm for data science development

One of the impediments to a more integrated data science development paradigm is
the lack of applications-focused data science content. Most of the published resources
on machine learning and natural language processing are written in ways that sup‐
port research, but do not scale well to application development. For instance, while
there are a number of excellent tools for machine learning on text, the available
resources, documentation, tutorials, and blog posts tend to lean heavily on toy data‐
sets, data exploration tools, and research code. Few resources exist to explain, for
example, how to build a sufficiently large corpus to support an application, how to
manage its size and structure as it grows over time, or how to transform raw docu‐
ments into usable data. In practice, this is unquestionably the majority of the work
involved in building scalable language-based data products.

This book is intended to bridge that gap by empowering a development-oriented
approach to text analytics. In it, we will demonstrate how to leverage the available
open source technologies to create data products that are modular, testable, tunable,
and scalable. Together with these tools, we hope the applied techniques presented in
this book will enable data scientists to build the next generation of data products.

This chapter serves as the foundation to the more practical, programming-focused
chapters of the rest of the book. It begins by framing what we mean by language-
aware data products and talking about how to begin spotting them in the wild. Next,
we’ll discuss architectural design patterns that are well suited to text analytics applica‐
tions. Finally, we’ll consider the features of language that can be used to model it
computationally.

The Data Science Paradigm | 3

2 Mike Loukides, What is data science?, (2010) https://oreil.ly/2GJBEoj
3 Market Watch, (2018) https://on.mktw.net/2suTk24

Language-Aware Data Products
Data scientists build data products. Data products are applications that derive their
value from data and generate new data in return.2 In our view, the goal of applied text
analytics is to enable the creation of “language-aware data products”—user-facing
applications that are not only responsive to human input and can adapt to change but
also are impressively accurate and relatively simple to design. At their core, these
applications accept text data as input, parse it into composite parts, compute upon
those composites, and recombine them in a way that delivers a meaningful and tail‐
ored result.

One of our favorite examples of this is “Yelpy Insights,” a review filtering application
that leverages a combination of sentiment analysis, significant collocations (words
that tend to appear together), and search techniques to determine if a restaurant is
suitable for your tastes and dietary restrictions. This application uses a rich, domain-
specific corpus and presents results to users in an intuitive way that helps them
decide whether to patronize a particular restaurant. Because of the application’s auto‐
matic identification of significant sentences in reviews and term highlighting, it
allows potential restaurant-goers to digest a large amount of text quickly and make
dining decisions more easily. Although language analysis is not Yelp’s core business,
the impact this feature has on the experience of their users is undeniable. Since intro‐
ducing “Yelpy Insights” in 2012, Yelp has steadily rolled out new language-based fea‐
tures, and during that same period, has seen annual revenue rise by a factor of 6.5.3

Another simple example of bolt-on language analysis with oversized effects is the
“suggested tag” feature incorporated into the data products of companies like Stack
Overflow, Netflix, Amazon, YouTube, and others. Tags are meta information about a
piece of content that are essential for search and recommendations, and they play a
significant role in determining what content is viewed by specific users. Tags identify
properties of the content they describe, which can be used to group similar items
together and propose descriptive topic names for a group.

There are many, many more. Reverb offers a personalized news reader trained on the
Wordnik lexicon. The Slack chatbot provides contextual automatic interaction. Goo‐
gle Smart Reply can suggest responses based on the text of the email you’re replying
to. Textra, iMessage, and other instant messaging tools try to predict what you’ll type
next based on the text you just entered, and autocorrect tries to fix our spelling mis‐
takes for us. There are also a host of new voice-activated virtual assistants—Alexa,
Siri, Google Assistant, and Cortana—trained on audio data, that are able to parse
speech and provide (usually) appropriate responses.

4 | Chapter 1: Language and Computation

https://oreil.ly/2GJBEoj
https://on.mktw.net/2suTk24

4 Benjamin Bengfort, The Age of the Data Product, (2015) http://bit.ly/2GJBEEP

So what about speech data? While this book is focused on text
rather than on audio or speech analysis, audio data is typically tran‐
scribed into text and then applied to the analytics described in this
book. Transcription itself is a machine learning process, one that is
also becoming more common!

Features like these highlight the basic methodology of language-aware applications:
clustering similar text into meaningful groups or classifying text with specific labels,
or said another way—unsupervised and supervised machine learning.

In the next section, we’ll explore some architectural design patterns that support the
machine learning model lifecycle.

The Data Product Pipeline
The standard data product pipeline, shown in Figure 1-3, is an iterative process con‐
sisting of two phases—build and deploy—which mirror the machine learning pipe‐
line.4 During the build phase, data is ingested and wrangled into a form that allows
models to be fit and experimented on. During the deploy phase, models are selected
and then used to make estimations or predictions that directly engage a user.

Figure 1-3. A data product pipeline

Language-Aware Data Products | 5

http://bit.ly/2GJBEEP

Users respond to the output of models, creating feedback, which is in turn reingested
and used to adapt models. The four stages—interaction, data, storage, and computa‐
tion—describe the architectural components required for each phase. For example,
during interaction the build phase requires a scraper or utility to ingest data while the
user requires some application frontend. The data stage usually refers to internal
components that act as glue to the storage stage, which is usually a database. Compu‐
tation can take many forms from simple SQL queries, Jupyter notebooks, or even
cluster computing using Spark.

The deploy phase, other than requiring the selection and use of a fitted model, does
not significantly differ from more straightforward software development. Often data
science work products end at the API, which is consumed by other APIs or a user
frontend. The build phase for a data product, however, does require more attention—
and even more so in the case of text analytics. When we build language-aware data
products, we create additional lexical resources and artifacts (such as dictionaries,
translators, regular expressions, etc.) on which our deployed application will depend.

A more detailed view of the build phase is shown in Figure 1-4, a pipeline that sup‐
ports robust, language-aware machine learning applications. The process of moving
from raw data to deployed model is essentially a series of incremental data transfor‐
mations. First, we transform the data from its original state into an ingested corpus,
stored and managed inside a persistent data store. Next, the ingested data is aggrega‐
ted, cleaned, normalized, and then transformed into vectors so that we can perform
meaningful computation. In the final transformation, a model or models are fit on
the vectorized corpus and produce a generalized view of the original data, which can
be employed from within the application.

Figure 1-4. Language-aware data products

6 | Chapter 1: Language and Computation

5 Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel, Model Selection Management Systems:
The Next Frontier of Advanced Analytics, (2015) http://bit.ly/2GOFa0G

6 Hadley Wickham, Dianne Cook, and Heike Hofmann, Visualizing Statistical Models: Removing the Blindfold,
(2015) http://bit.ly/2JHq92J

The model selection triple
What differentiates the construction of machine learning products is that the archi‐
tecture must support and streamline these data transformations so that they are effi‐
ciently testable and tunable. As data products have become more successful, there has
been increasing interest in generally defining a machine learning workflow for more
rapid—or even automated—model building. Unfortunately, because the search space
is large, automatic techniques for optimization are not sufficient.

Instead, the process of selecting an optimal model is complex and iterative, involving
repeated cycling through feature engineering, model selection, and hyperparameter
tuning. Results are evaluated after each iteration in order to arrive at the best combi‐
nation of features, model, and parameters that will solve the problem at hand. We
refer to this as the model selection triple5 workflow. This workflow, shown in
Figure 1-5, aims to treat iteration as central to the science of machine learning, some‐
thing to be facilitated rather than limited.

Figure 1-5. The model selection triple workflow

In a 2015 article, Wickham et al.6 neatly disambiguate the overloaded term “model”
by describing its three principal uses in statistical machine learning: model family,

Language-Aware Data Products | 7

http://bit.ly/2GOFa0G
http://bit.ly/2JHq92J

model form, and fitted model. The model family loosely describes the relationships of
variables to the target of interest (e.g., a “linear model” or a “recurrent tensor neural
network”). The model form is a specific instantiation of the model selection triple: a
set of features, an algorithm, and specific hyperparameters. Finally, the fitted model is
a model form that has been fit to a specific set of training data and is available to
make predictions. Data products are composed of many fitted models, constructed
through the model selection workflow, which creates and evaluates model forms.

Because we are not accustomed to thinking of language as data, the primary chal‐
lenge of text analysis is interpreting what is happening during each of these transfor‐
mations. With each successive transformation, the text becomes less and less directly
meaningful to us because it becomes less and less like language. In order to be effec‐
tive in our construction of language-aware data products, we must shift the way we
think about language.

Throughout the rest of this chapter, we will frame how to think about language as
data that can be computed upon. Along the way, we will build a small vocabulary that
will enable us to articulate the kinds of transformations we will be performing on text
data in subsequent chapters.

Language as Data
Language is unstructured data that has been produced by people to be understood by
other people. By contrast, structured or semistructured data includes fields or markup
that enable it to be easily parsed by a computer. However, while it does not feature an
easily machine-readable structure, unstructured data is not random. On the contrary,
it is governed by linguistic properties that make it very understandable to other
people.

Machine learning techniques, particularly supervised learning, are currently the most
well-studied and promising means of computing upon languages. Machine learning
allows us to train (and retrain) statistical models on language as it changes. By build‐
ing models of language on context-specific corpora, applications can leverage narrow
windows of meaning to be accurate without interpretation. For example, building an
automatic prescription application that reads medical charts requires a very different
model than an application that summarizes and personalizes news.

A Computational Model of Language
As data scientists building language-aware data products, our primary task is to cre‐
ate a model that describes language and can make inferences based on that
description.

The formal definition of a language model attempts to take as input an incomplete
phrase and infer the subsequent words most likely to complete the utterance. This

8 | Chapter 1: Language and Computation

type of language model is hugely influential to text analytics because it demonstrates
the basic mechanism of a language application—the use of context to guess meaning.
Language models also reveal the basic hypothesis behind applied machine learning
on text: text is predictable. In fact, the mechanism used to score language models in
an academic context, perplexity, is a measure of how predictable the text is by evaluat‐
ing the entropy (the level of uncertainty or surprisal) of the language model’s proba‐
bility distribution.

Consider the following partial phrases: “man’s best…” or “the witch flew on a…”.
These low entropy phrases mean that language models would guess “friend” and
“broomstick,” respectively, with a high likelihood (and in fact, English speakers would
be surprised if the phrase wasn’t completed that way). On the other hand, high
entropy phrases like “I’m going out to dinner tonight with my…” lend themselves to a
lot of possibilities (“friend,” “mother,” and “work colleagues” could all be equally
likely). Human listeners can use experience, imagination, and memory as well as sit‐
uational context to fill in the blank. Computational models do not necessarily have
the same context and as a result must be more constrained.

Language models demonstrate an ability to infer or define relationships between
tokens, the UTF-8 encoded strings of data the model observes that human listeners
and readers identify as words with meaning. In the formal definition, the model is
taking advantage of context, defining a narrow decision space in which only a few
possibilities exist.

This insight gives us the ability to generalize the formal model to other models of lan‐
guage that operate in applications such as machine translation or sentiment analysis.
To take advantage of the predictability of text, we need to define a constrained,
numeric decision space on which the model can compute. By doing this, we can lev‐
erage statistical machine learning techniques, both supervised and unsupervised, to
build models of language that expose meaning from data.

The first step in machine learning is the identification of the features of data that pre‐
dict our target. Text data provides many opportunities to extract features either at a
shallow level by simply using string splitting, to deeper levels that parse text to extract
morphological, syntactic, and even semantic representations from the data.

In the following sections we’ll explore some simple ways that language data can
expose complex features for modeling purposes. First, we’ll explore how the linguistic
properties of a specific language (e.g., gender in English) can give us the quick ability
to perform statistical computation on text. We’ll then take a deeper look at how con‐
text modifies interpretation, and how this is usually used to create the traditional
“bag-of-words” model. Finally we’ll explore richer features that are parsed using mor‐
phologic, syntactic, and semantic natural language processing.

Language as Data | 9

7 Neal Caren, Using Python to see how the Times writes about men and women, (2013) http://bit.ly/2GJBGfV

Language Features
Consider a simple model that uses linguistic features to identify the predominant
gender in a piece of text. In 2013 Neal Caren, an assistant professor of Sociology at
the University of North Carolina Chapel Hill, wrote a blog post7 that investigated the
role of gender in news to determine if men and women come up in different contexts.
He applied a gender-based analysis of text to New York Times articles and determined
that in fact male and female words appeared in starkly different contexts, potentially
reinforcing gender biases.

What was particularly interesting about this analysis was the use of gendered words
to create a frequency-based score of maleness or femaleness. In order to implement a
similar analysis in Python, we can begin by building sets of words that differentiate
sentences about men and about women. For simplicity, we’ll say that a sentence can
have one of four states—it can be about men, about women, about both men and
women, or unknown (since sentences can be about neither men nor women, and also
because our MALE_WORDS and FEMALE_WORDS sets are not exhaustive):

MALE = 'male'
FEMALE = 'female'
UNKNOWN = 'unknown'
BOTH = 'both'

MALE_WORDS = set([
 'guy','spokesman','chairman',"men's",'men','him',"he's",'his',
 'boy','boyfriend','boyfriends','boys','brother','brothers','dad',
 'dads','dude','father','fathers','fiance','gentleman','gentlemen',
 'god','grandfather','grandpa','grandson','groom','he','himself',
 'husband','husbands','king','male','man','mr','nephew','nephews',
 'priest','prince','son','sons','uncle','uncles','waiter','widower',
 'widowers'
])

FEMALE_WORDS = set([
 'heroine','spokeswoman','chairwoman',"women's",'actress','women',
 "she's",'her','aunt','aunts','bride','daughter','daughters','female',
 'fiancee','girl','girlfriend','girlfriends','girls','goddess',
 'granddaughter','grandma','grandmother','herself','ladies','lady',
 'lady','mom','moms','mother','mothers','mrs','ms','niece','nieces',
 'priestess','princess','queens','she','sister','sisters','waitress',
 'widow','widows','wife','wives','woman'
])

Now that we have gender word sets, we need a method for assigning gender to a sen‐
tence; we’ll create a genderize function that examines the numbers of words from a
sentence that appear in our MALE_WORDS list and in our FEMALE_WORDS list. If a

10 | Chapter 1: Language and Computation

http://bit.ly/2GJBGfV

sentence has only MALE_WORDS, we’ll call it a male sentence, and if it has only
FEMALE_WORDS, we’ll call it a female sentence. If a sentence has nonzero counts for
both male and female words, we’ll call it both; and if it has zero male and zero female
words, we’ll call it unknown:

def genderize(words):

 mwlen = len(MALE_WORDS.intersection(words))
 fwlen = len(FEMALE_WORDS.intersection(words))

 if mwlen > 0 and fwlen == 0:
 return MALE
 elif mwlen == 0 and fwlen > 0:
 return FEMALE
 elif mwlen > 0 and fwlen > 0:
 return BOTH
 else:
 return UNKNOWN

We need a method for counting the frequency of gendered words and sentences
within the complete text of an article, which we can do with the collections.Coun
ters class, a built-in Python class. The count_gender function takes a list of senten‐
ces and applies the genderize function to evaluate the total number of gendered
words and gendered sentences. Each sentence’s gender is counted and all words in the
sentence are also considered as belonging to that gender:

from collections import Counter

def count_gender(sentences):

 sents = Counter()
 words = Counter()

 for sentence in sentences:
 gender = genderize(sentence)
 sents[gender] += 1
 words[gender] += len(sentence)

 return sents, words

Finally, in order to engage our gender counters, we require some mechanism for
parsing the raw text of the articles into component sentences and words, and for this
we will use the NLTK library (which we’ll discuss further later in this chapter and in
the next) to break our paragraphs into sentences. With the sentences isolated, we can
then tokenize them to identify individual words and punctuation and pass the toke‐
nized text to our gender counters to print a document’s percent male, female, both, or
unknown:

Language as Data | 11

import nltk

def parse_gender(text):

 sentences = [
 [word.lower() for word in nltk.word_tokenize(sentence)]
 for sentence in nltk.sent_tokenize(text)
]

 sents, words = count_gender(sentences)
 total = sum(words.values())

 for gender, count in words.items():
 pcent = (count / total) * 100
 nsents = sents[gender]

 print(
 "{0.3f}% {} ({} sentences)".format(pcent, gender, nsents)
)

Running our parse_gender function on an article from the New York Times entitled
“Rehearse, Ice Feet, Repeat: The Life of a New York City Ballet Corps Dancer” yields
the following, unsurprising results:

50.288% female (37 sentences)
42.016% unknown (49 sentences)
4.403% both (2 sentences)
3.292% male (3 sentences)

The scoring function here takes into account the length of the sentence in terms of
the number of words it contains. Therefore even though there are fewer total female
sentences, over 50% of the article is female. Extensions of this technique can analyze
words that are in female sentences versus in male sentences to see if there are any
auxiliary terms that are by default associated with male and female genders. We can
see that this analysis is relatively easy to implement in Python, and Caren found his
results very striking:

If your knowledge of men’s and women’s roles in society came just from reading last
week’s New York Times, you would think that men play sports and run the government.
Women do feminine and domestic things. To be honest, I was a little shocked at how
stereotypical the words used in the women subject sentences were.

—Neal Caren

So what exactly is happening here? This mechanism, while deterministic, is a very
good example of how words contribute to predictability in context (stereotypical
though it may be). However, this mechanism works specifically because gender is a
feature that is encoded directly into language. In other languages (like French, for
example), gender is even more pronounced: ideas, inanimate objects, and even body
parts can have genders (even if at times they are counter-intuitive). Language features

12 | Chapter 1: Language and Computation

do not necessarily convey definitional meaning, but often convey other information;
for example, plurality and tense are other features we can extract from a language—
we could potentially apply a similar analysis to detect past, present, or future lan‐
guage. However, language features are only part of the equation when it comes to pre‐
dicting meaning in text.

Contextual Features
Sentiment analysis, which we will discuss in greater depth in Chapter 12, is an
extremely popular text classification technique because the tone of text can convey a
lot of information about the subject’s perspective and lead to aggregate analyses of
reviews, message polarity, or reactions. One might assume that sentiment analysis can
be conducted with a technique similar to the gender analysis of the previous section:
gather lists of positive words (“awesome,” “good,” “stupendous”) and negative words
(“horrible,” “tasteless,” “bland”) and compute the relative frequencies of these tokens
in their context. Unfortunately, this technique is naive and often produces highly
inaccurate results.

Sentiment analysis is fundamentally different from gender classification because sen‐
timent is not a language feature, but instead dependent on word sense; for example,
“that kick flip was sick” is positive whereas “the chowder made me sick” is negative,
and “I have a sick pet iguana” is somewhat ambiguous—the definition of the word
“sick” in these examples is changing. Moreover, sentiment is dependent on context
even when definitions remain constant; “bland” may be negative when talking about
hot peppers, but can be a positive term when describing cough syrup. Finally, unlike
gender or tense, sentiment can be negated: “not good” means bad. Negation can flip
the meaning of large amounts of positive text; “I had high hopes and great expecta‐
tions for the movie dubbed wonderful and exhilarating by critics, but was hugely dis‐
appointed.” Here, though words typically indicating positive sentiment such as “high
hopes,” “great,” “wonderful and exhilarating,” and even “hugely” outnumber the sole
negative sentiment of “disappointed,” the positive words not only do not lessen the
negative sentiment, they actually enhance it.

However, all of these examples are predictable; a positive or negative sentiment is
clearly communicated, and it seems that a machine learning model should be able to
detect sentiment and perhaps even highlight noisy or ambiguous utterances. An a pri‐
ori deterministic or structural approach loses the flexibility of context and sense—so
instead, most language models take into account the localization of words in their
context, utilizing machine learning methods to create predictions.

Figure 1-6 shows the primary method of developing simple language models, often
called the “bag-of-words” model. This model evaluates the frequency with which
words co-occur with themselves and other words in a specific, limited context. Co-
occurrences show which words are likely to proceed and succeed each other and by

Language as Data | 13

making inferences on limited pieces of text, large amounts of meaning can be cap‐
tured. We can then use statistical inference methods to make predictions about word
ordering.

Figure 1-6. A word co-occurrence matrix

Extensions of the “bag-of-words” model consider not only single word co-
occurrences, but also phrases that are highly correlated to indicate meaning. If “with‐
draw money at the bank” contributes a lot of information to the sense of “bank,” so
does “fishing by the river bank.” This is called n-gram analysis, where n specifies a
ordered sequence of either characters or words to scan on (e.g., a 3-gram is ('with
draw', 'money', 'at') as opposed to the 5-gram ('withdraw', 'money', 'at',
'the', 'bank')). n-grams introduce an interesting opportunity because the vast
majority of possible n-grams are nonsensical (e.g., ('bucket', 'jumps', 'fire
works')), though the evolving nature of language means that even that 3-gram could
eventually become sensical! Language models that take advantage of context in this
way therefore require some ability to learn the relationship of text to some target
variable.

Both language features and contextual ones contribute to the overall predictability of
language for analytical purposes. But identifications of these features require the abil‐
ity to parse and define language according to units. In the next section we will discuss
the coordination of both language features and context into meaning from the lin‐
guistic perspective.

14 | Chapter 1: Language and Computation

Structural Features
Finally, language models and text analytics have benefited from advances in compu‐
tational linguistics. Whether we are building models with contextual or linguistic fea‐
tures (or both), it is necessary to consider the high-level units of language used by
linguists, which will give us a vocabulary for the operations we’ll perform on our text
corpus in subsequent chapters. Different units of language are used to compute at a
variety of levels, and understanding the linguistic context is essential to understand‐
ing the language processing techniques used in machine learning.

Semantics refer to meaning; they are deeply encoded in language and difficult to
extract. If we think of an utterance (a simple phrase instead of a whole paragraph,
such as “She borrowed a book from the library.”) in the abstract, we can see there is a
template: a subject, the head verb, an object, and an instrument that relates back to
the object (subject - predicate - object). Using such templates, ontologies can
be constructed that specifically define the relationships between entities, but such
work requires significant knowledge of the context and domain, and does not tend to
scale well. Nonetheless, there is promising recent work on extracting ontologies from
sources such as Wikipedia or DBPedia (e.g., DBPedia’s entry on libraries begins “A
library is a collection of sources of information and similar resources, made accessi‐
ble to a defined community for reference or borrowing.”).

Semantic analysis is not simply about understanding the meaning of text, but about
generating data structures to which logical reasoning can be applied. Text meaning
representations (or thematic meaning representations, TMRs) can be used to encode
sentences as predicate structures to which first-order logic or lambda calculus can be
applied. Other structures such as networks can be used to encode predicate interac‐
tions of interesting features in the text. Traversal can then be used to analyze the cen‐
trality of terms or subjects and reason about the relationships between items.
Although not necessarily a complete semantic analysis, graph analysis can produce
important insights.

Syntax refers to sentence formation rules usually defined by grammar. Sentences are
what we use to build meaning and encode much more information than words, and
for this reason we will treat them as the smallest logical unit of language. Syntactic
analysis is designed to show the meaningful relationship of words, usually by carving
the sentence into chunks or showing the relationship of tokens in a tree structure
(similar to the sentence diagramming you probably did in grammar school). Syntax is
a necessary prerequisite to reasoning on discourse or semantics because it is a vital
tool to understanding how words modify each other in the formation of phrases. For
example, syntactic analysis should identify the prepositional phrase “from the library”
and the noun phrase “a book from the library” as being subcomponents of the verb
phrase “borrowed a book from the library.”

Language as Data | 15

Morphology refers to the form of things, and in text analysis, the form of individual
words or tokens. The structure of words can help us to identify plurality (wife versus
wives), gender (fiancé versus fiancée), tense (ran versus run), conjugation (to run ver‐
sus he runs), etc. Morphology is challenging because most languages have many
exceptions and special cases. English punctuation, for instance, has both ortho‐
graphic rules, which merely adjust the ending of a word (puppy - puppies), as well as
morphological rules that are complete translations (goose - geese). English is an affixal
language, which means that we simply add characters to the beginning or end of a
word to modify it. Other languages have different morphologic modes: Hebrew uses
templates of consonants that are filled in with vowels to create meaning, whereas Chi‐
nese uses pictographic symbols that are not necessarily modified directly.

The primary goal of morphology is to understand the parts of words so that we can
assign them to classes, often called part-of-speech tags. For example, we want to
know if a word is a singular noun, a plural noun, or a proper noun. We might also
want to know if a verb is infinitive, past tense, or a gerund. These parts of speech are
then used to build up larger structures such as chunks or phrases, or even complete
trees, that can then in turn be used to build up semantic reasoning data structures.

Semantics, syntax, and morphology allow us to add data to simple text strings with
linguistic meaning. In Chapter 3 we will explore how to carve up text into units of
reason, using tokenization and segmentation to break up text into their units of logic
and meaning, as well as assign part-of-speech tags. In Chapter 4 we will apply vectori‐
zation to these structures to create numeric feature spaces—for example, normalizing
text with stemming and lemmatization to reduce the number of features. Finally, in
Chapter 7, we will directly use the structures to encode information into our machine
learning protocols to improve performance and target more specific types of
analytics.

Conclusion
Natural language is one of the most untapped forms of data available today. It has the
ability to make data products even more useful and integral to our lives than they
already are. Data scientists are uniquely poised to build these types of language-aware
data products, and by combining text data with machine learning, they have the
potential to build powerful applications in a world where information often equates
to value and a competitive advantage. From email to maps to search, our modern life
is powered by natural language data sources, and language-aware data products are
what make their value accessible.

In the next few chapters, we will discuss the necessary precursors to machine learning
on text, namely corpus management (in Chapter 2), preprocessing (in Chapter 3),
and vectorization (in Chapter 4). We will then experiment with formulating machine
learning problems to those of classification (in Chapter 5) and clustering (Chapter 6).

16 | Chapter 1: Language and Computation

In Chapter 7 we’ll implement feature extraction to maximize the effectiveness of our
models, and in Chapter 8 we’ll see how to employ text visualization to surface results
and diagnose modeling errors. In Chapter 9, we will explore a different approach to
modeling language, using the graph data structure to represent words and their rela‐
tionships. We’ll then explore more specialized methods of retrieval, extraction, and
generation for chatbots in Chapter 10. Finally, in Chapters 11 and 12 we will investi‐
gate techniques for scaling processing power with Spark and scaling model complex‐
ity with artificial neural networks.

As we will see in the next chapter, in order to perform scalable analytics and machine
learning on text, we will first need both domain knowledge and a domain-specific
corpus. For example, if you are working in the financial domain, your application
should be able to recognize stock symbols, financial terms, and company names,
which means that the documents in the corpus you construct need to contain these
entities. In other words, developing a language-aware data product begins with
acquiring the right kind of text data and building a custom corpus that contains the
structural and contextual features from the domain in which you are working.

Conclusion | 17

CHAPTER 2

Building a Custom Corpus

As with any machine learning application, the primary challenge is to determine if
and where the signal is hiding within the noise. This is done through the process of
feature analysis—determining which features, properties, or dimensions about our
text best encode its meaning and underlying structure. In the previous chapter, we
began to see that, in spite of the complexity and flexibility of natural language, it is
possible to model if we can extract its structural and contextual features.

The bulk of our work in the subsequent chapters will be in “feature extraction” and
“knowledge engineering”—where we’ll be concerned with the identification of unique
vocabulary words, sets of synonyms, interrelationships between entities, and seman‐
tic contexts. As we will see throughout the book, the representation of the underlying
linguistic structure we use largely determines how successful we will be. Determining
a representation requires us to define the units of language—the things that we count,
measure, analyze, or learn from.

At some level, text analysis is the act of breaking up larger bodies of work into their
constituent components—unique vocabulary words, common phrases, syntactical
patterns—then applying statistical mechanisms to them. By learning on these compo‐
nents we can produce models of language that allow us to augment applications with
a predictive capability. We will soon see that there are many levels to which we can
apply our analysis, all of which revolve around a central text dataset: the corpus.

What Is a Corpus?
Corpora are collections of related documents that contain natural language. A corpus
can be large or small, though generally they consist of dozens or even hundreds of
gigabytes of data inside of thousands of documents. For instance, considering that the
average email inbox is 2 GB (for reference, the full version of the Enron corpus, now

19

1 Federal Energy Regulatory Committee, FERC Enron Dataset. http://bit.ly/2JJTOIv

roughly 15 years old, includes 1 M emails between 118 users and is 160 GB in size1), a
moderately sized company of 200 employees would have around a half-terabyte email
corpus. Corpora can be annotated, meaning that the text or documents are labeled
with the correct responses for supervised learning algorithms (e.g., to build a filter to
detect spam email), or unannotated, making them candidates for topic modeling and
document clustering (e.g., to explore shifts in latent themes within messages over
time).

A corpus can be broken down into categories of documents or individual documents.
Documents contained by a corpus can vary in size, from tweets to books, but they
contain text (and sometimes metadata) and a set of related ideas. Documents can in
turn be broken into paragraphs, units of discourse that generally each express a single
idea. Paragraphs can be further broken down into sentences, which are units of syn‐
tax; a complete sentence is structurally sound as a specific expression. Sentences are
made up of words and punctuation, the lexical units that indicate general meaning
but are far more useful in combination. Finally, words themselves are made up of syl‐
lables, phonemes, affixes, and characters, units that are only meaningful when com‐
bined into words.

Domain-Specific Corpora
It is very common to begin testing out a natural language model with a generic cor‐
pus. There are, for instance, many examples and research papers that leverage readily
available datasets such as the Brown corpus, Wikipedia corpus, or Cornell movie dia‐
logue corpus. However, the best language models are often highly constrained and
application-specific.

Why is it that models trained in a specific field or domain of the language would per‐
form better than ones trained on general language? Different domains use different
language (vocabulary, acronyms, common phrases, etc.), so a corpus that is relatively
pure in domain will be able to be analyzed and modeled better than one that contains
documents from several different domains.

Consider that the term “bank” is very likely to be an institution that produces fiscal
and monetary tools in an economics, financial, or political domain, whereas in an
aviation or vehicular domain it is more likely to be a form of motion that results in
the change of direction of a vehicle or aircraft. By fitting models in a narrower con‐
text, the prediction space is smaller and more specific, and therefore better able to
handle the flexible aspects of language.

Acquiring a domain-specific corpus will be essential to producing a language-aware
data product that performs well. Naturally the next question should then be “How do

20 | Chapter 2: Building a Custom Corpus

http://bit.ly/2JJTOIv

2 District Data Labs, Baleen: An automated ingestion service for blogs to construct a corpus for NLP research,
(2014) http://bit.ly/2GOFaxI

we construct a dataset with which to build a language model?” Whether it is done via
scraping, RSS ingestion, or an API, ingesting a raw text corpus in a form that will
support the construction of a data product is no trivial task.

Often data scientists start by collecting a single, static set of documents and then
applying routine analyses. However, without considering routine and programmatic
data ingestion, analytics will be static and unable to respond to new feedback or to
the dynamic nature of language.

In this chapter, our primary focus will be not on how the data is acquired, but on how
it should be structured and managed in a way that will support machine learning.
However, in the next section, we will briefly present a framework for an ingestion
engine called Baleen, which is particularly well-suited to the construction of domain-
specific corpora for applied text analysis.

The Baleen Ingestion Engine
Baleen2 is an open source tool for building custom corpora. It works by ingesting nat‐
ural language data from the discourse of professional and amateur writers, like blog‐
gers and news outlets, in a categorized fashion.

Given an OPML file of RSS feeds (a common export format for news readers), Baleen
downloads all the posts from those feeds, saves them to MongoDB storage, then
exports a text corpus that can be used for analytics. While this task seems like it could
be easily completed with a single function, the actual implementation of ingestion can
become complex; APIs and RSS feeds can and often do change. Significant fore‐
thought is required to determine how best to put together an application that will
conduct not only robust, autonomous ingestion, but also secure data management.

The complexity of routine text ingestion via RSS is shown in Figure 2-1. The fixture
that specifies what feeds to ingest and how they’re categorized is an OPML file that
must be read from disk. Connecting and inserting posts, feeds, and other information
to the MongoDB store requires an object document mapping (ODM), and tools are
needed to define a single ingestion job that synchronizes entire feeds and then fetches
and wrangles individual posts or articles.

With these mechanisms in place, Baleen exposes utilities to run the ingestion job on a
routine basis (e.g., hourly), though some configuration is required to specify database
connection parameters and how often to run. Since this will be a long-running pro‐
cess, Baleen also provides a console to assist with scheduling, logging, and monitor‐
ing for errors. Finally, Baleen’s export tool exports the corpus out of the database.

What Is a Corpus? | 21

http://bit.ly/2GOFaxI

As currently implemented, the Baleen ingestion engine collects RSS
feeds from 12 categories, including sports, gaming, politics, cook‐
ing, and news. As such, Baleen produces not one but 12 domain-
specific corpora, a sample of which are available via our GitHub
repository for the book: https://github.com/foxbook/atap/.

Figure 2-1. The Baleen RSS ingestion architecture

Whether documents are routinely ingested or part of a fixed collection, some thought
must go into how to manage the data and prepare it for analytical processing and
model computation. In the next section, we will discuss how to monitor corpora as
our ingestion routines continue and the data change and grow.

Corpus Data Management
The first assumption we should make is that the corpora we will be dealing with will
be nontrivial in size—that is, they will contain thousands or tens of thousands of
documents comprising gigabytes of data. The second assumption is that the language
data will come from a source that will need to be cleaned and processed into data

22 | Chapter 2: Building a Custom Corpus

https://github.com/foxbook/atap/

structures that we can perform analytics on. The former assumption requires a com‐
puting methodology that can scale (which we’ll explore more fully in Chapter 11),
and the latter implies that we will be performing irreversible transformations on the
data (as we’ll see in Chapter 3).

Data products often employ write-once, read-many (WORM) storage as an inter‐
mediate data management layer between ingestion and preprocessing as shown in
Figure 2-2. WORM stores (sometimes referred to as data lakes) provide streaming
read accesses to raw data in a repeatable and scalable fashion, addressing the require‐
ment for performance computing. Moreover, by keeping data in a WORM store, pre‐
processed data can be reanalyzed without reingestion, allowing new hypotheses to be
easily explored on the raw data format.

Figure 2-2. WORM storage supports an intermediate wrangling step

The addition of the WORM store to our data ingestion workflow means that we need
to store data in two places—the raw corpus as well as the preprocessed corpus—
which leads to the question: Where should that data be stored? When we think of
data management, we usually think of databases first. Databases are certainly valuable
tools in building language-aware data products, and many provide full-text search
functionality and other types of indexing. However, most databases are constructed
to retrieve or update only a couple of rows per transaction. In contrast, computa‐
tional access to a text corpus will be a complete read of every single document, and
will cause no in-place updates to the document, nor search or select individual docu‐
ments. As such, databases tend to add overhead to computation without real benefit.

Relational database management systems are great for transactions
that operate on a small collection of rows at a time, particularly
when those rows are updated frequently. Machine learning on a
text corpus has a different computational profile: many sequential
reads of the entire dataset. As a result, storing corpora on disk (or
in a document database) is often preferred.

For text data management, the best choice is often to store data in a NoSQL docu‐
ment storage database that allows streaming reads of the documents with minimal

Corpus Data Management | 23

overhead, or to simply write each document to disk. While a NoSQL application
might be worthwhile in large applications, consider the benefits of using a file-based
approach: compression techniques on directories are well suited to text information
and the use of a file synchronization service provides automatic replication. The con‐
struction of a corpus in a database is beyond the scope of this book, though we will
briefly explore a Sqlite corpus later in this chapter. Instead, we proceed by structuring
our data on disk in a meaningful way that will support systematic access to our
corpus.

Corpus Disk Structure
The simplest and most common method of organizing and managing a text-based
corpus is to store individual documents in a file system on disk. By organizing the
corpus into subdirectories, corpora can be categorized or meaningfully partitioned by
meta information, like dates. By maintaining each document as its own file, corpus
readers can seek quickly to different subsets of documents and processing can be par‐
allelized, with each process taking a different subset of documents.

NLTK CorpusReader objects, which we’ll explore in the next sec‐
tion, can read from either a path to a directory or a path to a Zip
file.

Text is also the most compressible format, making Zip files, which leverage directory
structures on disk, an ideal distribution and storage format. Finally, corpora stored
on disk are generally static and treated as a whole, fulfilling the requirement for
WORM storage presented in the previous section.

Storing a single document per file could lead to some challenges, however. Smaller
documents like emails or tweets don’t make sense to store as individual files. Alterna‐
tively, email is typically stored in an MBox format—a plain-text format that uses sep‐
arators to delimit multipart mime messages containing text, HTML, images, and
attachments. These can typically be organized by the categories contained within the
email service (Inbox, Starred, Archive, etc.). Tweets are generally small JSON data
structures that include not just the text of the tweet but other metadata like user or
location. The typical way to store multiple tweets is in newline-delimited JSON,
sometimes called the JSON lines format. This format makes it easy to read one tweet
at a time by parsing only a single line at a time, but also to seek to different tweets in
the file. A single file of tweets can be large, so organizing tweets in files by user, loca‐
tion, or day can reduce overall file sizes and create a meaningful disk structure of
multiple files.

24 | Chapter 2: Building a Custom Corpus

An alternative technique to storing the data in some logical structure is simply to
write files with a maximum size limit. For example, we can keep writing data to a file,
respecting document boundaries, until it reaches some size limit (e.g., 128 MB) and
then open a new file and continue writing there.

A corpus on disk will necessarily contain many files that represent
one or more documents in the corpus—sometimes partitioned into
subdirectories that represent meaningful splits like category. Cor‐
pus and document meta information must also be stored along
with its documents. As a result a standard structure for corpora on
disk is vital to ensuring that data can be meaningfully read by
Python programs.

Whether documents are aggregated into multidocument files or each stored as its
own file, a corpus represents many files that need to be organized. If corpus ingestion
occurs over time, a meaningful organization may be subdirectories for year, month,
and day with documents placed into each folder, respectively. If the documents are
categorized by sentiment, as positive or negative, each type of document can be grou‐
ped together into their own category subdirectory. If there are multiple users in a sys‐
tem that generate their own subcorpora of user-specific writing, such as reviews or
tweets, then each user can have their own subdirectory. All subdirectories need to be
stored alongside each other in a single corpus root directory. Importantly, corpus
meta information such as a license, manifest, README, or citation must also be
stored along with documents such that the corpus can be treated as an individual
whole.

The Baleen disk structure
The choice of organization on disk has a large impact on how documents are read by
CorpusReader objects, which we’ll explore in the next section. The Baleen corpus
ingestion engine writes an HTML corpus to disk as follows:

corpus
├── citation.bib
├── feeds.json
├── LICENSE.md
├── manifest.json
├── README.md
└── books
| ├── 56d629e7c1808113ffb87eaf.html
| ├── 56d629e7c1808113ffb87eb3.html
| └── 56d629ebc1808113ffb87ed0.html
└── business
| ├── 56d625d5c1808113ffb87730.html
| ├── 56d625d6c1808113ffb87736.html
| └── 56d625ddc1808113ffb87752.html

Corpus Data Management | 25

└── cinema
| ├── 56d629b5c1808113ffb87d8f.html
| ├── 56d629b5c1808113ffb87d93.html
| └── 56d629b6c1808113ffb87d9a.html
└── cooking
 ├── 56d62af2c1808113ffb880ec.html
 ├── 56d62af2c1808113ffb880ee.html
 └── 56d62af2c1808113ffb880fa.html

There are a few important things to note here. First, all documents are stored as
HTML files, named according to their MD5 hash (to prevent duplication), and each
stored in its own category subdirectory. It is simple to identify which files are docu‐
ments and which files are meta both by the directory structure and the name of each
file. In terms of meta information, a citation.bib file provides attribution for the cor‐
pus and the LICENSE.md file specifies the rights others have to use this corpus. While
these two pieces of information are usually reserved for public corpora, it is helpful to
include them so that it is clear how the corpus can be used—for the same reason that
you would add this type of information to a private software repository. The
feeds.json and manifest.json files are two corpus-specific files, that serve to identify
information about the categories and each specific file, respectively. Finally, the
README.md file is a human-readable description of the corpus.

Of these files, citation.bib, LICENSE.md, and README.md are special files because
they can be automatically read from an NLTK CorpusReader object with the
citation(), license(), and readme() methods.

A structured approach to corpus management and storage means that applied text
analytics follows a scientific process of reproducibility, a method that encourages the
interpretability of analytics as well as confidence in their results. Moreover, structur‐
ing a corpus as above enables us to use CorpusReader objects, which will be explained
in detail in the next section.

Modifying these methods to deal with Markdown or to read corpus-specific files like
the manifest is fairly simple:

import json

 # In a custom corpus reader class
 def manifest(self):
 """
 Reads and parses the manifest.json file in our corpus if it exists.
 """
 return json.load(self.open("README.md"))

These methods are specifically exposed programmatically to allow corpora to remain
compressed, but still readable, minimizing the amount of storage required on disk.
Consider that the README.md file is essential to communicating about the composi‐
tion of the corpus, not just to other users or developers of the corpus, but also to

26 | Chapter 2: Building a Custom Corpus

“future you,” who may not remember specifics, and to be able to identify which mod‐
els were trained on which corpora and what information those models have.

Corpus Readers
Once a corpus has been structured and organized on disk, two opportunities present
themselves: a systematic approach to accessing the corpus in a programming context,
and the ability to monitor and manage change in the corpus. We will discuss the lat‐
ter at the end of the chapter, but for now we will tackle the subject of how to load
documents for use in analytics.

Most nontrivial corpora contain thousands of documents with potentially gigabytes
of text data. The raw text strings loaded from the documents then need to be prepro‐
cessed and parsed into a representation suitable for analysis, an additive process
whose methods may generate or duplicate data, increasing the amount of required
working memory. From a computational standpoint, this is an important considera‐
tion, because without some method to stream and select documents from disk, text
analytics would quickly be bound to the performance of a single machine, limiting
our ability to generate interesting models. Luckily, tools for streaming accesses of a
corpus from disk have been well thought out by the NLTK library, which exposes cor‐
pora in Python via CorpusReader objects.

Distributed computing frameworks such as Hadoop were created
in response to the amount of text generated by web crawlers to pro‐
duce search engines (Hadoop, inspired by two Google papers, was
a follow-on project to the Nutch search engine). We will discuss
cluster computing techniques to scaling with Spark, Hadoop’s dis‐
tributed computing successor, in Chapter 11.

A CorpusReader is a programmatic interface to read, seek, stream, and filter docu‐
ments, and furthermore to expose data wrangling techniques like encoding and pre‐
processing for code that requires access to data within a corpus. A CorpusReader is
instantiated by passing a root path to the directory that contains the corpus files, a
signature for discovering document names, as well as a file encoding (by default,
UTF-8).

Because a corpus contains files beyond the documents meant for analysis (e.g., the
README, citation, license, etc.) some mechanism must be provided to the reader to
identify exactly what documents are part of the corpus. This mechanism is a parame‐
ter that can be specified explicitly as a list of names or implicitly as a regular expres‐
sion that will be matched upon all documents under the root (e.g., \w+\.txt), which
matches one or more characters or digits in the filename preceding the file exten‐

Corpus Readers | 27

sion, .txt. For instance, in the following directory, this regex pattern will match the
three speeches and the transcript, but not the license, README, or metadata files:

corpus
├── LICENSE.md
├── README.md
├── citation.bib
├── transcript.txt
└── speeches
 ├── 04102008.txt
 ├── 10142009.txt
 ├── 09012014.txt
 └── metadata.json

These three simple parameters then give the CorpusReader the ability to list the abso‐
lute paths of all documents in the corpus, to open each document with the correct
encoding, and to allow programmers to access metadata separately.

By default, NLTK CorpusReader objects can even access corpora
that are compressed as Zip files, and simple extensions allow the
reading of Gzip or Bzip compression as well.

By itself, the concept of a CorpusReader may not seem particularly spectacular, but
when dealing with a myriad of documents, the interface allows programmers to read
one or more documents into memory, to seek forward and backward to particular
places in the corpus without opening or reading unnecessary documents, to stream
data to an analytical process holding only one document in memory at a time, and to
filter or select only specific documents from the corpus at a time. These techniques
are what make in-memory text analytics possible for nontrivial corpora because they
apply work to only a few documents in-memory at a time.

Therefore, in order to analyze your own text corpus in a specific domain that targets
exactly the models you are attempting to build, you will need an application-specific
corpus reader. This is so critical to enabling applied text analytics that we have devo‐
ted most of the remainder of this chapter to the subject! In this section we will discuss
the corpus readers that come with NLTK and the possibility of structuring your cor‐
pus so that you can simply use one of them out of the box. We will then move for‐
ward into a discussion of how to define a custom corpus reader that does application-
specific work, namely dealing with HTML files collected during the ingestion
process.

Streaming Data Access with NLTK
NLTK comes with a variety of corpus readers (66 at the time of this writing) that are
specifically designed to access the text corpora and lexical resources that can be

28 | Chapter 2: Building a Custom Corpus

downloaded with NLTK. It also comes with slightly more generic utility Corpus
Reader objects, which are fairly rigid in the corpus structure in that they expect but
provide the opportunity to quickly create corpora and associate them with readers.
They also give hints as to how to customize a CorpusReader for application-specific
purposes. To name a few notable utility readers:

PlaintextCorpusReader

A reader for corpora that consist of plain-text documents, where paragraphs are
assumed to be split using blank lines.

TaggedCorpusReader

A reader for simple part-of-speech tagged corpora, where sentences are on their
own line and tokens are delimited with their tag.

BracketParseCorpusReader

A reader for corpora that consist of parenthesis-delineated parse trees.

ChunkedCorpusReader

A reader for chunked (and optionally tagged) corpora formatted with
parentheses.

TwitterCorpusReader

A reader for corpora that consist of tweets that have been serialized into line-
delimited JSON.

WordListCorpusReader

List of words, one per line. Blank lines are ignored.

XMLCorpusReader

A reader for corpora whose documents are XML files.

CategorizedCorpusReader

A mixin for corpus readers whose documents are organized by category.

The tagged, bracket parse, and chunked corpus readers are annotated corpus readers;
if you’re going to be doing domain-specific hand annotation in advance of machine
learning, then the formats exposed by these readers are important to understand. The
Twitter, XML, and plain-text corpus readers all give hints about how to deal with data
on disk that has different parseable formats, allowing for extensions related to CSV
corpora, JSON, or even from a database. If your corpus is already in one of these for‐
mats, then you have little work to do. For example, consider a corpus of the plain-text
scripts of the Star Wars and Star Trek movies organized as follows:

corpus
├── LICENSE
├── README
└── Star Trek

Corpus Readers | 29

| ├── Star Trek - Balance of Terror.txt
| ├── Star Trek - First Contact.txt
| ├── Star Trek - Generations.txt
| ├── Star Trek - Nemesis.txt
| ├── Star Trek - The Motion Picture.txt
| ├── Star Trek 2 - The Wrath of Khan.txt
| └── Star Trek.txt
└── Star Wars
| ├── Star Wars Episode 1.txt
| ├── Star Wars Episode 2.txt
| ├── Star Wars Episode 3.txt
| ├── Star Wars Episode 4.txt
| ├── Star Wars Episode 5.txt
| ├── Star Wars Episode 6.txt
| └── Star Wars Episode 7.txt
└── citation.bib

The CategorizedPlaintextCorpusReader is perfect for accessing data from the
movie scripts since the documents are .txt files and there are two categories, namely
“Star Wars” and “Star Trek.” In order to use the CategorizedPlaintextCorpus
Reader, we need to specify a regular expression that allows the reader to automati‐
cally determine both the fileids and categories:

from nltk.corpus.reader.plaintext import CategorizedPlaintextCorpusReader

DOC_PATTERN = r'(?!\.)[\w_\s]+/[\w\s\d\-]+\.txt'
CAT_PATTERN = r'([\w_\s]+)/.*'

corpus = CategorizedPlaintextCorpusReader(
 '/path/to/corpus/root', DOC_PATTERN, cat_pattern=CAT_PATTERN
)

The document pattern regular expression specifies documents as having paths under
the corpus root such that there is one or more letters, digits, spaces, or underscores,
followed by the / character, then one or more letters, digits, spaces, or hyphens fol‐
lowed by .txt. This will match documents such as Star Wars/Star Wars Episode 1.txt
but not documents such as episode.txt. The categories pattern regular expression
truncates the original regular expression with a capture group that indicates that a
category is any directory name (e.g., Star Wars/anything.txt will capture Star Wars as
the category). You can start to access the data on disk by inspecting how these names
are captured:

corpus.categories()
['Star Trek', 'Star Wars']

corpus.fileids()
['Star Trek/Star Trek - Balance of Terror.txt',
'Star Trek/Star Trek - First Contact.txt', ...]

30 | Chapter 2: Building a Custom Corpus

Although regular expressions can be difficult, they do provide a powerful mechanism
for specifying exactly what should be loaded by the corpus reader, and how. Alterna‐
tively, you could explicitly pass a list of categories and fileids, but that would make
the corpus reader a lot less flexible. By using regular expressions you could add new
categories by simply creating a directory in your corpus, and add new documents by
moving them to the correct directory.

Now that we have access to the CorpusReader objects that come with NLTK, we will
explore a methodology to stream the HTML data we have ingested.

Reading an HTML Corpus
Assuming we are ingesting data from the internet, it is a safe bet that the data we’re
ingesting is formatted as HTML. One option for creating a streaming corpus reader is
to simply strip all the tags from the HTML, writing it as plain text and using the
CategorizedPlaintextCorpusReader. However, if we do that, we will lose the bene‐
fits of HTML—namely computer parseable, structured text, which we can take advan‐
tage of when preprocessing. Therefore, in this section we will begin to design a
custom HTMLCorpusReader that we will extend in the next chapter:

from nltk.corpus.reader.api import CorpusReader
from nltk.corpus.reader.api import CategorizedCorpusReader

CAT_PATTERN = r'([a-z_\s]+)/.*'
DOC_PATTERN = r'(?!\.)[a-z_\s]+/[a-f0-9]+\.json'
TAGS = ['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li']

class HTMLCorpusReader(CategorizedCorpusReader, CorpusReader):
 """
 A corpus reader for raw HTML documents to enable preprocessing.
 """

 def __init__(self, root, fileids=DOC_PATTERN, encoding='utf8',
 tags=TAGS, **kwargs):
 """
 Initialize the corpus reader. Categorization arguments
 (``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
 the ``CategorizedCorpusReader`` constructor. The remaining
 arguments are passed to the ``CorpusReader`` constructor.
 """
 # Add the default category pattern if not passed into the class.
 if not any(key.startswith('cat_') for key in kwargs.keys()):
 kwargs['cat_pattern'] = CAT_PATTERN

 # Initialize the NLTK corpus reader objects
 CategorizedCorpusReader.__init__(self, kwargs)
 CorpusReader.__init__(self, root, fileids, encoding)

Corpus Readers | 31

 # Save the tags that we specifically want to extract.
 self.tags = tags

Our HTMLCorpusReader class extends both the CategorizedCorpusReader and the
CorpusReader, similarly to how the CategorizedPlaintextCorpusReader uses the
categorization mixin. Multiple inheritance can by tricky, so the bulk of the code in the
__init__ function simply figures out which arguments to pass to which class. In par‐
ticular, the CategorizedCorpusReader takes in generic keyword arguments, and the
CorpusReader will be initialized with the root directory of the corpus, as well as the
fileids and the HTML encoding scheme. However, we have also added our own
customization, allowing the user to specify which HTML tags should be treated as
independent paragraphs.

The next step is to augment the HTMLCorpusReader with a method that will allow us
to filter how we read text data from disk, either by specifying a list of categories, or a
list of filenames:

 def resolve(self, fileids, categories):
 """
 Returns a list of fileids or categories depending on what is passed
 to each internal corpus reader function. Implemented similarly to
 the NLTK ``CategorizedPlaintextCorpusReader``.
 """
 if fileids is not None and categories is not None:
 raise ValueError("Specify fileids or categories, not both")

 if categories is not None:
 return self.fileids(categories)
 return fileids

This method returns a list of fileids whether or not they have been categorized. In
this sense, it both adds flexibility and exposes the method signature that we will use
for pretty much every other method on the reader. In our resolve method, if both
categories and fileids are specified, it will complain. If they are not specified, the
method will use a CorpusReader method to compute the fileids associated with the
specific categories. Note that categories can either be a single category or a list of
categories. Otherwise, we will simply return the fileids—if this is None, the Corpus
Reader will automatically read every single document in the corpus without filtering.

Note that the ability to read only part of a corpus will become
essential as we move toward machine learning, particularly for
doing cross-validation where we will have to create training and
testing splits of the corpus.

At the moment, our HTMLCorpusReader doesn’t have a method for reading a stream of
complete documents, one document at a time. Instead, it will expose the entire text of

32 | Chapter 2: Building a Custom Corpus

every single document in the corpus in a streaming fashion to our methods. However,
we will want to parse one HTML document at a time, so the following method gives
us access to the text on a document-by-document basis:

import codecs

 def docs(self, fileids=None, categories=None):
 """
 Returns the complete text of an HTML document, closing the document
 after we are done reading it and yielding it in a memory safe fashion.
 """
 # Resolve the fileids and the categories
 fileids = self.resolve(fileids, categories)

 # Create a generator, loading one document into memory at a time.
 for path, encoding in self.abspaths(fileids, include_encoding=True):
 with codecs.open(path, 'r', encoding=encoding) as f:
 yield f.read()

Our custom corpus reader now knows how to deal with individual documents in the
corpus, one document at a time, allowing us to filter and seek to different places in
the corpus. It can handle fileids and categories, and has all the tools imported from
NLTK to make disk access easier.

Corpus monitoring
As we have established so far in this chapter, applied text analytics requires substan‐
tial data management and preprocessing. The methods described for data ingestion,
management, and preprocessing are laborious and time-intensive, but also critical
precursors to machine learning. Given the requisite time, energy, and disk storage
commitments, it is good practice to include with the rest of the data some meta infor‐
mation about the details of how the corpus was built.

In this section, we will describe how to create a monitoring system for ingestion and
preprocessing. To begin, we should consider what specific kinds of information we
would like to monitor, such as the dates and sources of ingestion. Given the massive
size of the corpora with which we will be working, we should at the very least, keep
track of the size of each file on disk.

 def sizes(self, fileids=None, categories=None):
 """
 Returns a list of tuples, the fileid and size on disk of the file.
 This function is used to detect oddly large files in the corpus.
 """
 # Resolve the fileids and the categories
 fileids = self.resolve(fileids, categories)

 # Create a generator, getting every path and computing filesize
 for path in self.abspaths(fileids):
 yield os.path.getsize(path)

Corpus Readers | 33

One of our observations in working with RSS HTML corpora in practice is that in
addition to text, a significant number of the ingested files came with embedded
images, audio tracks, and video. These embedded media files quickly ate up memory
during ingestion and were disruptive to preprocessing. The above sizes method is in
part a reaction to these kinds of experiences with real-world corpora, and will help us
to perform diagnostics and identify individual files within the corpus that are much
larger than expected (e.g., images and video that have been encoded as text). This
method will enable us to compute the complete size of the corpus, to track over time,
and see how it is growing and changing.

Reading a Corpus from a Database
No two corpora are exactly alike, and just as every novel application will require a
novel and domain-specific corpus, each corpus will require an application-specific
corpus reader. In Chapter 12 we will explore a sentiment analysis application that
uses a corpus of about 18,000 album reviews from the website Pitchfork.com. The
extracted dataset is stored in a Sqlite database with the schema shown in Figure 2-3.

Figure 2-3. Schema for the album review corpus stored in a Sqlite database

To interact with this corpus, we will create a custom SqliteCorpusReader class to
access its different components, mimicking the behavior of an NLTK CorpusReader,
but not inheriting from it.

We want our SqliteCorpusReader to be able to fetch results from the database in a
memory safe fashion; as with the HTMLCorpusReader from the previous section, we
need to be able access one record at a time to perform wrangling, normalization, and
transformation (which will be discussed in Chapter 3) in an efficient and streamlined
way. For this reason, using the SQL-like fetchall() command is not advisable, and

34 | Chapter 2: Building a Custom Corpus

might keep us waiting for a long time for the results to come back before our iteration
can begin. Instead, our ids(), scores(), and texts() methods each make use of
fetchone(), a good alternative in this case, though with a larger database, batch-wise
fetching (e.g., with fetchmany()) would be more performant.

import sqlite3

class SqliteCorpusReader(object):

 def __init__(self, path):
 self._cur = sqlite3.connect(path).cursor()

 def ids(self):
 """
 Returns the review ids, which enable joins to other
 review metadata
 """
 self._cur.execute("SELECT reviewid FROM content")
 for idx in iter(self._cur.fetchone, None):
 yield idx

 def scores(self):
 """
 Returns the review score, to be used as the target
 for later supervised learning problems
 """
 self._cur.execute("SELECT score FROM reviews")
 for score in iter(self._cur.fetchone, None):
 yield score

 def texts(self):
 """
 Returns the full review texts, to be preprocessed and
 vectorized for supervised learning
 """
 self._cur.execute("SELECT content FROM content")
 for text in iter(self._cur.fetchone, None):
 yield text

As we can see from the HTMLCorpusReader and SqliteCorpusReader examples, we
should be prepared to write a new corpus reader for each new dataset. However, we
hope that these examples demonstrate not only their utility but their similarities. In
the next chapter, we will extend our HTMLCorpusReader so that we can use it to access
more granular components of our text, which will be useful for preprocessing and
feature engineering.

Corpus Readers | 35

Conclusion
In this chapter, we have learned that text analytics requires a large, robust, domain-
specific corpus. Since these will be very large, often unpredictable datasets, we dis‐
cussed methods for structuring and managing these corpora over time. We learned
how corpus readers can leverage this structure and also reduce memory pressure
through streaming data loading. Finally, we started to build some custom corpus
readers—one for a corpus of HTML documents stored on disk and one for a docu‐
ments stored in a Sqlite database.

In the next chapter, we will learn how to preprocess our data and extend the work we
have done in this chapter with methods to preprocess the raw HTML as it is streamed
in a memory safe fashion and achieve our final text data structure in advance of
machine learning—a list of documents, composed of lists of paragraphs, which are
lists of sentences, where a sentence is a list of tuples containing a token and its part-
of-speech tag.

36 | Chapter 2: Building a Custom Corpus

CHAPTER 3

Corpus Preprocessing and Wrangling

In the previous chapter, we learned how to build and structure a custom, domain-
specific corpus. Unfortunately, any real corpus in its raw form is completely unusable
for analytics without significant preprocessing and compression. In fact, a key moti‐
vation for writing this book is the immense challenge we ourselves have encountered
in our efforts to build and wrangle corpora large and rich enough to power meaning‐
fully literate data products. Given how much of our own routine time and effort is
dedicated to text preprocessing and wrangling, it is surprising how few resources
exist to support (or even acknowledge!) these phases.

In this chapter, we propose a multipurpose preprocessing framework that can be used
to systematically transform our raw ingested text into a form that is ready for compu‐
tation and modeling. Our framework includes the five key stages shown in
Figure 3-1: content extraction, paragraph blocking, sentence segmentation, word
tokenization, and part-of-speech tagging. For each of these stages, we will provide
functions conceived as methods under the HTMLCorpusReader class defined in the
previous chapter.

Figure 3-1. Breakdown of document segmentation, tokenization, and tagging

37

Breaking Down Documents
In the previous chapter, we began constructing a custom HTMLCorpusReader, provid‐
ing it with methods for filtering, accessing, and counting our documents (resolve(),
docs(), and sizes()). Because it inherits from NLTK’s CorpusReader object, our
custom corpus reader also implements a standard preprocessing API that also expo‐
ses the following methods:

raw()

Provides access to the raw text without preprocessing

sents()

A generator of individual sentences in the text

words()

Tokenizes the text into individual words

In order to fit models using machine learning techniques on our text, we will need to
include these methods as part of the feature extraction process. Throughout the rest
of this chapter, we will discuss the details of preprocessing and show how to leverage
and modify these methods to access content and explore features within our docu‐
ments.

While our focus here will be on language processing methods for a
corpus reader designed to process HTML documents collected
from the web, other methods may be more convenient depending
on the form of your corpus. It is worth noting that NLTK Corpus
Reader objects already expose many other methods for different
use cases; for example, automatically tagging or parsing sentences,
converting annotated text into meaningful data structures like Tree
objects, or providing format-specific utilities like individual XML
elements.

Identifying and Extracting Core Content
Although the web is an excellent source of text with which to build novel and useful
corpora, it is also a fairly lawless place in the sense that the underlying structures of
web pages need not conform to any set standard. As a result, HTML content, while
structured, can be produced and rendered in numerous and sometimes erratic ways.
This unpredictability makes it very difficult to extract data from raw HTML text in a
methodical and programmatic way.

The readability-lxml library is an excellent resource for grappling with the high
degree of variability in documents collected from the web. Readability-lxml is a
Python wrapper for the JavaScript Readability experiment by Arc90. Just as browsers

38 | Chapter 3: Corpus Preprocessing and Wrangling

like Safari and Chrome offer a reading mode, Readability removes distractions from
the content of the page, leaving just the text.

Given an HTML document, Readability employs a series of regular expressions to
remove navigation bars, advertisements, page script tags, and CSS, then builds a new
Document Object Model (DOM) tree, extracts the text from the original tree, and
reconstructs the text within the newly restructured tree. In the following example,
which extends our HTMLCorpusReader, we import two readability modules,
Unparseable and Document, which we can use to extract and clean the raw HTML
text for the first phase of our preprocessing workflow.

The html method iterates over each file and uses the summary method from the
readability.Document class to remove any nontext content as well as script and sty‐
listic tags. It also corrects any of the most commonly misused tags (e.g., <div> and

), only throwing an exception if the original HTML is found to be unparseable.
The most likely reason for such an exception is if the function is passed an empty
document, which has nothing to parse:

from readability.readability import Unparseable
from readability.readability import Document as Paper

 def html(self, fileids=None, categories=None):
 """
 Returns the HTML content of each document, cleaning it using
 the readability-lxml library.
 """
 for doc in self.docs(fileids, categories):
 try:
 yield Paper(doc).summary()
 except Unparseable as e:
 print("Could not parse HTML: {}".format(e))
 continue

Note that the above method may generate warnings about the readability logger;
you can adjust the level of verbosity according to your taste by adding:

import logging
log = logging.getLogger("readability.readability")
log.setLevel('WARNING')

The result of our new html() method is clean and well-structured HTML text. In the
next few sections, we will create additional methods to incrementally decompose this
text into paragraphs, sentences, and tokens.

Deconstructing Documents into Paragraphs
Now that we are able to filter the raw HTML text that we ingested in the previous
chapter, we will move toward building a preprocessed corpus that is structured in a
way that will facilitate machine learning. In Figure 3-2 we see how meaning is dis‐

Breaking Down Documents | 39

1 Tara Parker-Pope, How to Manage Stress Like a Biathlete, (2018) https://nyti.ms/2GJBGwr

tributed across the elements of a New York Times news article.1 As we can see, the
granularity with which we inspect this document may dramatically impact whether
we classify it as a “popular sports” article or instead one about “personal health” (or
both!).

Figure 3-2. Document decomposition illustrating the distribution of meaning across
paragraphs, sentences, and individual tokens

This example illustrates why the vectorization, feature extraction, and machine learn‐
ing tasks we will perform in subsequent chapters will rely so much on our ability to
effectively break our documents down into their component pieces while also pre‐
serving their original structure.

The precision and sensitivity of our models will rely on how effec‐
tively we are able to link tokens with the textual contexts in which
they appear.

Paragraphs encapsulate complete ideas, functioning as the unit of document struc‐
ture, and our first step will be to isolate the paragraphs that appear within the text.
Some NLTK corpus readers, such as the PlaintextCorpusReader, implement a
paras() method, which is a generator of paragraphs defined as blocks of text delimi‐
ted with double newlines.

Our text, however, is not plain text, so we will need to create a method that extracts
the paragraphs from HTML. Fortunately, our html() method retains the structure of

40 | Chapter 3: Corpus Preprocessing and Wrangling

https://nyti.ms/2GJBGwr

our HTML documents. This means we can isolate content that appears within para‐
graphs by searching for <p> tags, the element that formally defines an HTML para‐
graph. Because content can also appear in other ways (e.g., embedded inside other
structures within the document like headings and lists), we will search broadly
through the text using BeautifulSoup.

Recall that in Chapter 2 we defined our HTMLCorpusReader class so
that reader objects will have the HTML document tags as a class
attribute. This tag set can be expanded, abbreviated, or otherwise
modified according to your context.

We will define a paras() method to iterate through each fileid and pass each
HTML document to the BeautifulSoup constructor, specifying that the HTML should
be parsed using the lxml HTML parser. The resulting soup is a nested tree structure
that we can navigate using the original HTML tags and elements. For each of our
document soups, we then iterate through each of the tags from our predefined set
and yield the text from within that tag. We can then call BeautifulSoup’s decompose
method to destroy the tree when we’re done working with each file to free up
memory.

import bs4

Tags to extract as paragraphs from the HTML text
tags = [
 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'p', 'li'
]

 def paras(self, fileids=None, categories=None):
 """
 Uses BeautifulSoup to parse the paragraphs from the HTML.
 """
 for html in self.html(fileids, categories):
 soup = bs4.BeautifulSoup(html, 'lxml')
 for element in soup.find_all(tags):
 yield element.text
 soup.decompose()

The result of our paras() method is a generator with the raw text paragraphs from
every document, from first to last, with no document boundaries. If passed a specific
fileid, paras will return the paragraphs from that file only.

Breaking Down Documents | 41

It’s worth noting that the paras() methods for many of the NLTK
corpus readers, such as PlaintextCorpusReader, function differ‐
ently, frequently doing segmentation and tokenization in addition
to isolating the paragraphs. This is because NLTK methods tend to
expect a corpus that has already been annotated, and are thus not
concerned with reconstructing paragraphs. By contrast, our meth‐
ods are designed to work on raw, unannotated corpora and will
need to support corpus reconstruction.

Segmentation: Breaking Out Sentences
If we can think of paragraphs as the units of document structure, it is useful to see
sentences as the units of discourse. Just as a paragraph within a document comprises
a single idea, a sentence contains a complete language structure, one that we want to
be able to identify and encode.

In this section, we’ll perform segmentation to parse our text into sentences, which will
facilitate the part-of-speech tagging methods we will use a bit later in this chapter
(which rely on an internally consistent morphology). To get to our sentences, we’ll
write a new method, sents(), that wraps paras() and returns a generator (an itera‐
tor) yielding each sentence from every paragraph.

Syntactic segmentation is not necessarily a prerequisite for part-of-
speech tagging. Depending on your use case, tagging can be used to
break text into sentences, as with spoken or transcribed speech
data, where sentence boundaries are less clear. In written text, per‐
forming segmentation first facilitates part-of-speech tagging. Spa‐
Cy’s tools often work better with speech data, while NLTK’s work
better with written language.

Our sents() method iterates through each of the paragraphs isolated with our paras
method, using the built-in NLTK sent_tokenize method to conduct segmentation.
Under the hood, sent_tokenize employs the PunktSentenceTokenizer, a pre-
trained model that has learned transformation rules (essentially a series of regular
expressions) for the kinds of words and punctuation (e.g., periods, question marks,
exclamation points, capitalization, etc.) that signal the beginnings and ends of senten‐
ces. The model can be applied to a paragraph to produce a generator of sentences:

from nltk import sent_tokenize

 def sents(self, fileids=None, categories=None):
 """
 Uses the built in sentence tokenizer to extract sentences from the
 paragraphs. Note that this method uses BeautifulSoup to parse HTML.
 """

42 | Chapter 3: Corpus Preprocessing and Wrangling

 for paragraph in self.paras(fileids, categories):
 for sentence in sent_tokenize(paragraph):
 yield sentence

NLTK’s PunktSentenceTokenizer is trained on English text, and it works well for
most European languages. It performs well when provided standard paragraphs:

['Beautiful is better than ugly.', 'Explicit is better than implicit.',
'Simple is better than complex.', 'Complex is better than complicated.',
'Flat is better than nested.', 'Sparse is better than dense.',
'Readability counts.', "Special cases aren't special enough to break the
rules.", 'Although practicality beats purity.', 'Errors should never pass
silently.', 'Unless explicitly silenced.', 'In the face of ambiguity, refuse
the temptation to guess.', 'There should be one-- and preferably only one --
obvious way to do it.', "Although that way may not be obvious at first unless
you're Dutch.", 'Now is better than never.', 'Although never is often better
than *right* now.', "If the implementation is hard to explain, it's a bad
idea.", 'If the implementation is easy to explain, it may be a good idea.',
"Namespaces are one honking great idea -- let's do more of those!"]

However, punctuation marks can be ambiguous; while periods frequently signal the
end of a sentence, they can also appear in floats, abbreviations, and ellipses. In other
words, identifying the boundaries between sentences can be tricky. As a result, you
may find that using PunktSentenceTokenizer on nonstandard text will not always
produce usable results:

['Baa, baa, black sheep,\nHave you any wool?', 'Yes, sir, yes, sir,\nThree
bags full;\nOne for the master,\nAnd one for the dame,\nAnd one for the little
boy\nWho lives down the lane.']

NLTK does provide alternative sentences tokenizers (e.g., for tweets), which are
worth exploring. Nonetheless, if your domain space has special peculiarities in the
way that sentences are demarcated, it’s advisable to train your own tokenizer using
domain-specific content.

Tokenization: Identifying Individual Tokens
We’ve defined sentences as the units of discourse and paragraphs as the units of docu‐
ment structure. In this section, we will isolate tokens, the syntactic units of language
that encode semantic information within sequences of characters.

Tokenization is the process by which we’ll arrive at those tokens, and we’ll use Word
PunctTokenizer, a regular expression–based tokenizer that splits text on both white‐
space and punctuation and returns a list of alphabetic and nonalphabetic characters:

from nltk import wordpunct_tokenize

 def words(self, fileids=None, categories=None):
 """
 Uses the built-in word tokenizer to extract tokens from sentences.
 Note that this method uses BeautifulSoup to parse HTML content.

Breaking Down Documents | 43

 """
 for sentence in self.sents(fileids, categories):
 for token in wordpunct_tokenize(sentence):
 yield token

As with sentence demarcation, tokenization is not always straightforward. We must
consider things like: do we want to remove punctuation from tokens, and if so,
should we make punctuation marks tokens themselves? Should we preserve hyphen‐
ated words as compound elements or break them apart? Should we approach contrac‐
tions as one token or two, and if they are two tokens, where should they be split?

We can select different tokenizers depending on our responses to these questions. Of
the many word tokenizers available in NLTK (e.g., TreebankWordTokenizer, Word
PunctTokenize, PunktWordTokenizer, etc.), a common choice for tokenization is
word_tokenize, which invokes the Treebank tokenizer and uses regular expressions
to tokenize text as in Penn Treebank. This includes splitting standard contractions
(e.g., “wouldn’t” becomes “would” and “n’t”) and treating punctuation marks (like
commas, single quotes, and periods followed by whitespace) as separate tokens. By
contrast, WordPunctTokenizer is based on the RegexpTokenizer class, which splits
strings using the regular expression \w+|[^\w\s]+ , matching either tokens or separa‐
tors between tokens and resulting in a sequence of alphabetic and nonalphabetic
characters. You can also use the RegexpTokenizer class to create your own custom
tokenizer.

Part-of-Speech Tagging
Now that we can access the tokens within the sentences of our document paragraphs,
we will proceed to tag each token with its part of speech. Parts of speech (e.g., verbs,
nouns, prepositions, adjectives) indicate how a word is functioning within the con‐
text of a sentence. In English, as in many other languages, a single word can function
in multiple ways, and we would like to be able to distinguish those uses (e.g., “build‐
ing” can be either a noun or a verb). Part-of-speech tagging entails labeling each
token with the appropriate tag, which will encode information both about the word’s
definition and its use in context.

We’ll use the off-the-shelf NLTK tagger, pos_tag, which at the time of this writing
uses the PerceptronTagger() and the Penn Treebank tagset. The Penn Treebank tag‐
set consists of 36 parts of speech, structural tags, and indicators of tense (NN for singu‐
lar nouns, NNS for plural nouns, JJ for adjectives, RB for adverbs, VB for verbs, PRP for
personal pronouns, etc.).

The tokenize method returns a generator that can give us a list of lists containing
paragraphs, which are lists of sentences, which in turn are lists of part-of-speech tag‐
ged tokens. The tagged tokens are represented as (tag, token) tuples, where the tag
is a case-sensitive string that specifies how the token is functioning in context:

44 | Chapter 3: Corpus Preprocessing and Wrangling

from nltk import pos_tag, sent_tokenize, wordpunct_tokenize

 def tokenize(self, fileids=None, categories=None):
 """
 Segments, tokenizes, and tags a document in the corpus.
 """
 for paragraph in self.paras(fileids=fileids):
 yield [
 pos_tag(wordpunct_tokenize(sent))
 for sent in sent_tokenize(paragraph)
]

Consider the paragraph “The old building is scheduled for demolition. The contrac‐
tors will begin building a new structure next month.” The pos_tag method will differ‐
entiate how word “building” is used in context, first as a singular noun and then as
the present participle of the verb “to build”:

[[('The', 'DT'), ('old', 'JJ'), ('building', 'NN'), ('is', 'VBZ'),
('scheduled', 'VBN'), ('for', 'IN'), ('demolition', 'NN'), ('.', '.')],
[('The', 'DT'), ('contractors', 'NNS'), ('will', 'MD'), ('begin', 'VB'),
('building', 'VBG'), ('a', 'DT'), ('new', 'JJ'), ('structure', 'NN'),
('next', 'JJ'), ('month', 'NN'), ('.', '.')]]

Here’s the rule of thumb for deciphering part-of-speech tags: nouns
start with an N, verbs with a V, adjectives with a J, adverbs with an
R. Anything else is likely to be some kind of a structural element. A
full list of tags can be found here: http://bit.ly/2JfUOrq.

NLTK provides several options for part-of-speech taggers (e.g., DefaultTagger,
RegexpTagger, UnigramTagger, BrillTagger). Taggers can also be used in combina‐
tion, such as the BrillTagger, which uses Brill transformational rules to improve ini‐
tial tags.

Intermediate Corpus Analytics
Our HTMLCorpusReader now has all of the methods necessary to perform the docu‐
ment decompositions that will be needed in later chapters. In Chapter 2, we provided
our reader with a sizes() method that enabled us to get a rough sense of how the
corpus was changing over time. We can now add a new method, describe(), which
will allow us to perform intermediate corpus analytics on its changing categories,
vocabulary, and complexity.

First, describe() will start the clock and initialize two frequency distributions: the
first, counts, to hold counts of the document substructures, and the second, tokens,
to contain the vocabulary. Note that we’ll discuss and leverage frequency distributions
in much greater detail in Chapter 7. We’ll keep a count of each paragraph, sentence,

Breaking Down Documents | 45

http://bit.ly/2JfUOrq

and word, and we’ll also store each unique token in our vocabulary. We then compute
the number of files and categories in our corpus, and return a dictionary with a statis‐
tical summary of our corpus—its total number of files and categories; the total num‐
ber of paragraph, sentences, and words; the number of unique terms; the lexical
diversity, which is the ratio of unique terms to total words; the average number of
paragraphs per document; the average number of sentences per paragraph; and the
total processing time:

import time

 def describe(self, fileids=None, categories=None):
 """
 Performs a single pass of the corpus and
 returns a dictionary with a variety of metrics
 concerning the state of the corpus.
 """
 started = time.time()

 # Structures to perform counting.
 counts = nltk.FreqDist()
 tokens = nltk.FreqDist()

 # Perform single pass over paragraphs, tokenize and count
 for para in self.paras(fileids, categories):
 counts['paras'] += 1

 for sent in para:
 counts['sents'] += 1

 for word, tag in sent:
 counts['words'] += 1
 tokens[word] += 1

 # Compute the number of files and categories in the corpus
 n_fileids = len(self.resolve(fileids, categories) or self.fileids())
 n_topics = len(self.categories(self.resolve(fileids, categories)))

 # Return data structure with information
 return {
 'files': n_fileids,
 'topics': n_topics,
 'paras': counts['paras'],
 'sents': counts['sents'],
 'words': counts['words'],
 'vocab': len(tokens),
 'lexdiv': float(counts['words']) / float(len(tokens)),
 'ppdoc': float(counts['paras']) / float(n_fileids),
 'sppar': float(counts['sents']) / float(counts['paras']),
 'secs': time.time() - started,
 }

46 | Chapter 3: Corpus Preprocessing and Wrangling

As our corpus grows through ingestion, preprocessing, and compression, describe()
allows us to recompute these metrics to see how they change over time. This can
become a critical monitoring technique to help diagnose problems in the application;
machine learning models will expect certain features of the data such as the lexical
diversity and number of paragraphs per document to remain consistent, and if the
corpus changes, it is very likely to impact performance. As such, the describe()
method can be used to monitor for changes in the corpus that are sufficiently big to
trigger a rebuild of any downstream vectorization and modeling.

Corpus Transformation
Our reader can now stream raw documents from the corpus through the stages of
content extraction, paragraph blocking, sentence segmentation, word tokenization,
and part-of-speech tagging, and send the resulting processed documents to our
machine learning models, as shown in Figure 3-3.

Figure 3-3. The pipeline from raw corpus to preprocessed corpus

Unfortunately, this preprocessing isn’t cheap. For smaller corpora, or in cases where
many virtual machines can be allotted to preprocessing, a raw corpus reader such as
HTMLCorpusReader may be enough. But on a corpus of roughly 300,000 HTML news
articles, these preprocessing steps took over 12 hours. This is not something we will
want to have to do every time we run our models or test out a new set of hyperpara‐
meters.

In practice, we address this by adding two additional classes, a Preprocessor class
that wraps our HTMLCorpusReader to wrangle the raw corpus to store an intermediate
transformed corpus artifact, and a PickledCorpusReader that can stream the trans‐
formed documents from disk in a standardized fashion for downstream vectorization
and analysis, as shown in Figure 3-4.

Figure 3-4. A pipeline with intermediate storage of preprocessed corpus

Corpus Transformation | 47

Intermediate Preprocessing and Storage
In this section we’ll write a Preprocessor that takes our HTMLCorpusReader, executes
the preprocessing steps, and writes out a new text corpus to disk, as shown in
Figure 3-5. This new corpus is the one on which we will perform our text analytics.

Figure 3-5. An intermediate preprocessing stage to produce a transformed corpus artifact

We begin by defining a new class, Preprocessor, which will wrap our corpus reader
and manage the stateful tokenization and part-of-speech tagging of our documents.
The objects will be initialized with a corpus, the path to the raw corpus, and target,
the path to the directory where we want to store the postprocessed corpus. The
fileids() method will provide convenient access to the fileids of the HTMLCorpus
Reader object, and abspath() will returns the absolute path to the target fileid for
each raw corpus fileid:

import os

class Preprocessor(object):
 """
 The preprocessor wraps an `HTMLCorpusReader` and performs tokenization
 and part-of-speech tagging.
 """
 def __init__(self, corpus, target=None, **kwargs):
 self.corpus = corpus
 self.target = target

 def fileids(self, fileids=None, categories=None):
 fileids = self.corpus.resolve(fileids, categories)
 if fileids:
 return fileids
 return self.corpus.fileids()

48 | Chapter 3: Corpus Preprocessing and Wrangling

 def abspath(self, fileid):
 # Find the directory, relative to the corpus root.
 parent = os.path.relpath(
 os.path.dirname(self.corpus.abspath(fileid)), self.corpus.root
)

 # Compute the name parts to reconstruct
 basename = os.path.basename(fileid)
 name, ext = os.path.splitext(basename)

 # Create the pickle file extension
 basename = name + '.pickle'

 # Return the path to the file relative to the target.
 return os.path.normpath(os.path.join(self.target, parent, basename))

Next, we add a tokenize() method to our Preprocessor, which, given a raw docu‐
ment, will perform segmentation, tokenization, and part-of-speech tagging using the
NLTK methods we explored in the previous section. This method will return a gener‐
ator of paragraphs for each document that contains a list of sentences, which are in
turn lists of part-of-speech tagged tokens:

from nltk import pos_tag, sent_tokenize, wordpunct_tokenize

...

 def tokenize(self, fileid):
 for paragraph in self.corpus.paras(fileids=fileid):
 yield [
 pos_tag(wordpunct_tokenize(sent))
 for sent in sent_tokenize(paragraph)
]

As we gradually build up the text data structure we need (a list of
documents, composed of lists of paragraphs, which are lists of sen‐
tences, where a sentence is a list of token, tag tuples), we are adding
much more content to the original text than we are removing. For
this reason, we should be prepared to apply a compression method
to keep disk storage under control.

Writing to pickle
There are several options for transforming and saving a preprocessed corpus, but our
preferred method is using pickle. With this approach we write an iterator that loads
one document into memory at a time, converts it into the target data structure, and
dumps a string representation of that structure to a small file on disk. While the
resulting string representation is not human readable, it is compressed, easier to load,
serialize and deserialize, and thus fairly efficient.

Corpus Transformation | 49

To save the transformed documents, we’ll add a preprocess() method. Once we have
established a place on disk to retrieve the original files and to store their processed,
pickled, compressed counterparts, we create a temporary document variable that cre‐
ates our list of lists of lists of tuples data structure. Then, after we serialize the docu‐
ment and write it to disk using the highest compression option, we delete it before
moving on to the next file to ensure that we are not holding extraneous content in
memory:

import pickle
...

 def process(self, fileid):
 """
 For a single file, checks the location on disk to ensure no errors,
 uses +tokenize()+ to perform the preprocessing, and writes transformed
 document as a pickle to target location.
 """
 # Compute the outpath to write the file to.
 target = self.abspath(fileid)
 parent = os.path.dirname(target)

 # Make sure the directory exists
 if not os.path.exists(parent):
 os.makedirs(parent)

 # Make sure that the parent is a directory and not a file
 if not os.path.isdir(parent):
 raise ValueError(
 "Please supply a directory to write preprocessed data to."
)

 # Create a data structure for the pickle
 document = list(self.tokenize(fileid))

 # Open and serialize the pickle to disk
 with open(target, 'wb') as f:
 pickle.dump(document, f, pickle.HIGHEST_PROTOCOL)

 # Clean up the document
 del document

 # Return the target fileid
 return target

Our preprocess() method will be called multiple times by the following trans
form() runner:

50 | Chapter 3: Corpus Preprocessing and Wrangling

...

 def transform(self, fileids=None, categories=None):
 # Make the target directory if it doesn't already exist
 if not os.path.exists(self.target):
 os.makedirs(self.target)

 # Resolve the fileids to start processing
 for fileid in self.fileids(fileids, categories):
 yield self.process(fileid)

In Chapter 11, we will explore methods for parallelizing this transform() method,
which will enable rapid preprocessing and intermediate storage.

Reading the Processed Corpus
Once we have a compressed, preprocessed, pickled corpus, we can quickly access our
corpus data without having to reapply tokenization methods or any string parsing—
instead directly loading Python data structures and thus saving a significant amount
of time and effort.

To read our corpus, we require a PickledCorpusReader class that uses
pickle.load() to quickly retrieve the Python structures from one document at a
time. This reader contains all the functionality of the HTMLCorpusReader (since it
extends it), but since it isn’t working with raw text under the hood, it will be many
times faster. Here, we override the HTMLCorpusReader docs() method with one that
knows to load documents from pickles:

import pickle

PKL_PATTERN = r'(?!\.)[a-z_\s]+/[a-f0-9]+\.pickle'

class PickledCorpusReader(HTMLCorpusReader):

 def __init__(self, root, fileids=PKL_PATTERN, **kwargs):
 if not any(key.startswith('cat_') for key in kwargs.keys()):
 kwargs['cat_pattern'] = CAT_PATTERN
 CategorizedCorpusReader.__init__(self, kwargs)
 CorpusReader.__init__(self, root, fileids)

 def docs(self, fileids=None, categories=None):
 fileids = self.resolve(fileids, categories)
 # Load one pickled document into memory at a time.
 for path in self.abspaths(fileids):
 with open(path, 'rb') as f:
 yield pickle.load(f)

Corpus Transformation | 51

Because each document is represented as a Python list of paragraphs, we can imple‐
ment a paras() method as follows:

...
 def paras(self, fileids=None, categories=None):
 for doc in self.docs(fileids, categories):
 for para in doc:
 yield para

Each paragraph is also a list of sentences, so we can implement the sents() method
similarly to return all sentences from the requested documents. Note that in this
method like in the docs() and paras() method, the fileids and categories argu‐
ments allow you to specify exactly which documents to fetch information from; if
both these arguments are None then the entire corpus is returned. A single document
can be retrieved by passing its relative path to the corpus root to the fileids
argument.

...
 def sents(self, fileids=None, categories=None):
 for para in self.paras(fileids, categories):
 for sent in para:
 yield sent

Sentences are lists of (token, tag) tuples, so we need two methods to access the
ordered set of words that make up a document or documents. The first tagged()
method returns the token and tag together, the second words() method returns only
the token in question.

...
 def tagged(self, fileids=None, categories=None):
 for sent in self.sents(fileids, categories):
 for tagged_token in sent:
 yield tagged_token

 def words(self, fileids=None, categories=None):
 for tagged in self.tagged(fileids, categories):
 yield tagged[0]

When dealing with large corpora, the PickledCorpusReader makes things immensely
easier. Although preprocessing and accessing data can be parallelized using the multi
processing Python library (which we’ll see in Chapter 11), once the corpus is used to
build models, a single sequential scan of all the documents before vectorization is
required. Though this process can also be parallelized, it is not common to do so
because of the experimental nature of exploratory modeling. Utilizing the pickle seri‐
alization speeds up the modeling and exploration process significantly!

52 | Chapter 3: Corpus Preprocessing and Wrangling

Conclusion
In this chapter, we learned how to preprocess a corpus by performing segmentation,
tokenization, and part-of-speech tagging in preparation for machine learning. In the
next chapter, we will establish a common vocabulary for machine learning and dis‐
cuss the ways in which machine learning on text differs from the kind of statistical
programming we have done for previous applications.

First, we will consider how to frame learning problems now that our input data is
text, meaning we are working in a very high-dimensional space where our instances
are complete documents, and our features can include word-level attributes like
vocabulary and token frequency, but also metadata like author, date, and source. Our
next step will be to prepare our preprocessed text data for machine learning by
encoding it as vectors. We’ll weigh several techniques for vector encoding, and dis‐
cuss how to wrap that encoding process in a pipeline to allow for systematic loading,
normalization, and feature extraction. Finally, we’ll discuss how to reunite the extrac‐
ted features to allow for more complex analysis and more sophisticated modeling.
These steps will leave us poised to extract meaningful patterns from our corpus and
to use those patterns to make predictions about new, as-yet unseen data.

Conclusion | 53

CHAPTER 4

Text Vectorization and Transformation
Pipelines

Machine learning algorithms operate on a numeric feature space, expecting input as a
two-dimensional array where rows are instances and columns are features. In order
to perform machine learning on text, we need to transform our documents into vec‐
tor representations such that we can apply numeric machine learning. This process is
called feature extraction or more simply, vectorization, and is an essential first step
toward language-aware analysis.

Representing documents numerically gives us the ability to perform meaningful ana‐
lytics and also creates the instances on which machine learning algorithms operate. In
text analysis, instances are entire documents or utterances, which can vary in length
from quotes or tweets to entire books, but whose vectors are always of a uniform
length. Each property of the vector representation is a feature. For text, features repre‐
sent attributes and properties of documents—including its content as well as meta
attributes, such as document length, author, source, and publication date. When con‐
sidered together, the features of a document describe a multidimensional feature
space on which machine learning methods can be applied.

For this reason, we must now make a critical shift in how we think about language—
from a sequence of words to points that occupy a high-dimensional semantic space.
Points in space can be close together or far apart, tightly clustered or evenly dis‐
tributed. Semantic space is therefore mapped in such a way where documents with
similar meanings are closer together and those that are different are farther apart. By
encoding similarity as distance, we can begin to derive the primary components of
documents and draw decision boundaries in our semantic space.

The simplest encoding of semantic space is the bag-of-words model, whose primary
insight is that meaning and similarity are encoded in vocabulary. For example, the

55

Wikipedia articles about baseball and Babe Ruth are probably very similar. Not only
will many of the same words appear in both, they will not share many words in com‐
mon with articles about casseroles or quantitative easing. This model, while simple, is
extremely effective and forms the starting point for the more complex models we will
explore.

In this chapter, we will demonstrate how to use the vectorization process to combine
linguistic techniques from NLTK with machine learning techniques in Scikit-Learn
and Gensim, creating custom transformers that can be used inside repeatable and
reusable pipelines. By the end of this chapter, we will be ready to engage our prepro‐
cessed corpus, transforming documents to model space so that we can begin making
predictions.

Words in Space
To vectorize a corpus with a bag-of-words (BOW) approach, we represent every
document from the corpus as a vector whose length is equal to the vocabulary of the
corpus. We can simplify the computation by sorting token positions of the vector into
alphabetical order, as shown in Figure 4-1. Alternatively, we can keep a dictionary
that maps tokens to vector positions. Either way, we arrive at a vector mapping of the
corpus that enables us to uniquely represent every document.

Figure 4-1. Encoding documents as vectors

What should each element in the document vector be? In the next few sections, we
will explore several choices, each of which extends or modifies the base bag-of-words
model to describe semantic space. We will look at four types of vector encoding—fre‐
quency, one-hot, TF–IDF, and distributed representations—and discuss their imple‐
mentations in Scikit-Learn, Gensim, and NLTK. We’ll operate on a small corpus of
the three sentences in the example figures.

To set this up, let’s create a list of our documents and tokenize them for the proceed‐
ing vectorization examples. The tokenize method performs some lightweight nor‐

56 | Chapter 4: Text Vectorization and Transformation Pipelines

malization, stripping punctuation using the string.punctuation character set and
setting the text to lowercase. This function also performs some feature reduction
using the SnowballStemmer to remove affixes such as plurality (“bats” and “bat” are
the same token). The examples in the next section will utilize this example corpus and
some will use the tokenization method.

import nltk
import string

def tokenize(text):
 stem = nltk.stem.SnowballStemmer('english')
 text = text.lower()

 for token in nltk.word_tokenize(text):
 if token in string.punctuation: continue
 yield stem.stem(token)

corpus = [
 "The elephant sneezed at the sight of potatoes.",
 "Bats can see via echolocation. See the bat sight sneeze!",
 "Wondering, she opened the door to the studio.",
]

The choice of a specific vectorization technique will be largely driven by the problem
space. Similarly, our choice of implementation—whether NLTK, Scikit-Learn, or
Gensim—should be dictated by the requirements of the application. For instance,
NLTK offers many methods that are especially well-suited to text data, but is a big
dependency. Scikit-Learn was not designed with text in mind, but does offer a robust
API and many other conveniences (which we’ll explore later in this chapter) particu‐
larly useful in an applied context. Gensim can serialize dictionaries and references in
matrix market format, making it more flexible for multiple platforms. However,
unlike Scikit-Learn, Gensim doesn’t do any work on behalf of your documents for
tokenization or stemming.

For this reason, as we walk through each of the four approaches to encoding, we’ll
show a few options for implementation—“With NLTK,” “In Scikit-Learn,” and “The
Gensim Way.”

Frequency Vectors
The simplest vector encoding model is to simply fill in the vector with the frequency
of each word as it appears in the document. In this encoding scheme, each document
is represented as the multiset of the tokens that compose it and the value for each
word position in the vector is its count. This representation can either be a straight
count (integer) encoding as shown in Figure 4-2 or a normalized encoding where
each word is weighted by the total number of words in the document.

Words in Space | 57

Figure 4-2. Token frequency as vector encoding

With NLTK

NLTK expects features as a dict object whose keys are the names of the features and
whose values are boolean or numeric. To encode our documents in this way, we’ll cre‐
ate a vectorize function that creates a dictionary whose keys are the tokens in the
document and whose values are the number of times that token appears in the docu‐
ment.

The defaultdict object allows us to specify what the dictionary will return for a key
that hasn’t been assigned to it yet. By setting defaultdict(int) we are specifying that
a 0 should be returned, thus creating a simple counting dictionary. We can map this
function to every item in the corpus using the last line of code, creating an iterable of
vectorized documents.

from collections import defaultdict

def vectorize(doc):
 features = defaultdict(int)
 for token in tokenize(doc):
 features[token] += 1
 return features

vectors = map(vectorize, corpus)

In Scikit-Learn

The CountVectorizer transformer from the sklearn.feature_extraction model
has its own internal tokenization and normalization methods. The fit method of the
vectorizer expects an iterable or list of strings or file objects, and creates a dictionary
of the vocabulary on the corpus. When transform is called, each individual docu‐
ment is transformed into a sparse array whose index tuple is the row (the document
ID) and the token ID from the dictionary, and whose value is the count:

58 | Chapter 4: Text Vectorization and Transformation Pipelines

from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()
vectors = vectorizer.fit_transform(corpus)

Vectors can become extremely sparse, particularly as vocabularies
get larger, which can have a significant impact on the speed and
performance of machine learning models. For very large corpora, it
is recommended to use the Scikit-Learn HashingVectorizer,
which uses a hashing trick to find the token string name to feature
index mapping. This means it uses very low memory and scales to
large datasets as it does not need to store the entire vocabulary and
it is faster to pickle and fit since there is no state. However, there is
no inverse transform (from vector to text), there can be collisions,
and there is no inverse document frequency weighting.

The Gensim way

Gensim’s frequency encoder is called doc2bow. To use doc2bow, we first create a Gen‐
sim Dictionary that maps tokens to indices based on observed order (eliminating the
overhead of lexicographic sorting). The dictionary object can be loaded or saved to
disk, and implements a doc2bow library that accepts a pretokenized document and
returns a sparse matrix of (id, count) tuples where the id is the token’s id in the
dictionary. Because the doc2bow method only takes a single document instance, we
use the list comprehension to restore the entire corpus, loading the tokenized docu‐
ments into memory so we don’t exhaust our generator:

import gensim

corpus = [tokenize(doc) for doc in corpus]
id2word = gensim.corpora.Dictionary(corpus)
vectors = [
 id2word.doc2bow(doc) for doc in corpus
]

One-Hot Encoding
Because they disregard grammar and the relative position of words in documents,
frequency-based encoding methods suffer from the long tail, or Zipfian distribution,
that characterizes natural language. As a result, tokens that occur very frequently are
orders of magnitude more “significant” than other, less frequent ones. This can have a
significant impact on some models (e.g., generalized linear models) that expect nor‐
mally distributed features.

A solution to this problem is one-hot encoding, a boolean vector encoding method
that marks a particular vector index with a value of true (1) if the token exists in the
document and false (0) if it does not. In other words, each element of a one-hot enco‐

Words in Space | 59

ded vector reflects either the presence or absence of the token in the described text as
shown in Figure 4-3.

Figure 4-3. One-hot encoding

One-hot encoding reduces the imbalance issue of the distribution of tokens, simplify‐
ing a document to its constituent components. This reduction is most effective for
very small documents (sentences, tweets) that don’t contain very many repeated ele‐
ments, and is usually applied to models that have very good smoothing properties.
One-hot encoding is also commonly used in artificial neural networks, whose activa‐
tion functions require input to be in the discrete range of [0,1] or [-1,1].

With NLTK
The NLTK implementation of one-hot encoding is a dictionary whose keys are
tokens and whose value is True:

def vectorize(doc):
 return {
 token: True
 for token in doc
 }

vectors = map(vectorize, corpus)

Dictionaries act as simple sparse matrices in the NLTK case because it is not neces‐
sary to mark every absent word False. In addition to the boolean dictionary values, it
is also acceptable to use an integer value; 1 for present and 0 for absent.

In Scikit-Learn

In Scikit-Learn, one-hot encoding is implemented with the Binarizer transformer in
the preprocessing module. The Binarizer takes only numeric data, so the text data
must be transformed into a numeric space using the CountVectorizer ahead of one-
hot encoding. The Binarizer class uses a threshold value (0 by default) such that all

60 | Chapter 4: Text Vectorization and Transformation Pipelines

values of the vector that are less than or equal to the threshold are set to zero, while
those that are greater than the threshold are set to 1. Therefore, by default, the
Binarizer converts all frequency values to 1 while maintaining the zero-valued fre‐
quencies.

from sklearn.preprocessing import Binarizer

freq = CountVectorizer()
corpus = freq.fit_transform(corpus)

onehot = Binarizer()
corpus = onehot.fit_transform(corpus.toarray())

The corpus.toarray() method is optional; it converts the sparse matrix representa‐
tion to a dense one. In corpora with large vocabularies, the sparse matrix representa‐
tion is much better. Note that we could also use CountVectorizer(binary=True) to
achieve one-hot encoding in the above, obviating the Binarizer.

In spite of its name, the OneHotEncoder transformer in the
sklearn.preprocessing module is not exactly the right fit for this
task. The OneHotEncoder treats each vector component (column)
as an independent categorical variable, expanding the dimensional‐
ity of the vector for each observed value in each column. In this
case, the component (sight, 0) and (sight, 1) would be treated
as two categorical dimensions rather than as a single binary enco‐
ded vector component.

The Gensim way

While Gensim does not have a specific one-hot encoder, its doc2bow method returns
a list of tuples that we can manage on the fly. Extending the code from the Gensim
frequency vectorization example in the previous section, we can one-hot encode our
vectors with our id2word dictionary. To get our vectors, an inner list comprehension
converts the list of tuples returned from the doc2bow method into a list of (token_id,
1) tuples and the outer comprehension applies that converter to all documents in the
corpus:

corpus = [tokenize(doc) for doc in corpus]
id2word = gensim.corpora.Dictionary(corpus)
vectors = [
 [(token[0], 1) for token in id2word.doc2bow(doc)]
 for doc in corpus
]

One-hot encoding represents similarity and difference at the document level, but
because all words are rendered equidistant, it is not able to encode per-word similar‐
ity. Moreover, because all words are equally distant, word form becomes incredibly

Words in Space | 61

important; the tokens “trying” and “try” will be equally distant from unrelated tokens
like “red” or “bicycle”! Normalizing tokens to a single word class, either through
stemming or lemmatization, which we’ll explore later in this chapter, ensures that dif‐
ferent forms of tokens that embed plurality, case, gender, cardinality, tense, etc., are
treated as single vector components, reducing the feature space and making models
more performant.

Term Frequency–Inverse Document Frequency
The bag-of-words representations that we have explored so far only describe a docu‐
ment in a standalone fashion, not taking into account the context of the corpus. A
better approach would be to consider the relative frequency or rareness of tokens in
the document against their frequency in other documents. The central insight is that
meaning is most likely encoded in the more rare terms from a document. For exam‐
ple, in a corpus of sports text, tokens such as “umpire,” “base,” and “dugout” appear
more frequently in documents that discuss baseball, while other tokens that appear
frequently throughout the corpus, like “run,” “score,” and “play,” are less important.

TF–IDF, term frequency–inverse document frequency, encoding normalizes the fre‐
quency of tokens in a document with respect to the rest of the corpus. This encoding
approach accentuates terms that are very relevant to a specific instance, as shown in
Figure 4-4, where the token studio has a higher relevance to this document since it
only appears there.

Figure 4-4. TF–IDF encoding

TF–IDF is computed on a per-term basis, such that the relevance of a token to a
document is measured by the scaled frequency of the appearance of the term in the
document, normalized by the inverse of the scaled frequency of the term in the entire
corpus.

62 | Chapter 4: Text Vectorization and Transformation Pipelines

Computing TF–IDF
The term frequency of a term given a document, t f t, d , can be the boolean fre‐
quency (as in one-hot encoding, 1 if t occurs in d 0 otherwise), or the count. How‐
ever, generally both the term frequency and inverse document frequency are scaled
logarithmically to prevent bias of longer documents or terms that appear much more
frequently relative to other terms: t f t, d = 1 + log f t, d.

Similarly, the inverse document frequency of a term given the set of documents can
be logarithmically scaled as follows: id f t, D = log 1 + N

nt
, where N is the number of

documents and nt is the number of occurrences of the term t in all documents. TF–
IDF is then computed completely as t f id f t, d, D = t f t, d · id f t, D .

Because the ratio of the id f log function is greater or equal to 1, the TF–IDF score is
always greater than or equal to zero. We interpret the score to mean that the closer the
TF–IDF score of a term is to 1, the more informative that term is to that document.
The closer the score is to zero, the less informative that term is.

With NLTK

To vectorize text in this way with NLTK, we use the TextCollection class, a wrapper
for a list of texts or a corpus consisting of one or more texts. This class provides sup‐
port for counting, concordancing, collocation discovery, and more importantly, com‐
puting tf_idf.

Because TF–IDF requires the entire corpus, our new version of vectorize does not
accept a single document, but rather all documents. After applying our tokenization
function and creating the text collection, the function goes through each document in
the corpus and yields a dictionary whose keys are the terms and whose values are the
TF–IDF score for the term in that particular document.

from nltk.text import TextCollection

def vectorize(corpus):
 corpus = [tokenize(doc) for doc in corpus]
 texts = TextCollection(corpus)

 for doc in corpus:
 yield {
 term: texts.tf_idf(term, doc)
 for term in doc
 }

Words in Space | 63

In Scikit-Learn

Scikit-Learn provides a transformer called the TfidfVectorizer in the module called
feature_extraction.text for vectorizing documents with TF–IDF scores. Under
the hood, the TfidfVectorizer uses the CountVectorizer estimator we used to pro‐
duce the bag-of-words encoding to count occurrences of tokens, followed by a Tfidf
Transformer, which normalizes these occurrence counts by the inverse document
frequency.

The input for a TfidfVectorizer is expected to be a sequence of filenames, file-like
objects, or strings that contain a collection of raw documents, similar to that of the
CountVectorizer. As a result, a default tokenization and preprocessing method is
applied unless other functions are specified. The vectorizer returns a sparse matrix
representation in the form of ((doc, term), tfidf) where each key is a document
and term pair and the value is the TF–IDF score.

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer()
corpus = tfidf.fit_transform(corpus)

The Gensim way

In Gensim, the TfidfModel data structure is similar to the Dictionary object in that
it stores a mapping of terms and their vector positions in the order they are observed,
but additionally stores the corpus frequency of those terms so it can vectorize docu‐
ments on demand. As before, Gensim allows us to apply our own tokenization
method, expecting a corpus that is a list of lists of tokens. We first construct the lexi‐
con and use it to instantiate the TfidfModel, which computes the normalized inverse
document frequency. We can then fetch the TF–IDF representation for each vector
using a getitem, dictionary-like syntax, after applying the doc2bow method to each
document using the lexicon.

corpus = [tokenize(doc) for doc in corpus]
lexicon = gensim.corpora.Dictionary(corpus)
tfidf = gensim.models.TfidfModel(dictionary=lexicon, normalize=True)
vectors = [tfidf[lexicon.doc2bow(doc)] for doc in corpus]

Gensim provides helper functionality to write dictionaries and models to disk in a
compact format, meaning you can conveniently save both the TF–IDF model and the
lexicon to disk in order to load them later to vectorize new documents. It is possible
(though slightly more work) to achieve the same result by using the pickle module
in combination with Scikit-Learn. To save a Gensim model to disk:

lexicon.save_as_text('lexicon.txt', sort_by_word=True)
tfidf.save('tfidf.pkl')

64 | Chapter 4: Text Vectorization and Transformation Pipelines

This will save the lexicon as a text-delimited text file, sorted lexicographically, and the
TF–IDF model as a pickled sparse matrix. Note that the Dictionary object can also
be saved more compactly in a binary format using its save method, but
save_as_text allows easy inspection of the dictionary for later work. To load the
models from disk:

lexicon = gensim.corpora.Dictionary.load_from_text('lexicon.txt')
tfidf = gensim.models.TfidfModel.load('tfidf.pkl')

One benefit of TF–IDF is that it naturally addresses the problem of stopwords, those
words most likely to appear in all documents in the corpus (e.g., “a,” “the,” “of ”, etc.),
and thus will accrue very small weights under this encoding scheme. This biases the
TF–IDF model toward moderately rare words. As a result TF–IDF is widely used for
bag-of-words models, and is an excellent starting point for most text analytics.

Distributed Representation
While frequency, one-hot, and TF–IDF encoding enable us to put documents into
vector space, it is often useful to also encode the similarities between documents in
the context of that same vector space. Unfortunately, these vectorization methods
produce document vectors with non-negative elements, which means we won’t be
able to compare documents that don’t share terms (because two vectors with a cosine
distance of 1 will be considered far apart, even if they are semantically similar).

When document similarity is important in the context of an application, we instead
encode text along a continuous scale with a distributed representation, as shown in
Figure 4-5. This means that the resulting document vector is not a simple mapping
from token position to token score. Instead, the document is represented in a feature
space that has been embedded to represent word similarity. The complexity of this
space (and the resulting vector length) is the product of how the mapping to that rep‐
resentation is learned. The complexity of this space (and the resulting vector length)
is the product of how that representation is trained and not directly tied to the docu‐
ment itself.

Figure 4-5. Distributed representation

Words in Space | 65

1 Quoc V. Le and Tomas Mikolov, Distributed Representations of Sentences and Documents, (2014) http://bit.ly/
2GJBHjZ

Word2vec, created by a team of researchers at Google led by Tomáš Mikolov, imple‐
ments a word embedding model that enables us to create these kinds of distributed
representations. The word2vec algorithm trains word representations based on either
a continuous bag-of-words (CBOW) or skip-gram model, such that words are
embedded in space along with similar words based on their context. For example,
Gensim’s implementation uses a feedforward network.

The doc2vec1 algorithm is an extension of word2vec. It proposes a paragraph vector—
an unsupervised algorithm that learns fixed-length feature representations from vari‐
able length documents. This representation attempts to inherit the semantic proper‐
ties of words such that “red” and “colorful” are more similar to each other than they
are to “river” or “governance.” Moreover, the paragraph vector takes into considera‐
tion the ordering of words within a narrow context, similar to an n-gram model. The
combined result is much more effective than a bag-of-words or bag-of-n-grams
model because it generalizes better and has a lower dimensionality but still is of a
fixed length so it can be used in common machine learning algorithms.

The Gensim way
Neither NLTK nor Scikit-Learn provide implementations of these kinds of word
embeddings. Gensim’s implementation allows users to train both word2vec and
doc2vec models on custom corpora and also conveniently comes with a model that is
pretrained on the Google news corpus.

To use Gensim’s pretrained models, you’ll need to download the
model bin file, which clocks in at 1.5 GB. For applications that
require extremely lightweight dependencies (e.g., if they have to
run on an AWS lambda instance), this may not be practicable.

We can train our own model as follows. First, we use a list comprehension to load our
corpus into memory. (Gensim supports streaming, but this will enable us to avoid
exhausting the generator.) Next, we create a list of TaggedDocument objects, which
extend the LabeledSentence, and in turn the distributed representation of word2vec.
TaggedDocument objects consist of words and tags. We can instantiate the tagged
document with the list of tokens along with a single tag, one that uniquely identifies
the instance. In this example, we’ve labeled each document as "d{}".format(idx),
e.g. d0, d1, d2 and so forth.

Once we have a list of tagged documents, we instantiate the Doc2Vec model and spec‐
ify the size of the vector as well as the minimum count, which ignores all tokens that

66 | Chapter 4: Text Vectorization and Transformation Pipelines

http://bit.ly/2GJBHjZ
http://bit.ly/2GJBHjZ

have a frequency less than that number. The size parameter is usually not as low a
dimensionality as 5; we selected such a small number for demonstration purposes
only. We also set the min_count parameter to zero to ensure we consider all tokens,
but generally this is set between 3 and 5, depending on how much information the
model needs to capture. Once instantiated, an unsupervised neural network is trained
to learn the vector representations, which can then be accessed via the docvecs
property.

from gensim.models.doc2vec import TaggedDocument, Doc2Vec

corpus = [list(tokenize(doc)) for doc in corpus]
corpus = [
 TaggedDocument(words, ['d{}'.format(idx)])
 for idx, words in enumerate(corpus)
]

model = Doc2Vec(corpus, size=5, min_count=0)
print(model.docvecs[0])
[0.01797447 -0.01509272 0.0731937 0.06814702 -0.0846546]

Distributed representations will dramatically improve results over TF–IDF models
when used correctly. The model itself can be saved to disk and retrained in an active
fashion, making it extremely flexible for a variety of use cases. However, on larger
corpora, training can be slow and memory intensive, and it might not be as good as a
TF–IDF model with Principal Component Analysis (PCA) or Singular Value Decom‐
position (SVD) applied to reduce the feature space. In the end, however, this repre‐
sentation is breakthrough work that has led to a dramatic improvement in text
processing capabilities of data products in recent years.

Again, the choice of vectorization technique (as well as the library implementation)
tend to be use case- and application-specific, as summarized in Table 4-1.

Table 4-1. Overview of text vectorization methods

Vectorization
Method

Function Good For Considerations

Frequency Counts term frequencies Bayesian models Most frequent words not always most
informative

One-Hot Encoding Binarizes term occurrence
(0, 1)

Neural networks All words equidistant, so normalization extra
important

TF–IDF Normalizes term
frequencies across
documents

General purpose Moderately frequent terms may not be
representative of document topics

Distributed
Representations

Context-based, continuous
term similarity encoding

Modeling more
complex relationships

Performance intensive; difficult to scale
without additional tools (e.g., Tensorflow)

Words in Space | 67

Later in this chapter we will explore the Scikit-Learn Pipeline object, which enables
us to streamline vectorization together with later modeling phrases. As such, we often
prefer to use vectorizers that conform to the Scikit-Learn API. In the next section, we
will discuss how the API is organized and demonstrate how to integrate vectorization
into a complete pipeline to construct the core of a fully operational (and customiza‐
ble!) textual machine learning application.

The Scikit-Learn API
Scikit-Learn is an extension of SciPy (a scikit) whose primary purpose is to provide
machine learning algorithms as well as the tools and utilities required to engage in
successful modeling. Its primary contribution is an “API for machine learning” that
exposes the implementations of a wide array of model families into a single, user-
friendly interface. The result is that Scikit-Learn can be used to simultaneously train a
staggering variety of models, evaluate and compare them, and then utilize the fitted
model to make predictions on new data. Because Scikit-Learn provides a standar‐
dized API, this can be done with little effort and models can be prototyped and evalu‐
ated by simply swapping out a few lines of code.

The BaseEstimator Interface
The API itself is object-oriented and describes a hierarchy of interfaces for different
machine learning tasks. The root of the hierarchy is an Estimator, broadly any object
that can learn from data. The primary Estimator objects implement classifiers,
regressors, or clustering algorithms. However, they can also include a wide array of
data manipulation, from dimensionality reduction to feature extraction from raw
data. The Estimator essentially serves as an interface, and classes that implement
Estimator functionality must have two methods—fit and predict—as shown here:

from sklearn.base import BaseEstimator

class Estimator(BaseEstimator):

 def fit(self, X, y=None):
 """
 Accept input data, X, and optional target data, y. Returns self.
 """
 return self

 def predict(self, X):
 """
 Accept input data, X and return a vector of predictions for each row.
 """
 return yhat

68 | Chapter 4: Text Vectorization and Transformation Pipelines

The Estimator.fit method sets the state of the estimator based on the training data,
X and y. The training data X is expected to be matrix-like—for example, a two-
dimensional NumPy array of shape (n_samples, n_features) or a Pandas DataFrame
whose rows are the instances and whose columns are the features. Supervised estima‐
tors are also fit with a one-dimensional NumPy array, y, that holds the correct labels.
The fitting process modifies the internal state of the estimator such that it is ready or
able to make predictions. This state is stored in instance variables that are usually
postfixed with an underscore (e.g., Estimator.coefs_). Because this method modi‐
fies an internal state, it returns self so the method can be chained.

The Estimator.predict method creates predictions using the internal, fitted state of
the model on the new data, X. The input for the method must have the same number
of columns as the training data passed to fit, and can have as many rows as predic‐
tions are required. This method returns a vector, yhat, which contains the predic‐
tions for each row in the input data.

Extending Scikit-Learn’s BaseEstimator automatically gives the
Estimator a fit_predict method, which allows you to combine
fit and predict in one simple call.

Estimator objects have parameters (also called hyperparameters) that define how the
fitting process is conducted. These parameters are set when the Estimator is instanti‐
ated (and if not specified, they are set to reasonable defaults), and can be modified
with the get_param and set_param methods that are also available from the BaseEsti
mator super class.

We engage the Scikit-Learn API by specifying the package and type of the estimator.
Here we select the Naive Bayes model family, and a specific member of the family, a
multinomial model (which is suitable for text classification). The model is defined
when the class is instantiated and hyperparameters are passed in. Here we pass an
alpha parameter that is used for additive smoothing, as well as prior probabilities for
each of our two classes. The model is trained on specific data (documents and
labels) and at that point becomes a fitted model. This basic usage is the same for
every model (Estimator) in Scikit-Learn, from random forest decision tree ensem‐
bles to logistic regressions and beyond.

from sklearn.naive_bayes import MultinomialNB

model = MultinomialNB(alpha=0.0, class_prior=[0.4, 0.6])
model.fit(documents, labels)

The Scikit-Learn API | 69

Extending TransformerMixin
Scikit-Learn also specifies utilities for performing machine learning in a repeatable
fashion. We could not discuss Scikit-Learn without also discussing the Transformer
interface. A Transformer is a special type of Estimator that creates a new dataset
from an old one based on rules that it has learned from the fitting process. The inter‐
face is as follows:

from sklearn.base import TransformerMixin

class Transfomer(BaseEstimator, TransformerMixin):

 def fit(self, X, y=None):
 """
 Learn how to transform data based on input data, X.
 """
 return self

 def transform(self, X):
 """
 Transform X into a new dataset, Xprime and return it.
 """
 return Xprime

The Transformer.transform method takes a dataset and returns a new dataset, X`,
with new values based on the transformation process. There are several transformers
included in Scikit-Learn, including transformers to normalize or scale features, han‐
dle missing values (imputation), perform dimensionality reduction, extract or select
features, or perform mappings from one feature space to another.

Although both NLTK, Gensim, and even newer text analytics libraries like SpaCy
have their own internal APIs and learning mechanisms, the scope and comprehen‐
siveness of Scikit-Learn models and methodologies for machine learning make it an
essential part of the modeling workflow. As a result, we propose to use the API to cre‐
ate our own Transformer and Estimator objects that implement methods from
NLTK and Gensim. For example, we can create topic modeling estimators that wrap
Gensim’s LDA and LSA models (which are not currently included in Scikit-Learn) or
create transformers that utilize NLTK’s part-of-speech tagging and named entity
chunking methods.

Creating a custom Gensim vectorization transformer
Gensim vectorization techniques are an interesting case study because Gensim cor‐
pora can be saved and loaded from disk in such a way as to remain decoupled from
the pipeline. However, it is possible to build a custom transformer that uses Gensim
vectorization. Our GensimVectorizer transformer will wrap a Gensim Dictionary
object generated during fit() and whose doc2bow method is used during

70 | Chapter 4: Text Vectorization and Transformation Pipelines

transform(). The Dictionary object (like the TfidfModel) can be saved and loaded
from disk, so our transformer utilizes that methodology by taking a path on instantia‐
tion. If a file exists at that path, it is loaded immediately. Additionally, a save()
method allows us to write our Dictionary to disk, which we can do in fit().

The fit() method constructs the Dictionary object by passing already tokenized
and normalized documents to the Dictionary constructor. The Dictionary is then
immediately saved to disk so that the transformer can be loaded without requiring a
refit. The transform() method uses the Dictionary.doc2bow method, which returns
a sparse representation of the document as a list of (token_id, frequency) tuples.
This representation can present challenges with Scikit-Learn, however, so we utilize a
Gensim helper function, sparse2full, to convert the sparse representation into a
NumPy array.

import os
from gensim.corpora import Dictionary
from gensim.matutils import sparse2full

class GensimVectorizer(BaseEstimator, TransformerMixin):

 def __init__(self, path=None):
 self.path = path
 self.id2word = None
 self.load()

 def load(self):
 if os.path.exists(self.path):
 self.id2word = Dictionary.load(self.path)

 def save(self):
 self.id2word.save(self.path)

 def fit(self, documents, labels=None):
 self.id2word = Dictionary(documents)
 self.save()
 return self

 def transform(self, documents):
 for document in documents:
 docvec = self.id2word.doc2bow(document)
 yield sparse2full(docvec, len(self.id2word))

It is easy to see how the vectorization methodologies that we discussed earlier in the
chapter can be wrapped by Scikit-Learn transformers. This gives us more flexibility in
the approaches we take, while still allowing us to leverage the machine learning utilit‐
ies in each library. We will leave it to the reader to extend this example and investigate
TF–IDF and distributed representation transformers that are implemented in the
same fashion.

The Scikit-Learn API | 71

Creating a custom text normalization transformer
Many model families suffer from “the curse of dimensionality”; as the feature space
increases in dimensions, the data becomes more sparse and less informative to the
underlying decision space. Text normalization reduces the number of dimensions,
decreasing sparsity. Besides the simple filtering of tokens (removing punctuation and
stopwords), there are two primary methods for text normalization: stemming and
lemmatization.

Stemming uses a series of rules (or a model) to slice a string to a smaller substring.
The goal is to remove word affixes (particularly suffixes) that modify meaning. For
example, removing an 's' or 'es', which generally indicates plurality in Latin lan‐
guages. Lemmatization, on the other hand, uses a dictionary to look up every token
and returns the canonical “head” word in the dictionary, called a lemma. Because it is
looking up tokens from a ground truth, it can handle irregular cases as well as handle
tokens with different parts of speech. For example, the verb 'gardening' should be
lemmatized to 'to garden', while the nouns 'garden' and 'gardener' are both dif‐
ferent lemmas. Stemming would capture all of these tokens into a single 'garden'
token.

Stemming and lemmatization have their advantages and disadvantages. Because it
only requires us to splice word strings, stemming is faster. Lemmatization, on the
other hand, requires a lookup to a dictionary or database, and uses part-of-speech
tags to identify a word’s root lemma, making it noticeably slower than stemming, but
also more effective.

To perform text normalization in a systematic fashion, we will write a custom trans‐
former that puts these pieces together. Our TextNormalizer class takes as input a lan‐
guage that is used to load the correct stopwords from the NLTK corpus. We could
also customize the TextNormalizer to allow uses to choose between stemming and
lemmatization, and pass the language into the SnowballStemmer. For filtering extra‐
neous tokens, we create two methods. The first, is_punct(), checks if every character
in the token has a Unicode category that starts with 'P' (for punctuation); the sec‐
ond, is_stopword() determines if the token is in our set of stopwords.

import unicodedata
from sklearn.base import BaseEstimator, TransformerMixin

class TextNormalizer(BaseEstimator, TransformerMixin):

 def __init__(self, language='english'):
 self.stopwords = set(nltk.corpus.stopwords.words(language))
 self.lemmatizer = WordNetLemmatizer()

 def is_punct(self, token):
 return all(
 unicodedata.category(char).startswith('P') for char in token

72 | Chapter 4: Text Vectorization and Transformation Pipelines

)

 def is_stopword(self, token):
 return token.lower() in self.stopwords

We can then add a normalize() method that takes a single document composed of a
list of paragraphs, which are lists of sentences, which are lists of (token, tag) tuples
—the data format that we preprocessed raw HTML to in Chapter 3.

 def normalize(self, document):
 return [
 self.lemmatize(token, tag).lower()
 for paragraph in document
 for sentence in paragraph
 for (token, tag) in sentence
 if not self.is_punct(token) and not self.is_stopword(token)
]

This method applies the filtering functions to remove unwanted tokens and then
lemmatizes them. The lemmatize() method first converts the Penn Treebank part-of-
speech tags that are the default tag set in the nltk.pos_tag function to WordNet tags,
selecting nouns by default.

 def lemmatize(self, token, pos_tag):
 tag = {
 'N': wn.NOUN,
 'V': wn.VERB,
 'R': wn.ADV,
 'J': wn.ADJ
 }.get(pos_tag[0], wn.NOUN)

 return self.lemmatizer.lemmatize(token, tag)

Finally, we must add the Transformer interface, allowing us to add this class to a
Scikit-Learn pipeline, which we’ll explore in the next section:

 def fit(self, X, y=None):
 return self

 def transform(self, documents):
 for document in documents:
 yield self.normalize(document)

Note that text normalization is only one methodology, and also utilizes NLTK very
heavily, which may add unnecessary overhead to your application. Other options
could include removing tokens that appear above or below a particular count thres‐
hold or removing stopwords and then only selecting the first five to ten thousand
most common words. Yet another option is simply computing the cumulative fre‐
quency and only selecting words that contain 10%–50% of the cumulative frequency
distribution. These methods would allow us to ignore both the very low frequency

The Scikit-Learn API | 73

hapaxes (terms that appear only once) and the most common words, enabling us to
identify the most potentially predictive terms in the corpus.

The act of text normalization should be optional and applied care‐
fully because the operation is destructive in that it removes infor‐
mation. Case, punctuation, stopwords, and varying word
constructions are all critical to understanding language. Some
models may require indicators such as case. For example, a named
entity recognition classifier, because in English, proper nouns are
capitalized.

An alternative approach is to perform dimensionality reduction with Principal Com‐
ponent Analysis (PCA) or Singular Value Decomposition (SVD), to reduce the fea‐
ture space to a specific dimensionality (e.g., five or ten thousand dimensions) based
on word frequency. These transformers would have to be applied following a vector‐
izer transformer, and would have the effect of merging together words that are similar
into the same vector space.

Pipelines
The machine learning process often combines a series of transformers on raw data,
transforming the dataset each step of the way until it is passed to the fit method of a
final estimator. But if we don’t vectorize our documents in the same exact manner, we
will end up with wrong or, at the very least, unintelligible results. The Scikit-Learn
Pipeline object is the solution to this dilemma.

Pipeline objects enable us to integrate a series of transformers that combine normal‐
ization, vectorization, and feature analysis into a single, well-defined mechanism. As
shown in Figure 4-6, Pipeline objects move data from a loader (an object that will
wrap our CorpusReader from Chapter 2) into feature extraction mechanisms to
finally an estimator object that implements our predictive models. Pipelines are direc‐
ted acyclic graphs (DAGs) that can be simple linear chains of transformers to arbi‐
trarily complex branching and joining paths.

74 | Chapter 4: Text Vectorization and Transformation Pipelines

Figure 4-6. Pipelines for text vectorization and feature extraction

Pipeline Basics
The purpose of a Pipeline is to chain together multiple estimators representing a
fixed sequence of steps into a single unit. All estimators in the pipeline, except the last
one, must be transformers—that is, implement the transform method, while the last
estimator can be of any type, including predictive estimators. Pipelines provide con‐
venience; fit and transform can be called for single inputs across multiple objects at
once. Pipelines also provide a single interface for grid search of multiple estimators at
once. Most importantly, pipelines provide operationalization of text models by cou‐
pling a vectorization methodology with a predictive model.

Pipelines are constructed by describing a list of (key, value) pairs where the key is a
string that names the step and the value is the estimator object. Pipelines can be cre‐
ated either by using the make_pipeline helper function, which automatically deter‐
mines the names of the steps, or by specifying them directly. Generally, it is better to
specify the steps directly to provide good user documentation, whereas make_pipe
line is used more often for automatic pipeline construction.

Pipeline objects are a Scikit-Learn specific utility, but they are also the critical inte‐
gration point with NLTK and Gensim. Here is an example that joins the TextNormal
izer and GensimVectorizer we created in the last section together in advance of a
Bayesian model. By using the Transformer API as discussed earlier in the chapter, we
can use TextNormalizer to wrap NLTK CorpusReader objects and perform prepro‐
cessing and linguistic feature extraction. Our GensimVectorizer is responsible for
vectorization, and Scikit-Learn is responsible for the integration via Pipelines, utilities
like cross-validation, and the many models we will use, from Naive Bayes to Logistic
Regression.

Pipelines | 75

from sklearn.pipeline import Pipeline
from sklearn.naive_bayes import MultinomialNB

model = Pipeline([
 ('normalizer', TextNormalizer()),
 ('vectorizer', GensimVectorizer()),
 ('bayes', MultinomialNB()),
])

The Pipeline can then be used as a single instance of a complete model. Calling
model.fit is the same as calling fit on each estimator in sequence, transforming the
input and passing it on to the next step. Other methods like fit_transform behave
similarly. The pipeline will also have all the methods the last estimator in the pipeline
has. If the last estimator is a transformer, so too is the pipeline. If the last estimator is
a classifier, as in the example above, then the pipeline will also have predict and
score methods so that the entire model can be used as a classifier.

The estimators in the pipeline are stored as a list, and can be accessed by index. For
example, model.steps[1] returns the tuple ('vectorizer', GensimVectorizer

(path=None)). However, common usage is to identify estimators by their names
using the named_steps dictionary property of the Pipeline object. The easiest way to
access the predictive model is to use model.named_steps["bayes"] and fetch the
estimator directly.

Grid Search for Hyperparameter Optimization
In Chapter 5, we will talk more about model tuning and iteration, but for now we’ll
simply introduce an extension of the Pipeline, GridSearch, which is useful for
hyperparameter optimization. Grid search can be implemented to modify the param‐
eters of all estimators in the Pipeline as though it were a single object. In order to
access the attributes of estimators, you would use the set_params or get_params
pipeline methods with a dunderscore representation of the estimator and parameter
names as follows: estimator__parameter.

Let’s say that we want to one-hot encode only the terms that appear at least three
times in the corpus; we could modify the Binarizer as follows:

model.set_params(onehot__threshold=3.0)

Using this principle, we could execute a grid search by defining the search parameters
grid using the dunderscore parameter syntax. Consider the following grid search to
determine the best one-hot encoded Bayesian text classification model:

76 | Chapter 4: Text Vectorization and Transformation Pipelines

from sklearn.model_selection import GridSearchCV

search = GridSearchCV(model, param_grid={
 'count__analyzer': ['word', 'char', 'char_wb'],
 'count__ngram_range': [(1,1), (1,2), (1,3), (1,4), (1,5), (2,3)],
 'onehot__threshold': [0.0, 1.0, 2.0, 3.0],
 'bayes__alpha': [0.0, 1.0],
})

The search nominates three possibilities for the CountVectorizer analyzer parameter
(creating n-grams on word boundaries, character boundaries, or only on characters
that are between word boundaries), and several possibilities for the n-gram ranges to
tokenize against. We also specify the threshold for binarization, meaning that the n-
gram has to appear a certain number of times before it’s included in the model.
Finally the search specifies two smoothing parameters (the bayes_alpha parameter):
either no smoothing (add 0.0) or Laplacian smoothing (add 1.0).

The grid search will instantiate a pipeline of our model for each combination of fea‐
tures, then use cross-validation to score the model and select the best combination of
features (in this case, the combination that maximizes the F1 score).

Enriching Feature Extraction with Feature Unions
Pipelines do not have to be simple linear sequences of steps; in fact, they can be arbi‐
trarily complex through the implementation of feature unions. The FeatureUnion
object combines several transformer objects into a new, single transformer similar to
the Pipline object. However, instead of fitting and transforming data in sequence
through each transformer, they are instead evaluated independently and the results
are concatenated into a composite vector.

Consider the example shown in Figure 4-7. We might imagine an HTML parser
transformer that uses BeautifulSoup or an XML library to parse the HTML and
return the body of each document. We then perform a feature engineering step,
where entities and keyphrases are each extracted from the documents and the results
passed into the feature union. Using frequency encoding on the entities is more sensi‐
ble since they are relatively small, but TF–IDF makes more sense for the keyphrases.
The feature union then concatenates the two resulting vectors such that our decision
space ahead of the logistic regression separates word dimensions in the title from
word dimensions in the body.

Pipelines | 77

Figure 4-7. Feature unions for branching vectorization

FeatureUnion objects are similarly instantiated as Pipeline objects with a list of
(key, value) pairs where the key is the name of the transformer, and the value is
the transformer object. There is also a make_union helper function that can automati‐
cally determine names and is used in a similar fashion to the make_pipeline helper
function—for automatic or generated pipelines. Estimator parameters can also be
accessed in the same fashion, and to implement a search on a feature union, simply
nest the dunderscore for each transformer in the feature union.

Given the unimplemented EntityExtractor and KeyphraseExtractor transformers
mentioned above, we can construct our pipeline as follows:

from sklearn.pipeline import FeatureUnion
from sklearn.linear_model import LogisticRegression

model = Pipeline([
 ('parser', HTMLParser()),
 ('text_union', FeatureUnion(
 transformer_list = [
 ('entity_feature', Pipeline([
 ('entity_extractor', EntityExtractor()),
 ('entity_vect', CountVectorizer()),
])),
 ('keyphrase_feature', Pipeline([
 ('keyphrase_extractor', KeyphraseExtractor()),
 ('keyphrase_vect', TfidfVectorizer()),
])),
],
 transformer_weights= {
 'entity_feature': 0.6,
 'keyphrase_feature': 0.2,
 }
)),
 ('clf', LogisticRegression()),
])

78 | Chapter 4: Text Vectorization and Transformation Pipelines

Note that the HTMLParser, EntityExtractor and KeyphraseExtractor objects are
currently unimplemented but are used for illustration. The feature union is fit in
sequence with respect to the rest of the pipeline, but each transformer within the fea‐
ture union is fit independently, meaning that each transformer sees the same data as
the input to the feature union. During transformation, each transformer is applied in
parallel and the vectors that they output are concatenated together into a single larger
vector, which can be optionally weighted, as shown in Figure 4-8.

Figure 4-8. Feature extraction and union

In this example, we are weighting the entity_feature transformer more than the
keyphrase_feature transformer. Using combinations of custom transformers, fea‐
ture unions, and pipelines, it is possible to define incredibly rich feature extraction
and transformation in a repeatable fashion. By collecting our methodology into a sin‐
gle sequence, we can repeatably apply the transformations, particularly on new docu‐
ments when we want to make predictions in a production environment.

Conclusion
In this chapter, we conducted a whirlwind overview of vectorization techniques and
began to consider their use cases for different kinds of data and different machine
learning algorithms. In practice, it is best to select an encoding scheme based on the
problem at hand; certain methods substantially outperform others for certain tasks.

For example, for recurrent neural network models it is often better to use one-hot
encoding, but to divide the text space one might create a combined vector for the
document summary, document header, body, etc. Frequency encoding should be nor‐
malized, but different types of frequency encoding can benefit probabilistic methods

Conclusion | 79

like Bayesian models. TF–IDF is an excellent general-purpose encoding and is often
used first in modeling, but can also cover a lot of sins. Distributed representations are
the new hotness, but are performance intensive and difficult to scale.

Bag-of-words models have a very high dimensionality, meaning the space is
extremely sparse, leading to difficulty generalizing the data space. Word order, gram‐
mar, and other structural features are natively lost, and it is difficult to add knowledge
(e.g., lexical resources, ontological encodings) to the learning process. Local encod‐
ings (e.g., nondistributed representations) require a lot of samples, which could lead
to overtraining or underfitting, but distributed representations are complex and add a
layer of “representational mysticism.”

Ultimately, much of the work for language-aware applications comes from domain-
specific feature analysis, not just simple vectorization. In the final section of this
chapter we explored the use of FeatureUnion and Pipeline objects to create mean‐
ingful extraction methodologies by combining transformers. As we move forward,
the practice of building pipelines of transformers and estimators will continue to be
our primary mechanism of performing machine learning. In Chapter 5 we will
explore classification models and applications, then in Chapter 6 we will take a look
at clustering models, often called topic modeling in text analysis. In Chapter 7, we will
explore some more complex methods for feature analysis and feature exploration that
will assist in finetuning our vector-based models to achieve better results. Nonethe‐
less, simple models that only consider word frequencies are often very successful. In
our experience, a pure bag-of-words model works about 85% of the time!

80 | Chapter 4: Text Vectorization and Transformation Pipelines

CHAPTER 5

Classification for Text Analysis

Imagine you were working at one of the large email providers in the late 1990s, han‐
dling increasingly large numbers of emails from servers all over the world. The preva‐
lence and economy of email has made it a primary form of communication, and
business is booming. Unfortunately, so is the rise of junk email. At the more harmless
end of the spectrum, there are advertisements for internet products, which are none‐
theless sent in deluges that severely tax your servers. Moreover, because email is
unregulated, harmful messages are becoming increasingly common—more and more
emails contain false advertising, pyramid schemes, and fake investments. What to do?

You might begin by blacklisting the email addresses or IP addresses of spammers or
searching for keywords that might indicate that an email is spam. Unfortunately,
since it is relatively easy to get a new email or IP address, spammers quickly circum‐
vent even your most well-curated blacklists. Even worse, you’re finding that the
blacklists and whitelists do not do a good job of ensuring that valid email gets
through, and users aren’t happy. You need something better, a flexible and stochastic
solution that will work at scale: enter machine learning.

Fast-forward a few decades, and spam filtering is the most common and possibly
most commercially successful text classification model. The central innovation was
that the content of an email is the primary determination of whether or not the email
is spam. It is not simply the presence of the terms "viagra" or "Nigerian prince",
but their context, frequency, and misspellings. The collection of a corpus of both
spam and ham emails allowed the construction of a Naive Bayes model—a model that
uses a uniform prior to predict the probabilities of a word’s presence in both spam
and ham emails based on its frequency.

In this chapter we will start by exploring several real-world classification examples to
see how to formulate these problems for applications. We will then explore the classi‐
fier workflow and extend the vectorization methodologies discussed in Chapter 4 to

81

create modeling pipelines for topic classification using the Baleen corpus introduced
in Chapter 2. Finally, we will begin to explore the next steps of our workflow, which
build directly atop the foundational data layer we have established thus far. We will
describe these next steps in the context of the “The model selection triple” on page 7
introduced in Chapter 1.

Text Classification
Classification is a primary form of text analysis and is widely used in a variety of
domains and applications. The premise of classification is simple: given a categorical
target variable, learn patterns that exist between instances composed of independent
variables and their relationship to the target. Because the target is given ahead of
time, classification is said to be supervised machine learning because a model can be
trained to minimize error between predicted and actual categories in the training
data. Once a classification model is fit, it assigns categorical labels to new instances
based on the patterns detected during training.

This simple premise gives the opportunity for a huge number of possible applications,
so long as the application problem can be formulated to identify either a yes/no
(binary classification) or discrete buckets (multiclass classification). The most diffi‐
cult part of applied text analytics is the curation and collection of a domain-specific
corpus to build models upon. The second most difficult part is composing an analyti‐
cal solution for an application-specific problem.

Identifying Classification Problems
It may not necessarily be immediately obvious how to compose application problems
into classification solutions, but it helps to understand that most language-aware data
products are actually composed of multiple models and submodels. For example, a
recommendation system such as the one shown in Figure 5-1 may have classifiers
that identify a product’s target age (e.g., a youth versus an adult bicycle), gender
(women’s versus men’s clothing), or category (e.g., electronics versus movies) by clas‐
sifying the product’s description or other attributes. Product reviews may then be
classified to detect quality or to determine similar products. These classes then may
be used as features in downstream models or may be used to create partitions for
ensemble models.

The combination of multiple classifiers has been incredibly powerful, particularly in
recent years, and for several types of text classification applications. From email cli‐
ents that incorporate spam filtering to applications that can predict political bias of
news articles, the uses for classification are almost as numerous as the number of cat‐
egories that we assign to things—and humans are excellent taxonomists. Newer appli‐
cations combine text and image learning to enhance newer forms of media—from

82 | Chapter 5: Classification for Text Analysis

1 Benjamin Bengfort, Data Product Architectures, (2016) https://bit.ly/2vat7cN

automatic captioning to scene recognition, all of which leverage classification techni‐
ques.

Figure 5-1. Multimodel product recommendation engine

The spam classification example has recently been displaced by a new vogue: senti‐
ment analysis. Sentiment analysis models attempt to predict positive (“I love writing
Python code”) or negative (“I hate it when people repeat themselves”) sentiment
based on content and has gained significant popularity thanks to the expressiveness
of social media. Because companies are involved in a more general dialogue where
they do not control the information channel (such as reviews of their products and
services), there is a belief that sentiment analysis can assist with targeted customer
support or even model corporate performance. However, as we saw briefly in Chap‐
ter 1 and which we’ll explore more fully in Chapter 12, the complexities and nuances
inherent in language context make sentiment analysis less straightforward than spam
detection.

If sentiment can be explored through textual content, what about other external
labels, political bias, for example? Recent work has used expressions in the American
presidential campaign to create models that can detect partisan polarity (or its
absence). An interesting result from these efforts is that the use of per-user models
(trained on specific users’ data) provides more effective context than a global, gener‐
alizable model (trained on data pooled from many users).1 Another real-world appli‐
cation is the automatic topic classification of text: by using blogs that publish content
in a single domain (e.g., a cooking blog doesn’t generally discuss cinema), it is possi‐
ble to create classifiers that can detect topics in uncategorized sources such as news
articles.

So what do all these examples have in common? First, a unique external target
defined by the application: e.g., what do we want to measure? Whether we want to

Text Classification | 83

https://bit.ly/2vat7cN

filter spam, detect sentiment or political polarity, a specific topic, or language being
spoken, the application defines the classes. The second commonality is the observa‐
tion that by reading the content of the document or utterance, it is possible to make a
judgment about the class. With these two rules of thumb, it becomes possible to
employ automatic classification in a variety of places: troll detection, reading level,
product category, entertainment rating, name detection, author identification, and
more.

Classifier Models
The nice thing about the Naive Bayesian method used in the classic spam identifica‐
tion problem is that both the construction of the model (requiring only a single pass
through the corpus) and predictions (computation of a probability via the product of
an input vector with the underlying truth table) are extremely fast. The performance
of Naive Bayes meant a machine learning model that could keep up with email-sized
applications. Accuracy could be further improved by adding nontext features like the
IP or email address of the sender, the number of included images, the use of numbers
in spelling "v14gr4", etc.

Naive Bayes is an online model, meaning that it can be updated in real time without
retraining from scratch (simply update the underlying truth table and token probabil‐
ities). This meant that email service providers could keep up with spammer reactions
by simply allowing the user to mark offending emails as spam—updating the under‐
lying model for everyone.

There are a wide variety of classification models and mechanisms that are compara‐
tively more mathematically diverse than the linear models primarily used for regres‐
sion. From instance-based methods that use distance-based similarity, partitive
schemes, and Bayesian probability, to linear and nonlinear approximation and neural
modeling, text analysis applications have many choices for model families. However,
all classifier model families have the same basic workflow, and with Scikit-Learn
Estimator objects, they can be employed in a procedural fashion and compared
using cross-validation to select the best performing predictor.

The classification workflow occurs in two phases: a build phase and an operational
phase as shown in Figure 5-2. In the build phase, a corpus of documents is trans‐
formed into feature vectors. The document features, along with their annotated labels
(the category or class we want the model to learn), are then passed into a classifica‐
tion algorithm that defines its internal state along with the learned patterns. Once
trained or fitted, a new document can be vectorized into the same space as the train‐
ing data and passed to the predictive algorithm, which returns the assigned class label
for the document.

84 | Chapter 5: Classification for Text Analysis

Figure 5-2. Classification workflow

Binary classifiers have two classes whose relationship is important: only the two
classes are possible and one class is the opposite of the other (e.g., on/off, yes/no,
etc.). In probabilistic terms, a binary classifier with classes A and B assumes that P(B)
= 1 - P(A). However, this is frequently not the case. Consider sentiment analysis; if a
document is not positive, is it necessarily negative? If some documents are neutral
(which is often the case), adding a third class to our classifier may significantly
increase its ability to identify the positive and negative documents. This then
becomes a multiclass problem with multiple binary classes—for example, A and ¬A
(not A) and B and ¬B (not B).

Building a Text Classification Application
Recall that in Chapters 2 and 3, we ingested, extracted, preprocessed, and stored
HTML documents on disk to create our corpus. The Baleen ingestion engine requires
us to configure a YAML file in which we organize RSS feeds into categories based on
the kinds of documents they will contain. Feeds related to “gaming” are grouped
together, as are those about “tech” and “books,” etc. As such, the resulting ingested
corpus is a collection of documents with human-generated labels that are essentially
different categories of hobbies. This means we have the potential to build a classifier
that can detect stories and news most relevant to a user’s interests!

In the following section we will demonstrate the basic methodology for document-
level classification by creating a text classifier to predict the label for a given docu‐
ment (“books,” “cinema,” “cooking,” “DIY,” “gaming,” “sports,” or “tech”) given its text.
Our implicit hypothesis is that each class will use language in distinctive ways, such

Building a Text Classification Application | 85

that it should be possible to build a robust classifier that can distinguish and predict a
document’s category.

In the context of our problem, each document is an instance that
we will learn to classify. The end result of the steps described in
Chapters 2 and 3 is a collection of files stored in a structured man‐
ner on disk—one document to a file, stored in directories named
after their class. Each document is a pickled Python object com‐
posed of several nested list objects—for example, the document is
a list of paragraphs, each paragraph is a list of sentences, and
each sentence is a list of (token, tag) tuples.

Cross-Validation
One of the biggest challenges of applied machine learning is defining a stopping cri‐
terion upfront—how do we know when our model is good enough to deploy? When
is it time to stop tuning? Which model is the best for our use case? Cross-validation is
an essential tool for scoping these kinds of applications, since it will allow us to com‐
pare models using training and test splits and estimate in advance which model will be
most performant for our use case.

Our primary goal is to fit a classifier that succeeds in detecting separability in the
training data and is also generalizable to unseen data. Separability means that our fea‐
ture space has been correctly defined such that a meaningful decision space can be
constructed to delineate classes. Generalizability means that the model is mostly
accurate on making predictions on unseen data that was not part of the training
dataset.

The trick is to walk the line between underfitting and overfitting. An underfit model
has low variance, generally making the same predictions every time, but with
extremely high bias, because the model deviates from the correct answer by a signifi‐
cant amount. Underfitting is symptomatic of not having enough data points, or not
training a complex enough model. An overfit model, on the other hand, has memo‐
rized the training data and is completely accurate on data it has seen before, but
varies widely on unseen data. Neither an overfit nor underfit model is generalizable—
that is, able to make meaningful predictions on unseen data.

There is a trade-off between bias and variance, as shown in Figure 5-3. Complexity
increases with the number of features, parameters, depth, training epochs, etc. As
complexity increases and the model overfits, the error on the training data decreases,
but the error on test data increases, meaning that the model is less generalizable.

86 | Chapter 5: Classification for Text Analysis

Figure 5-3. Bias–variance trade-off

The goal is therefore to find the optimal point with enough model complexity so as to
avoid underfit (decreasing the bias) without injecting error due to variance. To find
that optimal point, we need to evaluate our model on data that it was not trained on.
The solution is cross-validation: a multiround experimental method that partitions
the data such that part of the data is reserved for testing and not fit upon to reduce
error due to overfit.

Figure 5-4. k-fold cross-validation

Building a Text Classification Application | 87

Cross-validation starts by shuffling the data (to prevent any unintentional ordering
errors) and splitting it into k folds as shown in Figure 5-4. Then k models are fit on
k − 1

k of the data (called the training split) and evaluated on 1
k of the data (called the

test split). The results from each evaluation are averaged together for a final score,
then the final model is fit on the entire dataset for operationalization.

A common question is what k should be chosen for k-fold cross-
validation. We typically use 12-fold cross-validation as shown in
Figure 5-4, though 10-fold cross-validation is also common. A
higher k provides a more accurate estimate of model error on
unseen data, but takes longer to fit, sometimes with diminishing
returns.

Streaming access to k splits
It is essential to get into the habit of using cross-validation to ensure that our models
perform well, particularly when engaging the model selection process. We consider it
so important to applied text analytics that we start by creating a CorpusLoader object
that wraps a CorpusReader in order to provide streaming access to k splits!

We’ll construct the base class, CorpusLoader, which is instantiated with a Corpus
Reader, the number of folds, and whether or not to shuffle the corpus, which is true
by default. If folds is not None, we instantiate a Scikit-Learn KFold object that knows
how to partition the corpus by the number of documents and specified folds.

from sklearn.model_selection import KFold

class CorpusLoader(object):

 def __init__(self, reader, folds=12, shuffle=True, categories=None):
 self.reader = reader
 self.folds = KFold(n_splits=folds, shuffle=shuffle)
 self.files = np.asarray(self.reader.fileids(categories=categories))

The next step is to add a method that will allow us to access a listing of fileids by
fold ID for either the train or the test splits. Once we have the fileids, we can return
the documents and labels, respectively. The documents() method returns a generator
to provide memory-efficient access to the documents in our corpus, and yields a list
of tagged tokens for each fileid in the split, one document at a time. The labels()
method uses the corpus.categories() to look up the label from the corpus and
returns a list of labels, one per document.

 def fileids(self, idx=None):
 if idx is None:
 return self.files
 return self.files[idx]

88 | Chapter 5: Classification for Text Analysis

 def documents(self, idx=None):
 for fileid in self.fileids(idx):
 yield list(self.reader.docs(fileids=[fileid]))

 def labels(self, idx=None):
 return [
 self.reader.categories(fileids=[fileid])[0]
 for fileid in self.fileids(idx)
]

Finally, we add a custom iterator method that calls KFold’s split() method, yielding
training and test splits for each fold:

 def __iter__(self):
 for train_index, test_index in self.folds.split(self.files):
 X_train = self.documents(train_index)
 y_train = self.labels(train_index)

 X_test = self.documents(test_index)
 y_test = self.labels(test_index)

 yield X_train, X_test, y_train, y_test

In “Model Evaluation” on page 91, we’ll use this methodology to create 12-fold cross-
validation that fits a model 12 times and collects a score each time, which we can then
average and compare to select the most performant model.

Model Construction
As we learned in Chapter 4, Scikit-Learn Pipelines provide a mechanism for coordi‐
nating the vectorization process with the modeling process. We can start with a pipe‐
line that normalizes our text, vectorizes it, and then passes it directly into a classifier.
This will allow us to compare different text classification models such as Naive Bayes,
Logistic Regression, and Support Vector Machines. Finally, we can apply a feature
reduction technique such as Singular Value Decomposition to see if that improves
our modeling.

Figure 5-5. Simple classification pipelines

Building a Text Classification Application | 89

The end result is that we’ll be constructing six classification models: one for each of
the three models and for the two pipeline combinations as shown in Figure 5-5. We
will go ahead and use the default hyperparameters for each of these models initially so
that we can start getting results.

We’ll add a create_pipeline function that takes an instantiated estimator as its first
argument and a boolean indicating whether or not to apply decomposition to reduce
the number of features. Our pipeline takes advantage of the TextNormalizer we built
in Chapter 4 that uses WordNet lemmatization to reduce the number of overall word
classes. Because we’ve already preprocessed and normalized the text, we must pass an
identity function as the TfidfVectorizer tokenizer function; an identity func‐
tion is simply a function that returns its arguments. Moreover, we can prevent pre‐
processing and lowercase by setting the appropriate arguments when instantiating the
vectorizer.

from sklearn.pipeline import Pipeline
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer

def identity(words):
 return words

def create_pipeline(estimator, reduction=False):

 steps = [
 ('normalize', TextNormalizer()),
 ('vectorize', TfidfVectorizer(
 tokenizer=identity, preprocessor=None, lowercase=False
))
]

 if reduction:
 steps.append((
 'reduction', TruncatedSVD(n_components=10000)
))

 # Add the estimator
 steps.append(('classifier', estimator))
 return Pipeline(steps)

We can now quickly generate our models as follows:

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier

models = []
for form in (LogisticRegression, MultinomialNB, SGDClassifier):
 models.append(create_pipeline(form(), True))
 models.append(create_pipeline(form(), False))

90 | Chapter 5: Classification for Text Analysis

The models list now contains six model forms—instantiated pipelines that include
specific vectorization and feature extraction methods (feature analysis), a specific
algorithm, and specific hyperparameters (currently set to the Scikit-Learn defaults).

Fitting the models given a training dataset of documents and their associated labels
can be done as follows:

for model in models:
 model.fit(train_docs, train_labels)

By calling the fit() method on each model, the documents and labels from the train‐
ing dataset are sent into the beginning of each pipeline. The transformers have their
fit() methods called, then the data is passed into their transform() method. The
transformed data is then passed to the fit() of the next transformer for each step in
the sequence. The final estimator, in this case one of our classification algorithms, will
have its fit() method called on the completely transformed data. Calling fit() will
transform the input of preprocessed documents (lists of paragraphs that are lists of
sentences, that are lists of tokens, tag tuples) into a two-dimensional numeric array, to
which we can then apply optimization algorithms.

Model Evaluation
So which model was best? As with vectorization, model selection is data-, use case-,
and application-specific. In our case, we want to know which model combination will
be best at predicting the hobby category of a document based on its text. Because we
have the correct target values from our test dataset, we can compare the predicted
answers to the correct ones and determine the percent of the time the model is cor‐
rect, effectively scoring each model with respect to its global accuracy.

Let’s compare our models. We’ll use the CorpusLoader we created in “Streaming
access to k splits” on page 88 to get our train_test_splits for our cross-validation
folds. Then, for each fold, we will fit the model on the training data and the accompa‐
nying labels, then create a prediction vector off the test data. Next, we will pass the
actual and the predicted labels for each fold to a score function and append the score
to a list. Finally, we will average the results across all folds to get a single score for the
model.

import numpy as np

from sklearn.metrics import accuracy_score

for model in models:
 scores = [] # Store a list of scores for each split

 for X_train, X_test, y_train, y_test in loader:
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

Building a Text Classification Application | 91

 score = accuracy_score(y_test, y_pred)
 scores.append(score)

 print("Accuracy of {} is {:0.3f}".format(model, np.mean(scores)))

The results are as follows:

Accuracy of LogisticRegression (TruncatedSVD) is 0.676
Accuracy of LogisticRegression is 0.685
Accuracy of SGDClassifier (TruncatedSVD) is 0.763
Accuracy of SGDClassifier is 0.811
Accuracy of MultinomialNB is 0.562
Accuracy of GaussianNB (TruncatedSVD) is 0.323

The way to interpret accuracy is to consider the global behavior of the model across
all classes. In this case, for a 6-class classifier, the accuracy is the sum of the true
classes divided by the total number of instances in the test data. Overall accuracy,
however, does not give us much insight into what is happening in the model. It might
be important to us to know if a certain classifier is better at detecting “sports” articles
but worse at finding ones about “cooking.”

Do certain models perform better for one class over another? Is there one poorly per‐
forming class that is bringing the global accuracy down? How often does the fitted
classifier guess one class over another? In order to get insight into these factors, we
need to look at a per-class evaluation: enter the confusion matrix.

The classification report prints out a per-class breakdown of performance of the
model. Because this report is compiled by reporting true labels versus predicted
labels, it is generally used without folds, but directly on train and test splits to better
identify problem areas in the model.

from sklearn.metrics import classification_report

model = create_pipeline(SGDClassifier(), False)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred, labels=labels))

The report itself is organized similarly to a confusion matrix, showing the breakdown
in the precision, recall, F1, and support for each class as follows:

 precision recall f1-score support

 books 0.85 0.73 0.79 15
 cinema 0.63 0.60 0.62 20
 cooking 0.75 1.00 0.86 3
 gaming 0.85 0.79 0.81 28
 sports 0.93 1.00 0.96 26
 tech 0.77 0.82 0.79 33

avg / total 0.81 0.81 0.81 125

92 | Chapter 5: Classification for Text Analysis

The precision of a class, A, is computed as the ratio between the number of correctly
predicted As (true As) to the total number of predicted As (true As plus false As). Preci‐
sion shows how accurately a model predicts a given class according to the number of
times it labels that class as true.

The recall of a class A is computed as the ratio between the number of predicted As
(true As) to the total number of As (true As + false ¬As). Recall, also called sensitivity, is
a measure of how often relevant classes are retrieved.

The support of a class shows how many test instances were involved in computing the
scores. As we can see in the classification report above, the cooking class is poten‐
tially under-represented in our sample, meaning there are not enough documents to
inform its score.

Finally, the F1 score is the harmonic mean of precision and recall and embeds more
information than simple accuracy by taking into account how each class contributes
to the overall score.

In an application, we want to be able to retrain our models on some
routine basis as new data is ingested. This training process will
happen under the hood, and should result in updates to the
deployed model depending on whichever model is currently most
performant. As such, it is convenient to build these scoring mecha‐
nisms into the application’s logs, so that we can go back and exam‐
ine shifts in precision, recall, F1 score, and training time over time.

We can tabulate all the model scores and sort by F1 score in order to select the best
model through some minor iteration and score collection.

import tabulate
import numpy as np

from collections import defaultdict
from sklearn.metrics import accuracy_score, f1_score
from sklearn.metrics import precision_score, recall_score

fields = ['model', 'precision', 'recall', 'accuracy', 'f1']
table = []

for model in models:
 scores = defaultdict(list) # storage for all our model metrics

 # k-fold cross-validation
 for X_train, X_test, y_train, y_test in loader:
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)

 # Add scores to our scores

Building a Text Classification Application | 93

 scores['precision'].append(precision_score(y_test, y_pred))
 scores['recall'].append(recall_score(y_test, y_pred))
 scores['accuracy'].append(accuracy_score(y_test, y_pred))
 scores['f1'].append(f1_score(y_test, y_pred))

 # Aggregate our scores and add to the table.
 row = [str(model)]
 for field in fields[1:]
 row.append(np.mean(scores[field]))

 table.append(row)

Sort the models by F1 score descending
table.sort(key=lambda row: row[-1], reverse=True)
print(tabulate.tabulate(table, headers=fields))

Here we modify our earlier k-fold scoring to utilize a defaultdict and track preci‐
sion, recall, accuracy, and F1 scores. After we fit the model on each fold, we take the
mean score from each fold and add it to the table. We can then sort the table by F1
score and quickly identify the best performing model by printing it out with the
Python tabulate module as follows:

model precision recall accuracy f1
--------------------------------- ----------- -------- ---------- -----
SGDClassifier 0.821 0.811 0.811 0.81
SGDClassifier (TruncatedSVD) 0.81 0.763 0.763 0.766
LogisticRegression 0.736 0.685 0.685 0.659
LogisticRegression (TruncatedSVD) 0.749 0.676 0.676 0.647
MultinomialNB 0.696 0.562 0.562 0.512
GaussianNB (TruncatedSVD) 0.314 0.323 0.323 0.232

This allows us to quickly identify that the support vector machine trained using sto‐
chastic gradient descent without dimensionality reduction was the model that per‐
formed best. Note that for some models, like the LogisticRegression, use of the F1
score instead of accuracy has an impact on which model is selected. Through model
comparison of this type, it becomes easy to test combinations of features, hyperpara‐
meters, and algorithms to find the best performing model for your domain.

Model Operationalization
Now that we have identified the best performing model, it is time to save the model to
disk in order to operationalize it. Machine learning techniques are tuned toward cre‐
ating models that can make predictions on new data in real time, without verification.
To employ models in applications, we first need to save them to disk so that they can
be loaded and reused. For the most part, the best way to accomplish this is to use the
pickle module:

94 | Chapter 5: Classification for Text Analysis

import pickle
from datetime import datetime

time = datetime.now().strftime("%Y-%m-%d")
path = 'hobby-classifier-{}'.format(time)

with open(path, 'wb') as f:
 pickle.dump(model, f)

The model is saved along with the date that it was built.

In addition to saving the model, it is also important to save model
metadata, which can be stored in an accompanying metadata file or
database. Model fitting is a routine process, and generally speaking,
models should be retrained at regular intervals appropriate to the
velocity of your data. Graphing model performance over time and
making determinations about data decay and model adjustments is
a crucial part of machine learning applications.

To use the model in an application with new, incoming text, simply load the estimator
from the pickle object, and use its predict() method.

import nltk

def preprocess(text):
 return [
 [
 list(nltk.pos_tag(nltk.word_tokenize(sent)))
 for sent in nltk.sent_tokenize(para)
] for para in text.split("\n\n")
]

with open(path, 'rb') as f:
 model = pickle.load(f)

model.predict([preprocess(doc) for doc in newdocs])

Because our vectorization process is embedded with our model via the Pipeline we
need to ensure that the input to the pipeline is prepared in a manner identical to the
training data input. Our training data was preprocessed text, so we need to include a
function to preprocess strings into the same format. We can then open the pickle file,
load the model, and use its predict() method to return labels.

Conclusion
As we’ve seen in this chapter, the process of selecting an optimal model is complex,
iterative, and substantially more intricate than, say, the choice of a support vector

Conclusion | 95

machine over a decision tree classifier. Discussions of machine learning are fre‐
quently characterized by a singular focus on model selection. Be it logistic regression,
random forests, Bayesian methods, or artificial neural networks, machine learning
practitioners are often quick to express their preference. While model selection is
important (especially in the context text classification), successful machine learning
relies on significantly more than merely having picked the “right” or “wrong” algo‐
rithm.

When it comes to applied text analytics, the search for the most optimal model fol‐
lows a common workflow: create a corpus, select a vectorization technique, fit a
model, and evaluate using cross-validation. Wash, rinse, repeat, and compare results.
At application time, select the model with the best result based on cross-validation
and use it to make predictions.

Importantly, classification offers metrics such as precision, recall, accuracy, and F1
scores that can be used to guide our selection of algorithms. However, not all machine
learning problems can be formulated as supervised learning problems. In the next
chapter, we will discuss another prominent use of machine learning on text, cluster‐
ing, which is an unsupervised technique. While somewhat more complex, we will
illustrate that clustering can also be streamlined to produce impressive applications
capable of discovering surprising and useful patterns in large amounts of data.

96 | Chapter 5: Classification for Text Analysis

CHAPTER 6

Clustering for Text Similarity

What would you do if you were handed a pile of papers—receipts, emails, travel itin‐
eraries, meeting minutes—and asked to summarize their contents? One strategy
might be to read through each of the documents, highlighting the terms or phrases
most relevant to each, and then sort them all into piles. If one pile started getting too
big, you might split it into two smaller piles. Once you’d gone through all the docu‐
ments and grouped them, you could examine each pile more closely. Perhaps you
would use the main phrases or words from each pile to write up the summaries and
give each a unique name—the topic of the pile.

This is, in fact, a task practiced in many disciplines, from medicine to law. At its core,
this sorting task relies on our ability to compare two documents and determine their
similarity. Documents that are similar to each other are grouped together and the
resulting groups broadly describe the overall themes, topics, and patterns inside the
corpus. Those patterns can be discrete (e.g., when the groups don’t overlap at all) or
fuzzy (e.g., when there is a lot of similarity and documents are hard to distinguish). In
either case, the resultant groups represent a model of the contents of all documents,
and new documents can be easily assigned to one group or another.

While most document sorting is currently done manually, it is possible to achieve
these tasks in a fraction of the time with the effective integration of unsupervised
learning, as we’ll see in this chapter.

Unsupervised Learning on Text
Unsupervised approaches can be incredibly useful for exploratory text analysis.
Oftentimes corpora do not arrive pretagged with labels ready for classification. In
these cases, the only choice (aside from paying someone to label your data), or at least

97

a necessary precursor for many natural language processing tasks, is an unsupervised
approach.

Clustering algorithms aim to discover latent structure or themes in unlabeled data
using features to organize instances into meaningfully dissimilar groups. With text
data, each instance is a single document or utterance, and the features are its tokens,
vocabulary, structure, metadata, etc.

In Chapter 5 we constructed our classification pipeline to compare and score many
different models and select the most performant for use in predicting on new data.
The behavior of unsupervised learning methods is fundamentally different; instead of
learning a predefined pattern, the model attempts to find relevant patterns a priori.

As such, the integration of these techniques into a data product architecture is neces‐
sarily a bit different. As we see in the pipeline presented in Figure 6-1, a corpus is
transformed into feature vectors and a clustering algorithm is employed to create
groups or topic clusters, using a distance metric such that documents that are closer
together in feature space are more similar. New incoming documents can then be
vectorized and assigned to the nearest cluster. Later in this chapter, we’ll employ this
pipeline to conduct an end-to-end clustering analysis on a sample of the Baleen cor‐
pus introduced in Chapter 2.

Figure 6-1. Clustering pipeline

First, we need a method for defining document similarity, and in the next section,
we’ll explore a range of distance metrics that can be used in determining the relative
similarity between two given documents. Next, we will explore the two primary
approaches to unsupervised learning, partitive clustering and hierarchical clustering,

98 | Chapter 6: Clustering for Text Similarity

using methods implemented in NLTK and Scikit-Learn. With the resulting clusters,
we’ll experiment with using Gensim for topic modeling to describe and summarize
our clusters. Finally, we will move on to exploring two alternative means of unsuper‐
vised learning for text: matrix factorization and Latent Dirichlet Allocation (LDA).

Clustering by Document Similarity
Many features of a document can inform similarity, from words and phrases to gram‐
mar and structure. We might group medical records by reported symptoms, saying
two patients are similar if both have “nausea and exhaustion.” We’d probably use a dif‐
ferent method to sort personal websites and blogs differently, perhaps calling blogs
similar if they feature recipes for pies and cookies. If a new blog features recipes for
summer salads, it is probably more similar to the baking blogs than to ones with rec‐
ipes for homemade explosives.

Effective clustering requires us to choose what it will mean for any two documents
from our corpus to be similar or dissimilar. There are a number of different measures
that can be used to determine document similarity; several are illustrated in
Figure 6-2. Fundamentally, each relies on our ability to imagine documents as points
in space, where the relative closeness of any two documents is a measure of their sim‐
ilarity.

Figure 6-2. Spatializing similarity

Distance Metrics
When we think of how to measure the distance between two points, we usually think
of a straight line, or Euclidean distance, represented in Figure 6-3 as the diagonal line.

Clustering by Document Similarity | 99

Manhattan distance, shown in Figure 6-3 as the three stepped paths, is similar, com‐
puted as the sum of the absolute differences of the Cartesian coordinates. Minkowski
distance is a generalization of Euclidean and Manhattan distance, and defines the dis‐
tance between two points in a normalized vector space.

However, as the vocabulary of our corpus grows, so does its dimensionality—and
rarely in an evenly distributed way. For this reason, these distance measures are not
always a very effective measure, since they assume all data is symmetric and that dis‐
tance is the same in all dimensions.

Figure 6-3. Euclidean versus Manhattan distance

By contrast, Mahalanobis distance, shown in Figure 6-4, is a multidimensional gener‐
alization of the measurement of how many standard deviations away a particular
point is from a distribution of points. This has the effect of shifting and rescaling the
coordinates with respect to the distribution. As such, Mahalanobis distance gives us a
slightly more flexible way to define distances between documents; for instance, ena‐
bling us to identify similarities between utterances of different lengths.

Figure 6-4. Mahalanobis distance

100 | Chapter 6: Clustering for Text Similarity

Jaccard distance defines similarity between finite sets as the quotient of their intersec‐
tion and their union, as shown in Figure 6-5. For instance, we could measure the Jac‐
card distance between two documents A and B by dividing the number of unique
words that appear in both A and B by the total number of unique words that appear in
A and B. A value of 0 would indicate that the two documents have nothing in com‐
mon, a 1 that they were the same document, and values between 0 and 1 indicating
their relative degree of similarity.

Figure 6-5. Jaccard distance

Edit distance measures the distance between two strings by the number of permuta‐
tions needed to convert one into the other. There are multiple implementations of
edit distance, all variations on Levenshtein distance, but with differing penalties for
insertions, deletions, and substitutions, as well as potentially increased penalties for
gaps and transpositions. In Figure 6-6 we can see that the edit distance between
“woodman” and “woodland” includes penalties for one insertion and one substitu‐
tion.

Figure 6-6. Edit distance

It is also possible to measure distances between vectors. For example, we can define
two document vectors as similar by their TF–IDF distance; in other words, the magni‐
tude to which they share the same unique terms relative to the rest of the words in the
corpus. We can compute this using TF–IDF, as described in Chapter 4. We can also
measure vector similarity with cosine distance, using the cosine of the angle between

Clustering by Document Similarity | 101

the two vectors to assess the degree to which they share the same orientation, as
shown in Figure 6-7. In effect, the more parallel any two vectors are, the more similar
the documents will be (regardless of their magnitude).

Figure 6-7. Cosine similarity

While Euclidean distance is often the default metric used in clustering model hyper‐
parameters (as we’ll see in the next sections), we frequently find the most success
using cosine distance.

Partitive Clustering
Now that we can quantify the similarity between any two documents, we can begin
exploring unsupervised methods for finding similar groups of documents. Partitive
clustering and agglomerative clustering are our two main approaches, and both sepa‐
rate documents into groups whose members share maximum similarity as defined by
some distance metric. In this section, we will focus on partitive methods, which parti‐
tion instances into groups that are represented by a central vector (the centroid) or
described by a density of documents per cluster. Centroids represent an aggregated
value (e.g., mean or median) of all member documents and are a convenient way to
describe documents in that cluster.

As we saw in Chapter 5, the Baleen corpus is already categorized after a fashion, as
each document is (human-)labeled with the categories of the RSS sources from which
the data originated. However, some of these categories are not necessarily distinct
(e.g., “tech” and “gaming”) and others are significantly more diffuse. For instance, the
“news” corpus contains news on a range of topics, including political news, entertain‐
ment, science, and other current events. In this section, we will use clustering to

102 | Chapter 6: Clustering for Text Similarity

establish subcategories within the “news” corpus, which might then be employed as
target values for subsequent classification tasks.

k-means clustering
Because it has implementations in familiar libraries like NLTK and Scikit-Learn, k-
means is a convenient place to start. A popular method for unsupervised learning
tasks, the k-means clustering algorithm starts with an arbitrarily chosen number of
clusters, k, and partitions the vectorized instances into clusters according to their
proximity to the centroids, which are computed to minimize the within-cluster sum
of squares.

We will begin by defining a class, KMeansClusters, which inherits from BaseEstima
tor and TransformerMixin so it will function inside a Scikit-Learn Pipeline. We’ll
use NLTK’s implementation of k-means for our model, since it allows us to define our
own distance metric. We initialize the NLTK KMeansClusterer with our desired
number of clusters (k) and our preferred distance measure (cosine_distance), and
avoid a result with clusters that contain no documents.

from nltk.cluster import KMeansClusterer
from sklearn.base import BaseEstimator, TransformerMixin

class KMeansClusters(BaseEstimator, TransformerMixin):

 def __init__(self, k=7):
 """
 k is the number of clusters
 model is the implementation of Kmeans
 """
 self.k = k
 self.distance = nltk.cluster.util.cosine_distance
 self.model = KMeansClusterer(self.k, self.distance,
 avoid_empty_clusters=True)

Now we’ll add our no-op fit() method and a transform() method that calls the
internal KMeansClusterer model’s cluster() method, specifying that each document
should be assigned a cluster. Our transform() method expects one-hot encoded
documents, and by setting assign_clusters=True, it will return a list of the cluster
assignments for each document:

 def fit(self, documents, labels=None):
 return self

 def transform(self, documents):
 """
 Fits the K-Means model to one-hot vectorized documents.
 """
 return self.model.cluster(documents, assign_clusters=True)

Clustering by Document Similarity | 103

To prepare our documents for our KMeansClusters class, we need to normalize and
vectorize them first. For normalization, we’ll use a version of the TextNormalizer
class we defined in “Creating a custom text normalization transformer” on page 72,
with one small change to the tranform() method. Instead of returning a representa‐
tion of documents as bags-of-words, this version of the TextNormalizer will perform
stopwords removal and lemmatization and return a string for each document:

class TextNormalizer(BaseEstimator, TransformerMixin):

 ...

 def transform(self, documents):
 return [' '.join(self.normalize(doc)) for doc in documents]

To vectorize our documents after normalization and ahead of clustering, we’ll define
a OneHotVectorizer class. For vectorization, we’ll use Scikit-Learn’s CountVector
izer with binary=True, which will wrap both frequency encoding and binarization.
Our transform() method will return a representation of each document as a one-hot
vectorized array:

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction.text import CountVectorizer

class OneHotVectorizer(BaseEstimator, TransformerMixin):

 def __init__(self):
 self.vectorizer = CountVectorizer(binary=True)

 def fit(self, documents, labels=None):
 return self

 def transform(self, documents):
 freqs = self.vectorizer.fit_transform(documents)
 return [freq.toarray()[0] for freq in freqs]

Now, we can create a Pipeline inside our main() execution to perform k-means clus‐
tering. We’ll initialize a PickledCorpusReader as defined in “Reading the Processed
Corpus” on page 51, specifying that we want to use only the “news” category of our
corpus. Then we’ll initialize a pipeline to streamline our custom TextNormalizer, One
HotVectorizer, and KMeansClusters classes. By calling fit_transform() on the
pipeline, we perform each of these steps in sequence:

from sklearn.pipeline import Pipeline

corpus = PickledCorpusReader('../corpus')
docs = corpus.docs(categories=['news'])

model = Pipeline([
 ('norm', TextNormalizer()),

104 | Chapter 6: Clustering for Text Similarity

 ('vect', OneHotVectorizer()),
 ('clusters', KMeansClusters(k=7))
])

clusters = model.fit_transform(docs)
pickles = list(corpus.fileids(categories=['news']))
for idx, cluster in enumerate(clusters):
 print("Document '{}' assigned to cluster {}.".format(pickles[idx],cluster))

Our result is a list of cluster assignments corresponding to each of the documents
from our news category, which we can easily map back to the fileids of the pickled
documents:

Document 'news/56d62554c1808113ffb87492.pickle' assigned to cluster 0.
Document 'news/56d6255dc1808113ffb874f0.pickle' assigned to cluster 5.
Document 'news/56d62570c1808113ffb87557.pickle' assigned to cluster 4.
Document 'news/56d625abc1808113ffb87625.pickle' assigned to cluster 2.
Document 'news/56d63a76c1808113ffb8841c.pickle' assigned to cluster 0.
Document 'news/56d63ae1c1808113ffb886b5.pickle' assigned to cluster 3.
Document 'news/56d63af0c1808113ffb88745.pickle' assigned to cluster 5.
Document 'news/56d64c7ac1808115036122b4.pickle' assigned to cluster 6.
Document 'news/56d64cf2c1808115036125f5.pickle' assigned to cluster 2.
Document 'news/56d65c2ec1808116aade2f8a.pickle' assigned to cluster 2.
...

We now have a preliminary model for clustering documents based on text similarity;
now we should consider what we can do to optimize our results. However, unlike the
case of classification, we don’t have a convenient measure to tell us if the “news” cor‐
pus has been correctly partitioned into subcategories—when it comes to unsuper‐
vised learning, we don’t have a ground truth. Instead, generally we would look to
some human validation to see if our clusters make sense—are they meaningfully dis‐
tinct? Are they sufficiently focused? In the next section, we’ll discuss what it might
mean to “optimize” a clustering model.

Optimizing k-means
How can we “improve” a clustering model? In our case, this amounts to asking how
we can make our results more interpretable and more useful. First, we can often
make our results more interpretable by experimenting with different values of k. With
k-means clustering, k-selection is often an iterative process; while there are rules of
thumb, initial selection is often somewhat arbitrary.

In “Silhouette Scores and Elbow Curves” on page 177 we will dis‐
cuss two visual techniques that can help guide experimentation
with k-selection: silhouette scores and elbow curves.

Clustering by Document Similarity | 105

We can also tune other parts of our pipeline; for example, instead of using one-hot
encoding, we could switch to TF–IDF vectorization. Alternatively, in place of our
TextNormalizer, we could introduce a feature selector that would select only a subset
of the entire feature set (e.g., only the 5,000 most common tokens, excluding stop‐
words).

Although the focus of this book is not big data, it is important to
note that k-means does effectively scale for big data with the intro‐
duction of canopy clustering. Other text clustering algorithms, like
LDA, are much more challenging to parallelize without additional
tools (e.g., Tensorflow).

Keep in mind that k-means is not a lightweight algorithm and can be particularly
slow with high-dimensional data such as text. If your clustering pipeline is very slow,
you can optimize for speed by switching from the nltk.cluster module to using
sklearn.cluster’s MiniBatchKMeans implementation. MiniBatchKMeans is a k-
means variant that uses randomly sampled subsets (or “mini-batches”) of the entire
training dataset to optimize the same objective function, but with a much-reduced
computation time.

from sklearn.cluster import MiniBatchKMeans
from sklearn.base import BaseEstimator, TransformerMixin

class KMeansClusters(BaseEstimator, TransformerMixin):

 def __init__(self, k=7):
 self.k = k
 self.model = MiniBatchKMeans(self.k)

 def fit(self, documents, labels=None):
 return self

 def transform(self, documents):
 return self.model.fit_predict(documents)

The trade-off is that our MiniBatchKMeans implementation, while faster, will use
Euclidean distance, which is less effective for text. At the time of this writing, the
Scikit-Learn implementations of KMeans and MiniBatchKMeans do not support the
use of non-Euclidean distance measures.

Handling uneven geometries
The k-means algorithm makes several naive assumptions about data, presuming that
it will be well-distributed, that clusters will have roughly comparable degrees of var‐
iance, and that they will be fundamentally spherical in nature. As such, there are
many cases where k-means clustering will be unsuccessful; for instance, when outlier

106 | Chapter 6: Clustering for Text Similarity

data points interfere with cluster coherence and when clusters have markedly differ‐
ent, or nonspherical densities. Using alternative distance measures, such as cosine or
Mahalanobis distance, can help to address these cases.

There are several other partitive techniques implemented in Scikit-
Learn, such as affinity propagation, spectral clustering, and Gaus‐
sian mixtures, which may prove to be more performant in cases
where k-means is not.

Ultimately, the advantages of using k-means make it an important tool in the natural
language processing toolkit; k-means offers conceptual simplicity, producing tight,
spherical clusters, convenient centroids that support model interpretability, and the
guarantee of eventual convergence. In the rest of this chapter, we’ll explore some of
the other, more sophisticated techniques we have found useful for text, but there’s no
silver bullet, and a simple k-means approach is often a convenient place to start.

Hierarchical Clustering
In the previous section, we explored partitive methods, which divide points into clus‐
ters. By contrast, hierarchical clustering involves creating clusters that have a prede‐
termined ordering from top to bottom. Hierarchical models can be either
agglomerative, where clusters begin as single instances that iteratively aggregate by
similarity until all belong to a single group, or divisive, where the data are gradually
divided, beginning with all instances and finishing as single instances.

These methods create a dendrogram representation of the cluster structures, as
shown in the lower left in Figure 6-8.

Figure 6-8. Hierarchical clustering

Clustering by Document Similarity | 107

Agglomerative clustering
Agglomerative clustering iteratively combines the closest instances into clusters until
all the instances belong to a single group. In the context of text data, the result is a
hierarchy of variable-sized groups that describe document similarities at different lev‐
els or granularities.

We can switch our clustering implementation to an agglomerative approach fairly
easily. We first define a HierarchicalClusters class, which initializes a Scikit-Learn
AgglomerativeClustering model.

from sklearn.cluster import AgglomerativeClustering

class HierarchicalClusters(object):

 def __init__(self):
 self.model = AgglomerativeClustering()

We add our no-op fit() method and a tranform() method, which calls the internal
model’s fit_predict method, saving the resulting children and labels attributes
for later use and returning the clusters.

...

 def fit(self, documents, labels=None):
 return self

 def transform(self, documents):
 """
 Fits the agglomerative model to the given data.
 """
 clusters = self.model.fit_predict(documents)
 self.labels = self.model.labels_
 self.children = self.model.children_

 return clusters

Next, we’ll put the pieces together into a Pipeline and inspect the cluster labels and
membership of each of the children of each nonleaf node.

model = Pipeline([
 ('norm', TextNormalizer()),
 ('vect', OneHotVectorizer()),
 ('clusters', HierarchicalClusters())
])

model.fit_transform(docs)
labels = model.named_steps['clusters'].labels
pickles = list(corpus.fileids(categories=['news']))

108 | Chapter 6: Clustering for Text Similarity

for idx, fileid in enumerate(pickles):
 print("Document '{}' assigned to cluster {}.".format(fileid,labels[idx]))

The results appear as follows:

Document 'news/56d62554c1808113ffb87492.pickle' assigned to cluster 1.
Document 'news/56d6255dc1808113ffb874f0.pickle' assigned to cluster 0.
Document 'news/56d62570c1808113ffb87557.pickle' assigned to cluster 1.
Document 'news/56d625abc1808113ffb87625.pickle' assigned to cluster 1.
Document 'news/56d63a76c1808113ffb8841c.pickle' assigned to cluster 1.
Document 'news/56d63ae1c1808113ffb886b5.pickle' assigned to cluster 0.
Document 'news/56d63af0c1808113ffb88745.pickle' assigned to cluster 1.
Document 'news/56d64c7ac1808115036122b4.pickle' assigned to cluster 1.
Document 'news/56d64cf2c1808115036125f5.pickle' assigned to cluster 0.
Document 'news/56d65c2ec1808116aade2f8a.pickle' assigned to cluster 0.
...

One of the challenges with agglomerative clustering is that we don’t have the benefit
of centroids to use in labeling our document clusters as we did with the k-means
example. Therefore, to enable us to visually explore the resultant clusters of our
AgglomerativeClustering model, we will define a method plot_dendrogram to cre‐
ate a visual representation.

Our plot_dendrogram method will use the dendrogram method from SciPy and will
also require Matplotlib’s pyplot. We use NumPy to compute a distance range between
the child leaf nodes, and make an equal range of values to represent each child posi‐
tion. We then create a linkage matrix to hold the positions between each child and
their distances. Finally we use SciPy’s dendrogram method, passing in the linkage
matrix and any keyword arguments that can later be passed in to modify the figure.

import numpy as np
from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram

def plot_dendrogram(children, **kwargs):
 # Distances between each pair of children
 distance = position = np.arange(children.shape[0])

 # Create linkage matrix and then plot the dendrogram
 linkage_matrix = np.column_stack([
 children, distance, position]
).astype(float)

 # Plot the corresponding dendrogram
 fig, ax = plt.subplots(figsize=(10, 5)) # set size
 ax = dendrogram(linkage_matrix, **kwargs)
 plt.tick_params(axis='x', bottom='off', top='off', labelbottom='off')
 plt.tight_layout()
 plt.show()

Clustering by Document Similarity | 109

children = model.named_steps['clusters'].children
plot_dendrogram(children)

We can see the resulting plot in Figure 6-9. The first documents to be aggregated into
the same cluster, those with the shortest branches, are the ones that exhibited the least
variations. Those with the longest branches illustrate those with more variance, which
were clustered later in the process.

Just as there are multiple ways of quantifying the difference between any two docu‐
ments, there are also multiple criteria for establishing the linkages between them.
Agglomerative clustering requires both a distance function and a linkage criterion.
Scikit-Learn’s implementation defaults to the Ward criterion, which minimizes the
within-cluster variance as each are successively merged. At each aggregation step, the
algorithm finds the pair of clusters that contributes the least increase in total within-
cluster variance after merging.

Figure 6-9. Dendrogram plot

Other linkage criterion options in Scikit-Learn include "average",
which uses the average of the distances between points in the clus‐
ters, and "complete", which uses the maximum distances between
all points in the clusters.

As we can see from the results of our KMeansClusters and HierarchicalClusters,
one of the challenges with both partitive and agglomerative clustering is that they
don’t give much insight into why a document ended up in a particular cluster. In the
next section, we’ll explore a different set of methods that expose strategies we can

110 | Chapter 6: Clustering for Text Similarity

leverage not only to rapidly group our documents, but also to effectively describe
their contents.

Modeling Document Topics
Now that we have organized our documents into piles, how should we go about label‐
ing them and describing their contents? In this section, we’ll explore topic modeling,
an unsupervised machine learning technique for abstracting topics from collections
of documents. While clustering seeks to establish groups of documents within a cor‐
pus, topic modeling aims to abstract core themes from a set of utterances; clustering
is deductive, while topic modeling is inductive.

Methods for topic modeling, and convenient open source implementations, have
evolved significantly over the last decade. In the next section, we’ll compare three of
these techniques: Latent Dirichlet Allocation (LDA), Latent Semantic Analysis (LSA),
and Non-Negative Matrix Factorization (NNMF).

Latent Dirichlet Allocation
First introduced by David Blei, Andrew Ng, and Michael Jordan in 2003, Latent
Dirichlet Allocation (LDA) is a topic discovery technique. It belongs to the generative
probabilistic model family, in which topics are represented as the probability that
each of a given set of terms will occur. Documents can in turn be represented in
terms of a mixture of these topics. A unique feature of LDA models is that topics are
not required to be distinct, and words may occur in multiple topics; this allows for a
kind of topical fuzziness that is useful for handling the flexibility of language
(Figure 6-10).

Figure 6-10. Latent Dirichlet Allocation

Modeling Document Topics | 111

1 David M. Blei, Andrew Y. Ng, and Michael I. Jordan, Latent Dirichlet Allocation, (2003) https://stanford.io/
2GJBHR1

Blei et al. (2003) found that the Dirichlet prior, a continuous mixture distribution (a
way of measuring a distribution over distributions), is a convenient way of discover‐
ing topics that occur across a corpus and also manifest in different mixtures within
each document in the corpus.1 In effect, with a Latent Dirichlet Allocation, we are
given an observed word or token, from which we attempt to model the probability of
topics, the distribution of words for each topic, and the mixture of topics within a
document.

To use topic models in an application, we need a tunable pipeline that will extrapolate
topics from unstructured text data, and a method for storing the best model so it can
be used on new, incoming data. We’ll do this first with Scikit-Learn and then with
Gensim.

In Scikit-Learn

We begin by creating a class, SklearnTopicModels. The __init__ function instanti‐
ates a pipeline with our TextNormalizer, CountVectorizer, and Scikit-Learn’s imple‐
mentation of LatentDirichletAllocation. We must specify a number of topics
(here 50), just as we did with k-means clustering.

from sklearn.pipeline import Pipeline
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer

class SklearnTopicModels(object):

 def __init__(self, n_topics=50):
 """
 n_topics is the desired number of topics
 """
 self.n_topics = n_topics
 self.model = Pipeline([
 ('norm', TextNormalizer()),
 ('vect', CountVectorizer(tokenizer=identity,
 preprocessor=None, lowercase=False)),
 ('model', LatentDirichletAllocation(n_topics=self.n_topics)),
])

112 | Chapter 6: Clustering for Text Similarity

https://stanford.io/2GJBHR1
https://stanford.io/2GJBHR1

In the rest of the examples in the chapter, we will want to use the
original version of TextNormalizer from “Creating a custom text
normalization transformer” on page 72, which returns a represen‐
tation of documents as bags-of-words.

We then create a fit_transform method, which will call the internal fit and trans
form methods of each step of our pipeline:

 def fit_transform(self, documents):
 self.model.fit_transform(documents)

 return self.model

Now that we have a way to create and fit the pipeline, we want some mechanism to
inspect our topics. The topics aren’t labeled, and we don’t have a centroid with which
to produce a label as we would with centroidal clustering. Instead, we will inspect
each topic in terms of the words it has the highest probability of generating.

We create a get_topics method, which steps through our pipeline object to retrieve
the fitted vectorizer and extracts the tokens from its get_feature_names() attribute.
We loop through the components_ attribute of the LDA model, and for each of the
topics and its corresponding index, we reverse-sort the numbered tokens by weight
such that the 25 highest weighted terms are ranked first. We then retrieve the corre‐
sponding tokens from the feature names and store our topics as a dictionary where
the key is the index of one of the 50 topics and the values are the top words associated
with that topic.

 def get_topics(self, n=25):
 """
 n is the number of top terms to show for each topic
 """
 vectorizer = self.model.named_steps['vect']
 model = self.model.steps[-1][1]
 names = vectorizer.get_feature_names()
 topics = dict()

 for idx, topic in enumerate(model.components_):
 features = topic.argsort()[:-(n - 1): -1]
 tokens = [names[i] for i in features]
 topics[idx] = tokens

 return topics

We can now instantiate a SklearnTopicModels object, and fit and transform the pipe‐
line on our corpus documents. We assign the result of the get_topics() attribute (a
Python dictionary) to a topics variable and unpack the dictionary, printing out the
corresponding topics and their most informative terms:

Modeling Document Topics | 113

if __name__ == '__main__':
 corpus = PickledCorpusReader('corpus/')

 lda = SklearnTopicModels()
 documents = corpus.docs()

 lda.fit_transform(documents)
 topics = lda.get_topics()
 for topic, terms in topics.items():
 print("Topic #{}:".format(topic+1))
 print(terms)

The results appear as follows:

Topic #1:
['science', 'scientist', 'data', 'daviau', 'human', 'earth', 'bayesian',
'method', 'scientific', 'jableh', 'probability', 'inference', 'crater',
'transhumanism', 'sequence', 'python', 'engineer', 'conscience',
'attitude', 'layer', 'pee', 'probabilistic', 'radio']
Topic #2:
['franchise', 'rhoden', 'rosemary', 'allergy', 'dewine', 'microwave',
'charleston', 'q', 'pike', 'relmicro', '($', 'wicket', 'infant',
't20', 'piketon', 'points', 'mug', 'snakeskin', 'skinnytaste',
'frankie', 'uninitiated', 'spirit', 'kosher']
Topic #3:
['cosby', 'vehicle', 'moon', 'tesla', 'module', 'mission', 'hastert',
'air', 'mars', 'spacex', 'kazakhstan', 'accuser', 'earth', 'makemake',
'dragon', 'model', 'input', 'musk', 'recall', 'buffon', 'stage',
'journey', 'capsule']
...

The Gensim way
Gensim also exposes an implementation for Latent Dirichlet Allocation, which offers
some convenient attributes over Scikit-Learn. Conveniently, Gensim (starting with
version 2.2.0) provides a wrapper for its LDAModel, called ldamodel.LdaTransformer,
which makes integration with a Scikit-Learn pipeline that much more convenient.

To use Gensim’s LdaTransformer, we need to create a custom Scikit-Learn wrapper
for Gensim’s TfidfVectorizer so that it can function inside a Scikit-Learn Pipeline.
GensimTfidfVectorizer will vectorize our documents ahead of LDA, as well as sav‐
ing, holding, and loading a custom-fitted lexicon and vectorizer for later use.

class GensimTfidfVectorizer(BaseEstimator, TransformerMixin):

 def __init__(self, dirpath=".", tofull=False):
 """
 Pass in a directory that holds the lexicon in corpus.dict and the
 TF-IDF model in tfidf.model.

 Set tofull = True if the next thing is a Scikit-Learn estimator
 otherwise keep False if the next thing is a Gensim model.

114 | Chapter 6: Clustering for Text Similarity

 """
 self._lexicon_path = os.path.join(dirpath, "corpus.dict")
 self._tfidf_path = os.path.join(dirpath, "tfidf.model")

 self.lexicon = None
 self.tfidf = None
 self.tofull = tofull

 self.load()

 def load(self):
 if os.path.exists(self._lexicon_path):
 self.lexicon = Dictionary.load(self._lexicon_path)

 if os.path.exists(self._tfidf_path):
 self.tfidf = TfidfModel().load(self._tfidf_path)

 def save(self):
 self.lexicon.save(self._lexicon_path)
 self.tfidf.save(self._tfidf_path)

If the model has already been fit, we can initialize the GensimTfidfVectorizer with a
lexicon and vectorizer that can be loaded from disk using the load method. We also
implement a save() method, which we will call after fitting the vectorizer.

Next, we implement fit() by creating a Gensim Dictionary object, which takes as
an argument a list of normalized documents. We instantiate a Gensim TfidfModel,
passing in as an argument the list of documents, each of which have been passed
through lexicon.doc2bow, and been transformed into bags of words. We then call
the save method, which serializes our lexicon and vectorizer and saves them to disk.
Finally, the fit() method returns self to conform with the Scikit-Learn API.

 def fit(self, documents, labels=None):
 self.lexicon = Dictionary(documents)
 self.tfidf = TfidfModel([
 self.lexicon.doc2bow(doc)
 for doc in documents],
 id2word=self.lexicon)
 self.save()
 return self

We then implement our transform() method, which creates a generator that loops
through each of our normalized documents and vectorizes them using the fitted
model and their bag-of-words representation. Because the next step in our pipeline
will be a Gensim model, we initialized our vectorizer to set tofull=False, so that it
would output a sparse document format (a sequence of 2-tuples). However, if we
were going to use a Scikit-Learn estimator next, we would want to initialize our
GensimTfidfVectorizer with tofull=True, which here in our transform method

Modeling Document Topics | 115

would convert the sparse format into the needed dense representation for Scikit-
Learn, an np array.

 def transform(self, documents):
 def generator():
 for document in documents:
 vec = self.tfidf[self.lexicon.doc2bow(document)]
 if self.tofull:
 yield sparse2full(vec)
 else:
 yield vec
 return list(generator())

We now have a custom wrapper for our Gensim vectorizer, and here in GensimTopic
Models, we put all of the pieces together:

from sklearn.pipeline import Pipeline
from gensim.sklearn_api import ldamodel

class GensimTopicModels(object):

 def __init__(self, n_topics=50):
 """
 n_topics is the desired number of topics
 """
 self.n_topics = n_topics
 self.model = Pipeline([
 ('norm', TextNormalizer()),
 ('vect', GensimTfidfVectorizer()),
 ('model', ldamodel.LdaTransformer(num_topics = self.n_topics))
])

 def fit(self, documents):
 self.model.fit(documents)

 return self.model

We can now fit our pipeline with our corpus.docs:

if __name__ == '__main__':
 corpus = PickledCorpusReader('../corpus')

 gensim_lda = GensimTopicModels()

 docs = [
 list(corpus.docs(fileids=fileid))[0]
 for fileid in corpus.fileids()
]

 gensim_lda.fit(docs)

116 | Chapter 6: Clustering for Text Similarity

In order to inspect the topics, we can retrieve them from the LDA step, which is the
gensim_model attribute from the last step of our pipeline. We can then use the Gen‐
sim LDAModel show_topics method to view the topics and the token-weights for the
top ten most influential tokens:

 lda = gensim_lda.model.named_steps['model'].gensim_model
 print(lda.show_topics())

We can also define a function get_topics, which given the fitted LDAModel and vec‐
torized corpus, will retrieve the highest-weighted topic for each of the documents in
the corpus:

 def get_topics(vectorized_corpus, model):
 from operator import itemgetter

 topics = [
 max(model[doc], key=itemgetter(1))[0]
 for doc in vectorized_corpus
]

 return topics

 lda = gensim_lda.model.named_steps['model'].gensim_model

 corpus = [
 gensim_lda.model.named_steps['vect'].lexicon.doc2bow(doc)
 for doc in gensim_lda.model.named_steps['norm'].transform(docs)
]

 topics = get_topics(corpus,lda)

 for topic, doc in zip(topics, docs):
 print("Topic:{}".format(topic))
 print(doc)

Visualizing topics
Oftentimes with unsupervised learning techniques, it is helpful to be able to visually
explore the results of a model, since traditional model evaluation techniques are use‐
ful only for supervised learning problems. Visualization techniques for text analytics
will be discussed in greater detail in Chapter 8, but here we will briefly explore the use
of the pyLDAvis library, which is designed to provide a visual interface for interpret‐
ing the topics derived from a topic model.

PyLDAvis works by extracting information from fitted LDA topic models to inform
an interactive web-based visualization, which can easily be run from inside a Jupyter
notebook or saved as HTML. In order visualize our document topics with pyLDAvis,
we can fit our pipeline inside a Jupyter notebook as follows:

Modeling Document Topics | 117

import pyLDAvis
import pyLDAvis.gensim

lda = gensim_lda.model.named_steps['model'].gensim_model

corpus = [
 gensim_lda.model.named_steps['vect'].lexicon.doc2bow(doc)
 for doc in gensim_lda.model.named_steps['norm'].transform(docs)
]

lexicon = gensim_lda.model.named_steps['vect'].lexicon

data = pyLDAvis.gensim.prepare(model,corpus,lexicon)
pyLDAvis.display(data)

The key method pyLDAvis.gensim.prepare takes as an argument the LDA model,
the vectorized corpus, and the derived lexicon and produces, upon calling display,
visualizations like the one shown in Figure 6-11.

Figure 6-11. Interactive topic model visualization with pyLDAvis

118 | Chapter 6: Clustering for Text Similarity

2 Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman, Index‐
ing by Latent Semantic Analysis, (1990) http://bit.ly/2JHWx57

Latent Semantic Analysis
Latent Semantic Analysis (LSA) is a vector-based approach first suggested as a topic
modeling technique by Deerwester et al in 1990.2

While Latent Dirichlet Allocation works by abstracting topics from documents,
which can then be used to score documents by their proportion of topical terms,
Latent Semantic Analysis simply finds groups of documents with the same words.
The LSA approach to topic modeling (also known as Latent Semantic Indexing) iden‐
tifies themes within a corpus by creating a sparse term-document matrix, where each
row is a token and each column is a document. Each value in the matrix corresponds
to the frequency with which the given term appears in that document, and can be
normalized using TF–IDF. Singular Value Decomposition (SVD) can then be applied
to the matrix to factorize into matrices that represent the term-topics, the topic
importances, and the topic-documents.

Figure 6-12. Latent Semantic Analysis

Using the derived diagonal topic importance matrix, we can identify the topics that
are the most significant in our corpus, and remove rows that correspond to less
important topic terms. Of the remaining rows (terms) and columns (documents), we
can assign topics based on their highest corresponding topic importance weights.

In Scikit-Learn
To do Latent Semantic Analysis with Scikit-Learn, we will make a pipeline that nor‐
malizes our text, creates a term-document matrix using a CountVectorizer, and then
employs TruncatedSVD, which is the Scikit-Learn implementation of Singular Value
Decomposition. Scikit-Learn’s implementation only computes the k largest singular
values, where k is a hyperparameter that we must specify via the n_components

Modeling Document Topics | 119

http://bit.ly/2JHWx57

attribute. Fortunately, this requires very little refactoring of the __init__ method we
created for our SklearnTopicModels class!

class SklearnTopicModels(object):

 def __init__(self, n_topics=50, estimator='LDA'):
 """
 n_topics is the desired number of topics
 To use Latent Semantic Analysis, set estimator to 'LSA',
 otherwise, defaults to Latent Dirichlet Allocation ('LDA').
 """
 self.n_topics = n_topics

 if estimator == 'LSA':
 self.estimator = TruncatedSVD(n_components=self.n_topics)
 else:
 self.estimator = LatentDirichletAllocation(n_topics=self.n_topics)

 self.model = Pipeline([
 ('norm', TextNormalizer()),
 ('tfidf', CountVectorizer(tokenizer=identity,
 preprocessor=None, lowercase=False)),
 ('model', self.estimator)
])

Our original fit_transform and get_topics methods that we defined for our Scikit-
Learn implementation of the Latent Dirichlet Allocation pipeline will not require any
modification to work with our newly refactored SklearnTopicModels class, so we can
easily switch between the two algorithms to see which performs best according to our
application and document context.

The Gensim way

Updating our GensimTopicModels class to enable a Latent Semantic Analysis pipeline
is much the same. We again use our TextNormalizer, followed by the GensimTfidf
Vectorizer we used in our Latent Dirichlet Allocation pipeline, and finally the
Gensim LsiModel wrapper exposed through the gensim.sklearn_api module,
lsimodel.LsiTransformer:

from gensim.sklearn_api import lsimodel, ldamodel

class GensimTopicModels(object):

 def __init__(self, n_topics=50, estimator='LDA'):
 """
 n_topics is the desired number of topics

 To use Latent Semantic Analysis, set estimator to 'LSA'
 otherwise defaults to Latent Dirichlet Allocation.

120 | Chapter 6: Clustering for Text Similarity

3 Pentti Paatero and Unto Tapper, Positive matrix factorization: A non‐negative factor model with optimal utiliza‐
tion of error estimates of data values, (1994) http://bit.ly/2GOFdJU

4 Daniel D. Lee and H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization,
(1999) http://bit.ly/2GJBIV5

 """
 self.n_topics = n_topics

 if estimator == 'LSA':
 self.estimator = lsimodel.LsiTransformer(num_topics=self.n_topics)
 else:
 self.estimator = ldamodel.LdaTransformer(num_topics=self.n_topics)

 self.model = Pipeline([
 ('norm', TextNormalizer()),
 ('vect', GensimTfidfVectorizer()),
 ('model', self.estimator)
])

We can now switch between the two Gensim algorithms with the estimator keyword
argument.

Non-Negative Matrix Factorization
Another unsupervised technique that can be used for topic modeling is non-negative
matrix factorization (NNMF). First introduced by Pentti Paatero and Unto Tapper
(1994)3 and popularized in a Nature article by Daniel Lee and H. Sebastian Seung
(1999),4 NNMF has many applications, including spectral data analysis, collaborative
filtering for recommender systems, and topic extraction (Figure 6-13).

Figure 6-13. Non-negative matrix factorization

To apply NNMF for topic modeling, we begin by representing our corpus as we did
with our Latent Semantic Analysis, as a TF–IDF normalized term-document matrix.
We then decompose the matrix into two factors whose product approximates the

Modeling Document Topics | 121

http://bit.ly/2GOFdJU
http://bit.ly/2GJBIV5

5 Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler, Exploring Topic Coherence over
many models and many topics, (2012) http://bit.ly/2GNHg11

original, such that every value in both factors is either positive or zero. The resulting
matrices illustrate topics positively related to terms and documents of the corpus.

In Scikit-Learn
Scikit-Learn’s implementation of non-negative matrix factorization is the
sklearn.decomposition.NMF class. With a minor amount of refactoring to the
__init__ method of our SklearnTopicModels class, we can easily implement NNMF
in our pipeline without any additional changes needed:

from sklearn.decomposition import NMF

class SklearnTopicModels(object):

 def __init__(self, n_topics=50, estimator='LDA'):
 """
 n_topics is the desired number of topics
 To use Latent Semantic Analysis, set estimator to 'LSA',
 To use Non-Negative Matrix Factorization, set estimator to 'NMF',
 otherwise, defaults to Latent Dirichlet Allocation ('LDA').
 """
 self.n_topics = n_topics

 if estimator == 'LSA':
 self.estimator = TruncatedSVD(n_components=self.n_topics)
 elif estimator == 'NMF':
 self.estimator = NMF(n_components=self.n_topics)
 else:
 self.estimator = LatentDirichletAllocation(n_topics=self.n_topics)

 self.model = Pipeline([
 ('norm', TextNormalizer()),
 ('tfidf', CountVectorizer(tokenizer=identity,
 preprocessor=None, lowercase=False)),
 ('model', self.estimator)
])

So which topic modeling algorithm is best? Anecdotally,5 LSA is sometimes consid‐
ered better for learning descriptive topics, which is helpful with longer documents
and more diffuse corpora. Latent Dirichlet Allocation and non-negative matrix facto‐
rization, on the other hand, can be better for learning compact topics, which is useful
for creating succinct labels from topics.

122 | Chapter 6: Clustering for Text Similarity

http://bit.ly/2GNHg11

Ultimately, the best model will depend a great deal on the corpus you are working
with and the goals of your application. Now you are equipped with the tools to
experiment with multiple models to determine which works best for your use case!

Conclusion
In this chapter, we’ve seen that unsupervised machine learning can be tricky since
there is no surefire way to evaluate the performance of a model. Nonetheless,
distance-based techniques that allow us to quantify the similarities between docu‐
ments can be an effective and fast method of dealing with large corpora to present
interesting and relevant information.

As we discussed, k-means is an effective general-purpose clustering technique that
scales well to large corpora (particularly if using the NLTK implementation with
cosine distance, or the Scikit-Learn MiniBatchKMeans), especially if there aren’t too
many clusters and the geometry isn’t too complex. Agglomerative clustering is a use‐
ful alternative in cases where there are a large number of clusters and data is less
evenly distributed.

We also learned that effectively summarizing a corpus of unlabeled documents often
requires not only a priori categorization, but also a method for describing those cate‐
gories. This makes topic modeling—whether with Latent Dirichlet Allocation, Latent
Semantic Analysis, or non-negative matrix factorization—another essential tool for
the applied text analytics toolkit.

Clusters can be an excellent starting point to begin annotating a dataset for super‐
vised methods that can be evaluated upon. Creating collections of similar documents
can lead to more complex structures like graph relationships (which we’ll see more of
in Chapter 9) that lead to more impactful downstream analysis. In Chapter 7, we’ll
take a closer look at some more advanced contextual feature engineering strategies
that will allow us to capture some of those complex structures for more effective text
modeling.

Conclusion | 123

CHAPTER 7

Context-Aware Text Analysis

The models we have seen in this book so far use a bag-of-words decomposition tech‐
nique, enabling us to explore relationships between documents that contain the same
mixture of individual words. This is incredibly useful, and indeed we’ve seen that the
frequency of tokens can be very effective particularly in cases where the vocabulary of
a specific discipline or topic is sufficient to distinguish it from or relate it to other
text.

What we haven’t taken into account yet, however, is the context in which the words
appear, which we instinctively know plays a huge role in conveying meaning. Con‐
sider the following phrases: “she liked the smell of roses” and “she smelled like roses.”
Using the text normalization techniques presented in previous chapters such as stop‐
words removal and lemmatization, these two utterances would have identical bag-of-
words vectors though they have completely different meanings.

This does not mean that bag-of-words models should be completely discounted, and
in fact, bag-of-words models are usually very useful initial models. Nonetheless,
lower performing models can often be significantly improved with the addition of
contextual feature extraction. One simple, yet effective approach is to augment mod‐
els with grammars to create templates that help us target specific types of phrases,
which capture more nuance than words alone.

In this chapter, we will begin by using a grammar to extract key phrases from our
documents. Next, we will explore n-grams and discover significant collocations we can
use to augment our bag-of-words models. Finally, we will see how our n-gram model
can be extended with conditional frequency, smoothing, and back-off to create a model
that can generate language, a crucial part of many applications including machine
translation, chatbots, smart autocomplete, and more.

125

Grammar-Based Feature Extraction
Grammatical features such as parts-of-speech enable us to encode more contextual
information about language. One of the most effective ways of improving model per‐
formance is by combining grammars and parsers, which allow us to build up light‐
weight syntactic structures to directly target dynamic collections of text that could be
significant.

To get information about the language in which the sentence is written, we need a set
of grammatical rules that specify the components of well-structured sentences in that
language; this is what a grammar provides. A grammar is a set of rules describing
specifically how syntactic units (sentences, phrases, etc.) in a given language should
be deconstructed into their constituent units. Here are some examples of these syn‐
tactic categories:

Symbol Syntactic Category
S Sentence

NP Noun Phrase

VP Verb Phrase

PP Prepositional Phrase

DT Determiner

N Noun

V Verb

ADJ Adjective

P Preposition

TV Transitive Verb

IV Intransitive Verb

Context-Free Grammars
We can use grammars to specify different rules that allow us to build up parts-of-
speech into phrases or chunks. A context-free grammar is a set of rules for combining
syntactic components to form sensical strings. For instance, the noun phrase “the cas‐
tle” has a determiner (denoted DT using the Penn Treebank tagset) and a noun (N).
The prepositional phrase (PP) “in the castle” has a preposition (P) and a noun phrase
(NP). The verb phrase (VP) “looks in the castle” has a verb (V) and a prepositional
phrase (PP). The sentence (S) “Gwen looks in the castle” has a proper noun (NNP) and
verb phrase (VP). Using these tags, we can define a context-free grammar:

126 | Chapter 7: Context-Aware Text Analysis

GRAMMAR = """
 S -> NNP VP
 VP -> V PP
 PP -> P NP
 NP -> DT N
 NNP -> 'Gwen' | 'George'
 V -> 'looks' | 'burns'
 P -> 'in' | 'for'
 DT -> 'the'
 N -> 'castle' | 'ocean'
 """

In NLTK, nltk.grammar.CFG is an object that defines a context-free grammar, speci‐
fying how different syntactic components can be related. We can use CFG to parse our
grammar as a string:

from nltk import CFG
cfg = nltk.CFG.fromstring(GRAMMAR)

print(cfg)
print(cfg.start())
print(cfg.productions())

Syntactic Parsers
Once we have defined a grammar, we need a mechanism to systematically search out
the meaningful syntactic structures from our corpus; this is the role of the parser. If a
grammar defines the search criterion for “meaningfulness” in the context of our lan‐
guage, the parser executes the search. A syntactic parser is a program that decon‐
structs sentences into a parse tree, which consists of hierarchical constituents, or
syntactic categories.

When a parser encounters a sentence, it checks to see if the structure of that sentence
conforms to a known grammar. If so, it parses the sentence according to the rules of
that grammar, producing a parse tree. Parsers are often used to identify important
structures, like the subject and object of verbs in a sentence, or to determine which
sequences of words in a sentence should be grouped together within each syntactic
category.

First, we define a GRAMMAR to identify sequences of text that match a part-of-speech
pattern, and then instantiate an NLTK RegexpParser that uses our grammar to chunk
the text into subsections:

from nltk.chunk.regexp import RegexpParser

GRAMMAR = r'KT: {(<JJ>* <NN.*>+ <IN>)? <JJ>* <NN.*>+}'
chunker = RegexpParser(GRAMMAR)

The GRAMMAR is a regular expression used by the NLTK RegexpParser to create trees
with the label KT (key term). Our chunker will match phrases that start with an

Grammar-Based Feature Extraction | 127

optional component composed of zero or more adjectives, followed by one or more
of any type of noun and a preposition, and end with zero or more adjectives followed
by one more of any type of noun. This grammar will chunk phrases like “red baseball
bat” or “United States of America.”

Consider an example sentence from a news story about baseball: “Dusty Baker pro‐
posed a simple solution to the Washington National’s early-season bullpen troubles
Monday afternoon and it had nothing to do with his maligned group of relievers.”

(S
 (KT Dusty/NNP Baker/NNP)
 proposed/VBD
 a/DT
 (KT simple/JJ solution/NN)
 to/TO
 the/DT
 (KT Washington/NNP Nationals/NNP)
 (KT
 early-season/JJ
 bullpen/NN
 troubles/NNS
 Monday/NNP
 afternoon/NN)
 and/CC
 it/PRP
 had/VBD
 (KT nothing/NN)
 to/TO
 do/VB
 with/IN
 his/PRP$
 maligned/VBN
 (KT group/NN of/IN relievers/NNS)
 ./.)

This sentence is parsed into keyphrase chunks with six key phrases, including “Dusty
Baker,” “early-season bullpen troubles Monday afternoon,” and “group of relievers.”

Extracting Keyphrases
Figure 4-8 depicted a pipeline that included a feature union with a KeyphraseExtrac
tor and an EntityExtractor. In this section, we’ll implement the KeyphraseExtrac
tor class that will transform documents into a bag-of-keyphrase representation.

The key terms and keyphrases contained within our corpora often provide insight into
the topics or entities contained in the documents being analyzed. Keyphrase extrac‐
tion consists of identifying and isolating phrases of a dynamic size to capture as many
nuances in the topics of documents as possible.

128 | Chapter 7: Context-Aware Text Analysis

1 Burton DeWilde, Intro to Automatic Keyphrase Extraction, (2014) http://bit.ly/2GJBKwb

Our KeyphraseExtractor class is inspired by an excellent blog post
written by Burton DeWilde.1

The first step in keyphrase extraction is to identify candidates for phrases (e.g., which
words or phrases could best convey the topic or relationships of documents). We’ll
define our KeyphraseExtractor with a grammar and chunker to identify just the
noun phrases using part-of-speech tagged text.

GRAMMAR = r'KT: {(<JJ>* <NN.*>+ <IN>)? <JJ>* <NN.*>+}'
GOODTAGS = frozenset(['JJ','JJR','JJS','NN','NNP','NNS','NNPS'])

class KeyphraseExtractor(BaseEstimator, TransformerMixin):
 """
 Wraps a PickledCorpusReader consisting of pos-tagged documents.
 """
 def __init__(self, grammar=GRAMMAR):
 self.grammar = GRAMMAR
 self.chunker = RegexpParser(self.grammar)

Since we imagine that this KeyphraseExtractor will be the first step in a pipeline
after tokenization, we’ll add a normalize() method that performs some lightweight
text normalization, removing any punctuation and ensuring that all words are lower‐
case:

from unicodedata import category as unicat

 def normalize(self, sent):
 """
 Removes punctuation from a tokenized/tagged sentence and
 lowercases words.
 """
 is_punct = lambda word: all(unicat(c).startswith('P') for c in word)
 sent = filter(lambda t: not is_punct(t[0]), sent)
 sent = map(lambda t: (t[0].lower(), t[1]), sent)
 return list(sent)

Now we will write an extract_keyphrases() method. Given a document, this
method will first normalize the text and then use our chunker to parse it. The output
of a parser is a tree with only some branches of interest (the keyphrases!). To get the
phrases of interest, we use the tree2conlltags function to convert the tree into the
CoNLL IOB tag format, a list containing (word, tag, IOB-tag) tuples.

Grammar-Based Feature Extraction | 129

http://bit.ly/2GJBKwb

An IOB tag tells you how a term is functioning in the context of the phrase; the term
will either begin a keyphrase (B-KT), be inside a keyphrase (I-KT), or be outside a key‐
phrase (O). Since we’re only interested in the terms that are part of a keyphrase, we’ll
use the groupby() function from the itertools package in the standard library to write
a lambda function that continues to group terms so long as they are not O:

from itertools import groupby
from nltk.chunk import tree2conlltags

 def extract_keyphrases(self, document):
 """
 For a document, parse sentences using our chunker created by
 our grammar, converting the parse tree into a tagged sequence.
 Yields extracted phrases.
 """
 for sents in document:
 for sent in sents:
 sent = self.normalize(sent)
 if not sent: continue
 chunks = tree2conlltags(self.chunker.parse(sent))
 phrases = [
 " ".join(word for word, pos, chunk in group).lower()
 for key, group in groupby(
 chunks, lambda term: term[-1] != 'O'
) if key
]
 for phrase in phrases:
 yield phrase

Since our class is a transformer, we finish by adding a no-op fit method and a trans
form method that calls extract_keyphrases() on each document in the corpus:

 def fit(self, documents, y=None):
 return self

 def transform(self, documents):
 for document in documents:
 yield self.extract_keyphrases(document)

Here’s a sample result for one of our transformed documents:

['lonely city', 'heart piercing wisdom', 'loneliness', 'laing',
'everyone', 'feast later', 'point', 'own hermetic existence in new york',
'danger', 'thankfully', 'lonely city', 'cry for connection',
'overcrowded overstimulated world', 'blueprint of urban loneliness',
'emotion', 'calls', 'city', 'npr jason heller', 'olivia laing',
'lonely city', 'exploration of loneliness',
'others experiences in new york city', 'rumpus', 'review', 'lonely city',
'related posts']

In Chapter 12, we’ll revisit this class with a different GRAMMAR to build a custom bag-
of-keyphrase transformer for a neural network-based sentiment classifier.

130 | Chapter 7: Context-Aware Text Analysis

Extracting Entities
Similarly to our KeyphraseExtractor, we can create a custom feature extractor to
transform documents into bags-of-entities. To do this we will make use of NLTK’s
named entity recognition utility, ne_chunk, which produces a nested parse tree struc‐
ture containing the syntactic categories as well as the part-of-speech tags contained in
each sentence.

We begin by creating an EntityExtractor class that is initialized with a set of entity
labels. We then add a get_entities method that uses ne_chunk to get a syntactic
parse tree for a given document. The method then navigates through the subtrees in
the parse tree, extracting entities whose labels match our set (consisting of people’s
names, organizations, facilities, geopolitical entities, and geosocial political entities).
We append these to list of entities, which we yield after the method has finished
traversing all the trees of the document:

from nltk import ne_chunk

GOODLABELS = frozenset(['PERSON', 'ORGANIZATION', 'FACILITY', 'GPE', 'GSP'])

class EntityExtractor(BaseEstimator, TransformerMixin):
 def __init__(self, labels=GOODLABELS, **kwargs):
 self.labels = labels

 def get_entities(self, document):
 entities = []
 for paragraph in document:
 for sentence in paragraph:
 trees = ne_chunk(sentence)
 for tree in trees:
 if hasattr(tree, 'label'):
 if tree.label() in self.labels:
 entities.append(
 ' '.join([child[0].lower() for child in tree])
)
 return entities

 def fit(self, documents, labels=None):
 return self

 def transform(self, documents):
 for document in documents:
 yield self.get_entities(document)

A sample document from our transformed corpus looks like:

['lonely city', 'loneliness', 'laing', 'new york', 'lonely city',
'npr', 'jason heller', 'olivia laing', 'lonely city', 'new york city',
'rumpus', 'lonely city', 'related']

Grammar-Based Feature Extraction | 131

We will revisit grammar-based feature extraction in Chapter 9, where we’ll make use
of our EntityExtractor for use with graph metrics to model the relative importances
of different entities in documents.

n-Gram Feature Extraction
Unfortunately, grammar-based approaches, while very effective, do not always work.
For one thing, they rely heavily on the success of part-of-speech tagging, meaning we
must be confident that our tagger is correctly labeling nouns, verbs, adjectives, and
other parts of speech. As we’ll see in Chapter 8, it is very easy for out-of-the-box part-
of-speech taggers to get tripped up by nonstandard or ungrammatical text.

Grammar-based feature extraction is also somewhat inflexible, because we must
begin by defining a grammar. It is often very difficult to know in advance which
grammar pattern will most effectively capture the high-signal terms and phrases
within a text.

We can address these challenges iteratively, by experimenting with many different
grammars or by training our own custom part-of-speech tagger. However, in this sec‐
tion we will explore another option, backing off from grammar to n-grams, which
will give us a more general way of identifying sequences of tokens.

Consider the sentence “The reporters listened closely as the President of the United
States addressed the room.” By scanning a window of a fixed length, n, across the text,
we can collect all possible contiguous subsequences of tokens. So far we’ve been
working with unigrams, n-grams where n=1 (e.g., individual tokens). When n=2 we
have bigrams, a tuple of tokens such as ("The", "reporters") and ("reporters",
"listened"). When n=3, trigrams are a three-tuple: ("The", "reporters", "lis
tened") and so on for any n. The windowing sequence for trigrams is shown in
Figure 7-1.

Figure 7-1. Windowing to select n-gram substrings

To identify all of the n-grams from our text, we simply slide a fixed-length window
over a list of words until the window reaches the end of the list. We can do this in
pure Python as follows:

def ngrams(words, n=2):
 for idx in range(len(words)-n+1):
 yield tuple(words[idx:idx+n])

132 | Chapter 7: Context-Aware Text Analysis

This function ranges a start index from 0 to the position that is exactly one n-gram
away from the end of the word list. It then slices the word list from the start index to
n-gram length, returning an immutable tuple. When applied to our example sen‐
tence, the output is as follows:

words = [
 "The", "reporters", "listened", "closely", "as", "the", "President",
 "of", "the", "United", "States", "addressed", "the", "room", ".",
]

for ngram in ngrams(words, n=3):
 print(ngram)

('The', 'reporters', 'listened')
('reporters', 'listened', 'closely')
('listened', 'closely', 'as')
('closely', 'as', 'the')
('as', 'the', 'President')
('the', 'President', 'of')
('President', 'of', 'the')
('of', 'the', 'United')
('the', 'United', 'States')
('United', 'States', 'addressed')
('States', 'addressed', 'the')
('addressed', 'the', 'room')
('the', 'room', '.')

Not bad! However, these results do raise some questions. First, what do we do at the
beginning and the end of sentences? And how do we decide what n-gram size to use?
We’ll address both questions in the next section.

An n-Gram-Aware CorpusReader
n-gram extraction is part of text preprocessing that occurs prior to modeling. As
such, it would be convenient to include an ngrams() method as part of our custom
CorpusReader and PickledCorpusReader classes. This will ensure it is easy to process
our entire corpus for n-grams and retrieve them later. For example:

class HTMLCorpusReader(CategorizedCorpusReader, CorpusReader):

 ...

 def ngrams(self, n=2, fileids=None, categories=None):
 for sent in self.sents(fileids=fileids, categories=categories):
 for ngram in nltk.ngrams(sent, n):
 yield ngram

 ...

n-Gram Feature Extraction | 133

Because we are primarily considering context and because sentences represent dis‐
crete and independent thoughts, it makes sense to consider n-grams that do not cross
over sentence boundaries.

The easiest way to handle more complex n-gram manipulation is to use the ngrams()
method from NLTK, which can be used alongside NLTK segmentation and tokeniza‐
tion methods. This method will enable us to add padding before and after sentences
such that n-grams generated also include sentence boundaries. This will allow us to
identify which n-grams start sentences and which conclude them.

Here we use XML symbols to demarcate the beginnings and ends
of sentences because they are easily identified as markup and are
likely not to be a unique token in the text. However, they are com‐
pletely arbitrary and other symbols could be used. We frequently
like to use ★ ("\u2605") and ☆ ("\u2606") when parsing text that
does not contain symbols.

We’ll begin with constants to define the start and end of the sentence as <s> and </s>
(because English reads left to right, the left_pad_symbol and right_pad_symbol,
respectively). In languages that read right to left, these could be reversed.

The second part of the code creates a function nltk_ngrams that uses the partial
function to wrap the nltk.ngrams function with our code-specific keyword argu‐
ments. This ensures that every time we call nltk_ngrams, we get our expected behav‐
ior, without managing the call signature everywhere in our code that we use it. Finally
our newly redefined ngrams function takes as arguments a string containing our text
and n-gram size. It then applies the sent_tokenize and word_tokenize functions to
the text before passing them into nltk_ngrams to get our padded n-grams:

import nltk
from functools import partial

LPAD_SYMBOL = "<s>"
RPAD_SYMBOL = "</s>"

nltk_ngrams = partial(
 nltk.ngrams,
 pad_right=True, right_pad_symbol=RPAD_SYMBOL,
 left_pad=True, left_pad_symbol=LPAD_SYMBOL
)

 def ngrams(self, n=2, fileids=None, categories=None):
 for sent in self.sents(fileids=fileids, categories=categories):
 for ngram in nltk.ngrams(sent, n):
 yield ngram

134 | Chapter 7: Context-Aware Text Analysis

For instance, given a size of n=4 and the sample text, “After, there were several follow-
up questions. The New York Times asked when the bill would be signed,” the resulting
four-grams would be:

('<s>', '<s>', '<s>', 'After')
('<s>', '<s>', 'After', ',')
('<s>', 'After', ',', 'there')
('After', ',', 'there', 'were')
(',', 'there', 'were', 'several')
('there', 'were', 'several', 'follow')
('were', 'several', 'follow', 'up')
('several', 'follow', 'up', 'questions')
('follow', 'up', 'questions', '.')
('up', 'questions', '.', '</s>')
('questions', '.', '</s>', '</s>')
('.', '</s>', '</s>', '</s>')
('<s>', '<s>', '<s>', 'The')
('<s>', '<s>', 'The', 'New')
('<s>', 'The', 'New', 'York')
('The', 'New', 'York', 'Times')
('New', 'York', 'Times', 'asked')
('York', 'Times', 'asked', 'when')
('Times', 'asked', 'when', '</s>')
('asked', 'when', '</s>', '</s>')
('when', '</s>', '</s>', '</s>')

Note that the padding function adds padding to all possible sequences of n-grams.
While this will be useful later in our discussion of backoff, if your application only
requires identification of the start and end of the sentence, you can simply filter n-
grams that contain more than one padding symbol.

Choosing the Right n-Gram Window
So how do we decide which n to choose? Consider an application where we are using
n-grams to identify candidates for named entity recognition. If we consider a chunk
size of n=2, our results include “The reporters,” “the President,” “the United,” and “the
room.” While not perfect, this model successfully identifies three of the relevant enti‐
ties as candidates in a lightweight fashion.

On the other hand, a model based on the small n-gram window of 2 would fail to
capture some of the nuance of the original text. For instance, if our sentence is from a
text that references multiple heads of state, “the President” could be somewhat ambig‐
uous. In order to capture the entirety of the phrase “the President of the United
States,” we would have to set n=6:

('The', 'reporters', 'listened', 'closely', 'as', 'the'),
('reporters', 'listened', 'closely', 'as', 'the', 'President'),
('listened', 'closely', 'as', 'the', 'President', 'of'),
('closely', 'as', 'the', 'President', 'of', 'the'),
('as', 'the', 'President', 'of', 'the', 'United'),

n-Gram Feature Extraction | 135

('the', 'President', 'of', 'the', 'United', 'States'),
('President', 'of', 'the', 'United', 'States', 'addressed'),
('of', 'the', 'United', 'States', 'addressed', 'the'),
('the', 'United', 'States', 'addressed', 'the', 'room'),
('United', 'States', 'addressed', 'the', 'room', '.')

Unfortunately, as we can see in the results above, if we build a model based on an n-
gram order that is too high, it will be very unlikely that we’ll see any repeated entities.
This will make it very difficult to assign likelihoods that capture the target of our
analysis. Moreover, as n increases, the number of possible correct n-grams increases,
thereby reducing the likelihood that we will observe all correct n-grams in our cor‐
pus. Too large of an n may add too much noise by overlapping independent contexts.
If the window is larger than the sentence, it might not even produce any n-grams at
all.

Choosing n can also be considered as balancing the trade-off between bias and var‐
iance. A small n leads to a simpler (weaker) model, therefore causing more error due
to bias. A larger n leads to a more complex model (a higher-order model), thus caus‐
ing more error due to variance. Just as with all supervised machine learning prob‐
lems, we have to strike the right balance between the sensitivity and the specificity of
our model. The more dependent words are on more distant precursors, the greater
the complexity needed for an n-gram model to be predictive.

Significant Collocations
Now that our corpus reader is aware of n-grams, we can incorporate these features
into our downstream models by vectorizing our text using n-grams as vector ele‐
ments instead of simply vocabulary. However, using raw n-grams will produce many,
many candidates, most of which will not be relevant. For example, the sentence “I got
lost in the corn maze during the fall picnic” contains the trigram ('in', 'the',
'corn'), which is not a typical prepositional target, whereas the trigram ('I',
'got', 'lost') seems to make sense on its own.

In practice, this is too high a computational cost to be useful in most applications.
The solution is to compute conditional probability. For example, what is the likelihood
that the tokens ('the', 'fall') appear in the text given the token 'during'? We
can compute empirical likelihoods by calculating the frequency of the (n-1)-gram
conditioned by the first token of the n-gram. Using this technique we can value n-
grams that are more often used together such as ('corn', 'maze') over rarer com‐
positions that are less meaningful.

The idea of some n-grams having more value than others leads to another tool in the
text analysis toolkit: significant collocations. Collocation is an abstract synonym for n-
gram (without the specificity of the window size) and simply means a sequence of
tokens whose likelihood of co-occurrence is caused by something other than random

136 | Chapter 7: Context-Aware Text Analysis

chance. Using conditional probability, we can test the hypothesis that a specified col‐
location is meaningful.

NLTK contains two tools to discover significant collocations: the Collocation
Finder, which finds and ranks n-gram collocations, and NgramAssocMeasures, which
contains a collection of metrics to score the significance of a collocation. Both utilities
are dependent on the size of n and the module contains bigram, trigram, and quad‐
gram ranking utilities. Unfortunately, 5-gram associations and above must be man‐
ually implemented by subclassing the correct base class and using one of the
collocation tools as a template.

For now, let’s explore the discovery of significant quadgrams. Because finding and
ranking n-grams for a large corpus can take a lot of time, it is a good practice to write
the results to a file on disk. We’ll create a rank_quadgrams function that takes as input
a corpus to read words from, as well as a metric from the QuadgramAssocMeasures,
finds and ranks quadgrams, then writes the results as a tab-delimited file to disk:

from nltk.collocations import QuadgramCollocationFinder
from nltk.metrics.association import QuadgramAssocMeasures

def rank_quadgrams(corpus, metric, path=None):
 """
 Find and rank quadgrams from the supplied corpus using the given
 association metric. Write the quadgrams out to the given path if
 supplied otherwise return the list in memory.
 """
 # Create a collocation ranking utility from corpus words.
 ngrams = QuadgramCollocationFinder.from_words(corpus.words())

 # Rank collocations by an association metric
 scored = ngrams.score_ngrams(metric)

 if path:
 # Write to disk as tab-delimited file
 with open(path, 'w') as f:
 f.write("Collocation\tScore ({})".format(metric.__name__))
 for ngram, score in scored:
 f.write("{}\t{}\n".format(repr(ngram), score))
 else:
 return scored

For example, we could use the likelihood ratios metric as follows:

rank_quadgrams(
 corpus, QuadgramAssocMeasures.likelihood_ratio, 'quadgrams.txt'
)

This produces quadgrams with likelihood scores from our sample corpus, a few sam‐
ples of which follow:

n-Gram Feature Extraction | 137

Collocation Score (likelihood_ratio)
('New', 'York', "'", 's') 156602.26742890902
('pictures', 'of', 'the', 'Earth') 28262.697780596758
('the', 'majority', 'of', 'users') 28262.36608379526
('numbed', 'by', 'the', 'mindlessness') 3091.139615301832
('There', 'was', 'a', 'time') 3090.2332736791095

The QuadgramAssocMeasures class gives several methods with which to rank signifi‐
cance via hypothesis testing. These methods assume that there is no association
between the words (e.g., the null hypothesis), then compute the probability of the
association occurring if the null hypothesis was true. If we can reject the null hypoth‐
esis because its significance level is too low we can accept the alternative hypothesis.

NLTK’s QuadgramAssocMeasures class exposes a number of signifi‐
cance testing tools such as the student T test, Pearson’s Chi-square
test, pointwise mutual information, the Poisson–Stirling measure,
or even a Jaccard index. Bigram associations include even more
methods such as Phi-square (the square of Pearson correlation),
Fisher’s Exact test, or Dice’s coefficient.

Now we can conceive of a SignificantCollocations feature extraction transformer
for use in a pipeline such as the one shown in Figure 7-2.

Figure 7-2. An n-gram feature extraction pipeline

On fit(), it would find and rank significant collocations, and then on transform()
produce a vector that encoded the score for any significant collocation found in the
document. These features could then be joined to your other vectors using the
FeatureUnion.

from sklearn.base import BaseEstimator, TransformerMixin

class SignificantCollocations(BaseEstimator, TransformerMixin):

 def __init__(self,
 ngram_class=QuadgramCollocationFinder,
 metric=QuadgramAssocMeasures.pmi):
 self.ngram_class = ngram_class
 self.metric = metric

 def fit(self, docs, target):
 ngrams = self.ngram_class.from_documents(docs)
 self.scored_ = dict(ngrams.score_ngrams(self.metric))

138 | Chapter 7: Context-Aware Text Analysis

 def transform(self, docs):
 for doc in docs:
 ngrams = self.ngram_class.from_words(docs)
 yield {
 ngram: self.scored_.get(ngram, 0.0)
 for ngram in ngrams.nbest(QuadgramAssocMeasures.raw_freq, 50)
 }

The model could then be composed as follows:

from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

model = Pipeline([
 ('union', FeatureUnion(
 transformer_list=[
 ('ngrams', Pipeline([
 ('sigcol', SignificantCollocations()),
 ('dsigcol', DictVectorizer()),
])),

 ('tfidf', TfidfVectorizer()),
]
))

 ('clf', SGDClassifier()),
])

Note that this is stub code only, but hopefully serves as a template so that context can
be easily injected into a standard bag of words model.

n-Gram Language Models
Consider an application where a user will enter the first few words of a phrase, then
suggest additional text based on the most likely next words (like a Google search). n-
gram models utilize the statistical frequency of n-grams to make decisions about text.
To compute an n-gram language model that predicts the next word after a series of
words, we would first count all n-grams in the text and then use those frequencies to
predict the likelihood of the last token in the n-gram given the tokens that precede it.
Now we have reason to use our significant collocations not only as a feature extractor,
but also as a model for language!

To build a language model that can generate text, our next step is to create a class that
puts together the pieces we have stepped through in the above sections and imple‐
ment one additional technique: conditional frequency.

n-Gram Language Models | 139

NLTK once had a module that allowed for natural language genera‐
tion, but it was removed following challenges to the method for
computing n-gram models. The NgramModel and NgramCounter
classes we implement in this section are inspired by a branch of
NLTK that addressed many of these complaints, but is at the time
of this writing still under development and not yet merged into
master.

Frequency and Conditional Frequency
We first explored the concept of token frequency in Figure 4-2, where we used fre‐
quency representations with our bag-of-words model with the assumption that word
count could sufficiently approximate a document’s contents to differentiate it from
others. Frequency is also a useful feature with n-gram modeling, where the frequency
with which an n-gram occurs in the training corpus might reasonably lead us to
expect to see that n-gram in new documents.

Imagine we are reading a book one word at a time and we want to compute the prob‐
ability of the next word we’ll see. A naive choice would be to assign the highest prob‐
ability to the words that appear most frequently in the text, which we can visualize in
Figure 7-3.

Figure 7-3. Frequency distribution plot of a text corpus

140 | Chapter 7: Context-Aware Text Analysis

However, we know that this basic use of frequency is not enough; if we’re starting a
sentence some words have higher probability than other words and some words are
much more likely given preceding words. For example, asking the question what is
the probability of the word “chair” following “lawn” is very different than the proba‐
bility of the word “chair” following “lava” (or “lamp”). These likelihoods are informed
by conditional probabilities and are formulated as P(chair|lawn) (read as “the proba‐
bility of chair given lawn”). To model these probabilities, we need to be able to com‐
pute the conditional frequencies of each of the possible n-gram windows.

We begin by defining an NgramCounter class that can keep track of conditional
frequencies of all subgrams from unigrams up to n-grams using FreqDist and
ConditionalFreqDist. Our class also implements the sentence padding we explored
earlier in the chapter, and detects words that are not in the vocabulary of the original
corpus.

from nltk.util import ngrams
from nltk.probability import FreqDist, ConditionalFreqDist

from collections import defaultdict

Padding Symbols
UNKNOWN = "<UNK>"
LPAD = "<s>"
RPAD = "</s>"

class NgramCounter(object):
 """
 The NgramCounter class counts ngrams given a vocabulary and ngram size.
 """

 def __init__(self, n, vocabulary, unknown=UNKNOWN):
 """
 n is the size of the ngram
 """
 if n < 1:
 raise ValueError("ngram size must be greater than or equal to 1")

 self.n = n
 self.unknown = unknown
 self.padding = {
 "pad_left": True,
 "pad_right": True,
 "left_pad_symbol": LPAD,
 "right_pad_symbol": RPAD,
 }

 self.vocabulary = vocabulary
 self.allgrams = defaultdict(ConditionalFreqDist)

n-Gram Language Models | 141

 self.ngrams = FreqDist()
 self.unigrams = FreqDist()

Next, we will create a method for the NgramCounter class that enables us to systemati‐
cally compute the frequency distribution and conditional frequency distribution for
the requested n-gram window.

 def train_counts(self, training_text):
 for sent in training_text:
 checked_sent = (self.check_against_vocab(word) for word in sent)
 sent_start = True
 for ngram in self.to_ngrams(checked_sent):
 self.ngrams[ngram] += 1
 context, word = tuple(ngram[:-1]), ngram[-1]
 if sent_start:
 for context_word in context:
 self.unigrams[context_word] += 1
 sent_start = False

 for window, ngram_order in enumerate(range(self.n, 1, -1)):
 context = context[window:]
 self.allgrams[ngram_order][context][word] += 1
 self.unigrams[word] += 1

 def check_against_vocab(self, word):
 if word in self.vocabulary:
 return word
 return self.unknown

 def to_ngrams(self, sequence):
 """
 Wrapper for NLTK ngrams method
 """
 return ngrams(sequence, self.n, **self.padding)

Now we can define a quick method (outside of our NgramCounter class definition)
that instantiates the counter and computes the relevant frequencies. Our
count_ngrams function takes as parameters the desired n-gram size, the vocabulary,
and a list of sentences represented as comma-separated strings.

def count_ngrams(n, vocabulary, texts):
 counter = NgramCounter(n, vocabulary)
 counter.train_counts(texts)
 return counter

if __name__ == '__main__':
 corpus = PickledCorpusReader('../corpus')
 tokens = [''.join(word[0]) for word in corpus.words()]
 vocab = Counter(tokens)
 sents = list([word[0] for word in sent] for sent in corpus.sents())
 trigram_counts = count_ngrams(3, vocab, sents)

142 | Chapter 7: Context-Aware Text Analysis

For unigrams, we can get the frequency distribution using the unigrams attribute.

print(trigram_counts.unigrams)

For n-grams of higher order, we can retrieve a conditional frequency distribution
from the ngrams attribute.

print(trigram_counts.ngrams[3])

The keys of the conditional frequency distribution show the possible contexts that
might precede each word.

print(sorted(trigram_counts.ngrams[3].conditions()))

We can also use our model to get the list of possible next words:

print(list(trigram_counts.ngrams[3][('the', 'President')]))

Estimating Maximum Likelihood
Our NgramCounter class gives us the ability to transform a corpus into a conditional
frequency distribution of n-grams. In the context of our hypothetical next word pre‐
diction application, we need a mechanism for scoring the possible candidates for next
words after an n-gram so we can provide the most likely. In other words, we need a
model that computes the probability of a token, t, given a preceding sequence, s.

One straightforward way to estimate the probability of the n-gram (s,t) is by com‐
puting its relative frequency. This is the number of times we see t appear as the next
word after s in the corpus, divided by the total number of times we observe s in the
corpus. The resulting ratio gives us a maximum likelihood estimate for the n-gram
(s,t).

We will start by creating a class, BaseNgramModel, that will take as input an Ngram
Counter object and produce a language model. We will initialize the BaseNgramModel
model with attributes to keep track of the highest order n-grams from the trained
NgramCounter, as well as the conditional frequency distributions of the n-grams, the
n-grams themselves, and the vocabulary.

class BaseNgramModel(object):
 """
 The BaseNgramModel creates an n-gram language model.
 """

 def __init__(self, ngram_counter):
 """
 BaseNgramModel is initialized with an NgramCounter.
 """
 self.n = ngram_counter.n
 self.ngram_counter = ngram_counter
 self.ngrams = ngram_counter.ngrams[ngram_counter.n]
 self._check_against_vocab = self.ngram_counter.check_against_vocab

n-Gram Language Models | 143

Next, inside our BaseNgramModel class, we create a score method to compute the rel‐
ative frequency for the word given the context, checking first to make sure that the
context is always shorter than the highest order n-grams from the trained Ngram
Counter. Since the ngrams attribute of the BaseNgramModel is an NLTK Conditional
FreqDist, we can retrieve the FreqDist for any given context, and get its relative
frequency with freq:

 def score(self, word, context):
 """
 For a given string representation of a word, and a string word context,
 returns the maximum likelihood score that the word will follow the
 context.

 fdist[context].freq(word) == fdist[(context, word)] / fdist[context]
 """
 context = self.check_context(context)

 return self.ngrams[context].freq(word)

 def check_context(self, context):
 """
 Ensures that the context is not longer than or equal to the model's
 highest n-gram order.

 Returns the context as a tuple.
 """
 if len(context) >= self.n:
 raise ValueError("Context too long for this n-gram")

 return tuple(context)

In practice, n-gram probabilities tend to be pretty small, so they are often represented
as log probabilities instead. For this reason, we’ll create a logscore method that
transforms the result of our score method into log format, unless the score is less
than or equal to zero, in which case we’ll return negative infinity:

 def logscore(self, word, context):
 """
 For a given string representation of a word, and a word context,
 computes the log probability of the word in the context.
 """
 score = self.score(word, context)
 if score <= 0.0:
 return float("-inf")

 return log(score, 2)

Now that we have methods for scoring instances of particular n-grams, we want a
method to score the language model as a whole, which we will do with entropy. We

144 | Chapter 7: Context-Aware Text Analysis

can create an entropy method for our BaseNgramModel by taking the average log
probability of every n-gram from our NgramCounter.

 def entropy(self, text):
 """
 Calculate the approximate cross-entropy of the n-gram model for a
 given text represented as a list of comma-separated strings.
 This is the average log probability of each word in the text.
 """
 normed_text = (self._check_against_vocab(word) for word in text)
 entropy = 0.0
 processed_ngrams = 0
 for ngram in self.ngram_counter.to_ngrams(normed_text):
 context, word = tuple(ngram[:-1]), ngram[-1]
 entropy += self.logscore(word, context)
 processed_ngrams += 1
 return - (entropy / processed_ngrams)

In Chapter 1 we encountered the concept of perplexity, and considered that within a
given utterance, the previous few words might be enough to predict the next few sub‐
sequent words. The primary assumption is that meaning is very local, which is a var‐
iation of the Markov assumption. In the case of an n-gram model, we want to
minimize perplexity by selecting the most likely (n+1)-gram, given an input n-gram.
For that reason, it is common to evaluate the predictive power of a model by measur‐
ing its perplexity, which we can compute in terms of entropy, as 2 to the power
entropy:

 def perplexity(self, text):
 """
 Given list of comma-separated strings, calculates the perplexity
 of the text.
 """
 return pow(2.0, self.entropy(text))

Perplexity is a normalized way of computing probability; the higher the conditional
probability of a sequence of tokens, the lower its perplexity will be. We should expect
to see our higher-order models demonstrate less perplexity than our weaker models:

trigram_model = BaseNgramModel(count_ngrams(3, vocab, sents))
fivegram_model = BaseNgramModel(count_ngrams(5, vocab, sents))

print(trigram_model.perplexity(sents[0]))
print(fivegram_model.perplexity(sents[0]))

Unknown Words: Back-off and Smoothing
Because natural language is so flexible, it would be naive to expect even a very large
corpus to contain all possible n-grams. Therefore our models must also be sufficiently
flexible to deal with n-grams it has never seen before (e.g., “the President of Califor‐
nia,” “the United States of Canada”). Symbolic models deal with this problem of cov‐

n-Gram Language Models | 145

erage through backoff—if the probability for an n-gram does not exist, the model
looks for the probability of the (n-1)-gram (“the President of,” “the United States of ”),
and so forth, until it gets to single tokens, or unigrams. As a rule of thumb, we should
recursively back off to smaller n-grams until we have enough data to get a probability
estimate.

Since our BaseNgramModel uses maximum likelihood estimation, some (perhaps
many) n-grams will have a zero probability of occurring, resulting in a score() of
zero and a perplexity score of + or - infinity. The means of addressing these zero-
probability n-grams is to implement smoothing. Smoothing consists of donating some
of the probability mass of frequent n-grams to unseen n-grams. The simplest type of
smoothing is “add-one,” or Laplace, smoothing, where the new term is assigned a fre‐
quency of 1 and the probabilities are recomputed, but there are many other types,
such as “add-k,” which is a generalization of Laplace smoothing.

We can easily implement both by creating an AddKNgramModel that inherits from our
BaseNgramModel and overrides the score method by adding the smoothing value k to
the n-gram count and dividing by the (n-1)-gram count, normalized by the unigram
count multiplied by k:

class AddKNgramModel(BaseNgramModel):
 """
 Provides add-k smoothed scores.
 """
 def __init__(self, k, *args):
 """
 Expects an input value, k, a number by which
 to increment word counts during scoring.
 """
 super(AddKNgramModel, self).__init__(*args)

 self.k = k
 self.k_norm = len(self.ngram_counter.vocabulary) * k

 def score(self, word, context):
 """
 With Add-k-smoothing, the score is normalized with
 a k value.
 """
 context = self.check_context(context)
 context_freqdist = self.ngrams[context]
 word_count = context_freqdist[word]
 context_count = context_freqdist.N()
 return (word_count + self.k) / \
 (context_count + self.k_norm)

Then we can create a LaplaceNgramModel class by passing in a value of k=1 to our
AddKNgramModel:

146 | Chapter 7: Context-Aware Text Analysis

class LaplaceNgramModel(AddKNgramModel):
 """
 Implements Laplace (add one) smoothing.
 Laplace smoothing is the base case of add-k smoothing,
 with k set to 1.
 """
 def __init__(self, *args):
 super(LaplaceNgramModel, self).__init__(1, *args)

NLTK’s probability module exposes a number of ways of calculating probability,
including some variations on maximum likelihood and add-k smoothing, as well as:

• UniformProbDist, which assigns equal probability to every sample in a given set,
and a zero probability to all other samples.

• LidstoneProbDist, which smooths sample probabilities using a real number
gamma between 0 and 1.

• KneserNeyProbDist, which implements a version of back-off that counts how
likely an n-gram is provided the (n-1)-gram has been seen in training.

Kneser–Ney smoothing considers the frequency of a unigram not by itself but in rela‐
tion to the n-grams it completes. While some words appear in many different con‐
texts, others appear frequently, but only in certain contexts; we want to treat these
differently.

We can create a wrapper for NLTK’s convenient implementation of Kneser–Ney
smoothing by creating a class KneserNeyModel that inherits from BaseNgramModel
and overrides the score method to use nltk.KneserNeyProbDist. Note that NLTK’s
implementation, nltk.KneserNeyProbDist, requires trigrams:

class KneserNeyModel(BaseNgramModel):
 """
 Implements Kneser-Ney smoothing
 """
 def __init__(self, *args):
 super(KneserNeyModel, self).__init__(*args)
 self.model = nltk.KneserNeyProbDist(self.ngrams)

 def score(self, word, context):
 """
 Use KneserNeyProbDist from NLTK to get score
 """
 trigram = tuple((context[0], context[1], word))
 return self.model.prob(trigram)

Language Generation
Once we can assign probabilities to n-grams, we have a mechanism for preliminary
language generation. In order to apply our KneserNeyModel to build a next word gen‐

n-Gram Language Models | 147

erator, we will create two additional methods, samples and prob, so that we can
access the list of all trigrams with nonzero probabilities and the probability of each
sample.

 def samples(self):
 return self.model.samples()

 def prob(self, sample):
 return self.model.prob(sample)

Now, we can create a simple function that takes input text, retrieves the probability of
each possible trigram continuation of the last two words, and appends the most likely
next word. If fewer than two words are provided, we ask for more input. If our
KneserNeyModel assigns zero probability, we try to change the subject:

corpus = PickledCorpusReader('../corpus')
tokens = [''.join(word) for word in corpus.words()]
vocab = Counter(tokens)
sents = list([word[0] for word in sent] for sent in corpus.sents())

counter = count_ngrams(3, vocab, sents)
knm = KneserNeyModel(counter)

def complete(input_text):
 tokenized = nltk.word_tokenize(input_text)
 if len(tokenized) < 2:
 response = "Say more."
 else:
 completions = {}
 for sample in knm.samples():
 if (sample[0], sample[1]) == (tokenized[-2], tokenized[-1]):
 completions[sample[2]] = knm.prob(sample)
 if len(completions) == 0:
 response = "Can we talk about something else?"
 else:
 best = max(
 completions.keys(), key=(lambda key: completions[key])
)
 tokenized += [best]
 response = " ".join(tokenized)

 return response

print(complete("The President of the United"))
print(complete("This election year will"))

The President of the United States
This election year will suddenly

While it’s fairly easy to construct an application that does simple probabilistic lan‐
guage generation tasks, we can see that to build anything much more complex (e.g.,
something that generates full sentences), it will be necessary to encode more about

148 | Chapter 7: Context-Aware Text Analysis

2 Frankie James, Modified Kneser–Ney smoothing of n-gram models, (2000) http://bit.ly/2JIc5pN

language. This can be achieved with higher-order n-gram models and larger, domain-
specific corpora.

So how do we decide if our model is good enough? We can evaluate n-gram models
in two ways. The first is by using a probability measure like perplexity or entropy to
evaluate the performance of the model on held-out or test data. In this case,
whichever model maximizes entropy or minimizes perplexity for the test set is the
better performing model. It is customary to describe the performance of symbolic
models by their maximal context in terms of the size of n-grams and their smoothing
mechanism. At the time of this writing, the best performing symbolic models are var‐
iations of the Kneser–Ney smoothed 5-gram model.2

On the other hand, it is sometimes more effective to evaluate an n-model by integrat‐
ing it into the application and having users give feedback!

Conclusion
In this chapter we’ve explored several new methods of engineering context-aware fea‐
tures to improve simple bag-of-words models. The structure of text is essential in
being able to understand text at a high level. By employing context through a
grammar-based extraction of keyphrases or with significant collocations, we can con‐
siderably augment our models.

Our approach to text analysis in this chapter has been a symbolic approach, meaning
we have modeled language as discrete chunks with probabilities of occurrence. By
extending this model with a priori and a mechanism for smoothing when unknown
words appeared we were able to create an n-gram language model for generating text.
While this approach to language models may seem academic, the ability to statisti‐
cally evaluate relationships between text has found popular use in a wide range of
commercial applications including modern web search, chatbots, and machine trans‐
lation.

Not discussed in this chapter, but relevant to the conclusion is a secondary approach:
the neural, or connectionist, model of language, which utilizes neural networks as
connected units with emergent behavior. While deep neural networks have been
made widely available and very popular through tools like word2vec, Spacy, and Ten‐
sorFlow, they can be very expensive to train and difficult to interpret and trouble‐
shoot. For this reason, many applications employ more human understandable
symbolic models, which can often be modified with more straightforward heuristics
as we’ll see in Chapter 10. In Chapter 12 we’ll use the connectionist approach to build

Conclusion | 149

http://bit.ly/2JIc5pN

a language classification model, and discuss use cases when it might be preferable in
practice.

Before getting to these more advanced models, however, we’ll first explore text visual‐
ization and visual model diagnostics in Chapter 8, using frequency and statistical
computations to visualize exactly what’s happening in our models.

150 | Chapter 7: Context-Aware Text Analysis

CHAPTER 8

Text Visualization

Machine learning is often associated with the automation of decision making, but in
practice, the process of constructing a predictive model generally requires a human in
the loop. While computers are good at fast, accurate numerical computation, humans
are instinctively and instantly able to identify patterns. The bridge between these two
necessary skill sets lies in visualization—the precise and accurate rendering of data by
a computer in visual terms and the immediate assignation of meaning to that data by
humans.

In Chapters 5 and 6 we examined several practical examples of applied machine
learning models. Yet in the execution of these examples, we observed that the integra‐
tion of machine learning is often not as straightforward as merely fitting a model. For
one thing, the first model is rarely optimal, meaning that an iterative process of
model fitting, evaluation, and tuning is frequently necessary.

Moreover, the evaluation, steering, and presentation of results from applied text ana‐
lytics is significantly less straightforward than with numeric data. What is the best
way to find the most informative features when features can be words, word frag‐
ments, or phrases? How do we know which classification model is best suited to our
corpus? How can we know when we have selected the best value for k in a k-means
clustering model?

It is these types of questions, coupled with our need to iterate toward an optimal,
deployable solution as efficiently as possible, that have led us to adopt the model selec‐
tion triple workflow as described in “The model selection triple” on page 7. In this
chapter, we’ll see how visual diagnostics extends this workflow with visual mecha‐
nisms to diagnose problems or to more easily qualify models with respect to each
other. We’ll explore a set of visual tools that can be useful in steering machine learning
models, enabling more effective interventions in the modeling process led by our
own innate abilities to see patterns in pictures.

151

We’ll begin by building a variety of feature analysis and engineering techniques for
text, from n-gram time series plots to stochastic neighbor embeddings. We’ll then
move toward visual analysis of text models and diagnostic tools for detecting model
error, such as confusion matrices and class prediction error plots. Finally, we’ll
explore some visual methods for engaging in hyperparameter optimization to steer
models toward higher performance.

Visualizing Feature Space
Within traditional numeric prediction pipelines, feature engineering, model evalua‐
tion, and tuning can be done in a fairly straightforward fashion. In low-dimensional
space, we can identify a dataset’s most informative features by fitting a model and
computing how much of the observed variance is explained by each feature; such
results can be visualized using bar charts or two-dimensional pairwise correlation
heatmaps.

Visualizing feature space is not as easy when our data is text. This is in part because
visualizing high-dimensional data is inherently more difficult, but also because visu‐
alizing text data in Python requires additional hoop-jumping compared to plotting
purely numeric data. In this section, we’ll explore a range of Matplotlib visualization
routines we have found useful for feature analysis and feature engineering.

Visual Feature Analysis
In essence, feature analysis is the process by which we go about getting to know our
data. With low-dimensional numeric data, the visual feature analysis techniques we
might use would include box plots and violin plots, histograms, scatterplot matrices,
radial visualizations, and parallel coordinates. Unfortunately, the high dimensionality
of text data makes these techniques not only inconvenient, but also not always espe‐
cially relevant.

In the context of text data, feature analysis amounts to building an understanding of
what is in the corpus. For instance, how long are our documents and how big is our
vocabulary? What patterns or combinations of n-grams tell us the most about our
documents? For that matter, how grammatical is our text? Is it highly technical, com‐
posed of many domain-specific compound noun phrases? Has it been translated from
another language? Is punctuation used in a predictable way?

These are the kinds of questions that enable us to begin forming sound hypotheses
that will set us up for effective experimentation and efficient prototyping. In this sec‐
tion, we’ll see a few specialized feature analysis techniques that are particularly well
suited to text data: n-gram time series, network analyses, and projection plots.

152 | Chapter 8: Text Visualization

n-gram viewer
In Chapter 7 we performed grammar-based feature extraction, aiming to identify sig‐
nificant patterns of tokens across many documents. In practice, we will have a much
easier time steering this phase of the workflow if we can visually explore the fre‐
quency of combinations of tokens as a function of time. In this section, we’ll illustrate
how to create an n-gram viewer to support this kind of feature analysis.

While the corpus readers we constructed in Chapters 3 and 4 did
not have a dates method, this visualizer requires us to add some
mechanism of mapping the timestamp of a document to its corre‐
sponding fileid.

Let’s assume that the corpus data has been formatted as a dictionary where keys are
corpus tokens and the values are (token count, document datetime stamp) tuples.
Assume that we also have a comma-separated list, terms, with strings that correspond
to the n-grams we would like to plot as a time series.

In order to explore n-grams over time, we begin by initializing a Matplotlib figure
and axes, with the width and height dimensions specified in inches. For each term in
our term list, we will plot the count of the target n-gram as the x-value and the date‐
time stamp of the document in which the term appeared as the y-value. We add a title
to the plot, a color-coded legend, and labels for the y- and x-axes. We can also specify
a particular date range to allow for zoom-and-filter functionality:

fig, ax = plt.subplots(figsize=(9,6))

for term in terms:
 data[term].plot(ax=ax)

ax.set_title("Token Frequency over Time")
ax.set_ylabel("word count")
ax.set_xlabel("publication date")
ax.set_xlim(("2016-02-29","2016-05-25"))
ax.legend()
plt.show()

The resulting plot, an example of which is shown in Figure 8-1, shows the frequency
of mentions of political candidates (here represented by their unigrams) across news
articles leading up to an election.

Visualizing Feature Space | 153

1 The ISOVIS Group. Text Visualization Browser: A Visual Survey of Text Visualization Techniques, (2015) http://
textvis.lnu.se/

Figure 8-1. n-gram viewer displays token frequency over time

As such, time series plots can be a useful way to explore and compare the occurrences
of n-grams in our corpus over time.

Network visualization
In practice, network visualizations are the current state of the art for text, as shown by
the predominance of network style visualizations in a recent survey of text visualiza‐
tion.1 This is because networks visually encode complex relationships that can only
otherwise be expressed through natural language. They are particularly popular for
social network analysis. Such graphs can be useful to illustrate relationships between
entities, documents, and even concepts within a corpus, which we will explore more
fully in Chapter 9. In this section, we’ll create a plot that represents The Wizard of Oz
by L. Frank Baum as a social network, where characters are nodes and their relation‐
ships are illustrated with edges that are shorter the closer their connection.

154 | Chapter 8: Text Visualization

http://textvis.lnu.se/
http://textvis.lnu.se/

2 Mike Bostock, Force-Directed Graph, (2018) http://bit.ly/2GNRKNU

In this section, we’ll build a force-directed graph modeled on Mike
Bostock’s Les Misérables character co-occurrence network.2 While
such graphs are easier to render with D3 and other JavaScript
frameworks, we will illustrate building them in Python using Mat‐
plotlib and NetworkX.

For our graph, we’re using a postprocessed version of the Gutenberg edition stored in
a JSON file that contains a dictionary with two items: first, a list of character names
reverse-sorted by their frequency in the text, and second, a dictionary of chapters
represented with {chapter heading: chapter text} key-value pairs. For simplicity,
double newlines have been removed from the chapters (so each appears as a single
paragraph), and all double quotation marks within the text (e.g., dialogue) have been
converted to single quotes.

Since we will be representing the Oz characters as nodes in the graph, we need to
establish the linkages between nodes. We can write a cooccurrence function that
scans through each chapter, and for every possible pair of characters, checks how
often both appear together. We initialize a dictionary with keys for each possible pair,
then for each chapter, we use NLTK’s sent_tokenize method to parse the text into
sentences, and for each sentence that contains both characters’ names, we increment
the dictionary value by one:

import itertools
from nltk import sent_tokenize

def cooccurrence(text, cast):
 """
 Takes as input text, a dict of chapter {headings: text},
 and cast, a comma separated list of character names.
 Returns a dictionary of cooccurrence counts for each
 possible pair.
 """
 possible_pairs = list(itertools.combinations(cast, 2))
 cooccurring = dict.fromkeys(possible_pairs, 0)
 for title, chapter in text['chapters'].items():
 for sent in sent_tokenize(chapter):
 for pair in possible_pairs:
 if pair[0] in sent and pair[1] in sent:
 cooccurring[pair] += 1
 return cooccurring

Next, we’ll open our JSON file, load the text, extract the list of characters, and initial‐
ize a NetworkX graph. For each pair generated by our cooccurrence function with a
nonzero value, we’ll add an edge that stores the co-occurrence count as a property.

Visualizing Feature Space | 155

http://bit.ly/2GNRKNU

We’ll then perform an ego_graph extraction on the graph that sets Dorothy as the
center. We use a spring_layout to push nodes away from her in inverse proportion
to their shared edge weight, specifying the desired distance between nodes using the k
parameter (to avoid a hairball), and the number of iterations of spring-force relaxa‐
tion with the iterations parameter. Finally, we use NetworkX’s draw method to gen‐
erate a Matplotlib figure with the desired node and edge colors and sizes, specifying
that the node labels (the character names) be shown in a font that will be big enough
to read:

import json
import codecs
import networkx as nx
import matplotlib.pyplot as plt

with codecs.open('oz.json', 'r', 'utf-8-sig') as data:
 text = json.load(data)
 cast = text['cast']

 G = nx.Graph()
 G.name = "The Social Network of Oz"

 pairs = cooccurrence(text, cast)
 for pair, wgt in pairs.items():
 if wgt>0:
 G.add_edge(pair[0], pair[1], weight=wgt)

 # Make Dorothy the center
 D = nx.ego_graph(G, "Dorothy")
 edges, weights = zip(*nx.get_edge_attributes(D, "weight").items())

 # Push nodes away that are less related to Dorothy
 pos = nx.spring_layout(D, k=.5, iterations=40)
 nx.draw(D, pos, node_color="gold", node_size=50, edgelist=edges,
 width=.5, edge_color="orange", with_labels=True, font_size=12)
 plt.show()

The resulting plot shown in Figure 8-2 very effectively illustrates Dorothy’s relation‐
ships in the book; the nodes closest to her include her closest allies—her dog, Toto,
the Scarecrow, and the Tin Woodman, while those on the outer edges are characters
with whom Dorothy interacts the least. The social graph also shows Dorothy’s close
promixity to Oz and the Wicked Witch, both of whom she has significant, albeit
more complex, relationships.

156 | Chapter 8: Text Visualization

Figure 8-2. Force-directed ego graph for the Wizard of Oz

The construction and utility of property graphs as well as Net‐
workX’s add_edge, ego_graph and draw methods will be discussed
in greater detail in Chapter 9.

Co-occurrence plots
Co-occurrence is another way to quickly understand relationships between entities or
other n-grams, in terms of the frequency with which they appear together. In this sec‐
tion we’ll use Matplotlib to plot character co-occurrences in The Wizard of Oz.

First, we create a function matrix that will take in the text of the book and the list of
characters. We initialize a multidimensional array that will be a list that contains a list
for every character with the count of its co-occurrences with every other character:

from nltk import sent_tokenize

def matrix(text, cast):
 mtx = []
 for first in cast:
 row = []
 for second in cast:
 count = 0
 for title, chapter in text['chapters'].items():
 for sent in sent_tokenize(chapter):
 if first in sent and second in sent:
 count += 1
 row.append(count)
 mtx.append(row)
 return mtx

Visualizing Feature Space | 157

We can now plot our matrix. To approximate the D3 plots, we want to plot two co-
occurrence matrices side by side; one with the characters ordered alphabetically and
one where they are ordered by overall frequency in the text. We’ll initialize a figure
and axes, add a title and increase the default whitespace between the subplots to
ensure there will be room for the characters names, and create enough x- and y-tick
marks to correspond to every character.

We can then specify the modifications we’ll be making to the first plot by referencing
its index (121)—the number of rows (1), the number of columns (2), and the plot
number (1) of the target subplot. We can then set the x- and y-tick marks and label
the marks with the characters’ names, reducing the default font size and rotating the
labels by 90 degrees to ensure they will be easy to read. We’ll specify that the x-ticks
should appear on the top and add a label to our first axes plot. Finally, we’ll call the
imshow method to produce a heatmap with the interpolation parameter, specifying
a yellow, orange, and brown colormap and using the lognorm of the frequency of
each co-occurrence to ensure that very rare co-occurrences will not be too light to
show up:

...

 # First make the matrices
 # By frequency
 mtx = matrix(text,cast)

 # Now create the plots
 fig, ax = plt.subplots()
 fig.suptitle('Character Co-occurrence in the Wizard of Oz', fontsize=12)
 fig.subplots_adjust(wspace=.75)

 n = len(cast)
 x_tick_marks = np.arange(n)
 y_tick_marks = np.arange(n)

 ax1 = plt.subplot(121)
 ax1.set_xticks(x_tick_marks)
 ax1.set_yticks(y_tick_marks)
 ax1.set_xticklabels(cast, fontsize=8, rotation=90)
 ax1.set_yticklabels(cast, fontsize=8)
 ax1.xaxis.tick_top()
 ax1.set_xlabel("By Frequency")
 plt.imshow(mtx,
 norm=matplotlib.colors.LogNorm(),
 interpolation='nearest',
 cmap='YlOrBr')

To create the alphabetic view of the co-occurrence plot, we begin by alphabetizing the
list of characters and specifying that we want to work with the second subplot, (122),
and add the axes elements much in the same way as for the first subplot:

158 | Chapter 8: Text Visualization

...

 # And alphabetically
 alpha_cast = sorted(cast)
 alpha_mtx = matrix(text,alpha_cast)

 ax2 = plt.subplot(122)
 ax2.set_xticks(x_tick_marks)
 ax2.set_yticks(y_tick_marks)
 ax2.set_xticklabels(alpha_cast, fontsize=8, rotation=90)
 ax2.set_yticklabels(alpha_cast, fontsize=8)
 ax2.xaxis.tick_top()
 ax2.set_xlabel("Alphabetically")
 plt.imshow(alpha_mtx,
 norm=matplotlib.colors.LogNorm(),
 interpolation='nearest',
 cmap='YlOrBr')
 plt.show()

As with the network graph, the representation is only an approximation, as we are
simply looking at the cast as though they are strings of characters, when in reality
there are multiple ways in which characters can manifest (“Dorothy” and “the girl
from Kansas,” “Toto,” and “her little dog, too”). Nonetheless, the resulting plot, shown
in Figure 8-3, tells us a great deal about which characters interact the most within the
text.

Figure 8-3. Character co-occurrences in the Wizard of Oz

Text x-rays and dispersion plots
While the network and co-occurrence plots do begin to elucidate the relationships
between entities in a text (or characters in a plot), as well as which entities play some
of the most important roles, they do not reflect very much about their various roles in

Visualizing Feature Space | 159

3 Jeff Clark, Novel Views: Les Miserables, (2013) http://bit.ly/2GLzYKV
4 Trevor Stephens, Catch-22: Visualized, (2014) http://bit.ly/2GQKX6c

the narrative. For this, we require something akin to Jeff Clark3 and Trevor Stephen’s4

dispersion plots.

A dispersion plot provides a kind of “x-ray” of the text, plotting each character name
along the y-axis and having the narrative plotted along the x-axis, such that a hori‐
zontal line can be added next to each character at the points in which he or she
appears in the plot.

We can recreate a dispersion plot in Matplotlib using our Wizard of Oz text as fol‐
lows. First, we need a list of oz_words of every word in the text in the order it occurs.
We will also keep track of the lengths and headings of each chapter, so that we can
later plot these along the x-axis to show where chapters begin and end:

...

from nltk import word_tokenize, sent_tokenize

 # Plot mentions of characters through chapters
 oz_words = []
 headings = []
 chap_lens = []
 for heading, chapter in text['chapters'].items():
 # Collect the chapter headings
 headings.append(heading)
 for sent in sent_tokenize(chapter):
 for word in word_tokenize(sent):
 # Collect all of the words
 oz_words.append(word)
 # Record the word lengths at each chapter
 chap_lens.append(len(oz_words))

 # Mark where chapters start
 chap_starts = [0] + chap_lens[:-1]
 # Combine with chapter headings
 chap_marks = list(zip(chap_starts,headings))

Now we want to search through the list of oz_words to look for places where the
characters appear, adding these to a list of points for plotting. In our case, some of
our characters have one-word names (e.g., “Dorothy,” “Scarecrow,” “Glinda”), while
others have two-word names (“Cowardly Lion,” “Monkey King”). To ensure we match
types of strings, we’ll first catalog the one-word name matches, checking for each
word in the text to see if it matches a name, and then we’ll look for the two-name
characters by looking at each word together with its preceding word:

160 | Chapter 8: Text Visualization

http://bit.ly/2GLzYKV
http://bit.ly/2GQKX6c

...

 cast.reverse()
 points = []
 # Add a point for each time a character appears
 for y in range(len(cast)):
 for x in range(len(oz_words)):
 # Some characters have 1-word names
 if len(cast[y].split()) == 1:
 if cast[y] == oz_words[x]:
 points.append((x,y))
 # Some characters have 2-word names
 else:
 if cast[y] == ' '.join((oz_words[x-1], oz_words[x])):
 points.append((x,y))
 if points:
 x, y = list(zip(*points))
 else:
 x = y = ()

We will create a figure and axes, specifying a much wider x-axis than the default to
ensure the plot will be easy to read. We will also add vertical lines to label the start of
each chapter, and plot the names of each chapter as labels, adjusting them so that they
will appear slightly below the axis, with a smaller font and a 90-degree rotation. We’ll
then plot our x and y points and modify the tick_params to turn off the default bot‐
tom ticks and labels. Then we add ticks along the y-axis for every character and label
them with the character names, and finally, add a title:

...

 # Create the plot
 fig, ax = plt.subplots(figsize=(12,6))
 # Add vertical lines labeled for each chapter start
 for chap in chap_marks:
 plt.axvline(x=chap[0], linestyle='-',
 color='gainsboro')
 plt.text(chap[0], -2, chap[1], size=6, rotation=90)
 # Plot the character mentions
 plt.plot(x, y, "|", color="darkorange", scalex=.1)
 plt.tick_params(
 axis='x', which='both', bottom='off', labelbottom='off'
)
 plt.yticks(list(range(len(cast))), cast, size=8)
 plt.ylim(-1, len(cast))
 plt.title("Character Mentions in the Wizard of Oz")
 plt.show()

The resulting plot, shown in Figure 8-4, provides a mini-map of the overall narrative
of the text. Such a view not only enables us to see where certain characters (or, more
generally, n-grams) enter and exit the story; it also emphasizes those characters who
play a central role throughout the narrative, and even highlights some areas of inter‐

Visualizing Feature Space | 161

est in the text (e.g., those in which many characters are engaged simultaneously, or in
which the cast shifts suddenly).

Figure 8-4. Dispersion plot of character mentions in the Wizard of Oz

Guided Feature Engineering
Once we have a more confident grasp on the raw content of our corpus, we must
engineer the smallest and most predictive feature set for use in modeling. This engi‐
neered feature set must be as small as possible because each new dimension will inject
noise and makes the decision space more difficult to model.

With text data, we need creative ways to dramatically reduce the dimensionality
without sacrificing too much signal. Options such as Principal Component Analysis
and linear discriminant analysis (and Doc2Vec in the case of text data) are all effec‐
tive ways of compressing the dimensionality of the original data. However, these tech‐
niques can present problems later on if user stories require us to be able to retrieve
the original features (e.g., the specific terms and phrases that make two documents
similar).

In this section, we’ll see a few visual techniques for steering feature engineering that
we find are particularly well suited to text data: visual part-of-speech tagging and fre‐
quency distributions.

Part-of-speech tagging
As we learned in Chapter 3, parts of speech (e.g., verbs, nouns, prepositions, adjec‐
tives) indicate how a word is functioning within the context of a sentence. In English,
as in many other languages, a single word can function in multiple ways, and we
would like to be able to distinguish those uses (e.g., the words “ship” and “shop” can

162 | Chapter 8: Text Visualization

function as either verbs or nouns, depending on the context). Part-of-speech tagging
lets us encode information not only about a word’s definition, but also its use in con‐
text.

In Chapter 7, we used the part-of-speech tags together with a grammar to perform
keyphrase extraction. One of the challenges of this kind of feature engineering is that
it can be very difficult to know a priori which grammar to use to find significant key‐
phrases. Generally, our strategy is to use heuristics and experimentation until we land
on a regular expression that does a good job at capturing the high-signal keyphrases.
This strategy actually works quite well with grammatical English text. But what if the
text with which we are working is ungrammatical, or rife with spelling and punctua‐
tion errors? In these cases, our out-of-the-box part-of-speech tagger may do more
harm than good.

Consider if the text we are using does not encode the meaningful keyphrases accord‐
ing to the adjective-noun pattern? For example, there are numerous cases where the
salient information could be captured not in the adjective phrases but instead in ver‐
bal or adverbial phrases, or in the proper nouns. In this case, even if our part-of-
speech tagger is working properly and our keyphrase chunker looks something like…

grammar=r'KT: {(<JJ>* <NN.*>+ <IN>)? <JJ>* <NN.*>+}'
chunker = nltk.chunk.regexp.RegexpParser(grammar)

…we might indeed fail to capture the signal in our corpus!

It would be helpful to be able first to visually explore the parts-of-speech in a text
before proceeding on to normalization, vectorization, and modeling (or perhaps as a
diagnostic tool for understanding disappointing modeling results). For example, dis‐
covering that a large percentage of our text is not being labeled (or is being misla‐
beled) by our part-of-speech tagger might lead us to train our own regular
expression–based tagger using our particular corpus. Alternatively, it might impact
the way in which we choose to normalize our text (e.g., if there were many meaning‐
ful variations in the ways a certain root word was appearing, it might lead us to
choose lemmatization over stemming, in spite of the increased computation time).

The Yellowbrick library offers a feature that enables the user to print out colorized
text that illustrates different parts of speech. A PosTagVisualizer colorizes text to
enable the user to visualize the proportions of nouns, verbs, etc., and to use this infor‐
mation to make decisions about part-of-speech tagging, text normalization (e.g.,
stemming versus lemmatization), and vectorization.

The transform method transforms the raw text input for the part-of-speech tagging
visualization. Note that it requires that documents be in the form of (tag, token)
tuples:

Visualizing Feature Space | 163

from nltk import pos_tag, word_tokenize
from yellowbrick.text.postag import PosTagVisualizer

pie = """
 In a small saucepan, combine sugar and eggs
 until well blended. Cook over low heat, stirring
 constantly, until mixture reaches 160° and coats
 the back of a metal spoon. Remove from the heat.
 Stir in chocolate and vanilla until smooth. Cool
 to lukewarm (90°), stirring occasionally. In a small
 bowl, cream butter until light and fluffy. Add cooled
 chocolate mixture; beat on high speed for 5 minutes
 or until light and fluffy. In another large bowl,
 beat cream until it begins to thicken. Add
 confectioners' sugar; beat until stiff peaks form.
 Fold into chocolate mixture. Pour into crust. Chill
 for at least 6 hours before serving. Garnish with
 whipped cream and chocolate curls if desired.
 """

tokens = word_tokenize(pie)
tagged = pos_tag(tokens)

visualizer = PosTagVisualizer()
visualizer.transform(tagged)

print(' '.join((visualizer.colorize(token, color)
 for color, token in visualizer.tagged)))
print('\n')

This code produces the results shown in Figure 8-5, when executed either in the com‐
mand line or within a Jupyter Notebook.

Figure 8-5. Part-of-speech tagged recipe

We can see from Figure 8-5 that the part-of-speech tagging has performed moder‐
ately well on the cookbook text, with only a few places where the tagger failed to tag
or mistagged. However, we can see in the following example that the basic NLTK
part-of-speech tagger does not perform equally well in all domains, such as in nurs‐
ery rhymes (Figure 8-6).

Figure 8-6. Part-of-speech tagged nursery rhyme

164 | Chapter 8: Text Visualization

Visual part-of-speech tagging can thus be used by the user as a tool for evaluating the
efficacy of different preprocessing tasks (as described in Chapter 3) as well as for fea‐
ture engineering and model diagnostics.

Most informative features
Identifying the most informative (i.e., predictive) features from a dataset is a key part
of the model selection triple. Yet the techniques with which we are most familiar from
numeric modeling (e.g., L1 and L2 regularization, Scikit-Learn utilities like
select_from_model, etc.) are often less helpful when our data is comprised of text
and our features are tokens or other linguistic characteristics. Once the data has been
vectorized as in Chapter 4, the encoding makes it difficult to extract insights while
keeping a natural narrative intact.

One method for visually exploring text is with frequency distributions. In the context
of a text corpus, a frequency distribution tells us the prevalence of a vocabulary item
or token.

In the next few examples, we’ll use Yellowbrick to visually explore the “hobbies” sub‐
corpus of Baleen, which can be downloaded along with the rest of Yellowbrick’s data‐
sets.

Loading Yellowbrick Datasets
How to load Yellowbrick datasets:

Yellowbrick provides several datasets wrangled from the UCI Machine Learning
Repository. To download the data, clone the Yellowbrick library and run the down‐
load as follows:

$ git clone https://github.com/DistrictDataLabs/yellowbrick.git
$ cd yellowbrick/examples
$ python download.py

Note that this will create a directory called data that contains subdirectories with the
given data.

Once downloaded, use the sklearn.datasets.base.Bunch object to load the corpus
into features and target attributes, respectively, similarly to how Scikit-Learn’s toy
datasets are structured:

import os
import yellowbrick as yb
from sklearn.datasets.base import Bunch

The path to the test datasets
FIXTURES = os.path.join(os.getcwd(), "data")

Corpus loading mechanisms

Visualizing Feature Space | 165

corpora = {
 "hobbies": os.path.join(FIXTURES, "hobbies")
}

def load_corpus(name):
 """
 Loads and wrangles the passed in text corpus by name.
 """

 # Get the path from the datasets
 path = corpora[name]

 # Read the directories in the directory as the categories.
 categories = [
 cat for cat in os.listdir(path)
 if os.path.isdir(os.path.join(path, cat))
]

 files = [] # holds the filenames relative to the root
 data = [] # holds the text read from the file
 target = [] # holds the string of the category

 # Load the data from the files in the corpus
 for cat in categories:
 for name in os.listdir(os.path.join(path, cat)):
 files.append(os.path.join(path, cat, name))
 target.append(cat)

 with open(os.path.join(path, cat, name), 'r') as f:
 data.append(f.read())

 # Return the data bunch for use similar to the newsgroups example
 return Bunch(
 categories=categories,
 files=files,
 data=data,
 target=target,
)

corpus = load_corpus('hobbies')

Once we have our hobbies corpus loaded, we can use Yellowbrick to produce a fre‐
quency distribution to explore the vocabulary. NLTK also offers frequency distribu‐
tion plots that show the top 50 tokens, but we’ll use Yellowbrick here so that we can
leverage its consistent API throughout a few examples. Note that neither the NLTK
FreqDist method nor the Yellowbrick FreqDistVisualizer perform any normaliza‐
tion or vectorization on our behalf; both expect text that has already been count-
vectorized.

166 | Chapter 8: Text Visualization

We first instantiate a FreqDistVisualizer object and then call fit() on that object
with the count vectorized documents and the features (i.e., the words from the cor‐
pus), which computes the frequency distribution. The visualizer then plots a bar chart
of the top most frequent terms in the corpus (50 by default, but can be adjusted using
the N parameter), with the terms listed along the x-axis and frequency counts depic‐
ted at y-axis values. We can then generate the finalized visualization by invoking
Yellowbrick’s poof() method:

from yellowbrick.text.freqdist import FreqDistVisualizer
from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer()
docs = vectorizer.fit_transform(corpus.data)
features = vectorizer.get_feature_names()

visualizer = FreqDistVisualizer(features=features)
visualizer.fit(docs)
visualizer.poof()

In Figure 8-7, we can see the 50 most frequently occurring terms from the hobbies
corpus. However, when we look at the words along the x-axis, we see that most of the
terms are not particularly interesting (e.g., “the,” “and,” “to,” “that,” “of,” “it”). Thus,
while these are the most common terms, they likely aren’t the most informative fea‐
tures.

Figure 8-7. Frequency distribution of the Baleen corpus

Visualizing Feature Space | 167

In Chapter 4, we explored stopwords removal as a method for dimensionality reduc‐
tion, and a means for arriving at the features that most likely encode salient informa‐
tion; here we’ll use a frequency distribution to visualize the impact of removing the
most common English words from our corpus, passing the stop_words parameter
into Scikit-Learn’s CountVectorizer in advance of fit_transform:

vectorizer = CountVectorizer(stop_words='english')
docs = vectorizer.fit_transform(corpus.data)
features = vectorizer.get_feature_names()

visualizer = FreqDistVisualizer(features=features)
visualizer.fit(docs)
visualizer.poof()

As we can see in Figure 8-8, now that the stopwords have been removed, the remain‐
ing features are somewhat more interesting (e.g., “game,” “season,” “team,” “world,”
“film,” “book,” “week”). However, the diffuseness of the data is also evident. In Chap‐
ter 1 we learned that building language-aware data products relies on a domain-
specific corpus rather than a generic one. What we need to determine now is whether
the hobbies corpus is sufficiently domain specific to be modeled. We can continue to
use frequency distribution plots to search within our corpus for more tightly focused
subtopics and other patterns.

Figure 8-8. Frequency distribution of the Baleen corpus after stopwords removal

The hobbies corpus that comes with Yellowbrick has already been categorized (try
corpus['categories']). Frequency distribution plots for two of the categories,

168 | Chapter 8: Text Visualization

“cooking” and “gaming,” with stopwords removed are shown in Figures 8-9 and 8-10,
respectively.

Figure 8-9. Frequency distribution for the cooking subcorpus

Figure 8-10. Frequency distribution for the gaming subcorpus

Visualizing Feature Space | 169

We can visually compare these plots, and instantly see how different they are; the
most common words from the cooking corpus include “pasta,” “pan,” “broccoli,” and
“pepper,” while the gaming corpus includes tokens like “players,” “developers,” “char‐
acter,” and “support.”

Model Diagnostics
After feature analysis and engineering, the next phase of the model selection triple
workflow is model selection. In practice, we will select and compare multiple models,
since it is generally very difficult to predict in advance which model will be most
effective with a new corpus. Thus, our next task is to determine when our models are
performing well or poorly.

In a traditional machine learning context, we can rely on model performance scores
—such as mean square error or coefficient of determination in the case of regression,
and precision, accuracy, and F1 score for classification—to determine which models
are strongest. These techniques can also be extended to the context of visual analytics.
Regression problems are less common with text data, though we will see an example
in Chapter 12, when we attempt to predict the floating-point scores of albums based
purely on the text of their reviews. As discussed in Chapters 5 and 6, classification
and clustering are more common learning approaches for text corpora, and in this
section we will take a look at a few techniques for model evaluation in these contexts.

Visualizing Clusters
Model evaluation is not nearly as straightforward when it comes to clustering algo‐
rithms as it is in supervised learning problems, when we have the advantage of know‐
ing the right and wrong answers a priori. With clustering, there is really no numeric
score; instead, the relative success of a model is generally a function of how effectively
it finds patterns that are distinguishable and meaningful to a human. For this reason,
visualization becomes increasingly important.

Just as we looked for small-scale indications of separability and diffuseness using our
frequency distribution plots, we should also investigate the degree of document simi‐
larity across all features. One very popular method for doing so is to use the nonlin‐
ear dimensionality reduction method t-distributed stochastic neighbor embedding,
or t-SNE.

Scikit-Learn implements the t-SNE decomposition method as the sklearn.mani
fold.TSNE transformer. By decomposing high-dimensional document vectors into
two dimensions using probability distributions from both the original dimensionality
and the decomposed dimensionality, t-SNE is able to effectively cluster similar docu‐
ments. By decomposing to two or three dimensions, the documents can be visualized
with a scatterplot.

170 | Chapter 8: Text Visualization

Unfortunately, t-SNE is very computationally expensive, so typically a simpler
decomposition method such as SVD or PCA is applied ahead of time. The Yellow‐
brick library exposes a TSNEVisualizer, which creates an inner transformer pipeline
that applies such a decomposition first (SVD with 50 components by default), then
performs the t-SNE embedding. The TSNEVisualizer expects document vectors, so
we will use the TfidfVectorizer from Scikit-Learn in advance of passing the docu‐
ments into the TSNEVisualizer fit method:

from yellowbrick.text import TSNEVisualizer
from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer()
docs = tfidf.fit_transform(corpus.data)

tsne = TSNEVisualizer()
tsne.fit(docs)
tsne.poof()

What we’re looking for in such graphs are spatial similarities between the points
(documents) and any other discernible patterns. Figure 8-11 displays a projection of
the vectorized Baleen hobbies corpus in two dimensions using t-SNE. The result is a
scatterplot of the vectorized corpus, where each point represents a document or utter‐
ance. The distance between two points in the visual space is embedded using the
probability distribution of pairwise similarities in the higher dimensionality; thus our
TSNEVisualizer shows clusters of similar documents in the hobbies corpus and the
relationships between groups of documents.

Figure 8-11. A t-distributed stochastic neighbor embedding visualization of the Baleen
hobbies corpus

As mentioned before, the TSNEVisualizer expects vectorized text as input, and in
this case, we have used TF–IDF, though we could have used any of the vectorization
techniques described in Chapter 4 and then generated t-SNE visualization to compare

Model Diagnostics | 171

the results. To speed the rendering, the TSNEVisualizer also employs decomposition
ahead of the stochastic neighbor embedding, defaulting to using a sparse method
(TruncatedSVD); we might also experiment with a dense method like PCA, which we
can do by passing decompose = "pca" into TSNEVisualizer() upon initialization.

When used in conjunction with a clustering algorithm, TSNEVisualizer can also be
used for visualizing clusters. Used this way, the technique can help to assess the
efficacy of one clustering method over another. Here, we’ll use sklearn.clus
ter.KMeans, set the number of clusters to 5, and then pass the resulting
cluster.labels_ attribute as y into the TSNEVisualizer fit() method:

Apply clustering instead of class names.
from sklearn.cluster import KMeans

clusters = KMeans(n_clusters=5)
clusters.fit(docs)

tsne = TSNEVisualizer()
tsne.fit(docs, ["c{}".format(c) for c in clusters.labels_])
tsne.poof()

Now, not only are all points in the same cluster grouped together, the points are also
colored based on k-means similarity (Figure 8-12). We could experiment with differ‐
ent clustering methods here, or with different values of k, which we’ll explore more
fully later in the section on hyperparameter tuning.

Figure 8-12. A t-SNE visualization of the Baleen hobbies corpus after k-means clustering

Visualizing Classes
For classification problems, we can simply provide a target value (stored in
corpus.target here) to our TSNEVisualizer to produce a version of the graph where
the colors of points are associated with the categorical labels corresponding to the
documents. By specifying these labels as an argument for the classes when we call

172 | Chapter 8: Text Visualization

fit() on our t-SNE visualizer, we can colorize our dimensionality-reduced points
with respect to their category:

from yellowbrick.text import TSNEVisualizer
from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer()
docs = tfidf.fit_transform(corpus.data)
labels = corpus.target

tsne = TSNEVisualizer()
tsne.fit(docs, labels)
tsne.poof()

As we can see in the scatterplot in Figure 8-13, this view extends our neighbor
embedding with more information about similarity, which can allow for better inter‐
pretation of our classes. If we were interested in exploring only a few of the categories
within our corpus, this is as easy as passing in a classes parameter into the
TSNEVisualizer upon instantiation, with a list of the strings representing
the different subcategories (e.g., TSNEVisualizer(classes=['sports', 'cinema',
'gaming'])).

Figure 8-13. A t-distributed stochastic neighbor embedding visualization of the Baleen
hobbies corpus with category labels

Visually iterating through these plots can enable us to see the categories whose docu‐
ments are more tightly grouped, as well as those that are comparatively more diffuse,
which might complicate the modeling process.

Diagnosing Classification Error
In traditional classification pipelines, fitted models can be optimized and then
described with respect to their precision, recall, and F1 scores. We can visualize these
measures using confusion matrices, classification heatmaps, and ROC-AUC curves.

Model Diagnostics | 173

In Chapter 5, we used cross-validation to test our models’ performance on different
train and test splits within the corpus. We also created a method to test a number of
different models, so that their results could be compared using classification reports
and confusion matrices. We were able to use the metrics to identify which of our
models performed best, but the metrics alone did not provide much insight into why
a certain model (or train test split) performed the way it did.

In this section, we’ll explore two of our favorite techniques for visually analyzing and
comparing the performance of classifiers on text: classification heatmaps and confu‐
sion matrices.

Classification report heatmaps
A classification report is a text summary of the main metrics for assessing the success
of a classifier: precision, the ability not to label an instance positive that is actually
negative; recall, the ability to find all positive instances; and f1 score, a weighted har‐
monic mean of precision and recall. While the Scikit-Learn metrics module does
expose a classification_report method, we find that the Yellowbrick version,
which integrates numerical scores with a color-coded heatmap, supports easier inter‐
pretation and problem detection.

To use Yellowbrick to create a classification heatmap, we load our corpus as in “Load‐
ing Yellowbrick Datasets” on page 165, TF–IDF vectorize the documents and create
train and test splits. We then instantiate a ClassificationReport, pass in the desired
classifier, and the names of the classes, the call fit and score, which call the internal
Scikit-Learn fitting and scoring mechanisms for the model. Finally, we call poof on
the visualizer, which adds the requisite labeling and coloring to the plot and then calls
Matplotlib’s draw:

from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from yellowbrick.classifier import ClassificationReport

corpus = load_corpus('hobbies')
docs = TfidfVectorizer().fit_transform(corpus.data)
labels = corpus.target

X_train, X_test, y_train, y_test = train_test_split(
 docs.toarray(), labels, test_size=0.2
)

visualizer = ClassificationReport(GaussianNB(), classes=corpus.categories)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()

174 | Chapter 8: Text Visualization

The resulting classification heatmap, shown in Figure 8-14, displays the precision,
recall, and F1 scores for the fitted model, where the darker zones show the model’s
highest areas of performance. In this example, we see that the Gaussian model suc‐
cessfully classifies most of the categories, but struggles with false negatives for the
“books” category.

Figure 8-14. Classification heatmap for Gaussian Naive Bayes classifier on the hobbies
corpus

We can compare the Gaussian model to another model simply by importing a differ‐
ent Scikit-Learn classifier and passing it into the ClassificationReport on instantia‐
tion. By comparison, the SGDClassifier, shown in Figure 8-15, is less successful at
classifying the hobbies corpus, struggling with false positives for “gaming” and false
negatives for “books.”

Figure 8-15. Classification heatmap for stochastic gradient descent classifier on the hob‐
bies corpus

Confusion matrices
A confusion matrix provides similar information as what is available in a classifica‐
tion report, but rather than top-level scores, it provides more detailed information.

Model Diagnostics | 175

In order to use Yellowbrick to create this type of visualization, we instantiate a
ConfusionMatrix and pass in the desired classifier and the names of the classes, as we
did with the ClassificationReport, and call the fit, score, poof sequence:

from yellowbrick.classifier import ConfusionMatrix
from sklearn.linear_model import LogisticRegression

...

visualizer = ConfusionMatrix(LogisticRegression(), classes=corpus.categories)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof()

The resulting confusion matrix, shown in Figure 8-16, demonstrates which classes are
most challenging for the model to identify. In this example, the LogisticRegression
model is successful at identifying “sports” and “gaming,” but appears to struggle with
the other categories.

Figure 8-16. Confusion matrix for logistic regression classifier on the hobbies corpus

We can compare the model’s performance by substituting a different model on
instantiation of the ConfusionMatrix, just as we did for the ClassificationReport.
By comparison, a MultinomialNB classifier, shown in Figure 8-17, seems to have simi‐
larly weak performance at classifying most of the hobby subcategories, and appears to
frequently confuse the “books” and “gaming.”

Overall performance is highly context-dependent, and it is important to set
application-specific benchmarks rather than relying on high-level metrics like F1
score to determine if a model is adequate for deployment. For instance, if our hypo‐
thetical application will depend on successfully identifying sports-related content,
these models may be sufficient. If we’re intending to find book reviews, though, the
consistently poor performance of these classifiers suggests we may need to revisit our
original dataset.

176 | Chapter 8: Text Visualization

Figure 8-17. Confusion matrix for multinomial Naive Bayes classifier on the hobbies
corpus

Visual Steering
When we call fit on a Scikit-Learn estimator, the model learns the parameters of the
algorithm that best fit the data it has been provided. However, some parameters are
not directly learned within an estimator. These are the ones we provide on instantia‐
tion, the hyperparameters.

Hyperparameters are model-specific, but include things such as the amount of pen‐
alty to use for a regularization, the kernel function for a support vector machine, the
number of leaves or depth of a decision tree, the number of neighbors used in a near‐
est neighbor classifier, or the number of clusters in k-means clustering.

Scikit-Learn models are often surprisingly successful with little to no modification of
the default hyperparameters. Rather than a matter of luck, this is a signal of the sub‐
stantial amount of experience and domain expertise that have been contributed to the
library. Nonetheless, after we have arrived at the suite of models we find most suc‐
cessful for our problem, the next step of the process is to experiment with tuning the
hyperparameters so that we can arrive at the most optimal settings for each model.

In this section, we will demonstrate how to explore hyperparameters visually, specifi‐
cally to steer k-selection for k-means clustering problems.

Silhouette Scores and Elbow Curves
As we saw in Chapter 6, k-means is a simple unsupervised machine learning algo‐
rithm that groups data into a specified number k of clusters. Because the user must
specify in advance what k to choose, the algorithm is somewhat naive—it assigns all
members to k clusters whether or not it is the right k for the dataset. The Yellowbrick
library provides two mechanisms for selecting an optimal k parameter for centroidal
clustering, silhouette scores and elbow curves, which we’ll explore in this section.

Visual Steering | 177

Silhouette scores
The silhouette coefficient is used when the ground-truth about the dataset is
unknown, instead computing the density of clusters produced by the model. A sil‐
houette score can then be calculated by averaging the silhouette coefficient for each
sample, computed as the difference between the average intracluster distance and the
mean nearest-cluster distance for each sample, normalized by the maximum value.

This produces a score between 1 and -1, where 1 is highly dense clusters, -1 is com‐
pletely incorrect clustering, and values near zero indicate overlapping clusters. The
higher the score the better, because the clusters are denser and more separate. Nega‐
tive values imply that samples have been assigned to the wrong cluster, and positive
values mean that there are discrete clusters. The scores can then be plotted to display
a measure of how close each point in one cluster is to points in the neighboring clus‐
ters.

The Yellowbrick SilhouetteVisualizer can be used to visualize the silhouette scores
of each cluster in a single model. Because it is very difficult to score a clustering
model, Yellowbrick visualizers wrap Scikit-Learn “clusterer” estimators via their
fit() method. Once the clustering model is trained, the visualizer can call poof() to
display the clustering evaluation metric. In order to create the visualization, we first
train the clustering model, instantiate the visualizer, fit it on the corpus, and then call
the visualizer’s poof() method:

from sklearn.cluster import KMeans
from yellowbrick.cluster import SilhouetteVisualizer

Instantiate the clustering model and visualizer
visualizer = SilhouetteVisualizer(KMeans(n_clusters=6))
visualizer.fit(docs)
visualizer.poof()

The SilhouetteVisualizer displays the silhouette coefficient for each sample on a
per-cluster basis, visualizing which clusters are dense and which are not. The vertical
thickness of the plotted cluster indicates its size, and the dashed red line is the global
average. This is particularly useful for determining cluster imbalance, or for selecting
a value for k by comparing multiple visualizers. We can see from Figure 8-18 that sev‐
eral clusters are vertically thick but low scoring, suggesting that we should pick a
higher k.

178 | Chapter 8: Text Visualization

Figure 8-18. A visualization of the silhouette scores for k-means clustering

Elbow curves
Another visual technique that can be used for k selection is the elbow method. The
elbow method visualizes multiple clustering models with different values for k. Model
selection is based on whether or not there is an “elbow” in the curve (i.e., if the curve
looks like an arm with a clear change in angle from one part of the curve to another).

In Yellowbrick, the KElbowVisualizer implements the elbow method of selecting the
optimal number of clusters for k-means clustering. The user instantiates the visual‐
izer, passing in the unfitted KMeans() model and a range of values for k (say, from 4 to
10). Then, when fit() is called on the model with the documents from the corpus
(we assume below the corpus has already been TF–IDF vectorized), the elbow
method runs k-means clustering on the dataset for each value of k and computes the
silhouette_score, the mean silhouette coefficient for all samples. When poof() is
called, the silhouette score for each k is plotted:

from sklearn.cluster import KMeans
from yellowbrick.cluster import KElbowVisualizer

Instantiate the clustering model and visualizer
visualizer = KElbowVisualizer(KMeans(), metric='silhouette', k=[4,10])
visualizer.fit(docs)
visualizer.poof()

If the line chart looks like an arm, then the “elbow” (the point of inflection on the
curve) is the best value of k; we want as small a k as possible such that the clusters do
not overlap. If the data isn’t very clustered, the elbow method may not always work
well, resulting either in a smooth curve or a very jumpy line. Such results might lead
us to use the SilhouetteScore visualizer instead, or to reconsider the partitive clus‐
tering approach for our data. While fairly jumpy, our plot in Figure 8-19 suggests that
setting the number of clusters to 7 might improve the density and separability of our
document clusters.

Visual Steering | 179

Figure 8-19. A visualization of the elbow curve for k-means clustering

Conclusion
Regardless of whether our data consists of numbers or text (or of image pixels or
acoustic notes, for that matter), a single score, or even a single plot, is often insuffi‐
cient to support the construction of model selection triples. For exploratory analysis,
feature engineering, model selection, and evaluation, visualizations are very useful for
diagnostic purposes. In combination with numeric scores, they can help build better
intuition around performance. However, text data can present some special chal‐
lenges for visualization, particularly with regards to dimensionality and interpretabil‐
ity.

In our experience, steering leads to better models (e.g., higher F1 scores, more dis‐
tinct clusters, etc.), arrived at more quickly and with greater overall insight. Thanks to
the visual cortex, we are frequently much better at detecting such patterns visually
than we are using numeric outputs alone. Thus, using visual steering we can more
effectively engage the modeling process.

While there are as yet not a wide variety of Python libraries to support visual diag‐
nostics for modeling on text data, the techniques demonstrated in this chapter can
prove to be very good resources, lowering the barrier between the human level and
the computational layer by providing an interactive interface for machine learning on
text. Of the visualization libraries available, two very useful tools are Matplotlib and
Yellowbrick, which together enable visual filtering, aggregation, indexing, and for‐
matting, to help render large corpora and feature space more interpretable and inter‐
active.

One of the most effective text visualizations we saw in this chapter are graphs, which
enable us to distill tremendous amounts of information in very intuitive ways. In

180 | Chapter 8: Text Visualization

Chapter 9, we will explore graph models more deeply, both to the extent to which
they enable effective visual aggregation, but also their capacity to model information
that would otherwise require significantly more complex feature engineering efforts.

Conclusion | 181

CHAPTER 9

Graph Analysis of Text

Up until this point, we have been applying traditional classification and clustering
algorithms to text. By allowing us to measure distances between terms, assign weights
to phrases, and calculate probabilities of utterances, these algorithms enable us to rea‐
son about the relationships between documents. However, tasks such as machine
translation, question answering, and instruction-following often require more com‐
plex, semantic reasoning.

For instance, given a large number of news articles, how would you build a model of
the narratives they contain—of actions taken by key players or enacted upon others,
of the sequence of events, of cause and effect? Using the techniques in Chapter 7, you
could extract the entities or keyphrases or look for themes using the topic modeling
methods described in Chapter 6. But to model information about the relationships
between those entities, phrases, and themes, you would need a different kind of data
structure.

Let’s consider how such relationships may be expressed in the headlines of some of
our articles:

headlines = ['FDA approves gene therapy',
 'Gene therapy reduces tumor growth',
 'FDA recalls pacemakers']

Traditionally, phrases like these are encoded using text meaning representations
(TMRs). TMRs take the form of ('subject', 'predicate', 'object') triples (e.g.,
('FDA', 'recalls', 'pacemakers')), to which first-order logic or lambda calculus
can be applied to achieve semantic reasoning.

Unfortunately, the construction of TMRs often requires substantial prior knowledge.
For instance, we need to know not only that the acronym “FDA” is an actor, but that
“recalling” is an action that can be taken by some entities against others. For most

183

language-aware data products, building a sufficient number of TMRs to support
meaningful semantic analysis will not be practical.

However, if we shift our thinking slightly, we might also think of this subject-
predicate-object as a graph, where the predicates are edges between subject and object
nodes, as shown in Figure 9-1. By extracting co-occurring entities and keyphrases
from the headlines, we can construct a graph representation of the relationships
between the “who,” the “what,” and even the “where,” “how,” and “when” of an event.
This will allow us to use graph traversal to answer analytical questions like “Who are
the most influential actors to an event?” or “How do relationships change over time?”
While not necessarily a complete semantic analysis, this approach can produce useful
insights.

Figure 9-1. Semantic reasoning on text using graphs

In this chapter, we will analyze text data in this way, using graph algorithms. First, we
will build a graph-based thesaurus and identify some of the most useful graph met‐
rics. We will then extract a social graph from our Baleen corpus, connecting actors
that appear in the same documents together and employing some simple techniques
for extracting and analyzing subgraphs. Finally, we will introduce a graph-based
approach to entity resolution called fuzzy blocking.

NetworkX and Graph-tool are the two primary Python libraries
that implement graph algorithms and the property graph model
(which we’ll explore later in this chapter). Graph-tool scales signifi‐
cantly better than NetworkX, but is a C++ implementation that
must be compiled from source. For graph-based visualization, we
frequently leverage non-Python tools, such as Gephi, D3.js, and
Cytoscape.js. To keep things simple in this chapter, we will stick to
NetworkX.

184 | Chapter 9: Graph Analysis of Text

1 George A. Miller and Christiane Fellbaum, WordNet: A Lexical Database for English, (1995) http://bit.ly/
2GQKXmI

Graph Computation and Analysis
One of the primary exercises in graph analytics is to determine what exactly the
nodes and edges should be. Generally, nodes represent the real-world entities we
would like to analyze, and edges represent the different types (and magnitudes) of
relationships that exist between nodes.

Once a schema is determined, graph extraction is fairly straightforward. Let’s con‐
sider a simple example that models a thesaurus as a graph. A traditional thesaurus
maps words to sets of other words that have similar meanings, connotations, and usa‐
ges. A graph-based thesaurus, which instead represents words as nodes and syno‐
nyms as edges, could add significant value, modeling semantic similarity as a function
of the path length and weight between any two connected terms.

Creating a Graph-Based Thesaurus
To implement the graph-based thesaurus just described, we will use WordNet,1 a large
lexical database of English-language words that have been grouped into interlinked
synsets, collections of cognitive synonyms that express distinct concepts. For our the‐
saurus, nodes will represent words from the WordNet synsets (which we can access
via NLTK’s WordNet interface) and edges will represented synset relationships and
interlinkages.

We will define a function, graph_synsets(), to construct the graph and add all the
nodes and edges. Our function accepts a list of terms as well as a maximum depth,
creates an undirected graph using NetworkX, and assigns it the name property for
quick identification later. Then, an internal add_term_links() function adds syno‐
nyms by looking up the NLTK wn.synsets() function, which returns all possible def‐
initions for the given word.

For each definition, we loop over the synonyms returned by the internal
lemma_names() method, adding nodes and edges in a single step with the NetworkX
G.add_edge() method. If we are not at the depth limit, we recurse, adding the links
for the terms in the synset. Our graph_synsets function then loops through each of
the terms provided and uses our recursive add_term_links() function to retrieve the
synonyms and build the edges, finally returning the graph:

Graph Computation and Analysis | 185

http://bit.ly/2GQKXmI
http://bit.ly/2GQKXmI

import networkx as nx
from nltk.corpus import wordnet as wn

def graph_synsets(terms, pos=wn.NOUN, depth=2):
 """
 Create a networkx graph of the given terms to the given depth.
 """

 G = nx.Graph(
 name="WordNet Synsets Graph for {}".format(", ".join(terms)), depth=depth,
)

 def add_term_links(G, term, current_depth):
 for syn in wn.synsets(term):
 for name in syn.lemma_names():
 G.add_edge(term, name)
 if current_depth < depth:
 add_term_links(G, name, current_depth+1)

 for term in terms:
 add_term_links(G, term, 0)

 return G

To get the descriptive statistical information from a NetworkX graph, we can use the
info() function, which will return the number of nodes, the number of edges, and
the average degree of the graph. Now we can test our function by extracting the graph
for the word “trinket” and retrieving these basic graph statistics:

G = graph_synsets(["trinket"])
print(nx.info(G))

The results are as follows:

Name: WordNet Synsets Graph for trinket
Type: Graph
Number of nodes: 25
Number of edges: 49
Average degree: 3.9200

We now have a functional thesaurus! You can experiment by creating graphs with a
different target word, a list of target words, or by changing the depth of synonyms
collected.

Analyzing Graph Structure
By experimenting with different input terms for our graph_synsets function, you
should see that the resulting graphs can be very big or very small, and structurally
more or less complex depending on how terms are connected. When it comes to
analysis, graphs are described by their structure. In this section, we’ll go over the set
of standard metrics for describing the structure of a graph.

186 | Chapter 9: Graph Analysis of Text

In the last section, the results of our nx.info call provided us with the graph’s number
of nodes (or order), its number of edges (or size), and its average degree. A node’s
neighborhood is the set of nodes that are reachable from that specific node via edge
traversal, and the size of the neighborhood identifies the node’s degree. The average
degree of a graph reflects the average size of all the neighborhoods within that graph.

The diameter of a graph is the number of nodes traversed in the shortest path between
the two most distant nodes. We can use the diameter() function to get this statistic:

>>> nx.diameter(G)
4

In the context of our “trinket” thesaurus graph, a shortest path of 4 may suggest a
more narrowly used term (see Table 9-1), as opposed to other terms that have more
interpretations (e.g., “building”) or are used in more contexts (“bank”).

Table 9-1. Shortest paths for common terms

Term trinket bank hat building boat whale road tickle
Diameter 4 6 2 6 1 5 3 6

When analyzing a graph structure, some key questions to consider are:

• What is the depth or diameter of the graph?
• Is it fully connected (meaning is there a pathway between every possible pair of

nodes)?
• If there are disconnected components, what are their sizes and other features?
• Can we extract a subgraph (or ego-graph, which we’ll explore a bit later) for a par‐

ticular node of interest?
• Can we create a subgraph that filters for a specific amount or type of informa‐

tion? For example, of the 25 possible results, can we return only the top 5?
• Can we insert nodes or edges of different types to create different styles of struc‐

tures? For example, can we represent antonyms as well as synonyms?

Visual Analysis of Graphs
We can also analyze graphs visually, though the default layout may result in “hair‐
balls” that are difficult to unpack (more on this later). One popular mechanism for
graph layouts is the spring block model. The spring block model visualizes every
node as a mass (or block) and the edges between them as springs that push and pull
based on their strength. This prevents the nodes they connect from overlapping and
often results in graph visualizations that are more manageable.

Graph Computation and Analysis | 187

Using the built-in nx.spring_layout from NetworkX, we can draw our trinket synset
graph as follows. First, we get the positions of the nodes with a spring layout. Then
we draw the nodes as very large white circles with very thin linewidths so that text
will be readable. Next, we draw the text labels and the edges with the specified posi‐
tions (making sure the font size is big enough to read and that the edges are lighter
grey so that the text is readable). Finally, we remove the ticks and labels from the plot,
as they are not meaningful in the context of our thesaurus graph, and show the plot
(Figure 9-2):

import matplotlib.pyplot as plt

def draw_text_graph(G):
 pos = nx.spring_layout(G, scale=18)
 nx.draw_networkx_nodes(
 G, pos, node_color="white", linewidths=0, node_size=500
)
 nx.draw_networkx_labels(G, pos, font_size=10)
 nx.draw_networkx_edges(G, pos, edge_color='lightgrey')

 plt.tick_params(
 axis='both', # changes apply to both the x- and y-axis
 which='both', # both major and minor ticks are affected
 bottom='off', # turn off ticks along bottom edge
 left='off', # turn off ticks along left edge
 labelbottom='off', # turn off labels along bottom edge
 labelleft='off') # turn off labels along left edge

 plt.show()

Figure 9-2. A spring layout helps to make visualization more manageable

188 | Chapter 9: Graph Analysis of Text

In the next section, we will explore graph extraction and analysis techniques as they
apply specifically to text.

Extracting Graphs from Text
One major challenge presents itself when the core dataset is text: where does the
graph come from? The answer will usually depend on your problem domain, and
generally speaking, the search for structural elements in semistructured or unstruc‐
tured data will be guided by context-specific analytical questions.

To break this problem down into smaller substeps, we propose a simple graph analyt‐
ics workflow for text as shown in Figure 9-3.

Figure 9-3. Workflow of graph analysis on text

In this workflow, we first use a problem statement to determine entities and their
relationships. Using this schema, we can create a graph extraction methodology that
uses the corpus, metadata, documents in the corpus, and phrases or tokens in the cor‐
pus’ documents to extract and link our data. The extraction method is a batch process
that can run on the corpus and generate a graph that can be written to disk or stored
in memory for analytical processing.

The graph analysis phase conducts computations on the extracted graph such as clus‐
tering, structural analysis, filtering, or querying and returns a new graph that is used
as output for applications. Inspecting the results of the analytical process allows us to
iterate on our method and schema, extracting or collapsing groups of nodes or edges
as needed to ensure accurate, usable results.

Creating a Social Graph
Consider our corpus of news articles and our task of modeling relationships between
different entities contained in the text. If our questions concern variations in coverage
by different news outlets, we might build graph elements related to publication titles,

Extracting Graphs from Text | 189

author names, and syndication sources. However, if our goal is to aggregate multiple
mentions of a single entity across many articles, our networks might encode forms of
address like honorifics, in addition to demographic details. As such, entities of inter‐
est may reside in the structure of the documents themselves, or they may simply be
contained in the text itself.

Let’s assume that our goal is merely to understand which people, places, and things
are related to each other in our documents. In other words, we want to build a social
network, which we can do with a series of transformations, as shown in Figure 9-4.
We will begin constructing our graph using the EntityExtractor class we built in
Chapter 7. Then we’ll add a custom transformer that finds pairs of related entities,
followed by another custom transformer that transforms the paired entities into a
graph.

Figure 9-4. Entity graph extraction pipeline

Finding entity pairs

Our next step is to create an EntityPairs class that will expect documents that are
represented as lists of entities (which is the result of a transform using the
EntityExtractor class defined in Chapter 7). We want our class to function as a
transformer inside a Scikit-Learn Pipeline, so it must inherit from BaseEstimator
and TransformerMixin, as described in Chapter 4. We expect entities inside a single
document to be related to each other, so we will add a pairs method, which uses the
itertools.permutations function to identify every pair of entities that co-occur in
the same document. Our transform method will call the pairs method on each
document in the transformed corpus:

import itertools
from sklearn.base import BaseEstimator, TransformerMixin

class EntityPairs(BaseEstimator, TransformerMixin):
 def __init__(self):
 super(EntityPairs, self).__init__()

 def pairs(self, document):
 return list(itertools.permutations(set(document), 2))

 def fit(self, documents, labels=None):
 return self

 def transform(self, documents):
 return [self.pairs(document) for document in documents]

190 | Chapter 9: Graph Analysis of Text

Now we can systematically extract entities from documents and identify pairs. How‐
ever, we don’t have a convenient way to differentiate pairs of entities that co-occur
very frequently from those that appear together only once. We need a way of encod‐
ing the strength of the relationships between entities, which we’ll explore in the next
section.

Property graphs
The mathematical model of a graph considers only sets of nodes and edges and can
be represented as an adjacency matrix, which is useful for a large range of computa‐
tions. However, it does not provide us with a mechanism for modeling the strength or
type of any given relationship. Do the two actors appear in only one document
together, or in many? Do they co-occur more frequently in certain genres of articles?
In order to support this type of reasoning, we require some way of storing meaning‐
ful properties on our nodes and edges.

The property graph model allows us to embed more information into the graph,
thereby extending computational ability. In a property graph, nodes are objects with
incoming and outgoing edges and usually contain a type field, similar to a table in a
relational database. Edges are objects with a source and target, and they typically con‐
tain a label field that identifies the type of relationship and a weight field that identi‐
fies the strength of the relationship. For graph-based text analytics, we generally use
nodes to represent nouns and edges for verbs. Then later, when we move into a mod‐
eling phase, this allows us to describe the types of nodes, the labels of links, and the
expected structure of the graph.

Implementing the graph extraction

We can now define a class, GraphExtractor, that will not only transform the entities
into nodes, but also assign weights to their edges based on the frequency with which
those entities co-occur in our corpus. Our class will initialize a NetworkX graph, and
then our transform method will iterate through each document (which is a list of
entity pairs), checking to see if there is already an edge between them in the graph. If
there is, we will increment the edge’s weight property by 1. If the edge does not
already exist in the graph, we use the add_edge method to create one with a weight of
1. As with our thesaurus graph construction, the add_edge method will also add a
new node to the graph if it encounters a member of a pair that does not already exist
in the graph:

import networkx as nx

class GraphExtractor(BaseEstimator,TransformerMixin):
 def __init__(self):
 self.G = nx.Graph()

Extracting Graphs from Text | 191

 def fit(self, documents, labels=None):
 return self

 def transform(self, documents):
 for document in documents:
 for first, second in document:
 if (first, second) in self.G.edges():
 self.G.edges[(first, second)]['weight'] += 1
 else:
 self.G.add_edge(first, second, weight=1)
 return self.G

We can now streamline our entity extraction, entity pairing, and graph extraction
steps in a Scikit-Learn Pipeline as follows:

if __name__ == '__main__':
 from reader import PickledCorpusReader
 from sklearn.pipeline import Pipeline

 corpus = PickledCorpusReader('../corpus')
 docs = corpus.docs()

 graph = Pipeline([
 ('entities', EntityExtractor()),
 ('pairs', EntityPairs()),
 ('graph', GraphExtractor())
])

 G = graph.fit_transform(docs)
 print(nx.info(G))

On a sample of the Baleen corpus, the graph that is constructed has the following sta‐
tistics:

Name: Entity Graph
Type: Graph
Number of nodes: 29176
Number of edges: 1232644
Average degree: 84.4971

Insights from the Social Graph
We now have a graph model of the relationships between different entities from our
corpus, so we can begin asking interesting questions about these relationships. For
instance, is our graph a social network? In a social network, we would expect to see
some very specific structures in the graph, such as hubs, or certain nodes that have
many more edges than average.

In this section, we’ll see how we can leverage graph theory metrics like centrality
measures, degree distributions, and clustering coefficients to support our analyses.

192 | Chapter 9: Graph Analysis of Text

Centrality
In a network context, the most important nodes are central to the graph because they
are connected directly or indirectly to the most nodes. Because centrality gives us a
means of understanding a particular node’s relationship to its immediate neighbors
and extended network, it can help us identify entities with more prestige and influ‐
ence. In this section we will compare several ways of computing centrality, including
degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and
pagerank.

First, we’ll write a function that accepts an arbitrary centrality measure as a keyword
argument and uses this measure to rank the top n nodes and assign each node a prop‐
erty with a score. NetworkX implements centrality algorithms as top-level functions
that take a graph, G, as its first input and return dictionaries of scores for each node in
the graph. This function uses the nx.set_node_attributes() function to map the
scores computed by the metric to the nodes:

import heapq
from operator import itemgetter

def nbest_centrality(G, metrics, n=10):
 # Compute the centrality scores for each vertex
 nbest = {}
 for name, metric in metrics.items():
 scores = metric(G)

 # Set the score as a property on each node
 nx.set_node_attributes(G, name=name, values=scores)

 # Find the top n scores and print them along with their index
 topn = heapq.nlargest(n, scores.items(), key=itemgetter(1))
 nbest[name] = topn

 return nbest

We can use this interface to assign scores automatically to each node in order to save
them to disk or employ them as visual weights.

The simplest centrality metric, degree centrality, measures popularity by computing
the neighborhood size (degree) of each node and then normalizing by the total num‐
ber of nodes in the graph. Degree centrality is a measure of how connected a node is,
which can be a signifier of influence or significance. If degree centrality measures
how connected a given node is, betweenness centrality indicates how connected the
graph is as a result of that node. Betweenness centrality is computed as the ratio of
shortest paths that include a particular node to the total number of shortest paths.

Here we can use our entity extraction pipeline and nbest_centrality function to
compare the top 10 most central nodes, with respect to degree and betweenness cen‐
trality:

Extracting Graphs from Text | 193

from tabulate import tabulate

corpus = PickledCorpusReader('../corpus')
docs = corpus.docs()

graph = Pipeline([
 ('entities', EntityExtractor()),
 ('pairs', EntityPairs()),
 ('graph', GraphExtractor())
])

G = graph.fit_transform(docs)

centralities = {"Degree Centrality" : nx.degree_centrality,
 "Betweenness Centrality" : nx.betweenness_centrality}

centrality = nbest_centrality(G, centralities, 10)

for measure, scores in centrality.items():
 print("Rankings for {}:".format(measure))
 print((tabulate(scores, headers=["Top Terms", "Score"])))
 print("")

In our results, we see that degree and betweenness centrality overlap significantly in
their ranks of the most central entities (e.g., “american,” “new york,” “trump,” “twit‐
ter”). These are the influential, densely connected nodes whose entities appear in
more documents and also sit at major “crossroads” in the graph:

Rankings for Degree Centrality:
Top Terms Score
---------- ---------
american 0.054093
new york 0.0500643
washington 0.16096
america 0.156744
united states 0.153076
los angeles 0.139537
republican 0.130077
california 0.120617
trump 0.116778
twitter 0.114447

Rankings for Betweenness Centrality:
Top Terms Score
---------- ---------
american 0.224302
new york 0.214499
america 0.0258287
united states 0.0245601
washington 0.0244075
los angeles 0.0228752
twitter 0.0191998

194 | Chapter 9: Graph Analysis of Text

follow 0.0181923
california 0.0181462
new 0.0180939

While degree and betweenness centrality might be used as a measure of overall celeb‐
rity, we frequently find that the most connected node has a large neighborhood, but is
disconnected from the majority of nodes in the graph.

Let’s consider the context of a particular egograph, or subgraph, of our full graph that
reframes the network from the perspective of one particular node. We can extract this
egograph using the NetworkX method nx.ego_graph:

H = nx.ego_graph(G, "hollywood")

Now we have a graph that distills all the relationships to one specific entity (“Holly‐
wood”). Not only does this dramatically reduce the size of our graph (meaning that
subsequent searches will be much more efficient), this transformation will also enable
us to reason about our entity.

Let’s say we want to identify entities that are closer on average to other entities in the
Hollywood graph. Closeness centrality (implemented as nx.closeness_centrality in
NetworkX) uses a statistical measure of the outgoing paths for each node and com‐
putes the average path distance to all other nodes from a single node, normalized by
the size of the graph. The classic interpretation of closeness centrality is that it
describes how fast information originating at a specific node will spread throughout
the network.

By contrast, eigenvector centrality says that the more important nodes you are connec‐
ted to, the more important you are, expressing “fame by association.” This means that
nodes with a small number of very influential neighbors may outrank nodes with
high degrees. Eigenvector centrality is the basis of several variants, including Katz
centrality and the famous PageRank algorithm.

We can use our nbest_centrality function to see how each of these centrality meas‐
ures produces differing determinations of the most important entities in our Holly‐
wood egograph:

hollywood_centralities = {"closeness" : nx.closeness_centrality,
 "eigenvector" : nx.eigenvector_centrality_numpy,
 "katz" : nx.katz_centrality_numpy,
 "pagerank" : nx.pagerank_numpy,}

hollywood_centrality = nbest_centrality(H, hollywood_centralities, 10)
for measure, scores in hollywood_centrality.items():
 print("Rankings for {}:".format(measure))
 print((tabulate(scores, headers=["Top Terms", "Score"])))
 print("")

Our results show that the entities with the highest closeness centrality (e.g., “video,”
“british,” “brooklyn”), are not particularly ostentatious, perhaps instead serving as the

Extracting Graphs from Text | 195

hidden forces connecting more prominent celebrity structures. Eigenvector,
PageRank, and Katz centrality all reduce the impact of degree (e.g., the most com‐
monly occurring entities) and have the effect of showing “the power behind the
scenes,” highlights well-connected entities (“republican,” “obama”) and sidekicks:

Rankings for Closeness Centrality:
Top Terms Score
---------- ---------
hollywood 1
new york 0.687801
los angeles 0.651051
british 0.6356
america 0.629222
american 0.625243
video 0.621315
london 0.612872
china 0.612434
brooklyn 0.607227

Rankings for Eigenvector Centrality:
Top Terms Score
---------- ---------
hollywood 0.0510389
new york 0.0493439
los angeles 0.0485406
british 0.0480387
video 0.0480122
china 0.0478956
london 0.0477556
twitter 0.0477143
new york city 0.0476534
new 0.0475649

Rankings for PageRank Centrality:
Top Terms Score
---------- ---------
hollywood 0.0070501
american 0.00581407
new york 0.00561847
trump 0.00521602
republican 0.00513387
america 0.00476237
donald trump 0.00453808
washington 0.00417929
united states 0.00398346
obama 0.00380977

Rankings for Katz Centrality:
Top Terms Score
---------- ---------
video 0.107601
washington 0.104191

196 | Chapter 9: Graph Analysis of Text

chinese 0.1035
hillary 0.0893112
cleveland 0.087653
state 0.0876141
muslims 0.0840494
editor 0.0818608
paramount pictures 0.0801545
republican party 0.0787887

For both betweenness and closeness centrality, all shortest paths in
the graph must be computed, meaning they can take a long time to
run and may not scale well to larger graphs. The primary mecha‐
nism of improving performance is to use a lower-level implementa‐
tion that may also parallelize the computation. Graph-tool has
mechanisms for both betweenness and closeness centrality, and is a
good option for computing against larger graphs.

Structural analysis
As we saw earlier in this chapter, visual analysis of graphs enables us to detect inter‐
esting patterns in their structure. We can plot our Hollywood egograph to explore
this structure as we did earlier with our thesaurus graph, using the nx.spring_layout
method, passing in a k value to specify the minimum distance between nodes, and an
iterations keyword argument to ensure the nodes are separate enough to be legible
(Figure 9-5).

H = nx.ego_graph(G, "hollywood")
edges, weights = zip(*nx.get_edge_attributes(H, "weight").items())
pos = nx.spring_layout(H, k=0.3, iterations=40)

nx.draw(
 H, pos, node_color="skyblue", node_size=20, edgelist=edges,
 edge_color=weights, width=0.25, edge_cmap=plt.cm.Pastel2,
 with_labels=True, font_size=6, alpha=0.8)
plt.show()

Many larger graphs will suffer from the “hairball effect,” meaning that the nodes and
edges are so dense as to make it difficult to effectively discern meaningful structures.
In these cases, we often instead try to inspect the degree distribution for all nodes in a
network to inform ourselves about its overall structure.

Extracting Graphs from Text | 197

Figure 9-5. Relationships to Hollywood in the Baleen corpus

We can examine this distribution using Seaborn’s distplot method, setting the
norm_hist parameter to True so that the height will display degree density rather
than raw count:

import seaborn as sns

sns.distplot([G.degree(v) for v in G.nodes()], norm_hist=True)
plt.show()

In most graphs, the majority of nodes have relatively low degree, so we generally
expect to observe a high amount of right-skew in their degree distributions, such as
in the Baleen Entity Graph plot shown in the upper left of Figure 9-6. The small num‐
ber of nodes with the highest degrees are hubs due to their frequent occurrence and
large number of connections across the corpus.

Certain social networks, called scale-free networks, exhibit power
law distributions, and are associated with particularly high fault-
tolerance. Such structures indicate a resilient network that doesn’t
rely on any single node (in our case, perhaps a person or organiza‐
tion) to keep the others connected.

Interestingly, the degree distributions for certain ego graphs display remarkably dif‐
ferent behavior, such as with the Hollywood ego graph exhibiting a nearly symmetric
probability distribution, as shown in the upper right of Figure 9-6.

198 | Chapter 9: Graph Analysis of Text

Figure 9-6. Histograms of degree distributions

Other useful structural measures of a network are its clustering coefficient (nx.aver
age_clustering) and transitivity (nx.transitivity), both of which can be used to
assess how social a network is. The clustering coefficient is a real number that is 0
when there is no clustering and 1 when the graph consists entirely of disjointed cli‐
ques (nx.graph_number_of_cliques). Transitivity tells us the likelihood that two
nodes with a common connection are neighbors:

print("Baleen Entity Graph")
print("Average clustering coefficient: {}".format(nx.average_clustering(G)))
print("Transitivity: {}".format(nx.transitivity(G)))
print("Number of cliques: {}".format(nx.graph_number_of_cliques(G)))

print("Hollywood Ego Graph")
print("Average clustering coefficient: {}".format(nx.average_clustering(H)))
print("Transitivity: {}".format(nx.transitivity(H)))
print("Number of cliques: {}".format(nx.graph_number_of_cliques(H)))

Baleen Entity Graph
Average clustering coefficient: 0.7771459590548481
Transitivity: 0.29504798606584176
Number of cliques: 51376

Extracting Graphs from Text | 199

Hollywood Ego Graph
Average clustering coefficient: 0.9214236425410913
Transitivity: 0.6502420989124886
Number of cliques: 348

In the context of our entity graph, the high clustering and transitivity coefficients sug‐
gest that our network is extremely social. For instance, in our “Hollywood” ego graph,
the transitivity suggests that there is a 65 percent chance that any two entities who
share a common connection are themselves neighbors!

The small world phenomenon can be observed in a graph where,
while most nodes are not direct neighbors, nearly all can be
reached from every other node within a few hops. Small world net‐
works can be identified from structural features, namely that they
often contain many cliques, have a high clustering coefficient, and
have a high degree of transitivity. In the context of our entity graph,
this would suggest that even in a network of strangers, most are
nevertheless linked through a very short chain of acquaintances.

Entity Resolution
One challenge we have yet to discuss is the multiplicity of ways in which our entities
can appear. Because we have performed little or no normalization on our extracted
entities, we can expect to see many variations in spelling, forms of address, and nam‐
ing conventions, such as nicknames and acronyms. This will result in multiple nodes
that reference a single entity (e.g., “America,” “US,” and “the United States” all appear
as nodes in the graph).

In Figure 9-7, we see multiple, often ambiguous references to “Hilton,” which refers
not only to the family as a whole, but also to individual members of the family, to the
corporation, and to specific hotel facilities in different cities. Ideally we would like to
identify nodes that correspond to multiple references so that we can resolve them into
unique entity nodes.

Figure 9-7. Multiple entity references within a graph

200 | Chapter 9: Graph Analysis of Text

2 Indrajit Bhattacharya and Lise Getoor, Entity Resolution in Graph Data, (2005) http://bit.ly/2GQKXDe

Entity resolution refers to computational techniques that identify, group, or link digi‐
tal mentions (records) of some object in the real world (an entity). Part of the data
wrangling process is performing entity resolution to ensure that all mentions to a sin‐
gle, unique entity are collected together into a single reference.

Tasks like deduplication (removing duplicate entries), record linkage (joining two
records together), and canonicalization (creating a single, representative record for an
entity) rely on computing the similarity of (or distance between) two records and
determining whether they are a match.

Entity Resolution on a Graph
As Bhattacharya and Getoor (2005)2 explain, a graph with multiple nodes corre‐
sponding to single entities is not actually an entity graph, but a reference graph. Ref‐
erence graphs are very problematic for semantic reasoning tasks, as they can distort
and misrepresent the relationships between entities.

Entity resolution will get us closer to analyzing and extracting useful information
about the true structure of a real-world network, reducing the obscurity caused by the
many ways language allows us to refer to the same entity. In this section we’ll explore
a methodology where we include entity resolution as an added step in our graph
extraction pipeline, as shown in Figure 9-8.

Figure 9-8. Entity graph extraction pipeline

To begin resolving the entities in our Hilton graph, we will first define a function
pairwise_comparisons that takes as input a NetworkX graph and uses the iter
tools.combinations method to create a generator with every possible pair of nodes:

import networkx as nx
from itertools import combinations

def pairwise_comparisons(G):
 """
 Produces a generator of pairs of nodes.
 """
 return combinations(G.nodes(), 2)

Unfortunately, even a very small dataset such as our Hilton graph of 18 nodes will
generate 153 pairwise comparisons. Given that similarity comparison is usually an

Entity Resolution | 201

http://bit.ly/2GQKXDe

expensive operation involving dynamic programming and other resource-intensive
computing techniques, this clearly will not scale well. There are a few simple things
we can do, such as eliminating pairs that will never match, to reduce the number of
pairwise comparisons. In order to make decisions like these, either in an automatic
fashion or by proposing pairs of records to a user, we first need some mechanism to
expose likely similar matches and weed out the obvious nonduplicates. One method
we can use is blocking.

Blocking with Structure
Blocking is the strategic reduction of the number of pairwise comparisons that are
required using the structure of a natural graph. Blocking provides entity resolution
with two primary benefits: increasing the performance by reducing the number of
computations and reducing the search space to propose possible duplicates to a user.

One reasonable assumption we might make is that if two nodes both have an edge to
the same entity (e.g., “Hilton Hotels” and “Hilton Hotels and Resorts” both have
edges to “Hilton”), they are more likely to be references to the same entity. If we can
inspect only the most likely matches, that could dramatically reduce the number of
comparisons we have to make. We can use the NetworkX neighbors method to com‐
pare the edges of any two given nodes and highlight only the pairwise comparisons
that have very similar neighborhoods:

def edge_blocked_comparisons(G):
 """
 A generator of pairwise comparisons, that highlights comparisons
 between nodes that have an edge to the same entity.
 """
 for n1, n2 in pairwise_comparisons(G):
 hood1 = frozenset(G.neighbors(n1))
 hood2 = frozenset(G.neighbors(n2))
 if hood1 & hood2:
 yield n1,n2

Fuzzy Blocking
Even with blocking, there are still some unnecessary comparisons. For example, even
though “Kathy Hilton” and “Richard Hilton” both have an edge to “Hiltons,” they do
not refer to the same person. We want to be able to further uncomplicate the graph by
identifying the most likely approximate matches using some kind of similarity meas‐
ure that can compute the distance between “Kathy Hilton” and “Richard Hilton.”

There are a number of methods for computing string distance, many of which
depend on the use case. Here we will demonstrate an implementation that leverages
the partial_ratio method from the Python library fuzzywuzzy, which uses

202 | Chapter 9: Graph Analysis of Text

Levenshtein distance to compute the number of deletions, insertions, and substitu‐
tions required to transform the first string into the second.

We will define a similarity function that takes as input two NetworkX nodes. Our
function will score the distance between the string name labels for each node, the dis‐
tance between their Spacy entity types (stored as a node attributes), and return their
mean:

from fuzzywuzzy import fuzz

def similarity(n1, n2):
 """
 Returns the mean of the partial_ratio score for each field in the two
 entities. Note that if they don't have fields that match, the score will
 be zero.
 """
 scores = [
 fuzz.partial_ratio(n1, n2),
 fuzz.partial_ratio(G.node[n1]['type'], G.node[n2]['type'])
]

 return float(sum(s for s in scores)) / float(len(scores))

If two entities have almost the same name (e.g., “Richard Hilton” and “Rick Hilton”),
and are also both of the same type (e.g., PERSON), they will get a higher score than if
they have the same name but are of different types (e.g., one PERSON and one ORG).

Now that we have a way to identify high-probability matches, we can incorporate it as
a filter into a new function, fuzzy_blocked_comparison. This function will iterate
through each possible pair of nodes and determine the amount of structural overlap
between them. If there is significant overlap, it will compute their similarity and
yield pairs with similar neighborhoods who are sufficiently similar (above some
threshold, which we implement as a keyword argument that defaults to a 65 percent
match):

def fuzzy_blocked_comparisons(G, threshold=65):
 """
 A generator of pairwise comparisons, that highlights comparisons between
 nodes that have an edge to the same entity, but filters out comparisons
 if the similarity of n1 and n2 is below the threshold.
 """
 for n1, n2 in pairwise_comparisons(G):
 hood1 = frozenset(G.neighbors(n1))
 hood2 = frozenset(G.neighbors(n2))
 if hood1 & hood2:
 if similarity(n1, n2) > threshold:
 yield n1,n2

This is a very efficient way of reducing pairwise comparisons, because we use the
computationally less intensive neighborhood comparison first, and only then proceed

Entity Resolution | 203

to the more expensive string similarity measure. The reduction in total comparisons
is significant:

def info(G):
 """
 Wrapper for nx.info with some other helpers.
 """
 pairwise = len(list(pairwise_comparisons(G)))
 edge_blocked = len(list(edge_blocked_comparisons(G)))
 fuzz_blocked = len(list(fuzzy_blocked_comparisons(G)))

 output = [""]
 output.append("Number of Pairwise Comparisons: {}".format(pairwise))
 output.append("Number of Edge Blocked Comparisons: {}".format(edge_blocked))
 output.append("Number of Fuzzy Blocked Comparisons: {}".format(fuzz_blocked))

 return nx.info(G) + "\n".join(output)

Name: Hilton Family
Type: Graph
Number of nodes: 18
Number of edges: 17
Average degree: 1.8889
Number of Pairwise Comparisons: 153
Number of Edge Blocked Comparisons: 32
Number of Fuzzy Blocked Comparisons: 20

We have now identified the 20 pairs of nodes with the highest likelihood of being ref‐
erences to the same entity, a more than 85 percent reduction in the total possible
pairwise comparisons.

Now we can imagine creating a custom transformer that we can chain together with
the rest of our pipeline to transform our reference graph into a list of fuzzy edge
blocked comparisons. For instance, a FuzzyBlocker might begin with these methods
and add others depending on the specific requirements of the entity resolution prob‐
lem:

from sklearn.base import BaseEstimator, TransformerMixin

class FuzzyBlocker(BaseEstimator, TransformerMixin):

 def __init__(self, threshold=65):
 self.threshold = threshold

 def fit(self, G, y=None):
 return self

 def transform(self, G):
 return fuzzy_blocked_comparisons(G, self.threshold)

Depending on the context and the fuzzy match threshold we have specified, these
blocked nodes could be collapsed into single nodes (updating the edge properties as

204 | Chapter 9: Graph Analysis of Text

necessary), or be passed to a domain expert for manual inspection. In either case,
entity resolution will often be a critical first step in building quality data products,
and as we’ve seen in this section, graphs can make this process both more efficient
and effective.

Conclusion
Graphs are used to represent and model complex systems in the real world, such as
communication networks and biological ecosystems. However, they can also be used
more generally to structure problems in meaningful ways. With a little creativity,
almost any problem can be structured as a graph.

While graph extraction may seem challenging initially, it is just another iterative pro‐
cess that requires clever language processing and creative modeling of the target data.
Just as with the other model families we have explored in this book, iterative refine‐
ment and analysis is part of the model selection triple, and techniques like normaliza‐
tion, filtering, and aggregation can be added to improve performance.

However, in contrast to other model families we have explored in previous chapters,
the graph model family contains algorithms whose computations are composed of
traversals. From a local node, the computation can use information from neighboring
nodes extracted by traveling along the edges that connect any two nodes. Such com‐
putations expose nodes that are connected, show how connections form, and identify
which nodes are most central to the network. Graph traversals enable us to extract
meaningful information from documents without requiring vast amounts of prior
knowledge and ontologies.

Graphs can embed complex semantic representations in a compact form. As such,
modeling data as networks of related entities is a powerful mechanism for analytics,
both for visual analyses and machine learning. Part of this power comes from perfor‐
mance advantages of using a graph data structure, and the other part comes from an
inherent human ability to intuitively interact with small networks.

The lesson of graph analytics is an important one; text analysis applications are made
and broken by their interpretability—if the user doesn’t understand it, it doesn’t mat‐
ter how insightful the result is. Next, in Chapter 10 we will continue to follow the
thread of human–computer interaction we began in Chapter 8 and pursued in this
chapter, considering instead how the application of chatbots to everyday language-
based tasks can augment the user’s experience.

Conclusion | 205

CHAPTER 10

Chatbots

In this chapter we will explore one of the fastest-growing language-aware applica‐
tions: conversational agents. From Slackbot to Alexa to BMW’s Dragon Drive, con‐
versational agents are quickly becoming an indispensable part of our everyday
experiences, integrated into an ever broader range of contexts. They enhance our lives
with extended memory (e.g., looking stuff up on the internet), increased computation
(e.g., making conversions or navigating our commute), and more fluid communica‐
tion and control (e.g., sending messages, managing smart homes).

The primary novelty of such agents is not the information or assistance they provide
(as that has been available in web and mobile applications using point-and-click
interfaces for a long time); rather, it is their interface that makes them so compelling.
Natural language interactions provide a low-friction, low-barrier, and highly intuitive
method of accessing computational resources. Because of this, chatbots represent an
important step forward in user experience, such as inlining commands naturally with
text-based applications thereby minimizing poorly designed menu-based interfaces.
Importantly, they also allow new human–computer interactions in new computa‐
tional contexts, such as in devices not well suited to a screen like in-car navigation.

So why is this rise happening now, given the long history of conversational agents in
reality (with early models like Eliza and PARRY) and in fiction (“Computer” from
Star Trek or “Hal” from 2001: A Space Odyssey)? Partly it’s because the “killer app” for
such interfaces requires ubiquitous computing enabled by today’s Internet of Things.
More importantly, it’s because modern conversational agents are empowered by user
data, which enriches their context, and in turn, their value to us. Mobile devices lever‐
age GPS data to know where we are and propose localized recommendations; gaming
consoles adapt play experiences based on the number of people they can see and hear.
To do this effectively, such applications must not only process natural language, they

207

1 Claude Shannon, A Mathematical Theory of Communication, (1948) http://bit.ly/2JJnVjd

must also maintain state, remembering information provided by the user and situa‐
tional context.

In this chapter we propose a conversational framework for building chatbots, the
purpose of which is to manage state and use that state to produce meaningful conver‐
sations within a specific context. We will demonstrate this framework by constructing
a kitchen helper bot that can greet new users, perform measurement conversions, and
recommend good recipes. Through the lens of this prototype, we’ll sketch out three
features—a rule-based system that uses regular expressions to match utterances; a
question-and-answer system that uses pretrained syntax parsers to filter incoming
questions and determine what answers are needed; and finally, a recommendation
system that uses unsupervised learning to determine relevant suggestions.

Fundamentals of Conversation
In the 1940s, Claude Shannon and Warren Weaver, pioneers of information theory
and machine translation, developed a model of communication so influential it is still
used to understand conversation today.1 In their model, communication comes down
to a series of encodings and transformations, as messages pass through channels with
varying levels of noise and entropy, from initial source to destination.

Modern notions of conversation, as shown in Figure 10-1, extend the Shannon–Wea‐
ver model, where two (or more) parties take turns responding to each other’s mes‐
sages. Conversations take place over time and are generally bounded by a fixed
length. During a conversation, a participant can either be listening or speaking. Effec‐
tive conversation requires at any given time a single speaker communicating and
other participants listening. Finally, the time-ordered record of the conversation must
be consistent such that each statement makes sense given the previous statement in
the conversation.

To you, our human reader, this description of a conversation probably seems obvious
and natural, but it has important computational implications (consider how garbled
and confusing a conversation would be if any of the requirements were not satisfied).
One simple way to satisfy conversational requirements is to have each participant in
the conversation switch between speaking and listening by taking turns. In each turn,
the initiative is granted to the speaker who gets to decide where the conversation goes
next based on what was last said. Turn taking and the back-and-forth transfer of ini‐
tiative keeps the conversation going until one or more of the participants decides to
end it. The resulting conversation meets all the requirements described here and is
consistent.

208 | Chapter 10: Chatbots

http://bit.ly/2JJnVjd

Figure 10-1. Structure of a conversation

A chatbot is a program that participates in turn-taking conversations and whose aim
is to interpret input text or speech and to output appropriate, useful responses.
Unlike the humans with whom they interact, chatbots must rely on heuristics and
machine learning techniques to achieve these results. For this reason, they require a
computational means of grappling with the ambiguity of language and situational
context in order to effectively parse incoming language and produce the most appro‐
priate reply.

A chatbot’s architecture, shown in Figure 10-2, is comprised of two primary compo‐
nents. The first component is a user-facing interface that handles the mechanics of
receiving user input (e.g., microphones for speech transcription or a web API for an
app) and delivering interpretable output (speakers for speech generation or a mobile
frontend). This outer component wraps the second component, an internal dialog sys‐
tem that interprets text input, maintains an internal state, and produces responses.

The outer user interface component obviously can vary widely depending on the use
and requirements of the application. In this chapter we will focus on the internal dia‐
log component and show how it can be easily generalized to any application and
composed of multiple subdialogs. To that end we will first create an abstract base class
that formally defines the fundamental behavior or interface of the dialog. We will
then explore three implementations of this base class for state management, questions
and answers, and recommendations and show how they can be composed as a single
conversational agent.

Fundamentals of Conversation | 209

Figure 10-2. Architecture of a chatbot

Dialog: A Brief Exchange
To create a generalizable and composable conversational system, we must first define
the smallest unit of work during an interaction between chatbot and user. From the
architecture described in the last section, we know that the smallest unit of work must
accept natural language text as input and produce natural language text as output. In
a conversation many types of parses and responses are required, so we will think of a
conversation agent as composed of many internal dialogs that each handle their own
area of responsibility.

To ensure dialogs work together in concert, we must describe a single interface that
defines how dialogs operate. In Python no formal interface type exists, but we can use
an abstract base class via the abc standard library module to list the methods and sig‐
natures expected of all subclasses (if a subclass does not implement the abstract meth‐
ods, an exception is raised). In this way we can ensure that all subclasses of our
Dialog interface behave in an expected way.

Generally, Dialog is responsible for listening to utterances, parsing the text, interpret‐
ing the parse, updating its internal state, and then formulating a response on demand.
Because we assume that the system will sometimes misinterpret incoming text,
Dialog objects must also return a relevance score alongside the response to quantify
how successfully the initial utterance has been interpreted. To create our interface,
we’ll break this behavior into several methods that will be specifically defined in our
subclasses. However, we’ll first start by describing a nonabstract method, listen, the

210 | Chapter 10: Chatbots

primary entry point for a Dialog object that implements the general dialog behavior
using (soon-to-be-implemented) abstract methods:

import abc

class Dialog(abc.ABC):
 """
 A dialog listens for utterances, parses and interprets them, then updates
 its internal state. It can then formulate a response on demand.
 """

 def listen(self, text, response=True, **kwargs):
 """
 A text utterance is passed in and parsed. It is then passed to the
 interpret method to determine how to respond. If a response is
 requested, the respond method is used to generate a text response
 based on the most recent input and the current Dialog state.
 """
 # Parse the input
 sents = self.parse(text)

 # Interpret the input
 sents, confidence, kwargs = self.interpret(sents, **kwargs)

 # Determine the response
 if response:
 reply = self.respond(sents, confidence, **kwargs)
 else:
 reply = None

 # Return initiative
 return reply, confidence

The listen method contains a global implementation, which unifies our (soon-to-
be-defined) abstract functionality. The listen signature accepts text as a string, as
well as a response boolean that indicates if initiative has passed to the Dialog and a
response is required (if False, the Dialog simply listens and updates its internal
state). Finally, listen also takes arbitrary keyword arguments (kwargs) that may con‐
tain other contextual information such as the user, session id, or transcription score.

The output of this method is a response if required (None if not) as well as a confi‐
dence score, a floating-point value between 0.0 and 1.0. Since we may not always be
able to successfully parse and interpret incoming text, or formulate an appropriate
response, this metric expresses a Dialog object’s confidence in its interpretation,
where 1.0 is extremely confident in the response and 0 is completely confused. Confi‐
dence can be computed or updated at any point during the Dialog.listen execution,
which we have defined by three abstract steps: parse, interpret, and respond,
though generally speaking confidence is produced during the interpret phase:

Fundamentals of Conversation | 211

 @abc.abstractmethod
 def parse(self, text):
 """
 Every dialog may need its own parsing strategy, some dialogs may need
 dependency vs. constituency parses, others may simply require regular
 expressions or chunkers.
 """
 return []

The parse method allows Dialog subclasses to implement their own mechanism for
handling raw strings of data. For instance, some Dialog subclasses may require
dependency or constituency parsing while others may simply require regular expres‐
sions or chunkers. The abstract method defines the parse signature: a subclass should
implement parse to expect a string as input and return a list of data structures spe‐
cific to the needs of the particular Dialog behavior. Ideally, in a real-world implemen‐
tation, we’d also include optimizations to ensure that computationally expensive
parsing only happens once so that we don’t unnecessarily duplicate the work:

 @abc.abstractmethod
 def interpret(self, sents, **kwargs):
 """
 Interprets the utterance passed in as a list of parsed sentences,
 updates the internal state of the dialog, computes a confidence of the
 interpretation. May also return arguments specific to the response
 mechanism.
 """
 return sents, 0.0, kwargs

The interpret method is responsible for interpreting an incoming list of parsed sen‐
tences, updating the internal state of the Dialog, and computing a confidence level
for the interpretation. This method will return interpreted parsed sentences that have
been filtered based on whether they require a response, as well as a confidence score
between 0 and 1. Later in this chapter, we’ll explore a few options for calculating con‐
fidence. The interpret method can also accept arbitrary keyword arguments and
return updated keyword arguments to influence the behavior of respond:

 @abc.abstractmethod
 def respond(self, sents, confidence, **kwargs):
 """
 Creates a response given the input utterances and the current state of
 the dialog, along with any arguments passed in from the listen or the
 interpret methods.
 """
 return None

Finally, the respond method accepts interpreted sentences, a confidence score, and
arbitrary keyword arguments in order to produce a text-based response based on the
current state of the Dialog. The confidence is passed to respond to influence the out‐
come; for example, if the confidence is 0.0 the method might return None or return a

212 | Chapter 10: Chatbots

request for clarification. If the confidence is not strong the response might include
suggested or approximate language rather than a firm answer for stronger confiden‐
ces.

By subclassing the Dialog abstract base class, we now have a framework that enables
the maintenance of conversational state in short interactions with the user. The
Dialog object will serve as the basic building block for the rest of the conversational
components we will implement throughout the rest of the chapter.

Maintaining a Conversation
A Dialog defines how we handle simple, brief exchanges and is an important build‐
ing block for conversational agents. But how do we maintain state during a longer
interaction, where the initiative may be passed back and forth between user and sys‐
tem multiple times and require many different types of responses?

The answer is a Conversation, a specialized dialog that contains multiple internal
dialogs. For a chatbot, an instance of a Conversation is essentially the wrapped inter‐
nal dialog component described by our architecture. A Conversation contains one or
more distinct Dialog subclasses, each of which implements a separate internal state
and handles different types of interpretations and responses. When the Conversation
listens, it directs the input to its internal dialogs, then returns the response with the
highest confidence.

In this section, we’ll implement a SimpleConversation class that inherits the behav‐
ior of our Dialog class. The main role of the SimpleConversation class is to maintain
state across a sequence of dialogs, which we’ll store as an internal class attribute. Our
class will also inherit from collections.abc.Sequence from the standard library,
which will enable SimpleConversation to behave like a list of indexed dialogs (with
the abstract method __getitem__) and retrieve the number of dialogs in the collec‐
tion (with __len__):

from collections.abc import Sequence

class SimpleConversation(Dialog, Sequence):
 """
 This is the most simple version of a conversation.
 """

 def __init__(self, dialogs):
 self._dialogs = dialogs

 def __getitem__(self, idx):
 return self._dialogs[idx]

Fundamentals of Conversation | 213

 def __len__(self):
 return len(self._dialogs)

On Conversation.listen, we will go ahead and pass the incoming text to each of the
internal Dialog.listen methods, which will in turn call the internal Dialog object’s
parse, interpret, and respond methods. The result is a list of (responses, confi
dence) tuples, and the SimpleConversation will simply return the response with the
highest confidence by using the itemgetter operator to retrieve the max by the sec‐
ond element of the tuple. Slightly more complex conversations might include rules
for tie breaking if two internal dialogs return the same confidence, but the optimal
Conversation composition is one in which ties are rare:

from operator import itemgetter

...

 def listen(self, text, response=True, **kwargs):
 """
 Simply return the best confidence response
 """
 responses = [
 dialog.listen(text, response, **kwargs)
 for dialog in self._dialogs
]

 # Responses is a list of (response, confidence) pairs
 return max(responses, key=itemgetter(1))

Because a SimpleConversation is a Dialog, it must implement parse, interpret,
and respond. Here, we implement each of those so that they call the corresponding
internal method and return the results. We also add a confidence score, which allows
us to compose a conversation according to our confidence that the input has been
interpreted correctly:

...

 def parse(self, text):
 """
 Returns parses for all internal dialogs for debugging
 """
 return [dialog.parse(text) for dialog in self._dialogs]

 def interpret(self, sents, **kwargs):
 """
 Returns interpretations for all internal dialogs for debugging
 """
 return [dialog.interpret(sents, **kwargs) for dialog in self._dialogs]

214 | Chapter 10: Chatbots

2 Alan Turing, Computing Machinery and Intelligence, (1950) http://bit.ly/2GLop6D

 def respond(self, sents, confidence, **kwargs):
 """
 Returns responses for all internal dialogs for debugging
 """
 return [
 dialog.respond(sents, confidence, **kwargs)
 for dialog in self._dialogs
]

The Dialog framework is intended to be modular, so that multiple dialog compo‐
nents can be used simultaneously (as in our SimpleConversation class) or used in a
standalone fashion. Our implementation treats dialogs as wholly independent, but
there are many other models such as:

Parallel/async conversations
The first response with a positive confidence wins.

Policy-driven conversations
Dialogs are marked as “open” and “closed.”

Dynamic conversations
Dialogs can be dynamically added and removed.

Tree structured conversations
Dialogs have parents and children.

In the next section, we will see how we can use the Dialog class with some simple
heuristics to build a dialog system that manages interactions with users.

Rules for Polite Conversation
In 1950, renowned computer scientist and mathematician Alan Turing first proposed
what would later be known as the Turing test2—a machine’s ability to fool a human
into believing he or she was conversing with another person. The Turing test inspired
a number of rule-based dialog systems over the next several decades, many of which
not only passed the test, but became the first generation of conversation agents, and
which continue to inform chatbot construction to this day.

Built by Joseph Weizenbaum in 1966 at MIT, ELIZA is perhaps the most well-known
example. The ELIZA program used logic to match keyword- and phrase-patterns
from human input and provide preprogrammed responses to move the conversation
forward. PARRY, built by Kenneth Colby several years later at Stanford, responded
using a combination of pattern matching and a mental model. This mental model
made PARRY grow increasingly agitated and erratic to simulate a patient with para‐

Rules for Polite Conversation | 215

http://bit.ly/2GLop6D

noid schizophrenia, and successfully fooled doctors into believing they were speaking
with a real patient.

In this section, we will implement a rules-based greeting feature inspired by these
early models, which uses regular expressions to match utterances. Our version will
maintain state primarily to acknowledge participants entering and leaving the dialog,
and respond to them with appropriate salutations and questions. This implementa‐
tion of a Dialog is meant to highlight the importance of keeping track of the state of a
conversation over time as well as to show the effectiveness of regular expression–
based chatbots. We will conclude the session by showing how a test framework can be
used to exercise a Dialog component in a variety of ways, making it more robust to
the variety of user input.

Greetings and Salutations
The Greeting dialog implements our conversational framework by extending the
Dialog base class. It is responsible for keeping track of participants entering and exit‐
ing a conversation as well as providing the appropriate greeting and salutation when
participants enter and exit. It does this by maintaining a participants state, a map‐
ping of currently active users and their names.

At the heart of the Greeting dialog is a dictionary, PATTERNS, stored as a class vari‐
able. This dictionary maps the kind of interactions (described by key) to a regular
expression that defines the expected input for that interaction. In particular, our sim‐
ple Greeting dialog is prepared for greetings, introductions, goodbyes, and roll calls.
Later, we’ll use these regular expressions in the parse method of the dialog:

class Greeting(Dialog):
 """
 Keeps track of the participants entering or leaving the conversation and
 responds with appropriate salutations. This is an example of a rules based
 system that keeps track of state and uses regular expressions and logic to
 handle the dialog.
 """

 PATTERNS = {
 'greeting': r'hello|hi|hey|good morning|good evening',
 'introduction': r'my name is ([a-z\-\s]+)',
 'goodbye': r'goodbye|bye|ttyl',
 'rollcall': r'roll call|who\'s here?',
 }

 def __init__(self, participants=None):
 # Participants is a map of user name to real name
 self.participants = {}

 if participants is not None:
 for participant in participants:

216 | Chapter 10: Chatbots

 self.participants[participant] = None

 # Compile regular expressions
 self._patterns = {
 key: re.compile(pattern, re.I)
 for key, pattern in self.PATTERNS.items()
 }

To initialize a Greeting we can instantiate it with or without a prior list of partici‐
pants. We can think of the internal state of the dictionary as tracking a username with
a real name, which we will see updated later with the introduction interpretation. To
ensure fast and efficient parsing of text, we conclude initialization by compiling our
regular expressions into an internal instance dictionary. Regular expression compila‐
tion in Python returns a regular expression object, saving a step when the same regu‐
lar expression is used repeatedly as it will be in this dialog.

This is a fairly minimalist implementation of the Greeting class,
which could be extended in many ways with rules to support other
speech and text patterns, as well as different languages.

Next, we will implement a parse method, whose purpose is to compare the incoming
user-provided text to each of the compiled regular expressions to determine if it
matches the known patterns for a greeting, introduction, goodbye, or attendance
check:

 def parse(self, text):
 """
 Applies all regular expressions to the text to find matches.
 """
 matches = {}
 for key, pattern in self._patterns.items():
 match = pattern.match(text)
 if match is not None:
 matches[key] = match
 return matches

If a match is found, parse returns it. This result can then be used as input for the
Greeting-specific interpret method, which takes in parsed matches and determines
what kind of action is called for (if any). If interpret receives input that matched
none of the patterns, it immediately returns with a 0.0 confidence score. If any of the
text was matched, interpret simply returns a 1.0 confidence score because there is
no fuzziness to regular expression matching.

The interpret method is responsible for updating the internal state of the Greeting
dialog. For example, if the input matched an introductory exchange (e.g., if the user
typed “my name is something”), interpret will extract the name, add any new user

Rules for Polite Conversation | 217

to self.participants, and add the (new or existing) user’s real name to the value
corresponding to that key in the dictionary. If a greeting was detected, interpret will
check to see if the user is known in self.participants, and if not, will add a key‐
word argument to the final return result flagging that an introduction should be
requested in the respond method. Otherwise, if a goodbye was matched, it removes
the user (if known) from the self.participants dictionary and from the keyword
arguments:

 def interpret(self, sents, **kwargs):
 """
 Takes in parsed matches and determines if the message is an enter,
 exit, or name change.
 """
 # Can't do anything with no matches
 if len(sents) == 0:
 return sents, 0.0, kwargs

 # Get username from the participants
 user = kwargs.get('user', None)

 # Determine if an introduction has been made
 if 'introduction' in sents:
 # Get the name from the utterance
 name = sents['introduction'].groups()[0]
 user = user or name.lower()

 # Determine if name has changed
 if user not in self.participants or self.participants[user] != name:
 kwargs['name_changed'] = True

 # Update the participants
 self.participants[user] = name
 kwargs['user'] = user

 # Determine if a greeting has been made
 if 'greeting' in sents:
 # If we don't have a name for the user
 if not self.participants.get(user, None):
 kwargs['request_introduction'] = True

 # Determine if goodbye has been made
 if 'goodbye' in sents and user is not None:
 # Remove participant
 self.participants.pop(user)
 kwargs.pop('user', None)

 # If we've seen anything we're looking for, we're pretty confident
 return sents, 1.0, kwargs

Finally, our respond method will dictate if and how our chatbot should respond to
the user. If the confidence is 0.0, no response is provided. If the user sent a greeting

218 | Chapter 10: Chatbots

or introduction, respond will either return a request for the new user’s name or a
greeting to the existing user. In the case of a goodbye, respond will return a generic
farewell. If a user has asked about who else is in the chat, respond will get a list of the
participants and return either all the names (if there are other participants), or just
the user’s name (if she/he is in there alone). If there are no users currently recorded in
self.participants, the chatbot will respond expectantly:

 def respond(self, sents, confidence, **kwargs):
 """
 Gives a greeting or a goodbye depending on what's appropriate.
 """
 if confidence == 0:
 return None

 name = self.participants.get(kwargs.get('user', None), None)
 name_changed = kwargs.get('name_changed', False)
 request_introduction = kwargs.get('request_introduction', False)

 if 'greeting' in sents or 'introduction' in sents:
 if request_introduction:
 return "Hello, what is your name?"
 else:
 return "Hello, {}!".format(name)

 if 'goodbye' in sents:
 return "Talk to you later!"

 if 'rollcall' in sents:
 people = list(self.participants.values())

 if len(people) > 1:
 roster = ", ".join(people[:-1])
 roster += " and {}.".format(people[-1])
 return "Currently in the conversation are " + roster

 elif len(people) == 1:
 return "It's just you and me right now, {}.".format(name)
 else:
 return "So lonely in here by myself ... wait who is that?"

 raise Exception(
 "expected response to be returned, but could not find rule"
)

Note that in both the interpret and respond methods, we simply have branching
logic that handles each type of matched input. As this class gets larger, it is helpful to
break down these methods into smaller chunks such as interpret_goodbye and
respond_goodbye to encapsulate the logic and prevent bugs. We can experiment with
the Greeting class a bit using different inputs here:

Rules for Polite Conversation | 219

if __name__ == '__main__':
 dialog = Greeting()
 # `listen` returns (response, confidence) tuples; just print the response
 print(dialog.listen("Hello!", user="jakevp321")[0])
 print(dialog.listen("my name is Jake", user="jakevp321")[0])
 print(dialog.listen("Roll call!", user="jakevp321")[0])
 print(dialog.listen("Have to go, goodbye!", user="jakevp321")[0])

Here are the results:

Hello, what is your name?
Hello, Jake!
It's just you and me right now, Jake.

However, it’s important to note that our rule-based system is pretty rigid and breaks
down quickly. For instance, let’s see what happens if we leave off the user keyword
argument in one of our calls to the Greeting.listen method:

if __name__ == '__main__':
 dialog = Greeting()
 print(dialog.listen("hey", user="jillmonger")[0])
 print(dialog.listen("my name is Jill.", user="jillmonger")[0])
 print(dialog.listen("who's here?")[0])

In this case, the chatbot recognizes Jill’s salutation, requests an introduction, and
greets the new participant. However, in the third call to listen, the chatbot doesn’t
have the user keyword argument and so fails to appropriately address her in the roll
call response:

Hello, what is your name?
Hello, Jill!
It's just you and me right now, None.

Indeed, rules-based systems do tend to break down easily. Test-driven development,
which we’ll explore in the next section, can help us to anticipate and pre-empt the
kinds of problems that may occur in practice with users.

Handling Miscommunication
Rigorous testing is a useful way to handle possible miscommunications and other
kinds of parsing and response errors. In this section, we’ll use the PyTest library to
test the limits of our Greeting class, experiment with edge cases, and see where
things start to break down.

To fully implement our chatbot, we would begin with a set of tests for our Dialog
base class. Below we show the general framework we would use for the TestBase
Classes class, testing, for instance, classes that subclass the Dialog successfully
inherit the listen method.

220 | Chapter 10: Chatbots

Our first test, test_dialog_abc, uses the pytest.mark.parametrize decorator,
which allows us to send many different examples into the test with little effort:

import pytest

class TestBaseClasses(object):
 """
 Tests for the Dialog class
 """
 @pytest.mark.parametrize("text", [
 "Gobbledeguk", "Gibberish", "Wingdings"
])
 def test_dialog_abc(self, text):
 """
 Test the Dialog ABC and the listen method
 """
 class SampleDialog(Dialog):
 def parse(self, text):
 return []

 def interpret(self, sents):
 return sents, 0.0, {}

 def respond(self, sents, confidence):
 return None

 sample = SampleDialog()
 reply, confidence = sample.listen(text)
 assert confidence == 0.0
 assert reply is None

Next, we can implement some tests for our Greeting class. The first of these,
test_greeting_intro, uses the parametrize decorator to test many different combi‐
nations of input strings and usernames to see if the class successfully returns a 1 for
the interpretation confidence, that respond generates a response, and that the chatbot
asks for the user’s name:

class TestGreetingDialog(object):
 """
 Test expected input and responses for the Greeting dialog
 """

 @pytest.mark.parametrize("text", ["Hello!", "hello", 'hey', 'hi'])
 @pytest.mark.parametrize("user", [None, "jay"], ids=["w/ user", "w/o user"])
 def test_greeting_intro(self, user, text):
 """
 Test that an initial greeting requests an introduction
 """
 g = Greeting()
 reply, confidence = g.listen(text, user=user)
 assert confidence == 1.0

Rules for Polite Conversation | 221

 assert reply is not None
 assert reply == "Hello, what is your name?"

If any of these tests fail, it will serve as a signal that we should refactor our Greeting
class so that it anticipates a broader range of possible inputs.

We should also create a test_initial_intro class that tests what happens when an
introduction happens before a greeting. In this case, since we already know that this
functionality is error-prone, we use the pytest.mark.xfail decorator to validate the
cases that we expect are likely to fail; this will help us to remember the edge cases we
want to address in future revisions:

...

 @pytest.mark.xfail(reason="a case that must be handled")
 @pytest.mark.parametrize("text", ["My name is Jake", "Hello, I'm Jake."])
 @pytest.mark.parametrize("user", [None, "jkm"], ids=["w/ user", "w/o user"])
 def test_initial_intro(self, user, text):
 """
 Test an initial introduction without greeting
 """
 g = Greeting()
 reply, confidence = g.listen(text, user=user)

 assert confidence == 1.0
 assert reply is not None
 assert reply == "Hello, Jake!"

 if user is None:
 user = 'jake'

 assert user in g.participants
 assert g.participants[user] == 'Jake'

Rules-based systems continue to be a very effective technique for keeping track of
state within a dialog, particularly when augmented with robust edge-case exploration
and test-driven development. The simple combination of regular expressions and
logic to handle the exchanges (like ELIZA and PARRY, and our Greeting class) can
be surprisingly effective. However, modern conversational agents rarely rely solely on
heuristics. In the next part of the chapter, as we begin integrating linguistic features,
we’ll start to see why.

Entertaining Questions
One of the most common uses of chatbots is to quickly and easily answer fact-based
questions such as “How long is the Nile river?” There exists a variety of fact and
knowledge bases on the web such as DBPedia, Yago2, and Google Knowledge Graph;
it is also very common for microknowledge bases such as FAQs to exist for specific
applications. These tools provide an answer; the challenge is converting a natural

222 | Chapter 10: Chatbots

language question into a database query. While statistical matching of questions to
their answers is one simple mechanism for this, more robust approaches use both
statistical and semantic information; for example, using a frame-based approach to
create templates that can be derived into SPARQL queries or using classification tech‐
niques to identify the type of answer required (e.g., a location, an amount, etc.).

In a general chat system, however, there exists a preliminary problem—to detect
when we’ve been asked a question, and to determine what type of question it is. An
excellent first step is to consider what questions look like; we might easily employ a
regular expression to look for sentences that begin with a “wh”-question (“Who,”
“What,” “Where,” “Why,” “When,” “How”) and end in a question mark.

However, this approach is likely to lead to false positives, such as ignoring questions
that start with non-“wh”-words (e.g., “Can you cook?”, “Is there garlic?”) or state‐
ments that “wrap” questions (e.g., “You’re joining us?”). This approach may also gen‐
erate false negatives, mistakenly promoting nonquestions that start with “wh”-words
(e.g., “When in Rome…”) or rhetorical questions that do not require a response (e.g.,
“Do you even lift?”).

Though questions are often posed in irregular and unexpected ways, some patterns
do exist. Sentences encode deep structures and relationships that go far beyond sim‐
ple windowing and matching. To detect these patterns, we will need to perform some
type of syntactic parsing—in other words, a mechanism that exploits context-free
grammars to systematically assign syntactic structure to incoming text.

In “Extracting Keyphrases” on page 128 we saw that NLTK has a number of
grammar-based parsers, but all require us to provide a grammar to specify the rules
for building up parts-of-speech into phrases or chunks, which will unnecessarily limit
our chatbot’s flexibility. In the following sections we will instead explore pretrained
dependency parsing and constituency parsing as more flexible alternatives.

Dependency Parsing
Dependency parsers are a lightweight mechanism to extract the syntactic structure of
a sentence by linking phrases together with specific relationships. They do so by first
identifying the head word of a phrase, then establishing links between the words that
modify the head. The result is an overlapping structure of arcs that identify meaning‐
ful substructures of the sentence.

Consider the sentence “How many teaspoons are in a tablespoon?”. In Figure 10-3, we
see a dependency parse as visualized using SpaCy’s DisplaCy module (available as of
v2.0). This parse aims to tell us how the words in the sentence interact and modify
each other. For instance, we can clearly see that the root of this phrase is the head
verb (VERB) “are,” which joins an adverbial phrase (ADV,ADJ,NOUN) “How many tea‐
spoons” to a propositional phrase (ADP,DET,NOUN) “in a tablespoon” through the

Entertaining Questions | 223

subject dependency of the head noun “teaspoons” and the prepositional dependency
“in” (ADP is a cover term for prepositions).

Figure 10-3. SpaCy dependency tree

Whereas NLTK uses the Penn Treebank tagset, which we first saw
in “Part-of-Speech Tagging” on page 44, SpaCy’s convention is to
use the Universal part-of-speech tags (e.g., “ADJ” for adjectives,
“ADV” for adverbs, “PROPN” for proper nouns, “PRON” for pro‐
nouns, etc.). The Universal PoS tags are written by linguists (not
programmers, like the Penn Treebank tags), which means they are
generally richer, though they don’t allow for things like using
tag.startswith("N") to identify nouns.

To recreate the parse shown in Figure 10-3, we first load SpaCy’s prebuilt English lan‐
guage parsing model. We then write a function, plot_displacy_tree, that parses
incoming sentences using the prebuilt model and plots the resulting dependency
parse using the displacy.serve method. If executed within a Jupyter notebook, the
plot will render in the notebook; if run on the command line, the plot can be viewed
in the browser at http://localhost:5000/:

import spacy
from spacy import displacy

Required first: python -m spacy download en

spacy_nlp = spacy.load("en")

def plot_displacy_tree(sent):
 doc = spacy_nlp(sent)
 displacy.serve(doc, style='dep')

Dependency parsers are extremely popular for producing fast and correct grammati‐
cal analyses and when combined with part-of-speech tagging, perform much of the
work required for phrase-level analysis. The relationships between words produced
by dependency parsers may also be of interest to syntactic analysis. However, depend‐
ency parsing does not offer as rich and deep a view of the structure of sentences, and
as such, may not always be sufficient or optimal. In our chatbot, we’ll demonstrate
how to leverage a more comprehensive tree representation, the constituency parse.

224 | Chapter 10: Chatbots

Constituency Parsing
Constituency parsing is a form of syntactic parsing whose goal is to break down a
sentence into nested phrase structures similar to those we diagrammed when we were
in grade school. The output is a tree structure that captures complex interrelation‐
ships between subphrases. Constituency parsers provide an opportunity to apply
tree-traversal algorithms that easily enable computation on text, but because language
is ambiguous, there is usually more than one way to construct a tree for a sentence.

We can parse our example question, “How many teaspoons in a tablespoon?”, shown
as a tree in Figure 10-4. Here we can see a much more complex structure of subphra‐
ses and more direct, unlabeled relationships between nodes in the tree.

Figure 10-4. Stanford CoreNLP constituency tree

Constituency parse trees are comprised of terminal leaf nodes, the part-of-speech tag,
and the word itself. The nonterminal nodes represent phrases that join the part-of-
speech tags into related groupings. In this question, the root phrase is an SBARQ, a
clause identified as a direct question because it is introduced by a “wh”-word. This
clause is composed of a WHNP (a noun phrase with a “wh”-word) and an SQ, the main
clause of the SBARQ, which itself is a verb phrase. As you can see, a lot of detail exists
in this parse that gives a lot of clues about how to treat this question in its syntactic
parts!

For questions and answers, the WRB, WP, and WDT tags identify words that are of inter‐
est to our particular context, and may signal a measurement-conversion question; WRB
is a “wh”-adverb (e.g., a “wh”- word used as a verbal modifier, as in “When are you

Entertaining Questions | 225

leaving?”); WP is a “wh”-pronoun (as in “Who won the bet?”); and WDT is a “wh”-
determiner (as in “Which Springfield?”).

The Stanford CoreNLP package is a comprehensive suite of natural language process‐
ing tools written in Java. It includes methods for part-of-speech tagging, syntactic
parsing, named entity recognition, sentiment analysis, and more.

Setting Up the Dependencies for Stanford CoreNLP
The current version of the parser requires Java 8 (JDK1.8) or later.

Download and extract the Stanford NLP tools:

wget http://nlp.stanford.edu/software/stanford-ner-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-postagger-full-2015-04-20.zip

unzip stanford-ner-2015-04-20.zip
unzip stanford-parser-full-2015-04-20.zip
unzip stanford-postagger-full-2015-04-20.zip

Then add these .jars to your Python path by opening your .bash_profile and adding
the following:

export STANFORDTOOLSDIR=$HOME
export CLASSPATH=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/
 stanford-postagger.jar:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/
 stanford-ner.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/
 stanford-parser.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/
 stanford-parser-3.5.2-models.jar
export STANFORD_MODELS=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/
 models:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/classifiers

In a recent update to the library, NLTK made available a new module
nltk.parse.stanford that enables us to use the Stanford parsers from inside NLTK
(assuming you have set up the requisite .jars and PATH configuration) as follows:

from nltk.parse.stanford import StanfordParser

stanford_parser = StanfordParser(
 model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"
)
def print_stanford_tree(sent):
 """
 Use Stanford pretrained model to extract dependency tree
 for use by other methods
 Returns a list of trees
 """
 parse = stanford_parser.raw_parse(sent)
 return list(parse)

226 | Chapter 10: Chatbots

We can plot the Stanford constituency tree using nltk.tree to generate the tree
shown in Figure 10-4, which allows us to visually inspect the structure of the
question:

def plot_stanford_tree(sent):
 """
 Visually inspect the Stanford dependency tree as an image
 """
 parse = stanford_parser.raw_parse(sent)
 tree = list(parse)
 tree[0].draw()

As you visually explore syntax parses produced by StanfordNLP you’ll notice that
structures get much more complex with longer parses. Constituency parses provide a
lot of information, which may simply end up being noise in some text-based applica‐
tions. Both constituency and dependency parsing suffer from structural ambiguity,
meaning that these parses may also produce some probability of a correct parse that
can be used when computing confidence. However, the level of detail a syntax pro‐
vides makes it an excellent candidate for easily identifying questions and applying
frames to extract queryable information, as we’ll see in the next section.

Question Detection
The pretrained models in SpaCy and CoreNLP give us a powerful way to automati‐
cally parse and annotate input sentences. We can then use the annotations to traverse
the parsed sentences and look for part-of-speech tags that correspond to questions.

First, we will inspect the tag assigned to the top-level node of the ROOT (the zeroth
item of the parse tree, which contains all its branches). Next, we want to inspect the
tags assigned to the branch and leaf nodes, which we can do using the tree.pos
method from nltk.tree.Tree module:

tree = print_stanford_tree("How many teaspoons are in a tablespoon?")
root = tree[0] # The root is the first item in the parsed sents tree
print(root)
print(root.pos())

Once parsed, we can next explore how different questions manifest using the Penn
Treebank tags, which we first encountered in “Part-of-Speech Tagging” on page 44. In
our example, we can see from the root that our input is an SBARQ (a direct question
introduced by a “wh”-word), which in this case is a WRB (a “wh”-adverb). The sentence
begins with a WHNP (a “wh”-noun phrase) that contains a WHADJP (a “wh”-adjective
phrase):

(ROOT
 (SBARQ
 (WHNP (WHADJP (WRB How) (JJ many)) (NNS teaspoons))
 (SQ (VBP are) (PP (IN in) (NP (DT a) (NN tablespoon))))
 (. ?)))

Entertaining Questions | 227

3 Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyre, Bracketing Guidelines for Treebank II Style: Penn
Treebank Project, (1995) http://bit.ly/2GQKZLm

[('How', 'WRB'), ('many', 'JJ'), ('teaspoons', 'NNS'), ('are', 'VBP'),
('in', 'IN'), ('a', 'DT'), ('tablespoon', 'NN'), ('?', '.')]

The major advantage of using a technique like this for question detection is the flexi‐
bility. For instance, if we change our question to “Sorry to trouble you, but how many
teaspoons are in a tablespoon?”, the output is different, but the WHADJP and WRB ques‐
tion markers are still there:

(ROOT
 (FRAG
 (FRAG
 (ADJP (JJ Sorry))
 (S (VP (TO to) (VP (VB trouble) (NP (PRP you))))))
 (, ,)
 (CC but)
 (SBAR
 (WHADJP (WRB how) (JJ many))
 (S
 (NP (NNS teaspoons))
 (VP (VBP are) (PP (IN in) (NP (DT a) (NN tablespoon))))))
 (. ?)))
[('Sorry', 'JJ'), ('to', 'TO'), ('trouble', 'VB'), ('you', 'PRP'), (',', ','),
('but', 'CC'), ('how', 'WRB'), ('many', 'JJ'), ('teaspoons', 'NNS'),
('are', 'VBP'), ('in', 'IN'), ('a', 'DT'), ('tablespoon', 'NN'), ('?', '.')]

Table 10-1 lists some of the tags we have found most useful in question detection; a
complete list can be found in Bies et al.’s “Bracketing Guidelines for Treebank II
Style.”3

Table 10-1. Penn Treebank II Tags for Question Detection

Tag Meaning Example
SBARQ Direct question introduced by a wh-word or a wh-

phrase
“How hot is the oven?”

SBAR Clause introduced by subordinating conjunction (e.g.,
indirect question)

“If you’re in town, try the beignets.”

SINV Inverted declarative sentence “Rarely have I eaten better.”

SQ Inverted yes/no question or main clause of a wh-
question

“Is the gumbo spicy?”

S Simple declarative clause “I like jalapenos.”

WHADJP Wh-adjective phrases The “How hot” in “How hot is the oven?”

WHADVP Wh-adverb phrase The “Where do” in “Where do you keep the chicory?”

WHNP Wh-noun phrase The “Which bakery” in “Which bakery is best?”

228 | Chapter 10: Chatbots

http://bit.ly/2GQKZLm

Tag Meaning Example
WHPP Wh-prepositional phrase The “on which” in “The roux, on which this recipe

depends, should not be skipped.”

WRB Wh-adverb The “How” in “How hot is the oven?”

WDT Wh-determiner The “What” in “What temperature is it?”

WP$ Possessive wh-pronoun The “Whose” in “Whose bowl is this?”

WP Wh-pronoun The “Who” in “Who’s hungry?”

In the next section, we will see how to use these tags to detect questions most relevant
to our kitchen helper bot.

From Tablespoons to Grams
The next feature we will add to our chatbot is a question-and-answer system that lev‐
erages the pretrained parsers we explored in the previous section to provide conve‐
nient kitchen measurement conversions. Consider that in everyday conversation,
people frequently phrase questions about measurements as “How” questions—for
example “How many teaspoons are in a tablespoon?” or “How many cups make a
liter?” For our question-type identification task, we will aim to be able to interpret
questions that take the form “How many X are in a Y?”

We begin by defining a class Converter, which inherits the behavior of our Dialog
class. We expect to initialize a Converter with a knowledge base of measurement
conversions, here a simple JSON file stored in CONVERSION_PATH and containing all of
the conversions between units of measure. On initialization, these conversions are
loaded using json.load. We also initialize a parser (here we use CoreNLP), as well
as a stemmer from NLTK and an inflect.engine from the inflect library, which
will enable us to handle pluralization in the parse and respond methods, respectively.
Our parse method will use the raw_parse method from CoreNLP to generate con‐
stituency parses as demonstrated in the previous section:

import os
import json
import inflect

from nltk.stem.snowball import SnowballStemmer
from nltk.parse.stanford import StanfordParser

class Converter(Dialog):
 """
 Answers questions about converting units
 """

 def __init__(self, conversion_path=CONVERSION_PATH):
 with open(conversion_path, 'r') as f:

Entertaining Questions | 229

 self.metrics = json.load(f)

 self.inflect = inflect.engine()
 self.stemmer = SnowballStemmer('english')
 self.parser = StanfordParser(model_path=STANFORD_PATH)

 def parse(self, text):
 parse = self.parser.raw_parse(text)
 return list(parse)

Next, in interpret, we initialize a list to collect the measures we want to convert
from and to, an initial confidence score of 0, and a dictionary to collect the results of
our interpretation. We retrieve the root of the parsed sentence tree and use the
nltk.tree.Tree.pos method to scan through the part-of-speech tags for ones that
match the adverbial phrase question pattern (WRB). If we find any, we increment our
confidence score, and begin to traverse the tree using an nltk.util.breadth_first
search with a maximum depth of 8 (to limit recursion). For any subtrees that match
the syntactic patterns in which “how many”-type questions typically arise, we identify
and store any singular or plural nouns that represent the source and target measures.
If we identify any numbers within the question phrase subtree, we store that in our
results dictionary as the quantity for the target measure.

For demonstration purposes, we’ll use a naive but straightforward mechanism for
computing confidence here; more nuanced methods are possible and may be advisa‐
ble, given your particular context. If we are successful at identifying both a source and
target measure, we increment our confidence again and add these to our results
dictionary. If either measure is also in our knowledge base (aka JSON lookup), we
increase the confidence accordingly. Finally, we return a (results, confidence,
kwargs) tuple, which the respond method will use to determine whether and how to
respond to the user:

from nltk.tree import Tree
from nltk.util import breadth_first

...

 def interpret(self, sents, **kwargs):
 measures = []
 confidence = 0
 results = dict()

 # The root is the first item in the parsed sents tree
 root = sents[0]

 # Make sure there are wh-adverb phrases
 if "WRB" in [tag for word, tag in root.pos()]:
 # If so, increment confidence & traverse parse tree
 confidence += .2
 # Set the maxdepth to limit recursion

230 | Chapter 10: Chatbots

 for clause in breadth_first(root, maxdepth=8):
 #find the simple declarative clauses (+S+)
 if isinstance(clause, Tree):
 if clause.label() in ["S", "SQ", "WHNP"]:
 for token,tag in clause.pos():
 # Store nouns as target measures
 if tag in ["NN", "NNS"]:
 measures.append(token)
 # Store numbers as target quantities
 elif tag in ["CD"]:
 results["quantity"] = token

 # Handle duplication for very nested trees
 measures = list(set([self.stemmer.stem(mnt) for mnt in measures]))

 # If both source and destination measures are provided...
 if len(measures) == 2:
 confidence += .4
 results["src"] = measures[0]
 results["dst"] = measures[1]

 # Check to see if they correspond to our lookup table
 if results["src"] in self.metrics.keys():
 confidence += .2
 if results["dst"] in self.metrics[results["src"]]):
 confidence += .2

 return results, confidence, kwargs

However, before we can implement our respond method, we need a few helper utilit‐
ies. The first is convert, which converts from the units of the source measurement to
those of the target measurement. The convert method takes as input string represen‐
tations of the source units (src), the target units (dst), and a quantity of the source
unit, which may be either a float or an int. The function returns a tuple with the
(converted, source, target) units:

 def convert(self, src, dst, quantity=1.0):
 """
 Converts from the source unit to the dest unit for the given quantity
 of the source unit.
 """
 # Stem source and dest to remove pluralization
 src, dst = tuple(map(self.stemmer.stem, (src,dst)))

 # Check that we can convert
 if dst not in self.metrics:
 raise KeyError("cannot convert to '{}' units".format(src))
 if src not in self.metrics[dst]:
 raise KeyError("cannot convert from {} to '{}'".format(src, dst))

 return self.metrics[dst][src] * float(quantity), src, dst

Entertaining Questions | 231

We will also add round, pluralize, and numericalize methods, which leverage util‐
ities from the humanize library to transform numbers to more natural human-
readable form:

import humanize

...

 def round(self, num):
 num = round(float(num), 4)
 if num.is_integer():
 return int(num)
 return num

 def pluralize(self, noun, num):
 return self.inflect.plural_noun(noun, num)

 def numericalize(self, amt):
 if amt > 100.0 and amt < 1e6:
 return humanize.intcomma(int(amt))
 if amt >= 1e6:
 return humanize.intword(int(amt))
 elif isinstance(amt, int) or amt.is_integer():
 return humanize.apnumber(int(amt))
 else:
 return humanize.fractional(amt)

Finally, in the respond method, we check to see if our confidence in our interpreta‐
tion is sufficiently high, and if so, we use convert to perform the actual measurement
conversions, and then round, pluralize, and numericalize to ensure the final
response is easy for the user to read:

 def respond(self, sents, confidence, **kwargs):
 """
 Response makes use of the humanize and inflect libraries to produce
 much more human understandable results.
 """
 if confidence < .5:
 return "I'm sorry, I don't know that one."

 try:
 quantity = sents.get('quantity', 1)
 amount, source, target = self.convert(**sents)

 # Perform numeric rounding
 amount = self.round(amount)
 quantity = self.round(quantity)

 # Pluralize
 source = self.pluralize(source, quantity)
 target = self.pluralize(target, amount)
 verb = self.inflect.plural_verb("is", amount)

232 | Chapter 10: Chatbots

 # Numericalize
 quantity = self.numericalize(quantity)
 amount = self.numericalize(amount)

 return "There {} {} {} in {} {}.".format(
 verb, amount, target, quantity, source
)

 except KeyError as e:
 return "I'm sorry I {}".format(str(e))

Now we can experiment with using the listen method on a few possible input ques‐
tions to see how well our Converter class is able to handle different combinations
and quantities of source and target units:

if __name__ == "__main__":
 dialog = Converter()
 print(dialog.listen("How many cups are in a gallon?"))
 print(dialog.listen("How many gallons are in 2 cups?"))
 print(dialog.listen("How many tablespoons are in a cup?"))
 print(dialog.listen("How many tablespoons are in 10 cups?"))
 print(dialog.listen("How many tablespoons are in a teaspoon?"))

The resulting output, which is in the form of (reply, confidence) tuples, shows
that Converter is able to successfully produce conversions with consistently high
confidence:

('There are 16 cups in one gallon.', 1.0)
('There are 32 cups in two gallons.', 1.0)
('There are 16 tablespoons in one cup.', 1.0)
('There are 160 tablespoons in 10 cups.', 1.0)
('There are 1/3 tablespoons in one teaspoon.', 1.0)

Learning to Help
While providing dynamic measurement conversions is certainly convenient, we’d like
to incorporate something a bit more unique—a recipe recommender. In this section,
we walk through a pipeline that will leverage a recipe corpus to perform text normal‐
ization, vectorization, and dimensionality reduction, and finally use a nearest-
neighbor algorithm to provide recipe recommendations, as shown in Figure 10-5. In
this case the state maintained by our Dialog variant will be an active learning model,
capable of providing recommendations and incorporating user feedback to improve
over time.

Learning to Help | 233

Figure 10-5. Recipe recommender schema

A Domain-Specific Corpus
To train our recommender, we’ll be using a cooking corpus comprised of blog posts
and articles that contain recipes for specific dishes as well as narratives and descrip‐
tions for those dishes. A similar corpus can be constructed by extracting a list of
source URLs from a list of cooking blogs, crawling the websites and indexing each
page on the site. Our corpus contains 60,000 HTML documents and is approximately
8 GB, stored with a flat structure:

food_corpus
├── 2010-12-sweet-potato-chili.html
├── 2013-09-oysters-rockefeller.html
├── 2013-07-nc-style-barbeque.html
├── 2013-11-cornbread-stuffing.html
└── 2015-04-next-level-grilled-cheese.html

We wrote an HTMLCorpusReader modeled on the one in “Corpus Readers” on page 27,
adding a titles() method that will allow us to grab the page titles from each HTML
file, which will give us a human-intelligible way to refer to each recipe:

 def titles(self, fileids=None, categories=None):
 """
 Parse HTML to identify titles from the head tag.
 """
 for doc in self.docs(fileids, categories):
 soup = bs4.BeautifulSoup(doc, 'lxml')
 try:
 yield soup.title.text
 soup.decompose()
 except AttributeError as e:
 continue

234 | Chapter 10: Chatbots

Given the size of the corpus, we leveraged a version of the Preprocessor introduced
in Chapter 3 that uses the Python multiprocessing library to parallelize the transform
method. In Chapter 11, we’ll discuss multiprocessing and other parallelization techni‐
ques in greater depth.

Being Neighborly
The main drawback of the nearest-neighbor algorithm is the complexity of search as
dimensionality increases; to find the k nearest neighbors for any given vectorized
document d, we have to compute the distances from d to every other document in the
corpus. Since our example corpus contains roughly 60,000 documents, this means
we’ll need to do 60,000 distance computations, with an operation for each dimension
in our document vector. Assuming a 100,000-dimensional space, which is not
unusual for text, that means 6 billion operations per recipe search!

That means we’ll need to find some ways to speed up our search so our chatbot can
provide recommendations quickly. First, we should perform dimensionality reduc‐
tion. We are already doing some dimensionality reduction, since the TextNormalizer
we used in Chapters 4 and 5 performs some lemmatization and other “light touch”
cleaning that effectively reduces the dimensions of our data. We could further reduce
the dimensionality by using the n-gram FreqDist class from Chapter 7 as a trans‐
former to select only the tokens that constitute 10%–50% of the distribution.

Alternatively, we can pair our TfidfVectorizer with Scikit-Learn’s TruncatedSVD,
which will compress the dimensions of our vectors into fewer components (the rule
of thumb for text documents is to set n_components to at least 200). Keep in mind
that TruncatedSVD does not center the data before computing the Singular Value
Decompositions, which may result in somewhat erratic results, depending on the dis‐
tribution of the data.

We can also leverage a less computationally expensive alternative to traditional unsu‐
pervised nearest-neighbor search, such as ball tree, K-D trees, and local sensitivity
hashing. A K-D tree (sklearn.neighbors.KDTree) is an approximation of nearest
neighbor, which only computes the distances from our instance d to a subset of the
full dataset. However, K-D does not perform particularly well on sparse, high-
dimensional data because it uses the values of random features to partition the data
(recall that with a given vectorized document, most values will be zero). Local sensi‐
tivity hashing is more performant on high-dimensional data, though the current
Scikit-Learn implementation, sklearn.neighbors.NearestNeighbors, has been
found to be inefficient and is scheduled for deprecation.

Learning to Help | 235

4 Ting Liu, Andrew W. Moore, and Alexander Gray, New Algorithms for Efficient High-Dimensional Nonpara‐
metric Classification, (2006) http://bit.ly/2GQL0io

Of course, there are also approximate nearest-neighbor implemen‐
tations in other libraries, such as Annoy (a C++ library with
Python bindings), which is currently used by Spotify to generate
dynamic song recommendations.

For our chatbot, we will use a ball tree algorithm. Like K-D trees, the ball tree algo‐
rithm partitions data points so that the nearest-neighbor search can be performed on
a subset of the points (in this case, nested hyperspheres). As the dimensionality of a
nearest-neighbor search space increases, ball trees have been shown to perform fairly
well.4 Conveniently, the Scikit-Learn implementation, sklearn.neighbors.BallTree,
exposes a range of different distance metrics that can be used and compared for per‐
formance optimization.

Finally, we can accelerate our recipe recommendation search by serializing both our
trained transformer (so that we can perform the same transformations on incoming
text from users), and our tree, so that our chatbot can perform queries without hav‐
ing to rebuild the tree for every search.

First, we’ll create a BallTreeRecommender class, which is initialized with a k for the
desired number of recommendations (which will default to 3), paths to a pickled fit‐
ted transformer svd.pkl, and fitted ball tree tree.pkl. If the model has already been
fit, these paths will exist, and the load method will load them from disk for use.
Otherwise, they will be fitted and saved using Scikit-Learn’s joblib serializer in our
fit_transform method:

import pickle

from sklearn.externals import joblib
from sklearn.pipeline import Pipeline
from sklearn.neighbors import BallTree
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer

class BallTreeRecommender(BaseEstimator, TransformerMixin):
 """
 Given input terms, provide k recipe recommendations
 """
 def __init__(self, k=3, **kwargs):
 self.k = k
 self.trans_path = "svd.pkl"
 self.tree_path = "tree.pkl"
 self.transformer = False

236 | Chapter 10: Chatbots

http://bit.ly/2GQL0io

 self.tree = None
 self.load()

 def load(self):
 """
 Load a pickled transformer and tree from disk,
 if they exist.
 """
 if os.path.exists(self.trans_path):
 self.transformer = joblib.load(open(self.trans_path, 'rb'))
 self.tree = joblib.load(open(self.tree_path, 'rb'))
 else:
 self.transformer = False
 self.tree = None

 def save(self):
 """
 It takes a long time to fit, so just do it once!
 """
 joblib.dump(self.transformer, open(self.trans_path, 'wb'))
 joblib.dump(self.tree, open(self.tree_path, 'wb'))

 def fit_transform(self, documents):
 if self.transformer == False:
 self.transformer = Pipeline([
 ('norm', TextNormalizer(minimum=50, maximum=200)),
 ('transform', Pipeline([
 ('tfidf', TfidfVectorizer()),
 ('svd', TruncatedSVD(n_components=200))
])
)
])
 self.lexicon = self.transformer.fit_transform(documents)
 self.tree = BallTree(self.lexicon)
 self.save()

Once a sklearn.neighbors.BallTree model has been fitted, we can use the
tree.query method to return the distances and indices for the k closest documents.
For our BallTreeRecommender class, we will add a wrapper query method that uses
the fitted transformer to vectorize and transform incoming text and return only the
indices for the closest recipes:

 def query(self, terms):
 """
 Given input list of ingredient terms, return k closest matching recipes.
 """
 vect_doc = self.transformer.named_steps['transform'].fit_transform(terms)
 dists, inds = self.tree.query(vect_doc, k=self.k)
 return inds[0]

Learning to Help | 237

Offering Recommendations
Assuming that we have fit our BallTreeRecommender on our pickled recipe corpus
and saved the model artifacts, we can now implement the recipe recommendations in
the context of our Dialog abstract base class.

Our new class RecipeRecommender is instantiated with a pickled corpus reader and an
estimator that implements a query method, like our BallTreeRecommender. We use
the corpus.titles() method referenced in “A Domain-Specific Corpus” on page
234, which will allow us to reference the stored recipes using the blog post titles as
their names. If the recommender isn’t already fitted, the __init__ method will ensure
that it is fit and transformed:

class RecipeRecommender(Dialog):
 """
 Recipe recommender dialog
 """

 def __init__(self, recipes, recommender=BallTreeRecommender(k=3)):
 self.recipes = list(corpus.titles())
 self.recommender = recommender

 # Fit the recommender model with the corpus
 self.recommender.fit_transform(list(corpus.docs()))

Next, the parse method splits the input text string into a list and performs part-of-
speech tagging:

 def parse(self, text):
 """
 Extract ingredients from the text
 """
 return pos_tag(wordpunct_tokenize(text))

Our interpret method takes in the parsed text and determines whether it is a list of
ingredients. If so, it transforms the utterance into a collection of nouns and then
assigns a confidence score according to the percent of the input text that is nouns.
Again, we are using a naive method for computing confidence here, primarily for its
straightforwardness. In practice, it would be valuable to validate confidence scoring
mechanisms; for instance, by having reviewers evaluate performance on an annotated
test set to confirm that lower confidence scores correspond to lower quality respon‐
ses:

 def interpret(self, sents, **kwargs):
 # If feedback detected, update the model
 if 'feedback' in kwargs:
 self.recommender.update(kwargs['feedback'])

 n_nouns = sum(1 for pos, tag in sents if pos.startswith("N"))
 confidence = n_nouns/len(sents)

238 | Chapter 10: Chatbots

 terms = [tag for pos, tag in sents if pos.startswith("N")]
 return terms, confidence, kwargs

Finally, the respond method takes in the list of nouns extracted from the interpret
method as well as the confidence. If interpret has successfully extracted a sufficient
number of nouns from the input, the confidence will be high enough to generate
recommendations. We will retrieve these recommendations by calling the internal
recommender.query method with the extracted nouns:

 def respond(self, terms, confidence, **kwargs):
 """
 Returns a recommendation if the confidence is > 0.15 otherwise None.
 """
 if confidence < 0.15:
 return None

 output = [
 "Here are some recipes related to {}".format(", ".join(terms))
]
 output += [
 "- {}".format(self.recipes[idx])
 for idx in self.recommender.query(terms)
]

 return "\n".join(output)

Now we can test out our new RecipeRecommender:

if __name__ == '__main__':
 corpus = HTMLPickledCorpusReader('../food_corpus_proc')
 recommender = RecipeRecommender(corpus)
 question = "What can I make with brie, tomatoes, capers, and pancetta?"
 print(recommender.listen(question))

And here are the results:

('Here are some recipes related to brie, tomatoes, capers, pancetta
- My Trip to Jamaica - Cookies and Cups
- Turkey Bolognese | Well Plated by Erin
- Cranberry Brie Bites', 0.2857142857142857)

As discussed in Chapter 1, machine learning models benefit from feedback, which
can be used to more effectively produce results. In the context of a kitchen chatbot
producing recipe recommendations, we have the perfect opportunity to create the
possibility for natural language feedback. Consider implicit feedback: we know the
user is interested if they respond “OK, show me the Cranberry Brie Bites recipe” and
we can use this information to rank cheesy deliciousness higher in our recommenda‐
tion results by modifying a new vector component specifically related to the user’s
preference.

Learning to Help | 239

Alternatively, we could initiate the conversation with the user and explicitly ask them
what they thought about the recipe! Chatbots are an opportunity to get increasingly
detailed user feedback that simply doesn’t exist in current clickstream-based feedback
mechanisms.

Conclusion
With flexible language models trained on domain-specific corpora, coupled with
effective task-oriented frames, chatbots increasingly allow people to find information
and receive answers not only faster than via other means, but also more intuitively.
As natural language understanding and generation improve, chatting with a bot may
eventually become a better experience than chatting with a human!

In this chapter we presented a framework for conversational agents centered around
the abstract Dialog object. Dialog objects listen for human input, parse and interpret
the input, updating an internal state, then respond if required based on the updated
state. A Conversation is a collection of dialogs that allow us to create chatbots in a
composable fashion, each dialog having their own responsibility for interpreting par‐
ticular input. We presented a simple conversation that passes all input to all internal
dialogs then responds with the interpretation with the highest confidence.

The Dialog framework allows us to easily create conversational components and add
them to applications, extending them without much effort and decoupling them for
easy testing. Although we couldn’t get to it in this chapter, we have examples of how
to implement conversations inside of a command-line chat application or a Flask-
based web application in our GitHub repository for the book: https://github.com/
foxbook/atap/.

Our kitchen helper is now capable of parsing incoming text, detecting some different
types of questions, and providing measurement conversions or recipe recommenda‐
tions, depending on the user’s query. For next steps, we might extend our chatbot’s
ability to be conversational by training an n-gram language model as discussed in
Chapter 7 or a connectionist model, which we’ll investigate in Chapter 12 on a con‐
versational food corpus. In the next chapter we will explore scaling techniques that
enable us to build more performant language-aware data products, and see how they
can be applied to accelerate the text analytics workflow from corpus ingestion and
preprocessing to transformation and modeling.

240 | Chapter 10: Chatbots

https://github.com/foxbook/atap/
https://github.com/foxbook/atap/

CHAPTER 11

Scaling Text Analytics with Multiprocessing
and Spark

In the context of language-aware data products, text corpora are not static fixtures,
but instead living datasets that constantly grow and change. Take, for instance, a
question-and-answer system; in our view this is not only an application that provides
answers, but one that collects questions. This means even a relatively modest corpus
of questions could quickly grow into a deep asset, capable of training the application
to learn better responses in the future.

Unfortunately, text processing techniques are expensive both in terms of space
(memory and disk) and time (computational benchmarks). Therefore, as corpora
grow, text analysis requires increasingly more computational resources. Perhaps
you’ve even experienced how long processing takes on the corpora you’re experi‐
menting on while working through this book! The primary solution to deal with the
challenges of large and growing datasets is to employ multiple computational resour‐
ces (processors, disks, memory) to distribute the workload. When many resources
work on different parts of computation simultaneously we say that they are operating
in parallel.

Parallelism (parallel or distributed computation) has two primary forms. Task paral‐
lelism means that different, independent operations run simultaneously on the same
data. Data parallelism implies that the same operation is being applied to many differ‐
ent inputs simultaneously. Both task and data parallelism are often used to accelerate
computation from its sequential form (one operation at a time, one after the other)
with the intent that the computation becomes faster.

It is important to remember that speed is the name of the game, and that trade-offs
exist in a parallel environment. More smaller disks rather than fewer large disks
means that data can be read faster off the disk, but each disk can store less and must

241

1 Gene M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, (1967)
http://bit.ly/2GQKWza

be read separately. Computations in parallel means that the job gets done more
quickly, so long as computations aren’t waiting for others to complete. It takes time
and effort to set up resources to perform parallel computation, and if that effort
exceeds the resulting increase in speed, then parallelism is simply not worth it (see
Amdahl’s law1 for more on this topic). Another consequence of speed is the require‐
ment for approximation rather than complete computation since no single resource
has a complete view of the input.

In this chapter we will discuss two different approaches to parallelism and their trade-
offs. The first, multiprocessing, allows programs to use multicore machines and oper‐
ating system threads and is limited by the specifications of the machine it runs on,
but is far faster to set up and get going. The second, Spark, utilizes a cluster that can
generally scale to any size but requires new workflows and maintenance. The goal of
the chapter is to introduce these topics so that you can quickly engage them in your
text analysis workflows, while also giving enough background that you can make
good decisions about what technologies to employ in your particular circumstances.

Python Multiprocessing
Modern operating systems run hundreds of processes simultaneously on multicore
processors. Process execution is scheduled on the CPU and allocated its own memory
space. When a Python program is run, the operating system executes the code as a
process. Processes are independent, and in order to share information between them,
some external mechanism is required (such as writing to disk or a database, or using
a network connection).

A single process might then spawn several threads of execution. A thread is the small‐
est unit of work for a CPU scheduler and represents a sequence of instructions that
must be performed by the processor. Whereas the operating system manages pro‐
cesses, the program itself manages its own threads, and data inherent to a certain pro‐
cess can be shared among that process’s threads without any outside communication.

Modern processors contain multiple cores, pipelining, and other techniques designed
to optimize threaded execution. Programming languages such as C, Java, and Go can
take advantage of OS threads to provide concurrency and in the multicore case, par‐
allelism, from within a single program. Unfortunately, Python cannot take advantage
of multiple cores due to the Global Interpreter Lock, or GIL, which ensures that
Python bytecode is interpreted and executed in a safe manner. Therefore, whereas a
Go program might achieve a CPU utilization of 200% in a dual-core computer,
Python will only ever be able to use at most 100% of a single core.

242 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

http://bit.ly/2GQKWza

Python provides additional mechanisms for concurrency, such as
the asyncio library. Concurrency is related to parallelism, but dis‐
tinct: while parallelism describes the simultaneous execution of
computation, concurrency describes the composition of independ‐
ent execution such that computations are scheduled to maximize
the use of resources. Asynchronous programming and coroutines
are beyond the scope of the book, but are a powerful mechanism
for scaling text analysis particularly for I/O-bound tasks like data
ingestion or database operations.

There are two primary modules for parallelism within Python: threading and multi
processing. Both modules have a similar basic API (meaning that you can easily
switch between the two if needed), but the underlying parallel architecture is funda‐
mentally different.

The threading module creates Python threads. For tasks like data ingestion, which
utilize system resources besides the CPU (such as disk or network), threading is a
good choice to achieve concurrency. However, with threading, only one thread will
ever execute at a time, and no parallel execution will occur.

To achieve parallelism in Python, the multiprocessing library is required. The mul‐
tiprocessing module creates additional child processes with the same code as the par‐
ent process by either forking the parent on Unix systems (the OS snapshots the
currently running program into a new process) or by spawning on Windows (a new
Python interpreter is run with the shared code). Each process runs its own Python
interpreter and has its own GIL, each of which can utilize 100% of a CPU. Therefore,
if you have a quad-core processor and run four multiprocesses, it is possible to take
advantage of 400% of your CPU.

The multiprocessing architecture in Figure 11-1 shows the typical structure of a par‐
allel Python program. It consists of a parent (or main) program and multiple child
processes (usually one per core, though more is possible). The parent program sched‐
ules work (provides input) for the children and consumes results (gathers output).
Data is passed to and from children and the parent using the pickle module. When
the parent process terminates, the child processes generally also terminate, though
they can also become orphaned and continue running on their own.

In Figure 11-1, two different vectorization tasks are run in parallel and the main pro‐
cess waits for them all to complete before moving on to a fitting task (e.g., two models
on each of the different vectorization methods) that also runs in parallel. Forking
causes multiple child processes to be instantiated, whereas joining causes child pro‐
cesses to be ended, and control is passed back to the primary process. For instance,
during the first vectorize task, there are three processes: the main process and the
child processes A and B. When vectorization is complete, the child processes end and
are joined back into the main processes. The parallel job in Figure 11-1 has six

Python Multiprocessing | 243

parallel tasks, each completely independent except that the fit tasks must start after
the vectorization is complete.

Figure 11-1. Task parallelism architecture

In the next section, we will explore how to achieve this type of task parallelism using
the multiprocessing library.

Running Tasks in Parallel
In order to illustrate how multiprocessing can help us perform machine learning on
text, let’s consider an example where we would like to fit multiple models, cross-
validate them, and save them to disk. We will begin by writing three functions to gen‐
erate a naive Bayes model, a logistic regression, and a multilayer perceptron. Each
function in turn creates three different models, defined by Pipelines, that extract
text from a corpus located at a specified path. Each task also determines a location to
write the model to, and reports results using the logging module (more on this in a
bit):

from transformers import TextNormalizer, identity

from sklearn.pipeline import Pipeline
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neural_network import MLPClassifier

def fit_naive_bayes(path, saveto=None, cv=12):

 model = Pipeline([
 ('norm', TextNormalizer()),
 ('tfidf', TfidfVectorizer(tokenizer=identity, lowercase=False)),

244 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

 ('clf', MultinomialNB())
])

 if saveto is None:
 saveto = "naive_bayes_{}.pkl".format(time.time())

 scores, delta = train_model(path, model, saveto, cv)
 logger.info((
 "naive bayes training took {:0.2f} seconds "
 "with an average score of {:0.3f}"
).format(delta, scores.mean()))

def fit_logistic_regression(path, saveto=None, cv=12):
 model = Pipeline([
 ('norm', TextNormalizer()),
 ('tfidf', TfidfVectorizer(tokenizer=identity, lowercase=False)),
 ('clf', LogisticRegression())
])

 if saveto is None:
 saveto = "logistic_regression_{}.pkl".format(time.time())

 scores, delta = train_model(path, model, saveto, cv)
 logger.info((
 "logistic regression training took {:0.2f} seconds "
 "with an average score of {:0.3f}"
).format(delta, scores.mean()))

def fit_multilayer_perceptron(path, saveto=None, cv=12):
 model = Pipeline([
 ('norm', TextNormalizer()),
 ('tfidf', TfidfVectorizer(tokenizer=identity, lowercase=False)),
 ('clf', MLPClassifier(hidden_layer_sizes=(10,10), early_stopping=True))
])

 if saveto is None:
 saveto = "multilayer_perceptron_{}.pkl".format(time.time())

 scores, delta = train_model(path, model, saveto, cv)
 logger.info((
 "multilayer perceptron training took {:0.2f} seconds "
 "with an average score of {:0.3f}"
).format(delta, scores.mean()))

For simplicity, the pipelines for fit_naive_bayes, fit_logis
tic_regression, and fit_multilayer_perceptron share the first
two steps, using the text normalizer and vectorizer as discussed in
Chapter 4; however, you can imagine that different feature extrac‐
tion methods might be better for different models.

Python Multiprocessing | 245

While each of our functions can be modified and customized individually, each must
also share common code. This shared functionality is defined in the train_model()
function, which creates a PickledCorpusReader from the specified path. The
train_model() function uses this reader to create instances and labels, compute
scores using the cross_val_score utility from Scikit-Learn, fit the model, write it to
disk using joblib (a specialized pickle module used by Scikit-Learn), and return the
scores:

from reader import PickledCorpusReader

from sklearn.externals import joblib
from sklearn.model_selection import cross_val_score

@timeit
def train_model(path, model, saveto=None, cv=12):
 # Load the corpus data and labels for classification
 corpus = PickledCorpusReader(path)
 X = documents(corpus)
 y = labels(corpus)

 # Compute cross validation scores
 scores = cross_val_score(model, X, y, cv=cv)

 # Fit the model on entire dataset
 model.fit(X, y)

 # Write to disk if specified
 if saveto:
 joblib.dump(model, saveto)

 # Return scores as well as training time via decorator
 return scores

Note that our train_model function constructs the corpus reader
itself (rather than being passed a reader object). When considering
multiprocessing, all arguments to functions as well as return
objects must be serializable using the pickle module. If we imag‐
ine that the CorpusReader is only created in the child processes,
there is no need to pickle it and send it back and forth. Complex
objects can be difficult to pickle, so while it is possible to pass a
CorpusReader to the function, it is sometimes more efficient and
simpler to pass only simple data such as strings.

The documents() and labels() are helper functions that read the data from the cor‐
pus reader into a list in memory as follows:

246 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

def documents(corpus):
 return [
 list(corpus.docs(fileids=fileid))
 for fileid in corpus.fileids()
]

def labels(corpus):
 return [
 corpus.categories(fileids=fileid)[0]
 for fileid in corpus.fileids()
]

We can keep track of the time of execution using a @timeit wrapper, a simple debug‐
ging decorator that we will use to compare performance times:

import time
from functools import wraps

def timeit(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 start = time.time()
 result = func(*args, **kwargs)
 return result, time.time() - start
 return wrapper

Python’s logging module is generally used to coordinate complex logging across mul‐
tiple threads and modules. The logging configuration is at the top of the module,
outside of any function, so it is executed when the code is imported. In the configura‐
tion, we can specify the %(processName)s directive, which allows us to determine
which process is writing the log message. The logger is set to the module’s name so
that different modules’ log statements can also be disambiguated:

import logging

Logging configuration
logging.basicConfig(
 level=logging.INFO,
 format="%(processName)-10s %(asctime)s %(message)s",
 datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

Logging is not multiprocess-safe for writing to a single file (though
it is thread-safe). Generally speaking, writing to stdout or stderr
should be fine, but more complex solutions exist to manage multi‐
process logging in an application context. As a result, it is a good
practice to start with logging (instead of print statements) to pre‐
pare for production environment.

Python Multiprocessing | 247

At long last, we’re ready to actually execute our code in parallel, with a run_parallel
function. This function takes a path to the corpus as an argument, the argument that
is shared by all tasks. The task list is defined, then for each function in the task list, we
create an mp.Process object whose name is the name of the task, target is the callable,
and args and kwargs are specified as a tuple and a dictionary, respectively. To keep
track of the processes we append them to a procs list before starting the process.

At this point, if we did nothing, our main process would exit as the run_parallel
function is complete, which could cause our child processes to exit prematurely or to
be orphaned (i.e., never terminate). To prevent this, we loop through each of our
procs and join them, rejoining each to the main process. This will cause the main
function to block (wait) until the processes’ join method is called. By looping
through each proc, we ensure that we don’t continue until all processes have comple‐
ted, at which point we can log how much total time the process took:

def run_parallel(path):
 tasks = [
 fit_naive_bayes, fit_logistic_regression, fit_multilayer_perceptron,
]

 logger.info("beginning parallel tasks")
 start = time.time()

 procs = []
 for task in tasks:
 proc = mp.Process(name=task.__name__, target=task, args=(path,))
 procs.append(proc)
 proc.start()

 for proc in procs:
 proc.join()

 delta = time.time() - start
 logger.info("total parallel fit time: {:0.2f} seconds".format(delta))

if __name__ == '__main__':
 run_parallel("corpus/")

Running these three tasks in parallel requires a little extra thought and a bit more
work to ensure that everything is set up correctly. So what do we get out of it? In
Table 11-1, we show a comparison of task and total time averaged over ten runs.

248 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

Table 11-1. Sequential versus parallel fit times (average over 10 runs)

Task Sequential Parallel
Fit Naive Bayes 86.93 seconds 94.18 seconds

Fit Logistic Regression 91.84 seconds 100.56 seconds

Fit Multilayer Perceptron 95.16 seconds 103.40 seconds

Fit Total 273.94 seconds 103.47 seconds

We can see that each individual task takes slightly longer when running in parallel;
potentially, this extra time represents the minimal amount of overhead required to set
up and manage multiprocessing. This slight increase in time is more than made up
for in the total run time—roughly the length of the longest fit task and 2.6x times
faster than running each task sequentially. When running a significant number of
modeling tasks, multiprocessing clearly makes a difference!

While this use of multiprocessing.Process demonstrates a number of essential con‐
cepts, far more common is the use of a process pool, which we will discuss in the next
section.

It is important to keep in mind how much data is being loaded into
memory, especially in a multiprocessing context. On a single
machine, each process has to share memory. On a 16 GB machine,
loading a 4 GB corpus in four task processes will completely con‐
sume the available memory and will slow down the overall execu‐
tion. It is common to stagger task parallel execution to avoid such
issues, starting longer-running tasks first, then starting up faster
tasks. This can be done with delays using sleep or process pools as
we’ll see in the next section.

Process Pools and Queues
In the previous section we looked at how to use the multiprocessing.Process object
to run individual tasks in parallel. The Process object makes it easy to define individ‐
ual functions to run independently, closing the function when it is complete. More
advanced usage might employ subclasses of the Process object, each of which must
implement a run() method that defines their behavior.

In larger architectures this allows easier management of individual processes and
their arguments (e.g., naming them independently or managing database connections
or other per-process attributes) and is generally used for task parallel execution. With
task parallelism, each task has independent input and output (or the output of one
task may be the input to another task). In contrast, data parallelism requires the same
task to be mapped to multiple inputs. Because the input is independent, each task can
be applied in parallel. For data parallelism, the multiprocessing library provides

Python Multiprocessing | 249

simpler abstractions in the form of Pools and Queues, which we’ll explore in this
section.

A common combination of both data and task parallelism is to
have two data parallel tasks; the first maps an operation to many
data inputs and the second reduces the map operation to a set of
aggregations. This style of parallel computing has been made very
popular by Hadoop and Spark, which we will discuss in the next
section.

Larger workflows can be described as a directed acyclic graph (DAG), where a series
of parallel steps is executed with synchronization points in between. A synchroniza‐
tion point ensures that all parts of the processing have completed or caught up before
execution continues. Data is also generally exchanged at synchronization points, sent
out to parallel tasks from the main task, or retrieved by the main task.

Data parallel execution is still appropriate for the Python multiprocessing library,
however, some additional considerations are required. The first is how many pro‐
cesses to use and how. For simple operations, it is inefficient to run a process for each
input and then tear the process down (or worse, run one process per input, which
would swamp your operating system). Instead, a fixed number of processes is instan‐
tiated in a multiprocessing.Pool, each of which read input, apply the operation,
then send output until the input data is exhausted.

This leads to the second consideration: How do you safely send and receive data from
a process, ensuring no duplication or corruption? For this, you need to use a multi
processing.Queue, a data structure that is both thread- and multiprocessing-safe
because operations are synchronized with locks to ensure that only one process or
thread has access to the queue at a time. A process can safely put(item) an item on
the queue and another process can safely get() an item from the queue in a first-in,
first-out (FIFO) fashion.

A common architecture for this type of processing is shown in Figure 11-2. The Pool
forks n processes, each of which gets to work reading an input queue and sending
their data to an output queue. The main process continues by enqueuing input data
into the input queue. Generally once it’s done enqueuing the input data, the main
process also enqueues n semaphores, flags that tell the processes in the process pool
that there is no more data and they can terminate. The main process then can join the
pool waiting for all processes to complete, or begin work immediately fetching data
from the output queue for final processing.

250 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

Figure 11-2. Process pool and queues

If this all sounds like a lot of work to set up each data structure and maintain the code
for enqueuing and processing, don’t worry, the multiprocessing library provides
simple methods on the Pool object to perform this work. The methods, apply, map,
imap, and starmap each take a function and arguments and send them to the pool for
processing, blocking until returning a result. These methods also have an _async
counterpart—for example, apply_async does not block but instead returns an Asyn
chronousResult object that is filled in when the task is done, or can call callbacks on
success or error when completed. We’ll see how to use apply_async in the next
section.

Parallel Corpus Preprocessing
Adapting a corpus reader to use multiprocessing can be fairly straightforward when
you consider that each document can be independently processed for most tasks, par‐
ticularly for things like frequency analysis, vectorization, and estimation. In these
cases, all multiprocessing requires is a function whose argument is a path on disk,
and the fileids read from the corpus can be mapped to a process pool.

Probably the most common and time-consuming task applied to a corpus, however,
is preprocessing the corpus from raw text into a computable format. Preprocessing,
discussed in Chapter 3, takes a document and converts it into a standard data struc‐
ture: a list of paragraphs that are lists of sentences, which in turn are lists of (token,
part of speech) tuples. The final result of preprocessing is usually saving the docu‐
ment as a pickle, which is both usually more compact than the original document as
well as easily loaded into Python for further processing.

In Chapter 3, we created a Preprocessor class that wrapped a CorpusReader object so
that a method called process was applied to each document path in the corpus. The
main entry point to run the preprocessor was a transform method that kicked off
transforming documents from the corpus and saving them into a target directory.

Python Multiprocessing | 251

Here we will extend that class, which gives us the ability to use apply_async with a
callback that saves state. In this case we create a self.results list to store the results
as they come back from the process() method, but it is easy to adapt on_result() to
update a process or do logging.

Next, we modify the transform method to count the cores available on the local
machine using mp.cpu_count(). We then create the process pool, enqueuing the tasks
by iterating over all the fileids and applying them to the pool (which is where the
callback functionality comes into play to modify the state). Finally we close the pool
(with pool.close()), meaning that no additional tasks can be applied and the child
processes will join when done, and we wait for them to complete (with pool.join()):

class ParallelPreprocessor(Preprocessor):

 def on_result(self, result):
 self.results.append(result)

 def transform(self, tasks=None):
 [...]

 # Reset the results
 self.results = []

 # Create a multiprocessing pool
 tasks = tasks or mp.cpu_count()
 pool = mp.Pool(processes=tasks)

 # Enqueue tasks on the multiprocessing pool and join
 for fileid in self.fileids():
 pool.apply_async(
 self.process, (fileid,), callback=self.on_result
)

 # Close the pool and join
 pool.close()
 pool.join()

 return self.results

The results of multiprocessing are significant. Anecdotally, on a
subset of the Baleen corpus, which consisted of about 1.5 million
documents, serial processing took approximately 30 hours—a rate
of about 13 documents per second. Using a combination of task
and data parallelism with 16 workers, the preprocessing task was
reduced to under 2 hours.

Although this introduction to threads and multiprocessing was brief and high-level
hopefully it gives you a sense of the challenges and opportunities provided by

252 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

2 The Apache Software Foundation, Apache Spark: Lightning-fast cluster computing, (2018) http://bit.ly/
2GKR6k1

3 Benjamin Bengfort and Jenny Kim, Data Analytics with Hadoop: An Introduction for Data Scientists, (2016)
https://oreil.ly/2JHfi8V

parallelism. Many text analysis tasks can be sped up and scaled linearly simply by
using the multiprocessing module and applying already existing code. By running
multiprocessing code on a modern laptop or by using a large compute-optimized
cloud instance, it is relatively simple to take advantage of multiprocessing without the
overhead of setting up a cluster. Compared to cluster computations, programs written
with multiprocessing are also easier to reason about and manage.

Cluster Computing with Spark
Multiprocessing is a simple and effective way to take advantage of today’s multicore
commercial hardware; however, as processing jobs get larger, there is a physical and
economic limit to the number of cores available on a single machine. At some point
buying a machine with twice the number of cores becomes more expensive than buy‐
ing two machines to get the same number of processors. This simple motivation has
ushered in a new wave of particularly accessible cluster computing methodologies.

Cluster computing concerns the coordination of many individual machines connec‐
ted together by a network in a consistent and fault-tolerant manner—for example, if a
single machine fails (which becomes more likely when there are many machines), the
entire cluster does not fail. Unlike the multiprocessing context, there is no single
operating system scheduling access to resources and data. Instead, a framework is
required to manage distributed data storage, the storage and replication of data across
many nodes, and distributed computation, the coordination of computation tasks
across networked computers.

While beyond the scope of this book, distributed data storage is a
necessary preliminary step before any cluster computation can take
place if you want the cluster computation to happen reliably. Gen‐
erally, cluster filesystems like HDFS or S3 and databases like Cas‐
sandra and HBase are used to manage data on disk.

In the rest of the chapter, we will explore the use of Apache Spark as a distributed
computation framework for text analysis tasks. Our treatment serves only as a brief
introduction and does not go into the depth required of such a large topic. We leave
installation of Spark and PySpark to the reader, though detailed information can be
found in the Spark documentation.2 For a more comprehensive introduction, we rec‐
ommend Data Analytics with Hadoop (O’Reilly).3

Cluster Computing with Spark | 253

http://bit.ly/2GKR6k1
http://bit.ly/2GKR6k1
https://oreil.ly/2JHfi8V

Anatomy of a Spark Job
Spark is an execution engine for distributed programs whose primary advantage is
support for in-memory computing. Because Spark applications can be written
quickly in Java, Scala, Python, and R it has become synonymous with Big Data sci‐
ence. Several libraries built on top of Spark such as Spark SQL and DataFrames,
MLlib, and GraphX mean that data scientists used to local computing in notebooks
with these tools feel comfortable very quickly in the cluster context. Spark has
allowed applications to be developed upon datasets previously inaccessible to
machine learning due to their scope or size; a category that many text corpora fall
into. In fact, cluster computing frameworks were originally developed to handle text
data scraped from the web.

Spark can run in two modes: client mode and cluster mode. In cluster mode, a job is
submitted to the cluster, which then computes independently. In client mode, a local
client connects to the cluster in an interactive fashion; jobs are sent to the cluster and
the client waits until the job is complete and data is returned. This makes it possible
to interact with the cluster using PySpark, an interactive interpreter similar to the
Python shell, or in a Juypter notebook. For dynamic analysis, client mode is perfect
for quickly getting answers to questions on smaller datasets and corpora. For more
routine or longer running jobs, cluster mode is ideal.

In this section we will briefly explore how to compose Python programs using Spark’s
version 2.x API. The code can be run locally in PySpark or with the spark-submit
command.

With PySpark:

$ pyspark
Python 3.6.3 (v3.6.3:2c5fed86e0, Oct 3 2017, 00:32:08)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 2.3.0
 /_/

Using Python version 3.6.3 (v3.6.3:2c5fed86e0, Oct 3 2017 00:32:08)
SparkSession available as 'spark'.
>>> import hello

With spark-submit:

$ spark-submit hello.py

In practice we would use a series of flags and arguments in the above spark-submit
command to let Spark know, for example, the URL for the cluster (with --master),

254 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

the entry point for the application (with --class), the location for the driver to exe‐
cute in the deployment environment (with --deploy-mode), etc.

A connection to the cluster, called the SparkContext, is required. Generally, the
SparkContext is stored in a global variable, sc, and if you launch PySpark in either a
notebook or a terminal, the variable will immediately be available to you. If you run
Spark locally, the SparkContext is essentially what gives you access to the Spark exe‐
cution environment, whether that’s a cluster or a single machine. To create a stand‐
alone Python job, creating the SparkContext is the first step, and a general template
for Spark jobs is as follows:

from pyspark import SparkConf, SparkContext

APP_NAME = "My Spark Application"

def main(sc):
 # Define RDDs and apply operations and actions to them.

if __name__ == "__main__":
 # Configure Spark
 conf = SparkConf().setAppName(APP_NAME)
 sc = SparkContext(conf=conf)

 # Execute Main functionality
 main(sc)

Now that we have a basic template for running Spark jobs, the next step is to load
data from disk in a way that Spark can use, as we will explore in the next section.

Distributing the Corpus
Spark jobs are often described as directed acyclic graphs (DAGs), or as acyclic data
flows. This refers to a style of programming that envisions data loaded into one or
more partitions, and subsequently transformed, merged, or split until some final state
is reached. As such, Spark jobs begin with resilient distributed datasets (RDDs), collec‐
tions of data partitioned across multiple machines, which allows safe operations to be
applied in a distributed manner.

The simplest way to create RDDs is to organize data similarly to how we organized
our corpus on disk—directories with document labels, and each document as its own
file on disk. For example, to load the hobbies corpus introduced in “Loading Yellow‐
brick Datasets” on page 165, we use sc.wholeTextFiles to return an RDD of (file
name, content) pairs. The argument to this method is a path that can contain
wildcards and point to a directory of files, a single file, or compressed files. In this

Cluster Computing with Spark | 255

case, the syntax "hobbies/*/*.txt" looks for any file with a .txt extension under any
directory in the hobbies directory:

corpus = sc.wholeTextFiles("hobbies/*/*.txt")
print(corpus.take(1))

The take(1) action prints the first element in the corpus RDD, allowing you to visu‐
alize that the corpus is a collection of tuples of strings. With the hobbies corpus, the
first element shows as follows:

[('file:/hobbies/books/56d62a53c1808113ffb87f1f.txt',
"\r\n\r\nFrom \n\n to \n\n, Oscar voters can't get enough of book
adaptations. Nowhere is this trend more obvious than in the Best
Actor and Best Actress categories.\n\n\r\n\r\nYes, movies have
been based on books and true stories since the silent film era,
but this year represents a notable spike...")]

Saving data to disk and parsing it can be applied to a variety of formats including
other text formats like JSON, CSV, and XML or binary formats like Avro, Parquet,
Pickle, Protocol Buffers, etc., which can be more space-efficient. Regardless, once
preprocessing has been applied (either with Spark or as described in “Parallel Corpus
Preprocessing” on page 251), data can be stored as Python objects using the
RDD.saveAsPickleFile method (similar to how we stored pickle files for our prepro‐
cessed corpus) and then loaded using sc.pickleFile.

Efficient Storage with JSON
Storing many small files on a cluster can be complex because of data transfer issues
and namespace management, not to mention the space savings that compressing
larger files can bring. As a result, it is generally better to store data in fewer, larger
files rather than in many, smaller files.

One common storage method for concatenating data into larger files is called JSON
lines (also known as JSONL) where each line of the file is a serialized JSON object
rather than the entire file. JSON lines can be loaded and parsed into an RDD as
follows:

import json

corpus = sc.wholeTextFiles("corpus/*.jsonl")
corpus = corpus.flatMap(
 lambda d: [
 json.loads(line)
 for line in d[1].split("\n")
 if line
]
)

256 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

In this case, we map a function that returns an array of JSON objects, parsed from
each line in the document. By using flatMap, the list of lists is flattened into a single
list; therefore the RDD is a collection of Python dictionaries, each parsed from a line
in every file in the dataset.

Now that we’ve loaded our hobbies corpus into RDDs, the next step is to apply trans‐
formations and actions to them, which we will discuss more in the next section.

RDD Operations
There are two primary types of operations in a Spark program: transformations and
actions. Transformations are operations that manipulate data, creating a new RDD
from an existing one. Transformations do not immediately cause execution to occur
on the cluster, instead they are described as a series of steps applied to one or more
RDDs. Actions, on the other hand, do cause execution to occur on the cluster, caus‐
ing a result to be returned to the driver program (in client mode) or data to be writ‐
ten to disk or evaluated in some other fashion (in cluster mode).

Transformations are evaluated lazily, meaning they are applied only
when an action requires a computed result, which allows Spark to
optimize how RDDs are created and stored in memory. For users,
this can cause gotchas; at times exceptions occur and it is not obvi‐
ous which operation caused them; other times an action causes a
very long running procedure to be sent to the cluster. Our rule of
thumb is to develop in client mode on a sample of the total dataset,
then create applications that are submitted in cluster mode.

The three most common transformations—map, filter, and flatMap—each accept a
function as their primary argument. This function is applied to each element in the
RDD and each returned value is used to create the new RDD.

For instance, we can use the Python operator module to extract the hobbies subcate‐
gory for each document. We create a parse_label function that can extract the cate‐
gory name from the document’s filepath. As in the example we looked at before, the
data RDD of (filename, content) key-value pairs is created by loading whole text
files from the specified corpus path. We can then create the labels RDD by mapping
itemgetter(0), an operation that selects only filenames from each element of the
data RDD, then mapping the parse_label function to each:

import os
from operator import itemgetter

def parse_label(path):
 # Returns the name of the directory containing the file

Cluster Computing with Spark | 257

 return os.path.basename(os.path.dirname(path))

data = sc.wholeTextFiles("hobbies/*/*.txt")
labels = data.map(itemgetter(0)).map(parse_label)

Note that at this point, nothing is executed across the cluster because we’ve only
defined transformations, not actions. Let’s say we want to get the count of the docu‐
ments in each of the subcategories.

While our labels RDD is currently a collection of strings, many Spark operations
(e.g., groupByKey and reduceByKey) work only on key-value pairs. We can create a
new RDD called label_counts, which is first transformed by mapping each label into
a key-value pair, where the key is the label name, and the value is a 1. We can then
reduceByKey with the add operator, which will sum all the 1s by key, giving us the
total count of documents per category. We then use the collect action to execute the
transformations across the cluster, loading the data, creating the labels and
label_count RDD, and returning a list of (label, count), tuples, which can be
printed in the client program:

from operator import add

label_count = labels.map(lambda l: (l, 1)).reduceByKey(add)
for label, count in label_count.collect():
 print("{}: {}".format(label, count))

The result is as follows:

books: 72
cinema: 100
gaming: 128
sports: 118
cooking: 30

Other actions include reduce (which aggregates elements of the
collection), count (which returns the number of elements in the
collection), and take and first (which return the first item or the
first n items from the collection, respectively). These actions are
useful in interactive mode and debugging, but take care when
working with big RDDs—it can be easy to try to load a large data‐
set into the memory of a machine that can’t store it! More common
with big datasets is to use takeSample, which performs a random
uniform sample with or without replacement on the collection, or
to simply save the resulting dataset back to disk to be operated on
later.

As we’ve discussed in previous sections, Spark applications are defined by data flow
operations. We first load data into one or more RDDs, apply transformations to those

258 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

4 The Apache Software Foundation, MLlib: Apache Spark’s scalable machine learning library, (2018) http://bit.ly/
2GJQP0Y

RDDs, join and merge them, then apply actions and save the resulting data to disk or
aggregate data and bring it back to a driver program. This is a powerful abstraction
that allows us to think about data as a collection rather than as a distributed computa‐
tion, enabling cluster computing without requiring much effort on the analyst’s part.
More complex usage of Spark involves creating DataFrames and Graphs, a little of
which we’ll see in the next section.

NLP with Spark
Natural language processing is a special interest of the distributed systems commu‐
nity. This is not only because some of the largest datasets are text (in fact, Hadoop
was designed specifically to parse HTML documents for search engines), but also
because cutting-edge, language-aware applications require especially large corpora to
be effective. As a result, Spark’s machine learning library, MLLib,4 boasts many tools
for intelligent feature extraction and vectorization of text similar to the ones dis‐
cussed in Chapter 4, including utilities for frequency, one-hot, TF–IDF, and word2vec
encoding.

Machine learning with Spark starts with a collection of data similar to an RDD, the
SparkSQL DataFrame. Spark DataFrames are conceptually equivalent to relational
database tables or their Pandas counterparts, coordinating data by row and column as
a table. However, they add rich optimizations that take advantage of the SparkSQL
execution engine, and are quickly becoming the standard for distributed data science.

If we wanted to use SparkMLLib on our hobbies corpus, we would first transform the
corpus RDD using a SparkSession (exposed as the global variable spark in PySpark)
to create a DataFrame from the collection of tuples, identifying each column by name:

Load data from disk
corpus = sc.wholeTextFiles("hobbies/*/*.txt")

Parse the label from the text path
corpus = corpus.map(lambda d: (parse_label(d[0]), d[1]))

Create the dataframe with two columns
df = spark.createDataFrame(corpus, ["category", "text"])

The SparkSession is the entry point to SparkSQL and the Spark 2.x API. To use this
in a spark-submit application, you must first build it, similar to how we constructed
the the SparkContext in the previous section. Adapt the Spark program template by
adding the following lines of code:

Cluster Computing with Spark | 259

http://bit.ly/2GJQP0Y
http://bit.ly/2GJQP0Y

from pyspark.sql import SparkSession
from pyspark import SparkConf, SparkContext

APP_NAME = "My Spark Text Analysis"

def main(sc, spark):
 # Define DataFrames and apply ML estimators and transformers

if __name__ == "__main__":
 # Configure Spark
 conf = SparkConf().setAppName(APP_NAME)
 sc = SparkContext(conf=conf)

 # Build SparkSQL Session
 spark = SparkSession(sc)

 # Execute Main functionality
 main(sc, spark)

With our corpus structured as a Spark DataFrame, we can now get to the business of
fitting models and transforming datasets. Luckily, Spark’s API is very similar to the
Scikit-Learn API, so transitioning from Scikit-Learn or using Scikit-Learn and Spark
in conjunction is not difficult.

From Scikit-Learn to MLLib
Spark’s MLLib has been rapidly growing and includes estimators for classification,
regression, clustering, collaborative filtering, and pattern mining. Many of these
implementations are inspired by Scikit-Learn estimators, and for Scikit-Learn users,
MLLib’s API and available models will be instantly recognizable.

However, it is important to remember that Spark’s core purpose is to perform compu‐
tations on extremely large datasets in a cluster. It does so using optimizations in dis‐
tributed computation. This means that easily parallelized algorithms are likely to be
available in MLLib, while others that are not easily constructed in a parallel fashion,
may not. For example, Random Forest involves randomly splitting the dataset and fit‐
ting decision trees on subsets of the data that can easily be partitioned across
machines. Stochastic gradient descent, on the other hand, is very difficult to parallel‐
ize because it updates after each iteration. Spark chooses strategies to optimize cluster
computing, not necessarily the underlying model. For Scikit-Learn users, this may
manifest in less accurate models (due to Spark’s approximations) or fewer hyperpara‐
meter options. Other models (e.g., k-nearest neighbor) may simply be unavailable
because they cannot be effectively distributed.

260 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

Like Scikit-Learn, the Spark ML API centers around the concept of a Pipeline. Pipe
lines allow a sequence of algorithms to be constructed together so as to represent a
single model that can learn from data and produce estimations in return.

In Spark, unlike Scikit-Learn, fitting an estimator or pipeline
returns a completely new model object instead of simply modifying
the internal state of the estimator. The reason for this is that RDDs
are immutable.

Spark’s Pipeline object is composed of stages, and each of these stages must be either
a Transformer or an Estimator. Transformers convert one DataFrame into another
by reading a column from the input DataFrame, mapping it to a transform()
method, and appending a new column to the Dataframe. This means that all trans‐
formers generally need to specify the input and output column names, which must be
unique.

Estimators implement a fit() method, which learns from data and then returns a
new model. Models are themselves transformers, so estimators also define input and
output columns on the DataFrame. When a predictive model calls transform(), the
estimations or predictions are stored in the output column. This is slightly different
from the Scikit-Learn API, which has a predict() method, but the transform()
method is more appropriate in a distributed context since it is being applied to a
potentially very large dataset.

Pipeline stages must be unique to ensure compile-time checking
and an acyclic graph, which is the graph of transformations and
actions in the underlying spark execution. This means that input
Col and outputCol parameters must be unique in each stage and
that an instance cannot be used twice as different stages.

Because model storage and reuse is critical to the machine learning workflow, Spark
can also export and import models on demand. Many Transformer and Pipeline
objects have a save() method to export the model to disk and an associated load()
method to load the saved model.

Finally, Spark’s MLLib contains one additional concept: the Parameter. Parameters
are distributed data structures (objects) with self-contained documentation. Such a
data structure is required for machine learning because these variables must be
broadcast to all executors in the cluster in a safe manner. Broadcast variables are read-
only data that is pickled and available as a global in each executor in the cluster.

Some parameters may even be updated during the fit process, requiring accumula‐
tion. Accumulators are distributed data structures that can have associative and com‐

Cluster Computing with Spark | 261

mutative operations applied to them in a parallel-safe manner. Therefore, many
parameters must be retrieved or set using special Transformer methods, the most
generic of which are getParam(param), getOrDefault(param), and setParams(). It is
possible to view a parameter and its associated values with the explainParam()
method, a useful and routinely used utility in PySpark and Jupyter notebooks.

Now that we have a basic understanding of the Spark MLLib API, we can explore
some examples in detail in the next section.

Feature extraction
The first step to natural language processing with Spark is extracting features from
text, tokenizing and vectorizing utterances and documents. Spark provides a rich
toolset of feature extraction methodologies for text including indexing, stopwords
removal, and n-gram features. Spark also provides vectorization utilities for fre‐
quency, one-hot, TF–IDF, and Word2Vec encoding. All of these utilities expect input
as a list of tokens, so the first step is generally to apply tokenization.

In the following snippet, we initialize a Spark RegexTokenizer transformer with sev‐
eral parameters. The inputCol and outputCol parameters specify how transformers
will work on the given DataFrame; the regular expression, "\\w+", specifies how to
chunk text; and gaps=False ensures this pattern will match words instead of match‐
ing the space between words. When the corpus DataFrame (here we assume the cor‐
pus has already been loaded) is transformed, it will contain a new column, “tokens,”
whose data type is an array of strings, the data type required for most other feature
extraction:

from pyspark.ml.feature import RegexTokenizer

Create the RegexTokenizer
tokens = RegexTokenizer(
 inputCol="text", outputCol="tokens",
 pattern="\\w+", gaps=False, toLowercase=True)

Transform the corpus
corpus = tokens.transform(corpus)

This tokenizer will remove all punctuation and split hyphenated words. A more com‐
plex pattern such as "\\w+|\$[\\d\.]+|\\S+" will split punctuation but not remove
it and even capture money expressions such as "$8.31".

Occasionally Spark models will have defaults for inputCol and out
putCol, such as "features" or "predictions", which can lead to
errors or incorrect workflows; generally it is best to specify these
parameters specifically on each transformer and model.

262 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

Because converting documents to feature vectors involves multiple steps that need to
be coordinated together, vectorization is composed as a Pipeline. Creating local vari‐
ables for each transformer and then putting them together into a Pipeline is very
common but can make Spark scripts verbose and prone to user error. One solution to
this is to define a function that can be imported into your script that returns a Pipe
line of standard vectorization for your corpus.

The make_vectorizer function creates a Pipeline with a Tokenizer and a
HashingTF vectorizer to map tokens to their term frequencies using the hashing trick,
which computes the Murmur3 hash of the token and uses that as the numeric feature.
This function can also add stopwords removal and TF–IDF transformers to the Pipe
line on demand. In order to ensure that the DataFrame is being transformed with
unique columns, each transformer assigns a unique output column name and uses
stages[-1].getOutputCol() to determine the input column name from the stage
before:

def make_vectorizer(stopwords=True, tfidf=True, n_features=5000):
 # Creates a vectorization pipeline that starts with tokenization
 stages = [
 Tokenizer(inputCol="text", outputCol="tokens"),
]

 # Append stopwords to the pipeline if requested
 if stopwords:
 stages.append(
 StopWordsRemover(
 caseSensitive=False, outputCol="filtered_tokens",
 inputCol=stages[-1].getOutputCol(),
),
)

 # Create the Hashing term frequency vectorizer
 stages.append(
 HashingTF(
 numFeatures=n_features,
 inputCol=stages[-1].getOutputCol(),
 outputCol="frequency"
)
)

 # Append the IDF vectorizer if requested
 if tfidf:
 stages.append(
 IDF(inputCol=stages[-1].getOutputCol(), outputCol="tfidf")
)

 # Return the completed pipeline
 return Pipeline(stages=stages)

Cluster Computing with Spark | 263

Because of the HashingTF and IDF models, this vectorizer needs to be fit on input
data; make_vectorizer().fit(corpus) ensures that vectors will be a model that is
able to perform transformations on the data:

vectors = make_vectorizer().fit(corpus)
corpus = vectors.transform(corpus)
corpus[['label', 'tokens', 'tfidf']].show(5)

The first five rows of the result are as follows:

+-----+--------------------+--------------------+
|label| tokens| tfidf|
+-----+--------------------+--------------------+
books	[, name, :, ian, ...	(5000,[15,24,40,4...
books	[, written, by, k...	(5000,[8,177,282,...
books	[, last, night,as...	(5000,[3,9,13,27,...
books	[, a, sophisticat...	(5000,[26,119,154...
books	[, pools, are, so...	(5000,[384,569,60...
+------+--------------------+--------------------+
only showing top 5 rows

Once the corpus is transformed it will contain six columns, the two original columns,
and the four columns representing each step in the transformation process; we can
select three for inspection and debugging using the DataFrame API.

Now that our features have been extracted, we can begin to create models and engage
the model selection triple, first with clustering and then with classification.

Text clustering with MLLib
At the time of this writing, Spark implements four clustering techniques that are well
suited to topic modeling: k-means and bisecting k-means, Latent Dirichlet Allocation
(LDA), and Gaussian mixture models (GMM). In this section, we will demonstrate a
clustering pipeline that first uses Word2Vec to transform the bag-of-words into a
fixed-length vector, and then BisectingKMeans to generate clusters of similar docu‐
ments.

Bisecting k-means is a top-down approach to hierarchical clustering that uses
k-means to recursively bisect clusters (e.g., k-means is applied to each cluster in the
hierarchy with k=2). After the cluster is bisected, the split with the highest overall
similarity is reserved, while the remaining data continues to be bisected until the
desired number of clusters is reached. This method converges quickly and because it
employs several iterations of k=2 it is generally faster than k-means with a larger k,
but it will create very different clusters than the base k-means algorithm alone.

In the code snippet, we create an initial Pipeline that defines our input and output
columns as well as the parameters for our transformers, such as the fixed size of the
word vectors and the k for k-means. When we call fit on our data, our Pipeline will
produce a model, which can then in turn be used to transform the corpus:

264 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

from tabulate import tabulate
from pyspark.ml import Pipeline
from pyspark.ml.clustering import BisectingKMeans
from pyspark.ml.feature import Word2Vec, Tokenizer

Create the vector/cluster pipeline
pipeline = Pipeline(stages=[
 Tokenizer(inputCol="text", outputCol="tokens"),
 Word2Vec(vectorSize=7, minCount=0, inputCol="tokens", outputCol="vecs"),
 BisectingKMeans(k=10, featuresCol="vecs", maxIter=10),
])

Fit the model
model = pipeline.fit(corpus)
corpus = model.transform(corpus)

To evaluate the success of our cluster, we must first retrieve the BisectingKMeans and
Word2Vec objects and store them in local variables: bkm by accessing the last stage of
the model (not the Pipeline) and wvec the penultimate stage. We use the computeCost
method to compute the sum of square distances to the assigned center of each docu‐
ment (here, again, we assume corpus documents have already been loaded). The
smaller the cost, the tighter and more defined the clusters we have. We can also com‐
pute the size in number of documents each cluster is composed of:

Retrieve stages
bkm = model.stages[-1]
wvec = model.stages[-2]

Evaluate clustering
cost = bkm.computeCost(corpus)
sizes = bkm.summary.clusterSizes

To get a text representation of each center, we first must loop through every cluster
index (ci) and cluster centroid (c) by enumerating the cluster centers. For each cen‐
ter we can find the seven closest synonyms, the word vectors that are closest to the
center, then construct a table that displays the center index, the size of the cluster, and
the associated synonyms. We can then pretty-print the table with the tabulate
library:

Get the text representation of each cluster
table = [["Cluster", "Size", "Terms"]]
for ci, c in enumerate(bkm.clusterCenters()):
 ct = wvec.findSynonyms(c, 7)
 size = sizes[ci]
 terms = " ".join([row.word for row in ct.take(7)])
 table.append([ci, size, terms])

Print the results
print(tabulate(table))
print("Sum of square distance to center: {:0.3f}".format(cost))

Cluster Computing with Spark | 265

With the following results:

Cluster Size Terms
------- ---- ---
 0 81 the"soros caption,"bye markus henkes clarity. presentation,elon
 1 3 novak hiatt veered monopolists,then,would clarity. cilantro.
 2 2 publics. shipmatrix. shiri flickr groupon,meanwhile,has sleek!
 3 2 barrymore 8,2016 tips? muck glorifies tags between,earning
 4 265 getting sander countervailing officers,ohio,then voter. dykstra
 5 550 back peyton's condescending embryos racist,any voter. nebraska
 6 248 maxx,and davan think'i smile,i 2014,psychologists thriving.
 7 431 ethnography akhtar problem,and studies,taken monica,california.
 8 453 instilled wife! pnas,the ideology,with prowess,pride
 9 503 products,whereas attacking grouper sets,facebook flushing,
Sum of square distance to center: 39.750

We can see that some of our clusters appear to be very large and diffuse, so our next
steps would be to perform evaluations as discussed in Chapters 6 and 8 to modify k
until a suitable model is achieved.

Text classification with MLLib
Spark’s classification library currently includes models for logistic regression, decision
trees, random forest, gradient boosting, multilayer perceptrons, and SVMs. These
models are well suited for text analysis and commonly used for text classification.
Classification will work similarly to clustering, but with the added steps of having to
index labels for each document, as well as applying an evaluation step that computes
the accuracy of the model. Because the evaluation should be made on test data that
the model was not trained on, we need to split our corpus into train and test splits.

After the vectorization step, we’ll encode the document labels using StringIndexer,
which will convert our DataFrame column of strings into a column of indices in [0,
len(column)], ordered by frequency (e.g., the most common label will receive index
0). We can then split the DataFrame into random splits, the training data composed
of 80% of the dataset and the test data composed of 20%:

from pyspark.ml.feature import StringIndexer

Create the vectorizer
vector = make_vectorizer().fit(corpus)

Index the labels of the classification
labelIndex = StringIndexer(inputCol="label", outputCol="indexedLabel")
labelIndex = labelIndex.fit(corpus)

Split the data into training and test sets
training, test = corpus.randomSplit([0.8, 0.2])

266 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

In the preceding snippet, both the vector and labelIndex trans‐
formers were fit on all of the data before the split to ensure that all
indices and terms are encoded. This may or may not be the right
strategy for real models depending on your expectations of real
data.

We can now create a Pipeline to construct a label and document encoding process
preliminary to a LogisticRegression model:

from pyspark.ml.classification import LogisticRegression

model = Pipeline(stages=[
 vector, labelIndex, clf
]).fit(training)

Make predictions
predictions = model.transform(test)
predictions.select("prediction", "indexedLabel", "tfidf").show(5)

If we wanted to evaluate the model, we would next use Spark’s classification evalua‐
tion utilities. For example:

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

evaluator = MulticlassClassificationEvaluator(
 labelCol="indexedLabel",
 predictionCol="prediction",
 metricName="f1"
)

score = evaluator.evaluate(predictions)
print("F1 Score: {:0.3f}".format(score))

Spark has other utilities for cross-validation and model selection, though these utilit‐
ies are aware of the fact that models are trained on large datasets. Generally speaking,
splitting large corpora and training models multiple times to get an aggregate score
takes a long time on the corpus, so cacheing and active training are important parts
of the modeling process to minimize duplicated workload. Understanding the trade-
offs when using a distributed approach to machine learning brings us to our next
topic—employing local computations across the global dataset.

Local fit, global evaluation

If you have been running the Spark code snippets locally using PySpark or spark-
submit you may have noticed that Spark doesn’t seem blazingly fast as advertised;
indeed it was probably slower than the equivalent modeling with Scikit-Learn on
your local machine. Spark has a large overhead, creating processes that monitor jobs
and perform a lot of communication between processes to synchronize them and

Cluster Computing with Spark | 267

ensure fault tolerance; the speed becomes clear when datasets are much larger than
those that can be stored on a single computer.

One way to deal with this is to perform the data preprocessing and vectorization in
parallel on the cluster, take a sample of the data, fit it locally, and then evaluate it
globally across the entire dataset. Although this reduces the advantage of training
models on large datasets, it is often the only way to produce narrow or specialized
models on a cluster. This technique can be used to produce different models for dif‐
ferent parts of the dataset or to rapidly iterate in the testing process.

First, we vectorize our corpus, then take a sample. By ensuring the vectorization
occurs on the cluster, we can be assured that the Scikit-Learn model we employ will
not be dependent on terms or other states that may be excluded by the sampling pro‐
cess. The sample is conducted without replacement (the first False argument) and
gathers 10% of the data (the 0.1 argument). Be careful when choosing a size of the
data to sample; you could easily bring in too much data into memory even with only
10% of the corpus! The collect() action executes the sampling code, then brings the
dataset into memory on the local machine as a list. We can then construct X and y
from the returned data and fit our model:

Vectorize the corpus on the cluster
vector = make_vectorizer().fit(corpus)
corpus = vector.transform(corpus)

Get the sample from the dataset
sample = corpus.sample(False, 0.1).collect()
X = [row['tfidf'] for row in sample]
y = [row['label'] for row in sample]

Train a Scikit-Learn Model
clf = AdaBoostClassifier()
clf.fit(X, y)

To evaluate our model we will broadcast it to the cluster, and to compute accuracy,
we will use one accumulator to compute the number of predictions and another to
compute the incorrect ones:

Broadcast the Scikit-Learn Model to the cluster
clf = sc.broadcast(clf)

Create accumulators for correct vs incorrect
correct = sc.accumulator(0)
incorrect = sc.accumulator(1)

To use these variables in parallel execution we need a way to reference them into the
DataFrame operations. In Spark, we do this by sending a closure. One common strat‐
egy to do this is to define a function that returns a closure on demand. We can define
an accuracy closure that applies the predict method of the classifier to the data, then
increments the correct or incorrect accumulators by comparing the predicted answer

268 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

with the actual label. To create this closure we define the make_accuracy_closure
function as follows:

def make_accuracy_closure(model, correct, incorrect):
 # model should be a broadcast variable
 # correct and incorrect should be accumulators
 def inner(rows):
 X = []
 y = []

 for row in rows:
 X.append(row['tfidf'])
 y.append(row['label'])

 yp = model.value.predict(X)
 for yi, ypi in zip(y, yp):
 if yi == ypi:
 correct.add(1)
 else:
 incorrect.add(1)
 return inner

We can then use foreachPartition action on the corpus DataFrame to have each
executor send their portion of the DataFrame into the accuracy closure, which
updates our accumulators. Once complete we can compute the accuracy of the model
against the global dataset:

Create the accuracy closure
accuracy = make_accuracy_closure(clf, incorrect, correct)

Compute the number incorrect and correct
corpus.foreachPartition(accuracy)

accuracy = float(correct.value) / float(correct.value + incorrect.value)
print("Global accuracy of model was {}".format(accuracy))

The strategy of fitting locally and evaluating globally actually allows developers to
easily construct and evaluate multiple models in parallel and can improve the speed
of the Spark workflow, particularly during the investigation and experiment phases.
Multiple models can be more easily cross-validated on medium-sized datasets, and
models with partial distributed implementations (or no implementation at all) can be
more fully investigated.

This is a generalization of the “last mile computing” strategy that is typical with big
data systems. Spark allows you to access huge amounts of data in a timely fashion, but
to make use of that data, cluster operations are generally about filtering, aggregating,
or summarizing data into context, bringing it into a form that can fit into the mem‐
ory of a local machine (using cloud computing resources, this can be dozens or even
hundreds of gigabytes). This is one of the reasons that the interactive model of Spark

Cluster Computing with Spark | 269

execution is so favored by data scientists; it easily allows a combination of local and
cluster computing as demonstrated in this section.

Conclusion
One of the best things about conducting text analysis in the information age is how
easy it is to create virtuous cycles of applications that use text analysis and then gener‐
ate more text data from human responses. This means that machine learning corpora
quickly grow beyond what is practical to compute on in a single process or even a
single machine. As the amount of time to conduct an analysis increases, the produc‐
tivity of iterative or experimental workflows decreases—some method of scaling must
be employed to maintain momentum.

The multiprocessing module is the first step to scaling analytics. In this case, code
already employed for analysis simply has to be adapted or included in a multiprocess‐
ing context. The multiprocessing library takes advantage of multicore processors and
the large amounts of memory available on modern machines to execute code simulta‐
neously. Data is still stored locally, but with a beefy enough machine, huge amounts
of work can be shortened to manageable chunks.

When the size of the data grows large enough to no longer fit on a single machine,
cluster computing methodologies must be used. Spark provides an execution frame‐
work that allows for interactive computing between a local computer running
PySpark in a Jupyter notebook and the cluster that runs many executors that operate
on a partition of the data. This interactivity combines the best of both worlds of
sequential and parallel computing algorithms. While working with Spark does
require a change in the code and programming context and may even necessitate the
choice of other machine learning libraries, the advantage is that large datasets that
would otherwise be unavailable to text analytics techniques can become a rich fabric
for novel applications.

The key to working with distributed computation is making sure the trade-offs are
well understood. Understanding whether an operation is compute or I/O bound can
save many headaches diagnosing why jobs are taking longer than they should or
using way too many resources (and help us balance task and data parallelism). More‐
over, parallel execution takes additional overhead, which must be worth the cost;
understanding this helps us make decisions that enhance experimental development
without getting in the way. Finally, recognizing how algorithms are approximated in a
distributed context is important to building meaningful models and interpreting the
results.

270 | Chapter 11: Scaling Text Analytics with Multiprocessing and Spark

Spark is the first in a wave of modern technologies that are allowing us to handle
more and more data to create meaningful models. In the next chapter we will explore
distributed techniques for training so-called deep models—neural networks with
multiple hidden layers.

Conclusion | 271

CHAPTER 12

Deep Learning and Beyond

In this book, we have made an effort to emphasize techniques and tools that are suffi‐
ciently robust to support practical applications. At times this has meant skimming
over promising though less mature libraries and those intended primarily for individ‐
ual research. Instead, we have favored tools that scale easily from ad hoc analyses on a
single machine to large clusters managing interactions for many hundreds of thou‐
sands of users. In the last chapter, we explored several such tools, from the Python
multiprocessing library to the powerhouse Spark, which enable us to run many mod‐
els in parallel, and do so rapidly enough to engage large-scale production applica‐
tions. In this chapter we will discuss an equally significant advancement, neural
networks, which are quickly becoming the new state of the art in natural language
processing.

Ironically, neural networks are in some sense one of the most “old school” technolo‐
gies covered in this book, with computational roots dating back to work done nearly
70 years ago. For most of this history, neural networks could not have been consid‐
ered a practical machine learning method. However, this has changed rapidly over
the last two decades thanks to three main advances: first, the dramatic increases in
compute power made possible with GPUs and distributed computing in the early
2000s; then, the optimizations in learning rates over the last decade, which we’ll dis‐
cuss later in the chapter; and finally, with the open source Python libraries like
PyTorch, TensorFlow, and Keras that have been made available in the last few years.

A full discussion of these advances is well beyond the scope of this book, but here we
will provide a brief overview of neural networks as they relate to the machine learn‐
ing model families explored in Chapters 5 through 9. We will work through a case
study of a sentiment classification problem particularly well-suited to the neural net‐
work model family, and finally, discuss present and future trajectories in this area.

273

Applied Neural Networks
As application developers, we tend to be cautiously optimistic about the kinds of
bleeding-edge technologies that sound good on paper but can lead to headaches when
it comes to operationalization. For this reason, we feel compelled to begin this chap‐
ter with a justification of why we’ve chosen to end this book with a chapter on neural
networks.

The current trade-offs between traditional models and neural networks concern two
factors: model complexity and speed. Because neural networks tend to take longer to
train, they can impede rapid iteration through the workflow discussed in Chapter 5.
Neural networks are also typically more complex than traditional models, meaning
that their hyperparameters are more difficult to tune and modeling errors are more
challenging to diagnose.

However, neural networks are not only increasingly practical, they also promise non‐
trivial performance gains over traditional models. This is because unlike traditional
models, which face performance plateaus even as more data become available, neural
models continue to improve.

Neural Language Models
In Chapter 7, we introduced the notion that a language model could be learned from
a sufficiently large and domain-specific corpus using a probabilistic model. This is
known as a symbolic model of language. In this chapter we consider a different
approach: the neural or connectionist language model.

The connectionist model of language argues that the units of language interact with
each other in meaningful ways that are not necessarily encoded by sequential context.
For instance, the contextual relationship of words may be sequential, but may also be
separated by other phrases, as we see in Figure 12-1. In the first example, a successful
symbolic model would assign high probabilities to “heard,” “listened to,” and “pur‐
chased.” However, in the second example, it would be difficult for our model to pre‐
dict the next word, which depends on knowledge that “Yankee Hotel Foxtrot,”
mentioned in the earlier part of the sentence, is an album.

Figure 12-1. Nonsequential context

274 | Chapter 12: Deep Learning and Beyond

Since many interactions are not directly interpretable, some intermediary representa‐
tion must be used to describe the connections, and connectionist models tend to use
artificial neural networks (ANNs) or Bayesian networks to learn the underlying rela‐
tionships.

Traditional symbolic models require significant engineering effort to manage n-gram
smoothing and backoff, and can suffer from the requisite RAM needed to hold so
many n-grams in memory. Connectionist models, on the other hand, approach the
problem by scaling model complexity. In fact, the primary benefit of a neural model
approach is to avoid lengthy feature engineering because neural models create infin‐
itely smoothed functions from large arbitrary inputs.

In the next few sections, we will discuss some of the types of neural networks, unpack
their components, and demonstrate how a connectionist model might be imple‐
mented in an applied context—in this case, to perform sentiment analysis.

Artificial Neural Networks
Neural networks comprise a very broad and variegated family of models, but are
more or less all evolved from the perceptron, a linear classification machine devel‐
oped in the late 1950s by Frank Rosenblatt at Cornell and modeled on the learning
behavior of the human brain.

At the core of the neural network model family are several components, as shown in
Figure 12-2—an input layer, a vectorized first representation of the data, a hidden
layer consisting of neurons and synapses, and an output layer containing the predicted
values. Within the hidden layer, synapses are responsible for transmitting signals
between the neurons, which rely on a nonlinear activation function to buffer those
incoming signals. The synapses apply weights to incoming values, and the activation
function determines if the weighted inputs are sufficiently high to activate the neuron
and pass the values on to the next layer of the network.

In a feedforward network, signals travel from the input to the output layer in a single
direction. In more complex architectures like recurrent and recursive networks, signal
buffering can combine or recur between the nodes within a layer.

There are many variations on activation functions, but generally it
makes sense to use a nonlinear one, which allows the neural net‐
work to model more complex decision spaces. Sigmoidal functions
are very common, though they can make gradient descent slow
when the slope is almost zero. For this reason, rectified linear units
or “ReLUs,” which output the sum of the weighted inputs (or zero if
that sum is negative), have become increasingly popular.

Neural Language Models | 275

1 Condé Nast, Pitchfork: The Most Trusted Voice In Music, (2018) http://bit.ly/2GNLO7F
2 Larry Fitzmaurice, Review of Coldplay’s Ghost Stories, (2014) http://bit.ly/2GQL1ms

Figure 12-2. Neural model components

Backpropagation is the process by which error, computed at the final layer of the net‐
work, is communicated back through the layers to incrementally adjust the synapse
weights and improve accuracy in the next training iteration. After each iteration, the
model calculates the gradient of the loss function to determine the direction in which
to adjust the weights.

Training a multilayer perceptron
Multilayer perceptrons are one of the simplest forms of feedforward artificial neural
networks. In this section, we will train a multilayer perceptron using the Scikit-Learn
library.

Our input data is a series of 18,000 reviews of albums from the website Pitch‐
fork.com1; each review contains the text of the review, in which the music reviewer
discusses the relative merits of the album and the band, as well as a floating-point
numeric score between 0 and 10. An excerpt2 can be seen in Figure 12-3.

We would like to predict the relative positivity or negativity of a review given the text.
Scikit-Learn’s neural net module, sklearn.neural_network, enables us to train a
multilayer perceptron to perform classification or regression using the now familiar
fit and predict methods. We’ll attempt both a regression to predict the actual
numeric score of an album and a classification to predict if the album is “terrible,”
“okay,” “good,” or “amazing.”

276 | Chapter 12: Deep Learning and Beyond

http://bit.ly/2GNLO7F
http://bit.ly/2GQL1ms

Figure 12-3. Sample Pitchfork review

First, we create a function, documents, to retrieve the pickled, part-of-speech tagged
documents from our corpus reader object, a continuous function to get the original
numeric ratings of each album, and a categorical function that uses NumPy’s
digitize method to bin the ratings into our four categories:

import numpy as np

def documents(corpus):
 return list(corpus.reviews())

def continuous(corpus):
 return list(corpus.scores())

def make_categorical(corpus):
 """
 terrible : 0.0 < y <= 3.0
 okay : 3.0 < y <= 5.0
 great : 5.0 < y <= 7.0
 amazing : 7.0 < y <= 10.1
 """
 return np.digitize(continuous(corpus), [0.0, 3.0, 5.0, 7.0, 10.1])

Next, we add a train_model function, which will take as input a path to the pickled
corpus, a Scikit-Learn estimator, and keyword arguments for whether the labels are
continuous, an optional path for storing the fitted model, and the number of folds to
use in cross-validation.

Our function instantiates a corpus reader, calls the documents function as well as
either continuous or make_categorical to get the input values X and the target val‐
ues y. We then calculate the cross-validated scores, fit and store the model using the
joblib utility from Scikit-Learn, and return the scores:

Neural Language Models | 277

from sklearn.externals import joblib
from sklearn.model_selection import cross_val_score

def train_model(path, model, continuous=True, saveto=None, cv=12):
 """
 Trains model from corpus at specified path; constructing cross-validation
 scores using the cv parameter, then fitting the model on the full data.
 Returns the scores.
 """
 # Load the corpus data and labels for classification
 corpus = PickledReviewsReader(path)
 X = documents(corpus)
 if continuous:
 y = continuous(corpus)
 scoring = 'r2_score'
 else:
 y = make_categorical(corpus)
 scoring = 'f1_score'

 # Compute cross-validation scores
 scores = cross_val_score(model, X, y, cv=cv, scoring=scoring)

 # Write to disk if specified
 if saveto:
 joblib.dump(model, saveto)

 # Fit the model on entire dataset
 model.fit(X, y)

 # Return scores
 return scores

As with other Scikit-Learn estimators, MLPRegressor and MLP
Classifier expect NumPy arrays of floating-point values, and
while arrays can be dense or sparse, it’s best to scale input vectors
using one-hot encoding or a standardized frequency encoding.

To create our models for training, we will build two pipelines to streamline the text
normalization, vectorization, and modeling steps:

if __name__ == '__main__':
 from transformer import TextNormalizer
 from reader import PickledReviewsReader

 from sklearn.pipeline import Pipeline
 from sklearn.neural_network import MLPRegressor, MLPClassifier
 from sklearn.feature_extraction.text import TfidfVectorizer

 # Path to postpreprocessed, part-of-speech tagged review corpus
 cpath = '../review_corpus_proc'

278 | Chapter 12: Deep Learning and Beyond

 regressor = Pipeline([
 ('norm', TextNormalizer()),
 ('tfidf', TfidfVectorizer()),
 ('ann', MLPRegressor(hidden_layer_sizes=[500,150], verbose=True))
])
 regression_scores = train_model(cpath, regressor, continuous=True)

 classifier = Pipeline([
 ('norm', TextNormalizer()),
 ('tfidf', TfidfVectorizer()),
 ('ann', MLPClassifier(hidden_layer_sizes=[500,150], verbose=True))
])
 classifer_scores = train_model(cpath, classifier, continuous=False)

Similar to choosing k for k-means clustering, selecting the best
number and size of hidden layers in an initial neural network pro‐
totype is more art than science. The more layers and more nodes
per layer, the more complex our model will be, and more complex
models require more training data. A good rule of thumb is to start
with a simple model (our initial layer should not contain more
nodes than we have instances, and should consist of no more than
two layers), and iteratively add complexity while using k-fold cross-
validation to detect overfit.

Scikit-Learn provides many features for tuning neural networks and can be custom‐
ized. For example, by default, both MLPRegressor and MLPClassifier use the ReLU
activation function, which can be specified with the activation param, and stochas‐
tic gradient descent to minimize the cost function, which can be specified with the
solver param:

Mean score for MLPRegressor: 0.27290534221341
Mean score for MLPClassifier: 0.7115215174722

The MLPRegressor is fairly weak, showing a very low goodness of fit to the data as
described by the R2 score. Regression benefits from reducing the number of dimen‐
sions particularly with respect to the number of instances. We can reason about this
through the lens of the curse of dimensionality; the Pitchfork reviews are on average
about 1,000 words in length, and each word adds another dimension to our decision
space. Since our corpus consists of only about 18,000 reviews total, our MLPRegressor
simply doesn’t have enough instances to predict scores to the degree of float-point
numeric precision.

However, we can see that the MLPClassifier has much better results, and is probably
worth additional tuning. To improve our MLPClassifier’s performance, we can
experiment with adding and removing complexity. We can add complexity by adding
more layers and neurons to hidden_layer_sizes. We can also increase the max_iter

Neural Language Models | 279

param to increase the number of training epochs and give our model more time to
learn from backpropagation.

We can also decrease the complexity of the model by removing layers, decreasing the
number of neurons, or adding a regularization term to the loss function using the
alpha param, which, similar to a sklearn.linear_model.RidgeRegression, will arti‐
ficially shrink the parameters to help prevent overfitting.

Using the Scikit-Learn API to construct neural models is very convenient for simple
models. However, as we will see in the next section, libraries like TensorFlow provide
much more in the way of flexibility and tuning of the model architecture, as well as
speed, leveraging GPUs to scale for higher performance on larger datasets.

Deep Learning Architectures
Frequently grouped together by the term deep learning, models such as recurrent
neural networks (RNNs), long short-term memory networks (LSTMs), recursive neu‐
ral tensor networks (RNTNs), convolutional neural networks (CNNs or ConvNets),
and generative adversarial networks (GANs) have become increasingly popular in
recent years.

While people generally define deep neural networks as neural networks with multiple
hidden layers, the term “deep learning” is really not meaningfully distinct from
modern ANNs. However, different architectures do implement unique functionalities
within the layers that enable them to model very complex data.

Convolutional neural networks (CNNs), for instance, combine multilayer percep‐
trons with a convolutional layer that iteratively builds a map to extract important fea‐
tures, as well as a pooling stage that reduces the dimensionality of the features but
preserves their most informative components. CNNs are highly effective for model‐
ing image data and performing tasks like classification and summarization.

For modeling sequential language data, variations on recurrent neural nets (RNNs)
like long short-term memory (LSTM) networks have been shown to be particularly
effective. The architecture of an RNN allows the model to maintain the order of
words in the sequence and to keep track of long-term dependencies. LSTMs, for
example, implement gated cells that allow for functions like “memory” and “forget‐
ting.” Variants of this model are very popular for machine translation and natural lan‐
guage generation tasks.

TensorFlow: A framework for deep learning
TensorFlow is a distributed computation engine that exposes a framework for deep
learning. Developed by Google for the purpose of parallelizing models across not
only GPUs but also networks of many machines, it was made open source in Novem‐

280 | Chapter 12: Deep Learning and Beyond

ber 2015 and has since become one of the most popular publicly available deep learn‐
ing libraries.

TensorFlow presumes the user has fairly substantial familiarity with neural network
architectures, and is geared toward building data flow graphs with a significant
degree of customization. In the TensorFlow workflow, we begin by specifying each
layer and all hyperparameters, then compile those steps into a static graph, and then
run a session to begin the training. While this makes deep learning models easier to
control and optimize as their complexity increases, it also makes rapid prototyping
much more challenging.

In essence, deep learning models are just chains of functions, which means that many
deep learning libraries tend to have a functional or verbose, declarative style. As such,
an ecosystem of other libraries, including Keras, TF-slim, TFLearn, and SkFlow, have
quickly evolved to provide a more abstract, object-oriented interface for deep learn‐
ing. In the next section, we will demonstrate how to use TensorFlow through the
Keras API.

Keras: An API for deep learning
While it is often grouped together with deep learning frameworks like TensorFlow,
Caffe, Theano, and PyTorch, Keras exposes a general API spec for deep learning. The
original Keras interface was written for a Theano backend, but following Tensor‐
Flow’s open sourcing and dramatic popularity, the Keras API quickly became the
default for many TensorFlow users, and was pulled into the TensorFlow core in early
2017.

In Keras, everything is an object, which makes it a particularly convenient tool for
prototyping. In order to roughly recreate the multilayer perceptron classifier we used
in the previous section, we can create a build_network function that instantiates a
Sequential Keras model, adds two Dense (meaning fully connected) hidden layers,
the first with 500 nodes and the second with 150, and both of which employ rectified
linear units for the activation parameter. Note that in our first hidden layer, we are
required to pass in a tuple, input_shape for the shape of the input layer.

In the output layer we must specify a function to condense the dimensions of the pre‐
vious layer into the same space as the number of classes in our classification problem.
In this case we use softmax, a popular choice for natural language processing because
it represents a categorical distribution that aligns with the tokens of our corpus. The
build_network function then calls the compile method, specifying the desired loss
and optimizer functions for gradient descent, and finally returns the compiled net‐
work:

Neural Language Models | 281

from keras.layers import Dense
from keras.models import Sequential

N_FEATURES = 5000
N_CLASSES = 4

def build_network():
 """
 Create a function that returns a compiled neural network
 """
 nn = Sequential()
 nn.add(Dense(500, activation='relu', input_shape=(N_FEATURES,)))
 nn.add(Dense(150, activation='relu'))
 nn.add(Dense(N_CLASSES, activation='softmax'))
 nn.compile(
 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']
)
 return nn

The keras.wrappers.scikit_learn module exposes KerasClassifier and Keras
Regressor, two wrappers that implement the Scikit-Learn interface. This means that
we can incorporate Sequential Keras models as part of a Scikit-Learn Pipeline or
Gridsearch.

To use the KerasClassifier in our workflow, we begin our pipeline as in the previ‐
ous section, with a TextNormalizer (as described in “Creating a custom text normal‐
ization transformer” on page 72) and a Scikit-Learn TfidfVectorizer. We use the
vectorizer’s max_features parameter to pass in the N_FEATURES global variable, which
will ensure our vectors have the same dimensionality as our compiled neural net‐
work’s input_shape.

For those of us spoiled by Scikit-Learn estimators, which are flush
with sensible default hyperparameters, building deep learning
models can be a bit frustrating at first. Keras and TensorFlow
assume very little about the size and shape of your incoming data,
and will not intuit the hyperparameters of the decision space. Nev‐
ertheless, learning to construct TensorFlow models via the Keras
API enables us not only to build custom models, but also to train
them in a fraction of the time of a sklearn.neural_network
model.

Finally, we add the KerasClassifier to the pipeline, passing in the network’s build
function, desired number of epochs, and an optional batch size. Note that we must
pass build_network in as a function, not as an instance of the compiled network:

282 | Chapter 12: Deep Learning and Beyond

if __name__ == '__main__':
 from sklearn.pipeline import Pipeline
 from transformer import TextNormalizer
 from keras.wrappers.scikit_learn import KerasClassifier
 from sklearn.feature_extraction.text import TfidfVectorizer

 pipeline = Pipeline([
 ('norm', TextNormalizer()),
 ('vect', TfidfVectorizer(max_features=N_FEATURES)),
 ('nn', KerasClassifier(build_fn=build_network,
 epochs=200,
 batch_size=128))
])

We can now run and evaluate our pipeline using a slightly modified version of our
train_model function. Just as in the previous section, this function will instantiate a
corpus reader, call documents and make_categorical get the input and target values
X and y, compute cross-validated scores, fit and store the model, and return the
scores.

Unfortunately, at the time of this writing, pipeline persistence for a Scikit-Learn
wrapped Keras model is somewhat challenging, since the neural network component
must be saved using the Keras-specific save method as a hierarchical data format
(.h5) file. As a workaround, we use Pipeline indexing to store first the trained neural
network and then the remainder of the fitted pipeline using joblib:

def train_model(path, model, saveto=None, cv=12):
 """
 Trains model from corpus at specified path and fits on full data.
 If a saveto dictionary is specified, writes Keras and Sklearn
 pipeline components to disk separately. Returns the scores.
 """
 corpus = PickledReviewsReader(path)
 X = documents(corpus)
 y = make_categorical(corpus)

 scores = cross_val_score(model, X, y, cv=cv, scoring='accuracy', n_jobs=-1)
 model.fit(X, y)

 if saveto:
 model.steps[-1][1].model.save(saveto['keras_model'])
 model.steps.pop(-1)
 joblib.dump(model, saveto['sklearn_pipe'])

 return scores

Now, back in our if-main statement, we provide the path to the corpus and the dictio‐
nary of paths where our serialized model will be stored:

Neural Language Models | 283

3 Andrew Ng, Why is Deep Learning Taking Off?, (2017) http://bit.ly/2JJ93kU

 cpath = '../review_corpus_proc'
 mpath = {
 'keras_model' : 'keras_nn.h5',
 'sklearn_pipe' : 'pipeline.pkl'
 }
 scores = train_model(cpath, pipeline, saveto=mpath, cv=12)

With 5,000 input features to our neural network, our preliminary Keras classifier per‐
formed fairly well; on average, our model is able to predict whether a Pitchfork
review considered an album “terrible,” “okay,” “great,” or “amazing”:

Mean score for KerasClassifier: 0.70533893018807

While the mean score of our Scikit-Learn classifier was slightly higher, using Keras,
the training took only two hours on a MacBook Pro with all available cores, or
roughly one-sixth the training time of the Scikit-Learn MLPClassifier. As a result,
we can see that tuning the Keras model (e.g., adding more hidden layers and nodes,
adjusting the activation or cost functions, randomly “dropping out,” or setting a frac‐
tion of inputs to zero to avoid overfitting, etc.) will allow for more rapid improve‐
ments to our model.

However, one of the main challenges for our model is the small size of the dataset;
neural networks generally outperform other machine learning model families, but
only beyond some threshold of available training data (for more discussion on this,
see Andrew Ng’s “Why Is Deep Learning Taking Off?”3). In the next section of this
chapter, we will explore a much larger dataset, as well as experimenting with using the
kinds of syntactic features we saw in Chapters 7 and 10 to improve the signal-to-noise
ratio.

Sentiment Analysis
So far we have been treating our reviews as pure bags of words, which is not uncom‐
mon for neural networks. Activation functions typically require input to be in the dis‐
crete range of [0,1] or [-1,1], which makes one-hot encoding a convenient
vectorization method.

However, the bag-of-words model is problematic for more nuanced text analytics
tasks because it captures the broad, most important elements of text rather than the
microsignals that describe meaningful adjustments or modifications. Language gen‐
eration, which we explored briefly in Chapters 7 and 10, is an application for which
bag-of-words models are frequently insufficient for capturing the intricacies of
human speech patterns. Another such case is sentiment analysis, where the relative
positivity or negativity of a statement is a function of a complex interplay between

284 | Chapter 12: Deep Learning and Beyond

http://bit.ly/2JJ93kU

positively and negatively associated modifiers and nonlexical factors like sarcasm,
hyperbole, and symbolism.

In Chapter 1 we briefly introduced sentiment analysis to describe the importance of
contextual features. Whereas a language feature like gender is often encoded in the
structure of language, sentiment is often much too complex to be encoded at the
token level. Take, for example, this sample text from a set of Amazon customer
reviews of patio, lawn, and garden equipment:

I used to use a really primitive manual edger that I inherited from my father. Blistered
hands and time wasted, I decided there had to be a better way and this is surely it. Edg‐
ing is one of those necessary evils if you want a great looking house. I don’t edge every
time I mow. Usually I do it every other time. The first time out after a long winter, edg‐
ing usually takes a little longer. After that, edging is a snap because you are basically in
maintenance mode. I also use this around my landscaping and flower beds with
equally great results. The blade on the Edge Hog is easily replaceable and the tell tale
sign to replace it is when the edge starts to look a little rough and the machine seems
slower.

—Amazon reviewer

If we predict the rating using a count of the “positive” and “negative” review words as
with the gendered words in Chapter 1, what score would you expect to see? In spite of
many of the negative-seeming words (e.g., “primitive,” “blistered,” “wasted,” “rough,”
“slower”), this text corresponds to a 5-star review—the highest possible rating!

Even if we were to take a single sentence from the review (e.g., “Edging is one of those
necessary evils if you want a great-looking house.”) we can see how positive and nega‐
tive phrases modify each other, with the effect of sometimes inverting or magnifying
the sentiment. The parse tree in Figure 12-4 illustrates how these syntactic chunks
combine to influence the overall sentiment of the review.

Figure 12-4. Syntax analysis

Sentiment Analysis | 285

4 Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts, Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, (2013)
http://bit.ly/2GQL2Xy

5 Jean Wu, Richard Socher, Rukmani Ravisundaram, and Tayyab Tariq, Stanford Sentiment Treebank, (2013)
https://stanford.io/2GQL3uA

Deep Structure Analysis
A syntactic chunking approach to sentiment analysis was proposed by Richard
Socher (2013).4 Socher et al. propose that sentiment classification using a phrase tree‐
bank (i.e., a corpus that has been syntactically annotated) allows for a more nuanced
prediction of the overall sentiment of the utterance. They demonstrated how classify‐
ing sentiment phrase-by-phrase rather than on the entire utterance level ultimately
results in significant improvements in accuracy, particularly because it enables com‐
plex modeling of the effects of negation at various levels of the parse tree, as we saw in
Figure 12-4.

Socher also introduced a novel approach to neural network modeling, the recursive
neural tensor network. Unlike standard feedforward and recurrent models, recursive
networks anticipate hierarchical data and a training process that amounts to the tra‐
versal of a tree. These models employ embeddings, like those introduced in Chap‐
ter 4, to represent words or “leaves” of the tree, along with a compositionality
function that determines how the vectorized leaves should be recursively combined
to represent the phrases.

Like the KerasClassifier we built earlier in this chapter, recursive neural networks
use activation functions in the hidden layers to model nonlinearly, as well as a com‐
pression function to reduce the dimensionality of the final layer to match the number
of classes (usually two in the case of sentiment analysis), such as softmax.

It’s important to note that the efficacy of Socher’s model is also due
in large part to the massive training set. Socher’s team constructed
the training data by extracting every syntactically possible phrase
from thousands of rottentomatoes.com movie reviews, which were
then manually scored by Amazon Mechanical Turk workers via a
labeling interface. The results, original Matlab code, and a number
of visualizations of sentiment parse trees are available via the Stan‐
ford Sentiment Treebank.5

In the next section, we’ll implement a sentiment classifier that borrows some of the
ideas from Socher’s work, leveraging the structure of language as a tool for boosting
signal.

286 | Chapter 12: Deep Learning and Beyond

http://bit.ly/2GQL2Xy
https://stanford.io/2GQL3uA

6 Julian McAuley, Amazon product data, (2016) http://bit.ly/2GQL2H2

Predicting sentiment with a bag-of-keyphrases
In the previous section, we used Keras to train a simple multilayer perceptron to
fairly successfully predict how a Pitchfork music critic would score an album, based
on the words contained in their review. In this section, we’ll attempt to build a more
complex model with a larger corpus and a “bag-of-keyphrases” approach.

For our new corpus, we will use a subset of the Amazon product reviews corpus com‐
piled by Julian McAuley of the University of California at San Diego.6 The full dataset
contains over one million reviews of movies and television, each of which is com‐
prised of the text of the review and its score. The scores are categorical, ranging from
the lowest rating of 1 to the highest rating of 5.

The premise of our model is that most of the semantic information in our text will be
contained in small syntactic substructures within the sentences. Instead of using a
bag-of-words approach, we will implement a lightweight method to leverage the syn‐
tactic structure of our review text by adding a new KeyphraseExtractor class, which
will modify the keyphrase extraction technique from Chapter 7 to transform our
review corpus documents in a vector representation of the document keyphrases.

In particular, we will use a regular expression to define a grammar that uses the part-
of-speech tags to identify adverbial phrases (“without care”) and adjective phrases
(“terribly helpful”). We can then chunk our text into keyphrases using the NLTK
RegexpParser. We will be using a neural network model that requires us to know in
advance the total number of features (in other words, the lexicon) and the length of
each document, so we’ll add these parameters to our __init__ function.

Setting hyperparameters for the maximum vocabulary and docu‐
ment length cutoff will depend on the data and require iterative
feature engineering. We might begin by computing the total num‐
ber of unique keywords and setting our nfeatures parameter to be
less than that number. For document length, we might count the
number of keywords in each document in our corpus and take the
mean.

Sentiment Analysis | 287

http://bit.ly/2GQL2H2

class KeyphraseExtractor(BaseEstimator, TransformerMixin):
 """
 Extract adverbial and adjective phrases, and transform
 documents into lists of these keyphrases, with a total
 keyphrase lexicon limited by the nfeatures parameter
 and a document length limited/padded to doclen
 """
 def __init__(self, nfeatures=100000, doclen=60):
 self.grammar = r'KT: {(<RB.> <JJ.*>|<VB.*>|<RB.*>)|(<JJ> <NN.*>)}'
 self.chunker = RegexpParser(self.grammar)
 self.nfeatures = nfeatures
 self.doclen = doclen

To further reduce complexity, we’ll add a normalize method that removes punctua‐
tion from each tokenized, tagged sentence and lowercases the words, and a
extract_candidate_phrases that uses our grammar to extract keyphrases from each
sentence:

...
 def normalize(self, sent):
 is_punct = lambda word: all(unicat(c).startswith('P') for c in word)
 sent = filter(lambda t: not is_punct(t[0]), sent)
 sent = map(lambda t: (t[0].lower(), t[1]), sent)
 return list(sent)

 def extract_candidate_phrases(self, sents):
 """
 For a document, parse sentences using our chunker created by
 our grammar, converting the parse tree into a tagged sequence.
 Extract phrases, rejoin with a space, and yield the document
 represented as a list of its keyphrases.
 """
 for sent in sents:
 sent = self.normalize(sent)
 if not sent: continue
 chunks = tree2conlltags(self.chunker.parse(sent))
 phrases = [
 " ".join(word for word, pos, chunk in group).lower()
 for key, group in groupby(
 chunks, lambda term: term[-1] != 'O'
) if key
]
 for phrase in phrases:
 yield phrase

To pass the size of the input layer to our neural network, we use a get_lexicon
method to extract the keyphrases from each review and build a lexicon with the
desired number of features. Finally, a clip method will ensure each document
includes only keyphrases from the lexicon:

288 | Chapter 12: Deep Learning and Beyond

...
 def get_lexicon(self, keydocs):
 """
 Build a lexicon of size nfeatures
 """
 keyphrases = [keyphrase for doc in keydocs for keyphrase in doc]
 fdist = FreqDist(keyphrases)
 counts = fdist.most_common(self.nfeatures)
 lexicon = [phrase for phrase, count in counts]
 return {phrase: idx+1 for idx, phrase in enumerate(lexicon)}

 def clip(self, keydoc, lexicon):
 """
 Remove keyphrases from documents that aren't in the lexicon
 """
 return [lexicon[keyphrase] for keyphrase in keydoc
 if keyphrase in lexicon.keys()]

While our fit method is a no-op, simply returning self, the transform method will
do the heavy lifting of extracting the keyphrases, building the lexicons, clipping the
documents, and then padding each using Keras’ sequence.pad_sequences function
so that they’re all of the same desired length:

from keras.preprocessing import sequence

...
 def fit(self, documents, y=None):
 return self

 def transform(self, documents):
 docs = [list(self.extract_candidate_phrases(doc)) for doc in documents]
 lexicon = self.get_lexicon(docs)
 clipped = [list(self.clip(doc, lexicon)) for doc in docs]
 return sequence.pad_sequences(clipped, maxlen=self.doclen)

Now we will write a function to build our neural network; in this case we’ll be build‐
ing a long short-term memory (LSTM) network.

Our LSTM will begin with an Embedding layer that will build a vector embedding
from our keyphrase documents, specifying three parameters: the total number of fea‐
tures (e.g., the total size of our keyphrase lexicon), the desired dimensionality of the
embeddings, and the input_length of each keyphrase document. Our 200-node LSTM
layer is nested between two Dropout layers, which will randomly set a fraction of the
input units to 0 during each training cycle to help prevent overfitting. Our final layer
specifies the number of expected targets for our sentiment classification:

N_FEATURES = 100000
N_CLASSES = 2
DOC_LEN = 60

Sentiment Analysis | 289

def build_lstm():
 lstm = Sequential()
 lstm.add(Embedding(N_FEATURES, 128, input_length=DOC_LEN))
 lstm.add(Dropout(0.4))
 lstm.add(LSTM(units=200, recurrent_dropout=0.2, dropout=0.2))
 lstm.add(Dropout(0.2))
 lstm.add(Dense(N_CLASSES, activation='sigmoid'))
 lstm.compile(
 loss='categorical_crossentropy',
 optimizer='adam',
 metrics=['accuracy']
)
 return lstm

We will be training our sentiment model as a binary classification problem (as Socher
did in his implementation), so we will add a binarize function to bin our labels into
two categories for use in our train_model function. The two classes will roughly cor‐
respond to “liked it” or “hated it”:

def binarize(corpus):
 """
 hated it : 0.0 < y <= 3.0
 liked it : 3.0 < y <= 5.1
 """
 return np.digitize(continuous(corpus), [0.0, 3.0, 5.1])

def train_model(path, model, cv=12, **kwargs):
 corpus = PickledAmazonReviewsReader(path)
 X = documents(corpus)
 y = binarize(corpus)
 scores = cross_val_score(model, X, y, cv=cv, scoring='accuracy')
 model.fit(X, y)

 ...

 return scores

Finally, we’ll specify our Pipeline input and components, and call our train_model
function to get our cross-validated scores:

if __name__ == '__main__':
 am_path = '../am_reviews_proc'
 pipeline = Pipeline([
 ('keyphrases', KeyphraseExtractor()),
 ('lstm', KerasClassifier(build_fn=build_nn,
 epochs=20,
 batch_size=128))
])

 scores = train_model(am_path, pipeline, cv=12)

Mean score: 0.8252357452734355

290 | Chapter 12: Deep Learning and Beyond

The preliminary results of our model are surprisingly effective, suggesting that key‐
phrase extraction is a useful way to reduce dimensionality for text data without totally
discarding the semantic information encoded in syntactic structures.

The Future Is (Almost) Here
It is an exciting time for text analysis, not only because of the many new industrial
applications for machine learning on text, but also thanks to the burgeoning technol‐
ogies available to support these applications. The hardware advances made over the
last few decades, and the corresponding open source implementations made available
in the last few years, have moved neural networks from the space of academic
research to the realm of practical application. Applied text analyses therefore need to
be prepared to integrate new hardware as well as academic research into existing code
bases to stay current and relevant. Just as language changes, so too must language
processing.

Some of the biggest challenges in natural language processing—machine translation,
summarization, paraphrasing, question-and-answer, and dialog—are currently being
addressed with neural networks. Increasingly, research efforts in deep learning mod‐
els for language data endeavor to move from language processing to understanding.

While current commercial applications are very recognizable, they are still relatively
few. Technologies such as Alexa’s speech recognition, Google Translate app’s machine
translation, and Facebook’s image captioning for visually impaired users are increas‐
ingly connecting text, sound, and images in innovative ways. Many of the features
that emerge in the next few years will involve algorithmic improvements and hybrid
models that, for instance, can combine image classification with natural language
generation, or speech recognition with machine translation.

However, we will also begin to see more smaller-scale text analytics developed to sub‐
tly improve the user experience of everyday applications—text autocompletion, con‐
versational agents, improved product recommendations, etc. Such applications will
rely not (or not exclusively) on massive datasets, but on custom, domain-specific cor‐
pora geared to specific use cases.

While there are currently few companies with sufficient data, staff, and high-
performance compute power to make applied neural networks practical and cost-
effective, this too is changing. However, for the majority of data scientists and
applications developers, the future of applied text analysis will be less about algorith‐
mic innovation and more about spotting interesting problems in the wild and apply‐
ing robust and scalable tools and techniques to build small, but high-value features
that differentiate our applications from those of previous generations.

The Future Is (Almost) Here | 291

Glossary

agglomerative
Agglomerative clustering is a type of hier‐
archical clustering that produces clusters
starting with single instances that are iter‐
atively aggregated by similarity until all
belong to a single group.

application programming interface (API)
An application programming interface
formally defines how software compo‐
nents communicate. A data API might
provide users with a systematic way to
read or fetch information from the inter‐
net. The Scikit-Learn API exposes gener‐
alized access to machine learning
algorithms implemented via class inheri‐
tance.

bag-of-words (BOW)/continuous bag-of-words (CBOW)
Bag-of-words is a method of encoding
text, such that every document from the
corpus is transformed into a vector whose
length is equal to the vocabulary of the
corpus. The primary insight of a bag-of-
words representation is that meaning and
similarity are encoded in vocabulary.

baleen
Baleen is an open source automated inges‐
tion service for blogs to construct a cor‐
pus for natural language processing
research.

betweenness centrality
Given a node N in a graph G, the between‐
ness centrality indicates how connected G

is as a result of N. Betweenness centrality is
computed as the ratio of the shortest paths
in G that include N to the total number of
shortest paths in G.

bias
Bias is one of two sources of error in
supervised learning problems, computed
as the difference between an estimator’s
predicted value and the true value. High
bias indicates that the estimator’s predic‐
tions deviate from the correct answers by
a significant amount.

canonicalization
Canonicalization is one of three primary
tasks involved in entity resolution, which
entails converting data with more than
one possible representation into a stan‐
dard form.

centrality
In a network graph, centrality is a meas‐
ure of the relative importance of a node.
Important nodes are connected directly or
indirectly to the most nodes and thus have
higher centrality.

chatbot
A chatbot is a program that participates in
turn-taking conversations and whose aim
is to interpret input text or speech and to
output appropriate, useful responses.

293

classification
Classification is a type of supervised
machine learning that attempts to learn
patterns between instances composed of
independent variables and their relation‐
ship to a given categorical target variable.
A classifier can be trained to minimize
error between predicted and actual cate‐
gories in the training data, and once fit,
can be deployed to assign categorical
labels to new instances based on the pat‐
terns detected during training.

classification report/classification heatmap
The classification report shows a repre‐
sentation of the main classification met‐
rics (precision, recall, and F1 score) on a
per-class basis.

closeness centrality
Closeness centrality computes the average
path distance from a node N in a graph G
to all other nodes, normalized by the size
of the graph. Closeness centrality
describes how fast information originat‐
ing at N will spread throughout G.

clustering
Unsupervised learning or clustering is a
way of discovering hidden structure in
unlabeled data. Clustering algorithms aim
to discover latent patterns in unlabeled
data using features to organize instances
into meaningfully dissimilar groups.

confusion matrix
A confusion matrix is one method for
evaluating the accuracy of a classifier.
After the classifier has been fit, a confu‐
sion matrix is a report of how individual
test values for each of the predicted classes
compare to their actual classes.

connectionist language model
A connectionist model of language argues
that units of language interact with each
other in meaningful ways that are not nec‐
essarily encoded by sequential context,
but can be learned with a neural network
approach.

corpus/corpora
A corpus is a collection of related docu‐
ments or utterances that contain natural
language.

corpus reader
A corpus reader is a programmatic inter‐
face to read, seek, stream, and filter docu‐
ments, and furthermore to expose data
wrangling techniques like encoding and
preprocessing for code that requires
access to data within a corpus.

cross-validation/k-fold cross-validation
Cross-validation, or k-fold cross-
validation, is the process of independently
fitting a supervised learning model on k
slices (training and test splits) of a dataset,
which allows us to compare models and
estimate in advance which will be most
performant with unseen data. Cross-
validation helps to balance the bias/
variance trade-off.

data product
Data products are software applications
that derive value from data and in turn
generate new data.

deduplication
Deduplication is one of three primary
tasks involved in entity resolution that
entails eliminating duplicate (exact or vir‐
tual) copies of repeated data.

deep learning
Deep learning broadly describes the large
family of neural network architectures
that contain multiple, interacting hidden
layers.

degree
The degree of a node N of a graph G is the
number of edges of G that touch N.

degree centrality
Degree centrality measures the neighbor‐
hood size (degree) of each node in a graph
G and normalizes by the total number of
nodes in G.

classification

294 | Glossary

dialog system
In the context of a chatbot, a dialog sys‐
tem is an internal component that inter‐
prets input, maintains internal state, and
produces responses.

diameter
The diameter of a graph G is the number
of nodes traversed in the shortest path
between the two most distant nodes of G.

discourse
Discourse is written or formally spoken
communication and is generally more
structured than informal written or spo‐
ken communication.

distributed representation
A distributed representation is a method
of encoding text along a continuous scale.
This means that the resulting document
vector is not a simple mapping from
token position to token score, but instead
a feature space embedded to represent
word similarity.

divisive
Divisive clustering is a type of hierarchical
clustering that produces clusters by grad‐
ually dividing data, beginning with a clus‐
ter containing all instances and finishing
with clusters containing single instances.

doc2vec
Doc2vec (an extension of word2vec) is an
unsupervised algorithm that learns fixed-
length feature representations from vari‐
able length documents.

document
In the context of text analytics, a docu‐
ment is a single instance of discourse.
Corpora are comprised of many docu‐
ments.

dropout
In the context of neural network, a drop‐
out layer is designed to help prevent over‐
fitting by randomly setting a fraction of
the input units to 0 during each training
cycle.

edge/link
An edge E between nodes N and V in a
graph G represents a connection between
N and V.

eigenvector centrality
Eigenvector centrality measures the cen‐
trality of a node N in a graph G by the
degree of the nodes to which N is connec‐
ted. Even if N has a small number of
neighbors, if those neighbors have a very
high degree, N may outrank some of its
neighbors in eigenvector centrality. Eigen‐
vector centrality is the basis of several var‐
iants such as Katz centrality and
PageRank.

elbow curve
The elbow method visualizes multiple k-
means clustering models with different
values for k. Model selection is based on
whether or not there is an “elbow” in the
curve. If the curve looks like an arm with
a clear change in angle from one part of
the curve to another, an inflection point is
the optimal value for k.

entity
An entity is a unique thing (e.g., person,
organization, product) with a set of
attributes that describe it (e.g., name,
address, shape, title, price, etc.). An entity
may have multiple references across data
sources, such as a person with two differ‐
ent email addresses, a company with two
different phone numbers, or a product lis‐
ted on two different websites.

entity resolution (ER)
Entity resolution is the task of disambigu‐
ating records that correspond to real-
world entities across and within datasets.

entropy
Entropy measures the uncertainty or sur‐
prisal of a language model’s probability
distribution.

estimator
In the context of the Scikit-Learn API, an
estimator is any object that can learn from

estimator

Glossary | 295

data. For instance, an estimator can be a
machine learning model form, a vector‐
izer, or a transformer.

F1 score
The F1 score is a weighted harmonic
mean of precision. Recall that the best
score is 1.0 and the worst is 0.0. Generally
speaking, F1 scores are lower than accu‐
racy measures as they embed precision
and recall into their computation. As a
rule of thumb, the weighted average of F1
should be used to compare classifier mod‐
els, not global accuracy.

feature
In machine learning, data is represented
as a numeric feature space, where each
property of the vector representation is a
feature.

feature extraction
In the context of text analytics pipelines,
feature extraction is the process of trans‐
forming documents into vector represen‐
tations such that machine learning
methods can be applied.

feature union
A feature union allows multiple data
transformations to be performed inde‐
pendently and then concatenated into a
composite vector.

frequency distribution
A frequency distribution displays the rela‐
tive frequency of outcomes (e.g., tokens,
keyphrases, entities) in a given sample.

generalizable
A generalizable model balances bias and
variance to make meaningful predictions
on unseen data.

grammar
A grammar is a set of rules that specify the
components of well-structured sentences
in a language.

graph
A network graph is a data structure made
of nodes connected by edges and can be

used to model complex relationships,
including textual and intertextual rela‐
tionships.

graph analytics
A graph analytics approach to text analy‐
sis leverages the structure of graphs and
the computational measures of graph
theory to understand relationships
between entities or other textual elements.

hapaxes/hapax legomena
A hapax is a term that only appears once
in a corpus.

hidden layer
In a neural network, a hidden layer con‐
sists of neurons and synapses that connect
the input layer to the output layer. Synap‐
ses transmit signals between neurons,
whose activation functions buffer incom‐
ing signals, thereby training the model.

hierarchical clustering
Hierarchical clustering is a type of unsu‐
pervised learning that produces clusters
with a predetermined ordering in a tree-
structure so that a variable number of
clusters exist at each level. Hierarchical
models can be either agglomerative (bot‐
tom up) or divisive (top down).

hyperparameter
In machine learning, hyperparameters are
the parameters that define how the model
operates; they are not directly learned
during fit but are defined on instantiation.
Examples include the alpha (penalty) for
regularization, the kernel function in a
support vector machine, the number of
leaves or depth of a decision tree, the
number of neighbors used in a nearest
neighbor classifier, and the number of
clusters in a k-means clustering.

ingestion
In the context of data science, ingestion is
the process by which we collect and store
data.

F1 score

296 | Glossary

instance
In machine learning, instances are the
points on which algorithms operate. In
the context of text analytics, an instance is
an entire document or complete utter‐
ance.

language model
A language model attempts to take as
input an incomplete phrase and infer the
following words that most likely complete
the utterance.

latent Dirichlet allocation (LDA)
Latent Dirichlet Allocation is a topic dis‐
covery technique, in which topics are rep‐
resented as the probability that each of a
given set of terms will occur. Documents
can in turn be represented in terms of a
mixture of these topics.

latent semantic analysis (LSA)
Latent Semantic Analysis is a vector-based
approach that can be used as a topic mod‐
eling technique that finds groups of docu‐
ments with the same words and produces
a sparse term-document matrix.

lexicon
In the context of text analysis, a lexicon is
a set of all of the unique vocabulary words
from a corpus. Lexical resources often
include mappings from this set to other
utilities such as word senses, synonym
sets, or phonetic representations.

long tail
A long tail, or Zipfian distribution, dis‐
plays a large number of occurrences far
from the central part of the frequency dis‐
tribution.

machine learning
Machine learning describes a broad set of
methods for extracting meaningful pat‐
terns from existing data and applying
those patterns to make decisions or pre‐
dictions on future data.

model selection triple
The model selection triple describes a
general machine learning workflow that

involves repeated iteration through fea‐
ture engineering, model selection, and
hyperparameter tuning to arrive at the
most accurate, generalizable model.

morphology
Morphology is the form of things, such as
individual words or tokens. Morphologi‐
cal analysis describes the process of
understanding how words are constructed
and how word forms influence their part-
of-speech.

multiprocessing
Multiprocessing refers to the use of more
than one central processing unit (CPU) at
a time, and to the ability of a system to
support or allocate tasks between more
than one processor at a time.

n-gram
An n-gram is an ordered sequence of
either characters or words of length N.

natural language processing
Natural language processing refers to a
suite of computational techniques for
mapping between formal and natural lan‐
guages.

natural language understanding
Natural language understanding is a sub‐
topic within natural language processing
that refers to the computational techni‐
ques used to approximate the interpreta‐
tion of natural language.

neighborhood (graphs)
In the context of a network graph G and a
given node N, the neighborhood of N is the
subgraph F of G that contains all of the
nodes adjacent (i.e., connected via an
edge) to N.

network
A network is a data structure made of
nodes connected by edges and can be used
to model complex relationships, including
textual and intertextual relationships. See
also “graph.”

network

Glossary | 297

neural network
Neural networks refer to a family of mod‐
els that are defined by an input layer (a
vectorized representation of input data), a
hidden layer that consists of neurons and
synapses, and an output layer with the
predicted values. Within the hidden layer,
synapses transmit signals between neu‐
rons, which rely on an activation function
to buffer incoming signals. The synapses
apply weights to incoming values, and the
activation function determines if the
weighted inputs are sufficiently high to
activate the neuron and pass the values on
to the next layer of the network.

node/vertex
In the context of a graph data structure, a
node is the fundamental unit of data.
Nodes are connected by edges to form
networks.

one-hot encoding
One-hot encoding is a boolean vector
encoding method that marks a particular
vector index with a value of true if the
token exists in the document and false if it
does not.

ontology
An ontology is a data structure that enco‐
des meaning by specifying the properties
and relationships of concepts and cate‐
gories in a particular domain of discourse.

order
In the context of a network graph G, the
order of G is defined as the number of
nodes in G.

overfitting
In the context of supervised learning,
overfitting a model means that the model
has memorized the training data and is
completely accurate on data it has seen
before, but varies widely on unseen data.

paragraph vector
A paragraph vector is an unsupervised
algorithm that learns fixed-length feature
representations from variable-length

documents, which enables us to extend
word2vec to document-length instances.

parallelism
Parallelism refers to multiprocessing com‐
putation and includes task parallelism
(where different, independent operations
run simultaneously on the same data) and
data parallelism (where the same opera‐
tion is being applied to many different
inputs simultaneously).

parsing
In the context of text analytics, parsing is
the process of breaking utterances down
into composite pieces (e.g., documents
into paragraphs, paragraphs into senten‐
ces, sentences into tokens), then building
them into syntactic or semantic structures
that can be computed upon.

part-of-speech
Parts-of-speech are the classes assigned to
parsed text that indicate how tokens are
functioning in the context of a sentence.
Example parts-of-speech include nouns,
verbs, adjectives, and adverbs.

partitive clustering
In the context of text analytics, partitive
clustering methods partition documents
into groups that are represented by a cen‐
tral vector (the centroid) or described by a
density of documents per cluster. Cent‐
roids represent an aggregated value (e.g.,
mean or median) of all member docu‐
ments and are a convenient way to
describe documents in that cluster.

perplexity
Perplexity is a measure of how predictable
the text is by evaluating the entropy (the
level of uncertainty or surprisal) of the
language model’s probability distribution.

pipeline
In the context of text analytics, a model
pipeline is a method for chaining together
a series of transformers that combine (for
instance) normalization, vectorization,
and feature analysis into a single, well-
defined mechanism.

neural network

298 | Glossary

precision
Precision is the ability of a classifier not to
label an instance positive that is actually
negative. For each class, it is defined as the
ratio of true positives to the sum of true
and false positives. Said another way, “For
all instances classified as positive, what
percent was correct?”

principal component analysis (PCA)
Principal Component Analysis is a
method for transforming features into a
new coordinate system that captures as
much of the variability in the data as pos‐
sible. PCA is often used as a dimensional‐
ity reduction technique for dense data.

property graph
In the context of a network graph, a prop‐
erty graph embeds information into the
graph by allowing for labels and weights
to be stored as additional information on
graph nodes and edges.

recall
Recall is the ability of a classifier to find all
positive instances. For each class, it is
defined as the ratio of true positives to the
sum of true positives and false negatives.
Said another way, “For all instances that
were actually positive, what percent was
classified correctly?”

record linkage
Record linkage is one of three primary
tasks involved in entity resolution, which
entails identifying records that reference
the same entity across different sources.

regression
Regression is a supervised learning tech‐
nique that attempts to learn patterns
between instances composed of independ‐
ent variables and their relationship to a
continuous target variable. A regressor
can be trained to minimize error between
predicted and actual values in the training
data, and once fit, can be deployed to
assign predicted target values to new
instances based on the patterns detected
during training.

rss
RSS is a category of web-based feeds that
publish updates to online content in a
standardized, computer-readable format.

scraping
Scraping refers to the process (whether
automated, semiautomated, or manual) of
gathering and copying information from
the web to a data store.

segmentation
In the context of text analytics, segmenta‐
tion refers to the process of breaking para‐
graphs down into sentences to arrive at
more granular units of discourse.

semantics
Semantics refer to the meaning of lan‐
guage (e.g., the meaning of a document or
sentence).

sentence boundaries
Sentence boundaries such as capitalized
words and certain punctuation marks
indicate the beginning and ending of sen‐
tences. Most automated parsing and part-
of-speech tagging tools rely on the
existence of sentence boundaries.

sentiment analysis
Sentiment analysis refers to the process of
computationally identifying and catego‐
rizing emotional polarity expressed in an
utterance—e.g., to determine the relative
negativity or positivity of the writer or
speaker’s feelings.

shortest path
Given a network graph G that contains
nodes N and V, the shortest path between N
and V is the one that contains the fewest
edges.

silhouette score
A silhouette score is a method for quanti‐
fying the density and separation of clus‐
ters produced by a centroidal clustering
model. The score is calculated by averag‐
ing the silhouette coefficient (density) for
each sample, computed as the difference
between the average intracluster distance

silhouette score

Glossary | 299

and the mean nearest-cluster distance for
each sample, normalized by the maximum
value.

singular value decomposition (SVD)
Singular Value Decomposition is a matrix
factorization technique that transforms an
original feature space into three matrices,
including a diagonal matrix of singular
values that describe a subspace. Singular
Value Decomposition is a popular dimen‐
sionality reduction technique for sparse
data and is used in Latent Semantic Anal‐
ysis (LSA).

size (graphs)
In a graph G, the size of G is defined as the
number of edges it contains.

steering
Steering is the process of guiding the
machine learning process—e.g., by visu‐
ally evaluating a series of different classifi‐
cation report heat maps to determine
which fitted model is most performant, or
inspecting the trade-off between bias and
variance along different values of a certain
hyperparameter.

stopwords
Stopwords are words that are manually
excluded from a text model, often because
they occur very frequently in all docu‐
ments in a corpus.

symbolic language model
Symbolic language models treat text as
discrete sequences of tokens with proba‐
bilities of occurrence.

synset
The synset for a word W is a collection of
cognitive synonyms that express distinct
concepts related to W.

syntax
Syntax describes the sentence formation
rules defined by grammar.

t-distributed stochastic neighbor embedding (t-SNE)
T-distributed stochastic neighbor embed‐
ding is a nonlinear dimensionality reduc‐

tion method. t-SNE can be used to cluster
similar documents by decomposing high-
dimensional document vectors into two
dimensions using probability distribu‐
tions from both the original dimensional‐
ity and the decomposed dimensionality.

term frequency-inverse document frequency (TF–IDF)
Term frequency–inverse document fre‐
quency is an encoding method that nor‐
malizes the frequency of tokens in a
document with respect to the rest of the
corpus. TF–IDF measures the relevance of
a token to a document by the scaled fre‐
quency of the appearance of the term in
the document, normalized by the inverse
of the scaled frequency of the term in the
entire corpus.

token
Tokens are the atomic unit of data in text
analysis. They are strings of encoded bytes
that represent semantic information, but
do not contain any other information
(such as a word sense).

tokenization
Tokenization is the process of breaking
down sentences by isolating tokens.

topic modeling
Topic modeling is an unsupervised
machine learning technique for abstract‐
ing topics from collections of documents.
See also “clustering.”

training and test splits
In supervised machine learning, data is
divided into training and test splits on
which models can be fit independently in
order to compare (cross-validate) models
and estimate in advance which will be
most performant with unseen data. Divid‐
ing data into train and test splits is gener‐
ally used to ensure that the model does
not become overfit and is generalizable
with respect to data the model was not
trained on.

transformer
A transformer is a special type of estima‐
tor that creates a new dataset from an old

singular value decomposition (SVD)

300 | Glossary

one based on rules that it has learned
from the fitting process.

transitivity
In a network graph, transitivity is a meas‐
ure of the likelihood that two nodes with a
common connection are neighbors.

traversal
In the context of a graph, traversal is the
process of traveling between nodes along
edges.

underfitting
Underfitting a model generally describes
the scenario where a fitted model makes
the same predictions every time (i.e., has
low variance), but deviates from the cor‐
rect answer by a significant amount (i.e.,
has high bias). Underfitting is sympto‐
matic of not having enough data points,
or not training a complex enough model.

unsupervised learning
Unsupervised learning or clustering is a
way of discovering hidden structures in
unlabeled data. Clustering algorithms aim
to discover latent patterns in unlabeled
data using features to organize instances
into meaningfully dissimilar groups.

utterance
Utterances are short, self-contained
chains of spoken or written speech. In
speech analysis, utterances are usually
bound by clear pauses. In text analysis,
utterances are typically bound by punctu‐
ation meant to convey pauses.

variance
Variance is one of two sources of error in
supervised learning problems, computed
as the average of the squared distances

from each point to the mean. Low var‐
iance is an indication of an underfit
model, which generally makes the same
predictions every time regardless of the
features. High variance is an indication of
overfit, when the estimator has memo‐
rized the training data and may generalize
poorly on unseen data.

vectorize/vectorization
Vectorization is the process of transform‐
ing non-numeric data (e.g., text, images,
etc.) into vector representations on which
machine learning methods can be applied.

visualizer
A visualizer is a visual diagnostic tool that
extends estimators to allow human steer‐
ing of the feature analysis, model selec‐
tion, and hyperparameter tuning
processes (i.e., the model selection triple).

word sense
Word sense refers to the intended mean‐
ing of a particular word, given a context
and assuming that many words have mul‐
tiple connotations, interpretations, and
usages.

word2vec
The word2vec algorithm implements a
word embedding model that produces
distributed representations of text, such
that words are embedded in space along
with similar words based on their context.

WORM storage
Write-once read-many (or WORM) stor‐
age refers to the practice of persisting a
version of the original data that is not
modified during the extraction, transfor‐
mation, or modeling phases.

WORM storage

Glossary | 301

Index

A
accumulators, 261, 268
acyclic data flows, 255
agglomerative clustering, 108-111, 293
application programming interface (API),

defined, 293

B
backoff, 145-147
backpropagation, 276
bag-of-keyphrases, 287-291
bag-of-words (BOW), 13

defined, 55, 293
text vectorization with, 56

Baleen ingestion engine, 21
defined, 293
disk structure, 25-27

ball tree algorithm, 236
BaseEstimator interface (Scikit-Learn API), 68
betweenness centrality, 193-195, 197, 293
bias, defined, 293
bias–variance trade-off, 86
bisecting k-means clustering, 264
blocking

defined, 202
fuzzy, 202-205
with structure, 202

C
canonicalization, 201, 293
centrality, 193-197, 293
chatbots, 4, 207-240

defined, 209, 293
dialogs, 210-213

Greeting, 216-220
handling miscommunication, 220-222
maintaining a conversation, 213-215
question detection, 227-229
recipe recommender system, 233-240
rules, 215-222

classification
defined, 294

classification error, diagnosing, 173-176
classification report heatmaps, 174-175
confusion matrix, 175-176

classification heatmap, 174-175, 294
classification report, 92, 174-175, 294
classifier models, 84
closeness centrality, 195, 197, 294
closure, 268
cluster computing, with Spark, 253-270
clustering

agglomerative, 108-111
and model selection, 170-172
by document similarity, 99-111
defined, 294
distance metrics, 99-102
efficient storage with JSON, 256
for text similarity, 97-111
hierarchical, 107-111
partitive, 102-107
text clustering with MLLib, 264-266
unsupervised learning on text, 97-99
visualizing, 170-172

clustering coefficient, 199
co-occurrence plots, 157-159
collocation, 136
concurrency, parallelism vs., 243

303

conditional frequencies, 141-143
confidence score, 211
confusion matrix

defined, 294
for classification error information, 175-176

connectionist language model, 274, 294
constituency parsing, 225
context-aware text analysis, 125-149

grammar-based feature extraction, 126-132
n-gram language models, 139-149

context-free grammars, 126
contextual features of language, 13-14
continuous bag-of-words (CBOW), 66, 293
conversation

fundamentals, 208-215
maintaining, 213-215
polite, 215-222

convolutional neural networks (CNNs), 280
corpus (corpora)

about, 19
annotated, 20
defined, 294
disk structure, 24-27
domain-specific, 20
unannotated, 20

corpus monitoring, 33
corpus preprocessing and wrangling, 37-53

breaking down documents, 38
deconstructing documents into paragraphs,

20, 39-42
intermediate corpus analytics, 45-47
intermediate preprocessing and storage,

48-51
parallel preprocessing, 251-253
part-of-speech tagging, 44
pickle method, 49
reading the processed corpus, 51
segmentation, 42
tokenization, 43
transformation, 47-52

corpus readers, 27-35
annotated, 29
defined, 27, 294
n-gram-aware, 133-135
reading a corpus from a database, 34
reading an HTML corpus, 31-34
reading the processed corpus, 51
streaming data access with NLTK, 28-31

corpus transformation, 47-52

intermediate preprocessing and storage,
48-51

pickle method, 49
reading the processed corpus, 51

cosine distance, 101
cross-validation

defined, 294
streaming access to k splits, 88
text classification, 86-89

custom corpora, building, 19-36
about corpora, 19
Baleen ingestion engine, 21
corpus readers, 27-35
data management, 22-27
domain-specific corpora, 20

D
data management

Baleen disk structure, 25-27
corpus disk structure, 24-27
for building custom corpora, 22-27

data parallelism, 241, 249
data products

defined, 4, 294
language-aware, 4-8
model selection triple workflow, 7
pipeline for, 5-8

data science, 2-3
data, language as, 8-16
database, reading a corpus from, 34
deduplication, 294
deep learning

architectural frameworks, 280-284
defined, 294
Keras API, 281-284
TensorFlow framework, 280

deep structure analysis, 286-291
degree, 187, 294
degree centrality, 193-195, 294
dendrogram plot, 107
dependency parsers, 223-224
dialog, 210-213
dialog system, 209, 295
diameter (graph), 187, 295
directed acyclic graphs (DAGs), 250

pipelines as, 74
Spark jobs as, 255

discourse, defined, 295
disk structure

304 | Index

Baleen, 25-27
corpus, 24-27

dispersion plots, 159-162
distance metrics, 99-102
distributed computation, 253
distributed data storage, 253
distributed representation

defined, 295
text vectorization with, 65-68
with Gensim, 66

divisive clustering, 107, 295
doc2vec algorithm, 66, 295
documents

breaking down, 38
clustering by similarity, 99-111
deconstructing into paragraphs, 20, 39-42
defined, 295
identifying/extracting core content, 38

domain-specific corpora, 20
dropout layer, 289, 295

E
edge, defined, 185, 295
edit distance, 101
eigenvector centrality, 195, 295
elbow curves, 179, 295
entities

defined, 295
extraction, 131

entity pairs, finding, 190
entity resolution (ER), 200-205

blocking with structure, 202
defined, 201, 295
fuzzy blocking, 202-205
on a graph, 201

entropy, 9, 295
estimator, 69, 295
Euclidean distance, 99

F
F1 score, 93-94, 296
feature analysis

defined, 19
feature extraction, 296

(see also text vectorization)
and feature unions, 77-79
for NLP, 262-264
grammar-based, 126-132
n-gram-based, 132-139

feature space visualization, 152-170
guided feature engineering, 162-170
visual feature analysis, 152-162

feature unions, 77-79, 296
features

defined, 55, 296
identifying most informative, 165-170
linguistic, 10-13

feedforward network, 275
forking, 243
frequency distribution, 296
frequency vectors, 57-59

Gensim and, 59
in Scikit-Learn, 58
with NLTK, 58

frequency, in n-gram modeling, 140-143
fuzzy blocking, 202-205

G
generalizable model, 86, 296
Gensim

about, xiii
distributed representation implementation,

66
frequency vector encoding, 59
LDA in, 114-117
LSA with, 120
one-hot encoding with, 61
TF–IDF text vectorization with, 64

GensimVectorizer transformer, 70
grammar, defined, 296
grammar-based feature extraction, 126-132

context-free grammars, 126
entity extraction, 131
keyphrase extraction, 128
n-gram feature extraction, 132-139
syntactic parsers, 127

graph analysis of text, 183-205
analyzing graph structure, 186
creating a graph-based thesaurus, 185
creating a social graph, 189-192
defined, 296
entity resolution, 200-205
extracting graphs from text, 189-200
graph computation/analysis, 185
insights from social graph, 192-200
visual analysis of graphs, 187
workflow, 189

graph, defined, 296

Index | 305

Graph-tool, 184
GraphExtractor class, 191
GridSearch, 76
guided feature engineering, 162-170

most informative features, 165-170
part-of-speech tagging, 162-165

H
hairball effect, 197
hapax/hapax legomena, 73, 296
heatmaps, 174-175
hidden layer, 275, 279, 296
hierarchical clustering, 107-111

and agglomerative clustering, 108-111
defined, 296

HTML corpora
and Baleen disk structure, 25-27
corpus monitoring, 33
reading, 31-34

hyperparameters
defined, 296
optimization with GridSearch, 76
visual steering, 177-179

I
ingestion

Baleen ingestion engine, 21
defined, 296
RSS and, 21

instances, defined, 55, 297

J
Jaccard distance, 101
joining, 243
JSON, storage with, 256

K
k splits, streaming access to, 88
k-fold cross-validation, 88, 294
k-means clustering, 103-107

about, 103-105
handling uneven geometries, 106
optimizing, 105

Keras API, 281-284
keyphrases, extracting, 128
kitchen measurement conversion system,

229-233
Kneser–Ney smoothing, 147-147

L
language

computational models, 8
connectionist models, 274, 294
contextual features, 13-14
features, 10-13
neural models, 274-284

language model, defined, 297
language-aware data products, 4-8

model selection triple workflow, 7
pipeline for, 5-8

latent Dirichlet allocation (LDA), 111-118
defined, 297
Gensim implementation, 114-117
in Scikit-Learn, 112-114
LSA vs., 119
visualizing topics, 117

latent semantic analysis (LSA), 119-121
defined, 297
with Gensim, 120
with Scikit-Learn, 119

lemmatization, 72
lexical units, 20
lexicon, 297
linguistic features, 10-13
link, 295
logging, 247
long short-term memory (LSTM) networks,

280, 289
long tail distribution

defined, 297
frequency-based encoding and, 59

M
machine learning

defined, 297
goal of, xii

Mahalanobis distance, 100
Manhattan distance, 99
MapReduce, 250
Minkowski distance, 100
MLLib

NLP and, 260-262
text classification with, 266-267
text clustering with, 264-266

model diagnostics
class visualization, 172
cluster visualization, 170-173
diagnosing classification error, 173-176

306 | Index

text visualization, 170-176
model operationalization, 94
model selection triple workflow, 7, 297
morphology, 16, 297
multilayer perceptron, 276-280
multiprocessing

defined, 297
parallel corpus preprocessing, 251-253
process pools and queues, 249-251
Python, 242-253
running tasks in parallel, 244-249

N
n gram, defined, 297
n-gram analysis, 14
n-gram feature extraction, 132-139

choosing the right n-gram window, 135
n-gram-aware corpus reader, 133-135
significant collocations, 136

n-gram language models, 139-149
backoff and smoothing, 145-149
frequency/conditional frequency, 140-143
language generation, 147
maximum likelihood estimation, 143-145

n-gram viewer, 153
Naive Bayes, 84
natural language

and computation, 1-17
computational challenges of, x-xii
data science paradigm, 2-3
language as data, 8-16
language-aware data products, 4-8
tokens vs. words, x

natural language processing (NLP)
defined, 297
feature extraction for, 262-264
Spark MLLib and, 260-262
Spark operations, 259-270
speeding up, 267-270
text classification with MLLib, 266-267
text clustering with MLLib, 264-266

natural language tool kit (NLTK)
about, xiii
frequency vectors with, 58
one-hot encoding with, 60
streaming data access with, 28-31
TF–IDF text vectorization with, 63

natural language understanding, 297
neighborhood (graphs), 187, 297

network visualization, 154-157
network, defined, 297
NetworkX, xiii, 184
neural language models, 274-284
neural networks, 273-291

components, 275-280
deep learning architectures, 280-284
defined, 298
neural language models, 274-284
sentiment analysis, 284-291
training a multilayer perceptron, 276-280

nodes, 185, 298
non-negative matrix factorization (NNMF),

121

O
one-hot encoding

defined, 298
text vectorization with, 59-62
with Gensim, 61
with NLTK, 60
with Scikit-Learn, 60

ontology, 15, 298
operationalization of text classification model,

94
order, 187, 298
overfitting, 86, 298

P
paragraph vector

defined, 298
doc2vec and, 66

paragraphs, deconstructing documents into, 20,
39-42

parallelism, 298
(see also scaling text analytics)
corpus preprocessing, 251-253
primary forms of, 241

parameters, defined, 261
parsing, defined, 298
part-of-speech tagging, 44, 162-165, 298
partitive clustering, 102-107

defined, 298
k-means clustering, 103-107

perceptron, multilayer, 276-280
perplexity, 9, 145, 298
pickle

corpus transformation with, 49
model operationalization with, 94

Index | 307

pipelines, 74-79
and feature unions, 77-79
basics, 75
defined, 298
GridSearch extension, 76

precision, defined, 93, 299
principal component analysis (PCA), 74, 299
process pools, 249-251
property graph model, 191, 299

Q
questions, chatbots and, 222-233

constituency parsing, 225
dependency parsing, 223-224
question detection, 227-229

queues, 249-251

R
recall, 93, 299
recipe recommender chatbot system, 233-240

adding speed to, 235-237
domain-specific corpus for, 234
implementing recipe recommendations,

238-240
record linkage, 299
recurrent neural nets (RNNs), 280
recursive neural tensor network, 286
regression, 299
relational database management systems, 23
resilient distributed datasets (RDDs), 255-257
RSS

defined, 299
text ingestion via, 21

S
scale-free networks, 198
scaling text analytics, 241-271

cluster computing with Spark, 253-270
Python multiprocessing, 242-253

Scikit-Learn
about, xiii
frequency vectors in, 58
LDA with, 112-114
LSA with, 119
NNMF with, 122
one-hot encoding with, 60
Pipeline object, 74-79
TF–IDF text vectorization with, 64

Scikit-Learn API, 68-74, 70-74
BaseEstimator interface, 68
creating a custom Gensim vectorization

transformer, 70
creating a custom text normalization trans‐

former, 72-74
extending TransformerMixin, 70-74

scraping, defined, 299
segmentation, 42, 299
semantic analysis, 15
semantics, 15, 299
semi-structured data, 8
sentence boundaries, defined, 299
sentences, 20, 42
sentiment analysis, 13

bag-of-keyphrases approach to, 287-291
deep structure analysis, 286-291
defined, 83, 299
neural networks and, 284-291

separability, 86
Shannon–Weaver model, 208
shortest path, defined, 299
significant collocations, 136
silhouette coefficient, 178, 299
silhouette score, 299
singular value decomposition (SVD)

defined, 300
LSA and, 119

size (graphs), 187, 300
small world phenomenon, 200
smoothing, 145-147
social graphs

centrality, 193-197
creating, 189-192
finding entity pairs, 190
implementing graph extraction, 191
insights from, 192-200
property graph model, 191
structural analysis, 197-200

spaCy, xiii
Spark

about, 254
client mode vs. cluster mode, 254
cluster computing with, 253-270
distributing corpus, 255-259
feature extraction for NLP, 262-264
MLLib, 260-262
NLP with, 259-270
RDD operations, 257-259

308 | Index

speeding up NLP with, 267-270
text classification with MLLib, 266-267
text clustering with MLLib, 264-266

spawning, 243
speech data, 5

(see also chatbots)
Sqlite database, reading a corpus from, 34
steering, 177-179, 300

(see also visual steering)
stemming, 72
stopwords

defined, 300
TF-IDF and, 65

structural analysis, 197-200
structured data, 8
supervised learning, classification as, 82
support, in classification model evaluation, 93
symbolic language model, 300
synsets, 185, 300
syntactic analysis, 15
syntactic parsers, 127
syntax, 15, 300

T
t-distributed stochastic neighbor embedding (t-

SNE)
cluster visualization with, 170-172
defined, 300

tagging, part-of-speech, 44, 162-165
task parallelism, 241
TensorFlow, 280
term frequency-inverse document frequency

(TF–IDF)
computing, 63
defined, 300
Gensim text vectorization, 64
NLTK text vectorization, 63
Scikit-Learn text vectorization, 64
text vectorization, 62-65

text analysis
tools for, xii

text classification, 81-96
about, 82-85
building a text classification application,

85-95
building an application for, 85-95
classifier models, 84
cross-validation, 86-89
identifying classification problems, 82-84

model construction, 89-91
model evaluation, 91-94
model operationalization, 94
visualizing classes, 172
with MLLib, 266-267

text meaning representations (TMRs), 183
text normalization transformer, 72-74
text vectorization, 55-68

distributed representation, 65-68
frequency vectors, 57-59
one-hot encoding, 59-62
TF–IDF, 62-65
with BOW, 56

text visualization, 151-180
feature space visualization, 152-170
model diagnostics, 170-176
visual steering, 177-179

TF–IDF distance, 101
thematic meaning representations (TMRs), 15
thesaurus, graph-based, 185
thread, 242
tokenization, 43, 300
tokens

defined, 300
language models and, 9
part-of-speech tagging, 44
words vs., x

topic modeling, 111-123
defined, 300
latent semantic analysis (LSA), 119-121
non-negative matrix factorization (NNMF),

121
with latent Dirichlet allocation (LDA),

111-118
training and test splits, 300
transformations

creating a custom Gensim vectorization
transformer, 70

creating a custom text normalization trans‐
former, 72-74

defined, 257
pipelines and, 74-79
Scikit-Learn API, 68-74

transformer, defined, 70, 300
transitivity, 199, 301
traversal, defined, 301
tweets, 24

Index | 309

U
underfitting, 86, 301
unstructured data, language as, 8
unsupervised learning

defined, 301
for exploratory text analysis, 97-99

utterance
defined, 301
semantics and, 15

V
variance

bias-variance trade-off, 86
defined, 301

vectorization, 301
(see also text vectorization)

visual feature analysis, 152-162
co-occurrence plots, 157-159
n-gram viewer, 153
network visualization, 154-157
text x-rays and dispersion plots, 159-162

visual steering, 177-179
elbow curves, 179
silhouette scores, 178

visualization
defined, 151

network, 154-157
of class, 172
of cluster, 170-172
of feature space, 152-170

visualizer, defined, 301

W
word sense, 13, 301
word2vec algorithm, 66, 301
words, tokens vs., x
write-once, read-may (WORM) storage, 23, 301

Y
Yellowbrick, 165-169

about, xiii
FreqDistVisualizer, 166
loading datasets, 165
PosTagVisualizer, 163
TSNEVisualizer, 171

Z
Zipfian (long tail) distribution

defined, 297
frequency-based encoding and, 59

310 | Index

About the Authors
Benjamin Bengfort is a data scientist who lives inside the Beltway but ignores poli‐
tics (the normal business of DC) favoring technology instead. He is currently work‐
ing to finish his PhD at the University of Maryland where he studies machine
learning and distributed computing. His lab does have robots (though this field of
study is not one he favors) and, much to his chagrin, they seem to constantly arm said
robots with knives and tools; presumably to pursue culinary accolades. Having seen a
robot attempt to slice a tomato, Benjamin prefers his own adventures in the kitchen
where he specializes in fusion French and Guyanese cuisine as well as BBQ of all
types. A professional programmer by trade, a Data Scientist by vocation, Benjamin’s
writing pursues a diverse range of subjects from Natural Language Processing, to
Data Science with Python to analytics with Hadoop and Spark.

Dr. Rebecca Bilbro is a data scientist, Python programmer, teacher, speaker, and
author in Washington, DC. She specializes in visual diagnostics for machine learning,
from feature analysis to model selection and hyperparameter tuning, and has conduc‐
ted research on natural language processing, semantic network extraction, entity res‐
olution, and high dimensional information. An active contributor to the open source
software community, Rebecca enjoys collaborating with other developers on inclu‐
sive, high-impact projects like Yellowbrick—a pure Python package that aims to take
predictive modeling out of the black box. In her spare time, she can often be found
either out-of-doors riding bicycles with her family or inside practicing the ukulele.
Rebecca earned her doctorate from the University of Illinois, Urbana-Champaign,
where her research centered on communication and visualization practices in engi‐
neering.

Tony Ojeda is a data scientist, author, and entrepreneur with expertise in business
process optimization and over a decade of experience creating and implementing
innovative data products and solutions. He is the founder of District Data Labs, a data
science consulting and corporate training firm, research lab, and open source collab‐
orative where people from diverse backgrounds come together to work on interesting
projects, push themselves beyond their current capabilities, and help each other
become more successful data scientists. He also cofounded Data Community DC, a
professional organization that supports and promotes data scientists and the work
they do. In his spare time, he enjoys swimming, running, practicing martial arts, as
well as discovering delicious restaurants to patronize and fascinating TV shows to
watch. Tony has a Masters in Finance from Florida International University and an
MBA with concentrations in Strategy and Entrepreneurship from DePaul University
in Chicago.

Colophon
The animal on the cover of Applied Text Analysis with Python is the kit fox (Vulpes
macrotis), a small mammal native to the American Southwest and northern Mexico.
It is the smallest species of fox in North America, with a weight ranging from 3.5 to 6
pounds and height ranging from 17.9 to 21.1 inches. Notably, kit foxes have dispro‐
portionately large ears, which give them excellent hearing and allow them to regulate
their body temperature. They have a gray fur coat, often with red and orange color‐
ing.

Kit foxes live in dry, desert regions and are nocturnal, hunting their prey at night.
They eat smaller mammals like mice, rabbits, and voles, along with insects, lizards,
and birds. Kit foxes are socially monogamous, mating annually between December
and February. Litters are born in March and April and usually contain 1 to 7 pups.
Both parents assist in rearing the young, who become independent and leave the
communal den after 5 to 6 months.

Although kit foxes are not currently listed as endangered, there are no reliable esti‐
mates of their population. There are indications that their population is declining in
areas where agriculture has spread into previously uninhabited regions. They also
face intense competition for prey with other predators, such as coyotes, bobcats, and
golden eagles.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Computational Challenges of Natural Language
	Linguistic Data: Tokens and Words
	Enter Machine Learning

	Tools for Text Analysis
	What to Expect from This Book
	Who This Book Is For
	Code Examples and GitHub Repository
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Language and Computation
	The Data Science Paradigm
	Language-Aware Data Products
	The Data Product Pipeline

	Language as Data
	A Computational Model of Language
	Language Features
	Contextual Features
	Structural Features

	Conclusion

	Chapter 2. Building a Custom Corpus
	What Is a Corpus?
	Domain-Specific Corpora
	The Baleen Ingestion Engine

	Corpus Data Management
	Corpus Disk Structure

	Corpus Readers
	Streaming Data Access with NLTK
	Reading an HTML Corpus
	Reading a Corpus from a Database

	Conclusion

	Chapter 3. Corpus Preprocessing and Wrangling
	Breaking Down Documents
	Identifying and Extracting Core Content
	Deconstructing Documents into Paragraphs
	Segmentation: Breaking Out Sentences
	Tokenization: Identifying Individual Tokens
	Part-of-Speech Tagging
	Intermediate Corpus Analytics

	Corpus Transformation
	Intermediate Preprocessing and Storage
	Reading the Processed Corpus

	Conclusion

	Chapter 4. Text Vectorization and Transformation Pipelines
	Words in Space
	Frequency Vectors
	One-Hot Encoding
	Term Frequency–Inverse Document Frequency
	Distributed Representation

	The Scikit-Learn API
	The BaseEstimator Interface
	Extending TransformerMixin

	Pipelines
	Pipeline Basics
	Grid Search for Hyperparameter Optimization
	Enriching Feature Extraction with Feature Unions

	Conclusion

	Chapter 5. Classification for Text Analysis
	Text Classification
	Identifying Classification Problems
	Classifier Models

	Building a Text Classification Application
	Cross-Validation
	Model Construction
	Model Evaluation
	Model Operationalization

	Conclusion

	Chapter 6. Clustering for Text Similarity
	Unsupervised Learning on Text
	Clustering by Document Similarity
	Distance Metrics
	Partitive Clustering
	Hierarchical Clustering

	Modeling Document Topics
	Latent Dirichlet Allocation
	Latent Semantic Analysis
	Non-Negative Matrix Factorization

	Conclusion

	Chapter 7. Context-Aware Text Analysis
	Grammar-Based Feature Extraction
	Context-Free Grammars
	Syntactic Parsers
	Extracting Keyphrases
	Extracting Entities

	n-Gram Feature Extraction
	An n-Gram-Aware CorpusReader
	Choosing the Right n-Gram Window
	Significant Collocations

	n-Gram Language Models
	Frequency and Conditional Frequency
	Estimating Maximum Likelihood
	Unknown Words: Back-off and Smoothing
	Language Generation

	Conclusion

	Chapter 8. Text Visualization
	Visualizing Feature Space
	Visual Feature Analysis
	Guided Feature Engineering

	Model Diagnostics
	Visualizing Clusters
	Visualizing Classes
	Diagnosing Classification Error

	Visual Steering
	Silhouette Scores and Elbow Curves

	Conclusion

	Chapter 9. Graph Analysis of Text
	Graph Computation and Analysis
	Creating a Graph-Based Thesaurus
	Analyzing Graph Structure
	Visual Analysis of Graphs

	Extracting Graphs from Text
	Creating a Social Graph
	Insights from the Social Graph

	Entity Resolution
	Entity Resolution on a Graph
	Blocking with Structure
	Fuzzy Blocking

	Conclusion

	Chapter 10. Chatbots
	Fundamentals of Conversation
	Dialog: A Brief Exchange
	Maintaining a Conversation

	Rules for Polite Conversation
	Greetings and Salutations
	Handling Miscommunication

	Entertaining Questions
	Dependency Parsing
	Constituency Parsing
	Question Detection
	From Tablespoons to Grams

	Learning to Help
	Being Neighborly
	Offering Recommendations

	Conclusion

	Chapter 11. Scaling Text Analytics with Multiprocessing and Spark
	Python Multiprocessing
	Running Tasks in Parallel
	Process Pools and Queues
	Parallel Corpus Preprocessing

	Cluster Computing with Spark
	Anatomy of a Spark Job
	Distributing the Corpus
	RDD Operations
	NLP with Spark

	Conclusion

	Chapter 12. Deep Learning and Beyond
	Applied Neural Networks
	Neural Language Models
	Artificial Neural Networks
	Deep Learning Architectures

	Sentiment Analysis
	Deep Structure Analysis

	The Future Is (Almost) Here

	Glossary
	Index
	About the Authors
	Colophon

