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Model Uncertainty, Data Mining and Statistical Inference

By CHRIS CHATFIELDY
University of Bath, UK

[Read before The Rayal Statistical Society on Wednesday, January 18th, 1993, the President,
Prafessor D, J. Bartholomew, in the Chair]

SUMMARY
This paper takes a broad, pragmatic view of statistical inference to include all aspects of
model formulation. The estimation of model parameters traditionally assumes that
a model has a prespecified known form and takes no account of possible uncertainty
regarding the model structure. This implicitly assumes the existence of a ‘true’ model,
which many would regard as a fiction. In practice model uncertainty is a fact of life and
likely to be more serious than other sources of uncertainty which have received far more
attention from statisticians. This is true whether the model is specified on subject-matter
grounds or, as is increasingly the case, when a model is formulated, fitted and checked
on the same data set in an iterative, interactive way. Modern computing power allows a
large number of models to be considered and data-dependent specification searches have
become the norm in many areas of statistics. The term data mining may be used in this
context when the analyst goes to great lengths to obtain a good fit. This paper reviews the
effects of model uncertainty, such as too narrow prediction intervals, and the non-trivial
biases in parameter estimates which can follow data-based maodelling, Ways of assessing
and overcoming the effects of model uncertainty are discussed, including the use of simulation
and resampling methods, a Bayesian model averaging approach and collecting additional
data wherever possible. Perhaps the main aim of the paper is to ensure that statisticians
are aware of the problems and start addressing the issues even if there is no simple, general
theoretical fix.
Keywords: AUTOREGRESSIVE MODEL; BAYESIAN MODEL AVERAGING; DATA MINING;
FORECASTING; MODEL BUILDING; RESAMPLING; STATISTICAL INFERENCE;
SUBSET SELECTION

1. INTRODUCTION

It is hard to set universally acceptable limits on the scope of statistical inference.
Much traditional theory (e.g. Silvey (1970) and Cox and Hinkley (1974)) is concerned
with the following interesting, but narrow, problem. A family of parameter-indexed
probability models, P, is postulated. The analyst then examines whether a given single
sample of data is consistent with P, and, if so, estimates and/or tests hypotheses
about the parameter(s) of P. The members of P usually differ only in the parameter
values, and the structure of P is assumed known. Silvey admits that ‘the setting
up of an appropriate probability model. .. calls for considerable experience and
judgement’ but makes ‘no attempt té discuss this aspect of the subject’.

Most statisticians would agree that their work covers a wider ambit than the above,
and modern inference is concerned with model selection and model criticism as well
as estimation and hypothesis testing. Some statisticians would widen inference further
to include prediction, but for the purposes of this paper there is no need to set

tAddress for correspandence: Schoal of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK.
E-mail: cc@maths.bath.ac.uk

©19495b Royal Statistical Society 0035-9238/95/158419



420 CHATFIELD [Part 3,

exact limits in this regard. However, I do wish to widen statistical inference to include
the whole model building process which has four main components, namely

(a) model formulation (or model specification),

(b) model fitting (or model estimation),

(c) model checking {or model validation) and

(d) the combination of data from multiple sources (e.g. meta-analysis).

The broad view of statistical inference taken above is consistent with what
Chambers (1993) called ‘Greater statistics’, and with what Wild (1994) called a ‘wide
view of statistics’. The statistical scientist (as opposed to the statistician?) should
be concerned with the investigative process as a whole and realize that model building
is itself just part of statistical problem solving (e.g. Chatfield (1995)). Probiem
solving, like model building (see Section 3), is generally an iferative process (see for
example Box (1994) on the continuing search for quality improvement) and involves
wider expertise such as

(i) problem formulation, including clarification of objectives,

(i) consulting skills—the ability to advise and collaborate with investigators from
other disciplines and

(iii) the interpretation and communication of the results.

I cannot overstress the importance of thinking carefully about such issues as what
problem needs to be solved and what data need to be collected, but say no more about
these wider issues here except to note the need for a better balarice between the three
lavers of a study, namely

(i) the problem,
(ii) the theory or model and
(ili) the data,

as Leamer (1992) has argued in an econometric context. It is my experience that
students typically know the technical details of regression for exampie, but not
necessarily when and how to apply it. This argues the need for a better balance in
the literature and in statistical teaching between fechniques and problem solving
strategies.

A discussion of component (d) of model building is deferred until Section 6. The
model fitting component (b) usually appears straightforward nowadays, thanks to
packages which can estimate the parameters of most types of model (though there
is a danger that the analyst will choose a model to fit the software rather than vice
versa). Packages also typically carry out a range of routine model checks. In contrast,
model formulation is often much harder. The more recent references give guidance
on model selection methods for choosing a ‘best’ model from two or more prespecified
models having different structures, but rather little help on model formulation in
its widest sense—how do you choose the models to be considered? This is arguabiy
the most important and most difficult aspect of model building and vet is the one
where there is least help (honourable exceptions include Leamer (1978) and Gilchrist
(1984)). A model may be specified partly or wholly on externai subject-matter grounds
or from past data but is increasingly determined partly or wholly from the present
data, perhaps by searching over a wide range of models by using modern computing
power, Then the analyst will typically select the model which is best acccording
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to some predetermined criterion. Having done this, the analyst proceeds to estimate
the parameters of this best model by using the same techniques as in traditional
statistical inference where the model is assumed known a priori. It is ‘well known’
to be ‘logically unsound and practically misleading’ (Zhang, 1992) to make inferences
as if a model is known to be true when it has, in fact, been selected from the same
data to be used for estimation purposes. However, although statisticians may admit
this privately (Breiman (1992) calis it a ‘quiet scandal’), they (we) continue to ignore
the difficulties because it is not clear what else couid or should be done. Little theory
is available to guide us, and the biases which result when a model is formulated and
fitted to the same data are not well understood. Such biases will be called model
selection biases. This term is a slight generalization of the term ‘selection bias’
introduced by Miller (1990), p. 111, which referred only to biases in estimates of
regression coefficients.

Even when a model is supposedly known a priori, it is advisable to remember that
there will still be model uncertainty in that the model may be ‘wrong’ or at best an
approximation. Today’'s analyst is unlikely to proceed without conducting some
exploratory data analysis and model checks, and so subsequent inferences may be
biased by being carried out conditionally on some features of the data having been
examined or tested.

There are typically three main sources of uncertainty in any problem (Draper
et al., 1987; Hodges, 1987):

{a) uncertainty about the structure of the model;

(b) uncertainty about estimates of the model parameters, assuming that we know
the structure of the model;

(¢) unexplained random variation in observed variables even when we know the
structure of the model and the values of the model parameters.

Uncertainty about model structure can arise in different ways such as

(i) model misspecification (e.g. omitting a variable by mistake),
(ii) specifying a general class of models of which the true model is a special, but

unknown, case or
(iii) choosing between two or more models of quite different structures.

Statistical theory has much to say about (b) and (¢) and about the mechanics of
the choice in (ii) (e.g. F-tests in analysis of variance (ANOVA)), but it has little to
say about (iii) and even less about (i), and largely ignores the effects of (a) in ensuing
inferences. This is very strange given that errors arising from () are likely to be far
worse than those arising from other sources. For example, multiple-regression theory
tells us about the errors resulting from having estimates of regression coefficients
rather than their true values, but these errors are usually much smaller than errors
resulting from misspecification, such as omitting a variable by mistake, failing to
include non-linear terms, or failing to take account of the fact that the explanatory
variables have been selected from a larger set.

This paper discusses model uncertainty in general. In particular it demonstrates
the non-trivial biases which can result from data-dependent specification searches.
Methods for assessing the size of the problem and of overcoming it are discussed
but no simpie general solution is found. This partially explains why so little is
said about model uncertainty in the statistical literature. Valiant exceptions include
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Leamer (1978) (especially chapter 1-—a book sadly neglected by statisticians), Hodges
(1987), the collection of papers in Dijkstra (1988), Miller’s (1990) study of subset
selection in multipie regression, Faraway’s (1992) simulation study of regression model
selection, Pdtscher (1991a), Draper’s (1995) review of the Bayesian model averaging
approach and the work of Hjorth (1982, 1987, 1989, 1990, 1994} and Hjorth and
Holmqvist (1981). Yet as computers allow us to examine and compare increasingly
more maodels, the problem is becoming increasingly serious. Perhaps the main message
of this paper is that, when a model is formulated and fitted to the same data,
inferences made from it will be biased and overoptimistic when they ignore the data
analytic actions which preceded the inference. Statisticians must stop pretending that
model uncertainty does not exist and begin to find ways of coping with it.

2. EXAMPLES

We begin with some simple exampies to iliustrate the effects of formulating and
fitting a model to the same set of data.

2.1. Example 1: Estimating the Mean of a Normal Distribution

A basic inference problem is that of estimating the unknown mean of a normal
distribution from a simple random sample. In practice the analyst will rarely assume
normality @ priori, but rather will start by assessing whether the data really are (at
least approximately} normally distributed. This can be done with a formal test of
significance or more informally by just looking at a histogram or graph of normal
scores. The analyst may also consider transforming the data as well as rejecting or
adjusting outlying values to make the data ‘more normal’. (Whether and when such
actions are justifiable is of course another matter.) The analyst proceeds to estimate
the mean only if the data ‘pass’ this assessment procedure, possibly after some
manipulation. The whole data analytic process can be regarded as a form of model
building and the resulting normal assumption as the model. Subsequent inferences
should then really be carried out conditionally on this preliminary assessment, but
in practice the preliminary data analysis is customarily ignored. What effect does
this have? I am not aware of any help in the literature on this question. Moreover
we should perhaps step back from the specific inference prolem and ask more broadly
why the data have bheen collected and what background information is available. In
other words we should also ask whether, and to what extent, problem formulation
affects inference.

2.2, Example 2: Linear Regression

A bivariate random sample is taken on a response variable ¥ and a possible
explanatory variable x to fit a linear regression equation of the form E(¥|x) = o + fx.
A common procedure (rightly or wrongly) is to find the least squares estimator of
B, say 8, and then to fit the line provided that 6 is significantly different from 0.
Having done this, the analyst must realize that 3 is no longer unbiased for g, but
that its properties will depend on the data analytic actions which preceded the
caleulation of 3. If we restrict attention to those cases where a line is fitted, the
appropriate (conditional) expectation of 3 is

E(B|3 is significantly different from 0).
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It is intuitively obvious that this conditional expectation is #of equal to 8 as can readily
be demonstrated either analytically or by simulation. The bias will be negligible
when 3 is ‘large’ (where the meaning of large depends of course on the sample
size and the residual variance) but may be substantial (e.g. over 40% in one simulation)
and of practical importance when the residual variance is large and/or the sample
size is small. Essentially the bias arises because we may choose an underparameterized
model. The bias will vanish asymptotically.

If we regard not fitting a line as a special case of linear regression with 8 =0, then
the (unconditional) estimator that is actually being used here may be written in the form
s (A 3 is significant,

Ber= 1 ¢ otherwise.
In this form it can be seen that it is a simple example of what econometricians call
a pretest estimator (e.g. Judge and Bock (1978)). It is immediately apparent that
E(Bpr) is not generally equal to the unconditional expectation E(3) which assumes
that the least squares line is always fitted. Moreover it can be shown that the
sampling distribution of Bpr has a different variance, and a different shape, from
that of 4.
The two morals of this example are that

(a) least squares theory does not apply when the same data are used to formulate

and fit a model, and
(b) the analyst must always be clear exactly what any inference is conditioned on.

2.3. Example 3: Multiple Regression

The bias in example 2 is magnified in multiple regression when subset selection
of the explanatory variables is allowed (e.g. Miller (1990), Hurvich and Tsai (1990)
and Pétscher (1991Db)). A typical example cited by Miller (1990), p. 92, from Rencher
and Pun (1980) is the following. Generate x random variables on a normally distributed
response variable and on & independent additional variables which will be treated
as if they were potential explanatory variables. Thus the true model here is the null
model, but suppose that we nevertheless select the best subset of p ‘explanatory’
variables by using Efroymson’s algorithm and evaluate the resulting coefficient
of determination, R%. This procedure can be repeated many times to obtain the
null distribution of R? by simulation. When n=20, k=10 and p=4, the average
value of R? is found to be 0.42 with upper percentile R, =0.66. The ‘usual’
test on the observed value of R?, which depends on # and p only and ignores
the subset selection, has R}, =0.45. Thus an observed relationship obtained
by the above procedure for which 0.45<R?<0.66 would look ‘interesting’ and
be judged ‘significant’ by the usual test, but could be spurious. Notice that four
variables can be chosen from 10 variables in 210 ways, so that 210 models are effectively
considered. If data analytic actions such as outlier rejection are allowed, the effective
number of models is even higher so that inferences which ignore the model selection
procedure will be even more biased (e.g. Adams {1991), Kipnis (1991) and Faraway
(1992)).

Of course we could argue that this example is being unfair to statisticians in that
it could be silly to choose the best four variables when not all the relevant coefficients
are significant. However, the point of the example is to demonstrate the nature
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of mode! selection bias rather than to attempt to simulate a more realistic, but even
more complex, model building strategy.

The moral is that subset selection can be dangerous using traditional inferential
methods which do not take account of the model selection process.

2.4, Example 4: An Autoregressive Model
Consider the first-order autoregressive (AR(1)) time series model, namely

X,=aX,_ | +¢

where |o| < I for stationarity and {¢,] are independently and identically distributed
(IID) N(0, ¢%). Suppose that u observations are generated from this model (together
with an appropriate start-up sequence to obtain a suitable value for X,). It is
straightforward to fit an AR(1) model to the data, but suppose that we are not sure
whether the model is really appropriate (as would normally be the case for real data).
The identification process for autoregressive integrated moving average (ARIMA)
models is complex and hard to formalize. So for illustration consider the following
simple (perhaps oversimplified) time series version of the procedure in example 2,
namely

(a) calculate the first-order autocorrelation coefficient r,

(b) test the value of r, to see whether it is significantly different from 0 and

(c) if it is, estimate « and fit the AR(1) model, but, if not, assume that the data
are white noise.

Taking n=30 and «=0.4 as an example, 250 time series were independently
simulated, the resulting value of r, was calculated for each series and then an AR(1)
model was fitted if r, was significantly different from 0 (using the approximate
critical value 2/.[n=0.36). At first we used the ordinary least squares (Yule-Walker)
estimator for e« based on r,, forgetting that this is seriously biased for small values
of n. The simulated unconditional mean of ¢yw was 0.319 which is in line with the
theoretical result in Kendall ef af. (1983), p. 552. This is 20% below the true value
of 0.4 and is also worse than the asymptotic results of Shaman and Stine (1988) would
suggest. The simulated conditional mean of &yyw when r, is significant turns out to
be 0.484. This is more than 20% above the true value and so the model selection
bias has cancelled out the bias in the Yule—Walker estimate but introduced as large
a bias in the opposite direction.

The bias in the (unconditional) Yule-Walker estimate reminds us that there can
be serious biases in ARMA model parameter estimators for small samples {e.g. Ansley
and Newbold (1980Y) and that different gstimation procedures (which depend primarily
on how the start-up observations are treated) can give substantially different results
for small samples (e.g. de Gooijer (1985)). When the above simulation was repeated
using the non-linear least squares estimation procedure in the MINITAB package,
the unconditional mean of @ was found to be 0.39 whereas the conditional mean
exceeds 0.5. Thus a nearly unbiased estimator is turned into an estimator with a
serious bias.

The above model selection procedure is much simpler than would normally be the
case in time series analysis. It is more usual to inspect the autocorrelations and
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the partial autocorrelations, to allow differencing, to allow the removal or adjustment
of outliers and to entertain all ARIMA models up to say third order. Choosing a
best model from such a wide set of possibilities seems likely to make the model selection
biases even larger.

Hjorth’s (1994) example 2.2 discusses the related case of distinguishing between
an AR(1) and an AR(2) model; two other interesting time series examples from Hjorth
(1987) are discussed in Section 4.1.

The moral of this example is that estimation biases are likely to be widespread in
time series analysis where it is standard practice to formulate and fit a ‘best fitting’
model to the (one and only) data set.

2.5. Example 5: What is the Problem?

Problem formulation is crucial in the possible presence of model uncertainty. An
example from time series analysis will make the point. Much effort (e.g. Ahn (1993))
has been devoted to developing methods for testing for the presence of a unit root,
which would mean that the given series is non-stationary, but that its first differences
are stationary. Although the presence of a unit root can be of particular interest (e.g.
in the search for co-integration), it is hard to see why the presence of a unit root
should be chosen as the rull hypothesis (and Leybourne and McCabe (1994) provide
a different approach where it is the alternative hypothesis). The desire to carry out
many tests stems from the ingrained idea that there is a true model, and from the
implicit notion that a unit root either exists or does not exist. In practice we shall
never know whether a unit root really exists, or whether such a structure is appropriate
for part of the series, or whether the degree of differencing changes over time or
whether there is some other explanation for apparent non-stationary behaviour.
Rather than carrying out such a test (which may in any case give inaccurate levels
of significance or power), it could be better to admit the possibility of model
uncertainty and to allow for this by making deductions based on averaging over several
plausible alternative models, or by choosing a flexible procedure which does not force
a particular form of model on the data. For example in forecasting it is generally
preferable to model changes in level with a local linear trend, which can vary
stochastically, rather than to adopt a deterministic linear trend. The point is that a
test for a unit root is unlikely to be the main objective of the analysis, and could
be positively unhelpful in diverting attention from the need to find a flexible approach
to solve the given problem.

3. MODEL BUILDING

The overall model building process involves formulating, fitting and checking a
model in an iferative, interactive way (e.g. Box (1976, 1980)). Model estimation is
generally carried out on the assumption that the model is known a priori and
is true (Box (1994), p. 221). This means that it should have been prespecified on
subject-matter considerations such as accepted theory, expert background knowledge
and prior information including that obtained from previous similar data sets (though
not necessarily in a Bayesian way). Expert background knowledge could include
knowing which variables to include, and making sure that the model allows for known
constraints (on both the variables and the model parameters) and for known limiting
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behaviour. However, the external specification of a model does not mean that
model uncertainty is eliminated, since the ‘expert’ may for example erroneously
omit an important variable. Our knowledge about the world is always incomplete
(Box (1993), p. 3). Thus the unexplained random variation will depend not only on
unknown variations in sampling units and nuisance variables but also on all the
ignored variables and factors. Model uncertainty seems likely to be more serious in
what W. E. Deming has called an analiytic study (e.g. Hahn and Meeker (1993)) and
in scientific areas (e.g. economics) where careful enumeration and control of variables,
as in laboratory-based experiments, is not possible, Proxy, or surrogate, variables
are sometimes used to try to account for missing variables but it is not obvious in
general how to deal with model misspecification.

One possible way to circumvent some types of model uncertainty is to use
nonparametric procedures which make far fewer model assumptions. Although such
methods have their place, particularly in hypothesis testing, they are outside the scope
of this paper. Likewise we say nothing about robust procedures which can avoid
problems due to misspecification of secondary assumptions {e.g. Cox and Snell (1981),
p- 18) but do nothing about the primary assumptions judged central to the problem.

This paper is concerned mainly with models that are not fully specified a priori,
but rather are formulated, at least partially, by looking at the sgme data as those
later used to fit the model. This practice is increasingly common. It arises in submodel
selection in such areas as time series analysis, regression, generalized linear modelling,
ANOVA and the analysis of discrete data, as well as in the situation where the analyst
looks at a new set of data with virtually no preconceived ideas at all. The rather
derogatory terms data mining (e.g. Lovell (1983)) and data dredging are sometimes
used in this context to describe procedures of the last type, particularly when the analyst
eschews careful thought based on external knowledge in favour of deriving the best
possible fit from a large number of entertained models. The extent of data mining
is unclear, though my, admittedly subjective, impression is that certain forms of it
are widespread, particularly in subset selection procedures and in time series analysis.
The analyst who is willing to entertain any subset of 10 possible explanatory variables
with only 20 observations is displaying not so much a caricature but more a somewhat
extreme version of behaviour which can be all too familiar. The effect of data mining
is not well understood in general. Some limited results are known—see Section 4—but,
in most areas of statistics, inference seems to be generally carried out as if the analyst
is sure that the true model is known, It is indeed strange that we often admit model
uncertainty by searching for a best model but then ignore this uncertainty by making
inferences and predictions as if certain that the best fitting model is actually true.

40 years ago it may have been true that a single model was typically fitted to a
given set of data. Nowadays the increase in computing power has completely changed
the way in which statistical analyses are-typically carried out (not necessarily for the
better!}. For example Leamer (1978) distinguished six different approaches to model
building, called specification searches, namely the data-dependent process by which
a researcher is led to select a particular model specification. A model is often selected
from a wide class of models by optimizing a statistic such as the adjusted R? or
Akaike’s information criterion (AIC), and there are many references on model
selection, especially in time series analysis—see for example the reviews by de Gooijer
et al. (1985) and Choi (1992). The data analysis procedure may also involve strategies
such as
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(a) excluding, downweighting or otherwise adjusting outliers and influential
observations and

(b) transforming one or more variables, for example to achieve normality, additivity
and/or constant residual variance.

As a result the analyst may in effect consider tens, hundreds or even thousands
of models, and there is a clear risk that the search for a good fit will turn into data
mining. The use of transformations and the deletion of outliers are particularly
dangerous actions except where they can be justified on subject-matter grounds. Qutliers
for example should be discarded only if they are thought to be non-exchangeable
with other observations on good substantive grounds. Otherwise predictive uncertainty
will be underestimated. If the position is unclear, it may be advisable to carry out
two analyses, both with and without outliers. If the findings differ, both should
be reported.

Unfortunately statistical theory has not kept pace with this computer-led revolution,
and still typically assumes that the model is known. Yet, as illustrated in example 2,
standard least squares theory, which we (nearly) all teach and use, does not apply
when the same data are used to formulate and fit a model. Unfortunately there
has been very little published work on inference after model selection, as reviewed
in Section 4. The analyst needs to assess the model selection process and not just
the best fitting model (Hjorth, 1989; Kipnis, 1991), but this is difficult in practice
when complicated screening procedures are used where the rules of search may
be informal and may involve subjective judgment. As such, they are hard to put
in a satisfactory mathematical framework and may not be amenable to theoretical
analysis. Even when a model is data driven in a clearly defined way, the frequentist
approach still cannot readily handle model uncertainty. This is no doubt why we
‘too often concentrate on the deductive bit (statistical inference) and pretend the
rest does not exist’ (Box, 1990). It is also relevant to read Tukey’s (1991), p. 128,
remarks comparing the classical text-book paradigm with an alternative real life
paradigm which does allow for the possibility that the model is unknown, that
informal judgments must be made (based on simulation and experience as well
as mathematics) and that no formal structure may be possible. What is clear is
that most references on parameter estimation disregard the model selection process
and are therefore fundamentally incomplete.

The literature on model checking seems equally suspect. It is known to be
theoretically desirable for a hypothesis to be validated on a second confirmatory
sample (see Section 6), but this seems to be rather rare in practice (except perhaps
in clinical trials). Rather, diagnostic checks are typically carried out on the
same data as those used to fit the model. If necessary the model is then modified
and a revised model fitted. This iterative process can continue indefinitely,
but still using the same deta. Now diagnostic tests typically assume that the
model is specified a priori and calculate a P-value as Probability(more extreme
result than the one obtained|model is true). But, if the model is formulated, fitted
and checked using the same data, then we should really calculate Probability(more
extreme result than the one obtained|model has been selected as ‘best’ by
the model formulation procedure). It is not clear in general how this can be
calculated. What is clear is that the good fit of a best fitting model should not

be surprising!
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3.1. Is there a True Modei?

A crucial question in model building is the attitude that one takes to the existence
of a true model. By assuming exact knowledge of the model structure, estimation
theory implicitly assumes that an exact true model does exist. In practice no-one really
believes this. For example Tukey (1994) suggested that we need more honest
foundations for data analysis which do not rely on ‘assuming that we always know
what in fact we never know’, whereas Fildes and Howell (1979) say that ‘It is a truism
of forecasting that the model chosen is misspecified’. The growing disenchantment
with classical inference based on a true model is exemplified in a rather extreme way
by Tsay (1993) who says that ‘Since all statistical models are wrong, the maximum
likelihood principle does not apply’. Instead Tiao and Tsay (1994), p. 129, say that

‘if one accepts the premise that any model is, at best, an approximation, then parameter
estimation should be treated maore in the context of the use for which the model is to be
put rather than as an end in itself’.

This suggests that model builders should adopt a more pragmatic approach in which
they search, not for a true model, but rather for a parsimonious model giving an
adequate approximation to the data at hand—see Box (1976) and Leamer (1978)
(especially chapter 6)—and then concentrate on determining the model’s accuracy
and usefuiness, rather than with testing it (Leamer, 1992). The idea that some models
are useful whereas others are not (e.g. Box (1976) and de Leeuw (1988), p. 120) is
expressed in the well-known saying that ‘All models are wrong, but some are useful’.
Clearly the context and the objectives are key factors in deciding whether a model
is ‘good’ and useful. As well as giving more attention to how a model will be used
(and less to optimizing the goodness of fit), intelligent model building should also
consider the question of costs. For example, when considering whether a possible
additional explanatory variable is worth having in multiple regression, the question
should not be ‘Does it lead to a significant improvement in fit?’ but ‘Does it provide
value for money in improving predictions?’,

The notion that there is no such thing as a true model, but rather that model building
is a continual iterative search for a better model, is arguably in line with the general
philosophy of science. Whereas statistics is often regarded as an inductive science
{data - model) and probability theory as a deductive science (model —» behaviour),
Popper (1959) asserted that scientific theories are not generally derived inductively
from observations. Rather they are invented as hypotheses, speculations and guesses
and then subjected to experimental tests. A theory is scientific only if it is in principle
capable of being tested and hence is open to the risk of refutation. Popper (1959)
also says (p. 251) that ‘theories are not verifiable, but they can be ““corroborated’’’.
In other words a theory, like a statistical model, is never ‘proved’, even when there
is extensive empirical justification for it, but it may be disproved or discredited.
My view is that the iterative model building process involves a mixture of inductive
and deductive reasoning, whereby we search, not for a true maodel, but rather for
a better, and more general, approximate model for data of a similar type collected
under possibly different conditions {see Section 6).

An alternative possibility is that there may be more than one model which may
be regarded as ‘useful’ (i.e. as a sufficiently close approximation to the data for the
purpose at hand). For example Poskitt and Tremayne (1987) discussed how to obtain
a portfolio of plausible models. The notion of having more than one model is a
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key element of the Bayesian model averaging approach (see Section 5) which avoids
having to select a single best model but rather averages over more than one model.
The notion is also implicit in the combination of forecasts (e.g. Clemen (1989)) wherein
time series forecasts are produced by taking a weighted linear combination of the
forecasts obtained from a range of different methods and/or models. A completely
different possibility is to use different models to describe different parts of the data,
rather than to pretend that a single model can describe all the data. This applies
particularly to time series analysis where the properties of the most recent data may
differ markedly from those of earlier data and a global model fitted to all the data
may give poor predictions,

If we do nevertheless select a single model based on some best fit criterion, then
some sort of sensitivity analysis (e.g. Leamer (1985)) seems desirable to see how sensitive
any conclusions are to the model assumptions and to guard partially against the dangers
of data mining. Unfortunately this seems to be rarely attempted.

The more complicated the model that is chosen, the more likely it is that there
will be departures from one or more of the model assumptions. The dangers of
overfitting are ‘well known’, particularly in multiple regression and when fitting
lagged variables in time series models, buf these dangers are not always heeded.
Although a more complicated model may appear to give a better fit, the predictions
from it may be worse. Moreover, the inclusion of unnecessary explanatory variables
has cost implications in that superfluous data will have to be collected and
processed. Neural networks form another class of models which may lead to
overfitting. They have been used successfully in some applications, such as pattern
recognition, but have recently been suggested for use in time series forecasting.
The large number of parameters (and architectures) which may be tried means
that they can usually be made to give a good within-sample fit. However, their
forecasting ability is still unproven (Chatfield, 1993a), and arguably unpromising,
given that past empirical studies suggest that simple time series models often
give as good forecasts as more complicated models. Fildes and Makridakis (1994)
complained that these empirical findings are ignored by theoreticians who continue
to derive results on inference and forecasting which assume the existence of a
true model. Likewise Newbold ef al. (1993) pointed out the difficulty of deciding
on the correct form of differencing when fitting ARIMA models. Having the
‘wrong’ form of differencing may make little difference for short-term forecasts
where

‘the fiction that the analyst has discovered the “‘true’” model is innocuous. Such fiction,
however, is far from innocuous when attempting to base inference about long-run behavior
on these fitted models.’

Mention of time series forecasts brings to mind the distinction between estimating
unobservable quantities, such as population parameters, and predicting observable
quantities, such as future values of a time series. A problem with the former is that
the analyst will never know whether the inferences are good since the estimates cannot
be compared directly with the truth. We arguably need more emphasis on predicting
observables (e.g. Geisser {1993)) because such quantities can be assessed or calibrated,
are less dependent on the existence of a true model and are vita] in assessing whether
a model really is useful. A related point is that models which are mathematically very
different may be virtually indistinguishable in terms of their fit to a set of data but
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give very different predictions outside the range of the data, and this is another
reason for not necessarily trying to pick a single best fitting model.

4, MODEL SELECTION BIASES
This section takes a general look at model selection biases and considers

(a) how to assess the size of the problem and
(b) how to overcome or circumvent the problem.

Cohen and Sackrowitz (1987) say that ‘inference following model selection based
on data is widespread among statistical practitioners’ and that ‘statistical research
on such procedures is fairly extensive’. This may be true in regard to questions
such as assessing whether a model of the correct order is chosen asymptotically and
controlling the overall probability of an error of type I when a series of data-dependent
hypotheses is tested. However, as Potscher (1991a) pointed out, there has been very
little research on inference after model selection. Bhansali (1981) and Shibata {1976)
appear to be addressing the problem when they evaluate the effect of not knowing
the order of an AR process on the mean-squared error of prediction, but in fact they
assume that the model selection and prediction are performed on independent
processes, albeit with the same probabilistic structure. This is not a situation which
I have come across and is not the situation considered in this paper.

Pétscher (1991a) derived two loosely connected results, namely

(a) model parameter estimates are asymptotically consistent (which means that the
bias problem vanishes asymptotically) when model selection criteria are used
which are consistent (e.g. the Bayesian information criteria—Choi (1992)) but
also for some other criteria {e.g. the AIC), and

(b) the asymptotic distribution of parameter estimators is unaffected by model
selection if the selection procedure is consistent but in some other cases (e.g.
AIC and Mallows’s C,) the asymptotic distribution will be different from the
‘asual’ distribution and can be calculated.

Generally speaking the variance will increase as might be expected from the
additional uncertainty due to the model selection process. The shape of the distribution
may also change. Zhang (1992) also looked at asymptotic results for inference on
linear regression models when the final prediction error criterion (e.g. de Gooijer
et al. (1985)) is used to select a model and showed that the asymptotic estimate of
error variance is satisfactory but that asymptotic confidence regions for unknown
parameters are generally too small in that coverage probabilities are less than nominal
probabilities. The guestion then is whether these asymptotic results help us for finite
samples. Certainly they emphasize that, even asymptotically, results may be different
from the ‘usual’ results which ignore the model selection procedure. Thus model
selection biases are not just a ‘small sample’ problem, although they do tend to be
worse for small samples (though a potential danger is that more data mining will
be attempted for larger samples, thereby negating the effects of increased sample size).
Clearly more work is needed to see whether asymptotic resulis are relevant in the
finite sample case.

Some useful non-asymptotic results are given by Hjorth (1989, 1994). They rely
on the fact that the use of a model selection statistic essentially partitions the sample
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space into disjoint subsets. This approach enables the derivation of various inequalities
regarding the expectation of the optimized statistic and also gives further understanding
about estimates of model parameters after model selection. For simplicity this paper
presents a simplified account which restricts attention to distinguishing between just
two models, say M, and M, (neither of which need necessarily be true), and uses a
sensible statistic, say the AIC, to make the choice. This means that we select M| for
a data set whenever the AIC for M, denoted AIC,, is less than that for M,, denoted
AIC,. This effectively partitions the sample space € into two disjoint subsets
(assumed non-empty), say A, where M, is selected and 4, where A is selected.
Hjorth (1989) distinguished between global parameters which are defined for all models
(such as the mean or median) and /ocal parameters which are not defined for all
models (such as AR coefficients in competing AR models of different order). Suppose
that we are interested in estimating a (scalar) local parameter of M, say #, and we
have an estimator 4, which might for example be the maximum likelihood estimator.
The properties of 4 are normally found by taking expectations over the whole sample
space, conditional on the model being true. However, when estimation follows model
selection, as in the above case, the properties of § should arguably be found by taking
expectations over A,. There is no reason why E(8) evaluated over A, should equal
the expectation over  and in general the two quantities will indeed be unequal
(as demonstrated by simulation in example 2 for the local parameter 8 and in
example 4 for the local parameter «). It follows in particular that, if the estimator
§ is unbiased when used without selection, it will generally be biased when used after
selection. However, note that the properties of 8 thus derived are conditional on the
assumptions that

(a) M, is true and
{b) M, is selected when the choice is M| or M,.

It is not clear whether such restrictive conditional results have any real general value
other than to alert us to the implications of inference after model selection.

Suppose instead that & is a global parameter. Then the properties of a global
estimator (defined in different ways for M, and M;) can be found by taking
expectations over £, but the contribution from A, (which assumes M, true) will be
of a form different from that from A, (which assumes M, true). Hjorth’s (1989)
example 2 is an example where the global estimator is biased even though the estimators
for each of the individual models are both unbiased. As Hjorth {1989), p. 107, says,
when studying the properties of such a global estimator from a frequentist point of
view, we must convince the user to consider, not only the selected model, but also
all rejected models and estimators. This is difficult, but we must get over the key
message that the praperties of an estimator may depend, not only on the selected
madel, but also on the selection process (Hjorth, 1990, 1994).

We can also say something about the properties of the statistic used to make the
model selection. It is well known that the fitting of a model typically gives optimistic
results in that performance on new data is on average worse than on the original
data—Picard and Cook (1984) called this ‘The Optimism Principle’. Hjorth (1989)
gave a rather neglected bias theorem which appears intuitively obvious (and can
readily be proved) when looked at from the partitioned sample space point of view,
Essentially it says that E(AIC,,;,) = E{min(AlIC,, AIC,)}< E(AIC;) for both i=1 and
i=2. Thus if M,, for example, happens to be the true model, the expectation of
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AIC,., after the model selection process (where we sometimes choose M, by mistake
because it happens to give a lower AIC) is lower than the (unconditional) expectation
of AIC,. As Hjorth (1989) says

‘it is perhaps not surprising that selection minimizing a criterion will cause underestimation
of this criterion’.

A similar result applies to any sensible loss function, including estimates of residual
variance which are unbiased for a particular model over the whole sample space.

Turning now to hypothesis testing, most statisticians realize that, if a hypothesis
is generated and then tested using the same set of data, the usual P-value is potentially
misleading especially if attention is focused on some ‘unusual’ or ‘unexpected’ feature
of the data. However, it is often unclear Aow to adjust the P-value or even whether
it has any value at all. {The Bonferroni correction to the P-value for the most extreme
of a set of statistics (¢.g. Chatfield (1995)) is a rather unsatisfactory approximation.)
It is disturbing that many research papers report tests only if they yield ‘significant’
results. This practice is rightly deplored (e.g. by Dawid and Dickey (1977)) since it
will conceal the selection process which led to these particular hypotheses being
considered and reported. When (many) non-significant results are not reported, there
is a clear danger of giving too much credence to the significant results (and sometimes
a lack of significance is what is really wanted anyway). In any data-instigated
procedure, the analyst must be clear what the analysis is conditioned on. More generally
it is difficult to assess the effect of carrying out, not one test, but a whole series of
tests, as for example in multiple-comparison problems, in multiple-specification tests
and in the sort of sequential testing which may arise in ANOVA (e.g. Azzalini and
Cox (1984)). The emphasis in published research has been on controlling the overall
probability of a type I error (e.g. Phillips and McCabe (1989)) rather than on assessing
other consequences of multiple testing. It may be possible to allow explicitly for the
fact that a null hypothesis may be (at least partly) determined by the data, as in
the Lilliefors variation of the Kolmogorov test for normality (e.g. Sprent (1993),
p. 77), but this is the exception rather than the rule.

In multiple regression, the use of subset selection methods is well known to introduce
alarming biases (see example 3). Miller (1990), p. 160, suggests that ‘there can be biases
of the order of one to two standard errors in the estimates’ of regression coefficients.
Miller (1990) and Kipnis (1991) have shown that ‘traditional’ results are overoptimistic
and biased with regard to assessing the mean-square prediction error (MSPE). Hjorth
(1982) showed that prediction errors for time series regression data are much larger
when explanatory variables are selected from the data than when a predetermined
model of the same order is specified. Unfortunately these results are often (usually?)
ignored in practice.

Similar biases arise for other classes of model though it is hard to find any
general results on the size of such biases. The bias in estimating the MSPE seems
particularly alarming. From the optimism principle (see above) the within-sample
fit of a model is typically better than out-of-sample forecasts or the fit to a new
sample of data. This is true in regression (the shrinkage effect—see Section 5), in
time series analysis (see Section 4.1) and in other problems (e.g. Efron and Tibshirani
(1993), p. 239). For example anyone who has tried discriminant analysis will know
that the within-sample error rate is typically better (often much better) than the
out-of-sample error rate. This explains why measures of model fit such as Mallows’s
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C, and the AIC can be highly biased in data-driven model selection situations (and
yet the ‘naive use of C, persists’ (Breiman, 1992)). These problems can be partially
overcome by the use of resampling techniques (see below).

4.1. Time Series Analysis

Model selection biases seem likely to be particularly serious in time series analysis,
where we cannot normally replicate a data set. Occasionally a time series model may
be based on background theory (e.g. econometric theory) or on a model fitted to
time series of a similar type. However, this is exceptional and most time series
analyses follow an iterative cycle of model formulation, estimation and diagnostic
checking, as in the Box-Jenkins model building procedure (Box er al. (1994),
section 1.3.2). Yet little is known about the biases that such a procedure will
generate.

Suppose that we start a time series analysis by entertaining the class of ARIMA(p,
d, g) models for say 0<(p, d, ¢) <2, giving a total of 27 possible models. Although
fewer than the 210 models entertained in example 3, the number is still sufficiently
large to indicate substantial model uncertainty and to make it likely that model
selection biases will arise. Furthermore the number of models entertained may increase
during the analysis, as for example if seasonality is found (suggesting a seasonal
ARIMA model), or non-normality (suggesting a transformation), or outliers, or
non-linearities (suggesting a completely different class of models), or discontinuities,
or interventions or whatever. Thus it is hard to see how general theoretical progress
can be made on evaluating the extent of such biases since any results are conditional
on the particular model selection procedure used.

An example of simulation results is Hjorth’s (1987) example 5. Data are generated
from an ARMA(I, 1) model and the model selection procedure allows the AR and
MA orders to be as high as 3 and minimizes the estimated MSPE. The correct type
of ARMA model was found in only 28 out of 500 series. The properties of the
estimates for the 28 series differed greatly from those for all 500 series. The model
selection bias for the MA parameter was particularly bad. For series length 50 and
a true MA parameter of —0.4, the average estimated value for all 495 series giving
estimates satisfying the invertibility and stationarity conditions was —0.413 but was
—0.528 for the 28 series where an ARMAC(1, 1) model was correctly selected. Hjorth
also found alarming results concerning estimates of the MSPE. For each series the
best model was found and the estimated MSPE was calculated. The latter could be
compared with the true MSPE for the true model as well as with the true MSPE for
the fitted model, both of which are known or can be calculated as the series are
simulated. The average estimated MSPE was less than the true MSPE for the true
model and less than a third of the tfue MSPE for the model which was actually
fitted. Once again the best fitting model from a range of entertained models will
make us think that we have a better fit than we really do, whereas our predictions
will generally be much worse than expected.

Hjorth’s {1987) example 7 illustrates the effect of model selection bias on estimates
of the MSPE for multivariate time series models. Forecasts were required for one
particular series in a real data set consisting of 28 series. The number of models
which could be entertained was enormous. Using external knowledge, experts selected
just five series to base forecasts on. The resulting model was compared with the



434 CHATFIELD [Part 3,

best fitting model using a subset of all 28 series. The latter naturally had a lower
mean-squared error as regards fit but gave worse predictions as judged by forward
validation (a time series version of cross-validation—see Hjorth (1994), chapter 4).

An immediate consequence of underestimating the MSPE is that prediction intervals
will generally be too narrow. Empirical studies have shown that nominal 95%
prediction intervals will typically contain less than 95% of actual future observations.
This happens for a variety of reasons (see Chatfield (1993b), section 6) of which model
uncertainty is perhaps most important. The model may be incorrectly identified or
may change through time. The one-step-ahead prediction error variance is often taken
as o1+ p/n) where o2 denotes the residual variance and the factor 1+ p/»n reflects
the effect of paramerer uncertainty when estimating a p-parameter model using
a sample size n (e.g. Hjorth and Holmgvist (1981), section 1). This factor takes
no account of model uncertainty and is in any case often omitted. Moreover the
estimate s2 of 62 is typically too small when a best fitting model has been selected.
(In contrast prediction intervals for general linear models customarily do take proper
account of parameter uncertainty and so simpler models can give estimates with shorter
confidence intervals (e.g. Regal and Hook (1991)). Failure to reject a null model as
an alternative to a more complex model is not the same as establishing that the simpler
model is closer to the truth. There is an alarming tendency for analysts to think that
narrow intervals are good when wider intervals may reflect model uncertainty better.)
Steerneman and Rorijs (1988) illustrated the consequences of overfitting and data
mining in an econometric forecasting context and recommended parsimonious,
economically meaningful, models. Draper (1995) considered an instructive example
concerning forecasts of the price of oil. 10 models were entertained which gave a
wide range of point forecasts that were nevertheless all well away from the actual
values which resulted. There were also large differences in the prediction error
variances. A model uncertainty audit suggested that only about 20% of the overall
predictive variance could be attributed to uncertainty about the future conditional
on the selected model and on the assumptions (the scenario) made about the future. Yet
the Jatter portion is all that would normally be taken into consideration.

4.2. Computational Methods

Given that analytical methods are generally not available to study the effects of
data-dependent procedures, a variety of computational methods have been tried (e.g.
Faraway (1992) and Hjorth (1994)). Simulation methods are one obvious avenue when
the model selection procedure is simple and clearly defined as in example 4. But with
any model selection procedure it can be very difficult to formalize, and hence to
simulate, the data analytic steps taken by an experienced investigator faced with real
data. There is typically a wide choice of possible actions and models, usually involving
subjective judgment. However, it would impose too much inflexibility to insist that
all procedures be capable of objective description and hence be capable of automation.
Faraway (1992) has written a program to simulate the actions taken by a human
in a regression analysis, including the handling of outliers and transformations.
Though it cannot fully simulate real human behaviour, it does give a reasonable
representation. Faraway’s program also enabled him to investigate various other
computational ways of dealing with model selection bias, including resampling or
booistrapping, jackknifing and data splitting. The last technique involves splitting
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the data into two parts, fitting the model to one part (sometimes called the canstruction
sample) and using the second part (sometimes called the hold-out, test or validation
sample) to check inferences and predictions.

Several other researchers have tried computationally intensive methods. The
results in Dijkstra (1988) are generally disappointing. We must avoid resampling
which is conditional on the fitted model, such as resampling the residuals, as this
will not reflect model uncertainty (Freedman er al., 1988). Resampling the data
is difficult with (ordered) time series data, and, since the model may change over
time, may still not reflect the true extent of model uncertainty. More generally
if a data set from model A happens to have features which suggest model B, then
the resampled data are also likely to indicate model B rather than the true model A,
It can also be difficult to compare results when different transformations are used
for different bootstrap samples {Faraway, 1992). Nevertheless Faraway's (1992)
simulation results from a linear regression model using a variety of error distributions
suggest that careful bootstrapping can overcome much of the bias due to model
uncertainty. Breiman (1992) suggested a form of resampling called the litile bootstrap
and showed that it can give nearly unbiased estimates of the MSPE in subset selection.
Breiman’s section 9 is well worth reading, emphasizing again that models selected
by using data-driven selection procedures can give extremely optimistic looking
results. Hjorth (1994) suggested a form of resampling called the spectral bootstrap
for stationary time series data which involves resampling in the spectral domain.
Another form of resampling which will not be considered here is the use of cross-
validation (e.g. Efron and Tibshirani (1993), chapter 17, and Hjorth (1994), especially
section 3.6).

With data splitting, one problem is deciding Aow to split the sample (for example
see Picard and Cook (1984)). Fitting a model to just part of the data will result in
a Joss of efficiency. Faraway (1992) showed that this procedure may greatly increase
the variability in estimates without the reward of eliminating bias. Thus hold-out
samples, although perhaps unavoidable in time series forecasting, do not provide a
genuine substitute for a true replicate sample, which will, in any case, inevitably be
collected under somewhat different conditions from those applying to the original
sample (for example see Hirsch (1991) and Section 6).

4.3. Some General Consequences
Model selection biases are hard to quantify, but the following general points
can be made.

(a) Least squares theory does not apply when the same data are used to formulate
and fit a model. Yet time series text-books, for example, customarily apply
least squares methods to time Series models even when the model has been
selected as the best fitting model from a wide class of models such as
ARIMA models.

(b) After model selection, estimates of model parameters and of the residual variance
are likely to be biased.

{c) The analyst typically thinks that the fit is better than it really is (the optimism
principle}, and diagnostic checks rarely reject the best fitting model because
it is the best fit!

(d) Prediction intervals are generally too narrow.
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Despite the limited progress described above, the overall impression is that the
frequentist approach to statistical inference does not adapt easily to cope with model
uncertainty. The practitioner may be tempted to use ‘fudge factors’, based partly
on theory and partly on empirical experience, to multiply the widths of confidence
and prediction intervals to obtain more realistic values. However, this approach will
not appeal to many readers. Thus the next two sections describe two completely
different types of approach. They do not solve the problem of data abuse but they
do provide ways round it.

3. BAYESIAN MODEL AVERAGING APPROACH

The promising Bayesian model averaging approach to coping with model uncertainty
should appeal, not only to Bayesians, but also to any ‘broad-minded’ statistician.
The key to its success lies in not having to choose a single best model but rather in
averaging over a variety of plausible competing models which are entertained with
appropriate prior probabilities. Thus priors are attached to the models rather than
(just) to model parameters. The data are then used to evaluate posterior probabilities
for the various models. Models with ‘low’ posterior probabilities may be discarded
to keep the problem manageable, and then a weighted sum of the remaining competing
models is taken. This approach has been recommended explicitly or implicitly biy several
researchers, and a thorough recent review and methodology discussion is given by
Draper (1995). This section therefore can be brief. The broad issues involved may
be clarified by looking at example 2 again from a Bayesian point of view.

5.1, Example 6. Linear Regression Revisited
Suppose as in example 2 that we have bivariate regression data but are not sure
whether to fit a straight line or no relationship at all (as would be the dilemma of
a frequentist who found the P-value for the estimated slope to be around 5%). Then
two models are entertained, namely

Y: C}f1+ﬁx+€1 (mOdCI I),
Y=ay+es (model II),

where a;, o, and 8 are constants, and {e,;} and {e,,} are [ID N(0, ¢}) and N(0, ¢2)
respectively. Further suppose that the posterior probabilities have been evaluated from
the data as p, and p,=1—p,. (For simplicity we ignore uncertainty about model
parameters.) There are now three possible actions that we could take.

{a) Choose the single model with the highest posterior probability and use this to
make predictions. However, if predictions are made conditional on the selected
madel, then the prediction intervals will not reflect the model uncertainty.

(b) Make two predictions. For example at x=x, the predictions are

F=a+8x, with probability p,

and J=a, with probability p,.

This is not much help if we require a single prediction. Nor is it clear how
prediction intervals should be calculated.
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(c) Combine the two predictions in (b} to obtain the single weighted prediction
Je=piloy + Bxp) + paros

=P 0+ D0y + P B (1)

This combined forecast is effectively what will be given by the Bayesian model
averaging approach, and it will have a lower MSPE in the long run than either of
the individual forecasts. The approach also allows an assessment of the distribution
of §. which takes account of the model uncertainty. The mixed prediction implicitly
suggests that there is a combined model for which

E(Y|x)=p o +proy+p Bx (model 111).

Does this combined model make sense? A priori, we assume that either model I
or model II is true, but we are not sure which. After seeing the data, we use
model IIT even though it cannot be true if either of models I or I is true. Whether
this makes sense seems to depend on whether or not you really believe that there is
a single true model and on whether you want a single prediction.

The slope of the combined model III in example 6, namely p, 3, is smaller than
that of model L. This is reminiscent of the shrinkage effect in regression (e.g. Copas
(1983)) and in logistic regression (¢.g. Copas (1993)) whereby regression equations
tend to give a poorer fit to new data than might be expected from the fit to the
original data. This applies even when a single model is entertained, but Copas (1983)
also noted that

‘shrinkage is particularly marked when stepwise fitting is used. The shrinkage is then closer
to that expected of the full regression rather than of the subset regression actually fitted'.

When the number of variables is ‘high’ compared with the number of observations,
the shrinkage can be s0 severe that a fitted model is worse than useless (e.g. Copas
(1983), example 3, and Copas (1993), example 2). However, note that the shrunken
predictor is not uniformly better for time series AR models for finite samples (Copas
and Jones, 1987). In contrast, Hill ef a/. (1991) showed empirically that shrinkage
estimators can give substantially improved out-of-sample forecasts for a price
promotion model used in marketing research, while the related idea of damping the
trend in Holt's exponential smoothing can also improve forecasts (Gardner and
McKenzie, 19835).

Although most time series forecasts are produced by finding a best fitting model
and extrapolating it into the future, there are two other commonly used forecasting
strategies which are relevant to our discussion. In long-range forecasting, scenario
analysis (e.g. Schoemaker (1991)) is often used. Here a variety of different assumptions
are made about the future giving a range of forecasts, rather than just one. Each
forecast is linked clearly to the assumnptions that it depends on, and their spread should
clarify the extent of model uncertainty. This will allow organizations to make
contingency plans for the various possible futures. This type of forecasting corresponds
loosely to action (b) above,

A completely different type of strategy arises from combining forecasts (in a
non-Bayesian way). Suppose that you have produced forecasts by several different
methods (e.g. exponential smoothing, ARIMA modelling, state space modelling,
an econometric model, . . .). Then it has been established empirically that a weighted
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linear combination of these forecasts will often be more accurate on average than
any of the individual forecasts {e.g. Clemen (1989)). A simple average is often as
good as anything. One drawback is that the client does not receive a simple model
to describe the data. The stochastic properties of the combined forecast may also
be unclear. This type of forecasting corresponds loosely to action (c) above.

To decide how to proceed, it is clearly necessary to clarify the objectives of
a forecasting exercise and to find out exactly how a forecast will be used. In
particular the analyst needs to know whether a single prediction is required, whether
a prediction interval is required and whether a model is required for description and
interpretation.

Successful time series applications of Bayesian model averaging are reported by
Draper (1995) in predicting oil prices from 10 econometric models, by Le et ¢l. (1993)
in robust prediction of AR processes when the AR order is unknown and by Schervish
and Tsay (1988) also for AR processes. Recently the method has also been applied
(Madigan and York, 1995) to graphical models for discrete data where it is possible
to specify a large class of conditional independence models. The approach obviates
the need for model selection criteria to select a single best model from within the
class of models being entertained. The general idea of mixing several models, rather
than having to use a single best model, is attractive and is the idea behind the use
of multiprocess or mixture models in Bayesian forecasting (West and Harrison {1989),
chapter 12).

Despite its promise, there are difficulties in applying Bayesian model averaging.
First the calculation of posterior probabilities from the prior probabilities requires
the computation of Bayes factors. Kass and Raftery (1994) discussed this problem
in general. Closed form Bayes factors exist in some interesting cases and good
approximations are available in others {e.g. generalized linear models). Sometimes
extensive computation is required, which has become feasible in recent years, perhaps
with the aid of Markov chain Monte Carlo techniques. A second problem is that the
number of possible models can be very large. One approach here is to reduce
the number of models by discarding those with low posterior odds. This requires an
arbitrary cut-off point to be chosen. Alternatively the Markov chain Monte Carlo
model composition method of Madigan and York {1995) allows complete model
averaging to be approximated arbitrarily accurately.

A third problem is that prior probabilities for the various models must be specified
and this will not be easy, especially when data-dependent actions are allowed. If some
maodels are entertained only affer looking at the data (as can happen especially in
time series analysis), the priors cannot be applied beforehand but rather some sort
of preposterior analysis will have to be attempted. This can be avoided ouly by taking
extra care beforehand to elicit a sufficiently rich family of models to incorporate all
models that you would be willing to.consider after looking at the data. Generally
speaking, more attention needs to be given to the elicitation of priors. (Frequentists
who object to the ‘guess-work’ involved in obtaining priors should perhaps reflect
that they also must ‘hazard a guess’ at a model. Nothing is entirely objective. Thus
statisticians should be willing to go back to adjust initial judgments if that seems
sensible in the light of subsequent analysis.)

Finally, as noted above, Bayesian model averaging does not lead to a simple
model. This may not matter for forecasting purposes but does matter for description
and interpretation. In this regard the model expansion approach advocated by
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Draper (1995)—find a good model and expand around it—and Madigan and Raftery’s
(1994) Occam’s window—find a set of parsimonious models which are well supported
by the data and average over them—may be preferable to Madigan and York’s
(1995) Markov chain Monte Carlo model composition approach which averages
over all models.

6. COLLECTING MORE DATA

Somewhat belatedly, we turn to component (d) of the model building process
as outlined in Section 1. The editor’s introduction to Dijkstra (1988) concludes
provocatively by saving ‘model uncertainty cannot be ignored but is impossible to
take into account without new data’. This is rather defeatist and an overstatement
but does point us in a possible new direction.

The idea of taking one or more confirmatory samples is a basic feature of the
hard sciences, whereas statisticians seem to be primarily concerned (some might
say obsessed) with ‘squeezing a single data set dry’. Of course it is not always possible
to collect more data. For example, in time series analysis, one can rarely obtain more
data (except by waiting for several time periods). And some scientific experiments
are so costly that it is right to derive as much information out of the data as possible.
However, in many other situations if is possible to collect more data and this generally
seems wise.

The one area of statistics where confirmatory samples are the accepted norm is
in clinical trials, though even here it is not always clear how to combine information
from different studies. The term meta-analysis (e.g. Mosteller and Chalmers (1992)
and Draper ef al. (1992)) has been coined to describe the use of statistical techniques
to sum up a body of separate (but similar) experiments in a quantitative way. This
was originally seen primarily as a way of searching for a combined P-value to see
whether there is a significant treatment effect but is now seen more as a way of
summarizing all the evidence in both a quantitative and a qualitative way. For example
the summary might say that study A was not conducted properly and that study B
gave atypical results for specified reasons, whereas studies C, D and E all point towards
a similar form of relationship.

Statisticians sometimes think that they can overcome the need for new data by
splitting a sample into two parts—see Section 4.2. However, as noted earlier, this
is a poor substitute for true replication and the same sentiment also applies to
techniques like cross-validation. ‘The only real validation of a statistical analysis,
or of any statistical enquiry, is confirmation by independent observations’ (Anscombe
(1967), p. 6) and so model validation needs to be carried out on a compietely new
set of data. Unfortunately most references tell yvou only how to rest a model, and
not how to tune or extend a model. ‘The monitoring of working models is a large
and relatively unexplored topic’ (Gilchrist (1984), p. 457). The literature also says rather
little about the design of replicated studies (but see Lindsay and Ehrenberg (1993)).

The emphasis in statistical inference on analysing single sets of data and on testing
models contrasts with scientific inference which typically involves collecting many
sets of data and establishing a relationship which generalizes to different conditions.
In other words scientists look for what Nelder (1986) has called significant sameness
rather than for significant differences. In a similar vein Ehrenberg and Bound (1993)
have promoted the idea of searching for law-like relationships which describe,
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not a single set of data, but many sets of data collected under similar or perhaps
even dissimilar conditions. In general a law or relationship is much more useful if
it ‘works’ under different conditions rather than merely under as near identical
conditions as possible. The latter are usually possible only in the physical sciences.
It is unfortunate that the words ‘reproducibility’, ‘replication’ and ‘repetition’ seem
to have no generally accepted definition although replication often refers to repeats
made at the same place and time. We are talking here about repeats at different points
in space and time. What is clear is that more than one data set is needed before we
can have any confidence in a model. For this reason, Feynman (1986) (especially
p- 344) is right to lament the attitude that repeating an experiment (under similar
and/or carefully varied conditions) is a waste of time and not to be counted as
research.

The replication of studies can also be sadly neglected in the social sciences. Hubbard
and Armstrong (1994) demonstrated that it is very rare in marketing by examining
over 1000 published papers, of which none were straight replications and less than
2% were replications with extensions (and over half of these contradicted the original
findings!). There is a similar story in psychology. A replication which confirms earlier
results promotes confidence in them, whereas conflicting results may help to avert
erroneous recommendations or to suggest the need for further research. Put bluntly,
if a result is not worth replicating, then it is not worth knowing! Hubbard and
Armstrong (1994) speculated on the reasons why replications are so scarce (e.g. the
original paper may not report enough background information to permit accurate
replication or conducting replications is not career enhancing) and also on ways of
encouraging them (e.g. modify journal policy to ensure that authors are required to
give sufficient background information, ensure that data are made available for
subsequent evaluation and appoint a replications editor).

The (over?) emphasis on analysing single sets of data permeates the statistical
literature and is a serious disease of stafistical teaching. Of course research on
model uncertainty for the analysis of a single data set, as in Miller (1990), is clearly
valuable, both to cover situations where it is not possible to collect further data and
also to understand techniques, like subset selection, which are widely used in practice.
However, Miller (1990), p. 13, follows accepted dogma in devoting just a single sentence
to the possibility of taking an independent sample to test the adequacy of a prediction
equation. In contrast the message of this section is to emphasize that obtaining
more than one set of data, whenever possible, is a potentially more convincing way
of overcoming model uncertainty and is needed anyway to determine the range of
conditions under which a model is valid. Thus statisticians need to achieve better
balance between

(a) statistical inference for a single set of data (with or without a prespecified

madel) and
(b) understanding how to build, check, tune and extend models when it is possible
(and therefore desirable) to collect more than one set of data.

7. SUMMARIZING REMARKS AND DISCUSSION

The theory of inference regarding parameter estimation generally assumes that the
true model for a given set of data is known and prespecified. In practice a model
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may be formulated from the data, and it is increasingly common for tens or even
hundreds of possible models to be entertained (data mining). A single model is usually
selected as the ‘winner’ even when other models give nearly as good a fit. Even when
a model is prespecified on subject-matter grounds, it may be formulated incorrectly,
or a true model may not exist, or the analyst may carry out some preliminary checks
anyway. Thus model uncertainty is present in most real problems. Yet statisticians
have given the topic little attention.

Least squares theory is known not to apply when the same data are used to formulate
and fit a model so that estimation follows model selection. Substantial model selection
biases can arise, particularly with subset selection methods in multiple regression and
in time series analysis. Unfortunately ways of overcoming the problem are not so
clear. Statistical inference needs to be broadened to include model formulation, but
it is not clear to what extent we can formalize the steps taken by an experienced analyst
during data analysis and model building, and whether a suitable mathematical
framework can be constructed. Some valiant simulation and resampling experiments
have been carried out to try to assess the size of model selection biases and to find
ways of overcoming them. However, the frequentist approach does not adapt naturally
to cope with model uncertainty. The Rayesian model averaging approach offers more
promise, though even here there are difficulties. A safer way to proceed is to replicate
the study and to check the fit of the model on new data. However, this is not always
possible, especially in time series analysis. Thus the task of finding ways to overcome
model uncertainty has only just begun.

Perhaps the main message of this paper is that it is time for statisticians to stop
pretending that model uncertainty does not exist, and to give due regard to the
computer-based revolution in model formulation which has taken place. This applies,
not only to statistical practice, but also to what we teach.

Leamer (1978) set out to bridge the gap between econometric theorists and model
builders but ended up less optimistic that a complete reconciliation could be achieved.
He predicted (p.vi) that ‘real inference will remain a highly complicated, poorly
understood phenomenon’, and 1 would still agree with that today.
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DISCUSSION OF THE PAPER BY CHATFIELD

J. B. Copas (University of Warwick, Coventry): This paper raises a very important issue in the practice
of statistics. As we have come ta expect of Dr Chatfield, his paper is full of sound common sense and
is persuasively argued with his customary clarity and style. He would be the first to admit that there
is little that is new in the paper, but he does us a service by calling us all to task over what has been
called a ‘scandal’. The message of the paper is surnmed up in the last sentence of Section 1: ‘Statisticians
must stop pretending that model uncertainty does not exist and begin to find ways of caping with it”.

The paper raises the question of whether a model exists. Surely we have to make the crucial distinction
between experimental data and observational data. In properly designed experiments a null model does
exist and is simply a description of the randomization used in the design. We should remember that
many of the traditional statistical techniques were originally developed for experimental data. Questions
about the modelling of experimental data and the validity of the usual analyses were extensively discussed
in literature predating all the references in this paper. In his book The Design of Experiments, for example,
Fisher (1966) (but first edition 1935) discussed the simple matched pairs experiment in which for each
pair the treatment order (A, B) or (B, A) is decided by the toss of a fair coin. If the data for a typical
pair are (x, y) then the test statistic is

2 Z(x~y)

where Z is + I for (A, B) and — 1 for (B, A). If the treatment has no effect then the xs and ys would
be the same whichever treatment orders were chosen and so are known constants. Hence the test statistic
has a known null distribution and, as Fisher showed, gives almast exactly the same P-values as the usual
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t-test. Fisher would, I suspect, argue that all the later discussion of testing distributional assumptions,
checking for outliers, and so on, is largely irrelevant—the null maodel is self-evident from the design
and is well approximated by the usual model based on normality. Note that the ¢coin tossing is the crux
of the model. Even a small amount of bias in the design (perhaps the probability of (A, B) depends
on some unmeasured characteristic of each pair) leads to a substantial bias in the #-test. If nothing is
known about the way that the treatments were allocated, then nothing can be deduced from the data.

For observational data the situation is quite different. The paper seems to suggest that if we were
sufficiently clever to calculate the right conditional probabilities or make the right corrections for shrinkage
or subset selection then we could overcome the problem of model uncertainty. For caleulating P-values,
for example, Section 3 suggests that we need

P (data more extreme|data select this model).

But surely the most important thing in this expression is not the conditioning event but the capital P
at the beginning: we must say that the data are as if they bad resulied from some game of chance in
which probabilities are defined. For observational data this must be an assumption, surely unverifiable
on the basis of the data alone. Can we observe the world as it is and know for certain whether everything
was or was not the result of some gigantic sequence of coin tosses? So we cannot eliminate the effect
of model uncertainty, only evaluate one layer of uncertainty by embedding it within the assumption.
of another. As Dr Chatfield points out, standard errors escalate rapidly as this embedding model becomes
more general, and if our inferences are to be useful then we must have further information, either from
more data or from knowledge of the context. If we really know nothing about the problem beyond
the data themselves then perhaps we should emphasize the descriptive rather than the inferential nature
of our analysis and refuse to quote any standard errors or other measures of uncertainty.

When the Social Science Research Council was set up about 25 years ago, it appointed a statistics
committee to advise on the statistical aspects of research grant applications. Frequently a project in
psychology or saciology would be declared methodologically unsound and so would not be funded.
Astute psychaologists and sociologists soon learnt to disguise the statistics within their research so that
their praposals would not be sent to the statistics committee. The word ‘Science’ has now been dropped
from the title of the now Economic and Social Research Council, and the statistics committee no longer
exists. Dr Chatfield tells us that much of our statistics is methoadologically unsound. [f we want to survive
as honest analysers of observational data then we should take his paper very seriously.

Section 3 declares that we should not seek a “significantly better fit’, but ‘better value far money’.
Is this a ‘back to basics’ campaign? If so the proponents must beware lest their own personal activities
are found wanting. Mast of us here tonight will have committed many of the sins which Dr Chatfield
lists at length in his paper. If Dr Chatfield wishes to make his personal confession in his reply to the
discussion, we will listen with interest. In the meantime I have pleasure in proposing the vote of thanks
for this challenging and provacative paper.

Neville Davies (Nottingham Trent University): There is a tradition in the Society that proposers and
seconders of votes of thanks of read papers are hoth polite and rude, and often unequivocal in their
comments about those papers. Frequently they use it as an excuse to announce the latest aspect of their
own research in a totally unrelated area, and tenuous links are made to justify this. I see no reason
to depart too far from this tradition: I will not be rude at all about this paper!

Thase of us who remember, and perhaps have even read, other papers published in the Society’s
journals by the author might not only recall the content of those papers but also the lively and provocative
discussions that followed. It is fair to say that, even though you might not agree with him, he has always
had the ability to generate debate. .

I am in agreement with many of the points raised by this paper, but I have no doubt that many
colleagues will disagree with Chatfield’s approach: I predict that some may even believe the paper trivial
and some will say that they knew it all in the first place. 1 believe that the greatest unsolved problem
in statistics is communicating the subject to others. This paper is one which does an excellent job of
communhicating problems that we all should think about: we all fit models, but most of us do exactly
what Chatfield chides us about. Unfortunately, we are not presented with many solutions in this paper.

I shall apply a simple-minded approach and discuss what we would need to do to ‘model’ this paper.
1 do this to demonstrate that model uncertainty may change, depending on the use to which a maodel
is put. As Dr Chatfield points out (Section 1) we need to decide what problem needs to be solved, and
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what data need to be collected to solve that problem. In many cases data have already been collected
for us, and this is certainly true if we regard this paper as our data. Let us suppose that we are interested
in solving one of the following:

(a) identifying who wrote this paper;
(b) capturing this paper’s content and style;
{¢) using this paper to predict features of future papers.

The first of these problems is simple to solve, since we can just read the name at the top of the preprint!
That is the only information (data} that we have used from the paper. The model is thus very simple
but alsa general: this is a “Chris Chatfield paper’. We appear to have absolute certainty about the model.
However, if the first page were missing how could we then be certain that what we have is a Chatfield
paper? This must be connected with obtaining a solution to problem (b), since we might expect at least
the style of this paper to be similar to previous, and perhaps even future, papers written by Dr Chatfield.
We have now created more problems: we shall have to decide how to characterize the content and/or
style and to check these features by collecting more data, as advacated in Section 6. We need to read
more papers authored by Chatfield and validate the chosen feature(s) that we observe in the present paper.

I have selected three papers previously published in journals of the Society (Chatfield, 1977, 1982,
1985). What feature(s) can we choose that will enable prablems ¢a) and (b) to be solved? In Table |
I present the number of times on each page of the journal that the author used single quotes either
to emphasize a word or words, ar when a direct quote fram other people is presented. I have excluded
pages that contain references. The last column of the table is the number of occasions that quotes are
used in the present paper. In three of the four papers, it is interesting that there are some pages with
a very high number of quotes.

TABLE 1
Page count of quotes
Page Na. of counts for the following years
af paper:

1977 1942 1985 19935
[ o 4 2 2
2 2 1 $ 3
3 6 3 2 6
4 7 5 5 2
3 3 4 7 5
6 3 3 8 a
7 5 il 6 0
8 2 4 | 1
9 10 2 4 2
10 1 1 3 16
11 4 3 6 3
12 3 ¢ ¢ ]
13 o il 3 1
14 4 a & 6
15 | 1 10 1
16 1 - 3 ¢
17 - . - 3 Q
18 - - 3
19 - - - 2
20 - - - 2
11 - - - 4
22 - - - 4
23 - - - 1
Mean 13 2.1 4.4 2.7

Variance 7.4 12 6.9 6.0
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One question is, ‘To what extent does a simple count of occurrences of quotes characterize Dr
Chatfield’s style of writing?’. To do this we might need to model within- and between-sample variability
for these papers, and this might involve specifying a proper statistical model. Naturally, a more thorough
approach would be to investigate papers written by other authors and to investigate whether my simple
characterization is adequate to identify a style uniquely. More effort is needed, even though our objective
is the same. To solve problem (c) is much more difficult. We would need to decide exactly what features
were to be forecasted before specifying a stochastic model. For example, a simple Poisson model may
be appropriate to predict page frequency of quotes. However, model uncertainty {misspecification) in
terms of overdispersion could be an issue. My point is that model uncertainty will be different, even
with the same model, depending how that model is to be utilized. Other information would be needed
to build a ‘better’ model to be able to characterize and predict other features.

I agree whole-heartedly with the lessons to be learned from examples 2 and 3 in Section 2 and I am
attracted by the Bayesian madel averaging approach given in example 6 in Section 3. The problem that
I see in example 6 is the premise that either model [ or II is appropriate. The combination is convenient
and plausible, but model [ with a coefficient, 3, that is state dependent could capture the uncertainty
instead of having two models that may approximate the data, This would be similar to locatly changing
parameters in time series. As Chatfield has argued elsewhere (Chaifield, 1993) it is very important to
attach prediction intervals to point forecasts. The Bayesian model averaging approach that yields the
weighted prediction (1) has a lower mean-scuare prediction error than either of the individual forecasts.
But what can be said about the corresponding prediction invervals for the combined forecast in this
case? The author comments about null distributions of R*. It may be of interest to him that the exact
mean of this statistic is given by Smith (1993).

Several times the author refers to time series models and particular difficulties assaciated with
them. All the madels that are used for illustration assume time constant parameters. He does,
however, allude to the possibility of a changing structure in discussing testing for unit roots
(Section 2.5). An evolving system, which statisticians may atternpt (mistakenly) to model by using
constant parameters, seems to me to be far more natural. I believe that parameter flexibility
can compensate for model uncertainty. Although the author makes passing reference to West and
Harrison (1989) in the context of multiprocess models, I was surprised that the whole philosophy
behind the dynamic linear model {DLM} was not commented on in more detail. The DLM approach
to moadelling time series data is flexible and many examples of its implementation can be found
in Pole ef gl. (1994). The DLM learns as it evolves through the data, but the learning is not just
restricted to information in the data. Model uncertainty in the context of this paper may equate to
lack of knowledge: presuming that model parameters are the same at the beginning as at the end
of a time series should not be part of the null model.

Perhaps the most general formulation for time series madels is provided by the state-dependent models
(SDMs) of Priestley (1980). Almast all time series models used by practitioners are special cases of this
class of models. Why do more time series analysis not start with this class, and would this not help
to lessen model uncertainty? Draper (1993), section 5.1, argues in favour of the ‘big’ maodel approach,
but it has practical difficulties. One problem is, of course, that the glorious generality afforded by SDMs
is impractical with most real data sets. Unfortunately, there seem to be very few reported applications
of these models.

Now for a not-so-tenuous link with my own research! Chatfield (Section 2.5) discusses the problem
of determining whether differencing is needed to reduce a series to stationarity. He states *. . . we
shall never know whether a unit root really exists, or whether such a structure is appropriate for
part of the series . . .°. ‘Never’ is a very long time! Considerable contraversy surrounds the issue
of testing for unit roots, since many of the original tests for this property have been shown to
have limitations. See, for example, Agiakleglou and Newbold (1992) and Leybourne and McCabe (1994).
A simple statistic, the variogram, that has been used extensively in spatial staristics, can be employed
to good effect to investigate non-stationary time series data. Box and Kramer (1992) and Box (1994)
suggested the nse of a standardized form of the variogram of a time series Y, (t=1, 2, . . ., H),
defined by

G(m)= V(Y m— Y.r)/V(Yf+1 - ¥h

where V() is the variance aperator, as a general measure of non-stationarity. Now consider the non-stationary
random coefficient autoregressive (RCAR) model W,= o, W, | +¢,, where W= Y, - ¥, ¢~1ID(0, a2)
and o,~1D{e, «*). Davies and Tremayne (1994) have shown that for this simple RCAR model
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The case o =1 is of interest, since this corresponds to a process with a stochastic unit root. In this
case G(m)={(w*+1)"—-1}/w?, and Davies and Tremayne show that estimates of G(m) for RCAR
processes follow closely the template provided by these formulae. Using plots of the variogram, there
is saome evidence to suggest that the degree of differencing required for series is not constant throughout
those series. Examples include the IBM series of Box and Jenkins {1976) and the Hong Kong Hang
Seng index.

A much stronger link with past research of mine is evident from the work of Davies and Newhold
(1980). They provided a framework under which the cost of misspecification, in terms of increased
expected squared error of prediction, can be assessed. They concentrated on forecasting ARIMA (p, 4, q)
processes with pure autoregressive models, taking estimation error into account. The measure of forecast
lass presented in that paper has been used by Ray (1993) for assessing the percentage increase in mean-
squared forecast error when long memory (fractionally differenced) processes are modelled by using
pure autoregressive structures. [t may well be fruitful to develop further the measure for a broader
range of time series model misspecifications.

Finally, I believe that the author has given us some food for thought and it gives me great pleasure
to second the voie of thanks.

@

G(m) =

The vote of thanks was passed by acclamation.

D. . Hand (The Open University, Milton Keynes): I am very pleased to see this paper. It represents
the latest in a series of publications in the Journal of the Royal Statistical Society dealing with broader
issues of statistical inference. Others have dealt with such things as study replication (Ehrenberg and
Bound, 1993), problem formulation (Hand, 1994) and model ungertainty (Draper, 1995),

Hoaowever, such papers are still very much in the minority. A glance at almost any modern statistical
journal will demonstrate the eurrent gross imbalance in favour of papers dealing with relatively small
refinements of modelling. This is the middle of the three layers of a study that Dr Chatfield identifies.
The first and last layers, respectively ‘problem’ and “data’, receive very little attention, despite the fact
that the intrinsic variation in these often leads to variation in the conclusions which swamps that arising
from the variation in model building.

This is, of course, a consequence of the stccess of statistics. It has achieved this success by putiing
a premium on theoretical development of statistical modelling and estimation procedures. However,
it seems to me that now the most significant improvements will arise by shifting attention to the first
and third layers: by stepping outside the bounds of work focusing on model fitting and model checking.
So I agree with the author on this point.

However, [ think that the author’s faocus on models is misdirected.

We must distinguish between two ways in which statisticians use the word ‘model’. One usage is a
representation of what is thought to be going on. This might, for example, be a system of equations
based on some theory. The other usage is a description of the data, In the former case there will be
relatively little model uncertainty. It is in the latter case where problems arise. In this case, there is
great scope for selecting models—and consequently for model uncertainty. But, in this case, models
are often, perhaps typically, merely a means to a predictive end. Statisticians, in such cases, seem to
me to have become seduced by the attractions of models. The problem—prediction or whatever—needs
to be returned to centre stage. The attractive model averaging approach, which has been increasingly
widely applied in the last few years, is a step in the right direction: a step towards replacing the problem
at centre stage, with the models merely being paths leading to it.

Clifford E. Lunnebarg (University of Washington, Seattle, and The Open University, Milton Keynes):
Chris Chatfield reminds us of how great the need is to introduce more reality and usefulness into the
inferences which we draw from data-dependent models. We might do so by attending to two principles:

(a) take account of the noise created by the modelling process;
(b) consistent with the maodelling goal, create as little noise as possible.

Can we do it? [ atm more optimistic, particularly with respect to frequentist inference based on resampling,
than Chatfield appears to be.
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Chatfield’s example 1

Chatfield describes a data-dependent strategy for estimating a mean, points out that any subsequent
inferences should be canditional on that strategy but finds no help for doing so in the statistical literature.
Although the location estimators used in their example are robust, the general resampling approach
described by Léger and Romano {1990) and Léger ef af. (1992) to assess uncertainty induced by a strategy

should be of interest.

Complicated model screening
In Sections 3 and 4.2 Chatfield notes that our need to assess the model selection process is made

difficult by the necessity for informal rules of search and subjective judgment. Such subjectivity, I believe,
is certain only to add unnecessary noise to the modelling process. Faraway (1992) illustrated how to
express a complicated model development strategy as a series of objectively defined decision steps. [
think that Chatfield is wrong to conclude that such an approach is toa inflexible. Any loss in modelling
flexibility will be made up for in more accurate knowledge of modelling uncertainty.

Model averaging

In Section 5 Chatfield notes that more accurate prediction can be abtained by averaging aver several
madels rather than by using any single model. Weighting madels by their Bayesian posterior probabilities,
as Chatfield suggests, can be difficult as it depends on the specification of prior probabilities (not easily
elicited where there is no true model) as well as the computation of Bayes factors (problematic if the
population form is uncertain). However, something very like posterior probabilities are readily available
where model selection is replicated over bootstrap resamples. Efron and Gong (1983) displayed predictor
selection results for a run of bootstrap resamples and commented that although ‘no theory exists’
for interpreting the results their variability certainly *‘discourages confidence in the causal nature’ {or
correctness) of the model selected in the original sample. We still may lack theory, but there are many
practical uses to be made of resample-based model selections.

A. 8. C. Ehrenberg (South Bank University, London): Chris Chatfield’s welcome paper seems to
take the uncertainty out of traditional statistical modelling. He rehearses how assessing model validity
for just a single set of data does not work very well,

But Chatfield still has hold of the wrong end of the stick. There is little uncertainty about working
models in any reasonably well-tilled area (e.g. Ehrenberg (1994), Ehrenberg and Bound (1993) and
references there). Anyone analysing vet further data can start with a reasonably well-based working
model such as Boyle's law PV=C or g=m, m,/d? for gravity.

Unfortunately, however, Chatfield mentions using such ‘substantive knowledge’ only in passing. And
he touches on the underlying notion of many sets of data aonly ‘Somewhat belatedly’ in Section 6. He then
confusingly dubs it not only ‘wise’ but also ‘provacative’, ‘defeatist’ and ‘new” (which it certainly is not).

He also refers to it as merely ‘the idea of having one or more confirmatory samples'. But that is
wrong. Firstly it is a matter of determining what, if any, law-like relationship holds under a wide range

¥

X

Fig. 1. A generalizable mode! for many sets of data A, B, etc. and madel fit for single sets of data
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of different circumstances, such as the broken line for data A and B in Fig. 1. (Does it then also hold
for C eic.?} In this way analysing many sets of data replaces the best fit criterion,

Chatfield is well aware of the issue of modelling many sets of data but still seems unable to face
up to it. He worries for example abonut unfortunate cases where one cannot, or not easily, collect more
data. But why does he, and others, not focus instead on cases where there gre many sets of data?

To reinforce this plea, I briefly mention two central criticisms of the ‘best fit for a single set of data’
tradition.

{a) Any reasonable model will give virtually as good a fit as any other (Ebrenberg, 1982). In Fig.
1 the different lines for data set A have much the same residual scatter (which is why statistics
uses least squares to pick out ‘the best’). Typically, for bivariate data with a correlation of 0.6
say, a 100% difference in slopes leads only to a 3% increase in the residual standard deviation
(RSD). The RSD is a very flat-bottomed function. Best fit is not the way to discriminate between
alternative models.

(b) A best fit model will generally fit less well for any further data, as Chatfield notes. But the procedure
would not even give the same model (Ehrenberg, 1963), This is illustrated by the two quite different
pairs of (regression) lines for data A and data B in Fig. 1. I am much more worried about different
ar wrong answers than about the precise residual scatter about such wrong answers.

Steven G. Gilmour (University of Reading): I work with scientists who use response surface methods to
study the effects of several factors on one or more response variables. In this context, I think that more
emphasis must be placed an ebjectives. There is much discussion in the paper of prediction, which raises
the question ‘prediction of what?’. In many of my experiments, the objectives are to find the combination
af factor levels which aptimizes the response and to discover the pattern of response around this optimum,
rather than to predict the reponse. Picturing the response surface leads to better understanding and is
often more important than prediction. This makes the Bayesian model averaging approach unappealing.
Of course the predicted optimal responses will be too optimistic, but the scientists would never believe
such predictions without confirming them experimentally.

A typical procedure with these experiments is to fit a full second-order polynomial and then to drap
terms which seem to be small. Sometimes a few higher order terms are included if the madel displays
lack of fit. Hence there will be model selection bias, as described in Section 4. However, two important
features of the designs used are that they are nearly orthogonal and that they allow estimation of pure
error. This should reduce the consequences of model selection given in Section 4.3, since the parameter
estimates and their estimated standard errors hardly change when other terms are added to or deleted
from the model.

A very important point is the effect of model uncertainty on the design of the experiment. Designs
should be chasen which are good for fitting a range of different models. Criteria such as D-optimality
are aimed at fitting a single model and can lead to designs which are very inefficient for fitting the
model which is eventually chosen.

Parts of Section 6 could be interpreted as encouraging badly designed studies. Meta-analysis of too
small clinical trials is acceptable only for political reasons. Scientifically, it would be much better to
have ane large properly (sequentially) designed multicentre clinical trial. Replicated studies are just large,
badly designed, single studies. The reason why scientists cannot reproduce each other’s results is that
they have ignared important factors and each scientist holds these factors constant at different levels.
We must always emphasize to scientists the importance of considering aff factors which may be important,
including noise factors. Holding a factor constant implies that the conclusions will be valid only for
that level of the factor.

David Draper (University of Bath): It may Qharpen ohe of Dt Chatfield’s points, on the degree of
averfitting and predictive miscalibration that routinely result from variable selection in regression, to
add a numerical example to his discussion in Sections 2.3 and 4. I have reanalysed Cox and Snell’s
(1981) example G, on estimating the construction cost of nuclear power-plants, from the point of view
of predictive validation. This analysis involves a regression of cost on p = 10 predictors, five of which
are dichotomous, in a sample of size # =132. Model specification details include the scale on which the
outeome and five continuous predictors should enter the regression (e.g. raw or logarithmic), the choice
of error distribution and which subset (if any) of the predictors to use. For simplicity I have conditioned
on all choices made by Cox and Snell {¢.g. cost on the log-scale, back-transforming as needed) except
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for the predictors selected,; if the additional model uncertainty implied by these other data-driven choices
were assessed and propagated, the predictive validation performance would be slightly worse than here.

[ pretended that the regression model—including variable selection—was known, which vielded the
following results: the mean of the predictive z-scores (actual — predicted) /(predictive standard error),
on the 32 power-plants used to fit and estimate the model, was roughly 0, as it should be, but the standard
deviation {(SD) was only (.76, and ‘80%’ predictive intervals (using the normal theory f-multiplier) covered
the actual values 91% of the time. T then jackknifed the modelling pracess, as far as variable selection
is concerned, by successively setting aside each power-plant and using the model that maximized adjusted
RI—an approach which produces results similar to those with Cox and Snell’s backward deletion
method—to generate an estimated cost and predictive standard error for each plant omitted. The resulting
z-values again had a mean near 0 but an SD of 1.32, and nominal 80% predictive intervals only covered
out of sample 72% of the time. In this example the predictive signal is sufficiently strong that you would
not expect much room for overfitting (the adjusted R? of the apparently best madel on the full data
set exceeded 82%), and yet even here the variable selection process has produced an understatement
of the predictive standard errors by about 30%. Draper {1994) gives one possible general solution to
this problem, based on hierarchical modelling that updates a somewhat informative prior—obtained
from substantive considerations suggesting the signs of the coefficients—to a posterior on the entire
B-vector, and only then, following Lindley {1968), uses a utility analysis that drops variables if they
do not predict sufficiently well given how much they cost to collect. Dr Chatfield mentions this cost—
benefit idea briefly in Section 3.1; it deserves wider consideration.

Peter J. Green (University of Bristol): I welcome both this paper and the previous Bath University
contribution on model uncertainty that was read a few months ago (Draper, 1995). My comments, on the
Bayesian approach described in Section 3 of the present paper, could really be addressed ta either author.

While I agree with Dr Chatfield both that the Bayesian approach to model uncertainty via a hierarchical
formulation is appealing and that Markov chain Monte Carlo (MCMC) technigues can be used to perform
the computations necessary for model averaging, [ am slightly reluctant to embrace bfind model averaging
as a general prineiple. This seems to me to have two demerits. Firstly, it is generally the case that the choice
of models to be entertained and their associated probabilities is partly or completely arbitrary, Parts of
maodel space may be over-represented or under-represented relative to the analyst’s real prior beliefs simply
for want of imagination. Secondly, if an average over models is alf that is produced, then we lose the
important diagnostic value in Bayes factors, and in the separate interpretation of different explanations
of the data. So by all means average over models, but let us also see individual posterior analyses.

One of the delights of sample-based computation such as the MCMC method in Bayesian inference
is its sheer flexibility: it is not limited to model averaging but can be used to extract all the information
needed for more subtle analyses, simply by conditionally selecting from the sample output. I have
described (Green, 1994a, h) a general framework for setting up MCMC methads to sample from the
joint posterior distribution of both model indicator and parameters; this has been used to develop
methodology for changepoint analysis in one and two dimensions, for Bayesian analysis of factorial
experiments, and for mixture estimation; many other applications are envisaged.

Some implications in the context of the present paper are as follows:

(a) all model-specific posterior distributions can be generated in a single run;

{b) vou can decide how to average over models after seeing posterior model probabilities, following

Madigan and Raferty (1994) for example, or otherwise;

(¢) if only Bayes factors are required, model probabilities can be chosen for computational convenience;

(d) if prior model probabilities are changed, importance sampling can be used to reweight the existing

sample, rather than start again.

A. C. Davison (University of Oxford): Given some data, suppose that we are interested in the variance
of a statistical estimator T. Let M indicate which of a range of models is chosen from the data, and
suppose that this range contains the true model m'. Then Dr Chatfield's paper reiterates that often

E(T|M=m)=E(T) 3)
and
var(T)=var fE{T| M)+ E fvar (T| M} zvar(T| M=m), 4)

for the particular model m chosen. This prompts some further thoughts.
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First, if the data point fairly unambiguously towards a single model #, the inequality in expression
(3) is unlikely to be very great. If the choice of m2 results from a detailed scrutiny of the fit of different
possible models to the data, var(T|M=m) is unlikely to be very different from var(T|M=m").

Second, although var,,(E( T| M)} is usually sufficiently large to ensure that the inequality in expression
(4) bolds, it need not. If not, the effect of allowing for model uncertainty is to increase the precision of
T. Although this is rare in practice, it might arise if var (T| M =m) was large relative to most other
such conditional variances and m was relatively unlikely to be chosen under repeated sampling from s’ .

Third, and crucially, T must estimate a quantity defined for all the models under consideration. This
might apply if the models are regarded as statistical artefacts rather than having substantive meanings,
e.g. if Tis a time series prediction, and the statistical procedure selects among models indistinguishable
on subject-matter grounds. But, if the interpretation of the esiimand of T depends on the model, the
quantity of interest is var( T| M = m), because var (T) is meaningless—though we would wish to know
which other models might have been chasen. This applies to variable selection in linear models with
non-orthagonal design matrices, where the meaning of a parameter typically depends on all the
explanatory variables. Unless the interpretations of Sinthe models y=a+ B8x+eand y=a+8x+yz+¢
are the same, how can a combined variance be relevant?

Fourth, when T estimates a primary aspect of the problem, to quote results from a single model is
analogous to point estimation, which we rightly discourage. For a confidence region approach we might
use some criterion of fit to find all models consistent with the data at some confidence level, and then
report summary results for all these models. Here the most useful practice seems ta be the usuat reporting
of the estimates and standard errors for each of the most likely models, together with some idea of
their relative plausibilities. The catch here—which applies equally to the Bayesian model averaging
approach—is to ensure that all possible models have been considered.

To sum up: whether model uncertainty should be taken seriously depends on what the models are for.

Taby Lewis (University of East Anglia, Norwich): [ would like to congratulate Dr Chatfield on his
usual lively presentation and splendid audibility, and on his courteous and self-denying decision to limit
the time that he took to speak to leave ample time for discussion. Following his presentation there was a
whole suceession of complimentary contributions, so he can happily ignore my unappreciative comments.

He said in his verbal presentation that robust inference (and I think he said the same about non-
parametric inference) is a ‘completely different alternative approach’ which he was ‘not saying much about’.
In fact, there was no other mention of it, either verbally or in the preprint. Yet itis stated in the surnmary that

‘. . . the main aim of the paper is to ensure that statisticians are aware of the problems'—
of avercoming the effects of model uncertainty—

1

‘and start addressing the issues . . ..

Ensure? Start addressing? How has the profession survived these past 20 or 30 years pending the arrival
of this paper?

And now two matters of detail—there are others, but I shall keep to two. With regard to fitting a
linear regression equation E( ¥|x)=a+ 8x (example 2, Section 2.2), the author says

‘A common procedure . . . is to find . . . &, and then to fit the line provided that § is significantly
different from 0°,

and he goes on to discuss properties of this ‘common’ procedure. But it is surely a highly uncommaon
procedure! Whatever the size of A (even 0), we might want a confidence interval for 4 to see how large
it could reasonably be. If any preliminary significance testing is to be done, it would commonly be to
estimate v, 8, . . ., the coefficients of x?, x2, . . . in a polynomial regression maodel, and then to fit
E(Y|x)=a+ Bx if the estimates ¥, &, . . . dd not differ significantly from ¢.

Secondly there is Section 6 of the paper entitled ‘Collecting more data’, Dr Chatfield’s question “What
are the pedagogical implications?’ in his verbal presentation, and his statement in Section 6:

“The . . . emphasis on analysing single sets of data . . . is a serious disease of statistical teaching’.

It must have been a dream, all those cohorts of students over the years, taught either by me or by many
others whose teaching I encountered as an external examiner, who had learned about daing a ¢-test
or a x>test or whatever and who dutifully wrote up their answers to examples. Good marks were
awarded for reaching the result ‘so there is no significant difference between the treatments’, but then
they received full marks if they went on to say ‘and therefore more data need to be collected’.
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The following contributions were received in writing after the meeting.

P. V. Allin (Department of National Heritage, London): The phrase ‘data mining’ is increasingly
used in another context but raising issues along the same lines as those in the paper. Data mining, also
known as knowledge discovery or unlocking corpaorate data, is marketed as a technique for uncovering
‘information’, correlations or patterns in the data held in one or more databases.

There may be clear cost and timing advantages to be gained in applying well-established, data
exploratory techniques to data that have already been gathered for some other purpose, rather than
collecting new data. But there are also two points to bear in mind. First, as is well known in secondary
analysis, the data miner must work with the concepts and codings previously applied to the data set.
This may in particular cause difficulties in data mining if data sets are to be joined. Variables that appear
to be common. betwean the data sets may be on different bases or use differing coding systems. Secondly,
there is a degree of having to trust the ‘black box' of some data mining software, so that this kind
of data mining is not part of the iterative model building process driven by the investigator described
in the paper.

Some feel for the noise in the data, and the completeness of the data set, is necessary. Data mining,
especially when powerful software tools are used on good data, can be effective. However, I suggest
that it still needs to be used as part of a statistical madel building and testing process and not as a stand-
alone technique.

Jamal R. M. Ameen (University of Glamorgan, Pontypridd): Dr Chatfield’s paper addresses one
of the most fundamental problems in the philosophy of science, namely the way that scientific problems
are formulated. Fundamental to some of the arguments raised in the paper is what is meant by a model.
The conflict regarding the existence of a or the true model, model uncertainty, identification, selection,
misspecification, ete. can be resolved if a clear definition of a model is stated. Madels have different
meanings in different fields. Once a young woman was interviewed for a data handling job in Unilever.
She was puzzled by one of the interviewers who asked her whether she had done any modelling. It was
found later that to her the question meant whether she had posed for photographs! If a model is assumed
to be a ‘small scale’ representation of an ohject, then by definition all models are wrong, simply because
they are not the true objects that they are to represent. However, if a model is seen to be a device that
a scientist uses to understand some natural phenomena better, then it is natural for the model to be

(a) satisfactory in performance relative to the stated objective,
(b} logically sound,

(c) representative,

(d) questionable and subject to on-line interrogation,

(¢) able to accommadate external or expert information and
(f) able to convey information.

Unless they are misspecified in terms of one or more of these properties, all models are acceptable.
Some models are more acceptable than others.

The subject of the paper has deep roots in objectivity and subjectivity arguments. The abjective idea
of searching for the true model is that of classical mathematics {‘You believe in a God that plays dice,
and I in complete law and order’, said Albert Einstein to Max Born) and had a relatively short life
even in mathematics. Probability theory was used to extend the ability of deterministic models to represent
more open systems but the existence of the true model has remained with many modellers. The Bayesian
philosophy views models from a subjective viewpaoint.

Even when the scientist is clear about the irrelevance of including seasonality (say) or a local linear
trend instead of a third-degree polynomial, a multiprocess model is still relevant. This is one of the
main features of Bayesian modelling not enly for model averaging (West and Harrison, 1989) but also
when the state of the system is disturbed by unforeseen events (Ameen and Harrison, 1984).

G. A. Barnard (Colchester): Dr Chaifield’s emphasis on the fact that we statisticians serve cliemis
is anly one of many welcome points which brevity demands that I pass over. The one paint that I can
concertrate on concerns the extent to which computers now allow us to reduce the number and strength
of assumptions we need to enable us to give useful answers to our clients. Dubious assumptions of
normality, for example, have been logically unnecessary since Fisher's (1934) paper on conditional inference;
but computers now allow us in practice to calculate the distribution of location and scale pivotals,
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condijtional on ancillaries, for wide ranges of distributional forms. Given a random sample x;, i=1,
2, ..., 1, the assumption that the shape ¢ of the population density is unimodal is verified much more
often than that it is symmetric, let alone that it is normal. In such a case we can take the population
mode g as a location parameter, with the direct interpretation that it is the most likely value for predicting
the next observation, while the scale parameter which we denote by & can be equally directly interpreted
as the length of the shortest interval containing at least half the population. [t is a pity that it does
not have a generally appropriate name. The pivotals p;=(x;— )/ ¢ then transform to (s, ¢, ¢;), j=1,
2, ..., n—2, with p,=s(¢+c;) and, with the usual sample notation, s=s,/avn, t={(x-p)Vn/s,,
e=(x—X )Vn /8. The joint conditional density of (s, #) given the observed values ¢;; of the ¢; can
then be written as

s, 2] o) =Ks" ' [T @ls(t+c;0)}

and it may turn out that  varies little when ¢ is changed over a wide range of shapes ¢. Such ‘conditionally
robust’ behaviour is even more frequent with the marginal density £(¢| ¢), since integrating out s has
a powerful smoothing effect. For example, we have found that ‘normal looking' samples taken from.
skewed Cauchy densities { pathological because such densities do not have even generalized means) can
often be treated without serious error as coming from normal densities.

Before querving the phrase ‘without serious error’ we may ask for more study, for example, of the
extent to which typical clients can distinguish between probabilities of 0.06, 0.05 and 0.04, or between
0.006, 0.005 and 0.004. Fisher helped to cause much unnecessary trouble by excessive use of words
such as ‘wholly’ and ‘exact’, for instance in Fisher (1970), pages 9-10:

‘... thetheory of inverse probability . . . must be wholly rejected. Inferences respecting populations

. cannot . . . be expressed in terms of probability, save in those cases in which there is an
observational basis for making exact probability statements in advance about the populations
in guestion.’

David Bartholomew (London School of Economics and Political Science): The issues which Dr
Chatfield raises were live ones in the manpower planning world in the early 1970s. In the work of the
Civil Service Department’s Statistics Division at that time we identified and tried to allow for four kinds
of uncertainty. Two were identical with (b} and {c) in the list on the third page, one was uncertainty
about the accuracy of the data and the fourth was what we called ‘specification error’. This was essentially
the same as (i) and (ii) of the author’s category {a). We found that specification error was usually by
far the most important. Sensitivity analysis therefore played a much more important role in our work
than the usual calculation of standard errors and suchlike. A paper making and illustrating this point
was originally submitted for reading at an Ordinary Meeting but was eventually published in a non-
statistical journal (Bartholomew et al., 1976). In that paper we also noted that similar questions had
been raised in demography and Hoem (1973) was cited. Statisticians have been slow to give proper
recognition to model uncertainty.

Trevor Bedeman (TSB Consumer Credit, Brighton): A related problem is that of comparative model
performance in cross-sectional modelling. Claims are currently being made that computationally intensive
methods such as neural networks and genetic algorithms can outperform traditional methods such as
logistic regression. in credit assessment. In this field even a small increase in predictive power could result
in large savings. The dangers of overfitiing, however, mean that great care js needed in evaluating the
competing claims of differing models. A few per cent difference could either reprasent real improvement
and cost savings or be the result of error made at several stages of comparison.

I recommend the following structure for operational testing. From within the samples taken for model
development, a substantial hold-out subsample should be taken. This is becoming standard practice with
techniques such as neural networks and genetic algorithms. It is used to provide a basic check against
overfitting these models. But there are dangers in reliance purely on the hold-out sample. Once such a
sample is being used to influence model building, then the results are no longer truly independent. A
model developer will typically look several times at preferred versions of the final model and at the hold-
out sample and results obtained from this hold-out sample are likely to have influenced the finished model.

So it is also necessary to assess competing model performance against a completely separate sample,
which is effectively unseen and unused until after the final model is complete. This validation sample
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should ideally consist of fresh performance information taken after the original development sample.
It then provides a test of the operational performance of the model. It is this testing against the unseen
validation sample that is most revealing of the actual predictive capacity of such competing models.
Validation results which are of a different order from those of the development and hold-out samples
show the importance of such full operational testing.

R. J. Bhansali (University of Liverpool): In view of the recent developments on model selection, the
question of statistical inference after model selection is timely. I am, however, disappointed by this
paper in that the author seems only to nibble at the underlying problem and does not appear to introduce
new methods for dealing with it. I am also puzzled by the emphasis on the Bayesian approach. The
underlying idea is not new {e.g. Akaike (1979)) and it is a direct consequence of Bayes’s theorem when
a model is treated as a random quantity. It is unclear, haowever, how to use this approach when the
number of candidate models is large and allowed to increase with #. Also, the approach is predicated
on the hypothesis of a ‘true’ model, which is incongruent with the view (Rissanen, 1987) that for observed
data there can be no true model. It is possible to develop statistical procedures based on the latter point
of view. There is currently much interest in lead-time-dependent model selection and/or parameter
estimation for time series forecasting. The latter may be considered when using a possibly under-
parameterized method, e.g. exponential smoothing, for multistep forecasting and the former when
adopting a nonparametric approach, e.g. autoregressive model fitting: see Findley (1985}, Tiao and
Xu (1993) and Bhansali (1993, 1994), amang others.

Leo Breiman (University of California, Berkeley): Dr Chatfield has admirably undertaken the job
of looking at limitations of models and inference. Unfortunately, our profession has tacitly encouraged
the use of inference to the point of extreme abuse.

Here is a hypothetical (but realistic) example: company X is suspected of sex discrimination in salary.
I8 relevant variables are extracted from the personnel record of each employee. A linear regression
fit to salary is computed. Using the model that salary equals a linear function of the predictor variables
plus independently and identically distributed normal noise, the coefficient of the binary sex variable
is significant at the 5% level. An expert testifies that this constitutes proof of discrimination. Similar
regression modelling is used throughout the social sciences to establish causality.

Setting aside the vaporous claims of causality, there is a fundamental problem with inference in this
setting. The inference in the above example can be restated as: if company X is independently replicated
many times and if, in the replicates, the ‘true’ coefficient of the sex variable is 0, then in fewer than
5% of the replicates will the estimated coefficient of sex have a significant f-value. But company X
is non-replicable, a stochastic model is not possible for non-replicable data, and the inference makes
Nno Sense.

To try a fix, we estimate the ordinary least squares (QLS) coefficients by using half the data and
compute prediction errors by using the other half, If the predictor using the sex variable gives appreciably
more accurate predictions than the predictor not using the sex variable, we have the more modest
conclusion that the sex variable is an important predicior of salary.

But another prediction method might be more accurate than OLS linear prediction and have the same
accuracy whether or not the sex variable was used. Thus, even the modest assertion that a certain variable
is important in predicting future outcomes cannot be decided by using inference on a linear model,
unless we establish its approximate validity—an impossible undertaking in data that are not low
dimensional.

Some madels are sound and useful—i.e. analysis-of-variance models. Yet, inference using models
in data with many mutually dependent covariates is generally unsound. Can a borderline be defined?
Some of the clearest work in this area is by David Freedman and Freadman (1991, 1995) are excellent
introductions to his views {(which I share) and to opposing views,

D. R. Cox (Nuffield College, Oxford): Tension between theory and application arises in many fields
of activity and an issue with Dr Chatfield’s thought-provoking paper cancerns whether he has correctly
identified major matters, the resolution of which would help to reduce such tensions in our subject.
The answer must depend in part on the kinds of application concerned.

His formulations all seem to assume that the objective is fixed, the forecasting of something or the
estimation of a given parameter, whereas my own worries in applications centre mare on whether the
right qualitative goal has been selected, whether the parameter or parameters chosen to encapsulate
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that goal in idealized form are well judged and whether some major feature of data collection or potential
bias has been totally overlooked or some important subject-matter considerations ignored. Within a
given broad framework it may be essential to recognize explicitly that different models with different
interpretations fit about equally well; procedures which then force a single choice are bound to be
potentially misleading. By recognizing that data admit different interpretations many considerations
about multiple testing become irrelevant (Cox and Snell, 1974).

Where it is a question of uncertainty assessment with an agreed target, a comparison of different
models, formally or informally, is an important possibility, although even then underestimation of the
‘real’ uncertainty is likely, partly because of some instability in the target and partly because the dangerous
uncertainties are those that have been overlooked.

Often the term data mining is used in a rather derogatory sense, although Dr Chatfield himself is
not be criticized over this. [ understand mining to be a very carefully planned search for valuables hidden
out of sight, not a haphazard ramble. Mining is thus a rewarding but, of course, dangerous activity.
It is an interesting issue, very specific to each subject-matter field, as to what extent important conclusions
from data ‘lie on the surface’.

Finally it does not seem helpful just to say that all models are wrong. The very word model implies
simplification and idealization. The idea that complex physical, biological or sociological systems can
be exactly described by a few formulac is patently absurd. The construction of idealized representations
that capture important stable aspects of such systerns is, however, a vital part of general scientific analysis
and statistical models, especially substantive ones (Cox, 1990), do not seem essentially different from
ather kinds of madel.

Simon Day {Leo Lahoratories Ltd, Princes Risborough): Dr Chatfield presents a well-reasoned caution
clarifying the fact that uncertainty exists in defining the boundaries between data mining and careful,
thorough, data analysis. The dangers are real and the importance of this paper seems, therefore, without
question.

I do not question the reality of the problem but T question its seriousness. If T introduce a new medical
procedure, manufacturing process, perhaps even a new law and with the passing of time a batter
procedure, process, law etc. is found then [ can and should change. If I make a mistake in analysing
a set of data then [ can re-do the analysis and re-present the results. It may be that my previous decision
about a procedure or law was wrong, or at least not as good as it might have been. That is unfortunate,
possibly even disastrous; there may be nothing that T can do to rectify past mistakes but at least [ can
learn and change for the future. Rut what if my data analysis that led to that decision was wrong; wrong,
not just for one particular problem, but the basic philosophy was wrong? Should we, as statisticians,
now retract all our data analyses as being unsound and so possibly leading to wrong conclusions? [
doubt that we would be willing to do this. Nor am I convinced that it is necessary. Most of us have
probably made these types of ‘error’ at some time. If the analyses that we have performed are suspect
then we have a duty to retract them, or at [east to revisit them. The only exception can be if we judge
{or better if we can prove) that the consequences are not substantial. Can we take any comfort from
the test of time and observe that, despite our errors, statistics is not ‘getting it wrong® daily and so
the consequences may not be substantial? [ am not absolutely convinced, but I hope so.

Robert Fildes and Mike Pidd {(Lancaster University): Chatfield’s paper is an extremely welcome
reminder that statistical analysis is as much about model building as about inference. However,
there is an undoubted risk that attempts at statistical model building may make very efficient
use of computer software and may even be theoretically elegant, yet they may produce models
which are very ineffective in use. Indeed Fildes and Makridakis (1995) reviewed 20 years of the research
literature on time series analysis and concluded that most effort has been devoted to minor extensions
of the autoregressive integrated moving average model class and to tests of related hypotheses. Discussions
of model validation and robustness, especially those which linked problem context, data and model,
were extremely rare.

To make sense of this and to make progress, it is important to think through the nature of modelling,
particularly of statistical modelling. In this we agree with Chatfield that a model will always be an
approximation and, to add to Chatfield, a model should provide a convenient vehicle for experimentation,
more convenient than the system being modelled. In discrete simulation, Zeigler (1976) popularized
the idea that models are valid anly within a fully specified experimental frame. The specification of
that frame is not intended as part of a search for truth but is simply a statement of the intended use
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for the model. Even within a specified experimental frame, several models may be valid, in the sense
of fitness for purpose. The idea of true models is, as Chatfield says, not helpful.

Statistical analysis is rarely an end in itself and many other communities make use both of statistics
and statisticians. Our own management science community is one such and it has a well-developed
literature on model building as a process (see, for example, Mitchell (1994)). In management science
we take for granted that fuzziness, uncertainty and problems of interpretation abound—in addition
to the technical statistical issues of model choice highlighted by Chatfield.

Hence our response is to applaud Chatfield’s discussion of model uncertainty, data mining and the
link to inference. But we part company if he regards this as primarily a statistical problem. Instead,
we believe that progress is most likely to be made through this mine-field when statistical techniques
are combined with a rigorous analysis of the intended use of a model. This will help to define a class
of potentially useful models within which analysis can be conducted.

A. D, Gordon (University of St Andrews): Some of the prablems of model uncertainty and validation
of the results of an analysis that are described in this paper also arise in cluster analysis. Different clustering
procedures can provide markedly different analyses of the same set of abjects; in effect, each clustering
criterion implicitly involves a model for the data. One approach. to this problem has been to analyse
the data by using several different clustering procedures, which theory or background information suggests
might be appropriate, and to synthesize the set of results in a consensus classification (Gordon (1981),
chapter 6).

There has also been concern to assess the validity of the cluster output; an overview of relevant tests
and procedures is given by Gordon (1994). Two approaches of particular interest have involved assessing
replicability across subsamples and simulation tests. In the first approach, the data set is randomly divided
into two and the objects in each subset are

{a) clustered separately and
(b) assigned to the ‘nearest’ cluster in the other classification.

A high correspondence between relevant partitions increases confidence in the validity of the results
(Mclntyre and Blashfield, 1980; Breckenridge, 1989). In the second approach, data sets randomly
generated under a null model of the absence of group structure are analysed by using the same clustering
procedure as was applied to the original data set, allowing a Monte Carlo test of the strength of support
for its clustering (e.g. Arnold (1979) and Milligan and Sakaol (1980)). The results depend on the chaice
of null model, and use has been made of data-dependent null models; for example, simulated data sets
can be required to have similar covariance structure to the original data set, or data points can be generated
uniformly within the convex hull of the original data.

Although cluster analysis is not cancerned with the estimation of parameters, I believe that it could
usefully be included in discussions of the effects of model uncertainty in the analysis of data.

Howard Grubb (University of Reading): [ would like to discuss some issues which arise-from
trying to measure uncertainty in a geophysical procedure (marine seismic surveying). In this case,
our model M is of same property of the earth estimated at various locations. These have been determined
by physical considerations, so there can be considered to be no model structure uncertainty; however,
there is uncertainty in the estimated values. This model is then used in a further stage of processing
to calculate other properties of the earth (P, Q) and these final coefficients are of interest to geologists.
It is therefore uncertainty resulting at this stage and on the scale of the earth parameters which
is important, rather than, say, confidence in a particular model M. Natice that this uncertainty varies
spatially and is of different orders for each of the coefficients (P, Q) (i.e. some are better determined
than others). .

Uncertainty in this procedure can be considered to arise from three sources:

(a) variability in the parameter estimates of model Af;
(b) precision of the final estimates (P, Q) due to the processing procedure;
(¢) quality or validity of physical assumptions for particular M.

(a) and (b) correspond to Chatfield’s (b) and (¢) in Section 1, although, while mentioning model
validation as part of the model building process, he does not consider this as an element of uncertainty
which could be measured, rather than just taken as good or bad. In this application, the physical model
may he less valid at certain points, depending on the particular earth structures.



458 DISCUSSION OF THE PAPER BY CHATFIELD [Part 3,

This analysis raises the issues of measuring the uncertainty (we must have suitable scales on which
to do this), and of combining these uncertainties in meaningful ways. An initial solution to this has
been implemented using sirnulation to estirnate the effect of variability, although this is a very expensive
approach. Analysis of the processing procedure can give us a measure of precision, whereas physical
knowledge allows us to devise measures of quality or validity, although the relative scales of these measures
and their combination can be difficult to determine in a ¢complex procedure.

Urban Hjorth (Linképing University): Surprisingly, it is not easy to comment on a work with which
one agrees as completely as I do with Dr Chatfield’s presentation. I congratulate him on his wide coverage
and well-articulated description of the difficulties and challenges in inference after model selection.

We now know that classical inference cannot be trusted after data-based model selection and that
in particular classical measures of fit and predictability, based on the properties of the fitted model
only, will be overoptimistic. Of course there is nothing wrong in searching different models for a good
fit. This is just another version of the maximum likelihood principle. The mistake is to pretend afterwards
that only a small subset of all the possible models is involved in the analysis. However, we often da
not know how to handle the big problem and are sometimes even unable to define the class of models,

Chatfield mentions two passibilities: the use of computer-intensive methods, when the modelling can
be at least approximated by an automatic procedure, and the challenging Bayesian analysis where no
particular model is selected. Both kinds of method are of great interest. T would like to add that, since
the gain of model selection appears to be smaller than the fit indicates, and the complexity much larger,
it can be useful to bring some problems back to the classical situation by more careful thinking before
the analysis of data and by defining more general parametric models. On a mare practical level, we
need to incorporate model selection analysis in software for regression and time series modelling. A
far reaching vision is to structure a package where any use of explorative search, transformations and
other modelling tools could be accounted for in a statistical evaluation of the results. Chris Chatfield’s
paper will hopefully stimulate much new research in the area.

Raymond Hubbard (Drake University, Des Moines): I applaud Dr Chatfield for advocating a ‘broader’
view of statistical inference to include the whole model building process. Likewise, I share his concerns
about the widespread practice of data mining and its effects on the veracity of published empirical results.

It is ironic, then, that journal editors and reviewers promote data mining. They do so because of
their bias in favour of publishing manuscripts with statistically significant {p < 0.05) results (Denton,
1985), which can fuel data mining among those researchers who failed to obtain them initially. As Mayer
(1980), p. 175, observed, “If you just torture the data long enough, they will confess’,

I particularly agree with Dr Chatfield’s argnment for validating models by replicating them on new
data sets. But T would caution that ideally model replication should be undertaken by independent
(different) researchers. Researchers replicating their own work are more likely to report a confirmation
of previous results. For example, in a study concerning replication research in five business disciplines
during 1970-91, it was discovered that 266 of 4270 empirical papers (6.2%) qualified as replications
with extensions (Hubbard and Vetter, 1995). 51 of these 266 replications involved authors replicating
their own work, and only five (9.8%) of them reported findings that conflicted with earlier results.
In contrast, of the 215 replications carried out by independent researchers 116 (54%) conflicted with
earlier results.

Unfartunately, editors and reviewers again impede the development of knowledge through their bias
against publishing replication research {(Neuliep and Crandall, 1993). Thus, instead of accumulating
results based on significant sameness, we tend to be left with fragmented and isolated findings whose
value is minimal.

Because of editorial-reviewer biases, [ am not optimistic that the changes necessary for improving
the climate of empirical research will accur. The bias against publishing statistically insignificant rasults
encourages data mining, thereby exacerbating the problems regarding model uncertainty and inference.
The bias against publishing replication research discourages empirical generalization. And these biases
continue to exist despite numerous pleas to eliminate them. So, even after acknowledging Dr Chatfield’s
valuable insights, I am afraid that for most researchers it will be back to business as ysual.

David Madigan (University of Washington, Seattle): Dr Chatfield’s paper adds to the rapidly expanding
number of references on model uncertainty. That this activity is taking place more than a decade after
the appearance of Leamer (1978) is indeed a ‘quiet scandal’.
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I shall comment on five specific points in Dr Chatfield's paper. First, readers of Section 4 might
have the impression that large samples alleviate ‘model selection biases*. York er af. (1995), Madigan
and York (1995) and Kass and Raftery (1993) described applications which demonstrate that there is
little room for complacence, no matter how large the sample.

Second, elicitation of uncontroversial informative prior model probabilities for Bayesian model
averaging (BMA) is possible, Madigan et af. (1995) described one approach and presented a medical
application where an informative prior distribution provides improved out-of-sample predictive
performance when compared with a vague alternative.

Third, Dr Chatfield states that BMA does not lead to simple models which ‘may not matier for
forecasting purposes but does matter for description and interpretation’. However, BMA can provide
a posterior distribution for any quantity of interest, not just forecasts. For example, Raftery ef af. (1995)
present posterior distributions for effect sizes averaged across models,

Fourth, there is mounting empirical evidence that BMA consistently provides improved out-of-sample
predictive performance for a range of model classes including linear regression (Raftery et al., 1994),
graphical models for categorical data (Madigan and Raftery, 1994) and event history analysis (Raftery
ef ai., 1995). The results from these studies are quite similar: in most cases, BMA improves the predictive
performance over the single best model by about the same amount as would be achieved by increasing
the sample size by 4% (Raftery, 1995). Madigan and Raftery (1994), equation (4), provide a theoretical
underpinning for these results.

Finally, Dr Chatficld makes somewhat disparaging remarks about data mining. Used wisely, however,
apparently egregious data mining methods can provide useful results (see, for example, Riddle er ¢/.
(1994)). Within the emerging ‘knowledge discovery in databases' (KDD) community there is considerable
disenchantment with traditional statistical methods. Although it seems important to point out the
inadequacies of certain KDD approaches, we must do more than merely criticize.

John M. Marriott (Nottingham Trent University): Dr Chatfield discusses what he calls the Bayesian
madel averaging (BMA) approach. I believe that this approach, as described in the paper, is just a special
case arising from a Bayesian decision analysis that is not necessarily applicable in situations where there
is no belief in a true model. The approach can be summarized as combining the predictions $; from
the individual models to obtain an overall prediction as

Pe= ZﬁiP(Mf ).

In presenting model choice in a decision context Bernardo and Smith (1994) discussed three alternative
ways in which the possible models might be viewed. If we restrict our consideration to the first of these,
the _#~closed case, in which the true model is assumed to be one of the set of models being considered,
and then further restrict the decision problem to pure prediction, the Bayesian procedure for model
selection is then to choose an action that will minimize the posterior expected loss

EL= LL(J’J, Y)p(ylx)dy

where the loss function L (§, y) measures the loss from using # when the true, as yet unobserved, value
is y.

In the special case of a quadratic loss function, the optimal predictor is provided by averaging the
individual posterior predictive means over the posterior distribution of the models,

su= P4l | ypix, M)y

which coincides with the BMA approach if §, is interpreted as the posterior predictive mean.

In the cantext of time series models there are many references in which either g is employed (see
for example Monahan (1983) or Marriott and Tremayne (1988)) or different loss functions and their
effect on model choice criteria are considered (see for example Chow (1981), Kashvap (1982) and Poskitt
(1987)). In all these consideration is restricted to the _#~closed case.

None of the results referred to above automatically extend to the case in which the true model is
assumed unknown.

In presenting his example of the BMA approach Dr Chatfield does not make this clear, nor does
he indicate that his results do not apply regardless of the choice of loss function or prior beliefs about
model parameters.
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Alan 1. Miller (CSIRO Division of Mathematics and Statistics, Melbourne): I very much welcome
this excellent review of the current state of the art of inference after model building. The comprehensive
set of recent references is particularly valuable. Computational methods of model building, such as
alternating conditional expectation, classification and regression trees, projection pursuit and generalized
additive modelling, have proliferated in recent years yet we have only just started research into how
to draw inferences for selecting subsets of populations, subset selection in linear regression and
autoregressive integrated moving average modelling. One name which is conspicuous to me though by
its absence is that of T. A. Bancroft. See particularly Bancroft and Han (1977).

Let me put my contribution in the form of a question. Given a set of data with no accepted model,
which of the following should we do?

(a) Should we split the data into parts which we use
(i) to build a model,
(ii} to estimate the parameters in the chosen model and
(iii) finally ‘validate’ the model (though invalidation is a preferable attitude)?

If we do this, how should we do the splitting?

(b) Alternatively, should we use all the data for the three phases abave but in inference make allowance
for the data mining process, and if so, how?

Common practice is either to use the second alternative but with no allowance for overfitting, or
to split off a small part of the data for validation. The few investigations which have been carried out
(.. Roecker (1991)) suggest strongly that the alternative of using all available data for madel building
is better. The reason appears to be that, the more data we use for the data mining phase, the closer
we approach to a realistic model.

Suppose that we then carry out a second data collection or experiment after the first has narrowed
our choice of models. Should we combine both data sets for the next phase of model building? I think so.

I would like to question one statement in {(d) of Section 4.3 ‘prediction intervals are generally too
narrow’. Chatfield may be right but my limited experience is that the width of the intervals (in regression)
is roughly correct; the problem is that they are in the wrong place!

Anthony O'Hagan (University of Nottingham): Dr Chatfield is to be congratulated for a timely and
thought-provoking paper. His criticism of so much of common statistical practice, and particularly of
classical inference, in the presence of model uncertainty is thorough and very welcome. I was disappointed
to see, however, so little space on solutions, particularly when I find the discussion in Section 6 quite
unconvincing. How is collecting more data different from arbitrarily splitting the existing data? After
collecting more data, we again have a single, albeit larger, set of data. To regard the part that we received
first as that to be used for model building, and the new part as that for model confirmation, is just
as arbitrary as splitting the original data into two parts for these purposes. Furthermore, the process
makaes little sense in either case. What if the ‘confirmation® sample fails to confirm the model? However
one describes it, the new data are being used for further learning about the model, and it is proper
to use afi the data explicitly for model inference, as a single data set. This is what the standard Bayesian
procedure, now called Bayesian model averaging, would do.

The latter part of Section & similarly unconvincingly tries to say that statistical analysis of several
data sets is something other than analysis of one large data set. All analysis is of a single data set,
but some data sets have more complicated structures than others, which must be acknowledged in the
form of model and analysis adopted.

Bayesian model averaging is the most appropriate form of inference, but Dr Chatfield correctly
identifies the principal practical difficulty as the choice of the prior probabilities for different models.
It is dangerous when used with an unstructured collection of models, and particularly if some of those
models have been suggested by the data. (Non-Bayesian model averaging with fixed weights, which Dr
Chatfield suggests in the context of ‘combining forecasts’, is not consistent.) Dr Chatfield does not
discuss Bayesian model averaging in detail, sa this is not the place for an extensive comment on
applications of the technique, but T would like to draw attention to a new computational technigue
which promises ta be extremely powerful in applications. Green (1994b) shows how to use Markov chain
Monte Carlo (MCMC) technigues on the union of the parameter spaces of all the models. This enables
inference both. within and across models to be derived from one MCMC computation. Current work
suggests that Green’s method combines particularly well with the fractional Bayes factors approach
of O’Hagan (1995) when prior information on parameters within models is weak.
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Benedikt M. Pétscher (Universitit Wien): The author is to be commended for exhorting statisticians
to face the implications of model uncertainty and to try to take on this old and nagging problem. My
comment relates to the asymptotic resulis discussed at the beginning of Section 4. The perhaps mast
important result in Pétscher (1991) concerns model selection procedures obtained from a sequence of
hypothesis tests and describes the asymptotic distribution of parameter ¢stimators conditional on the
event that a particular model has been sclected by this model selection procedure. It turns out that
conditionally on having selected the minimal true model this asymptotic distribution coincides with the
classical normal distribution (seemingly implying that there is no effect from using a model selection
procedure in this case), but that conditionally on selecting an overparameterized true model this asymptotic
distribution can have a very different form. (Underparameterized models are never selected asymp-
totically.) These asymptotic results must be used with great care, however, since the convergence of
the finite sample distributions to their asymptotic equivalents is not uniform as the true parameter varies
over the parameter space. The non-uniformity arises near lower dimensional models and is related to
the face that selection of underparameterized models, which may oceur in small samples but not
asymptotically, is not taken into account in the asymptotics. See Kabaila (1995), Pétscher (1995) and
Shibata (1986) for more discussion. As a consequnce, in finite samples the picture can be quite different
from that predicted by asymptotic theory. A study of the finite sample distributions of parameter
estimators conditional on having selected a particular model is reported in Patscher and Novak (1994).
It is found that che asymptotic results mentioned above provide good approximations for the finite
sample distributions in case we condition on the event that a true but overparameterized model has
been selected. However, conditionally on selecting the minimal true model, the finite sample distributions
can sometimes differ dramatically from their asymptotic counterparts. Hence, although the asymptotic
result seems to tell us that there is no effect from maodel selection when selecting the minimal true model,
this is not what we find in small samples. This is linked to the possibility of selecting underparameterized
models in small samples; see Pétscher and Novak (1994) for more discussion. (There is, however, a
mark of this phenomenon also in the asymptotics, namely the non-uniformity alluded to above.)

W. D). Ray (Leatherhead): The subject of this paper is ideal for discussion since it focuses directly
at the basics of statistical inference. It raises fundamental issues on which every statistician must have
definite views and opinions. These issues deserve to be widely debated.

Firstly is ‘the single-model issue’. It may be accepted that there is no ideal model, but, and here is
the rub, with what do vou replace it . . . many models? That certainly gives flexibility but when do
you stop counting and who chooses the final set? Tt seems a little presumptuous then to choose priors,
either to soothe one’s conscience or to be able to make some mathematical sieps out of convenience.
How do vou evaluate the priors and who does the evaluating?

In Section 3 this theme is pursued and the author seems to approve the Bayesian approach. However,
this appears as equally fallacious as the ‘single-model’ direciion. What we are doing is replacing wishful
thinking in choosing one model with wishful thinking about choosing several models!

The only sure thing (or should be) is the date! This viewpoint puts the nonparametric approach, boot-
strap and all, as the safest path to follow, and it is encouraging to see the developments in this direction.
The difficulties, however, remain and as the author remarks there is no comprehensive answer.

Referring to the time series field I have often thought that a clutch of different maodels might be used
to advantage when forecasting, each being a function of the number of steps ahead to be forecasted.
It is asking too much of a single model to trap the long- and short-term structure simultaneously.

Evidence for this is often apparent from a look at the spectrum when there is significant power at
both low and high frequencies.

R. A. Sugden (Goldsmiths College, London): Dr Chatfield brings to our attention some unpleasant
home-truths about conditioning.

His warnings are certainly relevant for model-based survey samplers. Suppose that the two models
under consideration are as in example 2 and a linear least squares predictor of the finite population
mean, essentially a ‘global’ parameter, is required. Under model I the linear regression estimator

F+AX-%)
is used (assuming that the finite population mean X is known) and, under model TI, the sample mean y.

If a sample-based choice of model is made, then this ‘pretest’ estimator certainly suffers from model
selection bias.
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It is important to realize that design-based survey samplers, who base their inference solely on the
distribution generated by repeated applications of the sample design and not on models, can also suffer
from selection bias, although a better term might be ‘estimator selection bias’. Consider the same problem
as above, where the design is say simple random sampling {applied to a fixed but unknown finite
population). The linear regression estimator is chosen for certain samples, which are subsets of size
#, and the sample mean for the rest. Conditionally on either choice, the population units now no longer
have equal survey weights but unequal and moreover unknown weights. These are the inverse inclusion
probabilities given that the sample s now falls in a restricted sample space. Faced with difficulties like
these, a design-based survey statistician might retreat to upconditional inferences. Similar problems are
encountered in the decision whether or not to post-stratify, even when the stratum sizes are known.

The author replied later, in writing, as follows.

I thaok all the discussants for their generally encouraging and constructive contribucions. The large
number of comments means that I cannot reply to all of them, and, in any case, many of them need
no specific reply. Thus the absence of a response to a particular point should not necessarily he taken
to imply lack of interest on my part.

I am grateful for the additional references, especially Pétscher and Novak’s (1994) recent small sample
resules on inference after model selection, and Bancroft and Han's pre-1977 bibliography of what was
then called conditional specification. | also welcome the additional insights into model uncertainty gained
from a variety of areas of science and statistics such as manpower planning (Bartholomew), cluster
analysis (Gordon), geophysics (Grubb) and sample surveys {(Sugden).

Wider issues of modelling and problem solving

Several discussants have commented on wider aspects of statistical inference. T agree with Hand that
such issues need more attention, in contrast with the detailed refinements of technigques, where there
is a rapidly growing literature. We should indeed keep the problem, rather than the model, centre scage,
and the rlarification of ebjectives (Gilmour, Cox) is crucial. Nevertheless, modelling is of course important
and general questions thereon also receive much attention {e.g. Copas, Hand, Ameen, Davison, and
Fildes and Pidd). What constitutes ‘a model’ and what is the purpose of modelling? Hand helpfully
distinguishes between models used as representations and as descriptions, whereas Ameen describes a
model as ‘a device that a scientist uses to understand better some nacural phenomena’. Of course all
models are approximations (Fildes and Pidd) and it is better to describe models as better or worse
approximations rather than ‘right’ or ‘wrong* (Cox), but I still think that the old aphorism ‘All models
are wrong, but some are useful’ can be a salutary reminder of the frailcies of modelling. My lack of
belief in a ‘true’ model means that [ do not accept the premise behind what Marriott calls the _#-closed
case, We also need to remember chat several different models may fic ¢the data about equally well
{Ehrenberg, Cox, Fildes and Pidd) and that the choice of model will depend partly on the particular
application. For example Ray reminds us that different time series models may be appropriate for short-
and long-term forecasts. 1 also agree with Davies that I should have said more in Section 3.1 about
models with time varying parameters. In time series analysis in particular, the use of such (local) models,
which may readily be updated by the Kalman filter, is increasing and has many benefits compared with
constant parameter (global) models.

Copas says that, in properly designed experiments, a null model is ‘simply a description of the
randomization used in the design’. This is only helpful up to a point. Knowing the null distribution
of some test statistic does not help you to describe (model} the effects of the treatments when the null
hypothesis is rejected. However, [ agree with Copas chat, wicth observational data, ‘we should emphasize
the descriptive rather than the inferential nature of our analysis’. Breiman’s remarks on company X
are relevant here, whereas Gilmour’s remarks remind us that good (e.g. orthogonal) design is a necessary
precursor to well-grounded analysis and can help to reduce model uncertainey.

Datq mining

The phrase ‘data mining’ has caused some comment (Allin, Cox, Hubbard). [t appears that the
phrase can be used to denote sensible ‘digging’ into data to try to reveal what they are saying. Bue,
rightly or wrongly, it has more often become synonymous with ‘torturing the data till they confess®,
especially in the econometric literature (Lovell, 1983; Denton, 1985). There is of course a fine line
between the careful study or evaluation of a set of data and an overzealous modelling spree {(Day,
Madigan).
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Many sets af data or one? )

Statisticians must keep a sensible balance between solving problems with one-off data sets and looking
for confirmation or generalization with two or more data sets. I have routinely had to tackle both types
of problem. 1 therefore strongly disagree with those comments which dispute this balance (I seem to
have become a ‘moderate’!). At one extreme, Ehrenberg complains that seatisticians worry too much
about ‘unfortunate cases' where one cannot easily collect more data. I think that describing the whole
of time series analysis, for example, as an unfortunate case is preposterous. Although we should always
be looking to replicate and generalize wherever possible, we cannot ‘do science’ all the time. Rather
we often must solve problems of a one-off nature, and Ehrenberg must face up to the fact that people
do have to spend considerable time analysing single data sets.

At the other extreme, I disagree strongly with Gilmour that it is always better to have one large properly
designed multicentre clinical ¢trial. We cannot in advance think of ¢#f the factors which might be important,
so that, even if the large design is modified sequentially, it may still not give representative results.
Replicated studies are much more than a series of ‘badly designed, single studies’. Rather they provide
an essential check to see whether results taken by a different experimenter under inevitably somewhat
different conditions (though it may be not be clear in advance how they are different) are similar, Or
of course we may wish deliberaiely to design differences into a replicate study (Lindsay and Ehrenberg,
1993).

By the same token, I disagree even more strongly with O’Hagan'’s suggestion that arbitrarily splitting
data is the same as collecting new data. [ refer him to the comments of Bedeman, Hubbard and Miller
as well as to Hirsch (1921). To put my views in Bayesian jargon, new data will not necessarily be fully
exchangeable with existing data because of all sorts of unforeseen factors (a new experimenter, a different
country, a different year. . .). Thus new data are vital in challenging our complacency in automatically
assuming exchangeability. Hubbard'’s gloomy remarks on the ‘bias against publishing replication research’
are therefore sad. Incidentally, I think that I prefer the term ‘research synthesis® to ‘meta-analysis® and
note that the farmer term is increasingly used. I also note that Bayesian updating can be regarded as
another way of combining information.

While on the subject of data splieting, [ must voice my support for Bedeman’s comments that a ‘hold-
out sample’ which is used to help to choose a ‘best” model is #or really a hold-out sample at all. Forecasting
comparisons must be made on genuine ex anfe or out-of-sample forecasts (Fildes and Pidd).

Miscellanea

Some other comments and responses in brief are as follows. In response to Copas, I confess that
I also have sinned in ignoring the effects of model uncertainty and am still unclear about how much
this will matter in specific situations, and what can be done about it. Hence there.is the need for more
research. When the data point unequivocally to a single model, the effect of model uncertainty is likely
to be small (Davison) but how often does this happen? In my experience, it is rather rarely, especially
in time series analysis. Nevertheless Day will be pleased to know that I am not proposing we retract
all our previous analyses, even in time series analysis, though I do think that we should be more
circumspect in our qualitative inferences. When ane sees an example like that presented by Draper
(showing that the within-sample standard deviation of standardized residuals is about half the
corresponding jackknife value) cthe need for caution is clear!

Bhansali’s references seem to relate to maodel selection rather than inference affer model selection
which is my main concern.

O’Hagan comments that the (non-Bayesian) combination of forecasts ‘is not consistent’. [ have no
idea what he means by this. I do know that combining forecasts often works well in practice. Bayesians
have an unfortunate habhit of dismissing the results of alternative approaches as being ‘incoherent’ ar
‘inconsistent’ without stating the assumptions or premises on which this is based.

I was also tempted to agree with Ray that ‘the only sure thing is the dara’, but then realized that

(a) data often contain errors and will not then be ‘sure’ (and Bartholomew is right to add this to
the list of sources of uncertainty) and
{b) the quote implies that we should ignore context, and I would not agree with that.

I enjoyed Lewis's forthright remarks but cannot agree that the scenario I examine in example 2 is
uncommon. I am delighted to hear that his students were taupht to say that more data may need to
be collected when a non-significant result is obtained, but I wonder whether they were taught how much
mare to collect, and what to do with them when collected (e.g. combine new data with old?). Is this
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really an area where we are doing a thorough job? More generally I am disappointed that no-one took
up the pedagogical implications of model uncertainty.

Finally, I mention two additional relevant papers which have been brought to my attention. Easterling
and Anderson (1978) give results which are relevant to example 1. Altman er al. (1994) show that when
a continuous variable is categorized into discrete groups, with groupings determined by the data to give
an ‘optimal’ P-value, then che latter will (obviously?) be biased. They recommend that this procedure
and the word ‘optimum’ should be abandoned.
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