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Preface

The first edition of this book was made during the years 2005–2007. Since then
quite some new developments have taken place, both in the general scientific
direction that prediction research is taking and specific technical innovations. These
developments have been addressed as far as possible in the second edition. Many
new references have been added. Some detailed material has been moved from print
to the web. Many figures have been redrawn in color for better clarity and attrac-
tiveness. In all, many changes have been made to nearly every chapter.

Prediction models are important in widely diverse fields, including medicine,
physics, engineering, meteorology, and finance. Prediction models are becoming
more relevant in the medical field with the increase in biological knowledge on
potential predictors of outcome, e.g., from “omics” (including genomics, tran-
scriptomics, proteomics, glycomics, metabolomics). Also, the Big Data era implies
we will have increasing access to large volumes of routinely collected data. The
number of applications for prediction models will increase, e.g., with targeted early
detection of disease, and individualized approaches to diagnostic testing and
treatment.

We are moving to an era of personalized evidence-based medicine that asks for
an individualized approach to shared medical decision-making. Evidence-based
medicine has a central place for meta-analysis to summarize results from ran-
domized controlled trials; prediction models summarize the effects of predictors to
provide individualized predictions of the absolute risk of a diagnostic or prognostic
outcome. Prediction models and related algorithms will increasingly form the basis
for personalized evidence-based medicine and individualized decision-making.

Why Read This Book?

My motivation for working on the first and second editions of this book stems
primarily from the fact that the development and applications of prediction models
are often suboptimal in medical publications. With this book, I hope to contribute to
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better understanding of relevant issues and give practical advice on better modeling
strategies than are nowadays used.

Issues include the following:

(a) Better predictive modeling is sometimes readily possible, e.g., a large data set
with high-quality data is available, but all continuous predictors are dichot-
omized, which is known to have several disadvantages.

(b) Small samples are used:

– Studies are underpowered, implying unreliable answers to difficult questions
such as “Which are the most important predictors in this prediction
problem?”

– The problem of small sample size is aggravated by doing a complete case
analysis which discards information from nearly complete records.
Statistical imputation methods are nowadays available to exploit all avail-
able information, especially “multiple imputations.”

– Predictors are omitted that should reasonably have been included based on
subject matter knowledge. Analysts rely too much on the limited data that
they have available in their data set, instead of wisely combining information
from several sources, such as medical literature and experts in the field.

– Stepwise selection methods are abundant when researchers apply regression
modeling, while these methods are suboptimal, especially in small data sets.

– Modeling approaches are used that require higher numbers. Data-hungry
techniques, such as neural network modeling, machine learning or artificial
intelligence techniques, should not be used in small data sets.

– No attempts are made towards validation, or validation is done inefficiently.
For example, a split-sample approach is followed, leading to a smaller
sample for model development and a smaller sample for model validation.
Better methods are nowadays available and should be used far more often,
specifically bootstrap resampling.

(c) Claims are exaggerated:

– Often, we see statements such as “the independent predictors were identi-
fied”; in many instances, such findings are purely exploratory and may not
be reproducible; they may largely represent noise.

– Models are not internally valid, with overoptimistic expectations of model
performance in new patients.

– One modern machine learning method with a fancy name is claimed as
being superior to a more traditional regression approach, while no con-
vincing evidence is presented, and a suboptimal modeling strategy was
followed for the regression model. Fair comparisons between well-used
statistical methods and machine learning methods are required.

– Researchers are insufficiently aware of overfitting, implying that their
apparent findings are merely coincidental.
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(d) Poor generalizability:

– If models are not internally valid, we cannot expect them to generalize to
new patients.

– Models are developed for each local situation, discarding earlier findings on
effects of predictors and earlier models; a framework for continuous
improvement and updating of prediction models is required.

In this book, I suggest many small improvements in modeling strategies.
Combined, these improvements should lead to better development, validation, and
updating of prediction models.

Intended Audience

Readers should have a basic knowledge of biostatistics, especially regression
analysis, but no strong background in mathematics is required. The number of
formulas is deliberately kept small. The focus is on concepts in prediction research,
which are also relevant to computer scientists and data scientists working on pre-
diction in the field of Predictive Analytics.

Usually, a bottom-up approach is followed in teaching regression analysis
techniques, starting with the required type of data, model assumptions, estimation
methods, and basic interpretation. This book is more top-down: given that we want
to predict an outcome, how can we best utilize regression and related techniques?

Three levels of readers are envisioned:

(a) The core intended audience is formed by epidemiologists and applied bio-
statisticians who want to develop, validate, or update a prediction model. Both
students and professionals should find practical guidance in this book, espe-
cially by the proposed seven steps to develop a valid model (Part II).

(b) The second group is formed by clinicians, policy-makers, and healthcare profes-
sionals who want to judge a study that presents or validates a prediction model.
This book should aid them in a critical appraisal, providing explanations of terms
and concepts that are common in publications on prediction models. They should
try to read chapters of particular interest, or read the main text of the chapters. They
can skip the examples and more technical sections (indicated with*).

(c) The third group includes more theoretical researchers, such as (bio)statisticians
and computer scientists, who want to improve the methods that we use in
prediction models. They may find inspiration for further theoretical work and
simulation studies in this book. Many of the methods in prediction modeling
are not fully developed yet, and common sense or intuition underlies some
of the proposed approaches in this book. Improvements are welcome!
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Other Sources

Many excellent textbooks exist on regression analysis techniques, but these usually
do not have a focus on modeling strategies for prediction. The main exception is
Frank Harrell’s book “Regression Modeling Strategies”. He brings advanced bio-
statistical concepts to practical application, supported by the rms package for R.
Harrell’s book may, however, be too advanced for clinical and epidemiological
researchers. This also holds for the Hastie, Tibshirani, and Friedman quite thorough
textbook “The Elements of Statistical Learning”. These books are very useful for a
more in-depth discussion of statistical techniques and strategies. Harrell’s book
provided the main inspiration for the presented work here. Another good com-
panion book is the Vittinghoff et al. book on “Regression Methods in Biostatistics”.

Various sources at the Internet can be used that explain terms used in this book.
Frank Harrell maintains a useful glossary: [http://hbiostat.org/doc/glossary.pdf].

Structure

It has been found that people learn by example, by checklists, and by own dis-
covery. Therefore, many examples are provided throughout the text, including the
essential computer code and output. I also suggest a checklist for prediction
modeling (Part II). Own discovery is possible with exercises per chapter, with data
sets and scripts provided at the book’s website: www.clinicalpredictionmodels.org.

Many statistical techniques and approaches are readily possible with any modern
software package. Personally, I have worked with SPSS for simple, straightforward
analyses. This package is insufficient for more advanced analyses which are essential
in prediction modeling. The SAS computer package is more advanced, but may not
be so practical for some. A package such as Stata is very suitable. It is similar in
capabilities to R software for the key elements of prediction modeling. The R soft-
ware has several advantages: the software is for free, and innovations in biostatistical
methods become readily available. Therefore, R is the natural choice as the software
accompanying this book. R software is available at www.cran.r-project.org, with help
files and a tutorial.

An important disadvantage of R is a relatively slow learning curve; it takes time
and efforts to learn R. Some R commands are provided in this book; full programs
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can be downloaded from the book’s website (www.clinicalpredictionmodels.org).
This website also provides a number of data sets that can be downloaded for
application of the described techniques. I provide data files in SPSS format that can
readily be imported in R and other packages. Many useful R tips and tricks are
available on the web.

Leiden, The Netherlands Ewout W. Steyerberg
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Chapter 1
Introduction

1.1 Diagnosis, Prognosis, and Therapy Choice in Medicine

Prediction and prognosis are central to many domains of medicine:

• Screening: If we screen for early signs of disease, we may, for example, find
cancers early in their course of disease and treat them better than when they
were detected later. But whether screening is useful depends on the improve-
ment in prognosis that is achieved compared to a “no screening” strategy. Some
cancers may not have caused any impact on life expectancy, while side effects of
treatment may be substantial. For example, overdiagnosis is a serious concern in
breast cancer screening [90, 365].

• Diagnosis: If we do a diagnostic test, we may detect an underlying disease. But
some diseases are not treatable, or the natural course might be very similar to
what is achieved with treatment.

• Therapy: New treatments are proposed nearly every day, but their impact on
prognosis is often rather limited, despite high hopes at early stages. “Magic bul-
lets” are rare. Treatment effects are often small relative to the effects of determi-
nants of the natural history of a disease, such as the patient’s age. The individual
benefits need to be considered and exceed any side effects and harms [419].

1.1.1 Predictions for Personalized Evidence-Based Medicine

Physicians and health policy-makers need to make predictions on the likelihood of a
diagnosis and the prognosis of a disease in many settings, for example,
decision-making on screening for disease, diagnostic workup (e.g., ordering fur-
ther tests, including possibly risky or expensive tests), and therapy choice (where the
benefits of treatment should exceed any burden and risk of harm). Traditionally, the
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probabilities of diagnostic and prognostic outcomes were mostly implicitly assessed
for such decision-making. Medicine was much more subjective, relying on expert
knowledge. The field of prognosis research has however grown strongly since [238].

How is prognosis research related to recent general scientific developments (Table 1.1)?

• Prediction models are an explicit, empirical approach to estimate probabilities of
disease or an outcome of disease. This relates to the “evidence-based medicine”
(EBM) movement which aims to use the current best evidence in making
decisions about the care of individual patients [413, 481]. Evidence-based
medicine applies the scientific method to medical practice [214]. Its laudable
intentions are to make clinical practice more scientific and empirically grounded
and thereby achieving safer, more consistent, and more cost-effective care [200].
The Cochrane Collaboration has grown internationally and focuses on the
synthesis of evidence, mainly using meta-analytic techniques [49].
Evidence-based medicine has been criticized for a number of reasons, specifi-
cally on the issue of being not sufficiently individualized. EBM relies heavily on
overall effect estimates from randomized controlled trials (RCTs), as summa-
rized in meta-analyses [270]. There is a natural tension between the average
results in clinical studies and individual decisions for real patients, where
average results may not apply [200]. This tension is related to the “reference
class” problem: to whom do the trial results apply? [300, 468].

• Personalized medicine has been proposed as a new paradigm, with a primary
focus on what intervention works for what specific patient [492]. Personalized
medicine has been fueled by discoveries in basic science to define variations in
human diseases, for example, related to genetic variability in patients’ responses
to drug treatments [220]. The central goal of personalized medicine is to narrow
the reference class to yield more patient-specific effect estimates to support more
individualized clinical decision-making [300]. The empirical identification of
patient-specific effects is a formidable task, however, with a history of disap-
pointments and failures [240, 284, 658].

• We might hope that the Big Data era opens new avenues. Indeed, the growth in
the availability of registries and claims data and the linkages between all these
data sources have created a big data platform in health care, vast in both size and
scope [504]. The increase in data availability has fueled the development of
computer-oriented methods known as “Machine Learning” (ML) [283]. ML
claims to make fewer assumptions in prediction modeling than traditional sta-
tistical approaches. ML places the data at the forefront, with a more limited role
of the data analyst than in traditional statistical analyses. ML encompasses fields
such as “data mining,” which focuses on exploratory data analysis. It is also
connected to artificial intelligence (“AI”), a field where algorithms mimic cog-
nitive functions that humans associate with human minds, such as learning and
problem-solving. Machine learning and statistics may both fall in the overall field
of “data science,” which has seen a spectacular growth in recent years. Predictive
analytics may be seen as the subfield of data science where data are used to make
predictions, either using more traditional or ML methods [449, 666].

2 1 Introduction



• A criticism of EBM is that it ignores patients’ values and preferences, which are
central elements in Shared Decision-Making (SDM) [253]. In SDM, physicians
and patients both actively participate in deciding on choices for diagnostic tests
and therapeutic interventions [111]. For shared decision-making, adequate
communication is required about the patient’s options, and their pros and cons,
tailored to the specific patient [570].

Clinical prediction models combine a number of characteristics (e.g., related to the
patient, the disease, or treatment) to predict a diagnostic or prognostic outcome.
Typically, a limited number of predictors are considered (say between 2 and 20) [558].
Clinical prediction models are related to each of the above-described fields. For one,
predictions are essential to the individualization of estimates of treatment benefit. By
separating those at low versus those at high risk, we can target treatment at the high-risk
patients, where the benefits of treatment well exceed any burden of treatment [300].
Prediction models, hence, provide a direct tool for Personalized Medicine [249].
Prediction models will increase in quantity and hopefully also in quality by the increasing
access to rich data sets in the Big Data era, using modern techniques where appropriate,
for example, for specific tasks such as text recognition and image processing [283].
Predictions from models are also the evidence-based input for shared decision-making,
by providing estimates of the individual probabilities of risks and benefits [323].

Scientific publications on modeling for prediction have increased steeply over
recent years, to a total of 651,000 over the years 1993–2017. The annual numbers
more than doubled per decade: from 7,400 in 1993 to 17,000 in 2003, 39,000 in
2013, and 53,000 in 2017 (Fig. 1.1). These publications especially include fields
other than medicine, such as engineering, mathematics, and computer science. Life
sciences is only at place 15 of the top research areas (Fig. 1.2).

Table 1.1 Concepts and key aspects of recent scientific developments

Concept Description

Evidence-based
medicine (EBM)

An attempt to the conscientious, explicit and judicious use of current
best evidence in making decisions about the care of individual
patients [413, 481]

Personalized medicine A form of medicine that seeks to improve stratification and timing of
health care by utilizing biological information and biomarkers on
the level of molecular disease pathways, genetics, proteomics, and
metabolomics [492]. Personalized medicine is related to “stratified
medicine” and “precision medicine” [249]

Big Data Big data in health care implies the availability of registries and
claims data and the linkages between all these data sources [504]

Machine Learning
(ML)

ML methods claim to make fewer assumptions in data analyses than
traditional statistical approaches. ML encompasses fields such as
“data mining”, which focuses on exploratory data analysis. It is also
connected to artificial intelligence (“AI”) [283]

Shared
Decision-Making
(SDM)

In SDM, physicians and patients both actively participate in
deciding on choices for diagnostic tests and therapeutic
interventions [111]
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1.2 Statistical Modeling for Prediction

Prediction is primarily an estimation problem. For example,

• What is the likelihood that this patient with hypertension has a renal artery
stenosis?

• What is the risk of dying of this patient within 30 days after an acute myocardial
information?

• What is the expected 2-year survival rate for this patient with esophageal
cancer?

Prediction is also about testing of hypotheses. For example,

• What is the relevance of specific test results in diagnosing renal artery stenosis?
• Is age a predictor of 30-day mortality after an acute myocardial information?
• How important is nutritional status for survival of a patient with esophageal

cancer?

Or more general, what are the most important predictors in a certain disease? Are
some predictors correlated with each other, such that their apparent predictive
effects are explained by other predictor variables? The latter question comes close
to etiologic research, where we aim to learn about biology and explain natural
phenomena [508].

Statistical models may serve to address both estimation and hypothesis testing
questions. In the medical literature, much emphasis has traditionally been given to
the identification of predictors. Over 200,000 papers had been published with the
terms “predictor” or “prognostic factor” in PubMed by December 2018. The total
number of publications with the term “prognostic model” or “prediction model”
exceeded 10,000 by that time; so approximately 20 times more prognostic factor
studies had been published than prognostic modeling studies [458, 558].

Note that that the prognostic value of a predictor has to be shown in addition to
already known, easily measurable predictors [510]. For example, the prognostic
value of a new genetic marker would need to be assessed for additional value over
classical, well-established predictors [293]. Such evaluations require statistical
modeling. Prognostic modeling and prognostic factor studies are, hence, connected
[425].

1.2.1 Model Assumptions

Statistical models summarize patterns of the data available for analysis. In doing so,
it is inevitable that assumptions have to be made. Some of these assumptions can be
tested, for example, whether predictor affects work in an additive way, and whether
continuous predictors have reasonably linear effects. Testing of underlying

1.2 Statistical Modeling for Prediction 5



assumptions is especially important if specific claims are made on the effect of a
predictor (Chaps. 4, 6, and 12).

Statistical models for prediction have traditionally been discerned in main
classes: regression, classification, and neural networks [231]. Machine learning
refers to the latter two categories and other methods that claim to make fewer
assumptions in the modeling process. The characteristics of alternative modeling
approaches are discussed in Chaps. 4 and 6. The main focus of this book is on
regression models, which are the most widely used in the medical field [653]. We
consider situations where the number of candidate predictor variables is limited, say
below 25. This is in contrast to research in areas such as genomics (genetic effects),
proteomics (protein effects), or metabolomics (metabolite effects). In these areas,
more complex data are generated, with larger numbers of candidate predictors
(often >10,000, or even >1 M). Moreover, we assume that subject knowledge is
available, from previous empirical studies and from experts on the topic (e.g.,
medical doctors treating patients with the condition under study).

1.2.2 Reliability of Predictions: Aleatory and Epistemic
Uncertainty

Statistical models face various challenges in providing reliable predictions.
Reliability means that when a 10% risk is predicted, on average 10% of patients
with these characteristics should have the outcome (“calibration”, Chaps. 4 and 15)
[602]. Such a probabilistic estimate implies that we cannot classify a patient as
having a diagnosis or prognosticate an event as unavoidable: we suffer from
aleatory uncertainty. Probabilities provide no certainty.

Next to simple, aleatory uncertainty we also suffer from epistemic uncertainty, or
systematic uncertainty [527]. For prediction models, the first goal is that predictions
need to be reliable for the setting where the data came from internal validity. Here,
we suffer from two sources of uncertainty: model uncertainty and estimation
uncertainty. Model uncertainty arises from the fact that we usually do not fully
prespecify a model before we fit it to a data set [94, 138]. An iterative model
building process is often followed. On the other hand, standard statistical methods
assume that a model was prespecified. In that utopic case, parameter estimates such
as regression coefficients, their corresponding standard errors, 95% confidence
intervals, and p-values are largely unbiased. When the structure of a model was at
least partly based on findings in the data, severe bias may occur, and underesti-
mation of the uncertainty of conclusions drawn from the model.

Fortunately, some statistical tools have become available which help to study
such model uncertainty. Especially, a statistical resampling procedure named
“bootstrap resampling” is helpful for many aspects of model development and
validation [148]. The bootstrap, hence, is an important tool in prediction research
(Chaps. 5 and 17) [673].
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Next to internal validity, we may also worry about external validity or gener-
alizability. Epistemic uncertainty includes that the model may not be applicable to a
certain setting: the predictions are systematically incorrect. For example, we may
systematically overestimate risks if we use a model developed in a clinical setting
for a screening setting. The concepts of internal and external validity are central in
this book, with part II focusing on internal validity and part III on external validity.
Intuitive synonyms are reproducibility and transportability, respectively [285].

1.2.3 Sample Size

A sufficient sample size is important to address any scientific question with
empirical data. The first point we have to appreciate is that the effective sample size
may often be much smaller than indicated by the total number of subjects in a study
[225]. For example, when we study complications of a procedure that occur with an
incidence of 0.1%, a study with 10,000 patients will contain only 10 events. The
number 10 determines the effective sample size in such a study. In small samples,
model uncertainty will be large, and we may not be able to derive reliable pre-
dictions from a model.

Second, a large sample size facilitates many aspects of prediction research. For
example, large-scale international collaborations are increasingly set up to allow for
the identification of gene–disease associations [269]. Also, more and more obser-
vational databases are linked in the current era of Big Data. For multivariable
prognostic modeling, a large sample size allows for selection of predictors with
simple automatic procedures such as stepwise methods with p < 0.05 and reliable
testing of model assumptions. An example is the prediction of 30-day mortality
after an acute myocardial infarction, where Lee et al. derived a prediction model
with 40,830 patients of whom 2850 died [329]. This example will be used
throughout this book, with a detailed description in Chap. 22. In practice, we often
have relatively small effective sample sizes. For example, a review of 31 prognostic
models in traumatic brain injury showed that 22 were based on samples with less
than 500 patients [400]. The main challenges are, hence, with the development of a
good prediction model with a relatively small study sample. The definition of
“small” is debatable, while most will agree that challenges arise especially in set-
tings where we have less than 10 events (outcomes per patient) per predictor
variable (“EPV < 10”) [422]. On the other hand, having more than 50 events per
variable (EPV > 50) allows for substantial freedom in modeling and will usually
provide for limited model uncertainty [25, 112, 225, 410, 543].

Third, with small sample size we have to be prepared to make stronger modeling
assumptions. For example, Altman illustrated the use of a parametric test (ANOVA)
to compare three groups with eight, nine, and five patients in his seminal text
“Practical statistics for medical research” [8]. With larger samples, we would more
readily switch to a nonparametric test such as a Kruskal–Wallis test. With small
sample size, we may have to assume linearity of a continuous predictor (Chap. 9)
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and no interaction between predictors (Chap. 13). We will subsequently have
limited power to test deviations from these model assumptions. It, hence, becomes
more important what our starting point of the analysis is. From a Bayesian view-
point, we could say that our prior information becomes more important, since the
information contributed by our study is limited.

Finally, we have to match our ambitions in research questions with the effective
sample size that is available [226, 227, 529]. When the sample size is very small,
we should only ask relatively simple questions, while more complex questions can
be addressed with larger sample sizes. A question such as “What are the most
important predictors in this prediction problem” is more complex than a question
such as “What are the predictions of the outcome given this set of predictors”
(Chap. 11). Table 1.2 lists questions on predictors (known or determined from the
data?), functional form (nonlinearity and interactions known or determined from the
data?), and regression coefficients (known or determined from the data?) and the
consequence for the required sample size in a study. A validation study asks least
from the data, since the prediction model is fully specified (predictors, functional
form, and model parameters), although sample size needs again to be adequate to
draw reliable conclusions [643] (Table 1.2).

1.3 Structure of the Book

This book consists of four parts. Part I provides background on developing and
applying prediction models in medicine. Part II is central for the development of
internally valid prediction models, while part III focuses on applicability in external
settings and advanced issues related to model modification and model extension
(“updating”). Part IV is practical in nature with a detailed description of prediction
modeling in two case studies, some lessons learned for model development, and a
description of medical problems with publicly available data sets.

Table 1.2 Stages of development of regression models and implications for modeling approach
and required sample size [529]

Predictors
known?

Functional
form
known?

Model
parameters
known?

Approach Required
sample size

− − − Development from scratch Very large

+ − − Define nonlinearity and
interactions

Large

+ + − Fit regression coefficients Moderate

+ + + Validation and updating Moderate
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1.3.1 Part I: Prediction Models in Medicine

This book starts with an overview of various applications of prediction models in
clinical practice and in medical research (Chap. 2). Next, we note that the quality of
a statistical model depends to a large extent on the study design and quality of the
data used in the analysis. A sophisticated analysis cannot salvage a poorly designed
study or poor data collection procedures. Data quality is key to a good model.
Several considerations are presented around the design of cohort studies for
prognostic models, and cross-sectional studies for diagnostic models (Chap. 3).
Various statistical techniques can be considered for a prediction model, which each
have their strengths and limitations. An overview of more and less flexible models
for different types of outcomes is presented in Chap. 4. Unfortunately, prediction
models commonly suffer from a methodological problem, which is known as
“overfitting”. This means that idiosyncrasies in the data are fitted rather than
generalizable patterns [225]. A model may, hence, not be applicable to new
patients, even when the setting of application is very similar to the development
setting. Statistical optimism is discussed with some potential solutions in Chap. 5.
Chapter 6 discusses considerations in choosing between alternative models. It also
presents some empirical comparisons on the quality of predictions derived with
alternative modeling techniques.

1.3.2 Part II: Developing Internally Valid Prediction
Models

The core of this book is a proposal for seven steps to consider in developing
internally valid prediction models with regression analysis. We present a checklist
for model development, which is intended to give a structure to model building and
validation.

In Chaps. 7–18, we discuss seven modeling steps.

(1) A preliminary step is to carefully consider the prediction problem: what are the
research questions, what is already known about predictors? Next, we consider
the data under study: how are the predictors defined, what is the outcome of
interest? An important issue is that missing values will occur in at least some of
the predictors under study. We discuss and propose approaches to deal with
missing values in Chaps. 7 and 8.

(2) When we start on building a prediction model, the first issue is the coding of
predictors for a model; several choices need to be considered on categorical
variables and continuous variables (Chaps. 9 and 10).

(3) We then move to the most thorny issue in prediction modeling: how to specify
a model (Chaps. 11 and 12). What predictors should we include, what are the
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pros and cons of stepwise selection methods, and how should we deal with
assumptions in models such as additivity and linearity?

(4) Once a model is specified, we need to estimate model parameters. For
regression models, we estimate coefficients for each predictor or combination of
predictors in the model. We consider classical and more modern estimation
methods for regression models (Chaps. 13 and 14). Several techniques are
discussed which aim to limit overfitting of a model to the available data.

(5) For a specified and estimated model, we need to determine the quality. Several
statistical performance measures are commonly used, as discussed in Chap. 15.
Most relevant to clinical practice is whether the model is useful; this can be
quantified with some more novel performance measures, firmly based on
decision theory (Chap. 16).

(6) Since overfitting is a central problem in prediction modeling, we need to
consider the validity of our model for new patients. It is easier to perform
retrodiction than prediction of the future. In Chap. 17, we concentrate on sta-
tistical techniques to evaluate the internal validity of a model, i.e., for the
underlying population that the sample originated from. Internal validation
addresses statistical problems in the specification and estimation of a model
(“reproducibility”) [285], with a focus on how well we can separate low from
high-risk patients.

(7) A final step to consider is the presentation of a prediction model. Regression
formulas can be used, but many alternatives are possible for easier applicability
of a model (Chap. 18).

1.3.3 Part III: Generalizability of Prediction Models

Generalizability (or external validity) of a model relates to the applicability of a
model to a plausibly related setting [285]. External validity of a model cannot be
expected if there is no internal validity. Steps 1–7 in Part II support the develop-
ment of internally valid prediction models. Second, the performance may be lower
when a model is applied in a new setting because of genuine differences between
the new setting and the development setting. Examples of a different setting include
a hospital different from the development hospital, in a more recent time period, and
in a different selection of patients. Generalizability can be assessed in various ways,
with different study designs. We systematically consider patterns of invalidity that
may arise when externally validating a model (Chap. 19).

To improve predictions for a new setting, we need to consider whether we can
make modifications and extension to the model. Various parsimonious modeling
techniques are available to achieve such updating (Chap. 20). When several settings
are considered, we may use more advanced updating methods, including random
effect models and Empirical Bayes methods. Moreover, we may specifically be
interested in ranking of providers of care (Chap. 21).
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1.3.4 Part IV: Applications

A central case study in this book is provided by the GUSTO-I trial. Patients
enrolled in this trial suffered from an acute myocardial infarction. A prediction
model was developed for 30-day mortality in relation to various predictors [329].
Overfitting is not a concern in the full data set (n = 40,830 patients, 2850 died
within 30 days). Modeling is more challenging in small parts of this data set, where
some are made publicly available for applying the concepts and techniques pre-
sented in this book. We discuss the logistic regression model developed from the
GUSTO-I patients in Chap. 22.

A further case study concerns a survival problem. We aim to predict the
occurrence of secondary cardiovascular events among a hospital-based cohort. The
seven steps to develop a prediction model are systematically considered (Chap. 23).

Finally, we give some practical advice on the main issues in prediction modeling
and describe the medical problems used throughout the text and available data sets
(Chap. 24).

Each chapter ends with a few questions to test insight in the material presented.
Furthermore, practical exercises are available from the book’s website (www.
clinicalpredictionmodels.org), involving work with data sets in R software (www.
cran.r-project.org).
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Chapter 2
Applications of Prediction Models

Background In this chapter, we consider several areas of application of prediction
models in public health, clinical practice, and medical research. We use several
small case studies for illustration.

2.1 Applications: Medical Practice and Research

Broadly speaking, prediction models are valuable both for medical practice and for
research purposes (Table 2.1). In public health, prediction models may help to target
preventive interventions to subjects at relatively high risk of having or developing a
disease. In clinical practice, prediction models may inform patients and their treating
physicians on the probability of a diagnosis or a prognostic outcome. Prognostic
estimates may, for example, be useful for planning of an individual’s remaining
lifetime in terminal disease, or give hope for recovery if a good prognosis is expected
after an acute event such as a stroke. Classification of a patient according to his/her
risk may also be useful for communication among physicians.

In the diagnostic workup, predictions can be useful to estimate the probability that
a disease is present. When the probability is relatively high, treatment is indicated; if
the probability is low, no treatment is indicated and further diagnostic testing may be
considered necessary. In therapeutic decision-making, treatment should only be
given to those who benefit from the treatment. The patients with highest benefit may
usually be those at highest risk [298]. In any case, those at low risk have little to gain
from any treatment. Any harm, such as the burden of treatment, or the risk of a side
effect, may then readily outweigh any benefits. The claim of prediction models is that
better decisions can be made with a model than without one.

In research, prediction models may assist in the design of intervention studies,
for example, to select high-risk patients and, in the analysis of randomized trials, to
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adjust for baseline risk. Prediction models are also useful to control for confounding
variables in observational research, either in traditional regression analysis or with
approaches such as “propensity scores” [466, 479]. Several areas of application are
discussed in the next sections.

2.2 Prediction Models for Public Health

2.2.1 Targeting of Preventive Interventions

Various models have been developed to predict the future occurrence of disease in
asymptomatic subjects in the population. Well-known examples include the
Framingham risk functions for cardiovascular disease [674]. The Framingham risk
functions underpin several current policies for preventive interventions. For
example, statin therapy is only considered for those with relatively high risk of
cardiovascular disease. Similarly, prediction models have been developed for breast
cancer, where more intensive screening or chemoprophylaxis can be considered for
those at elevated risk [171, 173].

Table 2.1 Some areas of application of clinical prediction models

Application area Example in this chapter

Public health

Targeting of preventive interventions

Incidence of disease Models for (hereditary) breast cancer

Clinical practice

Diagnostic workup

Test ordering Probability of renal artery stenosis

Starting treatment Probability of deep venous thrombosis

Therapeutic decision-making

Surgical decision-making Replacement of risky heart valves

Intensity of treatment More intensive chemotherapy in cancer
patients

Delaying treatment Spontaneous pregnancy chances

Research

Inclusion in a RCT Traumatic brain injury

Covariate adjustment in an RCT Primary analysis of GUSTO-III

Confounder adjustment with a propensity
score

Statin effects on mortality

Case-mix adjustment Provider profiling
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2.2.2 *Example: Prediction for Breast Cancer

In 1989, Gail et al. presented a by-now famous risk prediction model for developing
breast cancer [171]. The model was based on case–control data from the Breast
Cancer Detection Demonstration Project (BCDDP). The BCDDP recruited 280,000
women from 1973 to 1980 who were monitored for 5 years. From this cohort,
2,852 white women developed breast cancer and 3,146 controls were selected, all
with complete risk factor information. The Gail model risk projections are hence
applicable to women who are examined about once a year. The model includes age
at menarche, age at first live birth, number of previous biopsies, and number of
first-degree relatives with breast cancer. Individualized breast cancer probabilities
were calculated from information on relative risks and the baseline hazard rate in
the general population. The calculations accounted for competing risks (the risk of
dying from other causes).

The predictions were validated later on other data sets from various populations,
with generally favorable conclusions [415]. Practical application of the original
model involved cumbersome calculations and interpolations. Hence, more easily
applicable graphs were created to estimate the absolute risk of breast cancer for
individual patients for intervals of 10, 20, and 30 years. The absolute risk estimates
have been used to design intervention studies, to counsel patients regarding their
risks of disease, and to inform clinical decisions, such as whether or not to take
tamoxifen to prevent breast cancer [172].

Other models for breast cancer risk include the Claus model, which is useful to
assess risk for familial breast cancer [101]. This is breast cancer that runs in families
but is not associated with a known hereditary breast cancer susceptibility gene.
Unlike the Gail model, the Claus model requires the exact ages at breast cancer
diagnosis of first- or second-degree relatives as an input.

Some breast cancers are caused by a mutation in a breast cancer susceptibility
gene (BRCA), referred to as the hereditary breast cancer. A suspicious family
history for hereditary breast cancer includes many cases of breast and ovarian
cancers, or family members with breast cancers under age 50. Simple tables have
been published to determine the risk of a BRCA mutation based on specific features
of personal and family history [168]. Another model considers the family history in
more detail (BRCAPRO [418]). It explicitly uses the genetic relationship in families
and is therefore labeled as a Mendelian model. Calculations are based on Bayes’
theorem.

Risk models may have two main roles in breast cancer: prediction of breast
cancer in asymptomatic women and prediction of the presence of a mutation in a
BRCA gene. These models not only have some commonalities in terms of pre-
dictors but also some differences (Table 2.2) [98, 169]. Various measures are
possible to reduce breast cancer risk, including behavior (e.g., exercise, weight
control, and alcohol intake), prophylactic surgery, and medical interventions (e.g.,
tamoxifen use).
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2.3 Prediction Models for Clinical Practice

2.3.1 Decision Support on Test Ordering

Prediction models may be useful to estimate the probability of an underlying dis-
ease, such that we can decide on further testing. When a diagnosis is very unlikely,
no further testing is indicated, while more tests may be indicated when the diag-
nosis is not yet sufficiently certain for decision-making on therapy [263]. Further
testing usually involves one or more imperfect tests (sensitivity below 100%,
specificity below 100%). Ideally, a gold standard test is available (sensitiv-
ity = 100%, specificity = 100%). In practice, many reference tests are not truly
“gold”, while they are used as definitive in determining whether a subject has the
disease. The reference test may not be suitable to apply in all subjects suspected of
the disease because it is burdensome (e.g., invasive) or costly.

Table 2.2 Risk factors in four prediction models for breast cancer: two for breast cancer
incidence, two for the presence of mutation in BRCA1 or BRCA2 genes [169]

Risk factor Gail
model
[171]

Claus
model
[101]

Myriad
tables [168]

BRCAPRO
model [418]

Woman’s personal
information

Age + + + +

Race/ethnicity +

Ashkenazi Jewish + +

Breast biopsy +

Atypical hyperplasia +

Hormonal factors

Age at menarche +

Age at first live birth +

Age at menopause +

Family history

First-degree relatives
with breast cancer

+ + Age <50/� 50 Age for all
affected

Second-degree relatives
with breast cancer

+ Age <50/� 50 Age for all
affected

First or Second degree
with ovarian cancer

+ Age for all
affected

Bilateral breast cancer +

Male breast cancer +

Outcome predicted Incident breast cancer BRCA1/2 mutation
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2.3.2 *Example: Predicting Renal Artery Stenosis

Renal artery stenosis is a rare cause of hypertension. The reference standard for
diagnosing renal artery stenosis, renal angiography, is invasive and costly. We
aimed to develop a prediction rule for renal artery stenosis from clinical charac-
teristics. The rule might be used to select patients for renal angiography [314].
Logistic regression analysis was performed with data from 477 hypertensive
patients who underwent renal angiography. A simplified prediction rule was derived
from the regression model for use in clinical practice. Age, sex, atherosclerotic
vascular disease, recent onset of hypertension, smoking history, body mass index,
presence of an abdominal bruit, serum creatinine concentration, and serum
cholesterol level were selected as predictors. The diagnostic accuracy of the
regression model was similar to that of renal scintigraphy, which had a sensitivity of
72% and a specificity of 90%. The conclusion was that this clinical prediction
model can help to select patients for renal angiography in an efficient manner by
reducing the number of angiographic procedures without the risk of missing many
renal artery stenoses. The modeling steps summarized here will be described in
more detail in Part II.

An interactive Excel program is available to calculate diagnostic predictions for
individual patients. Figure 2.1 shows the example of a 45-year-old male with recent
onset of hypertension. He smokes, has no signs of atherosclerotic vascular disease,
has a BMI <25, no abdominal bruit is heard, serum creatinine is 112 µmol/L, and
serum cholesterol is not elevated. According to a score chart (See Chap. 18), the
sum score was 11, corresponding to a probability of stenosis of 25%. According to
exact logistic regression calculations, the probability was 28% [95% confidence
interval 17–43%].
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Prediction rule for renal artery stenosis

Predictor Value Score
Smoking former or current =1 1 -
Current age years 45 4.4
Gender male = 1 1 0
Atherosclerotic vascular disease* yes = 1 0 0
Onset of hypertension within 2 years yes = 1 1 1
Body mass index >= 25 kg/m2 yes = 1 0 2
Presence of abdominal bruit yes = 1 0 0
Serum creatinine concentration μmol/L 112 4.1
Serum cholesterol level > 6.5 mmol/L** yes = 1 0 0

Sumscore 11

Formula Score chart
Predicted probability of renal artery stenosis 28% 25%
Confidence interval 17% - 43% See figure for graphical illustration

*  femoral or carotid bruit, angina pectoris, claudication, myocardial infarction, CVA, or vascular surgery
** or cholesterol lowering therapy
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Fig. 2.1 Prediction rule for renal artery stenosis as implemented in an Excel spreadsheet [314]
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2.3.3 Starting Treatment: The Treatment Threshold

Decision analysis is a method to formally weigh pros and cons of decisions [263].
For starting treatment after diagnostic workup, a key concept is the treatment
threshold. This threshold is defined as the probability where the expected benefit of
treatment is equal to the expected benefit of avoiding treatment. If the probability of
the diagnosis is lower than the threshold, no treatment is the preferred decision, and
if the probability of the diagnosis is above the threshold, treatment is the preferred
decision [420]. The threshold is determined by the relative weight of false-negative
versus false-positive decisions. If a false-positive decision is much less important
than a false-negative decision, the threshold is low. For example, a risk of 0.1% for
overtreatment versus a benefit of 10% for correct treatment implies a close to 1%
threshold (odds 1:100, threshold probability 0.99%) [263]. On the other hand, if
false-positive decisions confer serious risks, the threshold should be higher. For
example, a 1% harm associated with overtreatment implies a threshold of 9.1%
(odds 1:10, Fig. 2.2). Further details on the threshold concept are discussed with the
assessment of performance of prediction models with decision curves [648]
(Chap. 16).
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Fig. 2.2 The treatment threshold concept for decision-making on treatment when the harm of
overtreatment is 0.1% (upper left panel) or 1% (upper right panel). If a reference test with perfect
sensitivity and specificity is available with a constant 0.1% risk of harm, this test would be
indicated between 0.9 and 90% probability of disease (lower left panel). The probability of disease
may be estimated by a clinical prediction model

20 2 Applications of Prediction Models



Note that a single treatment threshold applies only when all diagnostic workup is
completed, including all available tests for the disease. If more tests can still be done,
a more complex decision analysis needs to be performed to determine the optimal
choices on tests and treatments. We then have two thresholds: a low threshold to
identify those receiving no treatment and no further testing; and a higher threshold to
identify those who would be treated without further testing (Fig. 2.2). In between are
those who would benefit from further testing [263]. This approach is used for
decision-making in the diagnosis of Deep Venous Thrombosis (DVT) using ultra-
sound and D-dimer testing [488].

2.3.4 *Example: Probability of Deep Venous Thrombosis

The Wells clinical prediction rule combines nine signs, symptoms, and risk factors
to categorize patients as having low, moderate, or high probability of DVT [664].
This rule stratifies a patient’s probability of DVT much better than individual
findings [665]. Patients with a low pretest probability (for example, “score � 1”)
can have DVT safely excluded, either by a single negative ultrasound result, or a
negative plasma D-dimer test. Patients who are at increased pretest probability
(“score > 1”) require both a negative ultrasound result and a negative D-dimer test
to exclude DVT [663]. A possible diagnostic algorithm is shown in Fig. 2.3 [488].

Determination of pretest 
probability of DVT

DVT unlikely 
(probability score ? 1)

D-dimer test

DVT likely 
(probability score > 1)

D-dimer test

Ultrasound No DVT Ultrasound Ultrasound

No DVTTreat with 
anticoagulation 

therapy

Repeat 
ultrasound 
in 1 weak

Treat with 
anticoagulation 

therapy

No DVT

No DVT

+

+

+

+ +

+

- -

-
- -

-

≤

Fig. 2.3 A possible diagnostic algorithm for patients suspected of DVT with D-dimer testing and
ultrasound imaging [488]. The pretest probability comes from a clinical prediction model, such as
developed by Wells [663], or another predictive algorithm [665]
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2.3.5 Intensity of Treatment

Prognostic estimates are also important to guide decision-making once a diagnosis
is made. Decisions include, for example, more or less intensive treatment approa-
ches. The framework for decision-making based on prognosis is very similar to that
for based on diagnostic probabilities as discussed before.

A treatment should only be given to a patient if a substantial gain is expected,
which exceeds any risks and side effects (Fig. 2.4). A classical case study considers
anticoagulants and risk of atrial fibrillation [184]. Anticoagulants are very effective
in reducing the risk of stroke in patients with non-rheumatic atrial fibrillation.
However, using these drugs increases the risk of serious bleedings. Hence, the risk
of stroke has to outweigh the bleeding risk before treatment is considered. Both
risks may depend on predictors. Similar analyses have been described for the
indication for thrombolytics in acute MI [60, 86].

We illustrate this approach to decision-making in a case study of testicular
cancer patients: which patients are at sufficiently high risk to need more intensive
chemotherapy, which may be more effective, but is also more toxic? [615].

2.3.6 *Example: Defining a Poor Prognosis Subgroup
in Cancer

As an example, we consider high-dose chemotherapy (HD-CT) as first-line treat-
ment to improve survival of patients with non-seminomatous testicular cancer
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Fig. 2.4 Graphical illustration of weighing benefit and harm of treatment. Benefit of treatment
(reduction in absolute risk) increases with cancer-specific mortality (relative risk set to 0.7). Harm
of treatment (excess absolute risk, e.g., due to toxicity of treatment) is assumed to be constant at
4%. Net benefit occurs only when the cancer-specific mortality given standard treatment is above
the threshold of 11% [615]
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[615]. Several non-randomized trials reported a higher survival for patients treated
with HD-CT as first-line treatment (including etoposide, ifosfamide, and cisplatin)
with autologous stem cell support, compared to standard-dose (SD) chemotherapy
(including bleomycin, etoposide, and cisplatin). However, HD-CT is related to a
higher toxicity, during treatment (e.g., granulocytopenia, anemia, nausea/vomiting,
and diarrhea), shortly after treatment (e.g., pulmonary toxicity), and long after
treatment (e.g., leukemia and cardiovascular disease). HD-CT should therefore only
be given to patients with a relatively poor prognosis.

We can specify the threshold for such a poor prognosis group by weighing
expected benefit against harms. Benefit of HD-CT treatment is the reduction in
absolute risk of cancer mortality. Benefit increases linearly with risk of cancer
mortality if we assume that patients with the highest risk have most to gain. Harm is
increase in absolute risk of treatment mortality (e.g., related to toxicity) due to
treatment. The level of harm is the same for all patients, assuming that the toxicity
of treatment is independent of prognosis. Patients are candidates for more
aggressive treatment when their risk of cancer mortality is above the threshold, i.e.,
when the benefit is higher than harm (Fig. 2.4).

2.3.7 Cost-Effectiveness of Treatment

Cost-effectiveness of treatment directly depends on prognosis. Treatments may not
be cost-effective if the gain is small (for patients at low risk) and the costs high (e.g.,
for all patients the same drug costs are made). For example, statin therapy should
only be given to those at increased cardiovascular risk [160]. And more aggressive
thrombolysis should only be used in those patients with an acute myocardial
infarction who are at increased risk of 30-day mortality [86]. Many other examples
can be found, where the relative benefit of treatment is assumed to be constant across
various risk groups, and the absolute benefit hence increases with higher risk [630].

In Fig. 2.4, we assume a constant harm and a risk-dependent benefit. The latter
relies on a valid prognostic model in combination with a single relative effect of
treatment. Extensions of this approach can be considered, with more reliability if
larger data sets are modeled [298, 300, 630]. Specifically, we search for differential
treatment effects among subgroups of patients. The assumption of a fixed relative
benefit is then relaxed: some patients may respond relatively well to a certain
treatment and others do not. Patient characteristics such as age, or the specific type of
disease, may interact with treatment response. Effects of drugs are affected may be
the drug metabolism, which is, e.g., mediated by cytochrome P450 enzymes and
drug transporters [141]. Researchers in the field of pharmacogenomics aim to further
understand the relation between an individual patient’s genetic makeup (genotype)
and the response to drug treatment, such that response can better be predicted.
Cost-effectiveness will vary depending on the likelihood of response to treatment.

Note that in the absence of a biological rationale, subgroup effects may be
largely spurious [300, 658]. And even if a biological rationale is present, huge
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sample sizes are needed for sufficient statistical power of subgroup analyses. These
far exceed the sample sizes required for the detection of a main effect of a treatment.
In the optimal case, the sample size needs to be four times as large to detect an
interaction of the same size as the main effect [81]. If we assume that the interaction
is half the size of the main effect, a 16 times larger sample size is needed [175]. See
also http://www.clinicalpredictionmodels.org/doku.php?id=additional:chapter02.

2.3.8 Delaying Treatment

In medical practice, prediction models may provide information to patients and
their relatives, such that they have realistic expectations of the course of disease.
A conservative approach can sometimes be taken, which means that the natural
history of the disease is followed. For example, many men may opt for a watchful
waiting strategy if a probably unimportant (“indolent”) prostate cancer is detected
[295, 349]. Or women may be reassured on their pregnancy chances if they have
relatively favorable characteristics.

2.3.9 *Example: Spontaneous Pregnancy Chances

Several models have been published for the prediction of spontaneous pregnancy
among subfertile couples. A “synthesis model” was developed for predicting
spontaneous conception leading to live birth within 1 year after the start of
follow-up based on data from three previous studies [261]. This synthesis models
hence had a broader empirical basis than the original models. It has later been
revised [47]. The predictors included readily available characteristics such as the
duration of subfertility, women’s age, primary or secondary infertility, percentage
of motile sperm, and whether the couple was referred by a general practitioner or by
a gynecologist (referral status). The chance of spontaneous pregnancy within 1 year
can easily be calculated. First, a prognostic index score is calculated. The score
corresponds to a probability, which can be read from a graph (Fig. 2.5).

For example, a couple with a 35-year-old woman (7 points), 2 years of infertility
(3 points), but with one child already (secondary infertility, 0 points), normal sperm
motility (0 points), and directly coming to the gynecologist (secondary care couple,
0 points), has a total score of 10 points (circled scores in Fig. 2.5). This corre-
sponds to a chance of becoming pregnant resulting in live birth of around 42%.

Most couples who have tried for more than 1 year to become pregnant demand
immediate treatment [261]. Most couples overestimate the success of assisted
reproduction, such as in vitro fertilization, and underestimate the related risks. The
estimated spontaneous pregnancy chance leading to live birth can be a tool in
advising such couples. If the chances are low, e.g., below 20%, there is no point in
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further waiting, and advising the couple to quickly undergo treatment is realistic. In
contrast, if the chances are favorable, e.g., above 40%, the couple should be
encouraged to wait for another year because there is a substantial chance of success.

2.3.10 Surgical Decision-Making

In surgery, it is typical that short-term risks are taken to reduce long-term risks.
Short-term risks include both morbidity and mortality. The surgery aims to reduce
long-term risks that would occur in the natural history. Acute situations include
surgery for trauma and conditions such as a ruptured aneurysm (a widened artery).
Elective surgery is done for many conditions, and even for such planned and
well-prepared surgery, the short-term risk and burden are never null. In oncology,

Subfertility Score
Woman’s age (years) 21-25 26-31 32-35 36-37 38-39 40-41

Score 0 3 7 10 13 15 ……..

Duration of subfertility (years) 1 2 3-4 5-6 7-8
Score 0 3 7 12 18 ……..

Type of subfertility Secondary Primary
Score 0 8 ……..

Motility (%) ≥ 60 40-59 20-39 0-19
Score 0 2 4 6 ……..

Referral status Secondary-care Tertiary-care
Score 0 4 ……..

Prognostic Score (Sum) ……..

Prognostic index score
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Fig. 2.5 Score chart to estimate the chance of spontaneous pregnancy within 1 year after intake
resulting in live birth. Upper part: calculating the score; lower part: predicting 1-year pregnancy
rate [261]. The subfertility scores for the example couple are circled, which implies a prognostic
score of 10 points, corresponding to a 42% chance of spontaneous pregnancy within 1 year
resulting in live birth
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increased surgical risks typically lead to the choice for less risky treatments, e.g.,
chemotherapy or radiation, or palliative treatments. For example, in many cancers,
older patients and those with comorbidity do undergo surgery less often [277].

Many prognostic models have been developed to estimate short-term risks of
surgery, e.g., 30-day mortality. These models vary in complexity and accuracy.
Also, long-term risks have been modeled explicitly for various diseases, although it
is often hard to find a suitable group of patients for the natural course of a disease
without surgical intervention. As an example, we consider a surgical decision
problem on replacement of risky heart valves (Fig. 2.6). Prognostic models were
used to estimate surgical mortality, individualized risk of the specific valve, and
individual survival [549, 611].

2.3.11 *Example: Replacement of Risky Heart Valves

Björk–Shiley convexo-concave (BScc) mechanical heart valves were withdrawn
from the market in 1986 after reports of mechanical failure (outlet strut fracture).
Worldwide, approximately 86,000 BScc valves had been implanted by then.
Fracture of the outlet strut occurs suddenly and is often lethal [610]. Therefore,
prophylactic replacement by another, safer valve, may be considered to avert the
risk of fracture. Decision analysis is a useful technique to weigh the long-term loss
of life expectancy due to fracture against the short-term surgical mortality risk

Mortality
p(surgical mortality)

Surgery

p(survival)

Patient
No fracture

with BScc
valve       

Fatality
No surgery

p(fatality)
Fracture

p(fracture) p(survival)

Surgical mortality

Survival with new valve

Survival with old valve

Fracture mortality

Survival with new valve

Fig. 2.6 Schematic representation of surgical decision-making on short-term versus long-term
risk in replacement of a risky heart valve (“BScc”). Square indicates a decision, circle a chance
node. Predictions (“p”) are needed for four probabilities: surgical mortality, long-term survival,
fracture, and fatality of fracture

26 2 Applications of Prediction Models



(Fig. 2.6). The long-term loss of life expectancy due to fracture risk depends on
three aspects:

(1) the annual risk of fracture, given that a patient is alive;
(2) the fatality of a fracture;
(3) the annual risk of death (survival).

This long-term loss of life expectancy has to be weighed against the risk of
surgical mortality. If the patient survives surgery, the fracture risk is assumed to be
reduced to zero. Predictive regression models were developed for each aspect,
based on the follow-up experience from 2,263 patients with BScc valves implanted
between 1979 and 1985 in The Netherlands [549]. We considered 50 fractures that
had occurred during follow-up and 883 patients who died (excluding fractures).

The risk of fracture is the key consideration in this decision problem. The low
number of fractures makes predictive modeling challenging, and various variants of
models have been proposed. A relatively detailed model included four traditional
predictors (age, position (aortic/mitral), type (70° opening angle valves had higher
risks than 60° valves), and size (larger valves had higher risks)), and two production
characteristics [549]. The fatality of a fracture depended on the age of the patient
and the position (higher fatality in aortic position). Survival was related to age,
gender, position of the valve, and time since implantation. Surgical risk was
modeled in relation to age and the position of the valve. This was a relatively rough
approach, since many more predictors are relevant, and a later prediction model was
much more detailed [619].

The results of this decision analysis depended strongly on age: replacement was
only indicated for younger patients, who have lower surgical risks, and a higher
long-term impact of fracture because of longer survival (Table 2.3). Also, the
position of the valve affects all four aspects (surgical risk, survival, fracture, and
fatality). Before, results were presented as age thresholds for eight subgroups of
valves: by position (aortic/mitral), by type (70°/60°), and by size (large/small)
[611]. The more recent analysis was so detailed that individualized calculations
were necessary, which were performed for all patients who were alive in the
Netherlands in 1998. The recommendations from this decision analysis were rather
well followed in clinical practice [620].

2.4 Prediction Models for Medical Research

In medical research, prediction models may serve several purposes. In experimental
studies, such as randomized controlled trials, prognostic baseline characteristics
may assist in the inclusion and stratification of patients and improve the statistical
analysis. In observational studies, adequate controlling for confounding factors is
essential.
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2.4.1 Inclusion and Stratification in a RCT

In randomized clinical trials (RCTs), prognostic estimates may be used for the
selection of subjects for the study. Traditionally, a set of inclusion and exclusion
criteria are applied to define the subjects for the RCT. Some criteria aim to create a
more homogeneous group according to expected outcome. All inclusion criteria
have to be fulfilled, and none of the exclusion criteria. Alternatively, some prog-
nostic criteria can be combined in a prediction model, with selection based on
individualized predictions. This leads to a more refined selection.

Stratification is often advised in RCTs for the main prognostic factors [18, 687].
In this way, balance is obtained between the arms of a trial with respect to baseline
prognosis. This may facilitate simple, direct comparisons of treatment results,
especially for smaller RCTs, where some imbalance may readily occur. Prediction
models may refine such stratification of patients, especially when many prognostic
factors are known. We illustrate prognostic selection with a simple example of two
predictors in traumatic brain injury.

2.4.2 *Example: Selection for TBI Trials

As an example, we consider the selection of patients for RCTs in Traumatic Brain
Injury (TBI). Patients above 65 years of age and those with nonreacting pupils are
often excluded because of a high likelihood of a poor outcome. Indeed, we find a
higher than 50% mortality at 6-month follow-up in patients fulfilling either criterion
(Table 2.4). Hence, we can simply select only those less than 65 years with at least
one reacting pupil (Table 2.5, part A). We can also use a prognostic model for more
efficient selection that inclusion based on separate criteria. A simple logistic

Table 2.3 Patient characteristics used in the decision analysis of replacement of risky heart valves
[549]

Characteristic Surgical risk Survival Fracture Fatality|
fracture

Patient related

Age (years) + + + +

Sex (male/female) +

Time since implantation (years) +

Valve related

Position (aortic/mitral) + + + +

Opening angle (60°/70°), +

Size (<29 mm or >=29 mm) +

Production characteristics +

Type of prediction model Logistic
regression

Poisson
regression

Poisson
regression

Logistic
regression
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regression model with “age” and “pupils” can be used to calculate the probability of
mortality in a more detailed way. If we aim to exclude those with a predicted risk
over 50%, this leads to an age limit of 30 years for those without any pupil reaction,
and an age limit of 76 years for those with any pupil reaction (Table 2.5, part B).
So, patients under 30 years of age can always be included, and patients between 65
and 75 years can be included if they have at least one reacting pupil, if we want to
include only those with <50% mortality risks (Table 2.5).

2.4.3 Covariate Adjustment in a RCT

Even more important is the role of prognostic baseline characteristics in the analysis
of a RCT. The strength of randomization is that comparability is created between
treated groups both with respect to observed and unobserved baseline characteristics
(Fig. 2.7). No systematic confounding can hence occur in RCTs. But some observed
baseline characteristics may be strongly related to the outcome. Adjustment for such
covariates has several advantages [174, 233, 241, 243, 441, 463]:

(1) to reduce any distortion in the estimate of treatment effect occurred by random
imbalance between groups

(2) to increase the statistical power for detection of a treatment effect.

Remarkably, covariate adjustment works differently for linear regression models
and generalized linear models (e.g., logistic, Cox regression, Table 2.6).

(1) For randomized clinical trials, the randomization guarantees that the bias in the
estimated treatment effect is zero a priori, without distortion by observed or
unobserved baseline characteristics. However, random imbalances may occur,

Table 2.4 Analysis of outcome in 7143 patients with severe or moderate traumatic brain injury
according to reactive pupils and age dichotomized at age 65 years [364]

>=1 reactive pupil Nonreactive pupils

<65 >=65 years <65 >=65 years

6-month
mortality

926/5101
(18%)

159/284
(56%)

849/1644
(52%)

97/114
(85%)

Table 2.5 Selection of patients with 2 criteria (age and reactive pupils) in a traditional way
(A) and according to a prognostic model (probability of 6-month mortality < 50%, B)

A: Traditional
selection

B: Prognostic selection

<65 >=65 years <30 30–75 >=76 years

Pupillary reactivity No reactivity Exclude Exclude Include Exclude Exclude

>=1 pupil Include Exclude Include Include Exclude
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generating questions such as: What would have been the treatment effect had
the two groups been perfectly balanced? We may think of this distortion as a
bias a posteriori since it affects interpretation similarly as in observational
epidemiological studies.

Regression analysis is an obvious technique to correct for such random imbal-
ances. When no imbalances have occurred for predictors considered in a regression
model, the adjusted and unadjusted estimates of the treatment effect would be
expected to be the same. This is indeed the case in linear regression analysis.
Remarkably, in generalized linear models such as logistic regression, the adjusted
and unadjusted estimates of a treatment effect are not the same, even when pre-
dictors are completely balanced [174] (see Questions 2.3 and 22.2). Adjusted effects
are expected to be further from zero (neutral value, odds ratio further from 1). This
phenomenon has been referred to as the “non-collapsibility” of effect estimates
[210], or a “stratification effect”. It does not occur with linear regression [537].

(2) With linear regression, adjustment for important predictors leads to an
improvement in precision of the estimated treatment effect since part of the
variance in the outcome is explained by the predictors. Contrarily, in gener-
alized linear models such as logistic regression, the standard error of the
treatment effect always increases with adjustment [463]. In linear regression,
adjusted analyses provide more power to the analysis of treatment effect since
the standard error of the treatment effect is smaller. For a generalized linear
model such as logistic regression, the effect of adjustment on power is not so

Fig. 2.7 Schematic representation of the role of baseline characteristics in a RCT. By
randomization, there is no systematic link between baseline characteristics, observed or
unobserved, and treatment. Baseline characteristics are still important, since they are commonly
prognostic for the outcome

Table 2.6 Comparison of adjustment for predictors in linear and generalized linear models (e.g.,
logistic regression) in estimation and testing of treatment effects, when predictors are completely
balanced

Method Effect estimate Standard error Power

Linear model Identical Decreases Increases

Generalized linear model Further from zero Increases Increases
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straightforward. It has however been proven that the expected value of the
treatment effect estimate increases more than the standard error. Hence, the
power for detection of a treatment effect is larger in an adjusted logistic
regression analysis compared to an unadjusted analysis, similar to linear
regression models [463].

2.4.4 Gain in Power by Covariate Adjustment

The gain in power by covariate adjustment depends on the correlation between the
baseline covariates (predictors) and the outcome. For continuous outcomes, this
correlation can be indicated by Pearson’s correlation coefficient (r). The sample size
can be reduced with 1 − r2 to achieve the same statistical power with a covariate
adjusted analysis as an unadjusted analysis [441]. A very strong predictor may have
r = 0.7 (r2 50%), e.g., a baseline covariate of a repeated measure such as blood
pressure, or a questionnaire score. The required number of patients is then roughly
halved. The saving is less than 10% for r = 0.3 (r2 9%) [441].

Similar results have been obtained in empirical evaluations with dichotomous
outcomes, where Nagelkerke’s R2 [403] was used to express the correlation
between predictor and outcome [241, 243, 537]. The reduction in sample size was
slightly less than 1 – R2 in simulations for mortality among acute MI patients [537]
and among TBI patients (Table 2.7) [242,589].

2.4.5 *Example: Analysis of the GUSTO-III Trial

The GUSTO-III trial considered patients with an acute myocardial infarction [3].
The primary outcome was 30-day mortality. The protocol prespecified a prognostic

Table 2.7 Illustration of reduction in sample size with adjustment for baseline covariates with
dichotomous outcomes

Application area Correlation baseline—
outcome

Reduction in sample
size

Acute MI: 30-day mortality [537]

Age adjustment R2 13% 12%

17 predictor adjustment R2 25% 19%

Traumatic brain injury: 6 month
mortality [242]

3 predictor model R2 30% 25%

7 predictor model R2 40% 30%
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model for the primary analysis of the treatment effect. This model combined age,
systolic blood pressure, Killip class, heart rate, infarct location, and
age-by-Killip-class interaction. These predictors were previously found to comprise
90% of the prognostic information of a more complex model for 30-day mortality in
the GUSTO-I trial [329]. As discussed above, there are quite some strong argu-
ments for wider use of such covariate adjustment [286].

2.4.6 Prediction Models and Observational Studies

Confounding is the major concern in epidemiological analyses of observational
studies, where we aim to estimate causal effects. When treatments are compared,
groups are often quite different because of a lack of randomization. Subjects with
specific characteristics are more likely to have received a certain treatment than
other subjects (“confounding by indication”) [63]. If these characteristics also affect
the outcome, a direct comparison of treatments is biased and may merely reflect the
lack of initial comparability (“confounding”). In addition to treatment, other factors
can also be investigated for their etiologic effects. Often, randomization is not
possible, and observational studies are the only possible design. Dealing with
confounding is an essential step in such analyses.

Regression analysis is a commonly used method to control the imbalances
between treatment groups, e.g., with logistic or Cox regression [63]. Many baseline
characteristics can be simultaneously adjusted for (Fig. 2.8). In contrast to RCTs,
we can only balance baseline characteristics that are observed, ideally without
measurement error. We should especially be worried about any unknown covariates
that may nevertheless act as confounders by their association with both treatment
choice and outcome.

Fig. 2.8 Schematic representation of adjustment for baseline characteristics in an observational
study. By adjustment, we aim to correct for the systematic link between observed baseline
characteristics and outcome, hence answering the question: what is the treatment effect if observed
baseline characteristics were similar between treatment groups?
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2.4.7 Propensity Scores

Adjustment with regression analysis is problematic when the outcome is relatively
rare. This may lead to biased and inefficient estimates of the difference between
groups in the adjusted analysis [91]. An alternative is to use a propensity score,
which is especially attractive in the setting of rare outcomes [72]. The propensity
score defines the probability that a subject receives a particular treatment (“Tx”)
given a set of confounders: p(Tx | confounders). For calculation of the propensity
score, the confounders are usually used in a logistic regression model to predict the
treatment, without including the outcome [82,479]. The propensity score is sub-
sequently used in a second stage as a summary confounder (Fig. 2.9). Common
approaches in this second stage are matching on propensity score, stratification of
propensity score (usually by quantile), and inclusion of the propensity score with
treatment in a regression model for the outcome [117].

Empirical comparisons provided no indication of superiority of propensity score
methods over conventional regression analysis for confounder adjustment
[503,574]. In contrast, simulation studies suggest a benefit of propensity scores in
the situation of few outcomes relatively to the number of confounding variables [91].

2.4.8 *Example: Statin Treatment Effects

Statins have been studied in RCTs and observational studies for their effect on the
occurrence of acute myocardial infarction (AMI). A propensity score analysis was
performed for members of a Community Health Plan with a recorded LDL >130 mg/
dl at any time between 1994 and 1998 [499]. Members who initiated therapy with a
statin were matched using propensity scores to members who did not initiate statin
therapy. The propensity score predicted the probability of statin initiation. Scores

Fig. 2.9 Schematic representation of propensity score adjustment for baseline characteristics in an
observational study. The propensity score estimates the probability of receiving treatment. By
subsequent adjustment for the propensity score, we mimic an RCT, since we removed the
systematic link between baseline characteristics and treatment. We can however only include
observed baseline characteristics. We have no control over unobserved characteristics

2.4 Prediction Models for Medical Research 33



were estimated using a logistic regression model that included 52 variables and 6
quadratic terms (Table 2.8). Statin initiators were matched to non-initiators with a
similar propensity to receive treatment (within a 0.01 caliper of propensity). Initiators
for whom no suitable non-initiator could be found were excluded, leaving 2901
matched initiators out of 4144 initiators (70%). The 4144 statin initiators had a higher
prevalence of established coronary heart disease risk factors than unmatched
non-initiators. The follow-up of these unmatched cohorts identified 325 AMIs in the
statin initiator group and 124 in the non-initiator group (hazard ratio 2.1, Table 2.8).
The propensity score-matched cohorts (2 � n = 2901) were found to be very similar
with respect to 51 of the 52 matched baseline characteristics. There were 77 cases of
AMI in statin initiators compared with 114 in matched non-initiators (hazard ratio
0.69). The authors conclude that statin use in the members of this Community Health
Plan was beneficial on the occurrence of AMI, but rightly warn that predictors that are
not part of the model may remain unbalanced between propensity score-matched
cohorts, leading to residual confounding.

2.4.9 Provider Comparisons

Another area of application of prediction models is in the comparison of outcomes
from different hospitals (or other providers of care) [62]. The quality of healthcare
providers is being compared by their outcomes, which are considered as perfor-
mance indicators. Simple comparisons between providers may obviously be biased
by differences in case-mix, for example, academic centers may see more severe
patients, which accounts for poorer outcome on average. Prediction models are
needed for case-mix adjustment in such comparisons. Another problem arises from
the fact that providers may be relatively small and that multiple comparisons are
made (see Chaps. 4 and 21).

2.4.10 *Example: Ranking Cardiac Outcome

New York State was among the first to publicly release rankings of outcome of
coronary artery bypass surgery by surgeon and hospital. Such cardiac surgery report

Table 2.8 The effect of statins on the occurrence of acute myocardial infarction [499]

Confounders N with AMI HR [95% CI]

Unadjusted – 325 versus
124

2.1 [1.5–3.0]

Propensity score
adjusted

52 main effects, 6 quadratic
terms

77 versus
114

0.69 [0.52–
0.93]
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cards have been criticized because of their methodology [183]. Adequate risk
adjustment is nowadays better possible with sophisticated prediction models. An
example is a prediction model for 30-day mortality rates among patients with an
acute myocardial infarction [317]. The model used information from administrative
claims but was aimed to support profiling of hospital performance. They analyzed
140,120 cases discharged from 4664 hospitals in 1998. They compared the model
from claims data with a model using medical record data and found high agreement.
They also found adequate stability over time (data from years 1995 to 2001). The
final model included 27 variables and had an area under the receiver operating
characteristic curve of 0.71. The authors conclude that this administrative
claims-based model is as adequate for profiling hospitals as a medical record model.

Rather than focusing on individual hospitals, we may also evaluate more general
trends in quality of care. For example, we may evaluate the decrease in 30-day
mortality rates among patients with an acute myocardial infarction from 1995 to
2006 [316]. The 30-day mortality decreased from 19% in 1995 to 16% in 2006,
while the prognostic profile worsened somewhat, with a mean age increase from 77
in 1995 to 79 years in 2006, and higher prevalence of coexisting illnesses such as
hypertension, diabetes, renal disease, and chronic obstructive pulmonary disease.
The risk-standardized mortality rate decreased from 18.8% in 1995 to 15.8% in
2006 (odds ratio, 0.76), with less variation between hospital outcomes in 2006
[316]. Chapter 21 provides a more in-depth discussion of this research area.

2.5 Concluding Remarks

Many more areas of potential application of prediction models may exist than dis-
cussed here, including public health (targeting of preventive interventions), clinical
practice (diagnostic workup, therapeutic decision-making, shared decision-making),
and research (design and analysis of RCTs, confounder adjustment in observational
studies). Obtaining predictions from a model has to be separated from obtaining
insights into the disease mechanisms and pathophysiological processes [508]. Often,
prediction models serve the latter purpose too, but the primary aim considered in this
book is reliable outcome prediction.
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Questions

2:1. Examples of applications of prediction models

(a) What is a recent application of a prediction model that you encountered?
Search PubMed [http://www.ncbi.nlm.nih.gov/sites/entrez] if nothing
comes to mind.

(b) How could you use a prediction model in your own research or in your
own clinical practice?

2:2. Cost-effectiveness
How could prediction models contribute to targeting of treatment and
increasing cost-effectiveness of medical care?

2:3. Covariate adjustment in a RCT
What are the purposes of covariate adjustment in a RCT? Explain and dis-
tinguish between logistic and linear regression.

2:4. Propensity score

(a) What is the definition of a propensity score?
(b) Explain the difference between adjustment for confounders through

regression analysis and through a propensity score.
(c) When is a propensity score specifically appropriate? See papers by

Braitman and by Cepeda et al. [72, 91].
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Chapter 3
Study Design for Prediction Modeling

Background In this chapter, we consider several issues in the design of studies for
prediction research. These include the selection of subjects or patients for a cohort
study, strengths, and limitations of case series from a single center, from registries,
or randomized controlled trials. We further discuss issues in choosing predictors
and outcome variables for prediction models. An important question is often how
large a study needs to be for sufficient statistical power. Power considerations are
given for studying effects of specific predictors and for developing a prediction
model that can provide reliable predictions and validation of prediction model
performance. We refer to several case studies for illustration.

3.1 Studies for Prognosis

Prognostic studies are inherently longitudinal in nature, most often performed in
cohorts of patients, who are followed over time for an outcome (or “event” or “end
point”) to occur [238]. The cohort is defined by the presence of one or more
particular characteristics, e.g., having a certain disease, living in a certain place,
having a certain age, or simply being born alive.

Several types of cohort studies can be used for prognostic modeling. The most
common type may be a single-center retrospective cohort study (Table 3.1). For
example, patients are identified from hospital records between certain dates. These
patients were followed over time for the outcome, but the investigator looks back in
time (hence, we may use the label “retrospective study” [638]).

© Springer Nature Switzerland AG 2019
E. W. Steyerberg, Clinical Prediction Models, Statistics for Biology
and Health, https://doi.org/10.1007/978-3-030-16399-0_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16399-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16399-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16399-0_3&amp;domain=pdf
https://doi.org/10.1007/978-3-030-16399-0_3


3.1.1 Retrospective Designs

Strengths of a retrospective study design include its simplicity and feasibility. It is a
design with relatively low costs, since patient records in a single center can often
easily be searched, especially with modern hospital information systems or elec-
tronic patient records. A limitation is the correct identification of patients, which has
to be done in retrospect. If some information is missing, or was incorrectly
recorded, this may lead to a selection bias. Similarly, the recording of predictors has
to have been reliable to be useful for prediction modeling. Finally, the outcome
assessment has to be reliable. This may be relatively straightforward for hard end
points such as survival, where some deaths will be known from hospital records.
But additional confirmation of vital status may often be required from nationwide
statistical bureaus for a complete assessment of survival status. Other outcomes,
e.g., related to functional status, may not be available at the time points that we wish
to analyze. Finally, single-center studies may be limited by their sample size, which
is a key problem in prediction research.

Table 3.1 Study designs for prognostic studies

Design Characteristics Strengths Limitations

Retrospective Often single-center
studies

Simple, low costs Selection of patients
Definitions and
completeness of
predictors
Outcome assessment
not by protocol

Prospective,
RCT/trial

Often multicenter Well-defined
selection of patients
Prospective
recording of
predictors
Prospective
assessment of
outcome according
to protocol

Poor generalizability
because of stringent in-
and exclusion criteria

Registry Complete coverage of
an area/participants, e.g.
covered by insurance

Simple, low costs
Prospective
recording of
predictors

Outcome assessment
not by protocol

Case–control Efficient when the
outcome is relatively
rare

Simple, low costs Selection of controls
critical
Definitions and
completeness of
predictors
Outcome assessment
not by protocol
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3.1.2 *Example: Predicting Early Mortality in Esophageal
Cancer

As an example, we consider outcome prediction in esophageal cancer.
A retrospective chart review was performed of 120 patients treated in a single
institution between January 1, 1997, and December 31, 2003 [326]. The patients
had palliative treatment, which means therapy that relieves symptoms, but does not
alter the course of the disease. A stent was placed in the esophagus because of
malignancy-related dysphagia (difficulty in swallowing). The authors studied
30-day mortality, which occurred in an unspecified number of patients (probably
around 10%, n = 12). Predictors were nutritional status (low serum albumin levels,
low BMI) and performance status (WHO class, which ranges from normal activity
to 100% bedridden) [326].

3.1.3 Prospective Designs

In a prospective study, we can better check specific inclusion and exclusion criteria.
The investigators age with the study population (hence, the label “prospective
study”). We can use clear and consistent definitions of predictors and assess patient
outcomes at predefined time points. Prospective cohort studies are therefore
preferable to retrospective series.

Prospective cohort studies solely for prediction modeling are rare. A more
common design is that prediction research is done in data from randomized clinical
trials (RCTs), or from prospective before–after trials. The strengths are in the
well-defined selection of patients, the prospective recording of predictors, usually
with quality checks, and the prospective assessment of outcome. Sample size is
usually reasonably large. A limitation of data from (randomized) trials may be in
the selection of patients. Often stringent inclusion and exclusion criteria are used,
which may limit the generalizability of a model developed on such data. On the
other hand, RCTs are often performed in multiple centers, sometimes from multiple
countries or continents. Benefits of the multicenter design include that consensus
has to be reached on definition issues for predictors and outcome, and that gen-
eralizability of findings will be increased. This is in contrast to single-center studies,
which only reflect associations from one specific setting.

A topic of debate is whether we should only use patients from an RCT who are
randomized to a conventional treatment or placebo (the “control group”). If we
combine randomized groups, we assume that no specific subgroup effects are rel-
evant to the prognostic model. This may generally be reasonable. The prognostic
effect of a treatment is usually small compared to prognostic effects of other pre-
dictors (see GUSTO-I example in Chap. 22). If the prediction model is intended to
support decision-making on treatment, the easiest and quite reasonable solution is
to include treatment as a main effect [299, 300].
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3.1.4 *Example: Predicting Long-term Mortality
in Esophageal Cancer

In another study of outcome in esophageal cancer, data from an RCT (“SIREC”,
n = 209 [255]) were combined with other prospectively collected data (n = 396)
[548]. Long-term mortality was studied after palliative treatment with a stent or
radiation (“brachytherapy”). A simple prognostic score was proposed that combined
age, gender, tumor length, presence of metastases, and WHO performance score.

3.1.5 Registry Data

Prognostic studies are often performed with registry data, for example, cancer
registries, or insurance databases. Data collection is prospective but not primarily
for prediction research. The level of detail may be a limitation for prognostic
analyses. For example, the well-known US-based cancer registry (Surveillance,
Epidemiology and End Results, SEER) contains information on cancer incidence,
mortality, and patient demographics and tumor stage. It has been linked to the
Medicare database for information on comorbidity [305] and treatment (surgery
[108], chemotherapy [661], radiotherapy [652]). Socioeconomic status is usually
based on median income as available at an aggregated level [35]. SEER-Medicare
does not contain detailed information on performance status, which is an important
factor for medical decision-making and for survival. Also, staging may have some
measurement bias [156].

Another problem may occur when reimbursement depends on the severity that is
scored for a patient. This may pose an upward bias on the recording of comor-
bidities in claims databases.

The outcomes for prognostic analyses in registry data may suffer from the same
limitations as retrospective studies, since usually no predefined assessments are
made. Outcomes are therefore often limited to survival, although other adverse
events can sometimes also be derived [143, 523]. Strengths of prognostic studies
with registry data include large sample sizes and representativeness of patients
(especially with population-based cancer registries). Available large databases may
especially be useful for studying prognostic relations of a limited number of pre-
dictors with survival.

3.1.6 *Example: Surgical Mortality in Esophageal Cancer

The SEER-Medicare database was used to analyze 30-day mortality in 1327
patients undergoing surgery for esophageal cancer. Predictive patient characteristics
included age, comorbidity (cardiac, pulmonary, renal, hepatic, and diabetes), pre-
operative radiotherapy or combined chemoradiotherapy, and a relatively low
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hospital volume, which were combined in a simple prognostic score. Validation
was done in another registry and in a hospital series [560].

3.1.7 Nested Case–Control Studies

A prospectively designed, nested case–control study is sometimes an efficient
option for prediction research. A case–control design is especially attractive when
the outcome is relatively rare, such as incident of breast cancer [171]. For example,
if 30-day mortality is 1%, it is efficient to determine predictors in all patients who
died, but, for example, 4% of the controls (1:4 case–control ratio). A random
sample of controls is used as comparison for the cases. Assessment of predictors is
in retrospect, which is a limitation. If a prediction model is developed, the average
outcome incidence has to be adjusted for final calculation of probabilities, while the
regression coefficients might be based on the case–control study [171].

3.1.8 *Example: Perioperative Mortality in Major Vascular
Surgery

An interesting example is the analysis of perioperative mortality in patients
undergoing major vascular surgery [442]. Predictors were determined in retrospect
from a detailed chart review in all cases (patients who died) and in selected controls
(patients who did survive surgery). Controls had surgery just before and just after
the case. Hence, a 1:2 ratio was achieved for cases against controls.

3.2 Studies for Diagnosis

Diagnostic studies are most often designed as a cross-sectional study, where pre-
dictive patient characteristics are related to an underlying diagnosis. The study
group is defined by the presence of a particular symptom or sign that makes the
subject suspected of having a particular (target) disease. Typically, the subjects
undergo the index test and subsequently a reference test to establish the “true”
presence or absence of the target disease, over a short time span.

3.2.1 Cross-sectional Study Design and Multivariable
Modeling

Ideally, a diagnostic study considers a well-defined cohort of patients suspected of a
certain diagnosis, e.g., an acute myocardial infarction [308]. Such a diagnostic study
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then resembles a prognostic cohort study. The cohort is here defined by the suspicion
of having (rather than actually having) a disease. The outcome is the underlying
diagnosis. The study may therefore be labeled cross-sectional, since the predictor–
outcome relations are studied at a single point in time. Several characteristics may be
predictive of the underlying diagnosis. For a model, we should start with considering
simple characteristics such as demographics, and symptoms and signs obtained from
patient history. Next, we may consider simple diagnostic tests, and finally invasive
and/or costly tests [386]. The diagnosis (presence or absence of the target disease)
should be established by a reference test. The result of the reference test is preferably
interpreted without knowledge of the predictor and diagnostic test values. Such
blinding prevents information or incorporation bias [387].

A common problem in diagnostic evaluations includes incomplete registration of
all predictive characteristics. Moreover, not all patients may have undergone the
entire diagnostic workup, especially if they are considered as at low risk of the
target disease. Also, outcome assessment may be incomplete, if a test is used as a
gold standard which is selectively performed [450]. These problems are especially
prominent in diagnostic analyses on data from routine practice [411]. Prospective
studies are, hence, preferable, since these may use a prespecified protocol for
systematic diagnostic workup and reference standard testing.

3.2.2 *Example: Diagnosing Renal Artery Stenosis

A cardiology database was retrospectively reviewed for patients who underwent
coincident screening abdominal aorta angiography to detect occult renal artery
stenosis. In a development set, stenosis was observed in 128 of 635 patients. This
20% prevalence may be an overestimate if patients underwent angiography because
of suspicion of stenosis [456].

3.2.3 Case–Control Studies

Diagnostic studies sometimes select patients on the presence or absence of the target
disease as determined by the reference test as executed conform routine care. Hence,
patients without a reference standard are not selected. In fact, a case–control study is
performed, where cases are those with the target disease, and controls those without.
This design has a number of limitations, especially related to the representativeness
of the selected patients for all patients who are suspected of the diagnosis of interest.
This is different from a nested case–control study. Selection bias is another important
limitation. Indeed, empirical evidence is now available on the biases that may arise
in diagnostic studies, especially by including nonconsecutive patients in a case–
control design, nonrepresentative patients (severe cases compared to healthy con-
trols), and when data are collected retrospectively [337, 480, 670].
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3.2.4 *Example: Diagnosing Acute Appendicitis

C-reactive protein (CRP) has been used for the diagnosis of acute appendicitis.
Surgery and pathology results constituted the reference test for patients with a high
CRP. Patients with a low CRP were not operated on and clinical follow-up
determined whether they were classified as having acute appendicitis. As low-grade
infections with low CRPs can resolve spontaneously, this verification strategy fails
to identify all false-negative test results. Hence, the diagnostic performance of CRP
may be overestimated [337].

3.3 Predictors and Outcome

3.3.1 Strength of Predictors

For a well-performing prediction model, strong predictors have to be present.
Strength is a function of the association of the predictor with the outcome (“effect
size”), and the distribution of the predictor. For example, a dichotomous predictor
with an odds ratio of 2.0 is more relevant for a prediction model than a dichotomous
predictor with an odds ratio of 2.5, when the first predictor is distributed in a 50:50
ratio (50% prevalence of the predictor), and the second 1:99 (1% prevalence of the
predictor). Similarly, continuous predictors have to cover a wide range to make
them relevant for prediction.

When some characteristics are considered as key predictors, these have to be
registered carefully, with clear definitions and preferably no missing values. This is
usually best possible in a prospective study, with a protocol and prespecified data
collection form.

3.3.2 Categories of Predictors

Several categories of predictors have been suggested for prediction models [225].
These include

• demographics (e.g., age, sex, race, education, socioeconomic status),
• type and severity of disease (e.g., principal diagnosis, presenting characteristics),
• history characteristics (e.g., previous disease episodes, risk factors),
• comorbidity (concomitant diseases),
• physical functional status (e.g., Karnofsky score, WHO performance score), and
• subjective health status and quality of life (psychological, cognitive, psy-

chosocial functioning).
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The relevance of these categories will depend on the specifics of the application.
Investigators tend to group predictors under general headings, see, for example, the
predictors in the GUSTO-I model (Chapt. 22) [329]. Of note, definitions of pre-
dictors may vary from study to study [681]. For example, socioeconomic status
(SES) can be defined in many ways, considering a patient’s working status, income,
and/or education. Also, SES indicators are sometimes not determined at the indi-
vidual level, but, for example, at census tract level (“ecological SES”, e.g., in
analyses of SEER-Medicare data [35, 538]). Race/ethnicity can be defined in various
ways, and sometimes be self-reported rather than determined by certain predefined
rules. Comorbidity definitions and scoring systems are still under development.
Variations in definitions are serious threats to generalizability of prediction models
[16, 355]. Initiatives have been taken to define “Common Data Elements”, which
should improve the comparability of predictors across studies [686].

Another differentiation is to separate the patient’s condition from his/her con-
stitution. Condition may be reflected in type and severity of disease, history
characteristics, comorbidity, physical, and subjective health status. Constitution
may especially be related to demographics such as age and gender. For example, the
same type of trauma (reflected in patient condition) affects patients of different ages
differently (constitution) [260, 343].

In the future, genetic characteristics will be used more widely in a prediction
context. Inborn variants of the human genome, such as polymorphisms and
mutations, may be considered as indicators of the patient’s constitution. Other
genetic characteristics, for example, the genomic profile of a malignant tumor, may
better be thought of as indicators of subtypes of tumors, reflecting condition.

3.3.3 Costs of Predictors

Predictors may require different costs, in monetary terms, but also in burden for a
patient. In a prediction context, it is evident that information that is easy to obtain
should be considered before information that is more difficult to obtain. Hence, we
should first consider characteristics such as demographics and patient history,
followed by simple diagnostic tests, and finally invasive and/or costly tests.
Expensive genetic tests should, hence, be considered for their incremental value
over classical predictors rather than alone [293]. Such an incremental evaluation is
well possible with predictive regression models, where a model is first considered
without the test, and subsequently a model with the test added [531].

3.3.4 Determinants of Prognosis

Prognosis can also be viewed in a triangle of interacting causes (Fig. 3.1).
Predictors may be separated as related to environment (e.g., socioeconomic
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conditions, health care access and quality, climate), the host (e.g., demographic,
behavioral, psychosocial, premorbid biologic factors), and disease (e.g., imaging,
pathophysiologic, genomic, proteomic, metabolomic factors) [237].

3.3.5 Prognosis in Oncology

For prognosis in oncology, it has been proposed to separate factors related to the
patient, the tumor and to treatment (Fig. 3.2) [239]. Examples of patients charac-
teristics include demographics (age, sex, race/ethnicity, SES), comorbidity, and
functional status. Tumor characteristics include the extent of disease (e.g., reflected
in TNM stage), pathology, and sometimes values of tumor markers. Treatment may
commonly include (combinations of) surgery, chemotherapy, and radiotherapy.

3.4 Reliability of Predictors

3.4.1 Observer Variability

We generally prefer predictors that are well-defined and reliably measured by any
observer [73, 355]. In practice, observer variability is a problem for many mea-
surements [73]. Disciplines include, for example, pathologists, who may unreliably
score tissue specimens for histology, cell counts, coloring of cells, and radiologists,
who, for example, score X-rays, CT scans, MRI scans, and ultrasound measure-
ments. This variability is typically quantified with kappa statistics [321]. The
interobserver and intraobserver variability can be substantial, which will be
reflected in low kappa values. Such measurement error poses challenges to the
generalizability of a prediction model.

Prognosis

Environment Host

Disease

Fig. 3.1 Prognosis may be
thought of as determined by
predictors related to
environment, host, and
disease [237]

Prognosis
Tumor Patient

Therapy

Fig. 3.2 Prognosis of a
patient with cancer may be
thought of as determined by
predictors related to the
tumor, the patients, and
therapy [239]

3.3 Predictors and Outcome 45



3.4.2 *Example: Histology in Barrett’s Esophagus

Barrett’s esophagus is a premalignant condition. Surgery is sometimes performed in
high-grade dysplasia, whereas other physicians defer radical treatment until adeno-
carcinoma is diagnosed. The agreement between readings of histology in Barrett’s
esophagus for high-grade dysplasia or adenocarcinoma was only fair, with kappa
values of around 0.4 [412]. The agreement between no dysplasia and low-grade
dysplasia had been reported as even lower [516]. Because of observer variability,
sometimes a central review process is organized, where 1 expert reviews all readings.
This should be done independently and blinded for previous scores. Subsequently, a
rule has to be determined for the final score, for example, that only the expert score is
used, or that an additional reader is required in case of disagreement. Also, consensus
procedures can be set up with experts only, for example, with scoring by two experts,
and involvement of the third if these disagree [301]. Some use the unreliability of
classical pathology as an argument for using modern biomarkers [319].

3.4.3 Biological Variability

Apart from observer variability, some measurements are prone to biological vari-
ability. A well-known example is blood pressure, where a single measurement is
quite unreliable. Usually, at least two measurements are made, and preferably more,
with some spread in time. Again, definitions have to be clear (e.g., position of
patient at the measurement, time of day).

3.4.4 Regression Dilution Bias

The effect of unreliable scoring by observers, or biological variability, generally is a
dilution of associations of predictors with the outcome. This has been labeled
“regression dilution bias,” and methods have been proposed to correct for this bias
[334]. A solution is to repeat unreliable measurements, either by the same observer
(e.g., use the mean of 3 blood pressure measurements) or different observers (e.g.,
double reading of mammograms by radiologists). Practical constraints may limit
such procedures.

3.4.5 *Example: Simulation Study on Reliability of a Binary
Predictor

Suppose we have a binary predictor which has value 0 or 1 in truth, but that we
measure the predictor with noise. Suppose two observers make independent
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judgments of the predictor. Their judgments agree with the true predictor status
with sensitivity of 80% (observer scores 1 if true = 1) and specificity of 80%
(observer scores 0 if true = 0, Table 3.2). If both observers score the predictor
independently and without correlation, the observers agree with each other with a
kappa of only 0.36 (Table 3.3).

The true predictor status predicts outcome well, with an odds ratio of 4. The
observed predictor status has a diluted predictive effect, with odds ratio of 2.25.
Similarly, the discriminative ability is diluted (c statistic decreases from 0.67 to
0.60, Table 3.4, see later chapters for definition of c).

3.4.6 Choice of Predictors

In etiologic research, we may often aim for the best assessment of a predictor. We
will be concerned about various information biases that may occur. In the context of
a prediction model, we can be more pragmatic [390]. If we aim to develop a model

Table 3.2 Sensitivity and specificity for observers in determining the true predictor status
(sensitivity = specificity = 80%)

True predictor status

0 1

N (col%) N (col%)

Observer 0 750 (80%) 187 (20%)

1 187 (20%) 750 (80%)

Table 3.3 Agreement between observer 1 and observer 2 (kappa = 0.36)

Observer 2

0 1

Observer 1 0 637 300

1 300 637

Table 3.4 Association with outcome for the true predictor status and observed predictor status
(by observer 1 or 2, Table 3.3)

Outcome Odds Ratio c statistic

0 1

N (row%) N (row%)

True predictor status 0 625 (67%) 312 (33%) 4.0 0.67

1 312 (33%) 625 (67%)

Observer 0 562 (60%) 375 (40%) 2.25 0.60

1 375 (40%) 562 (60%)
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that is applicable in daily practice, we should use definitions and scorings that are in
line with daily practice. For example, if medical decisions on surgery are made
considering local pathology reports, without expert review, the local pathology
report should be considered for a prediction model applicable to the local setting.
As illustrated, such less reliable assessments will affect the performance of a pre-
diction model, since prognostic relations are disturbed. If misclassification is at
random, a dilution of the relation occurs (Table 3.4). In practice, prediction models
tend to include predictors that are quite readily available, not too costly to obtain,
and can be measured with reasonable precision. Caution is needed if a prediction
model is applied in a context with different precisions in measurement, since such a
difference will impact on a model’s generalizability [355].

3.5 Outcome

3.5.1 Types of Outcome

The outcome of a prediction model should be relevant, either from an applied
medical perspective or from a research perspective. From a medical perspective,
“hard” end points are generally preferred. Especially mortality is often used as an
end point in prognostic research. Mortality risks are relevant for many acute and
chronic conditions, and for many treatments. In other diseases, nonfatal events may
be more relevant, including patient-centered outcomes such as scores on quality of
life questionnaires, or wider indicators of burden of disease (e.g., absence from
work) (Table 3.5) [237].

Table 3.5 Examples of prognostic outcomes [237]

Prognostic
outcome

Example Characteristics

Fatal events All-cause, or cause-specific Hard end point, relevant in many
diseases, but sometimes too
infrequent for reliable statistical
modeling

Nonfatal events Recurrence of tumor,
cardiovascular events (e.g.,
myocardial infarction,
revascularization)

Somewhat softer end point,
reflecting decision-making by
physicians, increases sample size for
analysis

Patient-centered Symptoms, functional status,
health-related quality of life,
utilities

Subjective end point, focused on the
patients themselves; often used as
secondary end point

Wider burden Absence from work because of
sickness

Especially of interest from an
economical point of view
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3.5.2 Survival End Points

Survival end points are often considered in prediction models, either with a rela-
tively short follow-up (e.g., 30-day mortality) or with longer follow-up (where
some patients will have censored observations) [100]. When cause-specific mor-
tality is considered, a reliable assessment of the cause of death is required. If cause
of death is not known, relative survival can be calculated [219]. This is especially
popular in cancer research. Mortality in the patients with a certain cancer is com-
pared with the background mortality from the general population. The difference
can be thought of as mortality due to the cancer.

The pros and cons of relative survival estimates are open to debate. Some have
proposed to also study conditional survival for patients already surviving for some
years after diagnosis, or relative survival for other time periods. These measures
may sometimes be more meaningful for clinical management and prognosis than
5-year relative survival from time of diagnosis [185, 276]. Others have proposed
that median survival times are better indicators of survival than 5-year relative
survival rates, especially when survival times are short [417], with differences in
survival time as the effect measure rather than a measure of relative risk such as the
hazard ratio [474, 593].

3.5.3 *Examples: 5-Year Relative Survival in Cancer
Registries

Five-year relative survival was studied for patients enrolled in the SEER registry in
the period 1990–1999 [185]. The 5-year relative survival rate for persons diagnosed
with cancer was 63%, with substantial variation by cancer site and stage at diag-
nosis. Five-year relative survival increased with time since diagnosis. For example,
for patients diagnosed with cancers of the prostate, female breast, corpus uteri, and
urinary bladder, the relative survival rate at 8 years after diagnosis was over 75%.

Similar analyses were performed with registry data from the Eindhoven region,
where it was found that patients with colorectal, melanoma skin, or stage I breast
cancer could be considered cured after 5–15 years. For other tumors, survival
remained poorer than the general population [276].

3.5.4 Composite End Points

Sometimes, composite end points are defined, which combine mortality with
nonfatal events. Composite end points are especially popular in cardiovascular
research (see also Chap. 23). For example, the Framingham models have been used
to predict incident cardiovascular disease in the general population. A popular
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Framingham model (the Wilson model) defines cardiovascular events as fatal or
nonfatal myocardial infarction, sudden death, or angina pectoris (stable or unstable)
[674]. Composite end points have the advantage of increasing the effective sample
size, and hence the power for statistical analyses, at the price of having to assume
similar prognostic associations for each of the end point components.

3.5.5 *Example: Composite End Points in Cardiology

A prediction model was developed in 949 patients with decompensated heart
failure. The outcomes were 60-day mortality and the composite end point of death
or rehospitalization at 60 days. The discriminatory power of the model was sub-
stantial for the mortality model (c statistic 0.77) but less for the composite end point
(c statistic 0.69) [159]. These findings are in line with prediction of acute coronary
syndromes, where predictive performance was better for mortality than for a
composite end point of mortality or myocardial (re)infarction [59]. The case study
in Chap. 23 also considers a composite end point.

3.5.6 Choice of Prognostic Outcome

The choice of a prognostic outcome should be guided by the context, but the
outcome should be measured as reliably as possible. Prediction models may be
developed with pragmatic definitions of predictors, since this may resemble the
future use of a model. But the outcome should be determined with similar rigor as
in an etiologic study or randomized clinical trial. In the future, decisions are to be
based on the predictions from the model. Predictions, hence, need to be based on
robust statistical associations with an accurately determined outcome.

If there is a choice between binary and continuous outcomes, the latter are
preferred from a statistical perspective, since they provide more power in the sta-
tistical analysis. Also, ordered outcomes have more power than binary outcomes. In
practice, binary outcomes are however very popular, making logistic regression and
Cox regression the most common prediction models in medicine [653].

3.5.7 Diagnostic End Points

The outcome in diagnostic research naturally is the underlying disease, which needs
to be defined according to a reference standard [64, 65, 308, 387]. The reference
standard can sometimes be anatomical, e.g., findings at surgery. Other definitions of
a reference standard may include blood or spinal fluid cultures (e.g., in infectious
diseases), results of high-quality diagnostic tests such as angiography (e.g., in
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coronary diseases), or histological findings (e.g., in oncology). Methods are still
under development on how to deal with the absence of an acceptable reference
standard. In such situations, the results of the diagnostic test can, for example, be
related to relevant other clinical characteristics and future clinical events in latent
class analyses [636].

The relevance of the underlying diagnosis may be high when treatment and
prognosis depend directly on the diagnosis. Often a diagnosis covers a spectrum of
more and less severe disease, and longer term outcome assessment would be
desirable. This is especially relevant in the evaluation of newer imaging technology,
which may detect disease that remained previously unnoticed [350].

3.5.8 *Example: PET Scans in Esophageal Cancer

In esophageal cancer, positron emission tomography (PET) scans provide addi-
tional information on extent of disease compared to CT scanning alone. However,
the clinical relevance of the additionally detected metastases can only be deter-
mined in a comparative study, preferably a randomized controlled trial. Diagnosing
more metastases is not sufficient to make PET/CT clinically useful [637].

3.6 Phases of Biomarker Development

Pepe has proposed a phased approach to developing predictive biomarkers, in
particular, for early detection of cancer (Table 3.6) [431]. These phases are also
relevant to the development and improvement of prediction models, which may add
novel biomarkers to traditional clinical characteristics. The development process
begins with small studies focused on classification performance and ends with large
studies of impact on populations. The aim is to select promising markers early while
recognizing that small early studies do not answer the ultimate questions that need
to be addressed (Table 3.6).

As an example, Pepe considers the development of a biomarker for cancer
screening. Phase 1 is exploratory and may consider gene expression arrays or
protein mass spectrometry that yields high-dimensional data for biomarker dis-
covery. Reproducibility between laboratories is an aspect to consider before moving
on to phase 2, where a promising biomarker is compared between population-based
cases with cancer and population-based controls without cancer. Phase 3 is a more
thorough evaluation in a case–control study to determine if the marker can detect
subclinical disease. In phase 4, the marker may be applied prospectively as a
screening test in a population. Finally, the overall impact of screening is addressed
in phase 5 by measuring effects on clinically relevant outcomes such as mortality
and healthcare costs.
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The study design implications are shown in Table 3.6; in the exploratory Phase
1, it may be acceptable to use “convenient samples”, which will likely lead to
spectrum bias in the assessment of the biomarker. In phase 2, population-based
samples are desired for a simple case–control design. In phase 3, we require
samples taken from cancer patients before their disease became clinically apparent.
A nested case–control study design can be efficient for data from a cohort study. For
phase 4, a prospective cohort study is required to determine the characteristics and
treatability of early detected disease. Finally, an RCT is desired for unbiased
assessment of the impact of screening.

3.7 Statistical Power and Reliable Estimation

An important issue is how large a study needs to be for sufficient statistical power to
address the primary research question, and reliable estimation of parameters for a
prediction modeling. Note that sample size in a binary prediction context depends
on the combination of the number of events and the distributions of predictors; we
should be especially worried about “sparse data” [209]. Power considerations are
discussed below for studying effects of a specific predictor, and for developing a
prediction model that can provide reliable predictions.

3.7.1 Sample Size to Identify Predictor Effects

We may primarily be interested in the effect of a specific predictor on a diagnostic
or prognostic outcome. We may then aim to test the effect of this predictor for
statistical significance. This leads to similar sample size considerations as for testing
of treatment effects, e.g., in the context of an RCT. Sample size calculations are

Table 3.6 Phases of development of a biomarker for cancer screening [431].

Phase Objective Study design

1 Preclinical
exploratory

Promising directions identified Case–control
(convenient samples)

2 Clinical assay
and validation

Determine if a clinical assay detects established
disease

Case–control
(population-based)

3 Retrospective
longitudinal

Determine if the biomarker detects disease before it
becomes clinical. Define a “screen positive” rule

Nested case–control in
a population cohort

4 Prospective
screening

Extent and characteristics of disease detected by the
test; false referral rate

Cross-sectional
population cohort

5 Cancer
control

Impact of screening on reducing the burden of
disease on the population

Randomized trial
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straightforward for such univariate testing. The required sample size is determined
by choices for the acceptable Type I and Type II error. The Type I error is usually
set at 5% for statistical significance. The Type II error determines the power. It may,
e.g., be set at 20% for 80% power. Other considerations include the variability of
the effect estimate. For binary predictors of a binary outcome, the prevalence of the
predictor and the incidence of the outcome (“event rate”) are important. Finally, the
magnitude of the effect determines the required sample size, with larger sample size
required to detect smaller effects.

For illustration, we consider the statistical power for a binary predictor of a
binary outcome (Fig. 3.3). We find that the required sample size increases steeply
with a very low or very high event rate, while the sample size is reasonably constant
for event rates between 20 and 80%. With an odds ratio of 1.5, 80% power requires
approximately 2000 subjects at a 10% incidence of the outcome (200 events), 1000
subjects at 20% incidence (200 events), and 800 subjects at 50% incidence (400
events). So, with low event rates, the number of events is the dominant factor.

Next, we illustrate that statistical power is also directly related to the prevalence
of a binary predictor (Fig. 3.4). We consider odds ratios from 1 to 3, as may often
be encountered in medical prediction research. In a sample size of 500 subjects, 250
with and 250 without the outcome, 80% power is reached with prevalences of 16%
and 5.5% for odds ratios of 2 and 3, respectively. Odds ratios of 1.2 and 1.5 require
larger sample sizes than n = 500: 3800 and 800 at 50% prevalence, respectively.
With a 10% event rate, the power is substantially lower (Fig. 3.4, right panel). An

Fig. 3.3 Statistical power corresponding to sample sizes for event rate (incidence of the outcome)
ranging from 0 to 100%. A binary predictor was considered with 50% prevalence and odds ratio 1.5
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odds ratio of 3 then requires 18% instead of 5.5% prevalence of the predictor for
80% power. Without an effect (OR = 1), statistical significance is by definition
expected in 5%.

3.7.2 Sample Size for Reliable Modeling

Instead of focusing on predictors, we can focus on the reliability of predictions that
are provided by a prediction model. Sample size requirements for prediction models
have often been formulated as “at least 10 events per variable” (EPV). Technically,
we should consider the degrees of freedom (df) of candidate predictors for the
model. The EPV concept assumes each variable has 1 df. Note that data-driven
selection of predictors from a set of candidate predictors does not improve the EPV
value. Moreover, we need to consider the total sample size, or the ratio between
events and nonevents [634]. If the event rate is 50%, the statistical power for a
given number of events is less than for a low event rate such as 10%. With 100
events, the total sample sizes would be 200 and 1000, respectively. In the design of
case–control studies, a rule of thumb is that the statistical power does not increase
much if the number of controls in increased above 4:1; so, below a 20% event rate
(event: nonevent ratio 1:4), the number of events would be the dominant factor.
This pattern was confirmed by Fig. 3.3. So, for probability estimates between 20
and 80%, a higher EPV would apply than for more extreme event rates.

Relatively low EPV values may apply for regression analyses where we want to
adjust for confounding. The idea is that it is better to include some potential
confounders, even if the EPV values drop to lower values, than to risk bias in the

Fig. 3.4 Statistical power in relation to prevalence of a binary predictor, for odds ratios from 1 to
3 in samples with 500 subjects. Incidences of the outcome were 50% (left panel) and 10% (right
panel)
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predictor of interest [206]. Regression analysis can technically well be performed
with lower EVP values, although some type of shrinkage might be considered, e.g.,
using Firth regression (see Chap. 13) [634]. Adjusted analyses with correction for
confounding may, hence, be performed with EPV less than 10 [654].

For prediction, many suggested a minimum of 10 to 20 EPV for obtaining any
reasonably reliable predictions [226, 421, 422, 543]. Medical prediction models that
are constructed with EVP less than 10 are commonly overfitted and may perform
poorer than a simpler model which considers fewer candidate predictors. Limiting
the number of candidate predictors may increase the EVP to at least 10 (see further
illustration in Chap. 24). For prespecified models, statistical shrinkage may not be
required with EPV of at least 20 (Chap. 13) [543]. EPV values for data-driven
selection of predictors from a larger set of candidate predictors may be as large as
50 (events per candidate predictor, see Chap. 11). Even higher EPV values,
exceeding 200, may be required for stable model estimation with some flexible
machine learning algorithms, such as random forests and neural networks [612].

The EPV rules may be criticized for several reasons, including the following:

• in addition to number of events, the number of nonevents is also relevant,
specifically for event rates between 20 and 80% [635];

• the distribution and magnitude of predictor effects (see 3.8.1), and the number of
events for each category of categorical predictors are also relevant aspects [460,
635].

Riley et al. proposed three criteria for sample size calculations in planning
prognostic analyses with binary or time-to-event outcomes [460]:

(1) Small optimism in predictor effect estimates; defined by a shrinkage factor
of � 0.9 (see Chap. 13);

(2) Small difference in the apparent and adjusted Nagelkerke R2; defined as
0.05 (see Chap. 4);

(3) Precise estimation of the mean predicted outcome value (model intercept), e.g.,
defined with a margin of error of ±0.1 (see 3.8.2).

These criteria can be used for a specific context, with a number of candidate
predictors and a model’s anticipated R2. We might then propose the samples size that
meets all criteria. As with any sample size calculation, we need to make estimates for
each of these parameters, e.g., informed by previous studies. Some boundaries are
rather arbitrary, e.g., a shrinkage factor of 0.8 rather than 0.9 might be acceptable to
many, and would lead to a lower sample size requirement for this criterion.

The idea of limiting the expected shrinkage was already put forward by Harrell
et al., i.e., fit a full prediction model including all candidate predictors, examine the
strength of the model fit (model v2), and then consider how many degrees of
freedom might be spent in the modeling process [227]. Harrell also proposed earlier
that we may want to estimate at least the average risk with reasonable precision.
The lower limit might be 96 events, for a margin of error of ±0.1 in estimating risk
in the range of 20–80% event rate. To achieve a margin of error of ±0.05 around
p = 0.5 one needs n = 384 (192 events) [229]. Again, such limits (±0.1, or ±0.05)
are rather arbitrary.
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Overall, tentative advice might be as follows (Table 3.7):

• Aim for at least 100 events as a minimum for reliable estimation of the average
risk;

• Aim for at least 10 EPV, and preferably 20, for reliable prediction modeling if
the event rate is <20% and higher EPV values if the event rate is between 20
and 80%;

• Allow specific circumstances to increase the required sample size, such as the
modeling of predictors with low prevalence, using proposed formulas [154, 460].

Note that once the data are available, we should adapt our modeling strategy to
maximize chances for a reliable prediction model that is at least internally valid
(read part II of this book). Sparse data may occur even with relatively favorable
EPV [209]. In current practice, many prediction models are developed with fewer
than 100 events, and with EPV values below 10 [666]. This may contribute to waste
in prediction research [271].

3.7.3 Sample Size for Reliable Validation

Similar to model development studies, external validation studies also require
substantial sample sizes. One perspective is to test claims of similar performance:
what is the statistical power to detect a clinically relevant deterioration in model
performance? Simulations suggested that validation studies should include at least
100 events, and preferably more (details in Chap. 19) [533, 643]. This number was
confirmed in other studies [423], and also when the perspective was taken that we
want a reliable estimate of performance [104]. As with model development, model
validation practice is currently not adhering to this minimum number of events
guidance, contributing to research waste in prediction research [103, 533].

As an extension of a single validation, it is highly relevant to examine the
external validity of a prediction model across a range of settings [30, 31, 451].
Multilevel (or random effect) models may then be used (see Chap. 21). Accurate
estimation of model parameters and variance components of multilevel logistic
regression models may require at least 50 groups with 50 subjects [381]. For

Table 3.7 Sample size considerations for development and validation of prediction models

Study aim Sample size considerations

Predictor effects Perform sample size calculation with anticipated effect size, prevalence of
predictor, and event rate (see 3.7.1)

Model
development

At least 100 events; consider the number of candidate variables to increase
the sample size according to the EPV >10 rule if the event rate is <20%;
or perform specific calculations [460]

Model validation Single setting: At least 100 events
Multiple settings: Aim for >50 groups
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validation, our aim is also to obtain a reliable estimate of the between-setting
heterogeneity [31, 539]. Such a heterogeneity estimate is more dependent on the
number of settings (“groups”) than the number of individuals per group [522].
Technically, a minimum of five groups may be required for modeling, while some
suggest a minimum of 10 [522], and simulation studies support a minimum of 50
groups for low bias in estimation of the heterogeneity [360].

In sum, single external validation study needs at least 100 events to be mean-
ingful. Assessment of between-setting heterogeneity in validity requires a large
number of settings, preferably 50 or more (Table 3.7).

3.8 Concluding Remarks

Prognostic studies are ideally designed as prospective cohort studies, where the
selection of patients and definition of predictors is prespecified. Data from ran-
domized clinical trials may often be useful, although representativeness of the
included patients for the target population should be considered as a limitation. Data
may also be used from retrospective designs, registries, and case–control studies,
each with their strengths and limitations. Diagnostic studies are usually
cross-sectional in design and should prospectively select all patients who are sus-
pected of a disease of interest. In practice, designs are still frequent where patients
are selected based on a reference test which is not performed in all patients.

Predictors may be defined pragmatically and cover the relevant areas in a dis-
ease. The outcome of a prediction model should be measured with high accuracy.
Hard end points such as mortality are often preferred.

With any study design, we should aim for large sample size for reliable testing
and estimation of predictor effects, reliable model building, and reliable assessment
of model performance. At least 100 events may be required for any model devel-
opment or validation, and more for detailed modeling and addressing more refined
research questions. A development sample with 100 events corresponds to EPV=10
with 10 candidate predictors. More than 100 events are needed if more than 10
candidate predictors are considered. Higher sample sizes are desired for
multi-setting validation, with data from many different settings if claims about
generalizability are made.
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Questions

3:1 Cohort studies
One could argue that both diagnostic and prognostic studies are examples of
cohort studies.

(a) What is the difference between diagnostic and prognostic outcomes in
such cohorts?

(b) What is the implication for the statistical analysis?

3:2 Prospective vs. retrospective designs (Sect. 3.2).
Prospective study designs are generally seen as preferable to retrospective
designs. What are the pros and cons of prospective versus retrospective
designs?

3:3 Accuracy of predictors and outcome (Sects. 3.5 and 3.6)

(a) Why do we need to be more careful with reliable assessment of out-
come than assessment of predictors?

(b) What is the effect of imprecise measurement of a predictor? See recent
work by Luijken et al. [355]

3:4 Composite end points (Sect. 3.5.4)
Composite end points are often motivated by the wish to increase statistical
power for analysis. What is the price that we pay for this increase in terms of
assumptions on predictive relations? See a JCE paper for a detailed discus-
sion [186].

3:5 Statistical power (Figs. 3.3 and 3.4)

(a) What is the required total sample size for 50% power at 10%, 30% or
50% incidence of the outcome in Fig. 3.3?

(b) What is the similarity between Figs. 3.3 and 3.4 with respect to the
ranges of the event rate and prevalence, and the associated statistical
power?

3:6 Study design: epidemiologic and statistical aspects
Suppose we can do a single-center study with 2000 patients, where 400
(20%) will have the event of interest. Alternatively, we can do a multicenter
study with three centers, each contributing 500 patients. Among the 1500, we
expect 300 events (20% average event rate).

(a) Which design would you prefer? Explain why weighing epidemiolog-
ical considerations (such as generalizability) and statistical considera-
tions (such as standard error).

(b) What if the alternative to 2000 with 400 events would be 10 centers
with 30 events each (300 events in total)?
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Chapter 4
Statistical Models for Prediction

Background In this chapter, we consider statistical models for different types of
outcomes: binary, unordered categorical, ordered categorical, continuous, and
survival data. We discuss common statistical models in medical research such as the
linear, logistic, and Cox regression model. We consider simpler approaches and
more flexible extensions, including regression trees and neural networks. We also
discuss competing risks and the concept of dynamic prediction modeling. We focus
on the most relevant aspects of these models in a prediction context. All models are
illustrated with case studies. In Chap. 6, we will discuss aspects of choosing
between alternative statistical models for the same type of outcome.

4.1 Continuous Outcomes

Continuous outcomes have traditionally received most attention in texts on
regression modeling, with the ordinary least square model (“linear regression”) as
the reference statistical model [653]. Continuous outcomes may be common in
many scientific fields, such as engineering, psychology, and economy, but are not
so often considered for prediction models in the medical field.

The linear regression model can be written as

y ¼ aþ bi � xi þ error;

where a is the model intercept, and bi refers to the set of regression coefficients that
relate one or more predictors xi to the outcome y. The error is calculated as observed
y—predicted y (or y − ŷ). This difference is also known as the residual for the
prediction of y. We estimate the regression coefficients a for the intercept a and bi
for the regression coefficients bi.
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The outcome y is, hence, related to a linear combination of the xi variables with
the estimated regression coefficients bi. This use of a simple sum, or linear com-
bination, is an important property, which is also seen in generalized linear models,
such as the logistic regression model.

4.1.1 *Examples of Linear Regression

An example of a medical outcome is blood pressure. We may want to predict the
blood pressure after treatment with an anti-hypertensive or other intervention [312,
628]. Also, quality of life scales may be relevant to evaluate [313]. Such scales are
strictly speaking only ordinal, but can for practical purposes often be treated as
continuous outcomes. A specific issue is that quality of life scores have ceiling
effects, because minimum and maximum scores apply.

4.1.2 Economic Outcomes

Health economics is an important field where continuous outcomes are considered,
such as length of stay in hospital, or length of stay at a specific ward (e.g., the
intensive care unit), or total costs for patients [378]. Cost data are usually not
normally distributed. Such economic data have special characteristics, such as
patients without any costs (zero), and a long tail because some patients having
considerable costs. We might consider the median as a good descriptor of the
typical outcome. We are, however, mostly interested in the mean costs, since the
expectation is what matters most from an economical perspective.

4.1.3 *Example: Prediction of Costs

Many children in moderate climates suffer from an infection by the respiratory
syncytial virus (RSV). Some children, especially premature children, are at risk of a
severe infection, leading to hospitalization. In a Dutch study, the mean RSV hos-
pitalization costs were 3,110 Euros in a cohort of 3,458 infants and young children
hospitalized for severe RSV disease during the RSV seasons 1996–1997 to 1999–
2000 in the Southwest of The Netherlands [454]. RSV hospitalization costs were
higher for some patient categories, e.g., those with lower gestational age or lower
birth weight, and younger age. The linear regression model had an adjusted R2 of
8%. This indicates a low explanatory ability for predicting hospitalization costs of
individual children. However, the model could estimate the anticipated mean
hospitalization costs of groups of children with the same characteristics. These
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predicted costs were used in decision analyses of preventive strategies for severe
RSV disease [61].

4.1.4 Transforming the Outcome

An important issue in linear regression is whether we should transform the outcome
variable. The residuals (y − ŷ) from a linear regression should have a normal dis-
tribution with a constant spread (“homoscedasticity”). This can sometimes be
achieved by a log transformation for cost data, but other transformations are also
possible. As Harrell points out, transformations of the outcome may reduce the need
to include transformations of predictor variables [225]. Care should be taken in
backtransforming predicted mean outcomes to the original scale. Predicted medians
and other quantiles are not affected by a monotone transformation, but the mean is.
The lognormal distribution can be used for the mean on the original scale after a log
transformation, but a more general, nonparametric, approach is to use “smearing”
estimators [443].

4.1.5 Performance: Explained Variation

In linear regression analysis, the total variance in y is labeled the total sum of
squares (“TSS”). TSS is the sum of variability explained by one or more predictors
(“model sum of squares,” MSS) and the error (“residual sum of squares,” RSS):

TSS ¼ MSSþRSS ¼ var(regression on xiÞþ var(error)
¼ Rðŷ�meanðyÞÞ2 þRðy� ŷÞ2

The estimates of the variance follow from the statistical fit of the model to the data,
which is based on the analytical solution of the least squares formula. This fit mini-
mizes the error term in the model and maximizes the variance explained by xi. Better
prediction models explain more of the variance in y. R2 is defined as MSS/TSS [653].

To appreciate values of R2, we consider six hypothetical situations where we
predict a continuous outcome y, which has a standard normal distribution (N(0, 1),
i.e., mean 0 and standard deviation (SD) 1) with one predictor x (N(0, 1)). The
regression coefficients for x are varied in simulations, such that R2 is 95, 50, 20, 10,
5, and 0% (Fig. 4.1). We note that an R2 of 95% implies that observed outcomes are
always very close to the predicted values, while gradually relatively more error
occurs with lower R2 values. When R2 is 0%, no association is present.

To appreciate R2 further, we plot the distributions of predicted values (ŷ). The
distribution of ŷ is wide when R2 is 95%, and very small when R2 is 5%, and a
single line when R2 is 0% (Fig. 4.2). The distribution of y is always normal with
mean 0 and standard deviation 1.
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Fig. 4.1 Linear regression analysis with regression models with y = b * x + error, where SD
(y) = SD(x) = 1. The outcome y is shown on the y-axis, x on the x-axis

Fig. 4.2 Probability density functions for observed and predicted values (“fitted values”, ŷ),
corresponding to Fig. 4.1. For the first graph (R2 = 95%), the distribution of predicted values (thick
red line) is close to the distribution of observed y values (thin line), while for the last graph all
predictions are the average (ŷ = 0)
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4.1.6 More Flexible Approaches

The generalized additive model (GAM) is a more flexible variant of the linear
regression model [231, 653]. A GAM allows especially for more flexibility in
continuous predictors. It replaces the usual linear combination of continuous pre-
dictors with a sum of smooth functions to discover potential nonlinear effects:

y ¼ aþ fi xið Þþ error,

where fi refers to functions for each predictor, e.g., loess (or “lowess”) smoothers.
Loess smoothers are based on locally weighted polynomial regression [102]. At

each point in the data set, a low-degree polynomial is fit to a subset of the data, with
data values near the point where the outcome y is considered. A polynomial is fitted
using weighted least squares, giving more weight to nearby points and less weight
to points further away. The degree of the polynomial model and the weights can be
chosen by the analyst.

The estimation of a GAM is more computationally demanding than for simple
linear models, but this is no limitation anymore with modern computer power and
software. A GAM assumes that the outcome is already appropriately transformed,
and then automatically estimates the transformation of continuous predictors to
optimize relations with the outcome.

An even more flexible approach is to transform y and X simultaneously to
maximize the correlation between the transformed y and the transformed X [225,
231]:

gðyÞ ¼ aþ fi xið Þþ error,

where g refers to a transformation of the outcome y, and fi refers to functions for each
predictor. For cost data, several other specific approaches have been proposed [378].

4.2 Binary Outcomes

Binary outcomes are most common for diagnostic (presence of disease) or prog-
nostic research questions (e.g., mortality, morbidity, complications, see Chap. 2).
The logistic regression model is the most widely used statistical technique for such
binary outcomes. The model is flexible in that it can incorporate binary, categorical
and continuous predictors, nonlinear transformations, and interaction terms. Many
of the principles of linear regression also apply for logistic regression, which is an
example of a generalized linear model. As in linear regression, the binary outcome
y is linked to a linear combination of a set of predictors and regression coefficients
bi. We use the logistic link function to restrict predictions to the interval <0, 1>.
The model is stated in terms of the probability that y = 1 (“p(y = 1)”), rather than
the outcome y directly.
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Specifically, we write the model as a linear function in the logistic transfor-
mation (logit), where logit(p(y = 1)) = log(odds(p(y = 1))), or log(p(y = 1)/(p
(y = 1) + 1)):

logitðpðy ¼ 1ÞÞ ¼ aþ bi�xi ¼ lp;

where logit indicates the logistic transformation, a is an estimate for the intercept a,
bi are the estimated regression coefficients for bi, xi are the predictors, and lp is the
linear predictor.

The coefficients bi are usually estimated by standard maximum likelihood in a
logistic regression approach, but this is not necessarily the case. For example, we
will discuss penalized maximum likelihood methods to shrink the bi for predictive
purposes (Chap. 13). Many variants of shrinkage and penalization have been
proposed over recent years, including the LASSO and elastic net [581, 689].

The interpretation of the coefficients bi is as for any regression model: the
coefficient relates to 1 unit difference in xi, while the other predictors in the model
are constant. We should be careful in not interpreting a regression coefficient as
causing a difference in outcome; we only estimate association. When we consider a
single predictor in a logistic model, bi is an unadjusted, or univariate association;
with multiple predictors, it is an “adjusted” association. The exponent of the
regression coefficient (eb) indicates the odds ratio, so the ratio of the odds of the
binary outcome y.

Predicted probabilities can be calculated by backtransforming:

pðy ¼ 1Þ ¼ elp= 1þ elp
� � ¼ 1= 1þ e�lp

� �
:

The quantity exp(lp), or elp, is the odds of the outcome. The logistic function has
a characteristic sigmoid shape, and is bounded between 0 and 1 (Fig. 4.3). We note
that a lp value of 0 corresponds to a probability of 50%. Low lp values correspond
to low probabilities (e.g., lp = –4, p = 2%), and high lp values correspond to high
probabilities (e.g., lp = +4, p = 98%).

Fig. 4.3 Illustration of the logistic function. The linear predictor lp is related to the predicted
probability p(y = 1) as logit(p(y = 1)) = lp, and p(y = 1) = 1/(1 + exp(–lp))
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4.2.1 R2 in Logistic Regression Analysis

The linear regression examples showed how R2 is related to the relative spread in
predictions. When predictions cover a wider range, the regression model better
predicts the outcome. This concept also applies to dichotomous outcomes, e.g.,
analyzed with a logistic regression model. Better prediction models for dichoto-
mous outcomes have a wider spread in predictions, i.e., predictions close to 0% and
close to 100%.

To illustrate this concept, we use the same simulated data as for the examples of
linear regression models, but we now dichotomize the outcome y (if y < 0,
yd = 0, else yd = 1). The relation between a standard normal variable X and
six hypothetical dichotomized outcomes yd is shown in Fig. 4.4.

4.2.2 Calculation of R2 on the Log-Likelihood Scale

Where the linear model is optimized with least squares estimation, the logistic
model is usually optimized by maximum likelihood. The likelihood refers to the
probability of the data given the model and enables estimation of parameters in
various nonlinear models. The logarithm of the likelihood (log-likelihood, LL) is
usually used for convenience in numerical estimation. The LL is calculated as the
sum over all subjects of the distance between the natural log of the predicted
probability p for the binary outcome to the actually observed outcome y:

LL ¼ Ry� logðpÞþ ð1� yÞ � logð1� pÞ;

Fig. 4.4 Predicted
probabilities of a 0/1 outcome
by six logistic models
according to a normally
distributed x variable. The
predictive strength varied,
with Nagelkerke’s R2

decreasing from 87% to 0%
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where y refers to the binary outcome and p the predicted probability for each
subject.

If y = 1, the probability should be high (ideally 100%), such that log(p) gets
close to 0. Then the term (1 – y) drops out. If y = 0, the term (1 – y) = 1, and
p should be low (ideally 0%), such that log(1 – p) gets close to zero. A perfectly
fitting model would have a LL of zero; hence, we aim to maximize the LL. Another
term is deviance, defined as −2LL, which we try to minimize, similar to minimizing
the residual sum of squares (RSS) for linear regression. Note that perfect predictions
cannot be made, unless a fully deterministic model is identified. The LL is, hence,
usually negative for a fitted logistic regression model and the deviance positive.
A better model will have an LL or deviance closer to zero.

As reference we may consider the LL of a model with average predictions:

LL0 ¼ Ry� logðmeanðyÞÞþ ð1� yÞ � logð1�meanðyÞÞ;

where LL0 refers to the log-likelihood of the null model, and mean(y) is the average
probability of the binary outcome y. The LL0 is negative, unless mean(y) is 0 or 1.

We can quantify the performance of a prognostic model by comparison with the
null model. We multiply by −2, since the difference on the −2 LL (or deviance)
scale is a likelihood ratio statistic (LR), which follows a v2 distribution:

LR ¼ �2 LL0 � LL1ð Þ;

where LL1 refers to the model with predictors, and LL0 to the null model, and LR is
the likelihood ratio. The LR statistic can be used for univariate analysis, and also for
testing the joint importance of a larger set of predictors in the model (“global LR
statistic”) [225]. We can also easily make comparisons between nested submodels,
which contain a subset of the predictors in the full model. For example, we can
compare models with and without age as a predictor to determine the LR for age, or
compare models with and without a block of predictors, e.g., with and without a set
of patient history characteristics. Statistical testing is straightforward between such
nested models, since the LR statistic follows a v2 distribution.

We may use LR to estimate the explained variability by a model (R2). R2 values
would ideally enable a direct comparison across predictors, irrespective whether the
predictor was categorical or continuous and independent of the sample size. The
absolute value of the LR depends on n, the number of patients, similar to the sum of
squares in linear regression analysis. Moreover, we need to define an R2 measure
relative to a null model without predictors, with −2 LL0, as the reference value.
Nagelkerke proposed to define R2 as follows:

R2 ¼ 1� eð�ðLRÞÞ
� �

= 1� e �2�LL0ð Þ
� �

:

This definition scales R2 between 0 and 100% [403]. For a perfect model,
LR = +2LL0, and R2 = 100%. The relation between the LR statistic and
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Nagelkerke’s R2 is more or less linear; absolute values of the LR statistic depend on
the event rate, in addition to the sample size n (Fig. 4.5).

We will use the Nagelkerke definition of R2 throughout this book, although quite
some alternative R2 definitions are possible [7]. The scaling between 0 and 100%
makes it a natural measure to indicate how close we are with our predictions to the
observed 0 and 1 outcomes (Fig. 4.6). The calculation is based on the LL scale,
which is the scale used in the fitting process to optimize the model. The calculation

Fig. 4.5 Relation between
Nagelkerke’s R2 and the
likelihood ratio (LR) statistic
(divided by sample size, n) for
event rates of 1–50%. We
note a reasonably linear
relation. Largest LR values
are possible with an event rate
of 50%

Fig. 4.6 Distribution of predicted probabilities from logistic models relating y to a predictor x for
observed outcomes 0 or 1. The y variable was created from the linear regression example in Fig. 4.1
by dichotomization, and the average event rate was 50%. Discrimination is indicated by the
c statistic (equivalent to the area under the receiver operating characteristic curve, see Chap. 15)
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includes the LR, which is the theoretically preferred quantity for testing of sig-
nificance in logistic models [225].

4.2.3 Models Related to Logistic Regression

Logistic regression can be viewed as an improvement over linear discriminant
analysis, which is an older technique [221]. Discriminant analysis usually makes
more assumptions on the underlying data, for example, multivariate normality,
which is not the case in logistic regression. For logistic regression, the outcome
y needs to follow a binomial distribution. This assumption is violated when cor-
relations between outcomes exist, for example, because of grouping of patients
within hospitals, or multiple events within the same subject. Generalized estimation
equations (GEE) are an extension of logistic regression for correlated data [653].
Multilevel, or random effect, models have become more and more common in
recent analyses of correlated binary outcome data (see Chap. 21).

4.2.4 Bayes Rule

Bayes rule has often been used in a diagnostic context for the prediction of the
likelihood of an underlying disease [263, 430]. A prior probability of disease (p(D))
is considered before information becomes available (e.g., from history taking, or
from a diagnostic test, denoted as predictor x). The information is used to calculate
a posterior probability of disease (p(D|x)).

This approach has been followed with some success in the 1970s by De Dombal
in deriving diagnostic estimates for patients with abdominal pain [121].
Probabilities were estimated with a Bayesian approach, where the prior probability
of a diagnosis was updated with information from a large database. This database
contained data on the prevalence of signs and symptoms according to the outcome
diagnosis. This information can be summarized with diagnostic likelihood ratios
(LR). The diagnostic LR for a specific sign or symptom x is

LRðxÞ ¼ pðxjDÞ=pðxj!DÞ

where D indicates the presence of disease (determined by a reference standard), and
!D indicates no disease.

The combination of a prior probability of disease and LR is straightforward with
Bayes’ formula:

Odds(D|x) = Odds(D) * LR(x), where
Odds(D) is the prior odds of disease, calculated as p(D)/(1 – p(D)).
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In logit form the formula reads as:
logit(D|x) = logit(D) + log(LR(x))

This looks very similar to the univariate logistic model shown before. The
intercept a is replaced by logit(D), the prior probability of disease, and b1 * x1 is
replaced by log(LR(x)). The term “log(LR(x))” has been referred to as “weight of
evidence,” since it indicates how much the prior probability changes by evidence
from a test [528].

For a test with a positive or negative result, there is a simple relation between LR
and OR:

OR = LR(+)/LR(–), and
log(OR) = coefficient = log(LR(+)/LR(–)) = log(LR(+)) – log(LR(–)),

where LR(+) and LR(–) are the LRs for positive and negative test results,
respectively.

In a logistic model with one predictor representing the test (+ or – result), the
intercept a reflects the logit(y | test –). When the test is positive, the change in log
odds is given by the coefficient, and the logit(y) = intercept + coefficient.

4.2.5 Prediction with Naïve Bayes

Bayes rule is a general scientific approach to handle conditional probabilities, e.g., to
obtain p(D|x) from p(x|D). The quantity p(x|D) can sometimes easier be estimated than
p(D|x). For example, sensitivity and specificity of a dichotomous test are estimated
conditional on disease status. For prediction, we are, however, interested in p(D|x).

We can use a simple method to estimate posterior probabilities for combinations
of signs and symptoms [121]: the posterior probability after considering x1 is used
as the prior when considering x2; the posterior probability after considering x2 is
used as the prior when considering x3; etc. This approach is valid if x1, x2, etc. are
conditionally independent. Usually, positive correlations are present which makes
that the effect of x2 is smaller once x1 has already been considered, compared to
considering x2 unconditionally: LRx2|x1 < LRx2 [279].

The sequential application of Bayes’ rule is equivalent to using the univariate
logistic regression coefficients in a linear predictor. Because of its simplicity and
mathematical incorrectness, Naïve Bayes is sometimes referred to as “Idiot’s
Bayes”.

The linear predictor reads like

lpk ¼ b1;u � x1 þ b2;u � x2 þ � � � þ bp;u � xp;

where the subscript u indicates univariate estimates for the regression coefficients.
Such a naïve Bayes approach may have remarkably good discriminative abil-

ity.525 Also, the method has been applied in modeling the effects of genetic
markers, where robustness in modeling is required at the expense of accepting some
bias in coefficients [511].
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4.2.6 Calibration and Naïve Bayes

The main problem with Naïve Bayes estimation is that correlations between the
predictors are ignored. In the case of positive correlations, the effects of predictors
are overestimated and predictions will be too extreme. Both too low and too high
predictions arise. This is reflected in a regression coefficient for the linear predictor
(“calibration slope”, bcal) below 1 in the model: y * lpu, where lpu is the linear
predictor based on univariate coefficients.

A simple approach is to correct this calibration problem with a single coefficient
for lpu: logit(y) = a + bcal * lpu.

In terms of multivariable OR (ORm) or multivariable LR (LRm), the exponent
can be used for ease of notation: ORm = ORu

bcal or LRm = LRu
bcal. The idea of

calibration of the linear predictor comes back in Chaps. 15 and 20.

4.2.7 *Logistic Regression and Bayes

The diagnostic likelihood ratio (LR) can be used mathematically correct in a
multivariable context. The key trick is to rescale test results. Instead of a 1 for
positive and a 0 for negative, the univariate log(LR) values can be filled in for the
test results [525]. In a multivariable model, the joint effects for the test results are
subsequently estimated. Coefficients for the rescaled test results reflect the degree
of correlation between test results from different tests. If there were no correlations,
the coefficients of each test would be close to 1.

Multivariable diagnostic LRs can also be calculated by comparing models with
and without the test of interest. The model without the test is the prior, and the
model with the test included provides the posterior probabilities [279]. Subtracting
these two equations provides the LRs.

4.2.8 Machine Learning: More Flexible Approaches

Naïve Bayes estimation is an example of a simpler method than logistic regression.
A more flexible alternative model is a generalized additive model (GAM), as was
already discussed for linear regression models [231, 653].

Another class of alternative approaches is nowadays known as Machine
Learning techniques. These typically require less involvement from the analyst to
develop a prediction model and aim to learn more directly from the data, without
assuming some type of underlying statistical model [80]. A typical example is to
consider generalized nonlinear models. Here, the outcome is no longer related to a
mathematically simple, linear combination of estimated regression coefficients and
predictor values (the linear predictor, lp). Instead, nonlinear combinations of
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predictors are possible. Generalized nonlinear models are commonly implemented
as neural networks. Neural networks are often presented as fancy tools, “that rep-
resent the way our brain works,” but it may be more useful to consider them as
nonlinear extensions of linear logistic models [587, 588].

The most common neural network model is the multilayer perceptron (Fig. 4.7).
In such a network, the neurons are arranged in a layered configuration containing an
input layer, usually one “hidden” layer, and an output layer. The values of input
variables (patient characteristics) are imported into the network via the input layer
and multiplied with the weights of the connections. These multiplied values con-
stitute the input of the next (hidden) layer, from where the process is continued to
produce the output variables (e.g., risk of mortality) in the output layer.

A neural network does not use any preliminary information about the links
between the input and output variables; the relations between input and output
variables are determined by the data. It is, hence, not easily possible to explicitly
force external knowledge into a model, e.g., that an age effect should be mono-
tonically increasing. Neural networks learn iteratively from examples; the errors
from the initial prediction for the patients are fed back into the network and the
weights are adjusted to minimize the error for the second time predictions are made
and compared to the actual outcome. The process from input to output layer is
repeated many times. However, to prevent “overtraining”, the repetitions are usu-
ally stopped before the network is fully trained to the data [543, 587]. This concept
relates to shrinkage and penalization for regression models (Chap. 13).

The hidden layer makes the network more flexible to recognize patterns in the
data compared to a standard logistic regression model. The number of hidden layers
and number of nodes are chosen by the analyst. A neural network without a hidden
layer is equivalent to a logistic regression model [587, 588].

4.2.9 Classification and Regression Trees

Recursive partitioning, or Classification And Regression Tree (“CART”), methods
have been promoted as strong tools for prediction modeling and may be considered
as key machine learning methods. Recursive partitioning is a statistical method to
construct binary trees [76]. The method is based on statistically optimal splitting
(“partitioning”) of the patients into pairs of smaller subgroups. Splits are based on
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Fig. 4.7 A simple neural
network with four input
variables (predictors x1 – x4),
one hidden layer with three
nodes, and one output layer
(outcome y)
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cut-off levels of the predictors, which produce maximum separation among two
subgroups and a minimum variability with these subgroups with respect to the
outcome. The predictor causing the largest separation is situated at the top of the
tree, followed by the predictor causing the next largest separation, and so on.
Splitting continues until the subgroups reach a minimum size or until no
improvement can be obtained [76].

Many variants of tree-based method exist. The algorithms to construct single
trees vary. Moreover, multiple trees may be constructed from a data set with per-
mutations or resampling approaches, known as “random forests”. Random forests
generate predictions by running a subject through multiple trees, with averaging of
the result [79].

4.2.10 *Example: Mortality in Acute MI Patients

We fit a tree in patients with an acute myocardial infarction (MI). We again use
a sample which contains 785 patients, of whom 52 died by 30 days (Chap. 22). We
consider the predictors age (continuous) and Killip (4 categories, Fig. 4.8).

4.2.11 Advantages and Disadvantages of Tree Models

An advantage of a tree is its simple presentation. Some claim that a tree represents
how physicians think: starting with the most important characteristic, followed by
another characteristic depending on the answer on the first, etc. Indeed, humans are
remarkably quick in pattern recognition based on a few clues. However, humans

Fig. 4.8 Tree fitted in a subsample of GUSTO-I (“sample4”) with age and Killip class as
predictors. The terminal nodes are labeled with 30-day mortality as a fraction, e.g., 0.037 indicates
3.7% mortality among those younger than 74 years
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have typically been outperformed by systematic prediction methods in experiments
where a balanced, quantitative judgment was required, such as estimation of a
probability based on a set of characteristics [354]. So, the fact that a tree may
represent human thinking for classification does not argue in favor of the method
for prediction. A true advantage may be that interaction effects are naturally
incorporated in a tree, while a standard logistic regression model usually starts with
main effects. So, when multiple, high-order interactions are expected in a huge data
set, and only categorical predictors are considered, a tree might theoretically be a
good choice. Such situations may be rare in medical data, but may possibly be
encountered in other areas of research.

Disadvantages of trees can be noted by considering a tree as a special case of
linear logistic regression. First, all continuous variables have to be categorized,
which implies a loss of information. As illustrated in Fig. 4.8, age is considered
with rather strange splits at different places in the tree, while the age effect could
well be approximated with a single, simple, linear term in a logistic model (see
Chap. 6). Moreover, these cut-points are determined from a search over all possible
cut-points, which is well known to lead to overfitting in a prediction context [12].

Further, the tree assumes interactions between all predictors. After the first split,
this interaction is of the first order, i.e., x1 * x2. At the second level, second-order
interactions are assumed (x1 * x2 * x3). In regression analysis, it is common
practice to include main effects of predictors when interactions are considered; this
principle is not followed in tree modeling. A higher order interaction term is
included to model the effect of a predictor in a specific branch, and simply omitted
from the other branches. A predictor is typically selected in one branch of the tree
and not in another. This poses a clear risk of testimation bias (Chap. 5): predictors
are selectively considered when their effects are relatively large, and not if their
effects are small [267].

4.2.12 Trees Versus Logistic Regression Modeling

Trees have three distinctive characteristics compared to a logistic regression model
when we consider a set of potential predictors.

(1) In a logistic model, a default strategy is to include all predictors as main effects.
This model can be extended with interaction terms if the statistical power to
examine these is sufficient. It is rare to study interaction terms that are more
complex than considering three variables (second-order). In contrast, trees by
default assume that higher order interactions are present and cannot model the
main effects.

(2) Continuous variables should not be categorized in regression models [472].
Trees do so by necessity, which causes a loss of information.

(3) We should be very cautious in using stepwise selection methods in a logistic
model [563]. Small data sets lack sufficient power to select relevant predictors
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(Chap. 11) [225]. A tree, however, always needs to be selective in the inclusion
of predictors and quickly runs out of cases within branches. Limited power is a
major problem in the development of trees: trees are data-hungry [612].

As an example, we can write the tree in Fig. 4.8 as

lp ¼ b1 � age\73:7þ b2 � Killip\ ¼ 2 � age[ ¼ 74:1þ
b3 � Killip[ ¼ 3 � age ¼ 73:7; 74:1½ � þ b4 � Killip[ ¼ 3 � age[ 73:7

We estimate four parameters which identify the four terminal nodes.
In a logistic regression model, we could combine Killip class 3 and 4 (repre-

senting “shock”), and omit the interaction of Killip with age:

1p ¼ aþ b1 � ageþ b2 � Killip ¼ 1þ b3 � Killip ¼ 2þ b4 � Killip[ 2:

Even simpler, we could include Killip as a linear rather than as a categorized
predictor:

1p ¼ aþ b1 � ageþ b2 � Killip:

We could extend this model to allow for age * Killip interaction:

1p ¼ aþ b1 � ageþ b2 � Killipþ b3 � age � Killip:

When we fit these models in small parts of GUSTO-I and validate the perfor-
mance in the full data set, we note substantially better performance for the simple
logistic regression models, in line with a large comparative study [153]. Other
empirical comparisons also show poor performance of tree models for prediction in
a number of medical prediction problems [20, 23, 29, 612, 613].

4.2.13 *Other Methods for Binary Outcomes

Various other methods are available or under development. Such methods include
multivariate additive regression splines (“MARS”) models. These form a kind of
hybrid between generalized additive models and classification trees [170]. MARS
models aim to find low-order additive structure as well as interactions between risk
factors.

A support vector machine (SVM) constructs hyperplanes in a multidimensional
space that separates cases of different class labels. An SVM supports both regres-
sion and classification tasks and can handle multiple continuous and categorical
variables [639]. Specialized texts are available that discuss these and other statis-
tical models for binary data [231].
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4.2.14 Summary of Binary Outcomes

In sum, logistic regression provides a quite flexible model to derive predictions for
binary data. Interactions and nonlinearity can be incorporated. Some other methods,
such as GAM, neural nets (GNLM), MARS, can be seen as extensions, with the
default linear logistic model as a special case. Naïve Bayes is a simplified version of
logistic regression, ignoring correlations between predictors. Trees can be seen as
special cases of logistic regression, requiring categorizations of continuous vari-
ables and assuming higher order interactions (Table 4.1).

4.3 Categorical Outcomes

Categorical outcomes without a clear ordering are common in diagnostic medical
problems. The diagnostic process starts with considering presenting signs and
symptoms of a patient. This leads the physician toward a set of differential diag-
noses. Each diagnosis has a probability given the patient’s clinical and nonclinical
profile. Usually, one of these differential diagnoses is defined as the working
diagnosis or target disease, to which the diagnostic workup is primarily directed.
Consequently, diagnostic studies commonly focus on the ability of tests to include
or exclude the presence of this target disease. The alternative diagnoses (which may
direct different treatment decisions) are thus included in the outcome category
“target disease absent.” After dichotomization of the diagnostic outcome, we may
develop diagnostic prediction rules with logistic regression analysis. This focus on
the target disease is a simplification of clinical practice.

Table 4.1 Characteristics of some statistical models for binary outcomes

Categories Interactions Linearity Selection Estimation

Linear
logistic
regression

Possible Flexible Flexible Standard ML or
penalization

Naïve
Bayes

No Often categories
for diagnostic
tests

Flexible Univariate effects
(+ calibration slope)

GAM Possible Highly flexible Flexible Nonparametric, close to
penalized ML

GLNM,
neural net

Assumed Highly flexible Flexible Backpropagation, early
stopping to prevent
overfitting

Trees Assumed Categorization Assumed Various splitting methods,
cross-validation
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4.3.1 Polytomous Logistic Regression

Several studies discussed the use of polytomous (or multinomial) logistic regression
to accommodate simultaneous prediction of three or more unordered outcome
categories [44, 605, 671]. The model for j outcome categories can be written as

Logoddsðy ¼ j versus y ¼ referenceÞ ¼ aj þ bi;j � xi ¼ lpj

where j − 1 models are fitted each with separate sets of intercept a and regression
coefficients bi. We illustrate the polytomous model for prediction of three diag-
nostic outcome categories in a detailed case study.

4.3.2 Example: Histology of Residual Masses

After chemotherapy, patients with nonseminomatous testicular germ cell tumor may
have residual masses of metastases [566]. These residual masses may contain
benign tissue, mature teratoma, or cancer cells. Surgery is not necessary for benign
tissue. Mature teratoma can grow and, hence, cause problems during follow-up. The
most serious diagnosis is residual cancer, where a direct benefit from surgery is
plausible.

We consider three outcome categories with varying therapeutic benefit: no
benefit for benign tissue, some for teratoma, and most benefit for surgical removal
of residual cancer [50]. We have previously proposed to weigh the benefit as 1:3:8
based on expert estimates of the prognosis of unresected versus resected masses
[557]. This ordering in severity of the outcome was not used in the modeling, since
biological knowledge was available that implied that prognostic relations would be
very different for each histology. For example, some histologies are known to
produce certain tumor markers while others do not. Masses with teratoma masses
are not expected to decrease substantially in size by chemotherapy, while cancer is
usually responsive. Hence, a substantial decrease would make residual cancer
unlikely.

Polytomous logistic regression analysis requires that one of the outcome cate-
gories is chosen as the reference category. For the other outcome categories, the
polytomous logistic regression analysis fits submodels that compare the outcome
categories with the chosen reference. Thus, for each outcome category, different
regression coefficients are estimated for each predictor. These submodels together
comprise the polytomous model and can be used to estimate the probability of the
presence of each diagnostic outcome. In our example study, the reference diagnosis
was viable cancer. Hence, we fitted a polytomous regression model, consisting of
two submodels, one for benign tissue compared to viable cancer and one for mature
teratoma compared to viable cancer. These models take a similar form as the binary
logistic model:
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Logit benign vs. cancerð Þ ¼ ab þ b1;bx1 þ b2;bx2 þ � � � þ bp;bxp ¼ bi;bX ¼ lpb;

Logit teratoma vs. cancerð Þ ¼ at þ b1;tx1 þ b2;tx2 þ � � � þ bp;txp ¼ bi;tX ¼ lpt:

The subscript b indicates that we predict the odds of benign tissue, and subscript
t for teratoma with p predictors.

The interpretation of the regression coefficients is similar as for dichotomous
logistic regression, i.e., the log odds of the outcome (benign tissue or mature
teratoma) relative to cancer per unit change in the predictor values. The probabil-
ities of benign and teratoma tissue can be calculated by

P benign tissueð Þ ¼ exp lpbð Þ= 1þ exp lpbð Þþ exp lptð Þ½ �
P mature teratomað Þ ¼ exp lptð Þ= 1þ exp lpbð Þþ exp lptð Þ½ �

As probabilities need to sum to 1, the probability of cancer can then be calcu-
lated by

P cancerð Þ¼ 1�P benign tissueð Þ�P mature teratomað Þ

We fitted a multivariable polytomous logistic regression model with six pre-
dictors to enable estimation of the probabilities of benign tissue, mature teratoma,
and viable cancer. Variable selection was not applied; we simply included all six
predictors.

4.3.3 *Alternative Models

For comparison reasons, we may fit consecutive multivariable dichotomous logistic
models. In our example, we make one model to predict benign tissue (vs. mature
teratoma or viable cancer). The second, consecutive, model aimed to predict the
odds of mature teratoma versus viable cancer in patients who did not have benign
tissue.

Logit benign vs. teratoma=cancerð Þ ¼ ab þ b1x1 þ b2x2 þ � � � þ bpxp ¼ biX ¼ lp;

Logit teratoma vs. cancerð Þ ¼ at þ b1;tx1 þ b2;tx2 þ � � � þ bp;txp ¼ bi;tX ¼ lpt:

The latter formula is identical to a previous formula for the polytomous model,
but the coefficients are estimated differently. In the polytomous model, all coeffi-
cients are estimated jointly. In the consecutive logistic model, a selection of patients
is made to estimate the second set of coefficients.

With these two binary logistic models, the diagnostic probabilities are calculated
by
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P benign tissueð Þ ¼ exp lpð Þ= 1 þ exp lpð Þð Þ
P mature teratomað Þ¼ 1�P benign tissueð Þð Þ � exp lptð Þ=½1 þ expðlptÞ�
P cancerð Þ¼ 1�P benign tissueð Þ�P mature teratomað Þ

In our example, we use the same six predictors, but in principle we could select
different predictors for lp and lpt. Also, we could have considered different trans-
formations of the continuous predictors LDH, mass size, and reduction in size.

In both approaches, 14 parameters were estimated: two intercepts (a) and two
sets of six regression coefficients (b1:6). The performance of the two approaches
was very similar according to discrimination (area under ROC curve) and R2

measures [50]. Further discussion of approaches to unordered outcomes is provided
elsewhere [469, 566, 604].

4.3.4 *Comparison of Modeling Approaches

We illustrate the alternative modeling approaches with data from 1094 men with
testicular cancer, of whom 425 (39%) had benign tissue, 535 (49%) mature ter-
atoma, and 134 (12%) viable cancer at postchemotherapy surgery [645]. Table 4.2
shows the distributions of the six predictors across the three diagnostic outcome
categories and in the total study population.

Table 4.2 Distribution of predictors across outcome categories in the study sample (n = 1094)
[645].

Benign Mature
teratoma

Viable
cancer

Total

N (%) N (%) N (%) N (%)

Predictors

No teratoma in primary
tumor

279 (55) 170 (34) 54 (11) 503 (46)

Normal AFP level 200 (59) 112 (33) 27 (8) 339 (31)

Normal HCG level 184 (49) 154 (41) 40 (10) 378 (35)

Standardized value of
LDHa

1.5 (0.39–70) 1.2 (0.12–21) 1.8 (0.34–64) 1.4 (0.12–70)

Postchemotherapy size
(mm)a

18 (2–300) 30 (2–300) 40 (2–300) 28 (2–300)

Reduction in size (%)a 60 (−150 to
100)

20 (−150 to
100)

43 (−250 to
100)

43 (–250 to
100)

Outcome

Histology at resection 425 (39) 535 (49) 134 (12) 1094 (100)
aMedian (range)
AFP: alpha-fetoprotein; HCG: human chorionic gonadotropin; LDH: lactate dehydrogenase
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The odds ratios for the predictors are shown in Table 4.3, considering a poly-
tomous regression model, and a consecutive logistic model. We note that the odds
ratios for teratoma versus cancer differ slightly between these modeling approaches.
The odds ratios for necrosis versus cancer are larger for most predictors than for
necrosis versus other histology.

4.4 Ordinal Outcomes

Ordinal outcomes are quite common in medical and epidemiological studies. Often,
such scales are either simplified to binary outcomes or treated as continuous out-
comes. As an example, we consider the Glasgow Outcome Scale (GOS) [577]. This
scale has five levels (Table 4.4).

Table 4.3 Results of the multivariable polytomous and consecutive dichotomous logistic
regression analysis [50]. Values represent odds ratios with 95% confidence intervals

Predictor Polytomous regression Consecutive dichotomous
regression

Benign
versus
cancer

Teratoma
versus cancer

Benign
versus other

Teratoma
versus cancer

No teratoma in primary
tumor

2.2 (1.4–3.3) 0.66 (0.44–
0.99)

3.0 (2.2–
4.0)

0.61 (0.40–
0.92)

Normal AFP serum
level

2.8 (1.7–4.6) 0.94 (0.57–
1.5)

2.9 (2.1–
4.0)

0.90 (0.54–
1.5)

Normal HCG serum
level

1.4 (0.9–2.3) 0.72 (0.46–
1.1)

1.9 (1.3–
2.6)

0.70 (0.44–
1.1)

Standardized LDH
(log)

1.2 (0.8–1.6) 0.58 (0.42–
0.78)

1.7 (1.4–
2.2)

0.60 (0.44–
0.81)

Postchemotherapy mass
size (sqrt)

0.79 (0.71–
0.88)

0.91 (0.84–
0.99)

0.85 (0.77–
0.92)

0.89 (0.82–
0.98)

Reduction in mass size
(per 10%)

1.14 (1.06–
1.22)

0.97 (0.92–
1.02)

1.18 (1.12–
1.24)

0.96 (0.92–
1.0)

Table 4.4 Definition of the Glasgow outcome scale

Category Label Definition

1 Dead Dead

2 Vegetative Unable to interact with environment; unresponsive

3 Severe
disability

Conscious but dependent

4 Moderate
disability

Independent, but disabled

5 Good
recovery

Return to normal occupational and social activities; may have
minor residual deficits
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This scale has often been dichotomized as mortality versus survival, or an
unfavorable (GOS 1, 2, or 3) versus favorable (GOS 4 or 5) outcome. However, we
can also explore the use of full GOS. A practical consideration is that the GOS 2
category is very small and that some may debate whether vegetative state is better
than death. Therefore, we combine the adjacent GOS categories 1 and 2, such that
an outcome with four ordered levels is formed.

4.4.1 Proportional Odds Logistic Regression

A standard logistic regression model can be used for each of the three possible
dichotomous categorizations of the GOS: 12 (dead/vegetative) versus 345, 123
versus 45 (favorable), and 1234 versus 5 (good recovery). A straightforward
extension of the logistic model is the proportional odds logistic model [371]. Here, a
common set of regression coefficients is assumed across all levels of the outcome,
and intercepts are estimated for each level. So, in our example, we have three
intercepts a, but only one set of b coefficients, instead of three sets of b coefficients
when fitting a polytomous logistic model. The common set of b coefficients can be
thought of as a pooled estimate over the three separate sets of b coefficients estimated
at each possible dichotomization. As an example, we consider a simple model with
age (linear), motor score, and pupillary reactivity (categorical) in a model to predict
6-month outcome in data from two RTCs in traumatic brain injury [259].

An advantage of the proportional odds model is its parsimony in dealing with an
ordered outcome. The price we pay is the assumption of proportionality of the odds.
This assumption is equivalent to saying that any cut-point on the outcome scale
would lead to the same logistic regression coefficient. The model further has very
similar assumptions as of the usual logistic model. We can graphically check the
proportionality assumption in univariate analyses for each predictor (Fig. 4.9).
Distances between points should be identical on the logit scale for each category of
a predictor. The assumption of proportional odds can formally be assessed with a
score test. We can also develop binary logistic models by each categorization, and
check for systematic trends in the estimated odds ratios (Fig. 4.10). There is con-
siderable overlap in patients between such evaluations, but clear deviations from
proportional odds should become visible. In our example, the ORs per catego-
rization are reasonably constant, and the proportional odds ratio provides an
attractive summary measure over the three potential categorizations.

4.4.2 *Relevance of the Proportional Odds Assumption
in RCTs

We might wonder how crucial the proportional odds (PO) assumption is to the
interpretation of the PO odds ratio as a summary of a treatment effect. Recent
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Fig. 4.9 Assessment of the proportional odds assumption for each of three predictors (univariate
analysis) to predict for GOS at 6 months after traumatic brain injury. Data from the Tirilazad trials
(n = 2159). The circle, triangle, and plus sign correspond to the GOS categorizations 12 versus
345, 123 versus 45, and 1234 versus 5. For example, the overall logit of the last categorization is
−1, or a probability of 27% (589/2159 patients). The proportional odds assumption is well
satisfied, since the horizontal distance between the points is constant within each category

Fig. 4.10 Assessment of the proportional odds assumption for each of three predictors
(multivariable analysis) to predict for GOS at 6 months after traumatic brain injury. GOS
categorizations were 12 versus 345, 123 versus 45, and 1234 versus 5. The proportional odds
(PO) assumption is well satisfied, since the odds ratios are similar for each categorization of the
outcome, with the PO estimate as a summary with slightly lower variability (smallest confidence
intervals)
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randomized controlled trials (RCTs) in top medical journals have used the PO
model for their primary analysis, but have varied in their emphasis on testing of the
PO assumption [48, 264]. One such trial evaluated decompressive craniectomy for
traumatic intracranial hypertension, and did not report the PO ratio because the PO
assumption was violated; surgery strongly reduced mortality at the cost of more
vegetative state and severe disability [264]. Instead, the authors reported a
descriptive analysis, ignoring the ordering in the outcome. The overall trial result
was difficult to interpret.

One might argue that the crucial point is the ordering of the outcomes dead,
vegetative state, and severe disability. If there is agreement that these adjacent
scores represent increasingly favorable outcomes, statistical testing of the PO
assumption may be considered largely redundant [502]. For transparency, the
binary odds ratios for each cut-off of the ordinal outcome should be presented, as in
Fig. 4.10. If there is consensus on the ordering, the PO ratio can be presented and
interpreted as a summary estimate of the treatment effect, regardless of violation of
the PO assumption. The exception might be when odds ratios are qualitatively
different for some cut-offs.

4.5 Survival Outcomes

Survival, or time-to-event, analysis is appropriate for outcomes that occur during
follow-up. The most straightforward outcome is to consider death from any cause.
A key characteristic of such survival data is that the follow-up of patients is typi-
cally incomplete. For example, some patients may have been followed for 1 year,
others for 3 years, etc., while we may be interested in estimates of 5-year survival.
Patients with such incomplete data are called censored observations. Because of
censoring, logistic regression for the outcome (as a binary variable) is inappropriate.
One could think of linear regression on the survival time (a continuous outcome),
but again censoring makes such an analysis usually inappropriate.

4.5.1 Cox Proportional Hazards Regression

In medical and epidemiological studies, the Cox proportional hazard model is most
often used for survival outcomes [113]. It is the natural extension of the logistic
model to the survival setting. Indeed, the Cox model is equivalent to conditional
logistic regression, with conditioning at times where events occur [325]. In the
logistic model, we use an intercept in the linear predictor, while in the Cox model a
baseline hazard function is used. So, baseline risk in the logistic model is given by
an intercept, and in the Cox model by the baseline hazard function, which can be
seen as a time-dependent intercept. The hazard function indicates the risk of the
event of interest during follow-up. It is nonparametric in the Cox model. As for the
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logistic model, simpler and more extensive methods exist, which can be seen as
special cases or extensions of the Cox model [579].

The Cox regression model is often stated as a function of the hazard function
[653]:

k tjXð Þ ¼ k tð ÞebX ;

where k(t) is the hazard at time t, and b X is the linear predictor,
b1x1 þ b2x2 þ � � � þ bpxp.

The linear predictor is usually centered at the mean values of the predictors, and
ebX then indicates the hazard ratio compared to the average risk profile. Note that
the linear predictor relates to the log of the hazard:

logðkðtjXÞÞ ¼ logðkðtÞÞþ b1x1 þ b2x2 þ � � � þ bpxp

The Cox regression model is semi-parametric. It makes a parametric assumption
on the effect of predictors, i.e., proportionality of effect during follow-up. The
hazard function k(t) is nonparametric. This is commonly considered an advantage
of the model when we focus on the effect of predictors. Regression coefficients bi
can readily be estimated by the partial likelihood, and shrinkage or penalization can
be done (Chap. 13). The quantity eb is the hazard ratio, similar to how we calculate
the odds ratio from a logistic regression coefficient.

4.5.2 Prediction with Cox Models

When we want to make predictions, we need to consider the risk over time, for
example, using the cumulative hazard, or survival function. The standard formu-
lation of the predicted survival at time t, given a set of predictors X, is as

SðtjXÞ ¼ SðtÞeðbXÞ;

where S(t|X) denotes the predicted survival at time t, given a set of predictors X; S(t)
is the baseline survival, usually estimated at the mean values of the predictors; and
bX is the linear predictor.

The baseline survival is estimated from the nonparametric hazard function as

SðtÞ ¼ e�KðtÞ;

where K(t) is the cumulative hazard at time t.
Note that log(K(t)) can range between [–inf and +inf]; K(t) [0, inf]; S(t) [1, 0].

This is very similar to the behavior of quantities in logistic regression: logit, odds,
and probability. The baseline survival in the development data determines the
precise time points where we can make predictions for. This is not very natural for
application of the model in new subjects.
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4.5.3 Proportionality Assumption

The effect of predictors is assumed to be constant in time on a relative scale, or
more precisely stated: the hazards are assumed to be proportional. The propor-
tionality assumption can be assessed in a number of ways, including graphical and
analytical methods. A general approach is to calculate interval-specific hazard
ratios. With proportional hazards, the hazard ratio should be similar across any
interval considered. Follow-up time can also be considered as a continuous vari-
able, where assessing interaction with log(time) may be useful [225]. Specific tests
for nonproportionality can also be used [495].

If we find that the effect of a predictor is (strongly) nonproportional, we can
modify the survival model. We might stratify for categorical variables in the
baseline hazards. For example, we could estimate baseline hazards for males and
females separately if sex has a nonproportional effect on survival, or stratify by
cohort in a meta-analysis context. For continuous predictors, e.g., age, we could
specify interactions with log(time). Nonproportionality can also be visualized with
a fully nonparametric approach, i.e., with Kaplan–Meier curves.

4.5.4 Kaplan–Meier Analysis

Kaplan–Meier analysis is a nonparametric approach to survival outcomes [288]. It
adequately deals with censored data and provides attractive graphs on the relation
between predictor values and the outcome over time. The method can be seen as the
extension of a cross-table to survival data. More technically, it can be interpreted as
a Cox model with stratification of the baseline hazard to all predictor levels. For
example, we could make a Cox model with sex as a stratification variable for the
baseline hazard, without any other variables, which is equivalent to a Kaplan–Meier
analysis with sex as a predictor. Also, testing in a Kaplan–Meier analysis is usually
done with a log-rank test, which is equivalent to the score test in the Cox model.

Kaplan–Meier analysis often has a role in prognostic modeling as an initial step
in the analysis, i.e., to show univariate relations graphically or to compute survival
fractions at a certain time of follow-up. Also at the end of a modeling process,
Kaplan–Meier curves are often used to present the predictions from the model
(Fig. 4.11). It is then necessary to group patients by their predictions, since Kaplan–
Meier analysis cannot handle continuous predictors. Kaplan–Meier curves are for
survival analysis what cross-tables are for binary or categorical outcomes.
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4.5.5 *Example: Impairment After Treatment of Leprosy

Nerve-function impairment (NFI) commonly occurs during or after chemotherapy
in leprosy. It is the key pathological process leading to disability and
handicap. A simple clinical prediction rule was developed with 2510 patients who
were followed up for 2 years in Bangladesh [115]. In total, 166 patients developed
NFI (Kaplan–Meier 2-year estimate: 7.0% [95%CI 6.0–8.0%]. A Cox regression
model was proposed with two strong predictors (Table 4.5). Patients with no, one,
or two unfavorable predictive characteristics had 1.3% (95% CI 0.8–1.8%), 16%
(12–20%), and 65% (56–73%) risks of developing NFI within 2 years of regis-
tration, respectively, according to Kaplan–Meier curves (Fig. 4.11). This example
illustrates the combination of Cox regression for modeling and inversed Kaplan–
Meier curves for model presentation in a survival context.

4.5.6 Parametric Survival

Whereas Kaplan–Meier analysis represents a more nonparametric approach, para-
metric survival models are less flexible than Cox regression in their dealing with the
baseline hazard function. Parametric models typically assume proportionality of the
predictor effects, but a more smoothed baseline hazard over time. Examples of
parametric models include the exponential model (or Poisson model, using a
constant hazard), and the Weibull model (two parameters to let the hazard increase

Fig. 4.11 Cumulative
incidence of neurofunctional
impairment among three risk
groups based on the Cox
proportional hazards model in
Table 4.6 [115]

Table 4.5 Multivariable hazard ratios from Cox proportional hazard analysis [115]. Three risk
groups could be formed based on the presence of no, one, or two unfavorable predictive
characteristics, since the hazard ratios were very similar

Predictor Hazard Ratio [95% CI]

Leprosy group (MB vs. PB) 7.5 (5.3–11)

Nerve-function loss at registration 8.1 (5.7–12)
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or decrease monotonically over time). The exponential and Weibull model can also
be seen as examples of accelerated failure time (AFT) models. Here, the effects of
predictors are not viewed as multiplicative on the hazards scale, but as multi-
plicative on the time axis (or additive at the log-time axis). Other examples of AFT
models are the lognormal and log-logistic model [225, 653].

Regression coefficients in exponential or Weibull models are hazard ratios after
exponentiating. In AFT models, they represent a change in the log-time. The
advantage of parametric survival models is their concise, parsimonious formulation,
and smoothing of the underlying hazard. This makes these models especially
attractive for prediction purposes. Extrapolation is readily possible with parametric
models, but not with Cox or Kaplan–Meier analysis because of their nonparametric
nature. Predictions at the end of the follow-up are unstable with Cox or Kaplan–
Meier analysis, and more robust with parametric methods; at the price of making
the assumption that the baseline hazard is modeled well. For estimation of the effect
of predictors, the Cox model may often be more suitable, since this model is less
restrictive than an exponential or Weibull model. Other variants include the
log-logistic model, which may be useful in situations where predictors work
especially during an early, acute phase of the hazard, which would show as non-
proportional hazards in a Cox model [225]. Finally, some of the more flexible
methods for binary data have also been extended to survival models, but are not
commonly used yet (e.g., neural networks) [231].

4.5.7 *Example: Replacement of Risky Heart Valves

In Chap. 2, we presented an overview of the decision dilemma on Björk–Shiley
convexo-concave (BScc) mechanical heart valves [610]. Poisson regression model
was constructed to estimate survival and the risk of strut fracture [549]. Poisson
regression was especially useful to disentangle the effects of increasing age of the
patient during follow-up from the increasing time since implantation of the valve
during follow-up. The follow-up time was divided into yearly intervals, each with
an age and time since implantation. Time since implantation started at zero and
increased in steps of 1 year during follow-up. Age started at the age at implantation
and also increased in steps of 1 year during follow-up. The Poisson model could
easily estimate the effects of both predictors, which would have been more com-
plicated in a traditional Cox regression analysis. Moreover, extrapolation to longer
time since implantation was readily possible with the Poisson model.

4.5.8 Summary of Survival Outcomes

In sum, the Cox regression model provides a default framework for prediction of
long-term prognostic outcomes (Table 4.6). Kaplan–Meier analysis provides a
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nonparametric method but requires categorization of all predictors. It is the
equivalent of cross-tables for binary or categorical outcomes in a survival context.
Parametric survival models may be useful for predictive purposes because of their
parsimony and robustness, for example, at the end of follow-up, or even beyond the
observed follow-up. In survival analysis, repeated events may occur, that are cor-
related because of underlying frailty in individual patients. This asks for extensions
of the Cox model when modeling repeated events within the same patients [517,
579].

4.6 Competing Risks

Prediction of outcomes other than overall mortality is often of interest and may be
more complex than a standard survival analysis situation. For example, when we
predict impairment after treatment of leprosy (Sect. 4.5.5), some patients might die
before the impairment is noted. Death precludes the observation of the event of
interest; it is a competing risk to the event of interest (impairment). Similarly, we
may be interested in various different events after replacement of heart valves, such
as mechanical fracture (Sect. 4.5.7), but also infection (endocarditis) and throm-
botic events; if these lead to explantation of the valve, these events are competing
with each other, similar to the risk of death of other causes [446].

4.6.1 Actuarial and Actual Risks

We may focus on the event of interest in a “cause-specific analysis.” The effect of a
predictor is then analyzed with traditional Kaplan–Meier analysis or Cox regression
analysis while simply censoring all other events. This has been labeled an “actuarial
risk” analysis [212, 213]. It assumes a world where the competing risks are absent.
This perspective may be of interest when we aim for a causal interpretation of the
effect of predictors on the event of interest [309]. For example, when we aim to
reduce a specific event by a specific treatment, the relative effect may well be
estimated by a traditional actuarial analysis.

Table 4.6 Common statistical models for survival outcomes

Categories Proportionality Baseline hazard

Cox proportional hazards regression Assumed Nonparametric

Kaplan–Meier No Nonparametric

Exponential and Weibull Assumed Parametric

Lognormal, log-logistic No, multiplicative in time Parametric
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For prediction of absolute risks, especially long-term risks, or risks in the
elderly, it is not appropriate to ignore the competing risks [309]. Definitions of
“actual risk” acknowledge that competing risks may preclude the observation of the
event of interest. Actual risk can be described by the cumulative incidence function
(CIF), which can be estimated in different ways [445].

4.6.2 Absolute Risk and the Fine & Gray Model

In many clinical studies, competing risks have been ignored, i.e., patients experi-
encing competing events were censored at the time of these events, and standard
Cox regression was applied both for estimation of effects of predictors and making
risk predictions. For prediction of absolute risk, the approach is only adequate when
competing risks are rare. Many papers included traditional Kaplan–Meier curves in
presenting absolute risk estimates in the presence of competing risks. This is
inappropriate [445].

A technically correct approach is to combine the cause-specific hazards model
for the event of interest with a model for the competing event to estimate the
absolute risk. The formula for this combination is complicated. It is, hence, not
possible to present this combination of cause-specific hazards models in an easy
format to clinicians for estimation of absolute risk. The currently most common
regression model in a competing risk setting is an extension of the Cox model, as
proposed by Fine & Gray [163].

Here, a subdistribution hazard is defined for the event of interest that incorpo-
rates the disturbing influence of the competing events. Patients who experience a
competing event, such as death, are not censored but remain in the risk set. This is
equivalent to defining an infinite censoring time for competing events, or a cen-
soring time beyond the last observed failure time. By having more subjects at risk,
the actual risk estimate is lower than the actuarial risk. The difference will be
substantial if many competing events occur before the event of interest, so relatively
early during follow-up.

Predictors are modeled for the subdistribution hazard, assuming proportional
effects at that scale. The regression coefficients reflect the impact of the predictor on
the cumulative incidence. If the regression coefficient for a predictor is positive (i.e.,
a subdistribution hazard ratio greater than 1.0), higher values of a covariate imply a
higher predicted cumulative incidence at every time point. The coefficients for the
subdistribution hazard may be quite different from the cause-specific coefficients
(estimated with censoring for the competing event), as illustrated below.
Technically, the coefficients are not compatible, since the cause-specific and sub-
distribution hazard models each assume proportionality of effects, which cannot
simultaneously be true. The Fine & Gray model provides a straightforward formula
to calculate predicted absolute risks at a specific time point based on the cumulative
subdistribution baseline hazard and the estimates of the regression coefficients [22].
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4.6.3 Example: Prediction of Coronary Heart Disease
Incidence

As an example, we consider the incidence of coronary heart disease
(CHD) prediction in women without CHD (initial state, Fig. 4.12). We analyze
4144 women, aged 55–90 years as enrolled in the Rotterdam study [676]. We
define CHD occurrence as the event of interest, with death from other causes as the
competing event (Fig. 4.12). The median follow-up was 12 years, during which
465 CHD events occurred and 1263 women died of other causes.

We compare cause-specific models for CHD and other mortality, with the Fine
& Gray model for the subdistribution hazard of CHD (Table 4.7). Cause-specific

Table 4.7 Cause-specific models for CHD (event of interest) and other mortality (competing
risk), and Fine & Gray model for the subdistribution hazard of CHD (Event of interest) [676].

Predictor cHR for CHD HR for non-CHD death sHR for CHD

Age (per decade) 2.2 [2.0–2.5] 3.6 [3.4–3.9] 1.6 [1.5–1.8]

Blood pressure medication
(at 120 mmHg)

1.7 [1.3–2.3] 1.2 [1.0–1.4] 1.7 [1.3–2.2]

Systolic blood pressure
(per 10 mmHg, no medication)

1.1 [1.1–1.2] 1.0 [1.0–1.1] 1.1 [1.1–1.2]

Systolic blood pressure
(per 10 mmHg, medication)

1.1 [1.0–1.1] 1.0 [1.0–1.1] 1.1 [1.0–1.1]

Diabetes 1.5 [1.2–1.9] 1.3 [1.1–1.5] 1.4 [1.1–1.8]

Total cholesterol/HDL (log) 2.5 [1.9–3.4] 0.6 [0.5–0.8] 2.7 [2.0–3.7]

Current smoker 2.0 [1.6–2.5] 1.9 [1.7–2.2] 1.7 [1.4–2.2]

cHR: cause-specific hazard ratio (censoring lost to follow-up and non-CHD death); HR: hazard
ratio (censoring lost to follow-up and CHD); sHR subdistribution hazard ratio (censoring lost to
follow-up; keeping non-CHD death in the risk set). Note that a statistical interaction term was
included for medication*systolic blood pressure

Fig. 4.12 Competing risks as multistate model with cause-specific hazards k1(t) and k2(t) and as a
Fine & Gray competing risks model with the subdistribution hazards approach a1(t). For example,
the event of interest (“ev”) may be the incidence of coronary heart disease, and the competing
event (“cr”) mortality from other causes
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hazard ratios (cHRs) for the event of interest (CHD) were very similar to the
subdistribution HRs (sHRs) from the Fine & Gray model for predictors that did not
clearly affect non-CHD death, i.e., predictors related to blood pressure, or the
presence of diabetes. In contrast, age and smoking status were also strong predictors
for non-CHD death. Hence, cHRs for CHD were larger than the sHRs.

Of specific interest is the effect of age. In a cause-specific analysis, the cHR was
2.2 per decade older, while the HR for non-CHD death was larger (HR = 3.6).
Hence, age was stronger associated with the competing event than the event of
interest. So, the impact of age on the cumulative incidence of CHD was rather
moderate (sHR = 1.6). This example illustrates that the sHRs can be interpreted
directly in terms of the cumulative incidence function, and that they depend on both
the hazards for CHD and other mortality.

Absolute risk predictions differed substantially between actuarial (censoring
competing events) and actual estimates (combining cause-specific models, or Fine
& Gray model). Actuarial risks classified 761 (18%) of the women as high risk
(>20% 10-year risk) compared with only 342 (8%) according to the Fine & Gray
model. This illustrates the substantial overestimation of absolute risk that can occur
if actuarial approaches (censoring of competing risks in Kaplan–Meier or Cox
models) are interpreted as providing actual risk estimates. The discriminative ability
of the different models was similar, with a c index for actual risk prediction of 0.70
[0.68–0.73] [675] (See Chap. 15 for more discussion on performance measures).

4.6.4 Multistate Modeling

Rather than using cause-specific Cox regression models or a Fine & Gray model,
we may also consider the use of a simple multistate model to estimate predictor
effects and make absolute risk predictions (Table 4.8) [445]. Multistate models are
considered useful when several events are of interest. Transition probabilities are
specified between states, e.g., from healthy to CHD, from healthy to death, and
from CHD to death, with model estimation methods common to survival modeling,
such as cause-specific Cox models [126]. Multistate models are very flexible and
can also be used to make dynamic predictions.

Table 4.8 Characteristics of models for competing risk modeling

Categories Hazard ratio interpretation Prediction

Cause-specific hazard
models

Effect on event of interest,
ignoring competing risks

Need to combine multiple
models

Fine & Gray
subdistribution hazard

Impact on cumulative incidence
of event of interest

Directly possible

Multistate model Effect on event of interest Multiple (intermediate)
events, dynamic in time
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4.7 Dynamic Predictions

The focus in this book is on making predictions from a defined start point where
baseline predictors are measured. Dynamic predictions may, however, also be of
interest. For example in survival after a cancer diagnosis, patients may be interested
in their prognosis given that they survived for some time without recurrence of
disease. Their survival estimate will then be higher than at the time of diagnosis.
This pattern can well be illustrated with relative survival curves [276]. Similarly, a
bone marrow transplant recipient may not have had graft versus host disease for
some time. He/she will have a better prognosis than at the time of receiving the
transplant. A simple method to analyze the impact of such an intermediate event is
to use a time-dependent variable in a Cox regression model. More elegant models
are available that are better suited for dynamic prediction [622].

4.7.1 Multistate Models and Landmarking

A multistate model is very useful if we aim to predict the flow of subsequent events,
including intermediate states. It can also be used to estimate the cumulative
probability for a final state, incorporating time-dependent information, such as not
being in an intermediate state for some time. Several examples are provided in a
tutorial and recent textbooks [180, 445, 622].

For prediction, an interesting approach is to use the concept of “landmarking”.
Landmarks are fixed points in time during follow-up. We consider patients at risk at
the landmark time (removing those with earlier events or censoring before the
landmark) and update the predictor information, including intermediate events that
may have occurred. Prediction models can be fitted at each landmark, but stacking
of landmark data sets allows for more flexibility in modeling [625]. Fewer
parameters may be needed for a landmark model than for a multistate model, and
predictions are more easily obtained [445].

4.7.2 Joint Models

Another situation is that continuous measurements of disease activity are available
during follow-up. An example is the prediction of mortality in human immunod-
eficiency virus (HIV)-infected patients based on their longitudinal CD4 cell count
measurements [461]. Another example is monitoring of diabetes patients by their
blood sugar levels (Hb1Ac measurements). We may be interested in predicting
complications of diabetes, such a diabetic foot, based on the dynamic HbA1c
pattern [369].
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The predictive role of a continuous, dynamic marker can well be modeled with a
joint model, which combines a model for longitudinal data (for a repeatedly
measured predictor) with time-to-event data (for prediction of the event of interest).
Dynamic survival probabilities can be estimated for future subjects based on their
available longitudinal measurements and a fitted joint model [462].

Technically, we need to define an appropriate model to describe the evolution of
the marker in time for each patient. This is typically done using a mixed model,
which at least allows for subject-specific baseline levels of the marker. Next, the
estimated evolutions of the marker are used in a Cox regression model to predict the
event of interest. The marker level is not assumed constant in time but follows a
dynamic pattern. The hazard for the event of interest can be related to the current
marker value but also the change in time (slope of the trajectory) or the area under
the curve [369].

Joint models are of interest for personalized predictions since they utilize ran-
dom effects and therefore have an inherent subject-specific nature. This may allow
to better tailor decisions to individual patients, i.e., personalize screening, rather
than using the same screening rule for all [462, 585].

4.8 Concluding Remarks

Regression models are available for several types of outcome that we may want to
predict from a start point (“t = 0”), such as continuous outcomes, binary, unordered
categorical, ordered categorical, survival, and competing outcomes. The corre-
sponding default regression models are the linear, logistic, polytomous, propor-
tional odds, Cox, and Fine & Gray regression models, respectively. Both more and
less flexible methods are available. Flexible methods may fit particular patterns in
the data better but may on the other hand lead to overfitting (Chap. 5). It is therefore
not immediately clear whether a more flexible model is to be preferred in a specific
prediction problem (Chap. 6).

Special types of data can be encountered that require specific types of analyses.
Correlated outcome data may occur by the design of a study, for example, by
clustering within patients, or per hospital. Dynamic predictions pose more complex
challenges, where multistate, landmarking, and joint models may be useful. Both
the specification of such models and the evaluation of performance are more
complex than considering prediction from a baseline start point t = 0.
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Questions

4:1. Explained variation

(a) What is the difference between explained variation in linear and logistic
regression models?

(b) Is the choice of scale for explained variation more natural in linear or
logistic regression models?

4:2. Categorical and ordinal outcomes

(a) What is the proportionality assumption in the proportional odds model?
(b) Mention at least one way how the proportionality assumption can be

checked?
(c) Would the proportionality assumption hold in the testicular cancer case

study (Table 4.3)?
(d) We could also make two logistic regression models for the testicular

cancer case study, with one model for benign versus other and another
model for cancer versus other. What would be the problem with predic-
tions from these models?

4:3. Parametric survival models

(a) Why may we label the Cox regression model “semi-parametric”?
(b) Do you agree that Kaplan–Meier analysis is a fully nonparametric model?
(c) Why is the Weibull model attractive for making long-term predictions? At

what price?

4:4. Competing risks

(a) Why are actuarial risks higher than actual risks?
(b) The effect of high cholesterol is strong for coronary heart disease

(cHR = 2.5, Table 4.7), but seems slightly protective for other mortality
(HR = 0.6). Explain why the impact on the cumulative incidence is very
large then (sHR = 2.7)?
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Chapter 5
Overfitting and Optimism in Prediction
Models

Background If we develop a statistical model with the main aim of outcome
prediction, we are primarily interested in the validity of the predictions for new
subjects, outside the sample under study. A key threat to validity is overfitting: the
data under study are well described, but predictions are not valid for new subjects.
Overfitting causes optimism about a model’s performance in new subjects. After
introducing overfitting and optimism, we illustrate overfitting with a simple
example of comparisons of mortality figures by hospital. After appreciating the
natural variability of outcomes within a single center, we turn to comparisons across
centers. We find that we would exaggerate any true patterns of differences between
centers, if we would use the observed average outcomes per center as predictions of
mortality.

A solution is presented which is generally named “shrinkage”. Estimates per
center are drawn towards the average to improve the quality of predictions. We then
turn to overfitting in regression models and discuss the concepts of selection and
estimation bias. Again, shrinkage is a solution, which now draws predictions
towards the average by reducing the estimated regression coefficients to less
extreme values. Bootstrap resampling is presented as a central technique to correct
overfitting and quantify optimism in model performance.

5.1 Overfitting and Optimism

To derive a prediction model, we use empirical data from a sample of subjects,
drawn from a population (Fig. 5.1). The sample is considered to be drawn at
random. The data from the sample are only of interest in that they represent an
underlying population [13]. We use the empirical data to learn about patterns in the
population, and to derive a model that can provide predictions for new subjects
from this population. In learning from our data, an important threat is that the data
under study are well described, but that the predictions do not generalize to new
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subjects outside the sample. We may capitalize on specifics and idiosyncrasies of
the sample. This is referred to as “overfitting”. In statistics, overfitting is sometimes
defined as fitting a model that has too many parameters, or as the “curse of
dimensionality” [231]. For prediction models, we may define overfitting more
precisely as fitting a statistical model with too many effective degrees of freedom in
the modeling process. The analyst usually takes substantial freedom in the mod-
eling process, which implies that the effective degrees of freedom are larger than the
degrees of freedom of the finally developed model [34]. Effective degrees of
freedom are used by estimation of the coefficients in a regression model, but also by
searching for the optimal model structure [685]. The latter may include procedures
to search for important predictors from a larger set of candidate predictors, optimal
coding of predictors, and consideration of potential nonlinear transformations.

Overfitting leads to a too optimistic impression of model performance that may
be achieved in new subjects from the underlying population. Optimism is defined as
true performance minus apparent performance, where true performance refers to the
underlying population, and apparent performance refers to the estimated perfor-
mance in the sample (Fig. 5.1). Put simply, optimism means that “what you see
may not be what you get” [34].

5.1.1 Example: Surgical Mortality in Esophagectomy

Surgical resection of the esophagus (esophagectomy) may be performed for sub-
jects with esophageal cancer. It is among the surgical procedures that carry a
substantial risk of 30-day mortality (see also Fig. 6.2) [164, 274]. Underlying
differences in quality between hospitals may affect the 30-day mortality. Key
questions are whether we can identify the better hospitals, and whether we can
predict the mortality for a typical subject in a hospital (Chap. 21) [338].

Fig. 5.1 Graphical illustration of optimism, which is defined as the difference between true
performance and apparent performance. The apparent performance is determined on the sample
where the model was derived from; true performance refers to the performance in the underlying
population. The difference between apparent and true performance is defined as the optimism of a
prediction model
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5.1.2 Variability Within One Center

We first illustrate the variability of mortality estimates within a single center,
according to different sample sizes. For esophagectomy, we assume 10% as the
average mortality, based on analyses of the SEER-Medicare registry data, where
mortality exceeded 10%: 221 of 2031 elderly patients had died within 30 days after
surgery, or 10.9% [95% CI 9.6%–12.3%] [560].

For illustration, we assume that case-mix is irrelevant, i.e., that all patients have
the same true mortality risks. The observed mortality rate in a center may then be
assumed to follow a binomial distribution (Fig. 5.2). When the true mortality is
10% in samples of n = 20 patients, around 30% of these samples will contain two
deaths (observed mortality 10%). With larger sample sizes, observed mortalities are
more likely close to 10%; e.g., when n = 200, mortality is estimated as between 8
and 12% in 71% of the samples.

5.1.3 Variability Between Centers: Noise Versus True
Heterogeneity

We need to appreciate this variability when we want to make predictions of mor-
tality by center. For example, consider that 50 centers each reported mortality in 20
subjects, while the true mortality risk was 10% for every patient in each center. The
distribution of the observed mortality is as in Fig. 5.2: 12% of the centers will have
0% mortality, and 13% will report a 20% or higher mortality. An actual realization
is shown in Fig. 5.3. A statistical test for differences between centers should be
nonsignificant for most of such comparisons (for 95% of the cases when p < 0.05 is
used as criterion for statistical significance, given that there are no true differences).

Of more interest is the situation that the true mortality varies by center. This can
be simulated with a heterogeneity parameter, often referred to as s (tau). If we
simply assume a normal distribution for the differences across centers, we write true
mortality * N(10%, sd = s). With s = 1%, 95% of the centers have a mortality

Fig. 5.2 Observed mortality
in relation to sample size.
When the true mortality is
10% in samples of n = 20
patients, around 30% of these
samples will contain two
deaths (mortality 10%). With
larger sample sizes, observed
mortalities are more likely to
be close to 10%
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between 8 and 12%, while setting s to 2% implies that 95% of the centers have a
mortality between 6 and 14%. This underlying heterogeneity causes the mortality to
have more variability than expected from the binomial distribution with a single
true mortality of 10%. This is recognized in the distributions of Fig. 5.3.
Differences between centers can be tested and will be identified as significant
depending on the magnitude of the heterogeneity (s) and the sample size (number of
centers, sample size per center, see also Chap. 21).

5.1.4 Predicting Mortality by Center: Shrinkage

We recognize that the estimated mortalities are too extreme as predictions com-
pared to the distribution of the true mortalities (Fig. 5.3). Predictions other than
10% are by definition too extreme when there is no heterogeneity. Too extreme
predictions also occur when there is underlying variability across centers (e.g., true
mortality between 5 and 15%). Per center, the estimated mortality is an unbiased
estimator of the true mortality in each center. But the overall distribution of esti-
mated mortality suffers from the low numbers per center, which makes that chance
severely affects our predictions.

The phenomenon in Fig. 5.3 is an example of regression to the mean [394]. It is
a motivation for shrinkage of predictions to the average, a principle which is also
important in more complex regression models [109, 627]. We should shrink the

Fig. 5.3 Estimated and true mortality for 50 centers which analyzed 20 subjects each, while the
average mortality was 10% for all (upper left panel), 10% ± 1% (upper right panel), 10% ± 2%
(lower left panel), 10% ± 3% (lower right panel)
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individual center’s estimates towards the overall mean to make better predictions
overall.

We can also say that predictions tend to be overfitted: they point at very low and
very high-risk hospitals, while the truth will be more in the middle. The identifi-
cation of extreme hospitals will be unreliable with small sample size. With larger
sample size, e.g., 200 subjects per center, the overfitting problem is much less
(Fig. 5.4). Empirical Bayes and random effects methods have been proposed to
make better predictions for such situations (see Chap. 21) [33, 626].

5.2 Overfitting in Regression Models

5.2.1 Model Uncertainty and Testimation Bias

Overfitting is a major problem in regression modeling. It arises from two main
issues: model uncertainty and parameter uncertainty (Table 5.1). Model uncertainty
is caused by specification of the structure of our model, such as which character-
istics are included as predictors, driven by information of the data set under study.
The model structure is therefore uncertain. This model uncertainty is usually
ignored in the statistical analysis, which falsely assumes that the model was pre-
specified [94, 138, 252].

The result of model uncertainty is selection bias [41, 110, 267, 484, 541]. Note
that selection bias here refers to the bias caused by selection of predictors from a

Fig. 5.4 Estimated and true mortality for 50 centers which had 200 subjects each, while the
average mortality was 10% for all (upper left panel), 10% ± 1% (upper right panel), 10% ± 2%
(lower left panel), 10% ± 3% (lower right panel)
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larger set of predictors, in contrast to the selection of subjects from an underlying
population in standard epidemiological texts. Suppose that we investigate 20
potential predictors for inclusion in a prognostic model. If these are all noise
variables, the true regression coefficients are zero (l = 0). On average, one variable
will be statistically significant at the p < 0.05 level. The estimated effect will be
relatively extreme, since otherwise the effect would not have been statistically
significant. If this one variable is included in the model, it will have a quite small or
quite large effect (Fig. 5.5, left panel). On average, the estimated effect (l̂) of such a
noise variable is still zero.

If some of the 20 variables are true predictors, they will sometimes have a
relatively small and sometimes a relatively large effect. If we only include a predictor

Table 5.1 Causes and consequences of overfitting in prediction models

Issue Characteristic

Causes of overfitting

Model
uncertainty

The structure of a model is not predefined, but determined by the data
under study. Model uncertainty is an important cause of overfitting

Parameter
uncertainty

The predictions from a model are too extreme because of uncertainty in the
effects of each predictor (model parameters)

Consequences of overfitting

Testimation bias Overestimation of effects of predictors because of selection of effects that
withstood a statistical test

Optimism Decrease in model performance in new subjects compared to performance
in the sample under study

Fig. 5.5 Illustration of testimation bias. In case of a noise variable, the average of estimated
regression coefficients is zero, and 2.5% of the coefficients is below −0.98 (1.96*SE of 0.5), and
2.5% of the coefficients is larger than +0.98 (1.96*SE of 0.5). In case of a true coefficient of 1, the
estimated coefficients are statistically significant in 52%. For these cases, the average of estimated
coefficients is 1.39 instead of 1 (39% testimation bias)
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when it has a relatively large effect in our model, we are overestimating the effect of
such a predictor. This phenomenon is referred to as testimation bias: because we test
first, the effect estimate is biased [41, 94]. Testimation bias is related to phenomena
such as “Winner’s curse” [267] and regression to the mean [94].

In the example of a predictor with true regression coefficient 1 and SE 0.5, the
effect will be statistically significant if estimated as lower than −1.96*SE = –0.98
(virtually no estimated coefficients), or exceeding +1.96*SE = +0.98 (52% of the
estimated coefficients, Fig. 5.5, right panel). The average of the estimated coeffi-
cients in these 52% cases is 1.39 rather than 1. Hence, a bias of 39% occurs. In
formal terms, we can state if b significant, then b = b, else b = 0. Instead of con-
sidering the whole distribution of predictor effects, we only consider a selected part.

Testimation bias is a pervasive problem in medical statistics and predictive
modeling [225]. The bias is large for relatively weak effects, as in common in
medical research [541]. Selection bias is not relevant if we have a huge sample size,
or consider predictors with large effects, since these predictors will anyway be
selected for a prediction model. Neither does selection bias occur if we prespecify
the prediction model (“full model”) [225].

5.2.2 Other Modeling Biases

A well-known problem in prediction research is bias by selection of an “optimal”
cut-point for a continuous predictor [12, 155, 472]. The optimal point may be
poorly reproducible, and the effect of the predictor is exaggerated.

A similar problem occurs if we examine different transformations for predictor
variables as a check for linearity. For example, we may add a square term to a linear
term for a continuous predictor variable and omit the square term if not statistically
significant. Even if the square term was omitted, the fascinating finding was that we
should use two degrees of freedom for this predictor rather than one [197].

More subtle biases creep in when we less formally assess alternative model
specifications. For example, we may consider different transformations of the
outcome variable in a linear model and visually judge the best transformation for
use in further modeling. Or we examine different coding variants of a categorical
predictor, with merging of groups with what we consider to have “similar out-
comes.” These issues are discussed in more detail in Chaps. 9 and 10 on coding of
predictors, and Chaps. 11 and 12 on selection of predictors.

5.2.3 Overfitting by Parameter Uncertainty

It appears that even when the structure of our model is fully prespecified, predic-
tions are too extreme when multiple predictors are considered. This is because
parameters, such as regression coefficients, are estimated in the model with

5.2 Overfitting in Regression Models 101



uncertainty. This surprising finding has been the topic of much theoretical research
[109, 627]. An intuitive explanation is related to how we create a linear predictor in
regression models. Hereto, the regression coefficients of multiple predictors are
multiplied with the predictor values. With default estimation methods (i.e., least
squares for linear regression, and maximum likelihood for logistic or Cox regres-
sion), each of the coefficients is estimated in a (nearly) unbiased way. But each
coefficient is associated with uncertainty, as reflected in the estimated standard error
and 95% confidence interval. This uncertainty makes that we tend to overestimate
predictions at the extremes of a linear predictor, i.e., low predictions will on average
be too low, and high predictions will on average be too large. This is again an
example of regression to the mean. We can shrink coefficients towards zero to
prevent this overfitting problem [109, 225, 627].

This overfitting problem is related to “Stein’s paradox”: biased estimates rather
than unbiased estimates are preferable in multivariable situations to make better
predictions [147, 530]. Shrinkage introduces bias in the multivariable regression
coefficients, but if we shrink properly the gain in precision of our predictions more
than offsets the bias. The issue of bias–variance trade-off is central in prediction
modeling [231], and will be referred to throughout this book. Estimation with
shrinkage methods is discussed in more detail in Chap. 13, including modern
variants such as LASSO and elastic net [581, 689].

5.2.4 Optimism in Model Performance

Overfitting can visually be appreciated from the distributions of estimated mortality
as in Figs. 5.3 and 5.4, but also from model performance measures. For example,
we may calculate Nagelkerke’s R2 for a logistic model that includes 20 centers
(coded as a factor variable, with 19 dummy variables indicating the effect of 19
centers against a reference hospital). If the true mortality in all hospitals was 10%,
the estimated R2 was 9.4% when each hospital contained 20 subjects (Table 5.2). In
fact, R2 was 0%, since no true differences between centers were present. The
estimated 9.4% is based on pure noise. We refer to the difference between 9.4 and
0% as the optimism in the apparent performance (Fig. 5.1). With larger sample
sizes, the optimism decreases, e.g., to 0.1% for 20 centers with 2000 subjects each
(total 40,000 subjects, 4,000 deaths). Statistical testing of the between center dif-
ferences was by definition not significant in 95% of the simulations. We might
require statistical significance of this overall test before trying to interpret between
center differences (Chap. 21).

When true differences between centers were present (e.g., a range of 6–14%
mortality, s = 2%), the true R2 was close to 1% (n = 2000). With small sizes per
center, the estimated R2 was 10.1%, which is again severely optimistic (Table 5.2).

A well-known presentation of optimism is to visualize the trade-off between
model complexity and model performance [231]. We illustrate this trade-off in
Fig. 5.6, where we considered a simple linear regression model with 1–10
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predictors, with strong to weak effects. The model performance is evaluated by the
mean squared error (mean(y – ŷ)2) for the underlying population (internal valida-
tion), and for a population where the true regression coefficients were slightly
different (external validation). The true model had coefficients of 1; at external
validation the true coefficients were 1.5 for 5, and 0.5 for 5 predictors. With 50
subjects per sample for estimation of the model (1000 simulations), we note that the
apparent performance improves with more predictors considered, even if the pre-
dictors are pure noise (Fig. 5.6, left panel). With 10 true predictors, the internal and

Table 5.2 R2 for a logistic model predicting mortality in 20 centers. True mortality was 10% in
the first series of simulations, and R2 reflects pure noise. True mortality varied between 6 and 14%
(s = 2%) in the second series of simulations

True mortality (%) Sample size R2
apparent (%) R2

adj (%) R2
bootstrap (%)

10 20 * n = 20
20 * n = 200
20 * n = 2000

9.4
1.0
0.1

–0.1
0
0

NA
−0.5
0

10 ± 2 20 * n = 20
20 * n = 200
20 * n = 2000

10.1
1.9
1.0

0.3
0.9
0.9

NA
0.3
0.8

*Nagelkerke’s R2 calculated in logistic regression models [403], averaged over 500 repetitions.
R2
apparent;R

2
adj;R

2
bootstrap refer to the apparent, adjusted, and bootstrap-corrected estimates of R2,

respectively. The R2
adj included “LR−df” instead of “LR” in the formula. Note that not all

coefficients could directly be estimated, since some hospitals had 0% estimated mortality with
n = 20; for these we used 1% as the estimated mortality (adding 1 subject as dead, with a weight of
1% * 20 = 0.2). Bootstrapping with these weighted samples was not readily possible

Fig. 5.6 Mean squared error of predictions from three linear regression models with increasing
complexity (means of 1000 simulations). Left: 10 noise predictors, n = 50: Apparent performance
improves with more predictors, but internal performance increasingly deteriorates. Middle: 10 true
predictors with decreasing strength: Internal performance worsens as with noise predictors, with an
optimum at six predictors. External performance follows the same pattern as internal performance,
for a true model with slightly different effects of the 10 predictors. Right: with n = 500, the
statistical optimism in performance (Internal−Apparent) is 1/10 of that with n = 50
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external performance does not improve after six predictors are included. Overfitting
appears less of a problem for 10 times larger sample sizes (n = 500).

5.2.5 Optimism-Corrected Performance

In linear regression analysis, an adjusted version of R2 is available, which com-
pensates for the degrees of freedom used in estimation of a model. Such an adjusted
version can also be considered for Nagelkerke’s R2, which we consider, e.g., for
logistic and Cox models. We could subtract the degrees of freedom used to estimate
the LR of the model in the calculation:

R2
adjusted ¼ 1�eð� LR�dfð Þ=nÞ

� �
= 1�eð�2LL0=nÞ
� �

;

where LR refers to the difference in log-likelihood (LL) of themodel with andwithout
the predictor, df are the degrees of freedom of the predictors in the model, n is the
sample size, and LL0 is the log-likelihood of the null model (without predictors).

This adjusted version is not standard in most current software, however. When
we apply this formula for the simulated center outcome as shown in Figs. 5.3 and
5.4, the average R2

adjusted for noise differences is 0, with approximately half of the
adjusted R2 values being negative (Table 5.2). The adjustment made the R2 esti-
mates a bit conservative for small samples. For example, when true differences
existed, the adjusted R2 was 0.3% rather than 0.9% (Table 5.2).

A more general optimism correction is possible with bootstrapping, which is
explained in the next section. In Table 5.2, bootstrap-corrected performance was
more conservative than the R2

adjusted formula, which may be caused by the fact that
the optimism in R2 does not follow a fully normal distribution [535].

5.3 Bootstrap Resampling

Bootstrapping may allude to a German legend about Baron Münchhausen, who was
able to lift himself out of a swamp by pulling himself up by his own hair. In later
versions of the legend, he was using his own bootstraps to pull himself out of the
sea which gave rise to the term “bootstrapping”. In statistics, bootstrapping is a
method for estimating the sampling distribution of an estimator by resampling with
replacement from the original sample [673].

Bootstrapping mimics the process of sampling from the underlying population
[148]. Since we only have a sample from the population, this sampling is not truly
possible, similar to the legend about Baron Münchhausen. Bootstrap samples are
drawn with replacement from the original sample to introduce a random element.
The bootstrap samples are of the same size as the original sample, which is
important for the precision of estimates obtained in each bootstrap sample.
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For illustration, we consider the simple case of the age of five subjects who are
20, 25, 30, 32, and 35 years old. Some subjects may not be included in a specific
bootstrap sample, others once, others twice, etc. Bootstrap samples might look like
Table 5.3.

5.3.1 Applications of the Bootstrap

Bootstrapping is a widely applicable, nonparametric method. It can provide valu-
able insight into the distribution of a summary measure from a sample. Bootstrap
samples are repeatedly drawn from the data set under study, and each analyzed as if
they were an original sample [148].

For some measures, such as the mean of population, we can use a statistical

formula for the standard deviation SD ¼ p
var ¼ p

xi�mean xð Þð Þ2= n�1ð Þ
h i� �

.

We can use the SD to calculate 95% confidence intervals (95% CI) as
þ =� 1:96 � SE ¼ þ =� 1:96 � SD=p nð Þ. The bootstrap can be used to calculate
SD for any measure. For the mean, the bootstrap will usually result in similar SE
and 95% CI estimates as obtained from the standard formula. For other quantities,
such as the median, no SE or 95% CI can be calculated with standard formulas, but
the bootstrap can. See elsewhere for extensive illustrations [225].

5.3.2 Bootstrapping for Regression Coefficients

The bootstrap can assist in estimating distributions of regression coefficients, such
as standard errors and confidence intervals. The bootstrap can be useful in esti-
mating distributions of correlated measures such as the difference between an
adjusted and an unadjusted regression coefficient [653]. In the latter case, two
regression coefficients are estimated in each bootstrap sample. The difference is
calculated in each sample, and the distribution over bootstrap samples can be
interpreted as the sampling distribution. Confidence intervals can subsequently be
calculated with three methods:

Table 5.3 Illustration of five
bootstrap samples drawn with
replacement from the ages of
five subjects. For easier
interpretation, age values
were sorted per sample

Original sample ages
(years)

Bootstrap samples ages
(years)

20, 25, 30, 32, 35 20, 20, 30, 32, 35
20, 25, 25, 30, 35
20, 25, 30, 30, 32
25, 32, 35, 35, 35
30, 30, 32, 35, 35
…
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1. Normal approximation: the mean and SE are estimated from the distribution
(note: the SD over bootstraps is the SE of the mean).

2. Percentile method: quantiles are simply read from the empirical distribution. For
example, 95% confidence intervals are based on the 2.5% and 97.5% percentile,
e.g., the 50th and 1950th bootstrap estimate out of 1999 replications.

3. Bias-corrected percentile method: Bias in estimation of the distribution is
accounted for, based on the difference between median of the bootstrap esti-
mates and the sample estimate (“BCa”) [148].

For reliable estimation of distributions, large numbers of replications are advisable,
e.g., at least 1999 for method 2 and 3. Empirical p-values can similarly be based on
bootstrap distributions, e.g., by counting the number of estimates smaller than zero
for a sample estimate larger than zero (giving a one-sided empirical p-value) [148].

5.3.3 Bootstrapping for Prediction: Optimism Correction

A very important application of bootstrapping is in quantifying the optimism of a
prediction model [94, 148, 225, 627]. With a simple bootstrap variant, one
repeatedly fits a model in bootstrap samples and evaluates the performance in the
original sample (Fig. 5.7).

The average performance of the bootstrap models in the original sample can be
used as the estimate of future performance in new subjects. A more accurate esti-
mate is, however, obtained in a slightly more complicated way [148]. The bootstrap
is used to estimate the optimism: the decrease in performance between performance
in the bootstrap sample (Sample*, Fig. 5.7) and performance in the original sample.
This optimism is subsequently subtracted from the original estimate to obtain an
“optimism-corrected” performance estimate [225].

Fig. 5.7 Schematic representation of bootstrap validation for optimism correction of a prediction
model. Sample* refers to the bootstrap sample which is drawn with replacement from the sample
(the original sample from an underlying population). Model* refers to the model constructed in
Sample*
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5.3.4 Calculation of Optimism-Corrected Performance

Optimism-corrected performance is calculated as

Optimism-corrected performance ¼ Apparent performance in original sample�Optimism;

where

Optimism ¼ Bootstrap performance�Test performance:

The exact steps are as follows:

1. Construct a model in the original sample; determine the apparent performance
on the data from the sample used to construct the model;

2. Draw a bootstrap sample (Sample*) with replacement from the original sample
(Sample, Fig. 5.7);

3. Construct a model (Model*) in Sample*, replaying every step that was done in
the original sample, especially model specification steps such as selection of
predictors. Determine the bootstrap performance as the apparent performance of
Model* in Sample*;

4. Apply Model* to the original sample without any modification to determine the
test performance;

5. Calculate the optimism as the difference between bootstrap performance and test
performance;

6. Repeat steps 1–4 many times, at least 200, to obtain a stable mean estimate of
the optimism;

7. Subtract the mean optimism estimate (step 6) from the apparent performance
(step 1) to obtain the optimism-corrected performance estimate.

Note that the original sample is used for testing of the model (Model*), while it
contains largely the same subjects as the bootstrap sample (Sample*). Although this
may seem invalid, both theoretical and empirical research support this process.
Alternative bootstrap validation procedures have been proposed. Specifically, we
could limit the assessment of performance of the models from the bootstrap sample
to subjects from the original sample who were not included in the bootstrap sample.
On average, 63.2% of the subjects are selected in a bootstrap sample, leaving on
average 36.8% of the subjects for testing of a model from the bootstrap sample. The
simplest variant is the out-of-sample bootstrap, where we take the mean of the
performance in the unselected subjects. Other variants are the 0.632 and
0.632 + methods, where a weighted mean performance is estimated based on
apparent performance and out-of-sample performance [149]. These bootstrap vari-
ants may have only limited advantages over the optimism correction procedure
described above in specific settings [547, 576, 662]. The bootstrap has several
advantages over simplistic approaches such as split-sample validation, or
“single-repetition holdout” [576], which should be avoided (Chap. 17) [533].
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We can apply the bootstrap approach to any performance measure, including the
R2, c-statistic, and calibration measures such as calibration slope (Chap. 15).
A strong aspect of the bootstrap is that we can incorporate various complex steps
from a modeling strategy. This is important if exact distributional results are virtually
impossible to obtain, such as for common selection algorithms [438]. The bootstrap
can, hence, give insight into the relevance of both model uncertainty, including both
testimation bias and parameter uncertainty. In practice, it may be hard to fully
validate a prediction model, including all steps made in the development of the
model. For example, automated stepwise selection methods can be replayed in every
bootstrap sample, leading to reasonably correct optimism-corrected performance
estimates [535]. But more subtle modeling steps usually cannot fully be incorpo-
rated, such as choices on coding and categorization of predictors. The
optimism-corrected estimate may then be an upper bound of what performance can
be expected in future subjects. Only a fully specified modeling strategy can be
replayed in every bootstrap sample.

It is often useful to calculate the optimism of a “full model”, i.e., a prediction
model including all predictors without any fine-tuning such as deleting less
important predictors. The optimism estimate of such a full model may be a guide
for further modeling decisions [225]. If the optimism is substantial, it is a warning
that we should not base our model only on the data set at hand. Incorporating more
external information may improve the future performance of the prediction model
in such a case [218].

5.3.5 *Example: Stepwise Selection in 429 Patients

As an example, we consider a sample of 429 patients from the GUSTO-I study,
which studied 30-day mortality in patients with acute myocardial infarction (details
in Chap. 24). We first fitted a model with eight predictors, as specified in the TIMI-II
study (“full model”) [395]. This model had a Nagelkerke R2 of 23% as apparent
performance estimate. In 200 bootstrap samples, the mean apparent performance
was 25% (Table 5.4). When the models from each bootstrap sample were tested in

Table 5.4 Example of bootstrap validation of model performance, as indicated by Nagelkerke’s
R2 in a subsample of the GUSTO-I database (Sample5, n = 429)

Method Apparent
(%)

Bootstrap
(%)

Test
(%)

Optimism
(%)

Optimism-
corrected (%)

Full eight-predictor model 22.7 24.7 17.2 7.6 15.1

Stepwise, three predictors
p < 0.05

17.6 18.7 12.7 5.9 11.7

Stepwise model falsely
assumed to be prespecified

17.6 18.2 15.4 2.9 14.7
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the original sample, the R2 decreased substantially (to 17%). The optimism, hence,
was 25%−17% = 8%, and the optimism-corrected R2 23%−8% = 15%.

We can follow a backward stepwise selection procedure with p < 0.05 for
factors remaining in the model (Chap. 11). This leads to inclusion of only three
predictors (age, hypotension, and shock). The apparent performance drops from 23
to 15% by excluding five of the eight predictors. The stepwise selection was
repeated in every bootstrap sample, leading to an average apparent performance of
R2 = 18%. R2 dropped to 12% when models were tested in the original sample
(optimism 6%, optimism-corrected R2 9%). When we falsely assume that the
three-predictor model was prespecified, we would estimate the optimism as 3%
rather than 6%. This discrepancy illustrates that optimism by selection bias may be
as important as the optimism due to parameter uncertainty if a model is selected
based on the same data.

We note that the apparent performance in the bootstrap samples was higher than
the apparent performance in the original sample (Table 5.4). This pattern is often
noted in bootstrap model validation. It may be explained by the fact that some
patients appear multiple times in the bootstrap sample. Hence, it is easier to predict
the outcome, reflected in higher apparent performance. Further, we note that the
optimism is smaller after model specification by stepwise selection (6% instead of
8%). The optimism-corrected performance of the stepwise model is clearly lower
than the performance of the full eight-predictor model. This pattern is often noted.
A full model will especially perform better than a stepwise model when the stepwise
selection eliminates several variables that are close to statistically significant while
they have some true predictive value. When a small set of dominant predictors is
present, including only these would logically be sufficient; a procedure such as
LASSO might work well [581]. The bootstrap would show that the key predictors
are nearly always selected and that other variables are most often excluded; the
optimism would be relatively small and optimism-corrected performance similar to
that of a full model. The leprosy case study is such an example (see Chap. 2). In the
case that many noise variables are present in the full model, a selected submodel
performs better than a full model. Careful preselection of candidate predictors is,
hence, advisable, based on subject knowledge (literature, expert opinion), to prevent
that pure noise variables are considered in the modeling process.

5.4 Cost of Data Analysis

The development of a prediction model for outcome prediction is a constant
struggle in weighing better fit to the data against generalizability outside the sample.
This has aptly been labeled the “cost of data analysis” [157]. The more we
incorporate from a specific data set in a model, the less the model may generalize
[138]. On the other hand, we do not want to miss important patterns in the data,

5.3 Bootstrap Resampling 109



such as a clearly nonlinear relation of a predictor to the outcome. A prediction
model where underlying model assumptions are fulfilled will provide better pre-
dictions than a model where assumptions are violated. It is therefore considered
natural to assess such assumptions as linearity of continuous predictor effects and
additivity of effects (Chap. 12). However, if we test all assumptions of a model and
iteratively adapt the model to capture even small violations, the model will be very
specific for the data analyzed [94, 157].

5.4.1 *Degrees of Freedom of a Model

If we fit a statistical model to empirical data, it is common to consider the degrees of
freedom (df) as a measure of model complexity, and the capacity for overfitting.
The degrees of freedom reflect the number of dimensions in which a random vector
may vary. For example, a 2 � 2 cross-table has 1 df, since we can vary only one
number once the marginals of the table are fixed. Modeling strategies typically cost
more degrees of freedom than reflected in the final fit of a selected model. Various
authors have proposed more general definitions for the effective degrees of freedom
of a method [146]. Generalized degrees of freedom (GDF) of a model selection and
estimation procedure indicate the risks of overfitting that is associated with a
modeling strategy. For example, Ye showed that a stepwise selection strategy that
selected a model with five predictors (apparent df = 5), had GDF 14.1 [685].
A regression tree with 19 nodes (apparent df = 19), had GDF of 76.

An essential part of Ye’s approach is to determine the apparent performance of a
model when developed with pure noise. In Table 5.2 and Fig. 5.6, we note that the
optimism in performance in the pure noise simulations was indeed very similar to
the optimism when some true effects were present.

5.4.2 Practical Implications

In the development of prediction models, we have to be aware of the cost of all data
analysis steps. We need to balance what we take from external information versus
what we aim to learn from the data. The appropriateness of a modeling strategy is
indicated by the generalizability of results to outcome prediction for new patients.
Some practical issues are relevant in this respect.

• Sample size: with a small sample size, we have to be prepared to make more
assumptions; the power to detect deviations from modeling assumptions will
anyway be small. If deviations from assumptions are detected, and the model is
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adapted, testimation will occur and the validity of predictions for new patients
may not necessarily be improved (Chap. 13).

• Robust strategies: some modeling strategies are more “data hungry” than other
strategies [612]. For example, fitting a prespecified logistic regression model
with age and sex uses only 2 df. If we test for linearity of the age effect, and
interactions between age and sex, we spend more effective df. If we use a
method such as regression tree analysis, we search for cut-points of age, and
model interactions by default, making the method more data hungry than
logistic regression (Chap. 4). Similarly, stepwise selection asks more of the data
than fitting a prespecified model. Not only do we want to obtain estimates of
coefficients, but we also want to determine which variables to include as pre-
dictors (Chap. 11).

• Bootstrap validation: Some suggest that the bootstrap can assist in determining
an appropriate level of fine-tuning of a model to the data under study [487].
However, when many alternative modeling strategies are considered, the
bootstrap results may become less reliable in determining the optimal strategy,
since the optimum may again be very specific for the data under study. The
bootstrap works best to determine optimism for a single, predefined strategy
[225].

5.5 Concluding Remarks

In science, and in prediction modeling research specifically, we need to seek a
balance between curiosity and skepticism. On the one hand, we want to make
discoveries and advance our knowledge, but on the other hand, we must subject any
suggested discovery to stringent tests, such as validation, to make sure that chance
has not fooled us. It has been demonstrated that our scientific “discoveries” are
often false, especially if we search hard and explore a priori unlikely hypotheses
[266]. Overfitting and the resulting optimism in performance assessments are
important concerns in prediction models.
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Questions

5:1 Overfitting and optimism

(a) What is overfitting and why is it a problem?
(b) What are the two main causes of overfitting? What is the difference and

can you give some examples?

5:2 Shrinkage for prediction (Figs. 5.3 and 5.4)
A solution against the consequence of overfitting is shrinkage. For example,
estimates per center can be drawn towards the average to improve the quality
of predictions in Fig. 5.3 and 5.4.

(a) Is the required shrinkage more, or less, in Fig. 5.4 compared to
Fig. 5.3?

(b) Is the underlying true heterogeneity more, or less, in Fig. 5.4 compared
to Fig. 5.3?

5:3 Optimism in performance (Fig. 5.6)

(a) Verify that the optimism in apparent performance in the linear regres-
sion model is 2.8 with six noise predictors, n = 50; 2.8 with six true
predictors, n = 50; 0.3 with six true predictors, n = 500.

(b) Explain why n = 500 leads to 1/10 of the optimism noted with n = 50.

5:4 Bootstrapping (Sect. 5.3)

(a) How can a bootstrap sample be created? How is this done with the
sample command in R?

(b) How can the test sample for the 0.632 bootstrap variant by selected in
R?

(c) How can bootstrapping be used to derive optimism-corrected estimates
of model performance, addressing the two main causes of overfitting.
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Chapter 6
Choosing Between Alternative Models

Background Any scientific model will have to make simplifying assumptions
about reality. Nevertheless, statistical models are important tools to learn from
patterns in underlying data. A good model can be used to make accurate predictions
for future subjects. We discuss some general issues in choosing a type of model in a
prediction context, with illustration in a case study on modeling age–outcome
relations in medicine. We also summarize results from some empirical comparisons
of alternative models, including classical regression and modern methods related to
machine learning approaches.

6.1 Prediction with Statistical Models

In a pure prediction context, statistical models are merely seen as practical tools
than as theories about how the world works. As long as the model predicts well, we
are satisfied. This relates to the famous quote “All models are wrong, but some are
useful” [68]. Although regression models are formulated as models of cause and
effect (“y depends on x”), there need not be any causal relation at all, for example,
because some intermediate causal factor was not recorded. We, hence, simply use
the terms “predictor” and “outcome”.

On the other hand, a statistical model may generalize better to new settings if
causal effects are modeled, or at least relations that reflect biology, rather than mere
associations. Careful modeling can provide important insights into how a combi-
nation of predictors is related to an outcome. For inference and hypothesis testing,
fulfillment of assumptions becomes more important than for prediction. Prediction
is primarily an estimation problem, while insight in effects of predictors is related to
hypothesis testing (Chap. 1) [508].

With a good model, we can make predictions for future subjects, test hypotheses,
and estimate the magnitude of effects of predictors. It is a philosophical question
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whether a true, underlying model exists. Many have argued that the notion of a
“true model” is false [94]. Indeed, would it be imaginable that natural processes can
fully be captured in a model containing relatively few variables, which are related in
a mathematically simple way? Many subtle nonlinear and interactive effects
probably play a role. Predictors may be unobservable or not yet discovered, or
predictive effects may be too small to detect empirically. Therefore, a statistical
model can only be an approximation to underlying patterns, based on the limited
number of predictors that is known to us. Recent attempts to define biomarkers, and
assessment of various “omics” measurements (genomics, proteomics, metabo-
lomics, glycomics, etc.) will not change this limitation of any prediction model.

6.1.1 Testing of Model Assumptions and Prediction

If our primary aim is to make good predictions, we should not place too much
emphasis on unobservable, underlying assumptions. It is a standard procedure
nowadays to test model assumptions such as nonlinearity and additivity, or pro-
portionality of hazards (see Chaps. 4 and 13). Such testing may be valuable but
only to the extent that adaptations to the model lead to better predictions. When
assumptions are met, the model will provide a better approximation to reality and
hence predict better [225, 227]. Statistically significant violations of underlying
assumptions do not mean that a prognostic model predicts poorly [80, 222, 508].

In a prediction context, we are lucky that we can directly measure the observed
outcomes and compare these to what is predicted. This allows for direct statistical
assessment of model quality with performance measures such as calibration and dis-
crimination. Whether the underlying assumptions of the prediction model are true can
never be known, since regression coefficients are unobservable; they can only be estimated.

6.1.2 Choosing a Type of Model

Some general suggestions have been made on the type of model to be used in
prognostic research, with a focus on regression analysis [225].

• The mathematical form should be reasonable for the underlying data. For
example, models should not give predictions that are below 0% or above 100%
for binary outcomes or survival probabilities.

• The model should use the data efficiently. Regression models need to make
assumptions, but they pick up general patterns in the data better than a simple
cross-tabulation approach. Cross-tables quickly run out of numbers, and hence
would provide unstable predictions. Similarly, survival outcomes should be
analyzed with methods that use all available information.

• Robustness is preferred over flexibility in capturing idiosyncrasies. For pre-
diction, we aim to model patterns that generalize to future subjects. Very flexible
approaches will require large data sets, while medical prediction problems are
often addressed with relatively small data sets.
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• The results of the model should be transparent and presentable to the intended
audience. In some fields, fully computerized models may be acceptable (e.g.,
neural networks), but in other fields insight in the underlying model is an
advantage (e.g., effects of predictors in regression models).

In the current Big Data era, these requirements may be relaxed at some points, for
example, with respect to efficient use of data, and allowing for more flexibility in
modeling. Also, computerized presentation may nowadays be acceptable to some,
although others may still object to black-box algorithms [181]. Also, practical issues
play a role, such as familiarity of analysts and their readers with a method. A major
requirement of any model is of course that it adequately answers the research
question, since we know that all models will miss some aspects of the underlying
natural process by their relative simplicity and the relative sparseness of data.

We will first look at some empirical support for relatively simple regression
models as tools to capture the prognostic effect of age. This is followed by a brief
discussion of some head-to-head comparisons between modeling techniques,
including machine learning techniques.

6.2 Modeling Age–Outcome Relations

The effect of age on outcome is important in many medical prediction problems.
Together with gender, age is an obvious demographic characteristic to consider in
the prediction of an outcome. On the one hand, age represents the biological
phenomenon of aging, with a decrease in the performance of biological systems.
Observed age effects do, however, not necessarily represent pure biological rela-
tions, since many comorbid conditions may be present [440]. Moreover, selection
may have occurred, e.g., making that very old patients only undergo surgery when
in relatively good condition. Nevertheless, it is of interest to study how increasing
age is related to outcome. Specifically, we consider the modeling of age-related
mortality with logistic regression.

6.2.1 *Age and Mortality After Acute MI

Within the GUSTO-I data set (details in Chap. 24), Lee et al. found that the relation
between age and 30-day mortality after an acute myocardial infarction (MI) was
reasonably linear [329]. We can examine the relation between age and outcome in
more detail by adding age^2, and a restricted cubic spline with five knots (4 df,
including the linear term, see Chap. 9). We find that there is relatively limited gain
by adding nonlinear transformations (Table 6.1). Graphical inspection (Fig. 6.1)
suggests that the differences between the transformations are at the lower ages
(below age 50), where limited data are available. It may be that the age–mortality
relation is somewhat stronger above age 50 than below age 50 years; a linear spline
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with a change point at age 50 captures this pattern. We hereto model a linear spline
with two linear pieces connected at age 50 years. A really bad idea would be to
dichotomize age at 65 years [472]. Such dichotomization would lose 30% of the
prognostic information compared to the linear model (LR statistic 1463/
2099 = 70%, Table 6.1). At the probability scale, differences between the contin-
uous transformations were all minor, with the main difference with a dichotomized
version of age (Fig. 6.1). Overall, assuming a linear effect was quite reasonable for
modeling the effect of age for mortality after acute MI in this large data set.

6.2.2 *Age and Operative Mortality

Another example considers modeling of operative mortality in relation to age for 1.2
million elderly patients in the Medicare system [164]. Patients were between 65 and
99 years old, and who were hospitalized between 1994 and 1999 for major elective

Table 6.1 Transformations of age as a predictor of 30-day mortality in the GUSTO-I dataset

Transformation of age df LR statistic Nagelkerke R2 (%)

Linear 1 2099 12.6

Add age^2 2 2112 12.7

rcs, 5 knots 4 2122 12.7

Linear spline with change point at age 50 years 2 2119 12.7

Dichotomize at age 65 years 1 1463 8.9

Fig. 6.1 The relation between age and 30-day mortality among 40,830 patients with acute
myocardial infarction in the GUSTO-I data set. The distribution of the ages of the patients is
shown at the bottom of the graph. Note the enormous range in mortality with age, since a logit of
−6 means a probability of 0.2% and a logit of 0 means 50%
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surgery (six cardiovascular procedures and eight major cancer resections, 14 types of
procedures in total). Operative mortality was defined as death within 30 days of the
operation or death before discharge and occurred in over 38,000 patients.

The mortality risk in this huge, nationwide, representative series varied widely
between procedures. Not surprisingly, it was higher than that reported in many
published series from specialized centers. Operative mortality clearly increased with
age. Operative mortality for patients 80 years of age and older was more than twice
that for patients 65–69 years of age (Fig. 6.2).

These data can be used to illustrate the fit of alternative logistic regression models
for the relation between age and mortality. Since the data were reported in 5-year
categories, we assign an average age per age category to study age as a continuous
variable. We assume age to be at midpoints for the first two categories (67.5 and
72.5 years) and at 77.2, 82.0, and 90.0 years for the other three categories.

The simplest logistic regression model assumes a single age effect across cate-
gories: mortality * procedure + age 10, where mort indicates operative mortality
(0/1), procedure is a categorical variable for the 14 levels of procedures, and age10
is age coded per 10 years.

We can test whether the age effect differs by procedure by adding the interaction
term “procedure * age10”:

mortality� procedureþ age10þ procedure � age10

The smallest age effect was found for Endarterectomy (OR 1.4 per decade,
Fig. 6.3), followed by Gastrectomy (OR 1.5 per decade). The strongest age effects
were found for Nephrectomy and Cystectomy (OR 2.1 and 2.2 per decade, Fig. 6.3).

Fig. 6.2 Operative mortality by surgical procedure according to age in 1.2 million elderly patients
in the Medicare system [164]
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The improvement in model fit obtained by this model extension was relatively
small (Table 6.2). The likelihood ratio improved by 95, which was only 0.6% of the
total model chi-square including this interaction. The explained variation
(Nagelkerke R2) increased by 0.04%.

We can also assess nonlinearity in the age effect by adding a square term
(age102) to the simplest model:

mortality� procedureþ age10þ age102

Fig. 6.3 Logit scale presentation of two logistic regression models for operative mortality by
surgical procedure according to age, based on analysis of 1.2 million elderly patients in the
Medicare system [164]. Dots are the observed mortality rates by type of surgery and age category.
Solid lines indicate a model with procedure * age interaction. Dotted lines indicate a common
effect for age across surgeries (“mortality * procedure + age10”)

Table 6.2 Age and operative mortality in 1.2 million elderly patients in the Medicare system
[164]

Model Age 10 LR statistic Nagelkerke R2 (%)

procedure + age10 1.75 16,841 5.62

… + procedure * age10 1.44–2.23 16,936 5.66

… + age10^2 1.74 16,843 5.62
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Remarkably, adding such a square term made virtually no contribution to the
model fit (v2 increased by 2). All code for this analysis is at www.clin-
icalpredictionmodels.org.

In conclusion, the age—outcome relations were reasonably linear for these
surgical procedures. Moreover, we may assume that the effect is in the order of an
odds ratio of 1.75 per decade, or a doubling in odds per 12.5 years (dotted lines in
Fig. 6.3). Both results may be useful as prior knowledge when we model the effect
of age, especially when we are dealing with a relatively small data set. As a starting
point we may assume linearity on the logistic scale, and an age effect between 1.5
and 2.2 per decade, the latter depending on the surgical procedure.

6.2.3 *Age–Outcome Relations in Other Diseases

Many studies described the relation between age and outcome in other diseases. We
performed a meta-analysis in traumatic brain injury, where again a linear trans-
formation was adequate, although adding the square term of age provided a
somewhat better fit [260]. Remarkably, many studies had dichotomized age after
searching for an optimal cut-off, which is nonsensical from a biological perspective.

Among seriously ill-hospitalized adults, age had a linear effect that differed
slightly by diagnosis, similar to the evaluation of operative procedures described
above [307]. Other studies also support a more or less linear association between
age and outcome.

Remarkably, for some studies, especially smaller ones, the authors concluded from
a statistically nonsignificant age effect that age was not related to outcome. This is a
clear illustration of interpreting the absence of evidence as evidence of absence [11].

6.3 Head-to-Head Comparisons

Several studies have described head-to-head comparisons of alternative methods.
Especially, attention has been given to alternative methods to predict binary out-
comes. Main classes of statistical methods include regression modeling, trees, and
neural networks [231]. Machine learning may include the latter techniques (trees,
neural networks), deep learning techniques, support vector machines (SVMs), and
some techniques that are extensions of traditional statistical methods, such as the
LASSO and elastic net. Some published comparisons on medical prediction
problems were in favor of regression-based techniques, and some in favor of more
modern approaches such as neural networks.

A problem in many comparisons is that one of the comparators is not developed
with state-of-the-art methods, while the other is. For example, computer scientists
often have been working on variants of neural networks, which were shown to do
better than logistic models if the latter were derived with simplistic, suboptimal

6.2 Modeling Age–Outcome Relations 119



techniques [497]. Methodological problems were especially severe for comparisons
of methods to predict survival outcomes [496]. Kaplan–Meier and Cox regression
can deal adequately with survival data, but ad hoc approaches have usually been
followed for other techniques.

Moreover, any comparison should include a fair validation procedure. Studies
comparing a suggested new method to existing methods are often biased in favor of
the new method. A positive development is the competition between modelers on the
same data set. A fascinating example on the influence of the analyst is a study where
one data set was analyzed by 29 teams regarding the question whether soccer ref-
erees are more likely to give red cards to dark-skin players than to light-skin players.
The teams came up with odds ratios from 0.9 to 2.9 [509]. Such neutral comparison
studies are needed, which are dedicated to the comparison itself: they do not aim to
demonstrate the superiority of a particular method and thus are not designed in a way
that may increase the probability to observe incorrectly this superiority [66].

The quality of predictions obtained with a model may depend on various factors
[377]. There may be intrinsic properties of the prediction problem that make a
method more or less suited. For example, the strategy to fit a full model, i.e.,
without data-driven selection of predictors, may especially work well if a limited
number of well-known predictors is available [225]. This is very different from
prediction with “omics”, where thousands of characteristics with small effects may
be present. Also, the actual implementation of the method as a computer program
may vary in combination with the skills of the user.

6.3.1 StatLog Results

An important historical example of a systematic comparison of statistical modeling
approaches is the StatLog project [377]. Different approaches to classification were
studied. Table 6.3 summarizes some results for data sets with a binary outcome,
both from medical and nonmedical applications. It appears that logistic regression
performs quite well across all examples. More flexible techniques such as trees and
neural networks only had advantages in larger data sets. In the medical context, data
sets are often relatively small, especially with respect to number of events, and the
predictive information is relatively limited, leading to an unfavorable
signal-to-noise ratio [222, 231].
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6.3.2 *Cardiovascular Disease Prediction Comparisons

Several simulation studies have been performed with the GUSTO-I database.
A variety of modern learning methods has been compared, including logistic
regression, Tree, GAM, and MARS methods [153]. Logistic regression can be
considered as a classic prediction method. The other methods have more flexibility
in capturing interaction terms or nonlinear terms and may be referred to as adaptive
nonlinear methods. These methods require data sets of substantial size, which is the
case in GUSTO-I. Because of the huge size, a large independent test set
(n = 13,610) could be kept separate from the development set.

• Four different logistic regression models were considered [153], containing

(1) age and Killip class;
(2) age, Killip class, and interactions between age and Killip classes;
(3) 17 covariates as included in an earlier model [329], but no interactions and no

nonlinear (spline) terms;
(4) 17 covariates, some of the interactions and nonlinear (spline) terms [329].

• A classification tree, constructed using 17 predictors.
• A generalized additive logistic regression model (“GAM”). The model con-

tained smoothing splines with 4 degrees of freedom for the variables age, height,
weight, pulse rate, systolic blood pressure, and time to treatment. No interaction
terms were included.

• Multivariate additive regression splines (MARS) is a kind of hybrid between
generalized additive models and classification tree [170]. MARS models of
degree 1 (additive) and 17 (all interactions allowed) were considered.

Table 6.3 Error rates for problems with binary outcomes in the StatLog project [377]

Data set N dev Predictors Logistic Naïve
Bayes

Tree
(CART)

Neural
network

Nonmedical

Credit management 15,000 7 0.030 0.043 NA 0.023

Australian credit 690 14 0.141 0.151 0.145 0.154

German credit 1000 24 0.538 0.703 0.613 0.772

Cut (letters in text) 11,220
11,220

20
50

0.046
0.037

0.077
0.112

NA
NA

0.043
0.041

Belgian Power
Instability

1250
2000

28
57

0.007
0.028

0.062
0.089

0.034
0.022

0.017
0.022

Medical

Heart disease 270 13 0.396 0.374 0.452 0.574

Diabetes 768 8 0.223 0.262 0.255 0.248

Tsetse 3500 14 0.117 0.120 0.041 0.065

NA: Not available
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The performance in the test set of 13,610 patients was remarkable (Fig. 6.4). The
most basic logistic model had a c-statistic of 0.787, which improved substantially
when more predictors were considered (Lee et al. logistic model variant 3 and 4,
c around 0.82). The performance of Lee et al. traditional logistic model [329] could
not be improved by any other method. A similar performance was found for the
GAM and additive MARS model. The more flexible variant of the MARS model
(with all interactions allowed) had a c-statistic of 0.81 (0.01 lower). The tree
performed worst, with a c-statistic of 0.75. Results were similar when the
log-likelihood was used as a measure for predictive performance (Fig. 6.4).

The authors also examined various variants of multilayer neural networks using
advanced backpropagation algorithms and various approaches to prevent overfitting
(weight decay, early stopping, bagging) [153]. None of these methods led to a better
predictive performance than the traditional logistic regression model. The authors
suggest that adaptive nonlinear methods may be most useful in problems with higher
signal-to-noise ratio, which may occur in the engineering and physical sciences.
Adaptive nonlinear algorithms might have limited applicability in clinical settings.

Similar conclusions were reached by Austin et al., who studied large data sets of
patients with either congestive heart failure (n = 15,848) or acute myocardial
infarction (n = 16,230). Specifically, traditional and modern tree-based methods did
not offer improvements over logistic regression [23, 29].

6.3.3 *Traumatic Brain Injury Modeling Results

The performance of various modeling strategies was studied in predicting outcome
in traumatic brain injury patients [612, 613]. We analyzed individual patient data

Age+Killip

Age*Killip

Lee 
simplified

MARS-1

MARS-full

Tree

GAM

Lee full

-300 -200 -100 0

log-likelihood compared to Lee
logistic model

Age+Killip

Age*Killip

Lee 
simplified

MARS-1

MARS-full

Tree

GAM

Lee full

0.70 0.75 0.80 0.85

AUC

Fig. 6.4 Performance of alternative prediction models in a test part of the GUSTO-I data set (n =
13,610 patients with acute MI) [153]. Results are shown for four logistic regression models, two
variants of MARS models, a classification tree, and a GAM. In the left panel, the log-likelihood is
compared to the Lee full model; in the right panel, the area under the ROC curve (or c-statistic) is
shown. Age + Killip: main effects; Age * Killip: main and interaction effects; Lee simplified: a
simplified version of Lee model; Lee full: Lee et al. model [329]. We note that the Lee full model
performed best according to both performance criteria
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from 15 cohorts including 11,026 patients that were brought together in the context
of the IMPACT project (http://www.tbi-impact.org/). We predicted 6-month mor-
tality, which occurred on average in 25% of the patients. We used default settings
with five statistical modeling techniques: logistic regression (LR), classification and
regression trees, random forests (RFs), support vector machines (SVM), and neural
nets. These techniques, hence, cover classical statistical methods and machine
learning type of approaches (RF, SVM).

For external validation, a model developed on one of the 15 data sets was applied to
each of the 14 remaining sets. This process was repeated 15 times for a total of 630
validations. The c-statistic was used to assess the discriminative ability of the models.
For a model with 10 predictors, 14 df, the LR models performed best (median validated
c, 0.76), followed by RF and SVM models (median validated AUC value, 0.74 and
0.73, respectively, Table 6.4). The single tree models showed poor performance (me-
dian validated AUC value, <0.7). The SVM and NN approaches had large optimism
(Table 6.4). Further analyses also showed that very large sample sizes were needed for
RF and SVM to reach stable results, in contrast to logistic regression [612]. Overall, this
study confirms the pattern described for cardiovascular disease modeling (Sect. 6.3.2),
i.e., that nonlinear and nonadditive relations may not be pronounced enough in medical
prediction problems to make modern prediction methods beneficial (Table 6.4).

6.4 Concluding Remarks

We should recognize that true models do not exist, and that any model only
approximates relations between predictors and outcome. A model will only reflect
underlying patterns, and hence should not be confused with reality. This is also
shown in RenéMargritte’s famous painting “La trahison des images” (The Treachery
of Images, http://en.wikipedia.org/wiki/The_Treachery_of_Images). This painting
shows a pipe, with the words “Ceci n’est pas une pipe” (This is not a pipe) painted
below the pipe. Indeed, the painting is not a pipe; it is only an image of a pipe.

Nevertheless, statistical models that better approximate reality closer are better
for predictive purposes, as well as for inference on effects of predictors. If we derive
models from empirical data, the sample size needs to be sufficient for the complexity
of the model that is fitted. For flexible models, empirical results illustrate that
nonlinear effects and interactions may need to be quite strong before an advantage is
obtained over relatively simple regression models. In medical prediction problems,
the signal-to-noise ratio may be relatively low. This makes regression analysis an
appropriate default approach in many clinical prediction models.

Table 6.4 Median apparent and cross-validated c-statistics (or AUC, Chap. 15) over analyses in
15 cohorts containing 11,026 TBI patients [613]

Validation LR CART RF SVM NN

Apparent 0.812 0.744 0.750 0.833 0.878

Cross-validated 0.757 0.666 0.735 0.732 0.674

Optimism 0.055 0.078 0.015 0.101 0.204
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Questions

6:1 Reasonable modeling approaches
In traumatic brain injury, the Glasgow Outcome Scale is a 5 point, ordered
scale. It is common to determine the GOS at 6-month post-injury. A researcher
proposes to use linear regression analysis to analyze relations for predictors
with this scale. What are pros and cons of this approach for estimation of
predictive effects, and for making predictions?

6:2 Predictions from cross-tabulations (Fig. 6.2)
A researcher might argue that the observed mortality as shown in Fig. 6.2 can
directly be used for predictive purposes, similar to the cross-tabulation pro-
vided in an analysis of genetic mutation risks among 10,000 women [168].
What are pros and cons of this approach?

6:3 GUSTO-I results (Sect. 6.3)
More flexible methods performed worse than a logistic regression model in the
GUSTO-I case study. What results would you expect for the comparison in
Fig. 6.4 with

(a) Smaller sample sizes for model development (e.g., 1,000 rather than
23,000 patients)?

(b) Larger sample sizes for model development (e.g., 10,000,000 rather than
23,000 patients).
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Part II
Developing Valid Prediction Models

In Part I, we presented a number of issues that are relevant to the context of
prediction model development and application. We summarize these issues as
preliminaries for model development in the checklist below. In Part II, we focus on
the development of prediction models that are valid for the population from which
the sample originates. Generalizability to other, plausibly related, populations is
discussed in Part III. We will discuss seven steps of model development in the
following chapters (7–18).



Checklist for developing valid prediction models

Step Specific issues Chapter

General considerations

Research question Aim: predictors / prediction? 1

Intended
application?

Clinical practice / research? 2

Outcome Clinically relevant? 3

Predictors Reliable measurement?
Comprehensiveness

3

Study design Retrospective/prospective?
Cohort; case-control

3

Statistical model Appropriate for research question and type of outcome? 4 and 6

Sample size Sufficient for aim? 2 to 6

7 modeling steps

1. Preliminary Missing values 7 and 8

2. Coding of
predictors

Continuous predictors
Combining categorical predictors
Restrictions on candidate predictors

9 and
10

3. Model
specification

Appropriate selection of main effects?
Assessment of assumptions (distributional, linearity and
additivity)?

11 and
12

4. Model estimation Shrinkage included?
External information used?

13 and
14

5. Model
performance

Appropriate statistical measures used?
Clinical usefulness considered?

15
16

6. Model validation Internal validation including model specification and
estimation?
External validation?

17

7. Model
presentation

Format appropriate for audience 18

Validity

Internal: overfitting Sufficient attempts to limit and correct for overfitting? 4 to 18

External:
generalizability

Predictions valid for plausibly related populations? 19 to 21
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Chapter 7
Missing Values

Background Missing data are a common problem in medical research. We may
encounter missing values of predictor values (X) and for the outcome (y) that we
want to predict. Traditional complete case analysis suffers from inefficiency,
selection bias of subjects, and other limitations when developing a prediction
model. We briefly review the theoretical background on mechanisms of missing-
ness of predictor values and how these may affect prediction models. We further
concentrate on imputation methods as a solution, where a completed data set is
created by filling in missing values for the statistical analysis. Special attention is
given to the specification of an imputation model, which is the essential step in
imputation. Multiple imputation is a method is to generate completed data sets
multiple times, while single imputation is more straightforward and may be suffi-
cient for some prognostic research questions. Several examples are provided.
Chapter 8 presents a case study of dealing with missing values in a meta-analysis of
individual patient data on prognosis in traumatic brain injury. Tentative guidelines
are provided on how to deal with missing data in relation to the research question.

7.1 Missing Values and Prediction Research

Missing data are a common and increasingly recognized problem in medical sci-
entific research. In this chapter, we focus on missing values of predictors X,
assuming that true predictor values are hidden by the missing values [347]. We also
consider missingness of the outcome y. Standard statistical software for regression
analysis deletes subjects with any missing value from the analysis. With such a
complete case analysis, all subjects with a missing value for any potential predictor
or the outcome are excluded [207, 347]. An “available case analysis” will consider
subjects with complete data for a specific predictor, but who may have missing
values for other covariates that are not considered in the specific model. With such
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an analysis, numbers may, therefore, vary per analysis. Both complete case and
available case analysis discard information from subjects who have information on
some (but not all) predictors. They are hence statistically inefficient, as further
illustrated below. For simplicity, we use the term complete case (CC) analysis
further onwards.

7.1.1 Inefficiency of Complete Case Analysis

As an example, we consider a data set with 500 subjects. Among these, 100 events
occur. We aim to estimate regression coefficients for a prediction model consisting
of 5 predictors x1 – x5. In the case of complete data, we have 20 events per variable.
Such a situation is commonly thought to be sufficient for reliable estimation of the
regression coefficients in a model. Suppose, however, that each predictor has 10%
missing data and that each patient has at most 1 missing value. Hence, each patient
has at least 4 values of the predictors recorded (Table 7.1). A CC analysis will
ignore 5 * 10% = 50% of the subjects and will leave only 250 subjects for esti-
mation of the regression model. The number of events per variable drops to 10:1,
which is commonly thought of as a lower limit for reliable modeling.

Table 7.1 Hypothetical missing data pattern: 250 subjects have partially complete data (missing
data indicated with NA), and 250 have fully complete data (indicated with +). Among the
X variables, only 250/2500 = 10% of the information is missing, while a complete case analysis
would drop to 50%

ID x1 x2 x3 x4 x5 y

1
…
50

NA
NA
NA

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

51
…
100

+
+
+

NA
NA
NA

+
+
+

+
+
+

+
+
+

+
+
+

101
…
150

+
+
+

+
+
+

NA
NA
NA

+
+
+

+
+
+

+
+
+

151
…
200

+
+
+

+
+
+

+
+
+

NA
NA
NA

+
+
+

+
+
+

201
…
250

+
+
+

+
+
+

+
+
+

+
+
+

NA
NA
NA

+
+
+

251
…
…
500

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

Total 450 450 450 450 450 500
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The information available is 250 complete cases (250 * 5 = 1250 predictor
values) + 250 incomplete cases (250 * 4 = 1000 predictor values). Of the required
500 * 5 = 2500 predictor values, 2250 or 90% are available. The approach of using
only 50% of the information instead of 90% is quite inefficient: 10% of the required
values are missing, but 50% of the subjects are discarded. Admittedly, the ineffi-
ciency is less if multiple missing values occur within the same patient, which is a
more realistic situation. The general message is that CC analysis discards valuable
information from incomplete records.

7.1.2 Interpretation of CC Analyses

In addition to inefficiency, there are further concerns with complete case (“CC”)
analyses in the presence of missing data. When different models are compared, it is
impossible to interpret results when the numbers of subjects vary across the anal-
yses. For example, when a univariate odds ratio is based on 450 subjects for each X
variable in Table 7.1, we cannot interpret the change in the odds ratio of an adjusted
analysis performed on 250 subjects, due to missing values for 200 of the 450
subjects. Differences between univariate and adjusted analysis may arise because of
the correlation between the predictors or because of a selection of subjects due to
missing values. This problem would not occur if we would analyze the same 250
patients in both univariate and adjusted analysis. Other problems include a cum-
bersome comparison of p-values between analyses. Neither can the performance of
different models be compared when they are based on different numbers of subjects.

Another concern is that bias may arise due to systematic differences between
subjects with complete and subjects with missing data. It appears that bias will
especially occur in the estimated regression coefficient for a predictor when miss-
ingness in X is associated with the outcome y [594]. This issue will be discussed in
Sect. 7.2.

7.1.3 Missing Data Mechanisms

Different mechanisms may lead to missing data (Table 7.2) [347, 478, 600]. It is
important to consider these, since approaches to handle missing data in the statis-
tical analysis rely on assumptions on the mechanism.

Missing values can occur completely at random (MCAR). Examples of MCAR
mechanisms include administrative errors that occur at random, such as accidents in
laboratories (e.g., spilling of material, handling errors, breakdown of equipment), or
postal mail that is lost. MCAR is a strict assumption and can be tested. With a
MCAR mechanism, the incomplete population is a random sample from the
complete population; hence subjects with missings are fully representative of the
population with complete data.
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In medical data, missing values often occur specifically in certain types of
subjects. If we can fully observe the variables that are associated with missingness,
we have a Missing At Random situation (MAR). This means that the probability of
a missing value on a predictor (“missingness”) is independent of the values of the
predictor itself, but depends on the observed values of other variables. The MAR
assumption is fulfilled if missingness is only related to measured values in the data
set and not to unmeasured variables. MAR examples include more missing values
in older subjects, subjects from a certain region, or from an earlier calendar time.
Also, the design of a study may intentionally leave values missing for some type of
subjects, which is by definition a MAR mechanism. For example, we may choose
not to measure a lab value in younger subjects.

With a MAR mechanism, the subjects with complete predictor and outcome
values are not representative anymore for the population where we want to gen-
eralize to. We will illustrate how a CC analysis affects estimates of the regression
coefficients and the estimated performance (see Sect. 7.2).

A problematic situation arises when data are Missing Not At Random (MNAR).
A MNAR mechanism implies that the missingness depends on the true values of the
variable, or on other variables that are not observed. Examples include selective
nonresponse on certain questions (e.g., sexual orientation, income), or clinical
condition (e.g., missing if a severe condition is present, which is not measured
accurately).

7.1.4 Missing Outcome Data

In diagnostic research, partial verification may often occur, i.e., that a subset of
patients is not verified by the reference (“gold”) standard and is excluded from the
analysis. If predictors of verification are known, we may consider this a MAR
situation for the outcome (Table 7.3) [123].

In prognostic research, we may be interested in a single outcome at a specific
point in time. This outcome may be missing in some subjects, e.g., 6-month
functional status after suffering from traumatic brain injury. Missingness makes that

Table 7.2 Three types of missing data mechanisms for predictors

Label Missing
mechanism

Description

MCAR Missing
completely at
random

Administrative errors, accidents

MAR Missing at random Missingness related to known patient characteristics, time or
place (“MAR on x”), or to the outcome (“MAR on y”)

MNAR Missing not at
random

Missingness related to the value of the predictor, or to
variables not available in the analysis
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we cannot analyze the relation between predictors and this outcome, while this
relation is of primary interest. If we know a patient’s functional status at 3 or
12 months, we might think about procedures to include patients with such infor-
mation in the analysis.

In survival analysis, the outcome for a patient can be missing in several situa-
tions. Follow-up time is nearly always insufficient to observe the outcome for all
subjects. Survival analysis techniques deal with this situation by considering these
incomplete observations as “censored”. Censoring is a valid approach if censoring
is non-informative. If all subjects were followed until the date of closure of a study
this assumption may be fully reasonable (“administrative censoring”, a MCAR
situation). If subjects drop out before the end of the study, we may assume
non-informative censoring, conditional on the predictors in the analysis model
[273]. This is a variant of the MAR assumption. The assumption is that any
mechanisms giving rise to censoring of individual subjects are observed in the data.
For example, in clinical studies, the continuation of follow-up should not depend on
a participant’s medical condition beyond what is captured by predictors. We have a
MNAR situation if follow-up outcomes are selectively missing while the reasons for
missingness cannot be captured fully by variables in the data. For example, in a
study of contralateral breast cancer incidence, we may be able to identify women
with an event since they return to the hospital, while it is unclear how many women
are still at risk for the event. A specific situation is that competing risks preclude the
observation of the outcome of interest, e.g., patients die before contralateral breast
cancer is diagnosed (Chap. 4).

7.1.5 Summary Points

Missing data mechanisms can be described as MCAR, MAR and MNAR
(Tables 7.2 and 7.3). Missing data may arise in predictors X and the outcome
y. Missing data lead to

• inefficient and potentially biased analyses of prediction research questions,
• difficulties in interpretation when analyses differ in numbers of subjects.

Table 7.3 Examples for three types of missing data mechanisms for outcomes

Label Example

MCAR Administrative censoring because of the end of follow-up

MAR Drop out of follow-up, related to observed patient characteristics
Partial verification by a reference standard in diagnostic research

MNAR Missingness related to the outcome status, or to variables not available in the
analysis
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7.2 Prediction Under MCAR, MAR and MNAR
Mechanisms

For illustration, we consider a simple linear regression model where a continuous
outcome y depends on two predictors (x1 and x2):

y ¼ b1x1þ b2x2þ error, with

x1 and x2 independent standard normal variables (distributed N(0, 1)); regression
coefficients b1 and b2 both 1, and the error distributed as N(0, 1).

We perform a set of simulations for this simple model to illustrate the impact of
missing value patterns in a complete case (CC) analysis, followed by imputation.
We created missing values for 50% of the x1 values in four scenarios, followed by
three scenarios with 50% missings in the y variable. A simple linear regression
analysis is performed to estimate coefficients b1 and b2, and the explained variance
by the model (R2). The R code is available at http://www.clinicalpredictionmodels.
org/.

7.2.1 Missingness Patterns

We created four missing data patterns for the x1 variable.

1. We first created 50% missing values in x1 fully at random to simulate an MCAR
situation. The correlation between x2 and x1 was zero in the original data and in
the random sample (Fig. 7.1). The distributions of x1 and x2 remained identical
to the complete data (mean 0, SD 1, Table 7.4).

2. Of more interest is the situation of “MAR on x”. We consider the situation that
missingness of x1 depends on x2, with x1 only known for higher values of x2
(Fig. 7.1). On average, the x2 values were +0.623 higher among those with
complete x1 values compared to the original data (Table 7.4). This is equivalent
to R2 = 39% (0.623^2).

3. Next, missingness of x1 was made dependent on y (“MAR on y”), with x1 only
known with lower values of y. This selection created some minor correlation
between x1 and x2 (R2 = 2%), while the variables were independent from each
other in the original data. The mean values of x1 and x2 were −0.36 each, while
they were 0 in the original data. The standard deviation (SD) was smaller (0.93
rather than 1, Fig. 7.1 and Table 7.4).

4. Finally, we consider a MNAR situation, where missingness of x1 depends on
the values of x1. We simulate that x1 is only known with higher values of x1
(mean +0.62, SD 0.78, Table 7.4). The mean and standard deviation of x2 were
unaffected by this missingness pattern.
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In addition, three more missing data patterns we created for the y variable.

5. We first created missing values in y fully at random to simulate an MCAR
situation. The correlation between x2 and x1 was zero in the original data and in
the random sample (Fig. 7.1).

6. A “MAR on x” situation was created in an identical way as for the x1 variable,
with identical impact on the x2 values: these were +0.62 higher among those
with complete y values compared to the original data, with less variability in x2
(Table 7.4).

Table 7.4 Descriptives of x1 and x2 under seven mechanisms for missing values

Missing mechanism Mean(x1) SD(x1) Mean(x2) SD(x2)

Missing x1

x1 MCAR 0 1.00 0 1.00

x1 MAR x2 0 1.00 0.62 0.78

x1 MAR y −0.36 0.93 −0.36 0.93

x1 MNAR 0.62 0.78 0 1.00

Missing y

y MCAR 0 1.00 0 1.00

y MAR x2 0 1.00 0.62 0.78

y MNAR 0.42 0.91 0.42 0.91

x1 MCAR x1 MAR on x2 x1 MAR on y x1 MNAR 

x2~x1

y MCAR y MAR on x2 y MNAR

x2~x1

Fig. 7.1 Illustration of patterns of missingness for two continuous predictors x1 and x2. Original
data are marked with a green X. Complete data under MCAR, MAR and MNAR are red circles.
Plots show results for n = 500
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7. Finally, in a MNAR situation, missingness of y depended on the values of y. We
simulated that y is only known with higher values of y (mean y +1.25; mean x1
+0.42; mean x2 +0.42; less variability in x1 and x2, Fig. 7.1 and Table 7.4).

7.2.2 Missingness and Estimated Regression Coefficients

We consider two univariate, or marginal, models y * x1 and y * x2, and the full
model y * x1 + x2. In the original data, the estimated regression coefficients b1
and b2 are on average 1 in each of these models, since x1 and x2 were generated as
independent N(0, 1) variables. We consider the seven missing data patterns as
described above (Sect. 7.2.1). We fit models in the complete cases: a CC analysis.

Missings in x1:

1. MCAR: Obviously, the estimated regression coefficients b1 and b2 are on
average 1 in the subjects with complete data (Fig. 7.2).

2. MAR on x: the estimated coefficient b1 remains unaffected in the model y * x1
in the subjects with complete data (Fig. 7.1). Remarkably, the intercept is +0.6
higher than 0. This +0.6 higher intercept reflects that we estimated this model in
data with relatively high x2 values (+0.62, Fig. 7.1, Table 7.5). Indeed, the
values of x2 were +0.6 higher than in the complete data (Table 7.4), and the
regression coefficient b2 was 1, exactly explaining the +0.6 higher intercept.

x1 MCAR x1 MAR on x2 x1 MAR on y x1 MNAR 

y ~ x1

y ~ x2

Fig. 7.2 Impact of patterns of missingness in x1 on estimated univariate regression coefficients b1
and b2 in the models y * x1 and y * x2. Original data are marked with +. Complete data under
MCAR, MAR and MNAR are red circles. Plots show results for n = 500
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The estimated intercept and coefficient b2 remained unaffected in the model
y * x2 for those with x1 available. In the full model y * x1 + x2, no bias
arises, since we appropriately condition on x2 when estimating the coefficient b1
for x1 (Table 7.5).

3. MAR on y: Bias arises if missingness of x1 depends on y, with x1 only known
with lower values of y. Remarkably, the bias is exactly the same for b1 and b2,
with intercept −0.6 and coefficient 0.7 (Fig. 7.2). In the full model, the intercept
was −0.48, b1 and b2 both 0.83 (Table 7.6). So, missingness of x1 in relation
to y, independent of x2, caused bias in both b1 and b2.
A correlation between missingness of a predictor and the outcome, hence, poses
a serious problem in prediction modeling. Note, however, that if we measure all
predictors prospectively, before the outcome is known, such a dependency
cannot occur in a direct way. We register the predictors before the outcome
[594]. This holds both for diagnostic and prognostic problems. If an association
between missingness of predictors X and outcome y is noted in a prospective
study, the explanation must be through other predictors, including predictors
that are further down the causal pathway. If these predictors are not measured,
we have an MNAR rather than a MAR situation.

4. MNAR: if missingness of x1 depended on the values of x1, no bias arose in the
models y * x1 or y * x1 + x2. These findings may be surprising to some, but
are in line with the principle of conditioning in regression modeling: estimates
of b1 and b2 are conditional on x1, and hence selection on x1 does not affect
these regression coefficients. In the model y * x2, the regression coefficient
was estimated correctly as 1.0, while the intercept (+0.6) reflected that the
subjects with complete data had higher x1 values (Tables 7.4 and 7.5).

Table 7.5 Regression coefficients under various missing value mechanisms, corresponding to
Fig. 7.2. The marginal models are: y * x1, and y * x2. We note biased estimates (in bold) in
analyses of complete cases (CC) and analyses of completed cases (with imputation, Sect. 7.3).
Results are based on simulations with 500,000 records

Missing
mechanisms

Complete cases (CC) Completed cases (imputation)

a b1 a b2 a b1 a b2

Missing x1

x1 MCAR 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

x1 MAR on x2 0.62 1.00 0.00 1.00 0.00 1.00 0.00 1.00

x1 MAR on y −0.83 0.70 −0.83 0.70 0.00 1.00 0.00 1.00

x1 MNAR 0.00 1.00 0.62 1.00 −0.45 1.13 0.00 1.00

Missing y

y MCAR 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

y MAR on x2 0.62 1.00 0.00 1.00 0.00 1.00 0.00 1.00

y MNAR 1.01 0.58 1.00 0.58 0.74 0.63 0.74 0.63
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In sum, regression coefficients b1 and b2 in this simple example remained unbiased
under various missing data generating mechanisms for x1. Bias in the CC analysis
arose in the situation of “MAR on y”, for example, that x1 was only known for
lower values of y.

Missings in y:

5. As expected, under MCAR, the estimated regression coefficients b1 and b2 are
on average 1 for the subjects with complete data (Tables 7.5 and 7.6).

6. With y MAR on x2, results are identical to x1 MAR on x2, with an intercept of
+0.62 in the model y * x2, because of high x2 values (Fig. 7.1, Table 7.5). In
the full model, no bias arises, since we appropriately condition on x2 when
estimating the coefficient b1 (Table 7.6).

7. Under MNAR, missingness of y depended on the values of y. Severe bias arose
in the models y * x1, y * x1, and y * x1+ x2. These findings are in contrast
to the findings for MNAR of the x1 variable.

In sum, missing values in y have a similar impact on regression coefficients of
predictors as missing X variables under a MAR mechanism. MNAR in y causes
severe bias though. As we will see below, imputation of missing values does not
work well under MNAR. Hence, MNAR in y is to be avoided at all costs, i.e.,
selective missingness of outcome, not related to predictors or other observed
variables that can be modeled in an imputation model.

Table 7.6 Regression coefficients and model performance under various missing value mech-
anisms. The full model is considered: y * x1 + x2. We note biases (in bold) in regression
coefficients of complete cases (CC) and analyses of completed cases (with imputation, Sect. 7.3),
under different missing value mechanisms. CC leads to the underestimation of model performance
under all missing mechanisms

Missing
mechanisms

Complete cases (CC) Completed cases (imputation)

a b1 b2 R2

(%)
a b1 b2 R2

(%)

Missing x1

x1 MCAR 0.00 1.00 1.00 67 0.00 1.00 1.00 66

x1 MAR on x2 0.00 1.00 1.00 62 0.00 1.00 1.00 66

x1 MAR on y −0.48 0.83 0.83 55 0.00 1.00 1.00 66

x1 MNAR 0.00 1.00 1.00 62 −0.45 1.15 1.00 61
Missing y

y MCAR 0.00 1.00 1.00 67 0.00 1.00 1.00 66

y MAR on x2 0.00 1.00 1.00 62 0.00 1.00 1.00 66

y MNAR 0.64 0.73 0.73 49 0.74 0.63 0.63 54
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7.2.3 Missingness and Estimated Performance

As noted above, patterns of missingness impact on estimates of the model intercept
and the regression coefficients. Missingness also impacts on the estimated model
performance. For the simple linear model y * x1 + x2 we consider the R2 values
to indicate explained variability by the model (Table 7.6). As expected, MCAR has
no impact on the estimated R2 value (R2 = 67%). MAR on x2 (either for x1 or for
y) leads to the estimation of performance with a narrower distribution of x2 values,
and hence lower explained variability (R2 = 62%). Similarly, MNAR for x1 leads to
the estimation of performance with a narrower distribution of x1 values (R2 = 62%).

Biased regression coefficients were found in the CC analysis if x1 was MAR on
y, with lower R2 (R2 = 55%). This lower performance is attributed to a narrower
distribution of x1 and x2 values (Table 7.4) and smaller regression coefficients b1
and b2 (Table 7.6). Even lower performance was found if the outcome y was
selective missing (MNAR for y, R2 = 49%).

7.3 Dealing with Missing Values in Regression Analysis

Multiple imputation (MI) has become the dominant approach in medical research to
deal with missing values (Fig. 7.3). MI is a specific imputation method, where
missing values are filled in (“imputed”) multiple times. MI methods make efficient
use of all available data, i.e., they do consider the information from incomplete
cases. Obviously, they cannot know the values of the missing data. Making edu-
cated guesses makes sense though. An alternative is to consider maximum

Fig. 7.3 Studies in PubMed
with the term “multiple
imputation”, published
between 1990 and 2018. We
note a remarkable increase
since 1990, with for example
41 publications in 2005, and
226 in 2015. Earlier
publications on multiple
imputation can be found in
the methodological literature
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likelihood (ML) approaches, which also exploit all available information in the
data, accounting for the missingness of some information for some subjects.
Both MI and likelihood methods are generally preferred over a CC analysis. Both
methods have theoretical and empirical support [347, 478, 489, 600]. Further focus
here is on imputation methods as a practical approach to missing values in pre-
diction research [532, 600].

7.3.1 Imputation Principle

Imputation methods substitute the missing values with plausible values so that the
completed data can then be analyzed with standard statistical techniques. In some
data sets, we may find a characteristic or combination of characteristics that closely
defines the predictor with missing values, for example, when variables are strongly
related to the same underlying phenomenon. For example hematocrit (“ht”) and
hemoglobin (“Hb”) are both red blood cell indices. If we aim to include Hb in a
prognostic model, it is easy to estimate Hb from ht for patients that have both
measurements (Fig. 7.4). The predicted Hb can subsequently be filled in for those
patients with ht available but Hb missing. This is an example of a regression
imputation approach (Table 7.7). In this example, it appears that the correlation
between Hb and ht is very strong.

20 30 40 50
ht (%)

8
10

12
14

16
18

H
b 

(g
/d
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Adj R2 = 0.97

Fig. 7.4 Correlation between
hematocrit (ht) and
hemoglobin (Hb) in 566
patients with traumatic brain
injury. The final imputation
model included ht (t statistic
123, p < 0.001) and gender
(t statistic 2.6, p = 0.01),
which had a similar adjusted
R2 statistic as the model with
ht alone (0.97)
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7.3.2 Simple and More Advanced Single Imputation
Methods

Simple imputation methods include the substitution of a missing value of a con-
tinuous predictor with the mean, or the most frequent category for a categorical
predictor. Such simple methods ignore potential correlation of the values of pre-
dictors among each other and are hence suboptimal. Further, they lead to an
underestimation of variability in the predictor values among subjects.

Regression imputation [152], or “conditional mean imputation” [347], does
consider the correlation among predictors. An imputation model is made to predict
the missing values (see, for example, Fig. 7.4). Expected values can then be
imputed reflecting the correlations in the data. An alternative is to take a random
draw from the distribution of predicted values (“stochastic regression imputation”
[152]). The random element reflects that the imputed values are not certain, which
is especially important in the case of relatively uncertain predicted values.

Simple, conditional mean, and stochastic regression imputation methods are
examples of single imputation methods. In contrast, Rubin proposed a multiple
imputation method for handling missing data [478].

7.3.3 Multiple Imputation

With multiple imputation, m completed data sets are created instead of a single
completed data set. Missing values are imputed m times using m independent draws
from an imputation model. As with (stochastic) regression imputation, the impu-
tation model aims to reasonably approximate the true distributional relation
between the missing data and the available information. This means that for each
variable with missing data, a conditional distribution for the missing data can be
specified given other data [136].

A challenge with imputation models is that we may want to predict missing
values for one predictor, using other predictors which also have missing values.

Table 7.7 Approaches to dealing with missing values, including imputation methods

Label X/Y used? Approach

CC – Complete case analysis; subjects with missing values are excluded
from the analysis

CM X Single imputation with the conditional mean. The conditional mean
can e.g. be estimated with a regression model

SI X + Y Single imputation with a random draw from the predictive distribution
from an imputation model (“stochastic regression imputation”)

MI X + Y Multiple imputation with a random draw from the predictive
distribution from an imputation model, repeated e.g. 20 times
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This may well be solved with data augmentation methods, which follow an iterative
process of an imputation step, which imputes values for the missing data, and a
posterior step, which draws new estimates for the model parameters based on the
previously imputed values [489]. This process continues until convergence. The
final imputed values are used as the first imputed dataset. The whole process is
repeated with different starting values to obtain m imputed datasets. The variation
among m imputations reflects the uncertainty with which the missing values can be
predicted from the observed data [489, 600].

After creating m completed data sets, m analyses are performed by treating each
completed data set as a real complete data set. Standard procedures and software
can be used, as we would for a data set without any missing values.

Finally, the results from the m complete-data analyses are combined, for
example, to obtain the estimates of regression coefficients and performance esti-
mates, while properly taking into account the uncertainty in the imputed values.
Point estimates of regression coefficients and other normally distributed quantities
are simply the average over the m imputed data sets. These estimates could in
principle also have been obtained in a large stacked data set instead of m separate
data sets. The variance of the estimates (e.g., regression coefficients, performance
measures) is the average of the variance as estimated within the m imputed data sets
plus the variance between these m data sets. The latter element is an essential
difference between single (conditional mean or stochastic) regression imputation,
or analysing a stacked data set, and multiple imputation. MI takes the uncertainty
into account that is caused by having to estimate an imputation model. The formula
for MI results is relatively straightforward. For an estimated regression coefficient b,
the variance over M imputed datasets is

Var bð Þ ¼ var bð Þ within mþ 1þ 1=Mð Þ var bð Þ between m

¼ mean var bmð Þð Þ þ 1þ 1=Mð Þ 1= M � 1ð Þð Þ R bm� mean bð Þð Þ2;

where m = 1 … M imputed data sets.
This formula (or closely related variants) is implemented in many software

packages that can perform MI. The number M for the imputed data sets is usually
set to 5 or 10, although M = 20 may be a better default. If M = 10, the mean–
variance estimates within the m imputed data sets are the dominant factor in the
formula, since the term (1 + 1/M) becomes 1.1 and the “between imputation”
variance is usually much smaller than the “within imputation” variance. Some
suggest that M should be as large as the average percentage missing values; so for
20%, M = 20 [600]. Setting M = 1 makes MI a single stochastic regression
imputation procedure (SI). In small data sets, M may need to be set to higher values
than in larger data sets, e.g. 50, since the differences between analyses in different
imputed data sets will be larger [600].

The most important step in any imputation procedure is the definition of the
imputation model to make the MAR assumption reasonable. We discuss this step in
more detail, largely following others [600, 601, 669].
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7.4 Defining the Imputation Model

The imputation model aims to approximate the true distributional relation between
the unobserved data and the available information. The imputation model is an
explicit attempt to model the MAR process. Imputation models can be specified for
each potential predictor with missing data, irrespective of the quantity of missing
data. Two modeling choices usually have to be made: the form of the model (e.g.,
linear, logistic, polytomous, Chap. 4), and the set of variables that enter the model,
including potential transformations.

For binary predictor variables (e.g., the presence or absence of a patient char-
acteristic) it is convenient to use a logistic regression model, for categorical vari-
ables with three or more ordered levels a polytomous logistic model and for
continuous variables a linear regression model. A problem may arise when impu-
tations are outside the observed range of values. In such cases, it may be reasonable
to truncate imputed values, so that they remain within plausible ranges; or use a
predicted mean matching approach, which prevents such imputations [600].

7.4.1 Types of Variables in the Imputation Model

The variables in the imputation model can be differentiated into various categories.
All predictors that appear in the prediction model (y* X) should be included in the
imputation model. Failure to do so may bias the analysis. This is known as the
principle of congeniality, i.e., that the imputation model is at least as rich as the
prediction model.

Next, some variables that do not appear in the prediction model may serve as
auxiliary variables. For example, calendar time or geographic site may be associ-
ated with missingness and should be considered for the imputation model. Finally,
we need to include the outcome. This may appear a bit circular, since the aim of a
prediction model is to predict the outcome. However, not including the outcome in
the imputation model may cause substantial bias in the MI analysis of prognostic
effects, even in the MCAR situation [385]. Severe dilution of the predictive effects
may occur if the outcome is not included in the MI procedure. For example, if 50%
of the data is MCAR, omitting the outcome in the imputation model for that
predictor approximately halves the estimated regression coefficient.

Imputation of the outcome remains controversial, although some examples have
been given where efficiency gains may be obtained. As always with imputation,
these gains come at the price of assuming that the imputation model is reasonable.
An interesting proposal is to perform multiple imputation for the outcome, followed
by deletion of the imputed outcome (MID) [656]. When there is something wrong
with the imputed y values, MID protects the regression estimates from these
problematic imputations, while estimation of the X imputations has benefited from
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the full data structure. MID may offer somewhat more efficient estimates than an MI
strategy that deletes records with missing y from the start of the modeling process.

It has been observed that including many variables in the imputation model tends
to make the MAR assumptions more plausible. Putting in noise variables does not
harm the imputation process [106], unless computational problems arise because of
multicollinearity and inclusion of many predictors with missing data [99]. It is,
therefore, generally convenient to include all predictors, some auxiliary variables,
and the outcome in the imputation model for an MI procedure.

7.4.2 *Transformations of Variables

A difficult topic is how transformations among X variables and between X and
y should be handled. Current software for MI deals with this issue in different ways.
The mice function assumes linearity of associations among X variables and between
X and y in the default setting. Specific forms of imputation models can be specified
by the user, using, for example, x + x2 for some X variables. In contrast, the
aregImpute function searches for spline transformations among variables such
that the correlations are maximized. If nonlinear associations are present, this may be
of advantage. However, it is inefficient in the case of truly linear associations. The
default settings can be changed such that aregImpute resembles mice. Indeed, very
similar results in simulations between mice and aregImpute have been found when
linearity was enforced (using the identity function (“I”) in aregImpute).

Note that the principle of congeniality should be respected; if a nonlinear
analysis of a specific x variable is planned, the imputation model should be flexible
for this predictor. Similarly, if interactions are considered in the regression model,
the imputation model also needs to include these. A straightforward approach is to
transform, then impute—i.e., calculate the interactions or squares in the incomplete
data and then impute these transformations like any other variable [657]. This
“transform-then-impute” method yields good regression estimates, even though the
imputed values may be inconsistent with one another. We should not aim to correct
inconsistent imputations of x and x2 [657].

7.4.3 Imputation Models for SI and MI: X and y

For single imputation with the conditional mean (e.g., from a regression model),
only the predictor variables should be used in the imputation model [594]. If the
outcome y is also used in the imputation model, we exaggerate the strength of
relations between predictors and outcome in the prediction model. In contrast,
stochastic regression imputation should be performed with the outcome y. This is
because a random element is added to the predicted values from the imputation
model, similarly to an MI procedure (see Table 7.7).
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7.4.4 Summary Points

Imputation models for a multiple imputation (MI) procedure need to include

• all predictors and the outcome considered in the prediction model;
• auxiliary variables, related to the predictors, but not included in the prediction

model;
• outcomes related to the outcome considered in the prediction model.

7.5 Success of Imputation Under MCAR, MAR
and MNAR

7.5.1 Imputation in a Simple Model

Multiple imputation was applied in the simple regression model y * x1 + x2,
where seven types of missing data were generated (four for x1, three for y,
Sect. 7.2). We consider estimates of regression coefficients (bias) and estimates of
predictive performance (R2).

Overall, MI gave good results in this simple simulation study: regression
coefficients were at least as well estimated as a CC analysis (Tables 7.5 and 7.6),
and performance was estimated as R2 = 66% rather than R2 = 67% (Table 7.6).
Under MNAR for x1, CC analysis was unbiased for the regression coefficients, but
underestimated predictive performance for the original, complete data. With
imputation, regression coefficients were quite biased. So, this simulation confirms
that MNAR is a situation that MI cannot handle well.

7.5.2 Other Simulation Results

White and Carlin evaluated various models of the form y * x1 + x2, similar to the
model described above [667]. They confirmed the results with respect to bias for
linear models, and also considered logistic regression models. Overall, they found
MI superior to CC across a wide range of settings.

Under MCAR, MI was more efficient than CC for linear but not logistic
regression. For other missing data mechanisms, bias might arise in one or both
methods, but bias tended to be smaller for MI than for CC. Data analysts should aim
to understand the nature of their missing data as much as possible; and perform both
CC and MI. If it seems plausible that both CC and MI may be valid, MI results
should be preferred because of the greater efficiency.
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7.5.3 *Multiple Predictors

In prediction models, we usually study more than 2 predictors. We reconsider the
situation of Table 7.1, where 250 subjects have 1 missing value, and 250 have fully
complete data for 5 predictors. Regression coefficients were set to 1 for all 5
predictors.

A CC analysis uses only 250 subjects. Regression coefficients are unbiased, but
have considerably more variability than the estimates from an MI procedure
(Table 7.8). The conditional mean (CM) and stochastic SI procedures perform quite
similar to MI. All approaches correctly estimate the predictive performance as an
adjusted R2 around 35%.

Table 7.8 Regression under different missing value mechanisms, and the effect of single and
multiple imputation procedures. Results are means over 1000 repetitions of samples with 500
subjects. The square root of the mean squared error was highlighted in bold for the strategy with
the best result in dealing with missing values

Table 7.1 b ± SE;
sqrt(MSE)

Adj
R2

Mix of mechanisms b ± SE;
sqrt(MSE)

Adj
R2

X correlated 10% missing
(total 50%)

20% missing (total 75%)

Original data, no missings
(n = 500)

b1
b2
b3
b4
b5

1.00 ± 0.18; 0.18
1.01 ± 0.19; 0.19
1.00 ± 0.19; 0.20
0.99 ± 0.19; 0.20
1.00 ± 0.20; 0.20

35%

1.00 ± 0.18; 0.18
1.00 ± 0.19; 0.19
1.00 ± 0.19; 0.19
1.00 ± 0.19; 0.20
1.00 ± 0.20; 0.20

35%

Complete case analysis
(n = 250)

b1
b2
b3
b4
b5

1.00 ± 0.26; 0.26
1.03 ± 0.27; 0.27
0.98 ± 0.27; 0.27
1.00 ± 0.28; 0.28
1.00 ± 0.28; 0.28

35%

0.66 ± 0.36; 0.49
0.66 ± 0.38; 0.51
0.69 ± 0.33; 0.45
0.68 ± 0.33; 0.47
0.67 ± 0.39; 0.52

19%

Conditional mean with X
(n = 500)

b1
b2
b3
b4
b5

0.99 ± 0.19; 0.19
1.01 ± 0.20; 0.21
0.99 ± 0.21; 0.21
0.98 ± 0.21; 0.21
0.99 ± 0.21; 0.22

33%

1.08 ± 0.21; 0.23
0.75 ± 0.23; 0.32
1.05 ± 0.23; 0.24
1.07 ± 0.24; 0.25
1.03 ± 0.28; 0.29

27%

SI with X + y
(n = 500)

b1
b2
b3
b4
b5

1.00 ± 0.18; 0.22
1.01 ± 0.19; 0.21
1.00 ± 0.19; 0.23
1.01 ± 0.19; 0.22
1.00 ± 0.20; 0.23

36%

1.03 ± 0.18; 0.25
1.02 ± 0.19; 0.30
1.03 ± 0.19; 0.27
1.03 ± 0.20; 0.27
1.02 ± 0.23; 0.34

35%

(continued)
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A more complex situation was also simulated. More missing values were created
(20% versus 10%), with more complex missing value mechanisms for correlated x1
– x5 (covariance 0.2 for all). MCAR was used for x1; MAR on y for x2; MAR on x1
for x3; MAR on x2 for x4; and MNAR for x5. A CC analysis led to biased estimates
for all regression coefficients, which can be attributed to the MAR on y mechanism
for x2. Hence, MAR on y for only one of the five predictors was sufficient to bias all
coefficients. Also, the variability was considerable, since only 25% of the subjects
were included in the CC analysis. MI did quite well overall. SI was a next best, with
a slightly poorer estimation of the regression coefficients. In the conditional mean
(CM) analysis, the regression coefficient b2 for x2 was underestimated, but less so
than with a CC analysis. Coefficients b3–b5 were well estimated. Both the CC and
CM analyses underestimated the predictive performance (adjusted R2 19% and 27%
instead of R2 = 35%).

7.6 Guidance to Dealing with Missing Values in Prediction
Research

We provide some guidance for dealing with missing values and imputation in
prediction research, based on previous research, findings in simulations, and
practical considerations.

Table 7.8 (continued)

Table 7.1 b ± SE;
sqrt(MSE)

Adj
R2

Mix of mechanisms b ± SE;
sqrt(MSE)

Adj
R2

MI with X + y
(n = 500)

b1
b2
b3
b4
b5

1.00 ± 0.19; 0.19
1.02 ± 0.20; 0.21
1.00 ± 0.21; 0.21
0.99 ± 0.21; 0.21
0.99 ± 0.21; 0.22

35%

1.03 ± 0.22; 0.22
1.02 ± 0.26; 0.26
1.02 ± 0.23; 0.24
1.03 ± 0.23; 0.24
1.02 ± 0.28; 0.29

35%

SI: Single imputation, i.e., the first set of imputations from a multiple imputation (MI) procedure
The true model was: y = x1 + x2 + x3 + x4 + x5 + error
For the 10% missing example, all X variables were independent standard normal, and error N(0, 4).
10% MCAR per variable were created as in Table 7.1
For the 20% missing example, X variables were correlated
x1 * N(0, 1); x2 * 0.2 * X1 + N(0, 0.98); x3 * 0.2 * X1 + 0.16 * x2 + N(0, 0.97)
x4 * 0.2 * x1 + 0.16 * x2 + 0.14 * x3 + N(0, 0.96)
x5 * 0.2 * x1 + 0.16 * x2 + 0.14 * x3 + 0.12 * x4 + N(0, 0.95); error * N(0, 4). For each
X variable, 20% missings were created, with MCAR for x1; MAR on y for x2; MAR on x1 for x3;
MAR on x2 for x4; and MNAR for x5. Covariances of missingness were set at 50%
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7.6.1 Patterns of Missingness

As a preliminary step, it is recommended to investigate the missing data patterns.

1. We need to examine how many missing values occur for each potential pre-
dictor; this examination is part of the basic approach to any data analysis.
Missing values are easily noted when examining frequency distributions of the
predictors.

2. We want to know whether predictor values are correlated with missingness of
other predictors; this determines how well we may be able to impute a missing
value, and how useful the remaining information on subjects without missing
values is. We may also study associations with auxiliary variables, such as
calendar time and geographic site.

3. Regression trees and logistic regression analysis can be used to assess associ-
ations between predictor values and missingness of the predictor. When asso-
ciations are identified, the MCAR assumption is violated. We cannot test for
MNAR versus MAR.

4. As an extension of point 3, it is especially important to assess whether miss-
ingness was associated with the outcome. This can easily be assessed by
examining the outcome, e.g., the percentage mortality, by missingness of the
predictor (value available/missing). Often, we may note a poorer outcome in
those with missing values. The first question is whether this association can be
explained by observed predictors. Hereto, logistic regression analysis can be
helpful, with missingness as the dependent variable, and the outcome y and other
predictors as covariables. If the study was truly prospective, a missing X–y as-
sociation can only occur through other characteristics; it is logically impossible to
have selective missingness on the outcome when the data were collected before
the outcome was known. The other characteristics that mediate the observed
missingness—outcome association may be known; this is a MAR on x situation.
If some of the mediating predictors are not known, or measured imprecisely
(measurement error), some kind of residual confounding occurs, leading to an
MNAR situation. Imputation with y may at least partly resolve this situation.

5. Subject matter knowledge should be used to judge plausible mechanisms for the
missing values, for example, whetherMNAR is plausible. TheMCARassumption
can be tested, andmay often be rejected inmedical research. TheMARassumption
cannot be tested, and MNAR, hence, always remains a possibility.

7.6.2 Simple Approaches

A historically popular method in epidemiological research was to create a category
“missing” for missing values in the regression analysis. Such a “missing indicator
method” is especially straightforward for categorical predictors. For example, we
can recode a predictor that was incompletely recorded as “absent”, “present”, and
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“missing”. Such a procedure ignores the correlation of the values of predictors
among each other. Simulations have shown that the procedure may lead to severe
bias in estimated regression coefficients [207, 385]. The missing indicator should
hence generally not be used. An alternative in such a situation might be to change
the definition of the predictor, i.e., by assuming that if no value is available from a
patient chart, the characteristic is absent rather than missing. This approach is
followed in many analyses of observational data with electronic health records: if
something is not recorded, it is assumed to be absent [452].

7.6.3 More Advanced Approaches

Systematic missingness of a predictor may occur in some situations:

• a new test or biomarker is only available in a more recent series of patients.
Simulations found that imputation works as well as other regression types or
Bayesian approaches [405].

• data from several studies are combined in a meta-analysis, while some predic-
tors are systematically missing in some studies. A multilevel structure is then
needed in the imputation model to respect the principle of congeniality and
appropriately acknowledge between study differences in predictor effects [19].
MI methods have been proposed that use random effects for the study variable,
and can provide imputations for continuous and binary predictors. Some
methods allow for different variances in predictors per study, which can how-
ever only be estimated reliably in large studies [453]. If small clusters are
analyzed, it may be better to assume identical variances across clusters
(homoscedasticity) [282].

7.6.4 Maximum Fraction of Missing Values Before
Omitting a Predictor

When we are interested in the specific effect of a predictor, the validity of an
analysis is higher with fewer missing values. If a substantial number of missing
values occur specifically in one predictor, it may be convenient to omit this pre-
dictor from the analysis. Especially when the predictor is of primary interest, it
would not be natural to impute the missing values. For example, when we had
missing treatment allocation for some patients in a randomized controlled trial
(RCT), we would never impute these missing values.

It is difficult to provide a guide to what is still an acceptable number of missing
values. Evidence for selective missingness (e.g., MAR on y) may already make a
CC analysis of a predictor with 10% missings suspect; in other cases 20% miss-
ingness may be quite acceptable (e.g., MCAR assumed).
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Theoretically, MI solves any missing data problem, as long as we correctly
model the missing data mechanism. So, the effect of a predictor with 90% missing
values could still be estimated, but with relatively large uncertainty.

In practice, we can only approximate the missing data mechanism. Effects of
predictors with more than 50% missings in a specific data set may generally be
distrusted. Such predictors might hence be discarded from a predictive analysis,
because of too many missings. Other considerations may include the reasons for
missingness. If missings occur because of the study design, we may be less worried
in interpreting findings based on a relatively limited set of known values. For
example, in the TBI case study (Chap. 8), missing values occurred especially
because some studies included in the meta-analysis did simply not record the
predictor.

7.6.5 Single or Multiple Imputation for Predictor Effects?

In prediction research, we may generally think of studying effects of predictors that
are of specific interest (in univariate and in adjusted analyses); and of studying
predictions (deriving prognostic equations, with the evaluation of model perfor-
mance). We usually start a prognostic analysis with a univariate analysis of pre-
dictor effects, e.g., a cross-tabulation of a predictor with a binary outcome or with
time-to-event in a Kaplan–Meier survival analysis. Equivalently, we can calculate
the regression coefficients in a univariate logistic or Cox regression to obtain
estimates of predictor effects. A complete case analysis is the most obvious
approach as long as we do not have a MAR on y or MNAR in y situation
(Table 7.5). In Table 7.9 this is indicated as ignoring incomplete records for
variable x1. An example may be that we are interested in the prognostic effect of the
Motor score from the Glasgow Outcome Scale in TBI (see Chap. 8).

Next, we are often interested in adjusted effects, i.e., the effect of x1 corrected for
correlation with other variables (x2 to xi). The variables x2 to xi are considered as
confounders, since they may be associated with the outcome and with x1. Such an
adjusted analysis may well be done with the imputation of missing data for the
confounders (x2 to xi), but without imputation of x1. This ensures comparability
with the univariate analysis, because numbers will be the same in univariate and
adjusted analyses. MI is preferable, although SI will only slightly underestimate the
variability in the adjusted regression coefficient for x1. MI for the confounding

Table 7.9 Dealing with missing values to estimate predictor effects

Analysis Predictor of interest x1
(e.g. motor score)

Confounders x2–xi
(other predictors)

Univariate analysis Complete case –

Adjusted analysis Complete case SI/MI

148 7 Missing Values



variables results in better estimates of the variability in the adjusted regression
coefficient. This will be illustrated for traumatic brain injury (see Chap. 8).

An alternative is to perform univariate and adjusted analyses with imputed data,
both for the predictor of interest x1 and the confounders x2 to xi. Many medical
researchers will, however, appreciate univariate analyses that stay closer to the
observed data, at least as an initial analysis.

7.6.6 Single or Multiple Imputation for Deriving
Predictions?

If we focus on the derivation of predictions from a model, again MI may be the
preferred approach. However, given that having multiple completed data sets
complicates various analyses, some next best strategies can be envisioned, espe-
cially for situations with relatively few missings. Then single imputation may be a
reasonable alternative: a stochastic SI data set can easily be created as the first of a
series of MI data sets. Every investigator can easily work with such an SI data set,
and does not have to bother with the combination of results over different MI data
sets. More experienced data analysts may consider this advantage trivial. The
GUSTO-I data set, which is used as an example throughout this book, is a CM
dataset, with at most 8% imputed values for some of the predictors [329].

The primary disadvantage of stochastic SI is the underestimation of the uncer-
tainty associated with imputed values. A second disadvantage is less stability in the
point estimates, because of the random element in stochastic SI. These disadvan-
tages are less relevant with relatively few missing values, and in large data sets. MI
may be preferable with relatively small data sets (for example, with less than 100
events), since imputations will vary considerably from imputation to imputation. In
addition to the size of the data set, the fraction of missings may guide the number of
imputations. For example, we might use the average percentage of missings for the
number of imputations: 5 imputations for 5% missingness on average, 20 for 20%,
50 for 50% [600].

To derive predictions for individual subjects in our development data set, it is
often advisable to impute missing data for all predictors. An exception is a situation
that we know that we cannot obtain complete data in future applications. It may
then be reasonable to develop the full prediction model in a selection of subjects
where the data will be available in the future.

Finally, we may want to present the prognostic model in a simple form for
practical application (Chap. 18). A score chart based on rounded coefficients is easy
to obtain with SI. MI will provide better estimates of the variability of the scores,
but variability is only of secondary interest, if presented at all. MI may, therefore,
have only a minor advantage over SI for model presentation. In summary, multi-
variable analysis, performance estimation and model presentation can all be done
both with SI or MI approaches.
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7.6.7 Missings and Predictions for New Patients

If a model is applied in a new setting, predictor values may be missing. Several
approaches are possible, including the imputation of missing values with an
imputation model derived from the development sample. A straightforward solution
is to provide predictions for submodels of a prediction model, i.e., models that only
use the available predictors [167].

7.6.8 *Performance Across Multiple Imputed Data Sets

Various performance measures can be estimated for prediction models (Chaps. 15
and 16). Normally distributed measures can readily be combined with Rubin’s rules
across imputed data sets, for example, an estimate for calibration-in-the-large with a
model intercept, and the calibration slope with a regression coefficient for the linear
predictor. The area under the ROC curve, or concordance statistic (c), ranges
between 0 and 1. A logit transformation makes that we can better combine esti-
mates, either from multiple imputed data sets, or in the context of a meta-analysis
(Table 7.10) [521].

A specific challenge lies in the estimation of optimism in performance when
missing values have been imputed. We will discuss various techniques for internal
and external validation in Chap. 17, including cross-validation and bootstrap
resampling. For example, bootstrapping might be performed within each imputed
data set. This is a common and straightforward approach: we determine measures of
model performance within imputed datasets and subsequently pool these for overall
measures of model performance [677]. Alternatively, we might impute within each
bootstrap sample. Such multiple imputation after bootstrapping is computationally
intensive. Any differences will especially arise in small data sets with many missing
values, where we would need a substantial number of imputations.

Table 7.10 Parameter of interest in prediction modeling studies and ways to combine estimates
after MI [521, 677]

Parameter Rubin’s rules on

Regression coefficients original

Tests of coefficients Wald tests

Linear predictor per patient original

Calibration in the large model intercept/log(baseline hazard)

Calibration slope original

AUC or c-statistic logit(c)
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7.6.9 Reporting of Missing Values in Prediction Research

Suggested reporting guidelines [84] emphasize 3 major issues:

1. Quantification of the completeness of predictor data;
2. Approaches to dealing with missing predictor data (including imputation

methods), and
3. Exploration of the missing data (including results for complete case and com-

pleted case analysis, Table 7.11).

Some examples of dealing with missing values are in Table 7.12. Methods include
single imputation (simple, conditional mean, stochastic regression), or multiple
imputation. More details of these studies are provided at the book’s website
www.clinicalpredictionmodels.org.

Table 7.11 Guidelines for reporting of prognostic studies with missing predictor data [84]

Issue Aspect

Quantification of
completeness

If completeness of data is an inclusion criterion, specify numbers
excluded
Provide total n and n with complete data
Report frequency of missingness for every predictor

Approach to dealing with
missing data

Provide sufficient details on the methods used, including
references if imputation was done
Specify the n of patients and number of events for all analyses

Exploration of missing
data

Discuss reasons for missingness
Present comparisons of characteristics between cases with and
without missing data

Table 7.12 Imputation methods as applied in some examples

Method Characteristics Example

Simple
imputation

Mean or most frequent category Guillain-Barré: few missings [631]

Conditional
mean
imputation

Estimate predicted value based on
correlations between predictors

Historical examples: GUSTO-I
[329], ReHiT study [551]

Stochastic
regression
imputation

Draw imputed value from
distribution of predicted values

Adjusted analysis in the IMPACT
study [398]

Multiple
imputation

Develop imputation model and draw
imputed value from the distribution
of predicted values; combine
estimates over m imputed data sets

Ovarian cancer [99], testicular cancer
[617], prostate cancer marker missing
in historic patients [405]
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7.7 Concluding Remarks

Missing values pose important challenges in prediction research. Straightforward
methods such as complete case analysis are often oversimplistic from a method-
ological point of view. Most simulations that have been performed on imputation
conclude that imputation methods are superior to complete case analysis [275].
Indeed, multiple imputation is gaining rapidly in acceptance in medical research.

The best solution for missing values is to ensure that no data are missing. It may
sometimes be possible to retrieve missing data by going back to medical charts. In
some settings, it may be reasonable to define missing as “No” [452]. If charac-
teristics are measured multiple times, we may sometimes use a measurement from
another time point, as will be illustrated for the Motor score component of the
Glasgow Coma Scale in a case study (Chap. 8). If missing values do occur, they
have to be dealt with in a reasonable way, i.e., such that the research questions are
addressed efficiently.

The research question is not to estimate the missing values correctly. We aim to
estimate model parameters (univariate effects, adjusted effects, multivariable
effects) and make predictions (derive predictive equations, assess performance).
These parameters should be valid for the population where the model will be
applied in the future. The sample serves to learn for this future application, and we
should use all available information. Imputation of some missing values prevents
that we throw away useful information recorded for other predictors. The primary
benefit of imputation is hence an increase in power to detect prognostic effects, and
in deriving better predictions. A second benefit of imputation is comparability of
results over analyses. The price we pay for these benefits is making the MAR
assumption, which can be addressed with an appropriate imputation model. We
hence need to include all variables (predictors, outcome, and auxiliary variables)
that are potentially correlated with the missingness of the predictor in the impu-
tation model.

As in any statistical analysis, the sensible judgment of the analyst is important,
based on subject knowledge and the research question. Comparing results of the
complete case and completed case analyses may be informative, and together with a
judgment about the plausibility of assumptions in a particular situation, we can
decide on which is the primary analysis.

7.7.1 Summary Statements

• Missing values in predictors are common, and lead to inefficiency, difficulties in
comparing results between analyses with different numbers, and potentially
biased regression coefficients and predictions
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• Theoretical analyses and simulations conclude that imputation methods, espe-
cially multiple imputation, are often superior to complete case analyses

• Advanced stochastic single imputation methods, based on the first data set of a
multiple imputation sequence, may be a reasonable start to address a number of
prognostic research questions

• Imputation methods make the assumption of MAR; more specifically, MAR
given the information used in the imputation process

• The MAR assumption is not testable, but becomes more reasonable with
imputation models that include a wide range of characteristics, including pre-
dictors, the outcome, and auxiliary variables.

7.7.2 *Available Software and Challenges

Multiple imputation software is widely available nowadays, and further improve-
ments may be expected during the coming years. For R, the mice library is freely
available (developed by Van Buuren et al.) [599]. It includes state of the art
functions, has flexible settings, but the computation time can be substantial. An
alternative is the aregImpute function developed by Harrell, which performed
well in a number of assessments. Stata has sophisticated functions. With any
imputation procedures, we should check distributions of the observed and imputed
values, e.g., by histograms.

Several methodological challenges may require further study:

• In what circumstances is MI needed, and is SI not sufficient, in prognostic
research?

• What are the main risks when incorrectly specifying the imputation model?
• How should we deal with missing values in a meta-analysis context? [19]

(Chap. 8).
• If some sort of selection process is done, e.g., stepwise selection, how can this

be combined with imputation? [678] (Chap. 11).
• How should we perform internal validation, e.g., bootstrapping, when missing

values are imputed? Is it sufficient to validate the modeling process within each
imputed data set? [401, 677] (Chaps. 17 and 23).
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Questions

7:1. Missing values versus incomplete cases

(a) How many values are missing from the required values for a model with 3
predictors x1 – x3, estimated in 1000 subjects, where x1 has 100, x2 200,
and x3 400 missing values?

(b) If the missing values occur completely at random, how many subjects
would approximately be discarded in a complete case (CC) analysis?

7:2. MCAR, MAR or MNAR?

Consider a prognostic study among patients undergoing heart valve surgery aiming
to quantify the predictive value of intraoperative characteristics (e.g., intraoperative
blood pressure and complications) for mortality after 30 days (outcome). What type
of missingness pattern do we have in the following two situations?

(a) Among patients who actually developed an intraoperative complication,
the intraoperative data are often missing?

(b) Among patients with a less severe indication for surgery based on
presurgical data, the intraoperative data are missing?

Suppose that clinicians do not perform a diagnostic test if their impression is that
the patient does not have the diagnosis of interest. This impression may partly be
captured by clinical variables that are observed, but also depend on some predictors
that are not registered in the data.

(c) Is this a MAR or MNAR situation?

7:3. MAR on y in Fig. 7.1

Why does a missing value mechanism of x1 MAR on y result in bias both for b1
and b2 in Fig. 7.1?

7:4. Problems of overall mean imputation

What is the effect of performing overall mean imputation (i.e., imputing the mean of
the observed values for the missing values) on estimated regression coefficients and
standard errors?

7:5. Imputation with outcome

Consider 90% missingness for a predictor x1 which is not related to other pre-
dictors. It is recommended to perform SI or MI with the outcome as one of the
variables in the imputation model (Table 7.7). What would happen to the univariate
regression coefficient of x1 if a completed data set were analyzed, where values
were imputed without using y?
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7:6. Complete case analysis or imputation?

(a) For what missingness patterns is complete case analysis a reasonable
solution?

(b) In what respects is multiple imputation preferable above single
imputation.
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Chapter 8
Case Study on Dealing with Missing
Values

Background A case study is presented on prognostic modeling in patients with
moderate and severe traumatic brain injury (TBI). Individual patient data from
several studies were available to: (a) quantify predictor effects; (b) develop and
validate prognostic models. Missing values were a key issue. Some values were
systematically missing per study, since few studies recorded all predictors of
interest. The use of single and multiple imputation methods is illustrated with a
detailed description of the analyses in R software.

8.1 Introduction

8.1.1 Aim of the IMPACT Study

The overall aim of the IMPACT study was to optimize the methodology of ran-
domized clinical trials in the field of TBI, such that chances of demonstrating
benefit with an effective new therapy or therapeutic agent would be maximized
[357]. Randomized controlled trials (RCTs) in TBI are complex due to the
heterogeneity of the population. None of the multicenter RCTs conducted in this
field over the past decades have convincingly shown the benefit of new therapies in
the overall population [374]. The project was labeled IMPACT: International
Mission on Prognosis and Analysis of Clinical Trials in TBI: http://www.tbi-
impact.org/ [357]. Individual patient data (IPD) from trials and surveys were made
available for methodological research.

Prognosis was central to the aims of the project. Prognostic models can be used
for the efficient selection of patients (excluding those with an extreme prognosis,
either very poor or very good) and for covariate adjustment of the treatment effect
(with several advantages as described in Chap. 2) [242]. In TBI, the outcome is
commonly assessed with the Glasgow Outcome Scale (GOS), which is an ordinal
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scale (Table 8.1) [281]. The scale ranges from dead, vegetative state, severe dis-
ability to moderate disability and good recovery. In trial analyses, the GOS is often
dichotomized as mortality versus survival (category 1 vs. 2–5), or as unfavorable
versus favorable (category 1–3 vs. category 4, 5), although it is preferable to exploit
the ordinal nature of this scale [464]. One approach is the “sliding dichotomy”
analysis, in which the split for dichotomization of the GOS is differentiated
according to the baseline prognosis established prior to randomization [397].
Another approach is to use a proportional odds model for the GOS as an ordered
outcome (see Chap. 4).

We aimed to predict the dichotomized 6-month GOS. Missing data were a key
problem in the prognostic analysis [371]. We focus on approaches for dealing with
missing data for two types of research questions: predictor effects and prediction of
6-month outcome.

8.1.2 Patient Selection

Our focus was on patients with severe TBI (Glasgow Coma Score, GCS 3–8), but
cohorts that included patients with moderate TBI (GCS 9–12) were also considered.
The GCS is a measure for the level of consciousness. Essentially, an individual
patient data meta-analysis (IPD-MA) of 11 studies was performed, including 8
RCTs, and 3 relatively unselected prospective surveys, with the potential for ana-
lyzing data on 9205 patients. Complete outcome data were available for 8719 of the
9205 patients (95%). We further excluded children, leaving 8530 patients for
analysis. The studies are arbitrarily designated as 1–11 in Table 8.2. The
meta-analysis was a continuation of analyses of 2 related RCTs (Tirilazad,
Table 8.2: study ID 1 and 2) [259].

8.1.3 Potential Predictors

Extensive univariate analyses were performed within the IMPACT study to assess
potential predictors. In combination with a review of the literature, we identified 16
predictors for further multivariable analyses [398]. These predictors included

Table 8.1 Definition of the Glasgow Outcome Scale [281]

Category Label Definition

1 Dead –

2 Vegetative Unable to interact with the environment; unresponsive

3 Severe disability Conscious but dependent

4 Moderate disability Independent, but disabled

5 Good recovery Return to normal occupational and social activities; may have
minor residual deficits
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demographic characteristics (age) [399], injury details (cause of injury) [85], sec-
ondary insults (hypoxia and hypotension) [372], clinical measures of injury severity
(Glasgow Coma scale and pupillary reactivity) [364], characteristics of the admission
CT scan [359], and laboratory values [595]. For prognostic modeling, a core set of 3
strong predictors emerges from the literature since the 1970s, consisting of age, motor
score, and pupillary reactivity [400]. We subsequently expanded this core model to a
7-predictor model by including secondary insults and CT characteristics (CT classi-
fication, traumatic subarachnoid hemorrhage) [559]. Further modeling studies were
performed with the inclusion of more predictors, but are omitted here.

8.1.4 Coding and Time Dependency of Predictors

An important issue was the definition of predictors across the 11 studies.
Definitions varied between data sets. The data extraction was guided by a data
dictionary and original study documentation, which standardized the format of
variables entered into the pooled data set. A consistent set of categories for coding
was sought for each variable by collapsing more extensive coding into a simpler
format. For example, the presence of hypoxia on admission was collapsed into a
binary coding present/absent, although some datasets contained a more detailed
coding as “No/Suspect/Definite”.

A further issue was related to the time of measurement of a predictor. We aimed
to consider predictors that would be available when patients were to be enrolled in a
RCT, in line with the overall aim of the project. An interesting example is the motor
score, which is the prognostically most important element of the GCS among those
with moderate or severe injuries. Four time points for assessment were defined:
pre-hospital, first hospital (in case of secondary referral), admission, and post sta-
bilization. Most data sets had data for at least 2 of these time points. For prognostic
analysis, we aimed to select the latest reliable assessment on admission to corre-
spond with a baseline assessment prior to randomization, i.e., the post-stabilization
score. If this was missing we used the next reliable value going back in time
(admission, first in-hospital, pre-hospital). However, sometimes the Motor score is
not clinically obtainable because of early sedation or paralysis, required for artificial
ventilation. The motor score was then coded as a separate category (“9”, untest-
able), rather than considered as a missing value. This approach made the motor
score available for all patients.

It can be debated whether a more formal analysis should have been used for
defining the baseline Motor score; e.g., a multiple imputation procedure might have
considered all four time points, providing a formally imputed post-stabilization
Motor score. MI might also have provided estimates for the untestable patients
(“category 9”). However, the necessity for sedation and paralysis is related to the
severity of injuries. In this specific case missingness in the sense of “untestable”
may possibly be of prognostic relevance, and imputation of a virtual motor score for
“untestable” patients was hence not considered appropriate.
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8.2 Missing Values in the IMPACT Study

Missing values were present in the outcome and in predictors. We discuss dealing
with both below.

8.2.1 Missing Values in Outcome

Data on 6-month outcome were available for 10 of the 11 studies. For one study,
only the 3-month GOS was measured (study 5). Since the GOS is assumed to be
relatively stable between 3 and 6 months, we simply carried the 3-month GOS
forward to 6-month GOS. This approach is consistent with the way in which
missing outcome had been imputed in a small number of patients in the individual
studies (Last Value Carried Forward approach, LVCF). We note that LVCF gen-
erally is a quite poor approach to missing outcomes, since any changes in time are
missed [668]. We chose not to further attempt imputation of the 6-month GOS in
the 5% of patients in whom outcome remained missing, as not to compromise the
interpretation of our outcome measure. A more formal MI procedure could have
been followed, incorporating the GOS patterns over time as available in some of the
studies (e.g., 1, 3, 6, 12 months), and correlations of outcomes with predictors and
study.

8.2.2 Quantification of Missingness of Predictors

Table 8.2 summarizes the availability of predictors within the 11 studies of the
IMPACT database. The main reason for missingness was the systematic absence of
a predictor within a given dataset. If the dataset included a predictor, availability
was generally high, with only sporadic missingness. Data for age and motor score
(including the untestable category) were complete, but some studies had no data for
pupils (studies 4 and 9, Table 8.2). If pupils were recorded, data were complete
in >90% of the patients within most of the studies. Secondary insults (hypoxia and
hypotension) had not been recorded in some studies, but if recorded, data were
again quite complete. CT scans are usually performed within hours after admission,
after stabilization of the patient. CT scans provide important diagnostic information,
and are often classified according to the Marshall classification [368]. This classi-
fication was available in 7 of the 11 studies, for 61% of the 8530 patients. Other
important CT characteristics, such as traumatic subarachnoid hemorrhage (tSAH)
and the presence of an epidural hematoma (EDH, Fig. 8.1) were available in
slightly higher numbers of patients.

Laboratory values were available for only a few studies (Table 8.2). Glucose,
pH, sodium and Hb levels were available for around 50% of the patients, but
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platelets and prothrombin time (which are related to blood clotting), were available
for less than 20% (Table 8.2). The latter percentages were that low that we did not
consider these predictors for a prediction model; admittedly this judgment is
arbitrary. A series of models was developed, with different selections of studies,
based on the availability of predictors per study.

8.2.3 Patterns of Missingness

We further examined patterns of missingness, following the steps discussed in
Chap. 7.

a. How many missings occur for each potential predictor?

We can use the naclus and naplot functions to further visualize missing value
patterns. As was also noted in Table 8.2, missing values were most frequent for
laboratory parameters and some CT characteristics (Fig. 8.2, left panel). Many
patients had multiple missing values, e.g., 2277 of 8530 patients had 4 missing
values, and 4 patients even had 10 missing values among 10 key predictors
(Fig. 8.2, right panel).

Fig. 8.1 Example of an epidural hematoma (EDH, left) and traumatic subarachnoid hemorrhage
(tSAH, right). An EDH is located directly under the skull and mainly causes brain damage due to
compression. Consequently, the prognosis is favorable if it can be evacuated rapidly. A developing
EDH is one of the greatest emergencies in neurosurgery. Subarachnoid hemorrhage is bleeding
into the subarachnoid space—the area between the arachnoid membrane and the pia mater
surrounding the brain, implying a poor prognosis
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b. Missing value mechanisms

For analysis of the mechanism of missingness, we examine combinations of missing
predictors, associations between predictors and missingness, and associations
between outcome and missingness. As proposed by Harrell, we used the naclus
function to visualize missing value patterns (Fig. 8.3) [225]. Characteristics of CT
scans, such as shift and cisterns are often missing in combination, while also
laboratory values are missing in such patients (glucose and hb). Key insights in
missing value frequency and patterns of missingness can also be obtained with the
aggr function (Fig. 8.4).

c. Associations between predictors and missingness

Table 8.2 shows that missingness of most predictors strongly depends on the study.
We explored in detail whether there were other determinants of missingness for CT
characteristics, some key laboratory variables and presenting characteristics. No
clear associations were found in relation to age (Fig. 8.5). The main determinant of

Fig. 8.2 Fraction of missing values per potential predictor (left panel), and number of missing
values per subject (right panel)

Fig. 8.3 Combinations of
missing values in predictors
(“NAs”), based on a
hierarchical cluster analysis of
missingness combinations in
8530 patients with TBI
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missingness was the study: some studies did not register a particular predictor. No
“MAR on X” patterns were evident.

d. Associations between outcome and missingness

Figure 8.5 further demonstrates no clear associations between missingness and an
unfavorable 6-month Glasgow Outcome Scale (GOS) outcome. To explore the
relation between missingness and outcome in more detail, logistic regression
models for missingness of a predictor were constructed, but again no clear patterns
were noted. Hence, there were no indications of a “MAR on y” mechanism.

e. Plausible mechanisms for missingness

The most plausible mechanism for missingness was that a predictor was simply not
recorded for some studies. Within studies, a mechanism close to MCAR had
occurred. We conclude that missingness was essentially MCAR, conditional on the
study. Hence, we would like to stratify on study when making imputations. We
imputed values conditional on values of the other predictors, and with the study as
the main effect. We excluded some studies from analyses if we judged that too
many predictors were 100% missing in a study [559].

8.3 Imputation of Missing Predictor Values

8.3.1 Correlations Between Predictors

Table 8.3 shows that the correlations between variables were generally modest.
Some more substantial correlations (r > 0.4) were noted among CT scan charac-
teristics and between some laboratory values. The associations between cisterns/

Fig. 8.4 Proportion of missings and combinations of missing values in predictors (aggr function
in VIM)
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shift and the CT classification are to be expected, as these characteristics are used in
the definition of the CT classification. Hb and platelets are correlated, as both will
decrease following blood loss.

Fig. 8.5 Missingness in relation to study, age, and outcome (unfavorable status according to the
Glasgow Outcome Scale at 6 months). The study was the main determinant of missingness. Only
weak associations were observed with age and the 6-month outcome (“unfav”)
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8.3.2 Imputation Model

An initial imputation model included all relevant potential predictors and the out-
come (6-month GOS, in 5 categories). No auxiliary variables were used.
A relatively simple imputation model was fitted using the mice library. We show
the commands below for illustration, with more details at www.clin-
icalpredictionmodels.org.

# mice imputation model for pmat as predictor matrix, with default settings 
names(TBI1)
[1] "study" "age" "hypoxia" "hypotens" "cisterns" "shift" "tsah" "edh" "pupil"
[10] "motor" "ctclass" "sysbp" "hb" "glucose" "unfav" "mort"
p <- 16
pmat <- matrix(rep(1,p*p),nrow=p,ncol=p)
diag(pmat) <- rep(0,p)
pmat[,c(1:2, 10, 15:16)] <- 0 # set some columns to zero
pmat[ c(1:2, 10, 15:16),] <- 0 # set the rows for the same variables to zero

# define data to be used and the imputation method for each column, seed =1 
gm <-mice(TBI1, m=10, imputationMethod=c("polyreg","pmm","logreg","logreg",
"logreg","logreg","logreg","logreg","polyreg","polyreg","polyreg","pmm","pmm",
"pmm", "logreg","logreg"), predictorMatrix = pmat, seed=1)

The printed result includes a summary of the procedure:
Number of multiple imputations:  10 
Missing cells per column: 
study age hypoxia hypotens cisterns shift tsah  edh pupil
    0   0    3057     2090     4673  2321 1137 1105  1387 
motor ctclass sysbp   hb glucose unfav mort 
    0    3338  1733 4659    3700     0    0 

The gm object has 10 imputed data sets of the IMPACT database. In total, 16
variables were considered in the imputation model, corresponding to Table 8.3.
Data were complete for the outcome (unfav and mort), study, age, and Motor
score (motor).

8.3.3 Distributions of Imputed Values

The distributions of imputed values can be checked for the plausibility of impu-
tations (e.g., within a plausible range, no strange peaks, Fig. 8.6). We note rather
stable distributions of imputed values, with similarity to the complete data. The last
graph shows imputations for glucose, with values truncated at 2 and 20, as in the
original predictor definition.

8.3 Imputation of Missing Predictor Values 167



8.3.4 *Multilevel Imputation

Our mice imputation model did stratify by the study as the main effect, since the
study was a strong determinant of missingness, and predictor values may depend on
the specific study. This is a typical situation for a meta-analysis context, where
results from several studies are combined. Sporadic and systematic missing values
may occur by the study. MI methods have been proposed that use random effects
for the study variable, and can provide imputations for continuous and binary
predictors [19]. Some methods allow for different variances in predictors per the
study, which can, however, only be estimated reliably in large studies [453]. If
small clusters are analyzed, it may be better to assume identical variances across
clusters (homoscedasticity) [282].

8.4 Predictor Effect: Adjusted Analyses

After imputation, we can estimate the adjusted effects of each predictor of interest in
turn, using imputed versions of other predictors. These other predictors are hence
considered as potential confounders. We present all results with mice for adjusted
analyses. As confounders, we considered 7 predictors that had also shown con-
vincing effects in previous TBI studies. These include the 3 core predictors (age,
Motor score, pupils), 2 secondary insults (hypoxia, hypotension), and 2 CT char-
acteristics (CT classification and tSAH). The outcome was GOS at 6 months,
dichotomized as unfavorable versus favorable in logistic regression models. For

Fig. 8.6 Distribution of imputed and original values with mice in the IMPACT study (n = 8530)
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illustration, we show the adjusted logistic regression coefficients of each of these
predictors in turn (Table 8.4). We estimate adjusted effects in the complete cases
(CC), as well as in completed data sets with single (SI) or multiple imputation (MI).
SI and MI contain a random element for the imputed values.

Numbers of patients differ dramatically across the univariate and CC analyses,
since only 2428 patients had complete values for all 7 predictors. Per predictor,
values were complete for some (age, Motor score). Values were frequently
incomplete for CT class, leaving n = 5192 for analysis. The coefficients for most of
the predictors were largest in univariate analyses, and smaller in adjusted analyses.
This reflects the positive correlations between predictors as noted in Table 8.3. The
adjusted estimates were largely similar for SI or MI. The SEs in the CC analyses are
higher than in the imputed analyses, reflecting smaller numbers. As expected, the
MI analyses showed larger SEs than SI analyses, but differences were minor (third
decimal).

Technical details of the model fitting are further discussed below with detailed
code for R programs. We first describe the modeling for complete predictors (age,
motor, 8.4.1), followed by the approach followed for predictors with missing val-
ues, such as pupils (Sect. 8.4.2).

Table 8.4 Logistic regression coefficients of predictors in univariate and adjusted analyses.
Numbers are estimated coefficients (estimated SE)

Univar Adjusted

n n = 5192 – 8530 CC n = 2428 SI n = 5192 – 8530 MI n = 5192 – 8530

Age (per decade) 8530 0.32 (0.015) 0.36 (0.033) 0.35 (0.017) 0.35 (0.018)

Motor score 8530

1 or 2 1.87 (0.065) 1.65 (0.16) 1.61 (0.073) 1.61 (0.074)

3 1.38 (0.077) 1.36 (0.16) 1.25 (0.085) 1.24 (0.086)

4 0.69 (0.065) 0.71 (0.13) 0.62 (0.070) 0.61 (0.071)

5 or 6 zero (ref) zero (ref) zero (ref) zero (ref)

9 (untestable) 0.91 (0.112) 1.06 (0.26) 0.90 (0.125) 0.87 (0.127)

Pupillary reactivity 7143

Both pupils reactive zero (ref) zero (ref) zero (ref) zero (ref)

One nonreactive 0.97 (0.076) 0.51 (0.15) 0.58 (0.085) 0.57 (0.085)

Both nonreactive 1.77 (0.067) 0.94 (0.14) 1.15 (0.076) 1.15 (0.077)

Hypoxia 5473 0.80 (0.072) 0.49 (0.12) 0.42 (0.085) 0.41 (0.085)

Hypotension 6440 0.99 (0.070) 0.68 (0.13) 0.43 (0.077) 0.37 (0.082)

CT class 5192

1 or 2 zero (ref) zero (ref) zero (ref) zero (ref)

3 or 4 1.08 (0.079) 0.77 (0.13) 0.77 (0.089) 0.77 (0.090)

5 or 6 0.96 (0.066) 0.67 (0.11) 0.56 (0.075) 0.54 (0.077)

Traumatic SAH 7393 0.99 (0.050) 0.84 (0.10) 0.72 (0.057) 0.73 (0.057)
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8.4.1 Adjusted Analysis for Complete Predictors: Age
and Motor Score

age and motor were completely available (n = 8530). Univariate effects can
easily be estimated with logistic models (Table 8.4):

lrm(unfav ~ study + age, data = TBI1)
lrm(unfav ~ study + motor, data = TBI1) 

Here, unfav refers to unfavorable GOS at 6 months, study is the study
indicator, such that analyses are stratified by study, while assuming a common
effect of the predictor across the studies.

A CC model with adjustment for confounders included only 2428 patients, due
to exclusion of patients with any missing value for the other predictors (pupil,
hypoxia, hypotens, CTclass, tsah). Only patients from studies 1, 2, and 10 are
included:

## CC, n = 2428
lrm(unfav~study+age+motor+pupil+hypoxia+hypotens+ctclass+tsah, data = TBI1)

Frequencies of Missing Values Due to Each Variable 
 unfav study age motor pupil hypoxia hypotens ctclass tsah 
     0     0   0     0  1387    3057     2090    3338 1137 
  Obs Model L.R. d.f. P     C    R2 Brier
 2428        840   14 0 0.823 0.393 0.168 

          Coef    S.E.   Wald Z Pr(>|Z|) 
  Intercept -1.9537 0.2060  -9.48 <0.0001
  study=2   -0.1482 0.1211  -1.22 0.2212
  study=10   0.0717 0.1372   0.52 0.6012
  age        0.0357 0.0033  10.67 <0.0001
  motor=3   -0.2876 0.1801  -1.60 0.1104
  motor=4   -0.9308 0.1621  -5.74 <0.0001
  motor=5/6 -1.6454 0.1597 -10.30 <0.0001
  motor=9   -0.5833 0.2682  -2.17 0.0296
  pupil=2    0.5143 0.1489   3.45 0.0006
  pupil=3    0.9437 0.1437   6.57 <0.0001
  hypoxia    0.4911 0.1248   3.94 <0.0001
  hypotens   0.6786 0.1332   5.10 <0.0001
  ctclass=2  0.7678 0.1343   5.72 <0.0001
  ctclass=3  0.6749 0.1148   5.88 <0.0001
  tsah       0.8409 0.1014   8.29 <0.0001

For SI, we create a completed data set from the first cycle of the MI object:

## SI, n = 8530
lrm(unfav~study+age+motor+pupil+hypoxia+hypotens+ctclass+tsah,

data = complete(gm, action=1))

The MI model for age and motor score is fitted using the fit.mult.impute
function, which automatically combines results over imputed data sets.

## MI, n = 8530
fit.mult.impute(unfav~study+age+motor+pupil+hypoxia+hypotens+ctclass+tsah,

lrm, xtrans = gm, data = TBI1)
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Variance Inflation Factors Due to Imputation: 
Intercept study=2 study=3 study=4 study=5 study=6 study=7 study=8 study=9 study=10
     1.03    1.01    1.02    1.03    1.01    1.03    1.03    1.02    1.03     1.01
 study=11  age motor=3 motor=4 motor=5/6 motor=9 pupil=2 pupil=3 hypoxia hypotens
     1.01 1.02    1.02    1.04      1.02    1.04    1.22    1.42    1.59     1.28
 ctclass=2 ctclass=3 tsah
      1.09      1.45 1.11 
 Obs  Model L.R. d.f.    C   R2  Brier1

 8530       2529   22 0.80 0.34  0.183 

           Coef    S.E.   Wald Z Pr(>|Z|) 
Intercept -1.5490 0.1139 -13.60 <0.0001
study=2   -0.1249 0.1023  -1.22 0.2220
    ... 
study=11  -0.2572 0.1096  -2.35 0.0190
age        0.0348 0.0018  19.73 <0.0001
motor=3   -0.3662 0.0859  -4.26 <0.0001
motor=4   -0.9941 0.0738 -13.46 <0.0001
motor=5/6 -1.6050 0.0735 -21.82 <0.0001
motor=9   -0.7389 0.1284  -5.75 <0.0001
pupil=2    0.4997 0.0845   5.92 <0.0001
pupil=3    0.9777 0.0802  12.19 <0.0001
hypoxia    0.2945 0.0837   3.52 0.0004
hypotens   0.4976 0.0795   6.26 <0.0001
ctclass=2  0.5022 0.0730   6.88 <0.0001
ctclass=3  0.3656 0.0706   5.18 <0.0001
tsah       0.6325 0.0557  11.36 <0.0001

For the two complete1 predictors (age and motor), we note very similar effects in
SI or MI analyses (Table 8.4). Indeed, all results were similar for SI and MI
(Table 8.5): model statistics (LR statistic, c statistic, R2 estimate), as well as
regression coefficients and standard errors.

8.4.2 Adjusted Analysis for Incomplete Predictors: Pupils

Pupillary reactivity was recorded for 7143 patients. This selection of patients was
used in univariate and adjusted analyses, for fair comparability of univariate and
adjusted effects.

# pupils
TBIc  <- complete(gm, action = "long", include=TRUE) # completed data set
TBI2 <- TBIc[!TBIc$.id %in% TBIc$.id[is.na(TBIc$pupil)], ] # magic
gm2 <- as.mids(TBI2) # make this an MI object
fit.CC <- lrm(unfav ~ study + pupil, data = TBI2[TBI2$.imp==0,]) # orig data
fit.SI <- lrm(unfav ~ study+age+motor+pupil+hypoxia+hypotens+ctclass+tsah,

data = TBI2[TBI2$.imp==1,]) # first imputed data
fit.MI <- fit.mult.impute(unfav ~ study+age+motor+pupil+ ... + tsah,

lrm, xtrans = gm2) # 10 imputed sets

1These statistics are averaged over the 10 model fits.
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The results were as follows for the estimates of pupil coefficients and SE.

2: One nonreactive pupil 3: Both pupils nonreactive

Uni Adj, SI Adj, MI Uni Adj, SI Adj, MI

Coefficient 0.97 0.58 0.57 1.77 1.15 1.15

SE 0.076 0.085 0.085 0.067 0.076 0.077

Again, the results obtained with single or multiple imputation procedures were
very similar. Analyses for the other predictors with missing values were performed
in a similar way. A series of papers presents further results for the other predictors
with missing values [85, 359, 364, 372, 595].

Table 8.5 Multivariable regression coefficients and rounded prognostic scores for a 7 predictor
model in the IMPACT study. Most scores are similar to complete case (CC), single imputation
(SI) or multiple imputation (MI). Some differences in scores are noted for the effects of CT class
(>2 points differences in bold)

CC, n = 2428 SI, n = 8530 MI, n = 8530

mice mice

Coef Score Coef Score Coef Score

Age (per decade) 0.36 1a 0.35 1a 0.35 1a

Motor scoreb

1 or 2 1.64 16 1.61 16 1.61 16

3 1.36 14 1.25 13 1.24 12

4 0.71 7 0.62 6 0.61 6

5 or 6 zero (ref) zero (ref) zero (ref)

9 1.06 11 0.90 9 0.87 9

Pupillary reactivity

Both pupil reactive zero (ref) zero (ref) zero (ref)

One nonreactive 0.51 5 0.46 5 0.50 5

Both nonreactive 0.94 9 0.91 9 0.98 10

Hypoxia 0.49 5 0.37 4 0.29 3

Hypotension 0.68 7 0.47 5 0.50 5

CT class

1 or 2 zero (ref) zero (ref) zero (ref)

3 or 4 0.77 8 0.51 5 0.50 5

5 or 6 0.67 7 0.37 4 0.37 4

Traumatic SAHc 0.84 8 0.62 6 0.63 6
aAge effect per 3 years
bCoded with 5/6 as the reference category for better interpretability
cSAH: subarachnoid hemorrhage
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8.5 Predictions: Multivariable Analyses

After studying the adjusted effects per predictor, we were interested in the multi-
variable effects of all predictors combined. We aimed to estimate a global pre-
diction model: predictor effects are the same in each study, although the baseline
risk can vary per study. So the intercept is study dependent, and the predictor effects
are constant across studies.

We here focus on a model including the 7 predictors that were also used for
adjustment before: 3 core predictors plus secondary insults plus CT characteristics.
A CC analysis was possible with only 2428 patients, representing a loss of
8530 − 2428 = 6102 patients (72%), while only 18% of the required values were
missing (11,009/(7 * 8530)).

The multivariable coefficients are shown in Table 8.5, together with rounded
prognostic scores. Scores were based on multiplying coefficients by 10, and
rounding to whole numbers (“round(10*fit$coef)”). We note that the SI and
MI coefficients and prognostic scores were largely similar. Scores never differed by
more than 2 points. The CC analysis gave somewhat different estimates compared
to SI or MI, demonstrating the limitation of CC analysis.

8.5.1 *Multilevel Analyses

The analyses for adjusted effects (Sect. 8.4) and the prediction models (Sect. 8.5)
assumed global effects, i.e. that the effect of predictors was similar across studies.
We adjusted for study as the main effect, as would be done in any meta-analysis.
A richer model allows predictor effects to vary by study [30, 31]. Imputation should
then also allow for differential imputation by study, as described in Sect. 8.3.4 [19].
We can quantify the between-study heterogeneity with random effect models, such
as available in the glmer function in the lme4 package (see Chap. 21).

8.6 Concluding Remarks

This case study illustrates how we may deal with missing values in assessing
predictor effects (univariate and adjusted effects, Sect. 8.4), and in multivariable
modeling to derive a prediction model (Sect. 8.5), after inspection of missing value
patterns (Sect. 8.2) and constructing an imputation model (Sect. 8.3). The differ-
ence in numbers of patients was dramatic between complete case (CC) and single or
multiple imputed (SI and MI) data sets. A simple imputation model could easily be
constructed, which is consistent with assuming global effects of predictors across
studies. More advanced imputation is needed if we allow the effects of predictors to
differ across studies in a meta-analysis context.
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Questions

8:1 Missingness mechanisms
We state that most predictors were missing completely at random (MCAR),
conditional on study (Sect. 8.2.3 e).

(a) Does Table 8.2 support a MCAR mechanism?
(b) What do we learn from Fig. 8.5 with respect to MAR on x, or MAR on

y mechanisms?
(c) Can we exclude a MNAR mechanism from the presented Tables and

Figures?

8:2 Imputation results (Sect. 8.4.1).

(a) For the MI model, the fit.mult.impute function lists “Variance
Inflation Factors Due to Imputation”. What do these factors
refer to? When are they larger than 1? Which predictor has the largest
VIF?

(b) Compare the predictor effects of age between the CC, SI and MI models.
When is the standard error estimated as the smallest?

(c) Why is the standard error of a regression coefficient in a MI model
slightly larger than that of a SI model?
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Chapter 9
Coding of Categorical and Continuous
Predictors

Summary When developing a prediction model, an important consideration is
how we code the predictors. Raw data from a study are often not in a form
appropriate for entering in regression models and must first be inspected and
managed before the statistical analysis starts. As in any data analysis, we will
usually start with obtaining an impression of the data under study, such as the
occurrence of missing values and the distribution of predictors and outcome.
Descriptive analyses, such as frequency tables and graphical displays, are useful to
this aim. We will consider various issues in coding of unordered and ordered
categorical predictors. For continuous predictors, we specifically discuss how we
can limit the influence of outliers and interpret regression coefficients.

9.1 Categorical Predictors

Categorical predictors can be unordered, for example, a diagnostic category, or a
type of hospital. Categorical predictors are usually coded as “factor” variables, with
coding as dummy variables. For example, smoking was coded originally as “1” for
never, “2” for past, and “3” for the current smoker in the GUSTO-I study. For
analysis as a factor, we might create two dummy variables for category 2 versus 1
and 3 versus 1. Logistic regression coefficients for these dummy variables refer to
the comparison of past vs never smokers and current vs never smokers. Dummy
coding may often be convenient in prediction research. Specific attention should be
paid to the choice of reference category (here: never smokers). By default, the
lowest or highest numbered category is used as a reference in many statistical
packages. If this category is relatively small, comparisons with this reference cat-
egory may show statistically nonsignificant and unstable results, while the factor
has an important predictive effect overall and is statistically significant. The pre-
dictions from a model are usually not affected by the choice of reference category.
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It may be convenient to combine categories if these are relatively small. For
example, a cancer study might list a very large number of stages (e.g., T1a, T1b,
T1c, T2a, T2x, etc.) that might be converted into a smaller number of groups (e.g.,
T1, T2, T3, and T4). In other situations, some categories might be very small and
thus combined in an “other” category. If small categories are kept, some sort of
penalized estimation or shrinkage is required to obtain reliable estimates (Chap. 13)
[646]. When this combination of categories is based on the similarity of the relation
with the outcome, overfitting may occur and the apparent model performance will
be optimistic. In practice, a balance has to be sought between combining categories
blinded to the outcome (e.g., based on frequency distributions) and adequately
capturing patterns of the outcome by category. Using the coding from previous
studies may often be helpful in smaller sized data sets.

Ordered categorical predictors are also common in prediction research. They
pose a challenge to the analyst. Options include

• ignore the ordering, treat as an unordered categorical variable, with dummy
variable coding;

• simplify to a dichotomous predictor;
• assume linearity of effect, as if we model a continuous predictor, perhaps with

nonlinear extensions, such as adding a square term [225];
• enforce monotonicity of effect by some specific coding and penalized estima-

tion; this is more flexible than coding as a continuous predictors [179, 646].

Table 9.1 illustrates that a dramatic loss of information may occur by
dichotomization of an ordered predictor such as Killip class [472]. Simply assuming
linearity of ordered predictor may sometimes work well.

Table 9.1 Impact of various coding schemes for categorical predictors in GUSTO-I (n = 40,830)

Predictor Coding df LR statistica

Unordered

Location of infarct Anterior versus other 1 343

Ant/Inf/Other 2 361

Ordered

Killip class (indicating left
ventricular function)

Shock (3/4 versus 1/2) 1 861

Linear (1–4) 1 1388

Linear + square 2 1388

Factor 3 1389

Smoking Never/past/current 2 483

Linear (1–3) 1 482
aLR statistic calculated as the difference between a model with and without the predictor on the −2
log likelihood scale
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9.1.1 Examples of Categorical Coding

In patients with an acute MI, location of infarction is an important predictor of
30-day mortality. In GUSTO-I, the categorization was as anterior versus inferior
versus others. The “other” location category contained only 3% of the patients
[329]. A refined coding with “other” is only possible in large studies; in smaller
sized studies we might combine the inferior and other categories, such that we
compare Anterior location versus other location of the MI. Table 9.1 shows that the
refined coding with 3 categories led to a slightly better predictive performance than
the combined coding with 2 categories. The LR statistics were 361 versus 343,
calculated as the differences between a model with and without the location of
infarction on the −2 log likelihood scale (Table 9.1), at the expense of 1 df extra.

An example of an ordered predictor is Killip class, a measure for left ventricular
function ranging from I to IV. It can be recoded as shock (Killip 3/4 versus 1/2) [395].
Alternatively, we can analyze ordered predictors as continuous variables. An easy
relaxation of the linearity assumption is possible by adding a square term: y*Killip
+ Killip^2. A simple linear coding captures much of the predictive information
(v2 1388). Adding a square term, or considering all categories as a factor variables
with 3 dummy variables, did not add much (v2 1388 and 1389, respectively), while
dichotomization would lose a substantial amount of predictive ability (v2 861). For a
less clearly ordered variable such as smoking (never/past/ current), linear coding had
the same performance as a factor variable, using 1 instead of 2 df (Table 9.1).

9.2 Continuous Predictors

Continuous variables formally should be measured at an interval or ratio scale, and
should be able to take any value in a range. We noted in Table 9.1 that treating
ordered variables as linear was sometimes reasonable for prediction.

9.2.1 *Examples of Continuous Predictors

Age is a good example of a continuous predictor variable that is relevant in many
medical prediction problems. We already found that the age effect could often quite
well be captured with a linear term (Chap. 6). Remarkably, age has often been
considered as a dichotomized variable in prognostic studies, for example in trau-
matic brain injury [260]. Even worse than dichotomization as such is the search for
optimal cut-points [12]. In GUSTO-I, a dichotomy at 65 years leads to a v2 of 1463
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instead of 2099 for age as a linear variable (Table 9.2). Considering 3 categories
limits the loss in information somewhat (v2 1814, 86% of the information of age as
a linear variable).

The predictor “number of leads with ST elevation” ranges from 0 to 10 in the
GUSTO-I data (Chap. 22). The number of categories is large for consideration as a
factor variable, but this can technically still be done. Simple linear coding leads to a
slightly better performance than a dichotomy at 4 or more leads (v2 281 versus
259). Adding a square term led to further improvement in fit, exceeded by a
restricted cubic spline function with 4 df (v2 350) [225].

9.2.2 Categorization of Continuous Predictors

Dichotomization of a continuous predictor has many disadvantages [472]. The first
unnatural aspect is the step in predictions, as illustrated for age <=65 versus
>65 years in Fig. 9.1. Would risks be really very different for patients who had their
65th birthday yesterday compared to patients who had their 65th birthday today?
Similarly, the assumption of a constant risk below or above a threshold is unnatural.
A patient of age 40 likely has lower risks of mortality than a patient of age 64; and a
patient of age 90 is different from a patient of age 66. There are only 2 points where
the dichotomized version of age may be considered adequate, i.e., around the
intersections of predicted risks with the predicted risks according to the continuous
variable (either linear or transformed). Moreover, if there had been a different
distribution of ages, e.g., no patients older than 70 years old, the step function in
Fig. 9.1 would have been much different. The continuous model, which conditions
on all values of age, would remain relatively unchanged.

In contrast, the analysis of ST elevations as a predictor of mortality is more
complex. A reasonable fit is achieved with a linear + square coding (Table 9.2,

Table 9.2 Impact of various coding schemes for continuous predictors in GUSTO-I (n = 40,830)

Predictor Coding df Model v2

Age <=65 versus >65 years 1 1463

<=60, 61–70, >=70 2 1814

Linear 1 2099

Linear + square 2 2112

RCS, 5 knotsa 4 2122

ST elevation >4 versus <=4 1 256

Linear (0–10) 1 281

Linear + square 2 306

RCS, 5 knotsa 4 350

Factor 10 364
aRCS denotes restricted cubic spline function; 5 knots lead to 4 df for the transformation of the
predictor (see Sect. 9.3) [228]
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Fig. 9.2). The risk associated with a low number of elevated leads (0–3) could also
be well captured with a dichotomous categorization as >4 versus <=4 elevated
leads. This example illustrates the importance of visual inspection of transforma-
tions. It is exceptional in leading to some credit for dichotomization, which is only
rarely defendable over continuous coding [472].

Fig. 9.1 Relation between age and 30-day mortality in GUSTO-I (n = 40,830). Age is modeled as
a linear variable, dichotomized at age 65, or categorized in 3 groups (Table 9.2). The distribution
of ages is shown at the bottom of the graph

Fig. 9.2 Relation between the number of leads with ST elevation and 30-day mortality in
GUSTO-I (n = 40,830). ST elevation is modeled as a linear variable, with extension with a square
term, as a restricted cubic spline with 4 df (5 knots), and a dichotomized version of ST elevation
(>4 leads, see Table 9.2). The observed risk for each number of leads with ST elevation is shown
with circles (o), with size proportional to the square root of the number of events
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In epidemiological research, continuous variables are often divided into 4 or 5
categories. This may be attractive as an exploratory step for predictor—outcome
relations, but should not be used in a final prediction model [391]. Jumps in
predictions are unnatural, and smooth relations are biologically far more plausible.
Smooth functions can be coded with a limited number of degrees of freedom.

9.3 Nonlinear Functions for Continuous Predictors

When we consider a continuous predictor as a linear term in a prediction model, we
assume that the effect is the same at each part of the range of the predictor. For
example, in Fig. 9.1 we assume that the effect of being 10 years older is the same at
age 30 (40 versus 30 years) and 70 years (80 versus 70 years) for patients with an
acute MI. If a nonlinear function is expected, various options can readily be con-
sidered in regression models. Below we discuss nonlinear modeling of continuous
predictors with (1) polynomials; (2) fractional polynomials, and (3) spline functions.

9.3.1 Polynomials

A classic approach to continuous predictors in regression analysis is to add poly-
nomial terms as extensions to a model with a linear term. Commonly, square and
cubic terms are considered [197]. For example, we can examine models with x, x
+x2, and x + x2 + x3, where x is a continuous predictor. This results in nested
models, and we can statistically test each extension. From a pragmatic point of
view, there is no objection to considering a model such as x + x3, but it is more
common to consider sequential extensions with terms of an increasingly higher
order. Other common transformations to consider are the inverse (x−1) and square
root (x0.5), and logarithmic (log(x) or ln(x), exp(x)). We may use these terms as
replacement of the linear term x, or an extension to a model with x as a linear term
included. Polynomials are limited in the shapes they can take. We, therefore,
consider wider families of models.

9.3.2 Fractional Polynomials (FP)

Fractional polynomials (FPs) have been advocated as a flexible approach to
modeling continuous predictors [477]. FPs are an extension of earlier proposals on
the transformation of predictors [69]. FPs allow for smooth and flexible
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transformation of continuous predictors by combining polynomials. FPs extend
ordinary polynomials by including nonpositive and fractional powers from the set
−2, −1, −0.5, 0, 0.5, 1, 2, 3. This defines 8 transformations, including inverse (x−1),
log (x0), square root (x0.5), linear (x1), squared (x2) and cubic transformations (x3).
In addition to these 8 “FP1” functions, 28 “FP2” functions can be considered of the
form xp1 + xp2; if p1 = p2 we define another 8 FP2 functions as xp + xp log(x), for a
total of 36 FP2 functions [486]. These functions are assumed to use 2 and 4 df,
respectively: 1 df for searching the transformation, and 1 df for estimation of the
regression coefficient.

For medical problems, two terms (FP2 transformations) have been suggested as
sufficient to describe nonlinear relations, e.g., age^2 + age^0.5. Such parametric
combinations can be written down easily. Procedures have been proposed to select
FP transformations in multivariable models [15, 477].

A disadvantage of FPs is a distortion of the global shape by values at the tails of
the predictor distribution. The influence of extreme values can be prevented by a
type of truncation (“winsorizing”), but the global shape of fractional polynomials
remains influenced by the values at the tails. Furthermore, fractional polynomial
functions depend on a change of origin of the covariate, and negative values cannot
be handled. A pragmatic approach to these issues has been proposed to improve the
robustness of FP models [476].

9.3.3 Splines

Quite flexible transformations are provided by spline functions. Various types of
spline functions can be considered, such as natural splines. These can be fitted with
a generalized additive model (gam) [230]. GAMs are also often used for non-
parametric regression functions, such as lowess or loess. The extreme flexibility
leads sometimes to wiggly patterns of predictions, which are unlikely to be
reproduced in new data. Smoothness can be enforced by parameters in the model
fitting process, e.g., penalty terms in the likelihood function (see Chap. 13) [231].
Without such penalty, splines may easily overfit patterns in the data.

Restricted cubic spline (RCS) functions have been proposed for a more stable
approach to continuous predictor modeling [228]. RCSs are cubic splines (con-
taining x3 terms) that are restricted to be linear in the tails. These splines are still
very flexible. They can take more forms than a parametric transformation with the
same df in the model. For example, adding x2 restricts the relation to be parabolic,
while a RCS with 2 df (3 knots) incorporates a wider family of functions. See
Harrell for many illustrations of the form that a RCS can take [225].

A spline function requires the specification of knots. The spline will bend around
these knots. The exact position of the knots is not critical to the shape that the spline
will take. It is common to specify the location from the distribution of the predictor
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variable [225]. More challenging is the choice of the number of knots. Empirical
illustrations have shown that using 5 knots (4 df) is sufficient to capture many
nonlinear patterns. In smaller data sets, it may often be reasonable to use linear
terms or splines with 3 knots (2 df), especially if no strong prior information
suggests that a nonlinear function is necessary [225]. If a large data set is available,
4 or 5 knots may be reasonable, especially if we anticipate a nonlinear function for
an important predictor.

RCS of increasing complexity are not nested functions, so testing of higher order
transformations to simplify a complex nonlinear model in a stepwise manner is not
formally correct. It is, however, possible to study the increase in model Likelihood
Ratio (LR) while taking the extra degrees of freedom into account, e.g.,as
Chi-square—2 * df (a rephrasing of Akaike’s Information Criterion) [225].

9.3.4 *Example: Functional Forms with RCS or FP

We examined the transformations for continuous predictors in the GUSTO-I study;
both in a large subsample (n = 785) and the full data set (n = 40,830, Fig. 9.3). In
the subsample, we first fit a second order fractional polynomial (FP2); the optimal
model is age^−2+age^3. We compare the shape to a restricted cubic spline (RCS)
function. An FP2 function uses 4 df, but the shape cannot have more than 2
bendings. An RCS with 5 knots also uses 4 df. For age, weight, and height, FP2
functions were explored in univariate and multivariable logistic regression analysis;
no statistically significant nonlinearity was identified in the subsample of 785
patients. In the full GUSTO-I data set, age^2 was chosen as the optimal transfor-
mation. For weight and height nonlinearity was not statistically significant. Overall,
the use of RCS or FP functions led to very similar patterns in Fig. 9.3. This was
also found in a case study of prostate cancer patients [406].

9.3.5 Extrapolation and Robustness

Extrapolation beyond the range of observed data is always dangerous, but is readily
possible with RCS and FP functions. An interesting intermediate approach is to aim
for a parametric transformation that captures most of the nonlinearity of a predictor.
Adequacy of the fit can be tested by adding RCS functions based on the trans-
formed variable [228]. For example, in a prostate cancer prediction problem, PSA
values were linearly related to outcome after a log transformation [562], while the
original model in this prediction problem was constructed with RCS functions with
5 knots [295]. The log transformation often performs well for laboratory
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measurements. Restricting a continuous predictor to a parametric transformation
may seem to harm the apparent performance somewhat. But it may limit optimism
in performance and increase a model’s robustness. Care should always be given to
predictions at the tails of a distribution [470].

9.3.6 Preference for FP or RCS?

Various empirical comparisons between FPs and RCSs have been made [51, 572].
The main differences are expected to occur at the tails of the distribution, where the
RCS was restricted to have linear behavior, which contributes to robustness (see
Fig. 9.3). If we have a predictor where a true curvature occurs at the tails, this will
be captured by the FP and less so by the RCS. If such curvatures are spurious, RCS
will do better. In practice, both approaches may perform similarly in fitting a
nonlinear relation given the same number of df, especially with winsorizing to limit
the impact of extreme values (see below). Sample size is also crucial: “From limited
information, a suitable explanatory model cannot be obtained. Prediction perfor-
mance from all types of nonlinear models is similar” [51]. A number of options for
dealing with continuous predictors in prediction models are summarized in
Table 9.3.

Fig. 9.3 Comparison of 3 nonlinear fits in a sample from the GUSTO-I data (left, n = 785) and
the full data set (right, n = 40,830). Fractional polynomials (fp), restricted cubic splines (rcs), and
general additive models (gam) each had 4 degrees of freedom (df = 4). In the full data set, rcs and
gam follow very similar shapes, while the fp function behaves differently at young ages.
Deviations from linearity occur at the extremes of the distributions, where limited data are
available
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9.4 Outliers and Winsorizing

Outliers are an important concern in many statistical analyses. Outliers are values
that are outside the typical range for a variable. In Box plots, a box is usually shown
with the median and the interquartile range (IQR, 25–75 percentile). Outliers are
defined by Tukey as values at least 3 times the IQR above the third quartile or at
least 3 times the IQR below the first quartile [251]. We consider outliers as any
values that potentially have a large influence in a regression model.

The first question to address for an outlier is whether the value is perhaps a data
entry error. The records of a patient could be checked for the plausibility of a value,
e.g., the hospital chart or the case report form when the patient participated in a
trial.

Another check is on biological plausibility. This judgment requires expert
opinion and depends on the clinical setting. For example, a systolic blood pressure
of 250 mmHg is biologically plausible in the acute care situation for traumatic brain
injury patients, but may not be plausible in an ambulatory care situation.
Implausible values may best be considered as errors and hence set to missing.

For biologically possible values, various statistical approaches are subsequently
possible. To reduce the influence on the regression coefficients (“leverage”) we may
consider transforming the variable by “winsorizing” (Table 9.4). Winsorizing
means replacement of extreme values with a certain percentile value from each end,
while trimming or truncation formally means the removal of outliers. With win-
sorizing, very high and very low values are shifted to the center:

Table 9.3 Options for dealing with continuous predictors in prediction models

Procedure Characteristics Recommendation

Dichotomization Simple, easy interpretation Bad idea

More categories 3, 4, or 5 categories capture more
prognostic information, but are not smooth,
sensitive
to the choice of cut-points and unstable

Only for illustration

Linear Simple Often reasonable as a start

Polynomials Square, cubic terms added; tails may
behave unstably

Reasonable as checks for
nonlinearity

Transformations Log, square root, inverse, … May provide robust
summaries of nonlinearity

Fractional
polynomials (FP)

Flexible combinations of polynomials; tails
may behave unstably

Flexible descriptions of
nonlinearity

Restricted cubic
splines (RCS)

Flexible functions with robust behavior at
the tails of predictor distributions

Flexible descriptions of
nonlinearity

Splines in gam Flexible functions with smoothness set by
penalty terms

Highly flexible descriptions
of nonlinearity
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If x[ xmax then x ¼ xmax;

If x\xmin then x ¼ xmin;

else x ¼ x

Here, xmax and xmin may be defined as upper and lower percentile points, or by
clinical input. A reasonable choice may be to use the 1 and 99 percentiles for
winsorizing [476].

9.4.1 Example: Glucose Values and Outcome of TBI

As an example, we consider glucose values measured at admission to predict
6-month outcome of patients with traumatic brain injury (TBI, Chap. 8). We
consider 2159 patients from the Tirilazad trials, who had both glucose values and
outcome available in n = 2095.

1. The upper threshold for biologically possible glucose values was set at
100 mmol/l. Only 3 patients had values above this threshold, which were set to
missing.

2. We winsorize glucose values to the interval [3–20 mmol/l] to limit the influence
of extreme values (Fig. 9.4). The glucose–outcome relation becomes slightly
more linear after winsorizing (Fig. 9.5).

9.5 Interpretation of Effects of Continuous Predictors

Effects of predictors can be interpreted through various presentations. A general
way is to examine the predictions by predictor values, for example, as the predicted
probabilities from a logistic model. A graph is often very useful, especially for

Table 9.4 Dealing with outliers and extreme values of continuous predictors in prognostic
research

Procedure Method Recommendation

Outlier
detection

Box plot Verify correctness (data entry error?) and biological
plausibility (missing if implausible value)

Winsorizing Shift low and high
values to the center
of a distribution

Shift approximately 1% of very low and 1% of very high
values to lower and upper ends of a range
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nonlinear effects of predictors. For binary outcomes, the choice of scale is critical.
Linear transformations from logistic regression models are straight lines at the log
odds (or logit) scale, but nonlinear at the probability scale. Similarly, we can plot
the effects of continuous predictors of survival outcomes at the log hazard scale or
as survival probabilities.

We can interpret the coefficients from a regression model by converting them to
odds ratios (logistic regression) or hazard ratios (survival models, e.g., Cox
regression). For binary variables such as gender, scaling is straightforward: the odds

Fig. 9.5 Relation of glucose to Glasgow Outcome Scale (GOS) at 6 months after TBI before (left)
and after (right panel) winsorizing to the interval [3–20 mmol/l]. The lowest line (solid) indicates
the probability of mortality (GOS 1), the second the combination of mortality and vegetative state
(GOS 1 or 2), the third unfavorable outcome (GOS 1, 2, or 3), and the fourth line the probability of
less than good outcome (GOS < 5). Relations were analyzed with restricted cubic spline functions
(5 knots, 4 df) in logistic regression models. The glucose–outcome relation becomes slightly more
linear after winsorizing. The distribution of glucose values is indicated at the top of each graph

Fig. 9.4 Distribution of glucose for 2095 TBI patients before and after winsorizing of values
close to the 1 and 99% percentiles
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ratio (OR) will refer to the comparison of females versus males if females are coded
one unit higher than males (e.g., 1/0).

For continuous variables, the scaling is important for interpretability and com-
parability of effects. For example, the predictive effect is usually small if age is
coded in years. In GUSTO-I, the univariate logistic regression coefficient is 0.084,
or an OR of 1.088 per year older, in the analysis of 30-day mortality. A simple
improvement is to divide the age variable by 10 before estimating the model, such
that the age effect is interpreted by decade. We can also multiply the coefficient that
was estimated by year: In GUSTO-I, the univariate logistic regression coefficient
becomes 10 * 0.084, and the OR 1.088^10 = 2.32. Similarly, for other variables
with a wide range in units, e.g., laboratory measurements, division by 10, 100, or
1000 may help. Comparability of effects of different continuous variables is still
difficult then.

Another approach is to standardize linear, continuous predictors by dividing
them by their standard deviation.1 A variant on this approach was proposed by
Harrell, i.e., to compare the effects of predictors at the 75 versus 25 percentiles
[225]. For linear, continuous variables, this can be achieved by dividing the values
by the interquartile range. Note that such rescaling does not affect p-values or
predictions in any way. The interpretation becomes dependent on the distribution of
the predictor in the data set as analyzed; this is a disadvantage when comparing
effects across studies.

For nonlinear coding of continuous variables, we can again compare the pre-
dicted outcomes at specific points of the distribution, e.g., the 75 versus 25 per-
centile [225]. Interpretability is most difficult for parabolic relations (e.g., a
quadratic form); an OR near 1 may be found when comparing the 75 versus 25
percentile predictions. A somewhat related, simple alternative is to code a nonlinear
variable with 2 dummy variables: one indicating values below the 25 percentile and
1 indicating values above the 75 percentile. The middle category is defined by the
25–75 percentile and serves as a reference category for both dummy variables.
Admittedly, such categorized coding implies a loss of information. Moreover, the
effects in the dummy coding depend on the distribution of the predictor. Such
coding is, therefore, more useful for illustration of a predictor effect than for making
predictions.

9.5.1 *Example: Predictor Effects in TBI

Various continuous predictors were measured at admission to predict 6-month
outcome of patients with traumatic brain injury (TBI). The relation of age and

1Note that standardization does not work well for categorical variables or nonlinear transforma-
tions such as polynomials.
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glucose to outcome were reasonably linear. Effects were presented for the
interquartile range (IQR, Table 9.5).

The relation of systolic blood pressure with outcome was nonlinear: low blood
pressure was especially associated with a poor GOS, and GOS was also poorer at
higher blood pressure values. This relation was modeled with a restricted cubic
spline with 3 knots (2 df, Fig. 9.6).

The 75 percentile is a pressure of 142; the 25 percentile 121 mmHg. The OR for
the comparison of predictions at these points is 1.6 [1.4–1.9] for mortality. For
illustration, we categorize blood pressure at 120 and 150 mmHg. This leads to ORs
of 2.8 and 1.2 for blood pressure <120 and >150 versus 120–150 mmHg respec-
tively. So, the 6-month mortality was more than twice as high with relatively low
blood pressure, and 1.2 times worse with a relatively high pressure compared to an
intermediate pressure level. This categorized coding has a R2 of 5.2%. compared to
8.1% for the continuous coding, arguing against the use of dummy coding for
predictive purposes. Hence, such categorized coding may only be reasonable to
illustrate effects rather than to replace the nonlinear continuous variable in a pre-
diction model.

Fig. 9.6 Relation of systolic blood pressure to Glasgow Outcome Scale (GOS) at 6 months after
TBI before (left) and after (right panel) categorization as <120, 120–150, and >150 mmHg. The
lowest line (solid) indicates the probability of mortality (GOS 1), the second the combination of
mortality and vegetative state (GOS 1 or 2), the third unfavorable outcome (GOS 1, 2, or 3), and
the fourth line the probability of less than good outcome (GOS < 5). The coding with continuous
values had a higher R2 than the categorized coding (8.1% versus 5.2% for mortality)

Table 9.5 Examples of coding of continuous predictors in predicting the outcome of TBI

Predictor Procedure Interpretation

Age (linear) Compare predictions at age 40 to 30 years
Coding: divide by 10
Compare predictions at age 45 to 21 years
Coding: divide by 24 (24 is IQR)

Age by decade
Age by decade
Age by IQR
Age by IQR

Systolic blood
pressure (quadratic
relation)

Illustrate nonlinear effect by making 3
categories, with dummy variables for
<120 mmHg, >150 mmHg

Effects for relatively
low and high blood
pressure
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9.6 Concluding Remarks

We have seen that some decisions on coding can be made while we are blinded to
the relation of the predictor to the outcome in our sample. Such blinding limits
overfitting. Another general strategy is to use the coding of predictors as used in
other studies.

Special attention is required for continuous predictors. Most natural processes
have a more or less smooth association with an outcome. Simple extensions of
linear terms, such as the square and square root, can be useful, as well as more
flexible functions such as restricted cubic splines (RCS) and fractional polynomials
(FP).

We focused on the effects of single predictors, which are usually first considered
in a univariate analysis. The effects may also be studied with adjustment for other
predictors (“confounders”, multivariable analysis). If the aim is to derive a pre-
diction model, we are less interest in the specific forms of the relation of each
predictor with the outcome. A detailed modeling strategy has been proposed for the
simultaneous selection of predictors for a model and their FP transformations
(“multivariable fractional polynomial (MFP) modeling” [477].). Harrell has sug-
gested to determine the number of degrees of freedom with RCS in univariate
analyses, and use the chosen level of complexity in further multivariable analyses,
irrespective of statistical significance of higher order terms [225]. Another rea-
sonable strategy might be to fit a model with all continuous predictors in flexible
forms, e.g.,with 4 df, and then decide on reducing df per predictor based on their
contribution to the model, e.g., according to partial R2. Stronger predictors are then
given more flexibility than weaker predictors, without considering the degree of
nonlinearity. Approaches to nonlinearity in the multivariable analysis are discussed
in more depth in Chap. 12.

9.6.1 Software

RCS and FP functions can be used with any statistical program, but may require
some programming. RCS functions are very easy to use with R (rcs function in
Harrell’s rms library) and Stata. Algorithms for fractional polynomials are avail-
able for R (mfp), Stata, and SAS [485]. Examples are available at www.clin-
icalpredictionmodels.org.
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Questions

9:1. Dichotomization: a bad idea [472]

(a) What are the problems of dichotomization when focusing on the effect of
one specific predictor, such as age?

(b) What are the problems of dichotomization when studying the effect of
gender (male versus female) and potential confounders, such as age, are
dichotomized in an adjusted analysis?

(c) What are the problems of dichotomization of predictors, such as age, when
we aim to make individualized predictions?

9:2. Categorization of continuous predictors
In an analysis of BNP, the authors of a paper state: “To produce odds ratios,
cut-points were used for age (65 years) and BNP (62 pg/mL) to reduce them
to nominal variables [352].”

(a) Why should continuous predictors not be categorized?
(b) For be useful?
(c) What suggestion would you have for the authors if they want to calculate

interpretable odds ratios for continuous predictors?

9:3. Winsorizing extreme values

(a) Why are extreme values a problem in regression analysis?
(b) How could you define winsorizing in one simple statement in R software

for a continuous predictor x?

9:4. Flexible continuous functions
What are the advantages and disadvantages of flexible modeling of continuous
predictors, e.g., using restricted cubic spline functions?

190 9 Coding of Categorical and Continuous Predictors



Chapter 10
Restrictions on Candidate Predictors

Summary A major challenge in prediction modeling is that we may have more
candidate predictors available for the analysis than we would like to include for
further analysis, in particular if our data set is relatively small. A small sample size
leads to problems as discussed in Chap. 5, such as limited power to test effects of
potential predictors, and too extreme predictions when predictions are based on the
standard regression coefficients (overfitting). We discuss some procedures to
increase the robustness and validity of a prediction model, including restriction of
the number of candidate predictors based on subject knowledge, considering dis-
tributions of predictors, combining similar variables, and averaging the effects of
similar variables. We provide a detailed description of a case study of modeling
similar effects of aspects of family history for robust prediction of the presence of a
genetic mutation.

10.1 Selection Before Studying the Predictor–Outcome
Relation

From a statistical modeling perspective, it would be ideal to prespecify a prediction
model completely. This implies that candidate predictors are selected without
studying the predictor–outcome relation in the data under study. Potential
approaches are to use subject knowledge, external to the study; and to study the
distribution of predictors in the data under study.
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10.1.1 Selection Based on Subject Knowledge

The list of candidate predictors can often be reduced based on a review of the
literature on the specific topic, combined with consulting experts in the field. The
development of a prognostic model in situations without such subject knowledge on
at least some predictors is nearly impossible, unless huge sample sizes are available.
In many medical problems, a list in the order of 5–20 potential predictors is rea-
sonable to develop an adequate prediction model. Even in genetic research, it has
been suggested that at most 20 genes should be included in a prediction model
(although many more are usually considered, necessitating very large sample sizes)
[336]. On the other hand, simulations show that many genes are needed for ade-
quate predictive power if effects per gene are small [278].

10.1.2 *Examples: Too Many Candidate Predictors

In predicting the underlying diagnosis in children presenting with fever without an
obvious cause, models were developed that considered 57 candidate predictors [57].
The sample size was relatively small, with 231 patients including 58 with the
diagnosis of interest (severe bacterial infection). The model was developed with
stepwise methods after a univariate screening for statistically significant predictors.
The model seemed to perform reasonable, but external validation showed poor
results [55]. On further analysis, bootstrapping of the full modeling process indi-
cated a substantial decrease in expected model performance. A large part of the
poor performance in new patients could be attributed to the modeling strategy with
too many candidate predictors [535].

Similarly, a prediction model for diagnosing Lynch syndrome was published in
NEJM, considering over 37 candidate predictors (with dichotomization of contin-
uous predictors) in a cohort where 38 mutations were found among 870 partici-
pants. Simulations showed over 50% bias for 5 of 6 originally selected predictors,
unstable model specification, and poor performance at validation [563]. Indeed, the
proposed model performed poorly in a comparative international validation study
of 3 prediction models [290].

10.1.3 Meta-Analysis for Candidate Predictors

We may consider to perform a systematic literature review or even a formal
meta-analysis to identify candidate predictors. Some objections can be made against
meta-analysis of univariate effects of predictors. Correlations between variables
make that their effects are different in multivariable analyses. In the case of negative
correlations, the univariate effects are suppressed. This results in no relation
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between the predictor and outcome in univariate analysis, while multivariable
analysis does show a relation. This situation may be relatively rare, but if this is
suspected, the univariate effect of the predictor from previous studies should not be
used as guidance to whether the candidate predictor is considered. In medical
applications, most correlations between variables are positive, making univariate
effects larger than multivariable effects.

Another question is whether we should only count the number of times that a
predictor was identified as “important”, or perform a formal meta-analysis, which
summarizes effect estimates. Counting may be sufficient for identification of the key
predictors in a prediction problem. Meta-analysis is desired if we want to use the
univariate effects of previous studies as a kind of prior estimate in our model (see
Chap. 15). Publication bias is an important objection to such a formal meta-analysis
of predictors. Many studies will not report the effect of a predictor if not statistically
significant; this biases the reported effects to more extreme values (Winner’s curse
[267], see Chaps. 5 and 11). One approach is to consider only studies that report the
results for all predictors considered, but this may severely limit the numbers of
studies in the meta-analysis.

10.1.4 Example: Predictors in Testicular Cancer

We reviewed the prognostic value of a core set of prognostic factors for the his-
tology of residual masses in testicular cancer [554]. The predictors that emerged as
most relevant in the review were subsequently used in a prediction model. Some
further fine-tuning was done [566]. This fine-tuning included searching for good
transformations of continuous variables, and choosing between 3 variables related
to mass size: pre-chemotherapy mass size, post-chemotherapy mass size, and
reduction in mass size (calculated as [presize–postsize]/presize).

10.1.5 Selection Based on Distributions

After restricting the list of potential predictors, we should consider the distributions
of predictors for missing values and width of the distribution. We may choose to
eliminate variables that have a large number of missing values, especially if

• the predictor is relatively important in the problem, such that imputation of
missing values will be suspect to many readers;

• the predictor will be missing in applications of the model;

Also, we may choose to eliminate variables that have a narrow distribution.
Especially if the variable is not expected to be important, this may be reasonable.
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The situation is more difficult when a predictor has a very skewed distribution
but is known to be highly predictive. For example, in GUSTO-I, shock occurred in
2% of the patients but had a large effect (univariate OR 11). Several options are
available to deal with such a variable, such as

1. include the variable as a predictor, since the effect is substantial;
2. omit the variable from the model, since the effect cannot be estimated reliably;

the model might be presented with a warning that specific conditions, such as
shock, are not included in the model;

3. omit patients with shock, making the model applicable only to patients without
shock.

As a default strategy we might prefer option 1, i.e., to include important variables,
even though they are infrequent. The second option, in fact, holds for all potential
predictor variables that are not included in a model: predictions only consider
information on variables that were included. The third option may only be
defendable when we postulate that patients with shock are different with respect to
predictor–outcome relations of other variables, i.e., we assume interaction with
shock for other predictors.

10.2 Combining Similar Variables

Sometimes variables can be grouped such that less degrees of freedom (df) are used
for modeling their effects. Such combination is a trade-off between greater
robustness against missing details of the effects of individual predictors.

10.2.1 Subject Knowledge for Grouping

Grouping can often be based on subject knowledge. As an example, we consider the
coding of “atherosclerosis”, which is a systemic disease that is reflected in many
symptoms. These symptoms can hence be considered as one group reflecting the
underlying concept of “presence of atherosclerotic disease” (Table 10.1) [314]. We
could code “presence of atherosclerotic disease” as 0 or 1, depending on the
presence of any symptom. We could also make a simple unweighted sum, by
counting the number of symptoms. For 6 symptoms, the sum ranges from 0 to 6.
We could winsorize such an unweighted sum as 0, 1, 2, 3+ , depending on the
distribution, and start modeling with this sum as a linear, continuous predictor.

Another example is the coding of comorbidity. The presence of concomitant
diseases (“comorbidity”) is important in many prediction problems. Various sys-
tems have been proposed to quantify comorbidity. Weighted sumscores can be used
such as proposed in the Charlson score [93] or ACE-27 [439] Note that these scores
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were derived for specific populations. Subject matter knowledge hence needs to
support that it is reasonable to apply such as a predefined weighted score in another
setting.

Alternative codings may be considered, depending on sample size. In very large
data sets, e.g., using >100,000 subjects, a detailed coding can be imagined, which
considers study-specific regression coefficients for each comorbidity. Also, a simple
score can be attractive, for example, the sum of a number of comorbidities [158,
287]. Such an unweighted sum may be rather robust and may generalize well to
new settings. Such a simple sum was applied in a prediction model for surgical
mortality after esophagectomy (Table 10.1) [560].

10.2.2 Assessing the Equal Weights Assumption

Simple sums of predictors make the assumption of equal weights for each predictor.
This assumption can be assessed by adding the conditions one by one in a regression
model that already contains the sumscore. The coefficient of the condition added in a
model indicates the deviation from the common effect based on the other conditions.
We can use an overall test for the decision whether a simple sum is reasonable, or that
a more refined coding is required. In the example of comorbidity, we may consider
the sum of 5 comorbidity conditions (Table 10.2). We may assess the effect of each
of the 5 conditions by fitting 5 logistic regression models, with a separate coefficient
for the deviation from the common effect for each of the 5 conditions in turn. We note
that the deviations from the common effect are relatively small, except for liver
disease and renal disease. Renal disease even seemed to have a protective effect. Both
effects were based on small numbers. The standard errors of the estimates were large,
and the effects were statistically nonsignificant. The overall test for deviations from
the simple sum had a v2 statistic of only 3.6, 4 df, and a p-value of 0.46, in a model
with the simple sum and 4 comorbidities added (chronic pulmonary disease,

Table 10.1 Illustrations of simple summary variables based on combinations of different
predictors

Concept Variables Range

Atherosclerotic disease in
predicting renal artery stenosis
[314]

Any femoral or carotid bruit, angina pectoris,
claudication, myocardial infarction, CVA, or
had vascular surgery

0–1

Comorbidity in predicting surgical
mortality in esophageal cancer
[560]

Count of chronic pulmonary disease,
cardiovascular disease, diabetes, liver disease,
renal disease

0–5

Comorbidity in predicting mortality
in various cancers [287, 439]

Count of ACE-27 elements 0–27

Family history in predicting a
genetic mutation [40]

Sum of # affected 1st degree family members
plus 0.5 * # affected 2nd degree family
members

0–3
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cardiovascular disease, diabetes, renal disease). We hence may stick to our
assumption of a similar effect for liver disease as for the other 4 comorbidities, and a
similar effect for renal disease as for the other 4 comorbidities.

10.2.3 Biologically Motivated Weighting Schemes

Instead of equal weights, we can sometimes base weights on a biological relation.
For example, when we model family history, we know that the genetic distance
between family members is 0.5 between 2nd and 1st degree relatives, and 0.25
between 3rd and 1st degree relatives. This relation can be used to define a variable
for family history (Table 10.1).

Such a coding was used in a model to predict the likelihood of a genetic
mutation in patients suspected for Lynch syndrome [40, 534]. A proband with 1
affected 1st degree family member receives a similar score for family history (1) as
a proband with 2 affected 2nd degree family members. An implicit assumption here
is that the numbers at risk are similar for 1st and 2nd degree family members, e.g.,
with similar numbers and similar age distributions.

10.2.4 Statistical Combination

Harrell proposed to use principal component analysis (PCA) to summarize the
information from all candidate predictors [226]. This clustering technique does not
use the information on the predictor–outcome relation. An objection to such clus-
tering is that the interpretability of regression coefficients is lost. Moreover, all pre-
dictor values have to be filled to calculate predictions. There is some similarity with
the clustering analysis applied in some studies of genetic markers [511]. The machine
learning community seems to embrace principal components analysis [283].

Table 10.2 Illustration of testing deviations for each condition in a sum score. Data from
esophageal cancer patients who underwent surgery (2041 patients from SEER-Medicare data, 221
died by 30 days [560]). The overall test for deviations from a simple sum score had a p-value of
0.46 (overall test, 4 df)

Model Logistic regression coefficient p-value

Comorbidity sumscore 0.44 (± 0.13) <0.001

. + chronic pulmonary disease –0.22 (± 0.31) 0.48

. + cardiovascular disease –0.13 (± 0.33) 0.69

. + diabetes +0.32 (± 0.29) 0.27

. + liver disease +1.31 (± 1.03) 0.20

. + renal disease –1.09 (± 1.11) 0.33
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10.3 Averaging Effects

In regression modeling, we usually start with modeling main effects of variables.
We subsequently may assess interaction effects as tests for additivity of effects.
Conceptually, the main effects average over underlying subgroup effects. This
averaging may be reasonable as long as no strong interactions exist, and adds to the
robustness of the model. This issue has a parallel with how we study treatment
effects in RCTs, where we should focus on the main effect rather than subgroup
effects [298−300]. Subgroup effects should be considered as secondary analyses,
and may often be misleading [18, 240, 658].

10.3.1 Chlamydia Trachomatis Infection Risks

The starting point for modeling determines how our final model may look. For
example, prediction of Chlamydia trachomatis infections has traditionally focused
on infection prevalences in women. However, when we have a data set which
contains infection status for both men and women, we may debate how to view
model development. On the one hand, we may develop a male model fully inde-
pendent from the female model. This is equivalent to assuming interactions between
all predictors and sex. The models for males and females may adequately fit risk
patterns for both sexes separately, but the predictions will be less reliable because of
the reduced sample size. The obvious alternative is to start with a model in the
combined data, and assuming similar effects in males and females. This assumption
can specifically be tested by interaction terms of sex * predictor. In a case study,
only the effect of urogenital symptoms clearly differed between the sexes [191].

10.3.2 *Example: Acute Surgery Risk Relevant for Elective
Patients?

In the Chlamydia trachomatis example, we were interested in prediction for both
males and females. In another case, we were specifically interested in patients
undergoing elective replacement of a heart valve [619]. In our data set, we also had
information on patients undergoing acute valve replacement. Should these patients
be excluded? We decided to include these patients in our modeling process, with
inclusion of the main effect for acute versus elective surgery. We tested whether
predictive effects were different between these types of patients, and found no such
indication for any predictor separately nor in an overall test for interaction. Hence, it
might be reasonable to assume that increasing the sample size by adding these
high-risk acute surgery patients helped to improve our predictions for elective
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patients. More precisely stated, we assume that the relevance of any bias is smaller
than the increase in precision by increasing sample size. This assumption seems
reasonable from the data, but paradoxically a small sample size limits the power to
detect differential effects. Therefore, subject matter knowledge is the main guidance
to when effects would be so different that the bias in the predictions for the patients
of interest harms the modeling in the total group.

10.4 *Case Study: Family History for Prediction
of a Genetic Mutation

We consider the case study of diagnosing mutations in patients suspected of Lynch
syndrome, or “hereditary nonpolyposis colorectal cancer” (HNPCC) [40]. Mutations
can be diagnosed with a genetic test, which is costly. Therefore, some selection of
patients for testing is required. Family history has traditionally been used for such
selection, with simple rules. These rules include young age at diagnosis of colorectal
cancer (CRC) as an important predictor, e.g., “2 family members with
CRC <50 years”. Also, the number of 1st and 2nd degree relatives is important, with
more family members making a mutation as the cause of the cancer more likely.

10.4.1 Clinical Background and Patient Data

Lynch syndrome is the most common hereditary colorectal cancer (CRC) syndrome
in Western countries, accounting for 2–5% of all CRCs [356]. Lynch syndrome is
associated with underlying mutations in the mismatch repair system, most commonly
in the MLH1 and MSH2 genes. Empirically derived prediction models have been
developed for the likelihood of mutations in individual patients or families, enabling a
more refined selection of subjects compared to simple rules. Some models use logistic
regression [40, 42, 345, 672], while others use Bayesian methods [96]. Several
aspects of family history are considered in these models, related to the presence and
age at diagnosis of cancer in the proband (the index person who is first being tested in
a family), and the presence and age at diagnosis of cancer in his/her relatives.
Modeling family history is complex, since the spectrum of cancers associated with
MLH1 and MSH2 mutations is diverse. Mutation carriers are mainly at risk of
developing colorectal and endometrial cancer [356]. Young age at diagnosis is sus-
pect for being a mutation carrier, and family members with various degrees of genetic
relation to the proband need to be considered.

We consider a development sample of 898 patients, who were tested for the
presence of mutations (130 with mutation). Patients usually had one or more of
various cancer diagnoses, including colorectal cancer (CRC, n = 536), women with
endometrial cancer (n = 91), and other HNPCC-related cancer (n = 100). Of the
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898 patients, 118 had multiple cancers. Details on predictor and outcome definitions
and modeling issues are described elsewhere [40, 534].

10.4.2 Similarity of Effects

Colorectal cancer (CRC) at a young age is a well-known predictor of a mutation.
Especially if multiple CRCs occur in the same patients, this is very suspect for an
underlying genetic cause. Further, CRC in the family history points at HNPCC. We
illustrate the modeling of CRC effects for the prediction of the presence of a mutation:

(1) What are the effects of a CRC diagnosis below age 50?
(2) How can we estimate the effect of age of CRC diagnosis as a continuous

predictor?
(3) How can we estimate a single effect of CRC diagnosis as a continuous predictor

for those with one or multiple CRCs diagnoses?
(4) Is there need for a nonlinear transformation in the age effect?

(1) We first study the effect of CRC below 50.

We make 2 dummy variables: 1 for having 1 CRC below age 50 years
(CRC1 < 50) and another for having 2 CRC diagnoses with the first diagnosis
made below age 50 years (CRC2 < 50). The model is

Mutation�CRC1\ 50þCRC2\ 50;

where Mutation indicates the presence of a mutation (0/1), and * indicates the
logistic regression link.

We can also use 2 terms for each, reflecting probabilities of mutation below and
over 50 years: Mutation * CRC1 < 50 + CRC1 >= 50 + CRC2 < 50 +
CRC2 >= 50.

In the first formula, 2 coefficients are estimated for those with CRC at age <50 years
(“CRC < 50”). All other patients form the reference category. Estimated coefficients
were 0.58 and 1.86. In the second formula, 4 coefficients are estimated for those with
CRC, and patients without CRC are the reference (Fig. 10.1). Coefficients for CRC1
were 0.54 and −0.50, and for CRC2 2.09 and 1.82 (age <50 and age >=50 years,
respectively). Therefore, patients with 1 CRC, diagnosed after age 50, had a lower
estimated probability of mutation compared to patients without a CRC.

(2) We now turn to the age of CRC diagnosis as a continuous predictor.

We need to insert an age for those without CRC. A simple strategy would be to
impute “0” for patients without CRC. An indicator variable would then be used for
“CRC”, referring to the difference in probability of mutation at age zero between
those with and without CRC. To obtain a more interpretable effect of the indicator
variable for CRC, we set age at 45 years, since 45 years is around the average age
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of patients with CRC diagnoses. Further, we scaled the age per decade
(CRCage10 = CRCage/10). The interpretation of the indicator variables CRC1 and
CRC2 is as the presence of one or two CRCs versus no CRC at the age of 45 years.
For calculation of the linear predictor and graphical display (Fig. 10.2), the specific
coding is irrelevant. We may analyze the effect of the age at diagnosis of CRC with
separate coefficients for CRC1 and CRC2 patients:

Mutation�CRC1þCRC2þCRC1ageþCRC2age;

where CR1age and CRC2age indicate the age of CRC diagnosis; in those without
CRC, the age is arbitrarily set close to the mean age of diagnosis (45 years). The
main effects CRC1 and CRC2 are interpretable as the effect at age 45 of having a
CRC diagnosis (one or multiple CRCs).

(3) We may also assume a single CRCage effect for both CRC1 and CRC2
patients.
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Fig. 10.1 Mutation prevalence in relation to the presence of a single or multiple CRCs diagnosed
before age 50 in the proband (left), or before or after age 50 (right)
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Fig. 10.2 Mutation prevalence in relation to the presence of a single or multiple CRCs, with age at
diagnosis as a linear term (left, assuming separate age effects; right, assuming identical age effects)

200 10 Restrictions on Candidate Predictors



We consider the simpler model: Mutation * CRC1 + CRC2 + CRCage, where
CRCage is a single variable for those with one or multiple CRC diagnoses. A test of
whether the more complex model is better than the simpler one is provided by a
likelihood ratio test (comparison of the v2 statistics, 1 df). The age effects were very
similar in both groups (CRC1age −0.40, CRC2age −0.32), and the difference in effects
was far from significant (p = 0.80). Hence, it is reasonable to assume a single age effect
for patients with one or two CRCs; performance remained identical (Table 10.3).

(4) We may subsequently test for nonlinearity in the age effect.

Nonlinearity can be tested in a number of ways, including adding a square term, or
coding with a restricted cubic spline (Chap. 9). A linear coding was found rea-
sonable, since we found no improvement in the fit by adding a square term
(p = 0.50) or considering restricted cubic splines (3 knots, nonlinearity p = 0.76; 4
knots, nonlinearity p = 0.94).

10.4.3 CRC and Adenoma in a Proband

Adenoma polyps can be considered as precursors of CRC. They, hence, occur on
average before the age of diagnosis of CRC. But the predictive effect for a, e.g.,
10 years younger diagnosis of adenoma is a priori expected to be similar to the age–
outcome relation for CRC. Let us first consider the CRC and adenoma effects plus
their age effects:

Mutation�CRC1þCRC2þCRCageþAdenomaþAdenomaAge

The coefficients for the age effects are −0.38 for CRC and −0.36 for adenoma. It
is tempting to estimate only 1 coefficient for these 2 effects. However, among a total
of 141 patients with adenomas, only 100 had only adenomas as their diagnosis.
CRC and adenoma are hence not mutually exclusive. How can we force the
CRCage and AdenomaAge effects to be identical? In other words, we want to
estimate one bCRCAdenoma instead of bCRC and bAdenoma in a regression equation as

Table 10.3 Performance of alternative modes for the effect of CRC and its age of diagnosis in
patients tested for mutations in HNPCC (898 patients, 130 mutations). The third coding is
preferred (3 df), with age as a single linear term (“CRCage”)

Model df R2 (%) c statistic

CRC1 < 50 + CRC2 < 50 2 4.6 0.602

CRC1 < 50 + CRC2 < 50 + CRC1 >= 50 + CRC2 >= 50 4 6.9 0.634

CRC1 + CRC2 + CRCage 3 7.6 0.651

CRC1 + CRC2 + CRC1age + CRC2age 4 7.6 0.649
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Mutation� bCRC � CRCageþ bAdenoma � AdenomaAgeþ . . . :

The requirement is that bCRC = bAdenoma. This is achieved quite simply:

Mutation� bCRCAdenoma � CRCageþAdenomaAgeð Þþ . . . :

Again, we include the indicator variables CRC1, CRC2, and adenoma in such a
model. CRCage and AdenomaAge are set to 45 years for those with missing
diagnoses, and recorded per decade for better interpretability of effects. The value
of bCRCAdenoma was −0.37: in between the effects for the 2 separate coefficients
bCRC and bAdenoma (Fig. 10.3).

10.4.4 Age of CRC in Family History

A further extension is to consider the effects of age at CRC diagnosis in 1st and 2nd
degree relatives (Fig. 10.4). A CRC diagnosis at a young age in a relative is more
suspect for HNPCC than a CRC diagnosis at a more advanced age. We can again
assume that the age effects should be similar, and add indicator variables for the
presence of 1st or 2nd degree relatives. Four separate age effects are fitted with the
formula:

Mutation�CRC1þCRC2þCRCageþAdenomaþAdenomaAge

+ CRC1stþCRCage1stþCRC2ndþCRCage2nd;

where CRCage and AdenomaAge indicate age at diagnosis of CRC and adenoma in
the proband, respectively, and CRCage1st and CRCage2nd indicate the age at
diagnosis of CRC in 1st and 2nd degree relatives respectively. CRC1 and CRC2
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Fig. 10.3 Mutation prevalence in relation to age at diagnosis of CRC and age at diagnosis of
adenoma as a linear term (left, assuming separate age effects; right, assuming identical age effects)
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refer to 1 or 2 CRCs in the proband, Adenoma to adenoma in the proband, CRC1st
and CRC2nd to the number of CRC affected 1st and 2nd degree relatives.

A single effect for the 4 age variables is estimated by calculating the sum of all
four ages, to force the 4 age coefficients to be the same:

sumCRC:Adenoma:CRC1st:CRC2nd:age

¼ CRCageþAdenomaAgeþCRCage1stþCRCage2nd

We reduce a model with 4 age effects to a model with a single common age
effect for CRC and adenoma.

Moreover, we can combine the family history of 1st and 2nd degree relatives as
CRCfam = CRC1st + 0.5 * CRC2nd, instead of considering indicator variables for
having 1 or 2 1st degree relatives, and 1 or 2 2nd degree relatives with CRC.
Therefore, we reduce a concept with 4 to 1 df.

The chosen coding for CRC and adenoma effects, hence, is as

Mutation�CRC1þCRC2þ adenomaþCRCfam þ CRC:Adenoma:CRC1st:CRC2nd:age

In total, we reduce a model with 11 to 5 df. We find that the performance of both
model variants is similar (Table 10.4). Importantly, more stability is expected, and
better generalizability to other patients.
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Fig. 10.4 Mutation prevalence in relation to age at diagnosis of CRC in the proband, 1st or 2nd
degree relatives, and age at diagnosis of adenoma. Separate logistic regression coefficients were
estimated for the four age effects in model 5a (left). In the right panel, one single age effect is
estimated by considering the sum of all four ages, and family history is summarized in a single
weighted score instead of 4 separate family history effects (1 or 2 1st degree relatives with CRC, 1
or 2 2nd degree relatives with CRC, model 5c). The predictive performance of model 5c was
similar to that of model 5a while using 5 instead of 11 degrees of freedom (Table 10.4)
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10.4.5 Full Prediction Model for Mutations

A final predictive model was constructed where other diagnoses were treated in a
similar way. For endometrial cancer, we create an indicator variable with as ref-
erence category females without endometrial cancer and all males (“endo”). Age at
diagnosis in the proband was combined with age at diagnosis in 1st and 2nd degree
relatives, and family history was coded as for CRC: # affected 1st degree rela-
tives + 0.5 # affected 2nd degree relatives.

For other HNPCC-related cancers, indicator variables were created for the
proband (“other”) and relatives (“rother”, scored as for CRC and endo). No age
effect was identified. The final model hence was

Mutation�CRC1þCRC2þAdenomaþCRCfam þCRC:Adenoma:CRC1st:CRC2nd:age

þ EndoþEndoFamþEndoAge þ OtherþOtherFam

This model incorporates information on CRC, adenoma, endometrial cancer, and
other cancer diagnoses from the proband and from 1st to 2nd degree relatives with
only 10 df. The R2 was 24.9%, and the c statistic 0.81. External validation was
performed with 1016 new patients from the same setting [40]. The R2 was 24.0%
and c statistic 0.80.

This case study illustrates how predictors related to the same underlying phe-
nomenon can be combined for parsimonious and robust modeling. Such a strategy
may especially be useful in relatively small data sets, where the specification of
complex models would not be reasonable, and lead to unstable estimation of
regression coefficients. Further statistical detail is provided elsewhere [534]. Model
updates have been developed [291], and an extensive validation study compared
various prediction models for Lynch syndrome [290].

Table 10.4 Performance of alternative modes for the predictive effect of age of diagnosis for
CRC and adenoma in the proband, and CRC in 1st and 2nd degree relatives. Models created with
data from patients tested for mutations in HNPCC (898 patients, 130 mutations). The fourth coding
is preferred, with a single, linear term for a continuous age effect

Model df R2 (%) c statistic

CRCage + AdenomaAge; adenoma; CRC1 + CRC2; 5 8.4 0.662

CRCAdenomaAge; adenoma; CRC1 + CRC2 4 8.4 0.662

CRCage + AdenomaAge + CRC1stAge + CRC2ndAge +
adenoma; CRC1 + CRC2; CRC1st (0, 1, 2), CRC2nd (0, 1, 2)

11 19.4 0.767

1 age effecta; adenoma; CRC1 + CRC2; CRCfam 5 18.3 0.757
aThe age effect was labelled: CRC.Adenoma.CRC1st.CRC2nd.age reflecting 4 age effects in 1
summary variable
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10.5 Concluding Remarks

Model specification is the most difficult step in prediction modeling. We considered
several steps to develop more robust models for prediction purposes by reducing the
effective degrees of freedom considered in the modeling process.

1. The first step obviously is to match the number of candidate predictors with the
available effective sample size, which is mainly determined by the number of
events for binary outcomes. If we have a small sample for modeling, a more
restricted set of candidate predictors is necessary compared to the situation of a
large sample. Subject matter knowledge may assist in limiting the selection,
such as literature review and consultation of subject experts.

2. Second, we may consider distributions of predictors. We may exclude candidate
predictors based on the number of missing values and skewness of distributions,
for example, binary predictors with less than 5% being positive.

3. Related predictors can sometimes be combined in summary scores, such as
illustrated for comorbidity.

4. Finally, we may want to average effects of predictors across groups for more
stability, exploit biological relations, and estimate single effects for combina-
tions of predictors. As illustrated for the case study on mutation prevalence in
Lynch syndrome, this may lead to a parsimonious, robust model, which still
captures most of the prognostic information.

The risk of such restrictions is that we may exclude certain predictors and miss
specific predictor effects from a model; the specific circumstances should guide us
in what strategy is most reasonable in balancing external information to what
information is available in the data set under study.
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Questions

10:1 Data reduction
(a) What is meant with candidate predictors, in contrast to included

predictors in a model?
(b) Which problems can occur when considering many candidate pre-

dictors for inclusion in a prediction model (see also Chap. 4)?
(c) What kind of strategies do not use the predictor–outcome relation in

reducing the number and degrees of freedom of the candidate
predictors?

(d) What kind of strategies use the predictor–outcome relation while
attempting to reduce the number and degrees of freedom of the
candidate predictors (see also Chap. 11)?

10:2 Combining similar variables
What objections can be made against the combination of similar variables in
summary predictors (e.g., comorbidity scores), or the combination of effects
of similar predictors (e.g. age effects in family history)?

10:3 Interpretation of case study (Sect. 10.4)
The case study illustrates robust coding of family history for prediction of an
underlying mutation in Lynch syndrome patients.

(a) CRCage may be coded as (45–years)/10. How can we then interpret
the coefficients for CRCage, CRC1, and CRC2 in the following
regression formula:

Mutation�CRC1þCRC2þCRCage

(b) The model for aspects of CRC in the family was

Mutation�CRC1þCRC2þ adenomaþCRCfamþ
CRC:Adenoma:CRC1st:CRC2nd:age

What would the values of the predictors be for someone with no CRC
or adenoma, and no CRC in the family?

(c) How can we test for deviations of the age effects in 1st and 2nd
degree relatives in the variable CRC.Adenoma.CRC1st.CRC2nd.age
(2 age effects versus 1 age effect for relatives)?

(d) Endometrial cancer can only occur in females. How do we code the
predictors Endo and EndoFam to obtain interpretable coefficients?

10:4 Splitting analyses
A researcher considers to analyze males and females separately, and proposes to
split the files for such analyses. A colleague says there is no need to do so. How
can the effects of predictors for males and females be analyzed in one dataset?
Write down the regression formula with predictors p and sex for outcome y.
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Chapter 11
Selection of Main Effects

Background Model specification is the most difficult part of prediction modeling.
Especially in smaller data sets, it is virtually impossible to obtain a reliable answer
to the question: which predictors are important and which are not? In this chapter,
we focus on the problems that are associated with model reduction techniques such
as stepwise selection, including overfitting and the quality of predictions from a
model. Specific issues include instability of selection, biased estimation of coeffi-
cients and exaggeration of p-values. We explore the influence of including noise
variables as predictors in a model, and find that their influence is not as detrimental
to legitimize widespread use of selection methods. Alternative approaches are
discussed, such as limiting the number of candidate predictors, e.g. based on a
meta-analysis of available literature, and some modern selection methods, such as
the LASSO and elastic net.

11.1 Predictor Selection

11.1.1 Reduction Before Modeling

In the previous chapters, we have discussed several approaches to limit the degrees
of freedom that are considered in the modeling process. Use of subject matter
knowledge is essential to preselect candidate predictors, e.g., from a systematic
review of the literature, and from discussions with experts in the field. We should
also consider strategies for robust coding of predictors (Chap. 10). These steps may
reduce the chance that there are noise variables among the candidate predictors.
Prediction modeling then turns into an estimation problem rather than a testing
problem [529]. Ideally, we end up with a limited list of say 5–10 candidate pre-
dictors, which can all be entered in a “full model”, which contains the main effects
of all candidate predictors [225]. Model specification is then restricted to
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consideration of model assumptions such as additivity (with interaction terms) and
nonlinearity (with nonlinear terms, see Chap. 12) [14].

11.1.2 Reduction While Modeling

In many prediction problems, we may end up with a list of over 10 candidate pre-
dictors, and wemay consider to reduce this set of predictors for various reasons [236].

• One reason is that it is not practical to use a large set of predictors in medical
practice. Formally, this is only an argument if variables are not all available in
future patients, or have a cost associated with their collection.

• Some predictors may have very small or implausible effects, which makes it
questionable why they are included in a model. In some circumstances, we may
also have a list of new predictors, where some are expected to have no true
relation to the outcome at all. For example, when predicting valve fracture with
production characteristics, it was unclear which specific aspects would be
important [58].

• In genetic and proteomic research, identification of which characteristics are
predictive from a very large set of candidate predictors is the main goal. Such
explanatory model building may make such analyses quite exploratory in nature,
more aimed at biological knowledge discovery than prediction.

11.1.3 Collinearity

Another argument in favor of model reduction includes collinearity, which refers to
the issue that predictors may be strongly correlated with each other. Collinearity is
reflected in “variance inflation factors” (VIF) , which measure the degree to which
collinearity among the predictors degrades the precision of estimate coefficients.
Collinearity may hamper reliable and stable estimation of regression coefficients of
the correlated variables, especially if correlations are very strong (say correlation
coefficient r > 0.8, or VIF > 10) [653].

Is collinearity relevant for prediction models?

• Correlations do of course exist between predictors. We can perform multivari-
able analysis to consider the joint effects of predictors which cannot be inferred
from univariate analysis.

• In many practical examples, correlations are relatively modest, with r < 0.5. For
example, the strongest correlation in the GUSTO-I study is between height and
weight with r = 0.54. All other correlations are weaker, typically with r around
0.1–0.2.

• Sometimes, we create highly correlated variables, e.g., age and age^2 (r > 0.95),
but we can estimate their coefficients.
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If predictors are relatively strongly correlated, it may be wiser to combine them in a
single combined variable. For example, a strong correlation generally exists
between diastolic blood pressure (DBP) and systolic blood pressure (SBP), with
r of 0.62 in one study [14]. When choosing between DBP and SBP, “mean blood
pressure” may be a better choice ((2xDBP + 1xSBP)/3) than choosing either one of
them [5]. But again, subject matter knowledge is important. For example, systolic
pressure may be the more relevant predictor for cardiovascular risk [571].

11.1.4 Parsimony

Another argument in favor of smaller models is made by referring to the principle
of parsimony (“Occam’s razor”). This principle states that simpler explanations are
preferred over more complex explanations. This is an appealing philosophical
principle when judging 2 alternative theories. It is, however, not obvious how this
principle translates to prediction models [134]. Better predictive abilities cannot
necessarily be expected from a simpler model, especially if we try to identify the
simpler model from a richer model.

The traditional reasoning is that a model where some less significant variables
are eliminated is more parsimonious than a full model with more predictors, and is
hence to be preferred. When we consider how predictive regression models are
created we, however, come to the opposite conclusion:

• a fully prespecified model does not ask more from the data than: what are the
estimated regression coefficients?

• a reduced model asks two questions:
(a) which variables can be eliminated?
(b) what are the coefficients of the remaining predictors, given that the other
variables are eliminated?

So, a reduced model reflects the answer to 2 questions rather than the answer to 1,
which is arguably more complex.

A practical issue may be that smaller models are easier to interpret and use in
practice. For example, prediction rules with a few, simple predictors may be easy to
remember for clinicians. Hence “parsimony” comes at a price: such smaller models
are conditional on selecting the right predictors from the candidate predictors.

11.1.5 Nonsignificant Candidate Predictors

Many may argue that statistically nonsignificant variables should not be included as
predictors in a model, since their effects are not proven. This belief may result from
mixing the fundamental statistical concepts of hypothesis testing and estimation.
Prediction is about estimation; hence it is quite reasonable to include a predictor
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with a p-value higher than the magical value of 5%. Especially, this is reasonable if
the data set is relatively small, the predictor uncommon (a rare but strong predictor
such as “shock” in GUSTO-I), or when the predictor is well known from previous
research to be predictive. Non-significance does not mean that there is evidence for
a zero effect of a predictor; as always the absence of evidence is not evidence of
absence [11]. Finally, simulation studies with true noise variables in a model show
only a limited decrease in predictive ability [543] (see www.clin-
icalpredictionmodels.org for additional material).

11.1.6 Summary Points on Predictor Selection

In sum, some arguments can be put forward in favor of predictor selection based on
findings in our data:

• Larger models are less practical to work with;
• Some predictors may have very small or implausible effects.

False arguments include

• Statistically nonsignificant variables should be excluded: for estimation, sig-
nificance testing is not relevant, especially if estimated effects are supported by
subject knowledge;

• Collinearity precludes obtaining reliable predictions: although collinearity
makes estimates of individual coefficients unstable, reliable predictions can still
be obtained;

• Referring to the parsimony principle: this principle may hold when prespecified
models are compared, not when models are selected by studying patterns in the
data.

11.2 Stepwise Selection

Wewillfirst consider traditional approaches such as stepwise selection of predictors in
a model, followed by some promising alternative approaches to model specification.

11.2.1 Stepwise Selection Variants

Currently, stepwise selection methods are probably the most widely used in medical
applications. These automated methods aim to include only the most significant
predictors in a model. Significance is determined with a selection criterion: the F
test in linear regression; a likelihood ratio (LR), Wald, or score statistic, in logistic

210 11 Selection of Main Effects



or Cox regression models. Forward selection starts with the inclusion of the most
significant candidate predictor to a model that does not contain any predictor.
Backward selection starts with elimination of the least significant candidate pre-
dictor from a full model including all candidate predictors. Forward and backward
selection may also be combined, such that an iterative procedure is followed [236].

A backward selection approach is generally preferred if stepwise selection is
attempted. First, the modeler is forced to consider the full model with a backward
approach, and can judge the effects of all candidate predictors simultaneously [225].
Second, correlated variables may remain in the model, while none of them might
enter the model with a forward approach [133].

An extension of stepwise selection strategies is “all possible subsets regression”.
Here, every possible combination of predictors is examined to find the best fitting
model. All possible subsets regression can identify combinations of predictors not
found by the more standard forward or backward procedures. This comes at a price:
we examine many models, with multiple testing, easily resulting in overfitted
models [133].

11.2.2 Stopping Rules in Stepwise Selection

The stopping rule for inclusion or exclusion of predictors is a central issue in stepwise
selection methods. It is far more important than the specific variant of the stepwise
selection method (e.g., forward, backward, combined, all possible subsets). Usually,
one applies the standard significance level for testing of hypotheses (a = 0.05), but
the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) are
also often used. In all possible subset selection, the stopping criterion often is to
maximize Mallow’s Cp, which is similar to optimizing AIC. Stopping rules are
usually applied for testing contributions of individual predictors, but may also be
applied to the pooled degrees of freedom of unselected predictors [225].

AIC and BIC compare models based on their fit to the data, but penalize for the
complexity of the model. With AIC, we require that the increase in model
chi-square (v2) has to be larger than 2 times the degrees of freedom: v2 > 2 df.
When considering a predictor with 1 df, such as gender, this implies v2 > 2,
equivalent to p < 0.157. With 2 df, v2 > 4, or p < 0.135, and with 4 df, p < 0.092
(Table 11.1).

Table 11.1 P-value
associated with Akaike’s
Information Criterion (AIC)
for selection of candidate
predictors with different
degrees of freedom (df)

df Minimum v2 Critical p-value

1 2 0.157

2 4 0.135

3 6 0.112

4 8 0.092

5 10 0.075

11.2 Stepwise Selection 211



With BIC, we penalize the model fit such that v has to exceed log(n). The
effective sample size should be used for n, e.g., the number of events in Cox
regression for survival data [655]. With small sample size, e.g., n = 20, BIC is
equivalent to p < 0.083 for selection. With larger sample sizes, the critical p-value
is much lower (Table 11.2). Hence, selection with BIC will generally lead to
smaller models than selection with AIC. The theory behind AIC and BIC criteria
can be found elsewhere in detail [231]; for the applied researcher, the p-value that is
effectively used as a stopping criterion is most relevant.

There is no specific reason to stick to a critical p-value of 0.05, or lower, as
implied by applying BIC. Using AIC has been recommended [14]. The use of
higher p-values (p < 0.20 or p < 0.50) has been found to provide more power for
the selection of predictors with relatively weak effects [327], and to provide better
predictions in small data sets with a set of established candidate predictors [542].

11.3 Advantages of Stepwise Methods

Stepwise selection methods have a number of advantages. They are usually rela-
tively straightforward to apply in any statistical package [236]. Some care should be
taken with missing values; if we start with a full model, the number of available
cases is restricted by the combination of missing values in any of the candidate
predictors. It is therefore important to use imputed data set to deal with missing
values. Multiple imputation (MI) poses some complexities if we would select
predictors per imputed data set, where predictor may be selected in some replicates
of the data set and not in other replicates. The preferable approach is to perform
selection based on the results from the combined data sets [678]. For example, with
a backward procedure, we first obtain p-values for each predictor in a full model,
fitted on MI data sets. We then eliminate the least significant predictor, provided
that the p-value is higher than our stopping criterion. We refit the model in the MI
data, and eliminate the next predictor. We stop when all predictors have p-values
less than the stopping criterion.

Stepwise methods are also relatively objective. When another analyst is provided
with the same data set and the same list of candidate predictors, the resulting

Table 11.2 P-value
associated with Bayesian
Information Criterion (BIC)
for selection of candidate
predictors

N Minimum v2 Critical p-value

20 3.0 0.083

50 3.9 0.048

100 4.6 0.032

200 5.3 0.021

500 6.2 0.013

1000 6.9 0.009

2000 7.6 0.006
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selection should be very similar. The objectivity of stepwise selection makes it
possible to replay this model reduction strategy in the validation procedures such as
the bootstrap (Chap. 16). Optimism can hence be estimated including model
uncertainty [94, 535].

Stepwise methods usually reach their goal of making a model smaller. In larger
data sets, such as GUSTO-I, all variables that are important for prediction will have
small p-values. Sometimes p < 0.01 is therefore chosen in large samples. In small
data sets, only a few variables may have such small p-values, resulting in small
models (sometimes referred to as “underfitting”). This argues for the use of a higher
p-value in smaller data sets.

11.4 Disadvantages of Stepwise Methods

Stepwise methods have severe disadvantages, including

(1) instability of the selection;
(2) biased estimation of coefficients;
(3) misspecification of variability and exaggeration of p-values;
(4) provision of predictions of worse quality than from a full model.

These issues are explained and illustrated below.

11.4.1 Instability of Selection

Stepwise selection considers a high number of combinations of predictors. Some of
these combinations may actually be rather similar in how they fit the data. This
instability may be illustrated by the observation that the selection of predictors may
change when we consider a somewhat different selection of patients for a model
[27, 563].

The instability of selection can well be illustrated with subsamples of our
GUSTO-I case study; very different selections arise (Table 11.3). For example, the
selected predictors were age (dichotomized at 65 years, “a65” [395]), hypotension
(“hyp”) and shock (“sho”) in sample number 5 (n = 429 patients). We also con-
sidered the selection in the other 110 small subsamples where a logistic regression
model could technically be fitted. The predictors a65, hyp, and sho were among the
predictors most often selected (80%, 47%, 53%, respectively). The specific selec-
tion of these 3 predictors was, however, replicated in only 7 of the 110 other small
subsamples.

The conclusion from this case study is similar to what was found in other
studies: the specific selection of predictors is unstable and should be interpreted
with much caution [27, 563]. Statements such as “the only independent predictors
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in this prediction problem were age, hypotension, and shock” are overinterpreta-
tions unless the sample size was huge [236]. Even worse overinterpretations are
related to the order of entry of a predictor in a forward stepwise procedure, or rank
order of the p-value in the selected model [133].

The instability of selection depends on a number of factors. One crucial aspect is
the sample size. In a large sample, more stability is to be expected, since we have
more power to detect truly important effects. Table 11.4 illustrates that more pre-
dictors were selected in larger subsamples than in smaller subsamples. When
considering 16 large regions in GUSTO-I of at least 2000 patients (178 events on
average), around 6 to 7 predictors had statistically significant effects, eliminating
predictors such as ttr and dia which had minor prognostic effects.

Table 11.3 Illustration of variability in selection with backward selection with p < 0.05 in 20
small subsamples from GUSTO-I [541]. The full 8-predictor model could technically be fitted in
111 of the 121 subsamples

a65 sex dia hyp hrt hig sho ttr

1 7.9 2.5

3 4.0 3.9 3.9 5.3

4 11.7 10.9 10.3

5 3.9 3.3 39.3

6 4.1 4.1

7 3.6 3.9 12.0

8 14.5 3.6 6.4

9 3.8 44.3 45.5

11 4.1 6.0

13 14.5 3.3

14 5.7 20.8

…

116 11.8 7.7

117 5.5 2.8 3.9

118 4.2 4.0 9.9

119 3.6 2.8 4.4

120 3.2 5.0 15.0

121 7.6 2.8 8.2 24.9

Selected (%) 80 22 13 47 23 29 53 11

Table 11.4 Summary of the
number of predictors selected
with different selection
strategies in subsamples from
the GUSTO-I data set.
Numbers are mean ± SD

Samples Full p < 0.05 AIC p < 0.5

Small
subsamples

8 2.8 ± 1.1 4.2 ± 1.1 6.3 ± 1.2

Large
subsamples

8 4.8 ± 1.1 6.0 ± 1.0 7.0 ± 0.9

Regions 8 6.6 ± 1.0 7.1 ± 0.8 7.8 ± 0.4
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Although a larger sample size helps in many ways, we are usually tempted to
study more candidate predictors in such situations. This introduces instability again:
having more candidate predictors implies having more potential combinations of
predictors. So, a crucial aspect is the ratio between the number of candidate pre-
dictors and the effective sample size. Sometimes, a ratio of 1 predictor per 10 events
is advocated; this is, however, only a reasonable lower bound for prespecified
models. For reliable selection among candidate predictors, a 1 in 25 [236], or a 1 in
50 rule [543] has been suggested. So, if we consider 8 candidate predictors, at least
200–400 events should preferably be analyzed in a logistic regression model when
we want to make statements on which predictors are important and which are not.
The total GUSTO-I model easily fulfills the 1 in 50 criterion with 2851 events in
40,830 patients, but this is exceptional.

The instability of selection procedures can well be studied for one specific data
set with bootstrapping procedures (Chaps. 5 and 16). For larger data sets, the
instability will not show up as extreme as with the small subsamples in Table 11.3.
Also, when a few predictors have strong effects, and others have weak effects, this
should be apparent from the selection pattern over bootstrap samples.

11.4.2 Testimation: Biased in Selected Coefficients

The problem of estimation after testing (testimation) was already introduced in
Chap. 5. This bias is a key problem if the selection is based on observed patterns in
the data (Winner’s curse [267]). It clearly shows up in stepwise selected coeffi-
cients: the distributions of selected coefficients are biased away from zero.

We illustrate the theoretically expected patterns with different critical p-values
for selection: p < 0.50 (liberal selection for prediction [543], AIC [14] or p < 0.157
for estimates with 1 df, p < 0.05 (the default in many statistical packages),
p < 0.01, and p < 0.001 (a more stringent selection criterion, as sometimes applied
in very large data sets). We assume that a true effect has mean value µ = 1 and a
sample size such that SE = 0.5 (Fig. 11.1). For logistic regression, a coefficient
with value 1 implies a true odds ratio of 2.7; a SE of 0.5 corresponds to a study of a
binary predictor with 50:50 distribution, in a sample with 35 events and 35 non-
events. Equivalently we can think of a study with true odds ratio 1.65 with 140
events and 140 nonevents (coefficient 0.5 and SE 0.25). If no selection is applied,
we expect no bias in estimates such as regression coefficients. With a liberal p-value
of 0.50, we would keep 91% of estimates, which causes a small bias (+9%). The
bias increases to 39% for p < 0.05 selection, +60% for p < 0.01 and +88% for
p < 0.001 selection, given a true effect of 1 and a SE of 0.5.

The bias in selected estimates depends on a number of characteristics, including
the true effect size and the statistical power for selection of an estimate (Fig. 11.2).
The stringency of the stopping rule is also important, with more bias for selection
with lower p-values. Biases over 100% can arise if true effects are small, and when
estimates are from small studies with low statistical power. We further illustrate
these theoretically expected patterns with empirical data from GUSTO-I.
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Fig. 11.1 Illustration of testimation bias for a true effect of µ = 1 and SE = 0.5. If we select
estimates based on increasingly stringent p-values, the bias increases from 9% for p < 0.50 to 88%
for p < 0.001

Fig. 11.2 Illustration of testimation bias in relation to the size of the true effect while SE = 0.5,
and in relation to the statistical power for selection of the estimate. Results for µ = 1 correspond to
Fig. 11.1. Estimates are expected to have a large bias if selected in small sample sizes with low
statistical power, while the true effect was small
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11.4.3 *Testimation: Empirical Illustrations

We further illustrate the bias that is induced by stepwise selection in 111 small
subsamples in GUSTO-I. Predictors such as diabetes (dia) and time to relief (ttr)
were often not selected for the model with the default criterion of p < 0.05
(Table 11.3, first row in Fig. 11.3). We set the coefficients to zero for such nons-
elected predictors. From zero there is a gap; only larger estimated coefficients were
statistically significant. The gap is smaller when we select with a higher p-value
(AIC or p < 0.50). The higher statistical power for selection implies that more
coefficients are included with a more relaxed stopping rule, and that fewer coeffi-
cients are set to zero. The testimation problem is smaller in larger samples (see
www.clinicalpredictionmodels.org for graphs). Similar bias has been observed in a
case study of Lynch syndrome patients [563].

11.4.4 Misspecification of Variability and p-Values

As noted in Figs. 11.1 and 11.3, the distribution of coefficients from stepwise
selected models has a strange shape. From an unconditional perspective,

Fig. 11.3 Distribution of logistic regression coefficients in 111 small subsamples within
GUSTO-I. First row: p < 0.05 selection; second row: AIC selection; third row: p < 0.5 selection;
fourth row: full model with all 8 predictors included. a65: age > 65; dia: diabetes; hyp:
hypotension; hrt; heart rate > 80; hig: high risk (anterior infarction or previous MI); sho: shock; ttr:
time to relief > 1 h. Note that the coefficients in the stepwise selected models should be interpreted
with caution: they are based on different sets of selected predictors. The general pattern is that the
coefficients in the stepwise selected models are either zero (marked in red), or a value clearly above
zero, since predictors with small effects are not selected. The coefficients follow an approximately
normal distribution in the full models (last row)
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coefficients are set to zero when the predictor was not selected. From a conditional
perspective, only the values of coefficients of selected predictors are considered.
The asymptotic standard error (SE) of the selected coefficient is estimated as if the
model was prespecified. The means of these asymptotic SEs were somewhat larger
than the empirical SEs of the conditional coefficients for each of the 8 predictors,
but smaller than the unconditional SEs (Table 11.5). The latter SEs reflect that the
coefficient might have been set to zero, but the interpretation of this SE is difficult,
if not impossible. In sum, the distribution of coefficients is less straightforward to
interpret or quantify when a stepwise selection procedure has been followed. Some
may hence consider reporting of 95% confidence intervals for coefficients in a
stepwise model rather meaningless.

Another consideration is the variability of predictions (rather than predictor
effects), given covariate patterns. This variability has been studied with boot-
strapping techniques. Predictions were far more variable than expected from esti-
mates which were made as if the model was prespecified [10, 21].

Furthermore, the testimation bias in coefficients and misspecification of vari-
ability leads to an exaggeration of p-values. The p-value of predictors in a stepwise
model should generally not be trusted; the p-value is calculated as if the model was
prespecified. This interpretation of p-values is only valid for a full model, without
selection.

11.4.5 Predictions of Worse Quality Than from a Full
Model

Apparent performance usually does not suffer much from stepwise selection pro-
cedures. The eliminated variables have by definition relatively weak effects,
otherwise, they would have been omitted.

Of more interest is the validity of the predictions outside the studied sample. We
can assess the validity with internal validation techniques such as bootstrapping,
and with external validation, i.e., evaluation in completely new patients. Both types
of validation have shown that the performance of stepwise selected models is
usually worse than that of a full model, without selection [226]. Table 11.6 pro-
vides an illustration of bootstrap validation in a small sample from the GUSTO-I

Table 11.5 Standard errors of estimated coefficients in logistic regression models after backward
selection with p < 0.05, calculated from an unconditional or conditional perspective (standard
deviation in Fig. 11.3), and as asymptotically estimated in the models (average SE)

SE estimation a65 sex dia hyp hrt hig sho ttr

Empirical unconditional 0.87 0.55 0.53 0.98 0.55 0.77 1.51 0.46

Conditional 0.52 0.27 0.36 0.47 0.29 0.62 0.75 0.27

Asymptotic conditional 0.57 0.48 0.55 0.61 0.48 0.59 0.88 0.62
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study. This same pattern was found in a simulation study considering all small
subsamples within the training part of GUSTO-I, and evaluating them on an
independent validation part of GUSTO-I [542].

11.5 Influence of Noise Variables

An argument for stepwise methods is that it helps to eliminate variables that have
no true relation to the outcome (noise variables, with true regression coefficient of
zero). As discussed before, the likelihood of having such noise variables in our
model can be reduced by considering only predictors with external knowledge on
their relevance (from the literature, expert opinion). Various simulation studies have
considered the behavior of stepwise selection in the presence of noise variables. In
one simulation, stepwise selection produced models in which 30–70% of the
selected predictors were not related to the outcome, i.e., were pure noise, when
candidate predictors consisted of a mix of noise and true predictors [133]. The
frequency of inclusion of noise and true predictors depended on the number of
noise variables among the candidate predictors and on the correlations between
candidate predictors. Stepwise methods were, hence, far from a guarantee for
exclusion of noise variables.

A simulation study in 2 data sets with a mix of true and noise predictors focused
on the predictive performance of the models. Stepwise selection with AIC was
optimal in that study [14].

In GUSTO-I, we added 9 noise variables to the 8 predictors considered thus far
for some further simulations [542, 543]. The performance was evaluated in inde-
pendent test patients (see Chap. 24). As expected, we noted that discriminative
ability (c statistics) for the full model was worse by adding noise variables, com-
pared to a model including 17 true predictors (Table 11.7: c 0.78 with true pre-
dictors, 0.75 with 8 true and 9 noise predictors). The stepwise models succeeded in
removing noise variables: with p < 0.05 selection only 1 in 20 was retained in the
model, which is approximately 1 in every 2 models (since 9 noise variables were
considered per model). The exclusion of noise variables comes at the price of at the
same time excluding some true predictors. For example, the p < 0.05 selected
models contained on average 0.5 of the 9 noise predictors and 4.8 of the 8 true
predictors (Table 11.7). The performance of stepwise models was worse when only
true predictors were considered, but also when more than half of the candidate

Table 11.6 Illustration of bootstrap validation of model performance, as indicated by R2 in
subsample #5 of the GUSTO-I database (n = 429, see also Table 5.4)

Method Apparent Bootstrap Test Optimism Optimism-corrected

Full 8-predictor model (%) 22.7 24.7 17.2 7.6 15.1

Stepwise, 3 predictors
p < 0.05 (%)

17.6 18.7 12.7 5.9 11.7
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predictors were in fact noise (Table 11.7). Apparently, the p < 0.05 stopping rule
led to a suboptimal balance between the elimination of noise variables and the
inclusion of a sufficient number of true predictors in this case study. This suggests
that the omission of a true predictor may be far worse than the inclusion of a noise
variable [543].

11.6 Univariate Analyses and Model Specification

A common way to select predictor variables for a regression model is to first study
the univariate relation between each variable and the outcome. When a variable
meets a univariate criterion, e.g., p < 0.2, the variable is considered further for
multivariable modeling (Table 11.8). This strategy may seem advantageous to
reduce problems of overfitting and stepwise selection. However, univariate prese-
lection is just a variant of stepwise selection. All candidate predictors are considered
in the first step, but only those meeting the univariate criterion are considered in the
following steps. This is in contrast to the standard forward (or backward) selection,
where all candidate predictors are considered in each step as long as they have not
been removed from the model. The difference between univariate prescreening and
standard backward selection is shown in Tables 11.8 and 11.9 for a hypothetical
example.

11.6.1 Pros and Cons of Univariate Preselection

Univariate preselection has some practical advantages, which include:

• Predictors are eliminated at an early stage if no regression coefficient can be
estimated with standard fitting algorithms, e.g., for “shock” in the small
GUSTO-I subsamples. A model can be developed with the remaining
predictors;

Table 11.7 Selected predictors and performance of models with 17 true predictors or 9 noise
variables and 8 true predictors in 23 large subsamples from GUSTO-I [543]. Models were created
in a large subsample (#4, n = 795, 52 events) and evaluated in the independent test part of
GUSTO-I (part B, n = 20,318)

True predictors Noise variables added

17-predictor model p < 0.05 8 + 9 noise model p < 0.05

#Predictors

Noise
True

0 0 9 0.5

17 5.9 8 4.8

Validated c statistic 0.784 0.762 0.753 0.746
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• In a large data set, with many predictors, the computational burden is lower
when starting with a smaller set of predictors in a “reduced full model”.

On the other hand, univariate screening of candidate predictors does not reduce the
problems as noted for stepwise methods (Sect. 11.4). Other variants of univariate
preselection are eye-balling relations between continuous predictors and outcome,
and inspection of exploratory cross-tables. In these informal inspections, the rela-
tion between a predictor and the outcome is used. Such informal data inspections
may hence contribute to overfitting.

11.6.2 *Testing of Predictors within a Domain

A variant of univariate screening is to test the relevance of predictors within a
cluster of related variables, representing a disease domain. For example, we may
consider preselection of 1 or more predictors from variables related to hypertension:
diastolic blood pressure, systolic blood pressure, treatment for high blood pressure.
Such an approach has some attractiveness, but problems of stepwise selection apply
here too. Some increase in power can be obtained by requiring that all domains
have to be included in the final model, even when not statistically significant after

Table 11.8 Hypothetical example of univariate screening of candidate predictors, followed by
stepwise backward selection. Candidate predictors are marked in gray, omitted predictors as red,
and the finally selected predictors are in green. We note that 3 candidate predictors are omitted
from further consideration based on univariate insignificance (#6, #7, #8), and 2 because of
multivariable insignificance (#4, #5). The final model includes 3 predictors (#1, #2, #3)

87654321
Univariate screening 
Multivariable modeling 
Omitted #5 
Omitted #4 
Selected model 

Table 11.9 Hypothetical example of backward stepwise selection of candidate predictors #1–#8.
We note that the hypothetical final model might include 1 of the 3 candidate predictors which were
insignificant in univariate analysis (#6). The model also includes the 3 predictors selected after
univariate screening (#1, #2, #3)

87654321
Multivariable modeling 
Omitted #8 
Omitted #7 
Omitted #5 
Omitted #4 
Selected model 
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the preselection. Alternative approaches are to combine variables within such a
cluster, e.g., as mean blood pressure, or preselection based on prior information,
e.g., evidence from other studies (see Chap. 10).

11.7 Modern Selection Methods

A number of more modern selection methods have emerged over the past decades.
Some methods use resampling methods such as the bootstrap to identify important
variables. Others have proposed principles of Bayesian analysis, such as Bayesian
model averaging [252]. Some methods use shrinkage of regression coefficients to
zero as a method of selection. Finally, many methods are under consideration by
computer scientists and statisticians that may prove valuable in the future but are
not discussed here [231].

11.7.1 *Bootstrapping for Selection

Several authors have proposed to define prediction models based on the selection in
bootstrap samples [28, 95, 487]. For example, one may apply backward stepwise
selection in bootstrap samples drawn from the original sample. Candidate predictors
are ranked according to their frequency of selection in the bootstrap samples.
A cut-off is then applied for selection of predictors in the model that is fitted in the
original sample, e.g., all predictors selected in >50% of bootstrap samples.
Evidence for the advantages of this method is still unconvincing. Models con-
structed with this procedure will generally be very similar to the stepwise model in
the original sample, provided that the stopping rule is similar (selection >50% of
bootstraps). Predictors with low p-values in the original sample tend to be selected
with high frequency in bootstrap samples.

11.7.2 *Bagging and Boosting

Bagging (for “bootstrap aggregating”) is a method for generating multiple versions
of a linear predictor and using these to obtain an aggregated linear predictor [78].
Multiple versions are formed by making bootstrap replicates of the sample and
using these as new model development sets. The aggregation averages over mul-
tiple versions of a predictor to make predictions. If perturbing the development set
can cause clear changes in the predictor constructed, then bagging can improve
accuracy [78].

Bagging is somewhat related to “boosting”, which is a general method for
improving the performance of any learning algorithm [490]. Bagging works by
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taking a bootstrap sample from the training set. Boosting works by changing the
weights on the training set. Greater weights are given to observations that were
difficult to classify, and lower weights to those that were easy to classify.

11.7.3 *Bayesian Model Averaging (BMA)

Researchers usually ignore the uncertainty associated with modeling procedures
such as stepwise selection. Bayesian model averaging (BMA) aims to appropriately
consider this uncertainty [252]. This method selects a subset of all possible models
(up to K = 2p, where p is the number of predictors, ignoring interactions) and uses
the posterior probabilities of the models to perform hypothesis testing and pre-
diction. Equations relating to the problem of optimal model selection have been
developed [252]. Here, M = {M1, M2 …, Mk} is used to denote the set of all
possible models to be considered and D is used to identify the quantity of interest.
For example, D can indicate the regression coefficient in a logistic regression model.
Then the posterior distribution of D, given the data D is

Pr DjDð Þ ¼
XK
k¼1

Pr D=Mk;Dð Þ Pr MkjDð Þ

This is an average of the posterior distributions under each model Mk (Pr(D |Mk,
D)), weighted by the corresponding posterior model probabilities given the data (Pr
(Mk | D), with k = 1, 2, …, K). Hereto, we need to estimate how likely each
coefficient is given a particular model and how likely each model is. This estimation
requires two prior probabilities: one for the coefficient values and one for the
likelihood of each model Mk. For the coefficients, a multivariate normal prior with
mean at the maximum likelihood estimate and variance equal to the expected
information matrix for one observation has been suggested. This can be thought of a
prior distribution that contains the same amount of information as a single, typical
observation. Essentially, this prior distribution is non-informative. When there is
little information about the relative plausibility of the models considered, taking
them all to be equally likely a priori is believed by many to be a reasonable choice.

For an analysis with p potential predictors, the number of models K can be
enormous. To get around this problem, we may exclude models that are far less
probable than the best model. This strategy is also known as “Occam’s window”
approach [448]. For example, we may choose to discard models that are 20 times
less likely as posterior models based on the data than the most likely model. This
approach makes the BMA procedure computationally better feasible.

Software is increasingly available that calculates a posterior model probability,
parameter estimates, and standard errors of those estimates. This enables the testing
of hypotheses, such as that the effect of a predictor is zero. Also, the regression
coefficient can be estimated (as the posterior mean) with a standard error (based on
the posterior standard deviation). Essentially, each estimated regression coefficient
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from a potential model is weighted with the posterior likelihood that this model is
the final model:

E bjjD
� � ¼

X
Mk2A

b̂j Pr Mk=Dð Þ

Similarly, we can make predictions for future patients with all models with a
posterior likelihood larger than zero, and then weight each prediction with the
posterior likelihood that this model is the final model.

11.7.4 Shrinkage of Regression Coefficients to Zero

Shrinkage is the principle of reducing the regression coefficients to improve the
quality of predictions. Several variants of shrinkage will be discussed in Chap. 13.
Some variants of shrinkage methods lead to regression coefficients which are set to
zero. Hence, model reduction is achieved, since variables with zero coefficients can
be dropped. Examples of these methods include the “Garotte” [77], elastic net
[689], and the “least absolute shrinkage and selection operator” (LASSO) [581].
The LASSO minimizes the log likelihood subject to a restriction on the sum of the
absolute values of the parameters. This restriction shrinks some coefficients to zero.
The LASSO showed promising results in simulation studies and in predicting
30-day mortality in subsamples from GUSTO-I (see Chaps. 13, 22–24).

11.8 Concluding Remarks

The problem of overfitting starts with considering too many candidate predictors in
a data set. This problem is difficult to solve with standard statistical techniques
which are still widely used by default in medical research nowadays, such as
stepwise selection [563]. Faraway has labeled the issues discussed here as “the cost
of data analysis” [157]. We can estimate the “effective degrees of freedom” of a
multistep modeling procedure [685].

Improvements in model selection can be sought in various directions. This first is
to limit the necessity for selection by using subject matter knowledge, especially in
relatively small data sets. Another strategy is to use better algorithms to discover
patterns in the data, including better fitting algorithms (such as the “LASSO”),
bootstrapping, or following Bayesian estimationmethods [206, 252]. The uncertainty
ofmodel selection is an important source of overfitting, which needs to be prevented if
possible, e.g., by analyzing larger data sets, and by limiting the use of stepwise or
related methods. The LASSO and variants of such amethod are promising techniques
when prediction and parsimony are goals of prediction modeling.
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Questions

11:1 Stepwise selection methods
Stepwise methods are abundant in the medical literature, both in the context
of addressing epidemiological questions on predictor effects and in the
context of deriving prediction models.

(a) What decisions need to be made when one wants to use stepwise
selection methods?

(b) What are the major advantages and disadvantages of stepwise selection?

11:2 Models considered in all subset regression
Suppose we consider 10 candidate predictors, and use a variant of stepwise
selection that considers all combinations of predictors in selecting a model
(“all possible subset regression”, Sect. 11.2.1).

(a) How many models do we consider?
(b) And how many if we pre-specify that 4 predictors have to be included?

11:3 Bias by stepwise methods (Fig. 11.1)
What bias can we expect by stepwise selection with p < 0.05, if predictors
are studied with SE = 0.5:

(a) if the true regression coefficient = 0.5 (Odds ratio 1.6)?
(b) if the true regression coefficient = 2 (Odds Ratio 7.4)?

11:4 Application of stepwise methods
Consider the paper by Sanada et al. published in 2007 [482].

(a) How many subjects were studied?
(b) How many candidate predictors were considered?
(c) How many predictors were selected by stepwise selection?
(d) What alternatives might have been used for model specification?
(e) Consider the Letter to the editor from Malek et al., who is very critical

with respect to stepwise selection [362]. They propose an alternative
selection strategy, called “hierarchical analysis”. What is your opinion
on this strategy?
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Chapter 12
Assumptions in Regression Models:
Additivity and Linearity

Background In this chapter, we discuss assessment of assumptions in multivari-
able regression models. Specifically, we consider the additivity assumption, which
can be assessed with interaction terms. We also consider the linearity assumption of
continuous predictors in a multivariable regression model, where multiple nonlinear
terms can be included to allow for nonlinear relations between predictors and
outcome. Throughout we stress parsimony in strategies to extend a prediction
model with interactions and nonlinear terms, since better fulfillment of assumptions
in a particular sample does not necessarily imply better predictive performance for
future subjects. We consider several case studies for illustration of strategies to deal
with additivity and linearity.

12.1 Additivity and Interaction Terms

The generalized linear regression models discussed in this book all have a linear
predictor at their core: lp ¼ b1 � x1þ b2 � x2þ . . .þ bi � xi, for models with
i predictors.

The regression coefficients b1 to bi refer to the main effects of predictors x1 to xi.
This formulation implies additivity of effects at the linear predictor scale. We leave
out the intercept a for simplicity; this is a constant that needs to be used to make
predictions with the model. For a logistic regression model, we can calculate odds
ratios as exp(b); the odds ratios are multiplied to obtain the odds of the outcome.
Hence, the effects of predictors are assumed to be multiplicative at the odds scale.
For a Cox regression model, exp(b) is the hazard ratio; the assumption is that these
hazard ratios can be multiplied at the hazard scale.

The scale is essential for consideration of additivity. If a treatment reduces risk
as 20 to 10% in one risk stratum, and 10 to 5% in another risk stratum, the relative
risk is 0.5 in both. The odds ratios are also quite similar (0.44 and 0.47,
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respectively). Hence, we could say that there is a consistent halving of the risk. But
on an absolute scale, the benefit is clearly dependent on the risk (10 vs. 5%
reduction).

The most common regression modeling procedure is to start model specification
with main effects of predictors only. Some epidemiological textbooks advice to
consider interactions early in the modeling process, with main effects included for
all variables that have a relevant interaction term [306]. Interactions between pre-
dictors can be considered by multiplicative terms of the form x1 * x2 (two-way or
first-order interactions), and x1 *x2 * x3 (three-way, or second-order interactions);
higher order interactions are uncommon to consider for regression models. As
mentioned in Chap. 4, tree models assume higher order interactions to be present.
The interpretation of a two-way interaction is that the effect of one predictor
depends on that of another predictor. The effect is different, depending on the value
of another predictor. The effect of a predictor cannot be interpreted alone; we need
to know the value of another predictor to interpret its effect.

12.1.1 Potential Interaction Terms to Consider

Prior subject knowledge may help to guide us to select interaction terms. For
example, interaction terms that were identified in previous studies could be
assessed. Some types of interactions have been suggested that warrant consideration
in prediction models (Table 12.1) [225].

On the other hand, clinical insight, e.g., on pathophysiology, is difficult to use.
This is because using main effects in a model assumes already that predictors act in a
multiplicative way on the risk scale (e.g., odds ratios and hazard ratios are multiplied).
Reasoning why a certain combination of predictors would not act in an additive way

Table 12.1 Examples of interactions to potentially consider in clinical prediction models (based
on Harrell [225])

Interaction Example

Severity of disease *
treatment

Less benefit with less severe disease

Place * treatment Benefit varies by the treatment center

Place * predictors Predictor effects vary by center/region

Calender time *
treatment

Learning curves for some treatments

Calender time *
predictors

Increasing or decreasing impact of predictors over the years

Age * predictors Older subjects less affected by risk factors; or more affected by
certain types of disease

Follow-up time *
predictors

Non-proportionality of survival effects, often a decreasing effect
over the follow-up time

Season * predictors Seasonal effect of predictors
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on, e.g., the log(odds) scale is quite difficult to imagine. Similarly, non-additivity
at the log(hazard) scale is difficult to picture for survival models. Some researchers
are motivated to study an interaction term when 2 predictors are correlated. But
correlation does not imply anything on the effects of predictors conditional on each
other. Two predictors may not have any correlation and still, have interacting effects.

12.1.2 Interactions with Treatment

Various interactions with treatment can be considered. The benefit of treatment may
depend on the severity of the disease, with less relative benefit for those with less
severe disease. The reverse may also be true, especially in oncology, where less
relative benefit occurs for those with more severe disease. For example, surgery in
esophageal cancer can be curative, but only for patients without distant metastases.
Note that absolute benefit will anyway depend on the severity of the disease, even
when the relative benefit is constant [299, 300, 333]. For example, the absolute
benefit of tPA treatment depended strongly on the risk profile of patients with an
acute MI, while it might be assumed that the relative effect of treatment was
constant [86]. In addition to the severity of the disease, a treatment effect may
depend on the setting, e.g., the center where a patient was treated. This is especially
the case when specific skills and facilities are required for the treatment. For
example, surgical mortality is known to vary widely between centers for some
procedures, such as resection of esophageal cancer. Similarly, some treatments have
a learning curve, which can be modeled by including a treatment * calendar time
interaction term, with calendar time reflecting cumulative experience.

In randomized controlled trials, subgroup effects for treatment effects are often
performed, e.g., whether the treatment works better for older than younger patients.
Such subgroup effects should be supported by an interaction test for difference in
effect; not with one p-value for older and one p-value for younger patients [441].
Even when subgroup analyses are prespecified, results should be interpreted cau-
tiously because of multiple testing of the treatment effect [333]. Multiple testing
inflates the risk of false positive conclusions. Indeed, we found not more statisti-
cally significant interactions than expected by chance if no differences between
subgroups existed for cardiovascular trials [240] and for male–female differences in
relative effect estimates [659]. Subgroup analyses are, therefore, best interpreted as
secondary analyses which motivate further study rather than as conclusive analyses
for a more patient-centered treatment effect estimate.

12.1.3 Other Potential Interactions

Predictor effects may differ by place and time, which would limit their generaliz-
ability (see part III). Basic issues to consider are whether predictor definitions were
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consistent across centers and during time. Measurement error may affect perfor-
mance negatively [355]. In some individual patient data analyses, predictor effects
were, however, surprisingly consistent, even when definitions varied over studies
(e.g., studies in traumatic brain injury [357].). As might be expected, interactions of
predictors by place of treatment were small within the GUSTO-I trial, where data
were collected in a highly standardized and controlled way [539].

Various aspects of “time” can interact with predictor effects: calendar time (e.g.,
patients treated during the years 2000–2015), age (e.g., 30–90 years), follow-up
time (e.g., 0–10 years), and season (months January–December). For example, the
effects of predictors may change over the years because of improvements in
treatment or changing definitions. The effects of risk factors for developing a car-
diovascular disease are known to decrease with aging. Predictors having less effect
in the elderly might be explained as that older subjects have proven to survive with
the risk factors. For survival analysis, predictors are usually assumed to have
proportional effects during follow-up, e.g., in the Cox proportional hazards model,
but also in a Weibull model. Such proportionality of effects may not be tenable in
the follow-up of oncological patients, where relative risks of predictors for early
events decrease with time, while others may increase. For example, nonproportional
effects have been noted in breast cancer survival, with no effect of stage of disease
after 10 years of follow-up [402]. The proportionality assumption is equivalent to
assuming no interactions between predictors and follow-up time.

Furthermore, some predictors may have a different impact during the season,
e.g., for infectious and respiratory diseases (Table 12.1). Other interactions may be
relevant in specific prediction problems. For example, the sex-specific effects of
predictors are commonly modeled separately for cardiovascular disease risks.

12.1.4 *Example: Time and Survival After Valve
Replacement

A follow-up study was done spanning over 25 years for the survival of patients
after aortic valve replacement [254]. Various changes had taken place in case-mix
between the first valve replacement (in 1967) and the latest replacement analyzed
(in 1994). During the 25+ years period, 1449 mechanical valves were implanted.
Overall early mortality (<30 days) was 5%, and was analyzed with logistic
regression. Survival rates at 5, 10, and 15 years were 80%, 63%, and 49%,
respectively. Poisson regression analysis was used to disentangle the effects of
calendar time, age, and follow-up. All three aspects of time appeared to be
important. A substantial drop in both early and late mortality was identified around
the introduction of a new treatment (cardioplegia; in 1997), but no strong inter-
actions with calendar time were found. A changing, nonproportional effect was
observed for several prognostic factors during follow-up. For example, increasing
effects during follow-up were found for older age (p < 0.05), urgency (urgent
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operations and acute endocarditis) (p < 0.05), and ascending aorta surgery
(p = 0.12). Early year of operation, male gender and previous cardiac surgery (all
p < 0.05) were more important during the early years of follow-up. The effects of
concomitant coronary bypass surgery and concomitant mitral valve surgery were
more or less constant during follow-up. This study illustrated that a Poisson
regression model could be used to disentangle different aspects of time in survival
analysis, including interaction effects. This model was easier to work with com-
pared to the Cox regression model.

12.2 Selection, Estimation, and Performance
with Interaction Terms

In clinical prediction models with a typical number of predictors, say 5–10, the
number of potential interactions is substantial. If interactions are considered, it has
been suggested to first perform an overall test for all interactions [225]. We can also
obtain partial overall p-values, e.g., for all interactions with age. If this p-value is
low, we may consider proceeding with studying specific interactions for inclusion
in the model. This approach limits the multiple testing problem, at the price of
lower power for including specific interactions. An alternative is to perform tests for
individual interaction terms with a rather stringent p-value, such as 0.01 for
inclusion, at the cost of more testimation bias. We illustrate the problems with the
selection of interaction terms with a small subsample from the GUSTO-I study.

12.2.1 Example: Age Interactions in GUSTO-I

We study interaction with age in the relatively large subsample from GUSTO-I
(sample5, n = 785, 52 deaths). We first fit all interactions, and then perform and
overall test based on the Wald statistics. The overall test has a p-value of 0.14; but
the interaction AGE * HRT is statistically significant (p = 0.03, not adjusted for
multiple testing). Some might be tempted to include this interaction in the model. It
appears that HRT (a fast heart rate, tachycardia) has a stronger effect at higher age
(a positive interaction). Equivalently, we can state that age has a stronger effect in
those with tachycardia (Fig. 12.1).

12.2.2 Estimation of Interaction Terms

A first distinction that some epidemiologists like to make is between “qualitative”
and “quantitative” interactions. A qualitative interaction means that a predictor has
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an opposite effect in one group versus another group of patients. Quantitative
interaction means that the effect of a predictor is in the same direction, but different
in size in one group than another group of patients (see e.g., Fig. 12.1, n = 785).
This distinction is especially important when we aim to interpret the effects of
predictors; we will more be tempted to include a qualitative interaction than a
quantitative interaction.

Another issue is that we can have somewhat counterintuitive effects of inter-
actions. For example, Fig. 12.1 suggests that the presence of a fast heart rate
(HRT = 1, tachycardia) is protective for 30-day mortality at ages younger than 55.
If we consider this implausible, we can code the interaction such that no effect of
HRT is present below age 55 (Fig. 12.2). Admittedly, the age cut-point of 55 years
is data-driven. The general idea is that we incorporate subject-specific knowledge to
prevent the incorporation of random noise in the model.

# No interaction 
full8 <- glm(DAY30~AGE+KILLIP+HIG+DIA+HYP+HRT+TTR+SEX, 
data=gustos,family="binomial")
# Linear interaction, 3 df
update(full8,.~.+AGE*HRT) # full.int model
# Interaction over age 50, 3 df
update(full8,.~.-HRT + ifelse(AGE>55,(AGE-55)*HRT,0)+ifelse(AGE>55,(AGE-55)*(1-
HRT),0))
# Interaction over age 50, 2 df
update(full8,.~.-HRT + ifelse(AGE>55,(AGE-55)*HRT,0)) 
interact_plot(full.int, pred = AGE, modx = HRT, interval=T, ...) # Fig 12.1 and 
12.2

More generally, we can use a smart coding for interaction terms once we decide
to include such a term in a model. This is especially useful when we want to readily
obtain standard errors and confidence intervals for predictors in interaction with
other predictors [161]. The approach is to test for interactions in models with

Fig. 12.1 Age by HRT interaction in GUSTO-I. In a subsample (n = 785, 52 deaths), a positive
interaction was noted, in contrast to a slightly negative interaction in the full data set (n = 40,830,
2850 deaths)
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standard multiplicative terms of the form x1 * x2. We can estimate effects with a
smarter coding of the form x1+(1 − x1)*x2+ x1 * x2 instead of x1 + x2 + x1 * x2.
More details are at www.clinicalpredictionmodels.org.

12.2.3 Better Prediction with Interaction Terms?

We may wonder whether we predict better with the AGE * HRT interaction
(Table 12.2). We hereto test the models as shown in Fig. 12.2 in a large, inde-
pendent part of GUSTO-I (n = 20,318). Surprisingly, we find that a model with the
AGE*HRT interaction (Fig. 12.2, panel b), performs worse in this external data set
than a model without this interaction term. The models without the counterintuitive
effect of tachycardia below age 55 perform similar, both at apparent validation and

Fig. 12.2 Age by HRT relations to 30-day mortality in a subsample of GUSTO-I (n = 785, 52
deaths). Panel a: main effects only; panel b: simple interaction; panel c: separate effects for “HRT
over age 55 and “no HRT over age 55”; panel d: one age effect and an additional effect of “HRT
over age 55 years”. The predictions for panel c and d are very similar; in panel c, 3 age effects are
estimated, while in panel d 2 age effects are estimated
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at external validation in n = 20,318. The explanation for this remarkable finding is
that the interaction between AGE and HRT was positive in the subsample, but
negative in the full GUSTO-I data set (less effect of HRT at older ages, Fig. 12.1).
This example illustrates that considering interaction in an unstructured way can
damage the predictive ability of a model.

12.2.4 Summary Points

• Interaction depends on the scale; logistic and Cox regression models assume
additivity at a logarithmic scale;

• Interaction terms to consider in a prediction model depend on the context, but
some types of interactions may warrant specific consideration;

• For better interpretation, we may use a smart coding of interactions, and
eliminate counterintuitive effects, e.g.. that a predictor becomes protective for
some patients;

• The performance of a prediction model does not necessarily increase by
including an interaction term;

• Prespecifying that interaction terms will not be included in a model may be
preferable to the exploratory determination of which terms to include.

12.3 Nonlinearity in Multivariable Analysis

We discussed the assessment of continuous predictor variables in Chap. 9 for the
univariate situation, where each predictor is considered separately. Harrell advo-
cates to use restricted cubic spline functions to define transformations of continuous
variables [225, 228]. An RCS function consists of pieced-together cubic splines
(containing x^3 terms) that are restricted to be linear in the tails. These functions
have many favorable properties, such as appropriate flexibility combined with

Table 12.2 Performance (c statistics) of models developed in a subsample of GUSTO-I (n = 785)
in an independent part of GUSTO-I (n = 20,318). The model with main effects contained 8
dichotomized predictors

Model df Apparent
(n = 785)

Validation
(n = 20,318)

Main effects 8 0.828 0.805

Main effects + AGE * HRT interaction 9 0.831 0.796

One age effect < 55, 2 age
effects > = 55

9 0.832 0.798

HRT effect only for age > 55 years 8 0.832 0.798
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stability at the tails of the function. We can also consider multivariable modeling
with fractional polynomials [477, 486], or with smoothing spline transformations
(in multivariable generalized additive models, “GAM”, Table 12.3). The flexibility
of a smoothing spline transformation in a GAM is determined by penalty terms,
which relate to the effective degrees of freedom (df). One variant is that the effective
df are set by the analyst [230]. Alternatively, a generalized cross-validation
(GCV) procedure can be used to define statistically optimal transformations for
multiple continuous predictors in a GAM [680]. We discuss these approaches in
more detail below in the context of multivariable model development.

12.3.1 Multivariable Restricted Cubic Splines (RCS)

A RCS requires the specification of knots, which can be based on the distribution of
the predictor variable [225]. The key issue is the choice of the number of knots: 5
knots implies a function with 4 df, 4 knots 3 df, and 3 knots 2 df (Chap. 9).
Although 5 knots are sufficient to capture many non-linear patterns, it may not be
wise to include 5 knots for each continuous predictor in a multivariable model. Too
much flexibility would lead to overfitting (Chap. 5). One strategy defines a priori
how much flexibility will be allowed for each predictor, i.e. how many df will be
spent. In smaller data sets, we may choose to use only linear terms. Or we may use
splines with at most 3 knots (2 df), especially if no strong prior information suggests
that a non-linear function is necessary [225]. Alternatively, we might examine
different RCS transformations (5, 4, 3 knots) in univariate and/or multivariable
analysis, and choose an appropriate number of knots for each predictor based on the
findings in the data. Formally, the transformations with 5, 4, or 3 knots are not
nested models, however. Alternatively, we might choose the complexity of non-
linear functions based on the v2 statistic of each predictor, with more flexibility for
stronger predictors.

Table 12.3 Approaches to non-linearity in multivariable clinical prediction models

Approach Characteristic Multivariable strategy R
implementation

Restricted
cubic
splines

Cubic splines, with
restriction in shape at the
ends of the predictor
distribution

Keep complexity as defined a
priori or based on findings in
univariate/multivariable
analysis

rcs in Design
package

Fractional
polynomials

Combine one or two
polynomials

Search iteratively for optimal
transformations

mfp package

Splines in
GAM

Spline functions with
smoothing depending on
effective degrees of
freedom

Degrees of freedom set by the
analyst or from a generalized
cross-validation
(GCV) procedure

gam and mgcv
package
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12.3.2 Multivariable Fractional Polynomials (FP)

As discussed in Chap. 9, fractional polynomials are formulated as a power trans-
formation of a predictor x: xp, where p is chosen from the set –2, –1, –0.5, 0, 0.5, 1,
2, 3. This defines 8 transformations, including inverse (x−1), log (x0), square root
(x0.5), linear (x1), squared (x2), and cubic transformations (x3). In addition to these 8
FP1 functions, 28 FP2 functions can be considered of the form xp1+ xp2; when
p1 = p2 one defines another 8 FP2 functions as xp+ xp log(x), for a total of 36 FP2
functions [477, 486]. FP1 and FP2 transformations are considered with 2 df and 4
df, respectively.

Estimation algorithms have been developed for various software packages,
including R [485]. The mfp algorithm applies a special type of backward stepwise
selection procedure for the determination of reasonable functional forms for each
continuous predictor. The algorithm starts with a full model including all predictors,
with all continuous predictors in linear form. The predictors are considered in order
of decreasing statistical significance, such that relatively important predictors are
considered before unimportant ones [477].

For a certain continuous predictor, we may search within the 44 FP2 transfor-
mations for the best fitting function. The best transformation is compared to deleting
the predictor. This procedure uses 4 df to test for inclusion of the continuous pre-
dictor, as having “any effect”. If this test is significant, we may continue with a test
for nonlinearity: FP2 versus linear, using 3 df. Finally, we test an FP2 versus FP1
transformation as a test of a more complex function against a simpler one (2 df test
for model simplification). The functional form for this predictor is kept, and the
process is repeated for each other predictor. The first iteration stops when all the
variables have been processed. The next cycle is similar, except that the functional
forms from the initial cycle are retained for all variables excepting the one currently
being processed. Updating of FP functions and selection of variables continues until
the functions and variables included in the model do not change [477, 486].

This test procedure aims to preserve the overall type I error (a “closed test”
[363]). The price is that we are slightly conservative if the true predictor—outcome
relation is linear, i.e., a straight line. This is because, in step 1, we test for overall
effect with 4 df, leading to lower statistical significance in case of a truly linear
relation which would, in fact, need only 1 df.

12.3.3 Multivariable Splines in GAM

In a generalized additive model (GAM), flexible, smooth functions are defined for
continuous predictors. The smooth functions can be defined by splines or other “basis
functions” [680]. To avoid overfitting, we statistically penalize “wiggliness” using a
smoothing parameter. The penalization reduces the effective degrees of freedom used
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by each continuous predictor. The optimal smoothness can be determined with
prediction error criteria, e.g. in generalized cross-validation (GCV) procedure.
Further details are provided elsewhere [231, 680].

In multivariable modeling, splines in a GAM may serve as a reference standard
for comparison of simpler, parametric transformations, such as FP (or RCS)
functions [470]. We compare several approaches in a case study below. In practice,
the analyst would not have to perform all of these transformations but choose one
approach that he/she is familiar with.

12.4 Example: Nonlinearity in Testicular Cancer Case
Study

We aim to predict the presence of tumor tissue in patients treated with
chemotherapy for testicular cancer. We consider 6 predictors, of which 3 are coded
as binary (Teratoma, prechemotherapy elevated AFP, prechemotherapy elevated
HCG), and 3 continuous (prechemotherapy LDH, reduction in mass size during
chemotherapy, postchemotherapy size). The LDH values were standardized by
dividing by the upper limit of the local upper normal value (“LDHst” variable).

In initial analyses, we used restricted cubic spline (RCS) functions to study
nonlinearity in the effects of the continuous predictors [551]. Subsequently, we used
simple parametric transformations, mainly based on visual assessment of the uni-
variate RCS functions [566]. The chosen transformations were logarithmic for
LDHst; linear for the reduction in size; and square root postchemotherapy size
(Fig. 12.3). We now explore the transformations that would be chosen with other
modeling strategies, including fractional polynomials (FP) and smoothing splines
in generalized additive models (GAM).

Fig. 12.3 Non-linearity in univariate analysis of LDH, postchemotherapy size and reduction in
mass size. Curves are shown for a parametric approximation (log, sqrt, linear), restricted cubic
spline (RCS) functions with 4 knots (3 df), a fractional polynomial (FP, 4 df), and a generalized
additive model (GAM) with spline smoother. The distributions of predictor values are shown at
the bottom of the graphs
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We compare RCS, FP, and GAM functions. We use FP2 transformations, RCS
with 4 knots (3 df), and GAM splines with optimized effective df.

1. For LDH, the transformations lead to different results. The relation of LDH to
the tumor is rather different for a logarithmic transformation compared to other
transformations. A simple linear term might also have been reasonable. This is
supported by the FP procedure (Table 12.4). LDH has an effect (p value for
“any effect” = 0.02), but nonlinearity was nonsignificant in the closed test
procedure (p = 0.48).

2. For postchemotherapy size, the RCS, FP2, and GAM transformations agree
visually (Fig. 12.3), and the square root transformation looks somewhat rea-
sonable. The FP procedure indicates significant nonlinearity (p = 0.0002), and
non-significant improvement by an FP2 function over an FP1 function
(p = 0.46). The chosen FP1 function is logarithmic rather than the square root.

3. Finally, the reduction in mass size seems to be fit adequately with a linear term.
The RCS, FP2, and GAM transformations fluctuate around the straight line,
with the most wiggly pattern for the GAM. The FP procedure confirms that there
is no reason to include non-linear terms (p = 0.64). The R code for these
analyses is available at www.clinicalpredictionmodels.org.

The key R commands are shown below.

12.4.1 *Details of Multivariable FP and GAM Analyses

Multivariable fractional polynomials were fitted without selection (“full model”, 3
df for dichotomous + 3 * 4 = 12 df for continuous predictors, in total 15 df), and
with a variant of a backward stepwise selection algorithm (Table 12.4). We found
that winsorizing each of the three continuous predictors at their 1 and 99% quantiles
before for the FP analyses led to slightly different choices of FP transformations
than using the original variables.

The FP2 transformations in the full model were log(LDHst) +LDHst3; sqrt
(postsize) + sqrt(postsize)*log(postsize); and 1/reduction + 1/sqrt(reduction). A
multivariable FP procedure with p < 0.05 for selection led to a model with linear
terms for the 3 continuous predictors and 3 binary predictors (each of the 6 pre-
dictors p < 0.01). All tests for non-linearity were non-significant (Table 12.4).
Selection with p < 0.20 led to a linear term for LDHst, log(postsize), and 1/
reduction in FP1 transformations. Postchemotherapy size and Reduction in size had
p-values for non-linearity of 0.03 and 0.08, but FP2 transformations were not much
better than FP1 transformations (p-values 0.46 and 0.27, respectively, Table 12.4).
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12.4.2 *GAM in Univariate and Multivariable Analysis

For comparison, we examine the smooth functions selected as optimal with a
generalized cross-validation procedure (GCV, Fig. 12.4). In univariate analysis, a
(near) linear term is found optimal for LDH (1.2 effective df). Postchemotherapy
size and reduction are modeled with a nonlinear function using 2.5 and 2.9 effective
df, respectively. In multivariable analyses, nonlinear functions are used for all 3
continuous predictors, using 2.9, 3 and 4.5 effective df for LDHst,
postchemotherapy size and reduction, respectively (Fig. 12.4). Hence, more com-
plex transformations were chosen in multivariable than in univariate analyses. The
multivariable functions for LDH looks much like a log transformation, as chosen
previously. For postchemotherapy size, we see no surprises, in contrast to
“Reduction”, where we note an implausible wiggly shape between 20 and 100%
reduction in size. Hence, the smooth functions might not be smooth enough from a
pathophysiological perspective. Further external validation might indicate whether
the chosen “optimal” transformations are merely examples of overfitting.

Fig. 12.4 Generalized additive models (GAMs) with optimal smoothing spline transformations
and 95% confidence intervals for prediction of tumor tissue in testicular cancer (n = 544). Top
row: optimal transformation in univariate logistic regression analysis according to a generalized
cross-validation procedure; bottom row: multivariable logistic regression analysis with 6
predictors, smoothing based on generalized cross-validation. The degrees of freedom of the
optimal smoothing spline transformation are shown in each y-axis label. The distribution of
predictor values if shown at the bottom of the graphs
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12.4.3 *Predictive Performance

Finally, we study the predictive performance of the alternative nonlinear transfor-
mations (Table 12.5). As a reference, we show results for dichotomization of the
three predictors LDH, postchemotherapy size, and reduction in size. Any approach
to using continuous predictors performs better than this bad idea [472]. With linear
terms only, we use 6 df, and achieve a model LR of 205 (apparent R2 41.8%,
internally validated R2 39.6%). If we fit a full FP2 model without selection, we use
15 df, and achieve a model LR of 227. The increase by 22 (from 205 to 227) with 9
df is statistically significant (overall LR test, p = 0.009). If we apply a liberal
p-value for model selection (p < 0.20), the model LR increases to 221. Using RCS
functions with each 4 knots leads to a slightly better fit than the FP2 functions (LR
234 vs. 227). Smoothing splines were similar in fit to the RCS model.

All model LR statistics and R2 estimates indicate apparent performance. Internal
validation, including all modeling selection steps, may provide a fair indication of
the expected increase in performance, after correction for optimism (see Chap. 17).
Using a bootstrap resampling procedure, we find that the largest optimism was in
the GAM model, which performs not better than FP2 or RCS modeling
(Table 12.5). The optimism-corrected R2 and c statistics were similar with FP2 or
RCS transformations, both used without selection.

Table 12.5 Predictive performance of logistic regression models with alternative codings of 3
continuous predictors. Apparent performance is based on the original data set (n = 544);
optimism-corrected performance is based on bootstrap validation (500 repetitions). bw: backward
selection; GCV: Generalized cross-validation

Strategy Apparent df Model LR
(v2)

Rapp
2

(%)
Ropt-corr
2

(%)
capp copt-corr

Simple bad idea:
dichotomize

3 + 3 182 38.1 36.2 0.814 0.807

Assume linearity 3 + 3 205 41.8 39.6 0.831 0.824

FP2 no selection 3 + 12 227 45.6 41.6 0.849 0.835

bw p < 0.20 selection 3 +>3 221 44.7 40.6 0.841 0.827

RCS no selection 3 + 9 234 46.8 43.4 0.852 0.838

GAM, GCV 3 + (2.9 + 3 +
4.5)

238 47.3 39.1 0.854 0.829
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12.4.4 *R Code for Nonlinear Modeling in Testicular
Cancer Example

# RCS: multivariable logistic regression with 3 rcs functions, each 4 knots 
library(rms)
lrm(Tum ~  Teratoma+Pre.AFP+Pre.HCG+ 
   rcs(LDHst,4)+rcs(Post.size,4)+rcs(Reduction,4), data=n544,...) 

# FP: multivariable fractional polynomial 
library(mfp)
mfp(Tum ~  Teratoma+Pre.AFP+Pre.HCG+fp(LDHst)+fp(Post.size)+fp(Reduction), 

alpha=1,data=n544,family=binomial)
mfp(Tum ~  Teratoma+Pre.AFP+Pre.HCG+fp(LDHst)+fp(Post.size)+fp(Reduction), 
            alpha=0.2, select=0.2,data=n544,family=binomial) #p<0.20 selection

# GAM: multivariable gam 
library(mgcv)
gam(NEC ~ Teratoma+Pre.AFP+Pre.HCG+s(LDHst)+s(Post.size)+s(Reduction), 
       data=n544, family=binomial) 

# Validate performance by bootstrapping, key code 
# B repetitions 

# bootstrap sample created 

s(LDHst)+s(Post.size)+s(Reduction),data=n544B,...)
# validate at B

# val at orig 

for (i in 1:B) { 
  n544B <- n544[sample(nrow(n544), replace=T),] 
  full.gam.gcv.B  <- gam(Tum ~ Teratoma+Pre.AFP+Pre.HCG+ 

  val.prob(y=n544B$Tum, logit=predict(full.gam.gcv.B)) 
  val.prob(y=n544$Tum, logit=predict(full.gam.gcv.B, n544)) 
  # optimism is decrease in performance; storage of results omitted here 
  ...  } # end B repetitions

12.5 Concluding Remarks

On the one hand, one may see the additivity and linearity assumptions as essential
components of a generalized linear model. Hence, one might argue that we should
assess these assumptions thoroughly. When we want to describe and interpret the
effect of a specific predictor, this may make sense. In contrast, a thorough
assessment of assumptions increases the risk of overfitting if we are primarily
interested in obtaining predictions from a model. We will be tempted to adopt the
model specification based on findings in the data, i.e., extend the model with
interaction terms and/or nonlinear terms. The price of striving for such perfection is
that we may end up with a model that performs worse for future patients than a
parsimonious model without interaction terms or nonlinear terms. Instead, we might
strive for a “wrong, but useful” model [68]. Such a model should provide
well-calibrated and discriminating predictions, despite possibly violating some
underlying model assumptions.

In the examples in this chapter, model performance did not increase impres-
sively. Differences were small between models with fractional polynomials (FP),
restricted cubic splines (RCS), or GAM. Of course, results may be different in other
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situations, but strong qualitative interaction or U-shaped nonlinearity may be rel-
atively rare. In general, it may be sobering to assess the increase in predictive
performance by the inclusion of interaction terms and non-linear terms with
bootstrap or other internal validation procedures.

Note that prediction modeling techniques deal with interactions differently.
A procedure such as Naïve Bayes estimation uses univariate effects of predictors in
a multivariable prediction context; additivity is assumed, and interactions are not
studied. In contrast, tree models assume high-order interaction by default. Similarly,
neural networks and other machine learning algorithms assume high-order inter-
actions, allowing for their flexibility to fit a model to a data set. Shrinkage or
penalized estimation may be particularly valuable to reduce interaction effects that
were identified among a large set of potential interactions (see Chap. 13).

12.5.1 Recommendations

Several measures can be taken to prevent overfitting by considering additivity and
linearity assumptions.

(1) We should balance the number of interaction and non-linear terms to be con-
sidered with the effective sample size in the analysis (Table 12.6). We might
only consider interactions in studies with relatively large sample sizes, i.e.,
many events compared to the number of terms considered. In smaller data sets,
we may simply have to rely on the additivity assumption to be reasonable. We
can also say that we estimate average (or “marginal”) effects of predictors
across subgroups; we know that we will never be able to exclude that we
missed a relevant high order interaction.

Table 12.6 Approaches to limit overfitting by assessing additivity and linearity assumptions

Approach Description

Limited number of
interaction/nonlinear terms

Only consider interaction term that is a priori plausible
(Table 12.1); Consider non-linear terms only for predictors
with a presumed strong, and likely nonlinear, effect

Overall testing Perform overall tests per interacting predictor (e.g., all age
interactions)

Compare flexible vs. simple
model

Compare the validated performance of a flexible model (e.g.,
including interactions and nonlinearities) with a simple model
without interaction and assuming linearity; use internal
validation approaches (Chap. 17)

Extra shrinkage of
interaction/nonlinear terms

Use a stronger shrinkage factor or more penalty in a penalized
estimation procedure for interaction and nonlinear terms
(Chap. 13)
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For the linearity assumption we might consider nonlinear terms only for pre-
dictors with a presumed strong, and likely nonlinear, effect. If previous studies have
used a nonlinear transformation for a predictor, we could also consider this trans-
formation. Subject knowledge should also support the choice for a transformation;
plotting the effect of a transformed predictor is essential (see Figs. 12.1, 12.2, 12.3
and 12.4).

(2) We should use overall tests, rather than focus on separate tests for interaction
and nonlinear terms. Note that based on an overall test, we would not have
continued estimation of the interaction of age and a fast heart rate (HRT,
tachycardia) in the GUSTO-I subsample (Sects. 12.2–12.4). Interaction terms
make life a bit more difficult for model presentation, arguing against their
inclusion in a model unless their relevance is substantial for the specific pre-
diction problem.

(3) As an extension of this overall testing approach we might compare the per-
formance of a flexible model to a simple model without interaction and non-
linear effects (e.g., Table 12.5). The flexible model may, for example, be a
neural network, or a GAM. Both the simple model and the flexible model
should be validated, e.g., with bootstrapping, to assess the validated rather than
apparent improvement that might be achieved with the inclusion of interaction
and nonlinear terms.

(4) Finally, we may use shrinkage techniques to reduce the regression coefficients
of selected interaction or nonlinear terms. Some extra shrinkage may com-
pensate for the “testimation bias” (see Chaps. 5 and 11), which is expected
when terms were included in a model because they were relatively large [225].
The search for interactions and nonlinear terms makes that the effective degrees
of freedom of a flexible model is larger than the final degrees of freedom of a
fitted model. This is recognized by FP transformations, where FP1 is tested
with 2 df, and FP2 with 4 df.
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Questions

12:1. Additivity and interaction

(a) Explain the additivity assumption in your own words, and the relevance
of the scale for assessing additivity?

(b) Explain the interaction terms in your own words?
(c) How many interaction terms can be assessed in a model with 10 binary

predictors?
(d) What is the probability that at least one of these is statistically significant

at the p < 0.05 level, if the underlying model has main effects only?

12:2. Assumptions and model performance

(a) Why would you consider testing of the additivity assumption with
interaction terms?

(b) Which key problem can occur when interactions and non-linearities are
included in the model? How can this be prevented?

(c) Model performance increases with more flexible non-linear functions. In
Table 12.5 the maximum Model LR is 238. Is this model hence to be
preferred for predicting the outcome, or do you think other considera-
tions are also relevant?
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Chapter 13
Modern Estimation Methods

Background In this chapter, we discuss methods to estimate regression coeffi-
cients which lead to better predictions than obtained with traditional estimation
methods. These modern estimation methods include uniform shrinkage methods
(heuristic or bootstrap based) and penalized maximum likelihood methods (with
various forms of penalty, including ridge regression and the LASSO). We illustrate
the application of these methods with a data set of 785 patients from the GUSTO-I
study.

13.1 Predictions from Regression and Other Models

In linear regression, we aim to minimize the mean squared error, which is calculated
as the square distance between observed outcome Y and prediction Ŷ. The pre-
diction Ŷ can be based on a multivariable combination of predictors, e.g., age, sex,
smoking, and salt intake are used to predict blood pressure. As discussed in pre-
vious chapters, we can improve predictions from multivariable models for future
subjects if the predictions are shrunk towards the average. We can reduce the mean
squared error for future subjects by using slightly biased regression coefficients
[109, 627]. This is because the slightly biased predictions have lower variance. The
challenge is to find the optimal balance between increasing bias and decreasing
variance. This “bias-variance” trade-off underlies the problem of overfitting
(Chap. 5).

In generalized linear regression models, such as logistic or Cox models, maxi-
mum likelihood methods are the classical methods for estimation of regression
coefficients. Similar to linear regression, the estimated coefficients can be
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considered as optimal for the sample under study. But again, introducing some bias
in the coefficients may lead to better predictions for future subjects.

13.1.1 *Estimation with Other Modeling Approaches

Neural networks are examples of generalized nonlinear models (see Chap. 4). One
popular estimation technique is minimizing the Kullback–Leibler divergence,
which can be considered as a distance between two probability densities [318]. One
density is provided by the observed outcomes, another by the estimates from the
model. Minimizing the Kullback–Leibler divergence is similar to maximizing the
likelihood in a generalized linear regression model. Neural networks are quite
flexible and will hence be severely overfitted when they are fully optimized to fit the
data. Therefore, a common procedure is “early stopping”: the model is not fully
trained for maximum fit to the data, but training is stopped at the point where
predictive ability is expected to be best. Commonly, the optimal number of itera-
tions to train the model is determined from a cross-validation procedure, where the
model is trained on part of the data and tested on an independent part [140]. The
optimal number of iterations is then used in the full training part to develop the
neural network. This procedure is a form of shrinkage: parameters are used with
suboptimal fit to the data but best predictive ability.

13.2 Shrinkage

Shrinkage of regression coefficients towards zero is a classic approach to improve
predictions from a regression model [109, 627]. We label this method shrinkage
after estimation, since the shrinkage is applied to regression coefficients after the
model has been fitted initially with traditional methods (Table 13.1).

Table 13.1 Characteristics of some shrinkage methods

Name Label Characteristic

Uniform
shrinkage

Shrinkage after
estimation

Application of a shrinkage factor to regression
coefficients. The shrinkage factor is determined with a
heuristic formula or by bootstrapping

Penalized
maximum
likelihood

Shrinkage
during
estimation

Regression coefficients are estimated with penalized
maximum likelihood and a restriction on the sum of
squared coefficients (“Ridge”, L2 penalty)

LASSO Shrinkage for
selection

Regression coefficients are estimated with penalized
maximum likelihood with a restriction on the sum of
the coefficients (“LASSO”, L1 penalty)

Elastic net Shrinkage and
selection

Regression coefficients are estimated with a
combination of L1 penalty and L2 penalty
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Penalized estimation is an alternative method, which uses a penalty factor in the
estimation of the regression coefficients: larger values of standardized regression
coefficients are penalized in the fitting procedure, leading to smaller values being
preferred. We refer to this method as shrinkage during estimation. Although one
single penalty factor is used, the degree of shrinkage varies by predictor. A variant of
penalized estimation was proposed by Firth [165]. This method estimates regression
coefficients even in situations where separation occurs, and traditional maximum
likelihood estimates would go to infinity [209]. Another variant of penalized esti-
mation is the LASSO (“least absolute shrinkage and selection operator”) [581]. This
approach penalizes the sum of the absolute values of the regression coefficients. This
leads to some coefficients becoming zero. A predictor with a coefficient of zero can
be excluded from the model, which means that the LASSO implies shrinkage for
selection. The penalized and LASSO variants of penalization are combined in the
“Elastic Net” [689]. Penalized regression, shrinkage, or regularization methods are
used as synonyms here, and discussed in more detail below.

13.2.1 Uniform Shrinkage

A simple and straightforward approach is to apply a uniform (or linear) shrinkage
factor for the regression coefficients. Shrunk regression coefficients are calculated as
s � bi, where s is a uniform shrinkage factor and bi are the estimated regression
coefficients. The shrinkage factor s may be based on a heuristic formula [109, 627]:

s ¼ model v2 � df
� �

=model v2;

where model v2 is the likelihood ratio v2 of the fitted model (i.e., the difference in
log likelihood between the model with and without predictors) and df indicates the
effective degrees of freedom. The effective df may be best estimated by the df of all
candidate predictors considered for the model, rather than the df of the selected
predictors for the model. The required shrinkage increases when larger numbers of
predictors are considered (more df), or when the sample size is smaller (smaller
model v2).

We can also calculate the shrinkage factor s with bootstrapping [225, 627].

1. Take a random bootstrap sample of the same size as the original sample, drawn
with replacement.

2. Select the predictors according to the selection procedure (if used) and estimate
the logistic regression coefficients in the bootstrap sample.

3. Calculate the value of the linear predictor for each patient in the original sample.
The linear predictor is the linear combination of the regression coefficients as
estimated in the bootstrap sample with the values of the predictors in the original
sample.
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4. Estimate the slope of the linear predictor, using the outcomes of the patients in
the original sample.

Steps 1–4 need to be repeated many times to obtain a stable estimate of the
shrinkage factor as the mean of the slopes in step 4. For example, we may use 200
bootstrap samples, although a fully stable estimate of the shrinkage factor may
require 500 bootstrap repetitions [535]. The shrinkage factor may take values
between 0 and 1.

13.2.2 Uniform Shrinkage: Illustration

As an example, we consider a subsample from the GUSTO-I study of patients with
an acute myocardial infarction (see Chap. 24). The data set (“sample4”) consists of
785 patients, of whom 52 had died by 30 days. We consider two models for
prediction of 30-day mortality after an acute MI: an 8-predictor model and a
17-predictor model. For estimation of the heuristic shrinkage factor, we need the
model v2 statistics of each model. These were 62.6 and 73.5. The heuristic
shrinkage estimate s was hence (62.6 − 8)/62.6 = 0.87. The 17-predictor model
required more shrinkage, with s = (73.5 − 17)/73.5 = 0.77.

A bootstrap procedure was performed with 500 replications. This resulted in
identical estimates of the slope of the linear predictor (0.87 and 0.77, respectively).
The regression coefficients are shown in Table 13.2.

Table 13.2 Logistic regression coefficients estimated with standard maximum likelihood
(“original”), uniform shrinkage, penalized maximum likelihood, Firth regression, and the
LASSO for sample4 (795 patients with acute MI, 52 deaths by 30 days)

Predictor Original Shrunk Penalizeda Firth LASSO

SHO 1.12 0.97 1.17 1.10 1.10

A65 1.49 1.30 1.21 1.44 1.38

HIG 0.84 0.74 0.72 0.81 0.74

DIA 0.43 0.38 0.36 0.46 0.32

HYP 0.99 0.86 0.83 1.03 0.82

HRT 0.96 0.84 0.84 0.94 0.88

TTR 0.59 0.51 0.49 0.57 0.47

SEX 0.07 0.06 0.11 0.08 0.00

Effective shrinkage 1 0.87 0.87
0.81–1.49

0.98
0.96–1.14

0.91
0–0.97

aPenalized maximum likelihood or ridge regression (L2 penalty from pentrace in rms). Elastic
Net regression identified the ridge regression model as optimal
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13.3 Penalized Estimation

Penalized maximum likelihood estimation is a generalization of the ridge regression
method, which can be used to obtain more stable parameters for linear regression
models [139]. Instead of maximizing the log likelihood in generalized linear
models, a penalized version of the log likelihood is maximized, in which a penalty
factor k is used with squared values of the estimated coefficients bi:

PML ¼ log L� 0:5 kR sibið Þ2;
where PML is penalized maximum likelihood, L is the maximum likelihood of the
fitted model, k is a penalty factor, bi is the estimated regression coefficient for each
predictor i in the model, and si is a scaling factor for each bi to make si bi unitless
[225, 646]. It is convenient to use the standard deviation of each predictor for the
scaling factor si [225]. Shrinkage of the coefficients is achieved by penalizing the
regression model with a penalty term called L2-norm, which is the sum of the
squared coefficients.

13.3.1 *Penalized Maximum Likelihood Estimation

The PML can also be formulated as PML = log L – 0.5 k b’ P b, where k is a
penalty factor, b’ denotes the transpose of the vector of estimated regression
coefficients bi (excluding the intercept), and P is a nonnegative, symmetric penalty
matrix. For penalized estimation, the diagonal of P consists of the variances of the
predictors and all other values of P are set to 0 [225]. If P is defined as cov(b)−1

(i.e., the inverse of the covariance matrix of the estimated regression coefficients b),
shrinkage of the regression coefficients is achieved which is identical to the use of a
uniform shrinkage factor as determined by leave-one-out cross-validation [646]. If
P is equal to the matrix of second derivatives of the likelihood function, PML is
similar to applying a uniform shrinkage factor s = 1/(1 + k).

The main question in penalized estimation is how to choose the optimal penalty
factor kopt. Maximizing a modified Akaike’s Information Criterion (AIC) is an
efficient method [198]. Traditionally, the AIC is defined as –2 log L + 2p, where L
is the maximum likelihood of the fitted model and p is the degrees of freedom equal
to the number of fitted predictors. A more convenient formulation is as

AICmodel ¼ model v2 � 2p;

where model v2 is the likelihood ratio v2 of the fitted model (i.e., the difference in
−2 log likelihood between the model with and without predictors). For penalized
maximum likelihood estimation, we use a modified AIC, defined as
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AICpenalized ¼ model v2penalized � 2 � dfeffective;

where model v2penalized refers to likelihood ratio v2 of the penalized model and
dfeffective is the degrees of freedom after penalizing the coefficients. In standard
logistic regression, the df are equal to the number of predictors in the model; the
higher the number of predictors, the higher the df and the more likely the model is
overfitted. Due to the penalization, the dfeffective used in penalized estimation is
lower than the actual number of predictors. More technically, dfeffective is derived
from the reduction in variance of penalized estimates in comparison to the variance
of standard estimates of bi:

dfeffective ¼ trace I bð Þcov bð Þ½ �;

where I(b) is the information matrix as computed without the penalty function and
cov(b) is the covariance matrix as computed by inverting the information matrix
calculated with the penalty function. If both I(b) and cov(b) are estimated without
penalty, I(b) cov(b) is the identity matrix and trace [I(b)cov(b)] is equal to the
number of estimated coefficients bi in the model [198]. With a positive penalty
function, the cov(b) becomes smaller and dfeffective decreases. With higher penalty
values, the model v2penalized decreases (poorer fit to the data), but so does the dfef-

fective. The maximum of AICpenalized (model v2penalized – 2 * dfeffective) is sought by
varying the values of k. For example, we may vary k over a grid such as 0, 1, 2, 4,
6, 8, 12, 16, 24, 32, 48. Larger values of k are required for more complex models
and larger data sets. The optimal penalty factor kopt is the value of k that maximizes
AICpenalized. With this optimal k, the final model is estimated. An alternative is to
use cross-validation or bootstrapping to find kopt, which is more computer intensive
compared to finding the maximum of AICpenalized.

13.3.2 Penalized ML: Illustration

We may search for a penalty factor kopt over a grid using the pentrace function
in the rms package. The fitting procedure for the 8-predictor model is as follows:

# logistic regression model with 8-predictors
full8  <- lrm(DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX, data=gustos)
# determine performance over range of penalties
p8 <- pentrace(full8, c(0,2,4,6,8,10,12,14,16,18,20,22, 24, 28, 32,40))
# fit penalized model
full8.pen <- update(full8, penalty=p8$penalty)

The AICpenalized is calculated with the effective degrees of freedom (dfeffective) and is
plotted in Fig. 13.1. The optimum penalty factors kopt was estimated as 8 for the
8-predictor model and 24 for the 17-predictor model. So kopt was larger for the
more complex mode, as expected. The effective degrees of freedom were 6.9
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(instead of 8) and 10.8 (instead of 17). Note that the AICpenalized was worse for the
17-predictor model compared to the 8-predictor model. This reflects that the
17-predictor model was overfitted with only 52 events in the data set. The effective
shrinkage was 0.87 (Table 13.1).

13.3.3 *Optimal Penalty by Bootstrapping

For comparison, we also performed a bootstrap procedure to find the optimal penalty
factor kopt. We created logistic regression models with a range of penalty factors in
bootstrap samples drawn with replacement. The models were tested in the original
sample. A linear predictor was calculated with the penalized coefficients from the
bootstrap sample and the predictor values in the original sample: lp = Xoriginal %*%
bpenalized,bootstrap. Various performance measures can be calculated. We focus on the
slope of the linear predictor, since the primary objective of shrinkage methods is to
improve calibration. As expected, the slope is below 1 when no shrinkage is applied
(Fig. 13.2). It appears that the slope is 1 if we apply a penalty factor of 7 for the
8-predictor model and 12 for the 17-predictor model. These values are slightly lower
than obtained from maximizing the AICpenalized. This could be explained by the fact
that AIC considers the model v2 as criterion rather than the slope of the linear
predictor. The model v2 is also influenced by the discriminative ability, which was
higher with a larger penalty value for the 17-predictor model (Fig. 13.2).

13.3.4 Firth Regression

Firth regression was proposed as a method to reduce bias in maximum likelihood
estimates [165]. Bias occurs especially in sparse data, where either the event is rare
or some categorized predictor has few subjects. An example in GUSTO-I is the

Fig. 13.1 AICpenalized in
relation to the penalty factor.
Optimum values are 8 and 24
for the 8- and 17-predictor
models, respectively. The
more complex model with
17-predictors needs more
penalization
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occurrence of Shock (<5% of subjects). With sparse data, all the subjects may have
the same event status (0 or 1). This phenomenon is known as separation. It causes
severe problems fitting the model with standard maximum likelihood. A symptom
of separation, or near separation, is that we note large standard errors. Software may
report an error (“non-convergence”) or a warning, while very small or very large
regression coefficient estimates are still returned with huge SE. One solution for this
situation is to apply exact logistic regression [235]. Firth regression is computa-
tionally less demanding.

13.3.5 *Firth Regression: Illustration

We use the package brglm (“Bias Reduction in Binomial-Response Generalized
Linear Models”) because of convenience in fitting and making predictions over the
logistf package. The model can be fitted using maximum penalized likelihood,
where the penalization is done using Jeffreys invariant prior or using
bias-reducing modified scores. These methods gave identical results in the example
of the 8-predictor model in a subsample from GUSTO-I. No cross-validation is
needed:

# logistic regression model with 8-predictors
model8.Firth <- brglm(DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX, data=gustos)

Fig. 13.2 Slope of the linear predictor (left panel) and C statistic (right panel) in relation to the
penalty factor according to a bootstrap procedure. For slope, the optimum values are 7 and 12 for
the 8- and 17-predictor models, respectively, while penalties of 0 and around 42 would optimize
the c statistic
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The estimated coefficients are very close to the maximum likelihood estimates
(Table 13.2). The effective shrinkage was only 0.98, which is insufficient for pre-
diction purposes, although the stability of Firth estimation is an advantage over
other shrinkage approaches.

13.4 LASSO

A method to achieve model selection through shrinkage is the LASSO (least
absolute shrinkage and selection operator) [232, 581]. The LASSO can also be used
for generalized linear models such as the logistic or Cox model [582]. The LASSO
preferentially shrinks some predictor coefficients to zero by penalizing the absolute
values of the regression coefficients.

13.4.1 *Estimation of a LASSO Model

The LASSO estimates the regression coefficients of standardized predictors by
minimizing the log likelihood subject to R bj j � t, where t determines the shrinkage
in the model. We estimate the final set bi with the value of t that gives the lowest
mean squared error in a cross-validation procedure [582].

We may use the glmnet package for R to perform LASSO analyses [232]. The
logistic regression coefficients were estimated given a bound (“L1 Norm”) to the
sum of absolute standardized regression coefficients, |b|. This is implemented as
setting alpha = 1. For ridge regression (Sect. 13.3), we may specify alpha = 0.
The predictors are standardized such that sum |b| does not depend on coding of
predictors.

# Fit LASSO for a range of penalties
glmmod <- glmnet(full8$x, y=full8$y, alpha=1, family="binomial")
plot(glmmod, xvar="norm", ...) # Fig 13.3 upper left
# Find the best lambda using cross-validation for the full8 model 
set.seed(123)
cv <- cv.glmnet(x=full8$x, y=full8$y, alpha = 1, family=c("binomial")) 
plot(cv,...) # Fig 13.3 upper right
model8.L1 <- glmnet(x=full8$x, y=full8$y, alpha=1, lambda=cv$lambda.min, 
family=c("binomial"))
coef(model8.L1) # Coefficients in Table 13.2

We find that with a strong penalty, quite small coefficients are estimated for the
predictors A65 (Age > 65 years), SHO (Shock), and HRT (Heart rate). This
occurred both in the 8- and 17-predictor models (Fig. 13.3). The other predictors
had coefficients set to zero. With larger bounds, nonzero coefficients were estimated
for these predictors as well. With high L1 norm values (low penalty k) all predictors
were selected with the original, unshrunk coefficients.

The optimum penalty can be estimated by a cross-validation procedure
(Fig. 13.3). This suggests an optimal selection of 7 predictors in the 8-predictor
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model (log(min(k)) = –5.9), and a selection of 14 predictors for the 17-predictor
model (log(min(k)) = –4.9). The coefficients for the final model can be chosen at
the lowest cross-validated k value, or more conservatively, at a 1 standard error
larger value of k [232]. For the 8-predictor model, the effect of SEX was set to zero,
and the coefficient of DIA was small (coefficient 0.32) with the optimal penalty.
The effective shrinkage was 0.91 (Table 13.2). For the 17-predictor model, the
predictors LIP, PAN, and ST4 were dropped. Note that the penalty for the
17-predictor model is larger than for the 8-predictor model, and that the
cross-validated performance was worse (binomial deviance, equivalent to the model
likelihood ratio scale, Fig. 13.3).

13.5 Elastic Net

A combination of LASSO-type selection and ridge-type penalization is possible
with the Elastic Net [232, 689]. Elastic Net produces a regression model that is
penalized with both the L1 and L2 norms. The Elastic Net selects a limited number
of predictors, similar to the LASSO, while it may predict slightly better than the

Fig. 13.3 Coefficients and cross-validated performance for the 8- and 17-predictor models (top
and bottom graphs, respectively), according to the sum of the absolute values of the estimated
regression coefficients (L1 Norm = |standardized betas|) in sample 4 from GUSTO-I (n = 785, 52
deaths). We note that larger coefficients are estimated in the 8-predictor model for SHO and A65
(left graphs), with an expected better performance according to cross-validation (right graphs)
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LASSO, depending on the specific setting. In addition, the Elastic Net shows a
grouping effect, where strongly correlated predictors tend to be in or out of the
model together [689].

13.5.1 *Estimation of Elastic Net Model

The Elastic Net requires two parameters labeled alpha and lambda. The mixing
parameter alpha lies between 0 and 1 (0 � a � 1). Setting a = 1 is the LASSO
penalty L1 and a = 0 the ridge penalty L2, with the penalty is defined as (1 − a)/2
|b|2

2 + a|b|1. We may consider a range of possible a and L1/L2 values for the
Elastic Net model, with the optimum combination based on their performance in a
cross-validation procedure. This can be achieved with the cva.glmnet function
from the glmnetUtils package. In the subsample of GUSTO-I, the optimal
alpha value was 0, equivalent to ridge regression. An R script is available at www.
clinicalpredictionmodels.org.

13.6 Performance After Shrinkage

Shrinkage leads to less extreme distributions of predictions. The linear predictor is
shrunk towards the average compared with standard maximum likelihood, either
with uniform shrinkage, penalized maximum likelihood estimation (PMLE), or the
LASSO (Fig. 13.4). Shrinkage hence prevents that too extreme predictions are
derived from the development data set. Indeed Table 13.3 illustrates that the cali-
bration slope is closer to 1 in independent test data when shrinkage was applied in
small samples drawn from the GUSTO-I data set (see Chaps. 22 and 24).

Fig. 13.4 Distribution of the
linear predictor in sample 4
from GUSTO-I with standard
maximum likelihood, uniform
shrinkage, Ridge and Firth
regression, and the LASSO.
The penalized fits were
obtained with the cv.
glmnet function in glmnet
and Firth regression with
brglm
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Discrimination was similar with or without shrinkage. Generally, LASSO is
expected to perform better in situations of some predictors with large effects, and
the remaining predictors with small coefficients. Ridge regression will perform
somewhat better when many predictors have coefficients of roughly equal size. The
Elastic Net is expected to perform well for in-between situations; it preserves some
of the advantages of LASSO in reducing the number of predictors in the model.

13.6.1 Shrinkage, Penalization, and Model Selection

Uniform shrinkage and penalized estimation methods are defined for prespecified
models. If we apply a selection strategy such as stepwise selection, fewer predictors

Table 13.3 Discrimination (c statistic) and calibration (calibration slope) of the 8- and
17-predictor models based on small and large subsamples (average n = 336 and n = 892,
respectively), and based on the total training part (n = 20,512), as evaluated in the independent test
part (n = 20,318). Mean values are shown for several estimation methods with a fixed selection of
predictors

Training data 8 predictors 17 predictors

C statistic C statistic

Total training
(n = 20,512, 1423 deaths)

Standard ML 0.789 0.802

61 small subsamples
(n = 336, 23 deaths on
average)

Standard ML
Uniform
shrinkage
Penalized ML
LASSO

0.75
0.75
0.76
0.75

23 large subsamples
(n = 892, 62 deaths on
average)

Standard ML
Uniform
shrinkage
Penalized ML
LASSO

0.78
0.78
0.78
0.78

0.78
0.78
0.79
0.78

Calibration
slope

Calibration
slope

Total training
(n = 20,512, 1423 deaths)

Standard ML 0.944 0.959

61 small subsamples
(n = 336, 23 deaths on
average)

Standard ML
Uniform
shrinkage
Penalized ML
LASSO

0.66
1.01
0.93
0.83

23 large subsamples
(n = 892, 62 deaths on
average)

Standard ML
Uniform
shrinkage
Penalized ML
LASSO

0.86
0.97
0.96
1.01

0.76
0.95
0.98
0.93
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are included in the selected model, and we might expect less need for shrinkage of
coefficients. However, we know that a “testimation” problem arises, i.e., coeffi-
cients of selected predictors are overestimated (Chaps. 5 and 11). This selection
bias should be taken into account when calculating a shrinkage factor. This may be
achieved by considering the df of the candidate predictors in the heuristic formula
(instead of the number of selected predictors) [627]. In a bootstrap procedure, we
can include the selection process in step 2 [225]. Empirical research suggests that
the required shrinkage is more or less similar in prespecified or selected models
[542]. For penalized estimates of the regression coefficients after selection, we can
apply the penalty factor that was identified as optimal for the full model, before
selection took place. A more refined option is to fit a LASSO or Elastic Net model,
where selection is achieved through shrinkage of coefficients to zero [232].

A specific situation is that a substantial number of interaction terms are tested,
and one or more are included in the final model. For shrinkage, we could still use
the original df of the model with main effects and all interactions considered.
A more elegant solution was suggested by Harrell for penalized ML estimation, i.e.,
to penalize the interaction terms more than the main effects, for example, with twice
the penalty of the main effects [225]. This approach may be used to limit the impact
of treatment by predictor interactions if we develop a prediction model for indi-
vidualized treatment effect in an RCT [300]. Similarly, nonlinear effects and non-
linear interaction terms might be penalized by twice and four times the penalty of
the main effects, respectively [225].

13.7 Concluding Remarks

Shrinkage of regression coefficients is an important way to battle overfitting; on
average, too extreme predictions are prevented. Note that having a larger data set,
considering fewer predictors, and incorporating external knowledge are better ways
to prevent overfitting. Shrinkage is especially needed in small data sets, and/or
situations with large numbers of candidate predictors. Using advanced shrinkage
procedures is readily possible with modern software, implemented in, e.g., R. The
glmnet package may be the most versatile, while rms has easy options for L2
penalized estimation. Penalty factors are a general concept in smooth estimation of
model parameters; they are important in curve fitting (e.g., with splines) and gen-
eralized additive models [231]. The LASSO currently receives interest for predic-
tion analysis in Big Data and other situations with large numbers of potential
predictors [452].
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Questions

13:1 Shrinkage and model performance
Explain how shrinkage can influence
(a) the predictions from a model, (b) calibration, and (c) discrimination?

13:2 Penalized maximum likelihood

(a) Why might we label PML “shrinkage during estimation” (Table 13.1)
(b) How is it possible that one penalty term leads to differential shrinkage

in Table 13.2?
(c) In the prediction of abnormalities at CT scans [519], we can assess the

effect of PML on the various coefficients. Which coefficients are
penalized most?

13:3 Shrinkage methods and stepwise selection (Sect. 13.3.3)
How can shrinkage and penalization be used when the model is developed
with stepwise selection:

(a) Uniform shrinkage with Van Houwelingen’s formula or bootstrapping?
(b) Penalized maximum likelihood?
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Chapter 14
Estimation with External Information

Background In this chapter, we discuss methods that estimate regression coeffi-
cients based on the combination of findings in the sample under study with external
information from published studies. The aim is to develop a global model, which
has broad applicability. Such a model might be informed by a meta-analysis based
on individual patient data (IPD) from multiple studies. We illustrate this approach
with a meta-analysis of 15 studies of traumatic brain injury. Another aim is to
obtain a better model for a specific, local setting. This aim may be addressed by a
simple “adaptation” method for univariate regression coefficients, which are
obtained from a meta-analysis. We illustrate this method in a case study of oper-
ative mortality of abdominal aneurysm surgery. We discuss some further approa-
ches to estimation of regression coefficients, including stacked regressions and
Bayesian estimation with explicit prior information.

14.1 Combining Literature and Individual Patient Data
(IPD)

Let’s consider the common situation that several studies have been published for a
particular clinical prediction problem, in which the relation between patient char-
acteristics and the outcome of interest is described. Obviously, some of that
knowledge should be useful in model building, beyond using individual patient data
(IPD)? If the published papers describe findings from comparable patient series, we
may try to combine the available evidence quantitatively in a meta-analysis. The
reported findings in these papers may vary substantially, however, for example:
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(a) Only univariate results can be obtained for the effects of potential predictors;
(b) Some multivariable models have been proposed, with different sets of

predictors;
(c) A common multivariable model is found in some studies, with identical

predictors.

In practice, situations (a) and (b) may be most common. Situation (c) might be
ideal but rare. For each situation, we may want to focus on a model with local or
global applicability (Table 14.1).

14.1.1 A Global Prediction Model

A global model may readily be aimed for if multiple studies have published the
same prediction model. We may then perform a meta-analysis, with the aim to
produce a single, global model. Pooling of published regression coefficients might
use multivariate meta-analysis techniques (e.g., the mvmeta function) for the
combined set of predictors, although a naïve pooling of each multivariable
regression coefficient may work reasonably well [129]. Ignoring stratification by
study is overly naïve in any meta-analysis, and should be avoided [6]. A more
relevant situation is that we have access to individual patient data (IPD) from
different cohorts. We can then directly model the predictor effects, although some
predictors may be systematically missing per study (see Chaps. 7 and 8).

The baseline risk for the global model poses specific challenges, both when the
model is based on reported regression coefficients or based on IPD analyses. We may
use a random effect model for the model intercept in logistic regression or a frailty
model in survival analysis (see Chap. 21). A random effect model may provide
estimates of a global average plus the between-study heterogeneity in baseline risk.
If this between-study heterogeneity is small, the average risk may apply broadly.

Similarly, we can assess the heterogeneity in regression coefficients between
studies [31]. If this heterogeneity is small, the global model is supported. If sub-
stantial differences are noted, we may search for explanations. Are some studies
from specific settings where the measurement of predictors was different, or a
different selection process had occurred [355]? Outlier studies might be excluded to
define the global model more precisely.

Table 14.1 Characteristics of model development with a focus on a locally applicable model
versus a globally applicable model. We assume we have a data set with individual patient data
(IPD) and literature data, i.e., published prediction studies

Modeling aspect Local model Global model

Model specification Mixture of IPD and literature Focus on consensus in literature

Model coefficients IPD with literature as background Meta-analysis of literature

Baseline risk IPD Literature
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The general philosophy for a global model is that we may except some bias by
pooling heterogeneous data sources, if compensated by lower variance because of
higher numbers. The global model has a single set of coefficients that is assumed to
apply broadly. We illustrate the estimation of a global model for a case study.

14.1.2 *A Global Model for Traumatic Brain Injury

For illustrative purposes, we consider 15 cohort studies of patients suffering from
traumatic brain injury (TBI, see Chap. 8). These studies were included in the
IMPACT project, where a total of 25 prognostic factors were considered for pre-
diction of 6-month outcome [343].

We develop a “global model” by considering individual patient data (IPD) from
the 15 studies, with stratification by study (Table 14.2). We may estimate the
following simple global model:

p Mortalityð Þ ¼ �1:35 þ 0:28 � age � 0:38
�motor score þ 0:61 irresponsive pupils;

Table 14.2 Multivariable logistic regression models to predict mortality 6 months after TBI in 15
studies. We show estimated regression coefficients with associated standard errors per study, and
results from a two-stage meta-analysis. We also show the between-study variance parameter s and
prediction intervals for the regression coefficients

Study Intercept Age Motor score Pupillary
reactivity

1 −1.22 (0.09) 0.20 (0.05) −0.39 (0.08) 0.41 (0.11)

2 −1.40 (0.10) 0.21 (0.07) −0.40 (0.08) 0.36 (0.11)

3 −1.35 (0.22) 0.28 (0.09) −0.28 (0.12) 0.71 (0.23)

4 −1.34 (0.09) 0.20 (0.06) −0.14 (0.07) 0.74 (0.11)

5 −1.73 (0.10) 0.21 (0.05) −0.52 (0.06) 0.52 (0.08)

6 −1.41 (0.19) 0.30 (0.09) −0.45 (0.13) 0.82 (0.17)

7 −0.93 (0.11) 0.43 (0.05) −0.30 (0.09) 1.01 (0.12)

8 −0.73 (0.12) 0.47 (0.07) −0.42 (0.10) 0.57 (0.12)

9 −1.28 (0.35) 0.38 (0.16) −0.23 (0.22) 0.34 (0.26)

10 −1.41 (0.12) 0.40 (0.05) −0.45 (0.09) 0.80 (0.12)

11 −1.44 (0.11) 0.22 (0.06) −0.40 (0.09) 0.43 (0.11)

12 −1.49 (0.17) 0.24 (0.10) −0.39 (0.11) 0.68 (0.14)

13 −1.43 (0.14) 0.22 (0.09) −0.42 (0.11) 0.68 (0.14)

14 −1.61 (0.11) 0.17 (0.07) −0.34 (0.09) 0.29 (0.16)

15 −2.07 (0.18) 0.52 (0.07) −0.59 (0.15) 0.91 (0.16)

Two-stage pooled
estimated coefficient

−1.35 (0.07) 0.28 (0.03) −0.38 (0.03) 0.61 (0.06)

Estimated s 0.25 0.09 0.07 0.17

95% Prediction interval [−1.92, −0.78] [0.08, 0.48] [−0.55, −0.20] [0.21, 1.01]
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where age is coded per 10 years, motor score ranges from 1 to 6, and 1 or 2 pupils
may be irresponsive. The between-study variance parameter s was checked for each
predictor and was reasonably small for each.

Rather than the average intercept (−1.35), we might also consider the baseline
risk from a single, representative study. For example, we might estimate the
intercept for study #14, which was an RCT that enrolled patients between 2001 and
2004, with the global model coefficients in an offset variable:

MortalityjStudy 14 � a14 þ offset global linear predictorð Þ,

where the global linear predictor is the linear combination of global coefficients
with the covariate values in Study 14. Further explorations of heterogeneity are
possible, as discussed elsewhere [127].

14.1.3 Developing a Local Prediction Model

We now assume that we have access to individual patient data (IPD) from only one
specific setting. We may focus on obtaining a better model for that setting by using
information from the published literature. If the IPD are representative for other
settings, we may still hope for global applicability of the model. No checks for
heterogeneity can be performed with limited data however.

At least, a literature review may reveal which predictors have been studied
frequently, suggesting a set of candidate predictors. Some predictors may stand out
as being studied relatively often, with relatively substantial effect. Model specifi-
cation may hence be informed by findings from outside the data set under study
(Chap. 11).

The model coefficients may be estimated with external information as well. We
focus on the situation that only univariate regression coefficients are available from
the literature. How might we utilize such external information?

14.1.4 Adaptation of Univariate Coefficients

An “adaptation method” has been proposed to take advantage of the univariate
literature data in the estimation of the multivariable regression coefficients in a
prediction model [129, 544]. The aim is better prediction of the outcome in indi-
vidual patients from a specific setting. This adaptation method is closely related to
an earlier proposal by Greenland for meta-analysis [201]. For example, when
studying the relation between coffee consumption and acute myocardial infarction,
one study may have corrected the regression coefficient for a confounder (for
example, alcohol consumption), while other studies have not. Greenland proposed
to use the change from unadjusted to adjusted regression coefficient to adapt the
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unadjusted coefficients in the latter studies. We discuss two variants of an adap-
tation method for the regression model as estimated in the single IPD data set.

14.1.5 *Adaptation Method 1

We aim to perform a regression analysis that combines information from literature
and individual patient data. The regression coefficients can be formulated as

bm j IþL ¼ bu j L þ bm j I � bm j I
� �

;

where bm | I+L refers to the multivariable coefficient based on the combination of
individual patient data and literature data (the “adapted coefficient”), bu | L is the
univariate coefficient from a meta-analysis of the literature, and bm | I – bu | I is the
difference between multivariable and univariate coefficient in the IPD data set (the
“adaptation factor”). Hence, we simply use the change from univariate to multi-
variable coefficient in our IPD data to adapt the meta-analysis coefficient.

For the variance of the adapted coefficient (var(bm | I+L)), we may add the
difference between variances of the multivariable and univariate coefficient to the
variance of the univariate coefficient from the literature, ignoring all covariances
[544]:

varðbm j IþLÞ ¼ varðbu j LÞþ varðbm j IÞ� varðbu j IÞ:

14.1.6 *Adaptation Method 2

A more general way to formulate the adaptation formula is

bm j IþL ¼ bu j L þ c ðbm j I� bu j IÞ; where c is a factor between 0 and 1:

If c = 1, the same formula as proposed by Greenland arises. If c equals 0, the
literature data is effectively discarded. The estimate of bm | I+L is unbiased for any
choice of c, if the expectation of bu | L – bu | I = 0, that is, the individual patient data
form a random part from the studies included in the meta-analysis. Actually, this
implies that the method may provide global model estimates. We found that we can
derive a formula for c such as to minimize the variance of bm | I+L:

copt ¼ rðbm j I� bu j IÞ � SEðbm j IÞ � SEðbu j IÞ=½varðbu j LÞþ varðbu j IÞ�;

where r (bm | I – bu | I) refers to the correlation between multivariable and univariate
coefficient in the individual patient data.
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This variant of the adaptation method indicates that adaptation will be especially
advantageous if the literature data set is larger (resulting in a smaller var(bu | L)), or
when the correlation r (bm | I – bu | I) is larger. The latter correlation is expected to
be large if the collinearity between covariables is small [544]. The adaptation factor
will then be close to 1 and method 1 may yield good results too.

14.1.7 *Estimation of Adaptation Factors

Meta-analysis techniques may be used to estimate the univariate coefficients from
the literature data. The literature data may include the individual patient data for
maximal efficiency. The meta-analysis may assume fixed effects (for example,
Mantel–Haenszel method, or conditional logistic regression), or random effects (for
example, DerSimonian Laird method or likelihood-based methods) [83]. The cal-
culations for method 1 use estimates that are readily available. For example, logistic
regression analysis with standard maximum likelihood (ML) provides estimates of
the univariate and multivariable coefficients in the individual patient data.

For the second method, the estimation of the optimal adaptation factor requires
estimates of the variances of the regression coefficients, and an estimate of the
correlation between univariate and multivariable coefficients. The latter correlation
cannot easily be estimated with logistic regression methods. We therefore used
bootstrap re-sampling to estimate the coefficients bm | I and bu | I repeatedly, and
their correlation.

14.1.8 *Simulation Results

The adaptation methods were applied in the GUSTO-I data [544]. First, we assessed
the correlation between multivariable and univariate coefficients across 121 small
subsamples. We observed a strong correlation for the combination of age and sex in
a two-predictor model (Fig. 14.1). Results were somewhat less favorable for pre-
dictors with stronger collinearity. For example, weight and height had a Pearson
correlation coefficient of 0.54, and the correlation between their univariate and
multivariable coefficients was 0.80 and 0.83, respectively. The strong r (bm | I – bu | I)
supports the use of the adaptation method.

Next, the values of copt were quite close to 1 (0.98 ± 0.015 and 0.99 ± 0.020 for
age and sex (mean ± SD) in the 121 small subsamples). Hence, Greenland’s
method (c = 1) and adaptation method 2 (copt estimated with bootstrapping)
resulted in very similar estimates of the adapted coefficients (Fig. 14.2). Both
methods lead to much better estimates of the multivariable regression coefficients in
the small subsamples. These very favorable results were obtained by using uni-
variate results from approximately half of the GUSTO-I data (n = 20,000). When
using univariate results from a neighboring, small subsample, the sample size was
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effectively doubled. This pattern was also reflected in the values of the adaptation
factor from method 2; close to 1 with n = 20,000 as literature data, ±0.50 with a
neighbor subsample as literature data [544].

14.1.9 Performance of the Adapted Model

Finally, we compared the predictive performance of the adaptation method to the
performance obtained with uniform shrinkage, penalized ML, or the LASSO in 23
large subsamples from GUSTO-I (Table 14.3). The discriminative ability improved
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Fig. 14.1 Correlations between univariate and multivariable regression coefficients in a
two-predictor model consisting of age and sex estimated in 121 small subsamples of the
GUSTO-I data set [544]

Fig. 14.2 Regression coefficients in the two-predictor model consisting of age and sex. Box plots
show the standard ML, and adapted estimates (methods 1 and 2) for 121 small subsamples with
n = 20,000 as literature data; - - - - indicates the coefficient observed in the total GUSTO-I data set
(n = 40,830) [544]
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slightly (+0.01), but some problems were noted in calibration. Miscalibration was
better than for the standard ML estimates, but some form of shrinkage should
actually have been built into the adaptation method (see www.clin-
icalpredictionmodels.org for some possibilities).

14.2 Case Study: Prediction Model for AAA Surgical
Mortality

In our examples with GUSTO-I, no relevant differences were noted between
adaptation methods 1 and 2. Since method 1 is much simpler to apply, we only
consider this method further. We applied adaptation method 1 in the prediction of
perioperative mortality (in-hospital or within 30 days) after elective abdominal
aortic aneurysm surgery [555]. Individual patient data were available on a relatively
small sample (246 patients, 18 deaths). Patients were operated on at the University
Hospital Leiden between 1977 and 1988. Univariate literature data were available

Table 14.3 Discrimination (c statistic) and calibration (calibration slope) of the 8- and
17-predictor models based on large subsamples (average n = 892), and based on the total training
part (n = 20,512), as evaluated in the independent test part of GUSTO-I (n = 20,318). Mean
shown for two variants of the adaptation method and several other modern estimation methods

Training data 8
predictors

17
predictors

c statistic c statistic

Total training (n = 20512, 1423
deaths)

Standard ML 0.789 0.802

23 large subsamples (n = 892,
62 deaths on average)

Standard ML 0.78 0.78

Uniform
shrinkage

0.78 0.78

Penalized ML 0.78 0.79

LASSO 0.78 0.79

Adapted 1 0.79 0.78

Adapted 2 0.79 0.79

Slope Slope

Total training (n = 20512, 1423
deaths)

Standard ML 0.944 0.959

23 large subsamples (n = 892,
62 deaths on average)

Standard ML 0.86 0.76

Uniform
shrinkage

0.97 0.95

Penalized ML 0.96 0.98

LASSO 1.01 0.93

Adapted 1 0.92 0.86

Adapted 2 0.92 0.86
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from 15 published series with 15,821 patients (1153 deaths) in total. Predictors
were age and sex, cardiac comorbidity (history of myocardial infarction (MI),
congestive heart failure (CHF), and ischemia on the ECG), pulmonary comorbidity
(COPD, emphysema, or dyspnea), and renal comorbidity (elevated preoperative
creatinine level). These predictors were chosen since they were reported in at least
two studies and were also available in the Leiden data set.

14.2.1 Meta-Analysis

Univariate logistic regression coefficients were estimated both with fixed and ran-
dom effects methods from the literature data. As expected, the estimates of the
coefficients were very similar, but the SEs were somewhat larger with the random
effect method (Table 14.4).

A number of practical issues merit discussion with respect to the meta-analysis
of the literature data. First, definitions of predictors varied, especially for pulmonary
and renal comorbidity. Despite these differences, it was considered reasonable to
assume one single effect for each predictor across the studies (nonsignificant tests
for heterogeneity of odds ratios; nonsignificant interaction terms between study and
effect estimates in logistic regression).

Second, the number of studies that described a predictor varied. The effect of age
was reported in 15 studies, sex and renal function in six, pulmonary function in five,
MI in three, and CHF and ECG findings in only two. This somewhat limits the
value of the adaptation method in this case study.

Third, the analysis of age as a continuous variable was hampered by the fact that
mortalities were described in relatively large age intervals, for example, younger or
older than 70 years. For logistic regression analysis, we estimated the mean ages in
these age intervals using study-specific descriptions as far as available (mean and
SE) [208]. The effect of age would have been estimated more accurately if smaller
age intervals had been reported.

Table 14.4 Meta-analysis
results for operative mortality
of elective aortic aneurysm
surgery: coefficient (SE) per
predictor

Predictor Fixed
effect

Random
effect

Age (per decade) 0.79 (0.06) 0.79 (0.11)

Female sex 0.36 (0.08) 0.36 (0.18)

History of MI 1.03 (0.27) 1.03 (0.32)

Congestive heart failure 1.59 (0.33) 1.59 (0.41)

ECG: Ischemia 1.52 (0.31) 1.51 (0.38)

Impaired renal function 1.32 (0.25) 1.30 (0.26)

Impaired pulmonary function 0.89 (0.23) 0.85 (0.24)
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14.2.2 Individual Patient Data Analysis

In the individual patient data, multivariable logistic regression coefficients were
usually smaller than the univariate coefficients, reflecting a predominantly positive
correlation between predictors (Table 14.5). Correlations were strongest between
the three cardiac comorbidity factors (r 0.26, 0.32, and 0.45). We note that the
number of predictors (7) was large relative to the number of events (18 deaths).
Bootstrapping estimated a shrinkage factor of 0.83 (200 replications, convergence
in only 119), and penalized ML was performed with 14 as the penalty factor. The
correlation between univariate and multivariable coefficients was estimated between
0.81 and 0.91 (Table 14.5).

14.2.3 Adaptation and Clinical Presentation

The literature and individual patient data were combined with the adaptation
method, using the random effect estimates from the literature data. The adapta-
tion factor was always set to 1 (Table 14.6; for method 2, copt was estimated
between 0.63 and 0.86, results not shown). Compared to shrunk or penalized
coefficients, the adapted estimates for sex, renal, and pulmonary function were
somewhat higher and lower for a history of MI.

For application in clinical practice, scores were created by rounding each
adapted coefficient after multiplication by 10 and shrinkage of 90% ((1 + bootstrap
shrinkage factor)/2 � 0.90). The intercept was calculated with the linear predictor
as an offset variable in a logistic regression model. The offset was the linear
combination of the scores (divided by 10) and the values of the covariables in the
individual patient data.

Table 14.5 Individual patient data results (n = 246) for operative mortality of elective aortic
aneurysm surgery: coefficient (SE) for Standard ML, and coefficient estimates for Shrunk and
Penalized models

Predictor Univariate Standard
ML

Shrunk Penalized r(bm|I,
bu|I)

Age (per decade) 0.98 (0.38) 0.58 (0.39) 0.48 0.34 0.91

Female sex 0.28 (0.79) 0.30 (0.86) 0.25 0.17 0.81

History of MI 1.50 (0.50) 0.74 (0.57) 0.61 0.57 0.88

Congestive heart failure 1.78 (0.55) 1.04 (0.59) 0.86 0.67 0.92

ECG: Ischaemia 1.72 (0.55) 0.99 (0.62) 0.83 0.63 0.87

Impaired renal function 1.24 (0.70) 1.12 (0.77) 0.93 0.74 0.85

Impaired pulmonary
function

0.84 (0.53) 0.61 (0.59) 0.51 0.39 0.90
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Mortality � a þ offset score=10ð Þ:

The intercept a was estimated as –3.48. Note that offset with score divided by 10
preserves the shrinkage. If we had estimated a model with the linear predictor as the
single predictor, the slope b would be 1/90% = 1.1:

Mortality� aþ b � score=10ð Þ:

The intercept was further adjusted for a presumably lower mortality in current
surgical practice (5%) than that observed in the individual patient data (7.6%). This
adjustment can be considered as a form of recalibration to contemporary circum-
stances. It was achieved by subtracting ln(odds(5%)/odds(7.6%)) = −0.44 from the
previous intercept estimate: −3.48 − 0.44 = −3.92. This results in a final formula to
estimate the risk of perioperative mortality in current elective abdominal aortic
aneurysm surgery:

p Mortalityð Þ ¼ 1= 1þ e � score=10�3:92ð Þð Þ
h i

:

The c statistic was 0.83 in the individual patient data with standard, shrunk, or
penalized estimation. The optimism-corrected estimates were 0.80 for standard or
shrunk estimation, and 0.81 for penalized estimation (bootstrapping with 200
replications). For the final model with adapted coefficients, we expect a perfor-
mance at least as good as these methods, but this needs to be confirmed in further
validation studies. The main limitation in this case study is the limited sample size
in the IPD (only 18 events).

14.3 Alternative Approaches

Several alternative approaches are possible to include published regression results
in a multivariable model. We discuss three approaches below: using an overall
calibration factor for the univariate literature coefficients, stacked regression, and
Bayesian methods.

Table 14.6 Individual patient data results (n = 246) for operative mortality of elective aortic
aneurysm surgery. Numbers are logistic regression coefficients (SE)

Predictor bm | I – bu | I Adapted Score

Age (per decade) −0.40 0.38 (0.14) 3

Female sex +0.02 0.38 (0.40) 3

History of MI −0.76 0.27 (0.41) 2

Congestive heart failure −0.74 0.85 (0.47) 8

ECG: Ischaemia −0.73 0.79 (0.48) 7

Impaired renal function −0.12 1.18 (0.41) 11

Impaired pulmonary function −0.23 0.62 (0.34) 6

Score: rounded value of 10 * 90% * Adapted
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14.3.1 Overall Calibration

One variant of naïve Bayes was already suggested in Chap. 4, i.e., use of a uniform,
overall calibration factor for all univariate coefficients. In the case study of aortic
aneurysm mortality, the calibration factor is 0.69 for a linear predictor based on the
univariate coefficients from the literature multiplied with the predictor values in the
IPD. The multivariable coefficients are reasonably close to those estimated with our
adaptation method, except for cardiac comorbidity factors (scores 7, 11, and 10 for
MI, CHF, and ISCHEMIA, versus 2, 8, and 7 with the adaptation method,
respectively). This is explained by the relatively strong correlations among these
factors, while the overall calibration only reflects an average correlation between
the seven predictors.

14.3.2 Stacked Regressions

Rather than a set of univariate regression coefficients, we may often find that some
prediction models have been published with different sets of predictors. If some
look promising we might analyze these models with “stacked regression”, i.e., we
include the linear predictor of each literature model in our analysis. Each linear
predictor is given a weight to create a linear combination of the included models. If
the weight is close to zero, the model has no relevant contribution, and the model
might be dropped [128]. With this approach, we may obtain a weighted sum of
predictor effects which respects the relative weights as proposed in the publications,
while we use a low number of degrees of freedom.

14.3.3 Bayesian Methods: Using Data Priors to Regression
Modeling

Some have argued that a Bayesian perspective needs to be incorporated into basic
biostatistical and epidemiological training [202]. In small data sets with many
predictors, Bayesian approaches may offer advantages over conventional frequentist
methods. Specifically, estimation of regression coefficients is difficult for data with
few or no subjects at crucial combinations of predictor values.

Bayesian estimation consists of setting prior values for the regression coeffi-
cients, which are combined with the estimates in the data to produce posterior
estimates of the coefficients. When the prior values are all zero, the coefficients are
pulled towards zero. This is similar to shrinkage, as discussed in Chap. 13. Setting a
prior to zero may be reasonable for a variable with very doubtful value as a
predictor. A negative or positive effect is then equally likely, making zero the best
prior guess. We may allow for the possibility that the effect is nonzero, while we
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consider large values unlikely. The degree of shrinkage is then determined by the
width of the prior distribution. The narrower the prior distribution, the more the
prior shrinks the coefficient towards zero [209]. The other factor that determines the
effective shrinkage is the information in our data set. With many events, we will
obtain limited shrinkage. The final estimate is an average of the prior expectation
and the conventional estimate.

An even more interesting role for Bayesian approaches in regression is in using
informative priors. For example, we may hypothesize a priori that a predictor has an
odds ratio of 2, with values smaller than 0.5 and larger than 8 being highly unlikely.
Setting a reasonable informative prior is the most difficult task for any Bayesian
analysis. Expert judgment can be used, or literature review [209]. When using
informative priors, the source of these priors should be well documented, and
sufficient variability allowed in the prior distribution. Presentation of prior infor-
mation can be presented as “informationally equivalent”, e.g., assuming knowledge
of 100 patients with a certain outcome [204]. This kind of reasoning may be
increasingly acceptable to many in the medical field [209].

14.3.4 Example: Predicting Neonatal Death

Greenland describes a case study of predicting neonatal-death risk in a cohort of
2992 births with 17 deaths [202]. He estimates logistic regression models with 14
predictors, assuming small to large effects for most predictors. He finds that the
predictive ability of the Bayesian model is better than a model based on standard
maximum likelihood. He also illustrates how Bayesian estimation can be achieved
relatively easily with data augmentation: records are added to a data set, reflecting
predictive effects of predictors [204]. In the case of a multivariable model, the prior
distributions refer to the multivariable effects of predictors, which may be more
complicated to elicit from experts or from literature than univariate effects
(Sect. 14.2).

14.3.5 *Example: Aneurysm Study

In the prediction of perioperative mortality of aortic aneurysms, we might try to use
informative priors based on the literature. The meta-analysis, however, provides
univariate effects, and we need to translate these to priors for multivariable effects.
The difference between univariate and multivariable coefficients is directly related
to the correlation between predictors. If we have some guesses for these correla-
tions, this may give some hints on how the multivariable coefficients compare to the
univariate coefficients. For example, with substantial correlations, we might halve
all univariate coefficients; with no correlation, we keep the multivariable effect at
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the univariate estimate. Being on the conservative side with informative priors may
be sensible to make Bayesian analysis more acceptable.

14.4 Concluding Remarks

The methods in this chapter emphasize the central role of subject knowledge in
developing prediction models in small data sets. Literature data may guide the
selection of predictors (Chap. 11), as well as improve the estimates of the regression
coefficients. Especially when the data set is relatively small, this strategy will result
in more reliable regression models than using a strategy that considers a data set
with individual patient data as the sole source of information.

A potential problem of meta-analyses is that publication bias may have led to
overestimation of the regression coefficients. Also, performing a meta-analysis may
not be realistic if definitions of risk factors vary substantially in the literature.

Bayesian methods provide another perspective on estimation of regression
coefficients. As with any Bayesian method, the main criticism will be on the choice
of prior distribution. Many papers have been written about Bayesian approaches,
but Bayesian methods have not yet made it to mainstream predictive modeling,
other than as computational tools with non-informative priors. Bayesian approaches
may be used in the context of model updating (Chap. 20) [514, 573]. A variant is
empirical Bayes estimation (Chap. 21). Empirical Bayes methods have an important
role in, e.g., estimating between center effects and provider profiling. With this
variant, the distribution of center effects is determined empirically from the data,
and the effect for a particular center can be estimated in the context of this
distribution.

Note that the field of machine learning may be seen as in contrast with Bayesian
approaches, in that machine learning generally downplays the role of context and
prior knowledge by relying strongly on the data alone. On the other hand, machine
learning modelers are aware of risks of overfitting and employ penalization
methods which often behave similar to Bayesian approaches [209].

274 14 Estimation with External Information



Questions

14:1 We examine the effect of the adaptation method with a different set of
univariate literature estimates in the aneurysm case study

– What would happen to the adapted effects when larger univariate coef-
ficients were found in the literature?

– What would happen to the adapted effects when the univariate coeffi-
cients were identical in the literature and in the individual patient data?

– What would happen to the adapted effects when there was virtually no
correlation between predictors?

14:2 What is the relation between shrinkage and Bayesian methods according to
Greenland [209] (https://www.bmj.com/content/352/bmj.i1981)?
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Chapter 15
Evaluation of Performance

Background When we develop or validate a prediction model, we want to
quantify the quality of the predictions from the model (“model performance”).
Predictions are absolute risks, which go beyond assessments of relative risks, such
as regression coefficients, odds ratios, or hazard ratios. We can distinguish apparent,
internally validated, and externally validated model performance (Chap. 5). For all
types of validation, we need performance criteria in line with the research questions,
and different perspectives can be chosen. We first take the perspective that we want
to quantify how close our predictions are to the actual outcome. Next, more specific
questions can be asked about calibration and discrimination properties of the model,
which are especially relevant for prediction of binary outcomes in individual
patients. We illustrate the use of performance measures in the testicular cancer case
study.

15.1 Overall Performance Measures

The distance between the predicted outcome ŷ and actual outcome y is a central to
quantify overall model performance from a statistical perspective [231]. The dis-
tance, or residual, is y – ŷ for continuous outcomes. For binary outcomes, ŷ is equal
to the predicted probability p, and for survival outcomes, it is the predicted time to
an event. These distances between observed and predicted outcomes are related to
the concept of “goodness-of-fit” of a model, and the amount of variability that is
explained. Better models have smaller distances between predicted and observed
outcomes (y – ŷ).
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15.1.1 Explained Variation: R2

The explained variation (R2) is an overall measure to quantify the amount of
information in a model in a given data set. R2 is useful to guide various model
development steps for all types of regression models commonly used in prognostic
research, including linear and generalized linear models (e.g., logistic, Cox). With
R2, we can readily compare the impact of different encoding of predictors, different
shapes of the relations of continuous predictors to the outcome, different selections
of predictors, and the impact of including interaction terms (see previous chapters).

R2 is the most commonly used performance measure for continuous outcomes.
For generalized linear models, Nagelkerke’s R2 can well be used [403], although
many alternatives are available, and some may prefer other definitions [7].
As discussed in Chap. 4, this R2 is based on a logarithmic scoring rule: (y − 1) *
(log(1 – p)) + y * log(p). The logarithm of predictions p is compared to the actual
outcome Y. For binary outcomes, the log likelihood for a patient with the outcome
is log(p); without the outcome log(1 – p). When a very low prediction is made for a
patient who actually had the outcome, this prediction has a severe score (Fig. 15.1).
This gives an infinite disadvantage for a prediction model that gives a prediction of
0 or 1 while the outcome is discordant.

Fig. 15.1 Logarithmic and quadratic error scores of a subject with (y = 1) or without (y = 0) the
outcome in relation to predicted probability (p). The logarithmic score was calculated as y * log
(p) + (1 − y) * (1 − p), as in Nagelkerke’s R2 (solid line ). The quadratic score was calculated
as (y − p)^2, as in the Brier score (dashed line ). Lines were scaled such that they crossed at
p = 50%. We note that the logarithmic score severely penalizes false predictions close to 0 or
100%
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15.1.2 Brier Score

An alternative for binary outcomes is to use a quadratic scoring rule, where the
squared differences between actual outcomes y and predictions p are calculated.
This calculation is done in the Brier score, which is simply defined as (y − p)^2. We
can also write this similar as the logarithmic score: y * (1 – p)^2 + (1 – y) * p^2,
with y the outcome and p the prediction for each subject. For a subject, the score
can range from 0 (prediction and outcome equal) to 1 (discordant prediction); a
prediction of 50% has a score of 0.25 both when the outcome is 0 or 1. The Brier
score is hence less severe than Nagelkerke’s R2 in penalizing false predictions close
to 0% or 100% (Fig. 15.1). The Brier score for a model can range from 0% for a
perfect model to 0.25 for a non-informative model with a 50% incidence of the
outcome. When the incidence is lower, the maximum score for a model is lower,
e.g., for 10%: 0.1 * (1 – 0.1)^2 + (1 – 0.1) * 0.1^2 = 0.090. A disadvantage of the
Brier score is hence that the interpretation depends on the incidence of the outcome.

Similar to Nagelkerke’s approach to the LR statistic, we should scale Brier by its
maximum score: Brierscaled = 1 – Brier / Briermax, where Briermax = mean(p) * (1 −
mean(p))^2 + (1 – mean(p)) * mean(p)^2, with mean(p) indicating the average
probability of the outcome. Brierscaled ranges between 0 and 100%, and hence has
better interpretability [568].

15.1.3 Performance of Testicular Cancer Prediction Model

We consider a development sample containing 544 patients [551], and a validation
sample 273 patients treated at Indiana University Medical Center [644]. We
developed a logistic regression model with five predictors: teratoma elements in the
primary tumor, prechemotherapy levels of AFP and HCG, postchemotherapy mass
size, and reduction in mass size.

Internal validation of performance was estimated with bootstrapping (500
replications). Bootstrap samples were created by drawing random samples with
replacement from the development sample. The prediction model was fitted in each
bootstrap sample and tested on the original sample.

The R code is

# 5 predictors in data set n544; develop testicular cancer model 
full  <- full <- lrm(tum ~ 
ter+preafp+prehcg+sqpost+reduc10,data=n544)
val.prob(logit=full$linear.predictor, y=full$y) # apparent 
validate(full, B=500) # Internal validation with 500 bootstraps
# External validation; refit model for matrix x and comparison of coefs 
val.prob(y=val$tum, logit=predict(full, val)) # external validation in val

Nagelkerke’s R2 was 38.9% in the development sample, and slightly lower at
internal validation (Table 15.1). At external validation, the R2 was estimated
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considerably lower, as 26.7%. Note that R2 is based on the difference between a
Null model (“intercept only”) and a model with recalibrated predictions (inter-
cept + calibration slope * logit of predictions) [225]. So, the R2 is estimated after
recalibration of the predictions.

The Brier score was 0.174 and 0.178 at development and internal validation,
respectively. Remarkably, the Brier score was better at external validation (0.161).
The external Brier score was simply calculated by comparing predictions with
actual outcome, without recalibration as was done for R2. The interpretation of the
Brier score is easier with the scaled version, which compensates for the fact that the
maximum Brier score was lower in the external validation set (necrosis in 76 of 273
(28%), Briermax 0.20) than in the development set (necrosis in 245 of 544 (45%),
Briermax 0.248). The scaled Brier score was clearly lower at external validation than
at internal validation (20% versus 28%, Table 15.1).

15.1.4 Overall Performance Measures in Survival

Nagelkerke’s R2 can readily be calculated for survival outcomes, based on the
difference in –2 log likelihood of a model without and a model with the linear
predictor. Calculation of the Brier score is not directly possible because of cen-
soring: not all subjects are followed long enough for the outcome to occur. To
address the censoring issue, we can define a weight function, which considers the
conditional probability of being uncensored during time [194, 494, 495]. The
assumption is that the censoring mechanism is independent of survival and the
subject’s history. We can hence calculate the Brier score at fixed time points. For
example, we can compare predicted survival versus observed survival at 1, 2, and
5 years of follow-up. Choosing many consecutive time points leads to a
time-dependent graph. This is useful as a benchmark curve, based on the Brier score
for the overall Kaplan–Meier estimator, which does not consider any predictive
information. The survival estimates of the overall Kaplan–Meier curve only depend
on time of follow-up. An interesting example is provided by a case study on the
disappointing contribution of microarray data to prediction of survival for patients
with diffuse large-B-cell lymphoma [494].

Table 15.1 Overall performance of testicular cancer prediction modela

Development Internal validation External validation

R2 (%) 38.9 37.4 26.7

Brier 0.174 0.178 0.161

Briermax 0.248 0.248 0.201

Brierscaled (%) 29.8 28.2 20.0
aDevelopment and internal validation with n = 544 patients, external validation in n = 273
patients. Internal validation with 500 bootstrap resamples using Harrell’s validate.lrm
function. Brierscaled = 1 – Brier/Briermax
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15.1.5 Decomposition in Discrimination and Calibration

Overall statistical performance measures incorporate both calibration and discrim-
ination aspects. For example, the Brier score can formally be decomposed into
indicators of calibration and discrimination [54, 396]. Discrimination relates to how
well a prediction model can discriminate those with the outcome from those without
the outcome. Calibration relates to the agreement between observed outcomes and
predictions and is especially relevant at external validation. Studying discriminative
ability and calibration is then more meaningful than an overall measure such as R2

or Brier score when we want to appreciate the quality of model predictions for
individuals. We therefore discuss these aspects in detail.

15.1.6 Summary Points

• R2 is a common measure to express the amount of variability in outcomes that is
explained by the prediction model; commonly, it is a logarithmic scoring rule.

• The Brier score is another commonly reported performance measure for the
squared distance between observed and predicted outcomes; it can be seen as a
quadratic scoring rule and needs scaling to be interpretable between settings
with different event rates.

15.2 Discriminative Ability

Model predictions for binary outcomes need to discriminate between those with and
those without the outcome (“Event” versus “No event”). Several measures can be
used to indicate how good we classify patients in such a binary prediction problem.
The concordance (c) statistic is the most commonly used performance measure to
indicate the discriminative ability of generalized linear regression models. For a
binary outcome, c is identical to the area under the receiver operating characteristic
(ROC) curve (AUC). The ROC curve is a plot of the sensitivity (true positive rate)
against 1—specificity (false-positive rate) for consecutive cutoffs for the probability
of an outcome. We therefore consider sensitivity and specificity first.

15.2.1 Sensitivity and Specificity of Prediction Models

Sensitivity is defined as the fraction of true positive (TP) classifications among the
total number of patients with the outcome (TP/NEvent), and the specificity as the
fraction of true negative classifications among the total number of patients without
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the outcome (TN/NNo event, Table 15.2). To classify a patient as positive or nega-
tive, we need to apply a cutoff to the predicted probability. If the prediction is
higher than the cutoff, the patient is classified as positive, otherwise, as negative. It
is common to use a cutoff of 50% for classification. This cutoff is often not
defendable in a medical context, as we will discuss in detail in Chap. 16. We can
examine sensitivity and specificity over the whole range of cutoffs from 0 to 100%.
The results can be plotted in a receiver operating characteristic (ROC) curve [223].

15.2.2 Example: Sensitivity and Specificity of Testicular
Cancer Prediction Model

For the 544 patients with testicular cancer, we might classify patients as having
tumor when the probability is over 50%. With this threshold, we find a sensitivity of
77% and a specificity of 32% (FP rate 68%). With a lower cutoff, for example, 30%,
these numbers are 92% and 42%, respectively. This illustrates that a lower cutoff
leads to better sensitivity, at the price of a lower specificity. This trade-off is
visualized in a ROC curve (Fig. 15.2).

15.2.3 ROC Curve

A plot of a ROC curve has often been used in diagnostic research to quantify the
diagnostic value of a test over its whole range of possible cutoffs for classifying
patients as positive versus negative [223]. We can also make a ROC curve with
consecutive cutoffs for the predicted probability of a binary outcome. We start with
a cutoff of 0%, which implies that all subjects are classified as positive. The sen-
sitivity is 100%, and the specificity 0% (upper right point in Fig. 15.2). There are
no false-negative classifications, and 100% false-positive classifications, since all
subjects without the outcome are classified as positive. We then shift to a slightly
higher cutoff, e.g., 1%, where sensitivity may still be 100%, but specificity above
0%. We follow all possible cutoffs till 100%, where all subjects are classified as

Table 15.2 Classification of subjects according to a cutoff for the probability of an outcome
(Event or No event)

Event No event

Predicted probability >= cutoff TP FP

Predicted probability < cutoff FN TN

NEvent NNo event

TP and FP: numbers of True- and False-Positive classifications; FN and TN: numbers of False and
True Negative classifications, respectively. NEvent = TP + FN; NNo event = FP + TN
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negative. This is the lower left point in Fig. 15.2. Here, the sensitivity is 0% and
specificity 100%.

The curves are more to the upper left corner when the distributions of predictions
are more separate between those with and without the outcome (Fig. 15.3). We can
draw a diagonal line for a non-informative model, where the sum of TP and TN is 1
at every cutoff. This sum (also known as Youden’s index, sensitivity + specificity - 1)
is larger than 1 for sensible prediction models. Youden index is maximized in the
upper left corner of the ROC plot [564]. We will discuss the choice of an optimal
cutoff for classification in the next chapter (Chap. 16).

Fig. 15.2 Receiver operating characteristics (ROC) curve for the testicular cancer model in the
development data set of 544 patients and validation set with 273 patients. Using cutoffs for the
predicted probability of tumor results in specific combinations of true positive rate (sensitivity) and
false-positive rate (1 – specificity). The area under the curve (AUC) is 0.82 [0.78–0.85]

Fig. 15.3 ROC plot for five
hypothetical prediction
models. The AUC values (or
c statistics) were 0.5, 0.64,
0.69, 0.76, 0.84, 0.92, and
0.98
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The area under the curve (AUC) can be interpreted as the probability that a
patient with the outcome is given a higher probability of the outcome by the model
than a randomly chosen patient without the outcome [223]. An uninformative
model, such as a coin flip, will hence have an area of 0.5. A perfect model has an
area of 1. The AUC is usually the most important number from a ROC plot; the plot
itself suffers from instability and is rather meaningless if no thresholds are indicated
(Fig. 15.3, no thresholds, only the area is relevant versus Fig. 15.2, thresholds
added).

Some may consider the interpretation of AUC as straightforward. Others may
object that we consider a pair of subjects, one with and one without the outcome,
and that such conditioning is a rather artificial situation. Statistically, this condi-
tioning on a pair of patients is attractive, since it makes the area independent of the
incidence of the outcome (or event rate), in contrast to R2 or the Brier score, for
example. Another objection is that the AUC is thought to be insensitive to
improvements in prediction by adding predictors such as biomarkers. Indeed, the
AUC is a rank order statistic; on the other hand, improvements in model fit go hand
in hand with improvements in AUC, if the underlying statistical model is correct
[434]. So, measures such as R2, Brier score, and AUC should all show an
improvement if a true predictor is added to a model. Finally, the AUC is bounded
by 1.0; with higher AUC values such as 0.90, only small increments can be
expected [425].

A generalization of the area under the ROC curve is provided by the concor-
dance statistic (c) [226]. The c statistic is a rank order statistic for predictions
against true outcomes, related to Somers’ D statistic. As a rank order statistic, it is
insensitive to errors in calibration such as differences in average outcome. For
binary outcomes, c is identical to AUC.

Confidence intervals for the AUC (or c statistic) can be calculated with various
methods. Standard asymptotic methods may be problematic, especially when sen-
sitivity or specificity is close to 0% or 100% [9]. Bootstrap resampling is a good
choice for many situations. For example, a difference in c between a reference and a
more complex model is hard to evaluate fairly when the models are developed on
the same data [434]. Bootstrapping can be used for comparison of
optimism-corrected estimates of the difference in performance (see Chap. 17).

15.2.4 R2 Versus c

We compare the behavior of Nagelkerke’s R2 and the c statistic for hypothetical
prediction models in settings of 50 and 10% event rates (Fig. 15.4). At 50%
incidence, a high c statistic such as 0.98 is associated with a R2 value of 87%. With
lower incidence, R2 is somewhat lower. Prediction models with c between 0.7 and
0.8 typically have R2 values between 10 and 20%; R2 > 50% matches with c > 0.9.
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15.2.5 Box Plots and Discrimination Slope

The discrimination slope is a simple measure for how well subjects with and
without the outcome are separated. Its use as a measure for discrimination is
attributed to Yates [684]. It is easily calculated as the absolute difference in average
predictions for those with and without the outcome.

Visualization is readily possible with a box plot (Fig. 15.5). The box plot may be
a simple and intuitive way to communicate the extent of risk differentiation
achieved by the model. The same information can be shown by histograms, which

Fig. 15.4 Distribution of observed binary outcomes in relation to predicted probabilities from
hypothetical logistic models. The top seven graphs relate to an incidence (event rate) of 50%. The
next sets relate to a 10% incidence. For each hypothetical model, Nagelkerke’s R2 and c statistics are
shown. If c = 0.5 (and R2 = 0%), predictions are at the incidence of the outcome for all subjects, with
or without the outcome, indicated with a single spike. If c is close to 1 (R2 close to 100%), predictions
are close to 0% for those without the outcome, and close to 100% for those with the outcome
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will show less overlap between those with and those without the outcome for a
better discriminating model (Fig. 15.4). Similar to Fig. 15.4, the incidence of the
outcome (event rate) determines the visual impression that a box plot makes, and
the magnitude of Yates discrimination slope. With low incidence, the slope is
somewhat lower, for the same AUC (or c statistic).

The difference in mean predictions is related to the calculation of AUC from the
comparison of two standard normal distributions; one for those with events (y = 1)
and one for those without an event (y = 0): AUC = U((ly=1 – ly=0)/√2), where U
indicates the cumulative normal distribution. With (ly=1 – ly=0) = 1, the AUC is
0.76; with a standardized difference of 0.25, AUC = 0.64; with a difference of 8,
AUC = 0.98. So, the calculations of AUC can be thought of as comparing y = 1
versus y = 0 at the log(odds) scale, while Yates’s discrimination slope compares
y = 1 versus y = 0 at the probability scale.

Indeed, the interesting connection is that Pearson R2 is asymptotically equal to
the Yates slope. Improvements in Pearson R2 or in Yates slope are equivalent to the
integrated discrimination index (IDI) [426, 428, 568].

15.2.6 *Lorenz Curve

An alternative way to judge discriminative ability is by the Lorenz curve
(Fig. 15.6). The Lorenz curve has been used in economics to characterize the
distribution of wealth in a population [351]. This curve has been used to plot the

Fig. 15.5 Box plots for predictions from hypothetical prediction models with different
discriminative abilities (AUC or c statistic, see Fig. 15.4). The discrimination slopes are calculated
as the difference in means of predictions for those with and those without the outcome (mean
incidence 50%). The standardized differences at the log odds scale were 8, 4, 2, 1, 0.5, 0.25, and 0;
for AUC = 0.98, 0.92, 0.84, 0.76, 0.69, 0.64, and 0.5, respectively
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cumulative distribution of wealth against the cumulative distribution of the popu-
lation, ranked on the basis of individual wealth.

For prediction models, we can plot the cumulative proportion of the population
on the x-axis, ranked by predicted probability. On the y-axis, we plot the cumu-
lative proportion of subjects with the outcome. For example, we can show the
proportion of subjects developing cancer against the cumulative proportion of the
population ranked by cancer risk [46]. In terms of ROC curves, we plot the
cumulative rate of false-negative classifications against the cumulative rate of
negative predictions. The ROC and Lorenz curves look somewhat similar, except
that the Lorenz curve is flipped vertically and horizontally. In case of a
non-informative model, a straight line arises, since every rate of the population
classified as negative corresponds to the same rate classified as negative among
those with the outcome. A good model has a curve under this straight line, with a
relatively large proportion of the population classified as negative having only a
small part of the outcomes (low false-negative rate). On the upper end of the x-axis,
a small part of the population should contain many subjects with the outcome. In
the ideal case, a cutoff is used that classifies the fraction as positive equal to the
prevalence, and all these have the outcome. Indeed, we note that a c statistic of 0.98
leads to a nearly horizontal line till the 50% cumulative proportion point on the
x-axis and increases more or less linearly to 100% after that.

The Gini index is sometimes calculated as a summary measure for the Lorenz
curve. The Gini index is the ratio between the area A between the Lorenz curve of
the prediction model and the line for a non-informative model and the area under
the line for a non-informative model (0.5). Hence, G = 2 * A.

Other summaries are related to quantiles of the cumulative distribution. For
example, we can consider the number of missed outcomes when 25% of the

Fig. 15.6 Lorenz curve showing proportion with the outcome versus the cumulative proportion of
patients classified as negative, according to rank order of predictions. The outcome incidence is
50% in the left panel and 10% in the right panel. We note that a near-perfect model (c = 0.98)
follows a horizontal line and then rises steeply to 100% false-negative rate from the points of 50%
and 90% cumulative proportions, respectively
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population is classified as negative. If we want to be sure not to miss the outcome,
usually only few can be classified as negative, unless a model is used with very
good discriminative ability. At the upper end of the range, we can consider how
many outcomes are concentrated in the upper quarter (above the 75th percentile).
We illustrate these principles for the testicular cancer prediction case study
(Table 15.4).

An advantage of the Lorenz concentration curve is that the trade-off is clearly
visualized between how many subjects can be classified as negative without
missing many with the outcome. A disadvantage may be that the appearance of the
Lorenz curve depends strongly on the incidence of the outcome. With low inci-
dence, such as screening, the graph looks more impressive (Fig. 15.6, right panel).
With 10% incidence, only few cases with disease are missed at 25% classified
negative when we use a model with a c statistic of 0.84. The top 25% then easily
contains most cases. With a more frequent outcome, more cases are missed at the
25% point, and fewer of the cases are in the top 75 percentile.

15.2.7 Comparing Risk Quantiles

The ROC curve, box plots, and Lorenz curve consider the full distribution of
predicted risk. Researchers sometimes express the risks between extreme parts of
the risk distribution as summary measures [586]. For example, we may compare the
risk among those above the top 90% percentile to the risk in the lowest 10% of the
risk distribution. With c statistic of 0.64, this implies we compare a subgroup with
65% risk to a group with 35% risk, if the average risk is 50%. This difference can be
expressed as an odds ratio of 3.7 (Table 15.3). The odds ratio is as high as 26 for a
c statistic of 0.84. With a lower incidence of 10%, these odds ratios are 3.2 and 13,
so still quite impressive (Table 15.3). By comparing those over the 99% percentile
to the lowest 1%, we obtain even larger differences in risks, for example, 74%
versus 26% for a c statistic of 0.64, odds ratio 7.4 (Table 15.3).

Table 15.3 Comparison of risk among those at high versus low risk according to prediction
models with different AUC values

AUC Incidence 50% Incidence 10%

<1 versus
>99%

<10 versus
>90%

50–50% <1 versus
>99%

<10 versus
>90%

50–50%

0.98 >1M >1M 135 >1M >100k 342

0.92 60 53 10 60 23 5.1

0.84 50 26 5.4 40 13 3.8

0.76 30 13 3.3 17 8.0 2.8

0.69 15 6.5 2.4 8.4 4.6 2.1

0.64 7.4 3.7 1.8 5.8 3.2 1.7

0.5 1 1 1 1 1 1
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These impressive numbers may be considered statistical cheating, since we focus
on extremes and ignore the large middle group of subjects in between the extremes.
A fairer comparison might be to split in the middle: at the 50% risk percentile (the
median). This is similar to the approach for Royston’s D statistic, which was
focused on discrimination in survival analysis [475]. The D statistic quantifies the
risk difference among two equal-sized groups: those above versus those below the
median risk. If we apply this approach to binary outcomes, we find lower odds
ratios as a quantification of the separation between those at high versus low risk,
e.g., 1.8 and 1.7 for a c statistic of 0.64 with incidence 50% and 10%, respectively
(Table 15.3).

15.2.8 *Example: Discrimination of Testicular Cancer
Prediction Model

We continue the example of predicting a benign histology in testicular cancer
patients after chemotherapy. The c statistic was 0.818 at model development, with
small optimism according to bootstrap validation (decrease by 0.006 to 0.812). At
external validation, the c statistic was 0.785, with a relatively wide 95% confidence
interval of 0.73–0.84 (Table 15.4).

The discrimination slope was 0.30 at model development, with small optimism
according to bootstrap validation (decrease to 0.29). At external validation, the
slope was much smaller (0.24). Part of this decrease is attributable to the lower
average prevalence of necrosis (76 of 273, 28%; versus 245 of 544, 45%). This
higher prevalence of residual tumor is also evident from the box plots (Fig. 15.7).

Lorenz curves were created with as x-axis the cumulative fraction at risk of
having residual tumor, and hence classified as not undergoing surgical resection
(Fig. 15.8). The y-axis was the fraction of missed tumors, i.e., tumor masses left

Table 15.4 Discriminative ability of testicular cancer prediction model developed in n = 544 and
externally validated in n = 273

Development
n = 544, 245
necrosis

Internal validationa External
validation
n = 273, 76
necrosis

c statistic [95% CI] 0.818 [0.78–0.85] 0.811 [0.78–0.85]b 0.79 [0.73–0.84]

Yates’ slope [95% CI] 0.301 [0.27–0.34]c 0.295 [0.26–0.33]b 0.24 [0.18–0.30]c

Lorenz
curve

p25, tumors
missed

9% – 13%

p75, tumors
missed

58% – 65%

aInternal validation with 500 bootstrap samples
bAssuming the same SE applies as estimated for model development
cBased on bootstrap resampling
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unresected. The point of 25% classified as necrosis corresponds to using a cutoff of
68% for the probability of necrosis, and only patients with a probability over 68%
are not resected. We miss 9% of the tumors with that cutoff. Hence, sparing surgery
in 25% leads to missing 9% of the tumors. The point of 75% classified as necrosis
corresponds to using a low cutoff (21%), and missing 58% of the tumors. Hence,
42% of the tumors are concentrated in the upper quarter of the distribution.

At external validation, the curve looks similar, which is related to a lower
discriminative ability compensated by a higher average prevalence of tumor (72%
versus 55%). The 25% and 75% cumulative fractions correspond to cutoffs of 60%
and 92% for the probability of tumor, and lead to 13% and 65% missed tumors,
respectively.

As a reference, we consider the current widely used policy of resection if the
residual mass size exceeds 10 mm [552]. This policy uses only one of the five
predictors in the model (“postchemotherapy mass size”), and hence has less dis-
criminative ability (the point is closer to the 45° line in Fig. 15.8). In the

Fig. 15.7 Box plot showing predictions of residual tumor by actual outcome (tumor vs. necrosis)
for testicular cancer patients (n = 544 and n = 273, respectively). The difference between means is
Yates’ discrimination slope (slope = 0.30, 0.34 and 0.24, respectively)

Fig. 15.8 Lorenz curves for prediction of residual tumor. Patients classified as low risk for tumor
would not undergo surgical resection (x-axis). With increasing fractions not undergoing resection,
the fraction with unresected tumor increases (“Tumors missed”)
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development sample, 165 of the 544 patients (20%) had residual masses <= 10
mm, but among them 48 with tumor (fraction tumor missed 48/299, 16%). In the
validation sample, only 9 of the 273 patients (3.3%) had residual masses <= 10
mm, but among them 6 with tumor (fraction tumor missed 6/197, 3%). Hence, the
reference policy did not perform well in the validation sample.

15.2.9 *Verification Bias and Discriminative Ability

In the testicular cancer validation sample, only 9 of 273 patients had very small
residual masses. This reflects the policy for resection in the specific center, where
patients with such small masses were not considered candidates for resection [644].
This leads to verification bias [670]: we do not know the histology of these masses,
since they were not resected, and cannot evaluate predictions for these patients. We
know that the estimation of regression coefficients is not biased by this selection, if
we include the selection criterion (residual mass size) in the prediction model.
Hence, model predictions are valid even with verification bias [688]. But perfor-
mance measures such as sensitivity and specificity are biased [45]. The c statistic
may not be affected too much because verification bias makes that we merely shift
on the ROC curve to a different combination of sensitivity and specificity. As a
sensitivity analysis, we might evaluate the model performance after imputing
outcome for unresected patients [122, 645].

15.2.10 *R Code for Discriminative Ability

The box plot is created simply with boxplot, based on a “full model” including
five predictors in the development data:

lp <- full$linear.predictors
boxplot(plogis(lp)~full$y, ...) # Fig 15.7

The discrimination slope is the difference between the mean predicted probabilities
by outcome:

mean(plogis(lp[full$y==1])) – mean(plogis(lp[full$y==0]))

Lorenz concentration curves are created easily with the ROCR package:

library(ROCR)
pred.full <- prediction(full$linear.predictor, full$y)
perf.full <- performance(pred.full,"fnr","rnp") # Lorenz curve data+plot
plot(perf.full, xlab="Fraction not resected", ylab="Tumors missed", ...) 
abline(a=0,b=1)   # Fig 15.8 with reference line
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15.2.11 Discriminative Ability in Survival

Similar to overall performance measures, we can focus on summarizing perfor-
mance for the full follow-up, or focus on some specific time points. A classic
implementation of the c statistic for survival is by Harrell, which considers pairs of
risk subject at any time during follow-up [226]. Harrell’s overall c statistic indicates
the proportion of all pairs of subjects who can be ordered such that the subject with
the higher predicted survival is the one who survived longer. Ordering is possible if
both subjects have an observed survival time, or when one has the outcome and a
shorter survival time than the censored survival time of the other subject. Ordering
is not possible if both subjects are censored, or if one has the outcome with a
survival time longer than the censored survival time of the other subject. Hence, a
censored subject is only considered as a nonevent for the time points where events
occurred and the subject was at risk. Harrell’s c is sensitive to the censoring pattern.
An potential improvement is Uno’s c statistic, which uses a weight function to
compensate for the censoring [591]. Time-dependent c statistics, or AUCt, were
proposed by Heagerty with various variants [234, 592]. The overall and
time-specific discrimination measures usually do not agree numerically [53].

Box plots or Lorenz curves have no easy translation to the survival context,
while splitting at the median risk was proposed for the D statistic [475]. Such
splitting is also common in oncology, where prognostic groups are often created
after constructing a prognostic model. A common procedure is to base these groups
on quarters of predicted survival; the lower 25% should have the worst survival, the
highest 25% the best survival. This approach can well illustrate the discriminative
ability of a model. An example is shown in Chap. 23 (Fig. 23.8).

15.2.12 Summary on Measures for Discrimination

As discussed above, various measures can be used to indicate discrimination
(Table 15.5). These all relate to the spread in predictions: how well can we separate
low risk from high-risk subjects? The c statistic, or AUC, is the most commonly
reported measure [390]. It is a rank order statistic, and hence not sensitive to
miscalibration. It is usually not so informative to plot the ROC curve, unless
specific thresholds are indicated as in Fig. 15.2. The discrimination slope and Gini
index are influenced by calibration. Hence, the preferred measure for discrimination
is the c statistic or AUC for binary outcomes.

Further quantitative insight is obtained from realizing how the risk distributions
for those with and without events are shifted (see distributions in Fig. 15.4 and box
plots in Figs. 15.5 and 15.7). The risk distributions were created from normal
distributions for those with and without the event at the linear predictor scale (lo-
godds or logit scale, Table 15.6). A mean difference of 1 leads to a c statistic of
0.76. So, logit(p) is distributed as N(–0.5, 1) and N(0.5, 1) for y = 0 and y = 1,
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respectively. A smaller standardized difference such as 0.25 times the standard
deviation leads to c = 0.64. With c = 0.76, Nagelkerke R2 was 27%, the discrim-
ination slope was 0.20, and the odds ratio with a split at the median of the risk
distribution was 3.3.

15.2.13 Incremental Value of Markers and Discrimination

The incremental value of biomarkers and other predictors is an important study
question in many medical fields. The incremental value can be statistically tested by
adding the marker to a reference model [425, 558, 561]. The reference model needs

Table 15.5 Summary of some measures for discriminative ability of a prediction model for
binary outcomes

Measure Calculation Visualization Characteristics

Concordance
statistic

Rank order statistic ROC curve Insensitive to outcome
incidence
Readily interpretable as
probability of higher
predictions among events
versus nonevents, by
conditioning on pairs

Discrimination
slope

Difference in mean of
predictions between
outcomes

Box plot Easy interpretation,
attractive visualization

Gini index Shows concentration of
outcomes missed by
cumulative proportion of
negative classifications

Lorenz
concentration
curve

Shows balance between
finding true positive
subjects versus total
classified as positive

Table 15.6 Quantitative comparison of measures related to discrimination. Prediction models
with high to low AUC were based on normal distributions at the log odds scale, with standardized
differences between 0 and 8, for a 50% incidence

Standardized difference:
logit|y = 1 – logit|y = 0

AUC R2

(%)
Discrimination slope:
risk|y = 1 – risk|y = 0

D: odds ratio
with median split

8 0.98 84 0.77 135

4 0.92 65 0.55 10

2 0.84 44 0.35 5.4

1 0.76 27 0.20 3.3

0.5 0.69 15 0.11 2.4

0.25 0.64 8 0.05 1.8

0 0.5 0 0 1
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to be refitted to the data for a fair comparison of incremental value [682]. For
example, examining promising biomarkers for cardiovascular disease might con-
sider a specific version of the Framingham model as a reference. The predictors in
the Framingham model would be entered to estimate coefficients that are optimal to
the data at hand. Next, the marker would be added, with a likelihood ratio test to
assess statistical significance [425, 434, 647].

The AUC has been considered as insensitive to such addition of predictors to the
model [107, 426]. We may examine this perceived insensitivity by adding a binary
marker to a model with a reference AUC of 0.7 or 0.8 (Fig. 15.9) [425]. The
increase in AUC depends on the effect of the marker (odds ratio 1.5, 2, 4 for
illustration), and on the prevalence (range 0–50% considered). It does not depend
on the event rate. With a rare characteristic, say with prevalence <5%, we would
need a large effect such as OR = 4 to reach an improvement in AUC of approxi-
mately 0.01 [433]. Such an improvement is achieved with a weak effect such as
OR = 1.5 if the prevalence is 50:50, and not if the reference model already has an
AUC of 0.8. If we add a well-distributed marker (prevalence around 50:50) with a
strong effect (OR = 4), the AUC reaches 0.83 even if the reference model has
AUC = 0.8. So, the AUC will not increase with notable quantity if the ordering of
risk predictions changes to a minor extent for a small group of subjects. But large
effects for frequent characteristics will correspond to substantial increases in AUC.

15.2.14 Incremental Value of Markers and Reclassification

Another way to assess incremental value of a marker is by reclassification. This
approach has received attention as being more meaningful to communicate to
medical researchers [107], perhaps also out of frustration that “promising markers”

Fig. 15.9 Discriminative ability (AUC) for adding a marker to a reference prediction model with
AUC = 0.7 (left panel) or AUC = 0.8 (right panel). Marker effects of OR 1.5, 2, and 4 were
simulated over prevalence of the binary marker from 0 to 50%. The increase in AUC is less with a
better reference model since AUC is bounded by 1.0
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showed limited increase in AUC [426]. We may compare predictions with the
marker to predictions without the marker, separate for those with and without
events. The net reclassification improvement (NRI) has been proposed to summa-
rize such reclassification. For binary classification (Table 15.2), the NRI for events
is the change in sensitivity, and the NRI for nonevents is the change in specificity.
Note that an increase in AUC does not necessarily correspond to an increase in both
sensitivity and specificity; one may increase while the other decreases [603].

The change in the full risk distribution can be studied with reclassification
graphs for those with and without events (Fig. 15.10). If the marker has a 50:50
distribution, with OR = 2, we find that the increase in AUC is +0.019. We would

Fig. 15.10 Reclassification plots for a binary marker with 50% prevalence (top row) or 7%
prevalence (lower row). Both markers increased AUC by 0.019 from AUC = 0.7. In the 50:50
case, the Net Reclassification Index (NRI) is positive for those with events (+15%) as well as for
those without events (+15%). In the 7% prevalence case, the Net Reclassification Index is negative
for those with events (–79%) but positive for those without events (+93%)
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hope to see higher risk predictions for those with events, and lower for those
without events. Indeed, among those with events, 57.6% had higher predictions
with the model with the marker compared to the predictions with the reference
model without the marker. On the downside, 42.4% had lower predictions, for an
NRI of +15%. Identical numerical results are found for those without events: 57.6%
had lower predictions, for an NRI of +15%.

A similar improvement of +0.019 in AUC is achieved with a marker with 7%
prevalence and OR = 4 (Fig. 15.9). For such a marker, the NRI for events is
negative: 11% are reclassified to higher predictions, while 89% are reclassified to
lower predictions (NRI –79%). On the other hand, 97% among the nonevents are
reclassified to lower predictions, for an NRI of +93%.

The sum of the NRI for events and the NRI for nonevents is referred to as the
overall NRI, and sometimes simply as “NRI” [331]. For the first situation,
NRI = NRI for events + NRI for nonevents = 0.15 + 0.15 = 0.30. For the second
situation, NRI = 0.932 − 0.786 = 0.15. So, the same increase in AUC leads to
very different NRI values. The NRI needs careful interpretation as “the sum of the
net reclassification improvements for those with events and those without events.”
It is not correct to interpret the total NRI as “the fraction correctly reclassified”, and
interpret this number as a percentage. With a 50% event rate, the fraction of the
sample that is correctly reclassified is 0.5 * 0.15 + 0.5 * 0.15 = 15% in the first
example, and 0.5 * 0.932 – 0.5 * 0.786 = 7.3% in the second [331]. The overall
NRI provides for a higher number than the change in AUC, but otherwise may be
more confusing than providing meaning on the incremental value of a marker [650].
More meaningful interpretations of the value of marker may come from evaluations
of the distributions of predicted values (“predictiveness curves”) [432] and espe-
cially from decision-analytic measures (see Chap. 16) [648]. In line with decision
analysis, a weighted NRI can be calculated (“wNRI”) [427]. The wNRI is con-
sistent with improvements in Net Benefit and Relative Utility [607]. These mea-
sures provide a weighted sum of changes in sensitivity and specificity and have a
strong scientific basis [424].

15.2.15 *R Code for Assessment of Incremental Value

Reclassification statistics can be calculated with the improveProb function

fit0  <- lrm(y~x1) 
fit1 <- lrm(y~x1+x2) 
improveProb(x1=plogis(predict(fit0)),x2=plogis(predict(fit1)), y=y) 

Tests for model improvement can simply be obtained from the model fit

anova(fit1)
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15.3 Calibration

Another key property of a prediction model is calibration, i.e., the agreement
between observed outcomes and predictions. The most common definition of cal-
ibration is that if we observe p% risk among patients with a predicted risk of p%.
So, if we predict 70% probability of residual tumor tissue for a testicular cancer
patient, the observed frequency of tumor should be approximately 70 out of 100
patients with such a predicted probability. Weaker forms of calibration only require
the average predicted risk (mean calibration) or the average prediction effects (weak
calibration) to be correct. Strong calibration requires that the event rate equals the
predicted risk for every covariate pattern [602]. This implies that the model is fully
correct for the validation setting (Table 15.7). Graphical inspection is very useful (a
calibration plot) [26, 225].

15.3.1 Calibration Plot

A calibration plot has predictions on the x-axis, and the outcome on the y-axis.
A line of identity helps for orientation: perfect predictions should be at the 45° line.
For linear regression, the calibration plot results in a simple scatter plot. For binary
outcomes, the plot contains only 0 and 1 values for the y-axis. Such probabilities
are not observed directly. Smoothing techniques can be used to estimate the
observed probabilities of the outcome (p(y = 1)) in relation to the predicted prob-
abilities. The observed 0/1 outcomes are replaced by values between 0 and 1 by
combining outcome values of subjects with similar predicted probabilities, e.g.,

Table 15.7 A hierarchy of calibration levels for risk prediction models for binary outcomes [602]

Strength
of
calibration

Definition Assessment

Mean Observed event rate equals average
predicted risk

Compare event rate with average
predicted risk; Evaluate
calibration-in-the-large as a|b = 1 = 0, 1
df test

Weak No systematic overfitting or
underfitting and/or overestimation or
underestimation of risks

Calibration analysis for
calibration-in-the-large and calibration
slope; evaluate with Cox recalibration
test: 2 df test of the null hypothesis that
a = 0 and b = 1 [114]

Moderate Predicted risks correspond to observed
event rates

Calibration plot with smooth curve, and/
or inspection by grouped predictions

Strong Predicted risks correspond to observed
event rates for each and every
covariate pattern

Scatter plot of predicted risk and
observed event rate per covariate pattern,
impossible with continuous predictors
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using the loess algorithm [26]. Confidence intervals can be calculated for such a
smooth curve (Fig. 15.11).

The plot visualizes mean calibration (are observed outcome systematically lower
or higher than predicted?), weak calibration (is there a general trend in predictions
being too extreme, a sign of overfitting at model development?). Moreover, we can
plot results for subjects grouped by similar probabilities. This allows us to assess a
moderate level of calibration by comparing mean observed proportions per group to
the mean predicted outcome. For example, we can plot observed outcome in groups
defined by quintile or by decile of predictions (Fig. 15.11). This makes the plot a
graphical illustration of the Hosmer–Lemeshow goodness-of-fit test. Note that we
also learn about discrimination from a calibration plot: A better discriminating
model has more spread between observed proportions per group than a poorly
discriminating model. The choice of groups is important for the visual impression
of calibration; if small groups are plotted, the variability will be larger (right panel
in Fig. 15.11).

15.3.2 Mean and Weak Calibration at Internal and External
Validation

The mean calibration will usually be perfect when we compare observed outcomes
to the mean predictions in the data set used to develop a model. Such apparent
calibration is hence not informative. Similarly, the mean calibration remains

Fig. 15.11 Calibration plots of actual outcome versus predictions for a hypothetical model with
c statistic 0.76, n = 500. Left and right panels only differ in the number of groups (4 vs 10). The
distributions of actual 0 and 1 values are shown at the bottom of the graph; the loess smoother
(with 95% confidence band) is close to the ideal 45 degree line; actual outcomes according to
risk groups are shown by circles and triangles (each circle: n = 125; triangle: n = 50)
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uninformative with internal validation techniques such as cross-validation or
bootstrapping (see Chap. 17). In contrast, when we validate the model in external
data, the calibration of the mean risk is often far from perfect (“poor calibration-
in-the-large”).

The concept of weak calibration is related to the average strength of the predictor
effects. For linear regression, we can write ynew = a + boverall * ŷ, and for gener-
alized linear models f(ynew) = a + boverall * linear predictor, where the linear pre-
dictor is the combination of regression coefficients from the model and the predictor
values in the new data. A link function f is used for ynew, e.g., log odds (or logit) in
logistic regression. The boverall is named the calibration slope [114]. Ideally, the
calibration slope boverall = 1. With apparent validation, boverall = 1, since this yields
the best fit on the data under study with either least squares or maximum likelihood
methods. At internal validation, the calibration slope reflects the amount of
shrinkage that is required for a model (boverall < 1) [109, 627]. It indicates how
much we need to reduce the effects of predictors on average to make the model well
calibrated for new patients from the underlying population. The calibration slope
can hence be used as a shrinkage factor to adjust a model for future use (Chap. 14).
At external validation, the calibration slope reflects the combined effect of two
phenomena: overfitting on the development data and true differences in the effects
of predictors.

15.3.3 Assessing Calibration-in-the-Large and Calibration
Slope

For continuous outcomes, calibration-in-the-large can be assessed easily by com-
paring the mean(ŷ) and mean(ynew), and testing the differences ynew – ŷ, e.g., with a
one-sample t-test. This test indicates the statistical significance of the mean under-
or overestimation of the observed outcome: mean(ynew – ŷ). In a linear regression
model, we can estimate an intercept a in a model with the residual ynew – ŷ as the
outcome. The recalibration model is simply ynew = a + boverall * ŷ. The deviation of
the calibration slope from 1 can be tested in linear regression by a model that
studies the residuals: ynew – ŷ = a + boverall * ŷ. The significance of boverall is then
determined as usual in regression, and indicates on average stronger or weaker
effects of the predictors in a model.

For binary outcomes, calibration-in-the-large again refers to the difference
between mean(ŷ) and mean(ynew). A simple comparison can directly be made, with
an odds ratio indicating the average under- or overestimation of the outcome:

OR ¼ odds meanðŷÞð Þ=odds mean ynewð Þð Þ
¼ meanðŷÞ=ð1�meanðŷÞ½ �= mean ynewð Þ=ð1�mean ynewð Þ½ �:
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For statistical testing of the difference, we need to be more careful. In logistic
regression, the relation between the outcome y and the linear predictor is nonlinear
(i.e., logistic). We want to compare logit(ynew = 1) to logit(ŷ), where

mean logit ynew ¼ 1ð Þ � logit(ŷÞð Þ is not equal to mean logit ynew ¼ 1ð Þð Þ�mean logit(ŷÞð Þ:

In a model, we could write

logit ynew ¼ 1ð Þ � logitðŷÞ ¼ a; or

logit ynew ¼ 1ð Þ ¼ aþ logit(ŷÞ ¼ aþ offset(linear predictor):

The intercept a then reflects the difference in log odds between predictions and
observed outcome, adjusted for the linear predictor. The offset makes that predic-
tions are taken literally, as in linear regression. We can think of a regression
coefficient for the offset variable that is fixed at unity. The statistical significance of
intercept a can be tested with standard regression tests, such as the Wald test or the
likelihood ratio (LR) test. The alternative hypothesis is a <> 0 | boverall = 1
(Table 15.8).

Note that exp(a) can be interpreted as an observed-to-expected (O/E) ratio. This
ratio can also be calculated directly by comparing the sum of observed events
(O) with the sum of the predictions (E). These ratios will differ, with exp(a) larger
than the simple O/E ratio [210]. This is because the estimation of a was conditional
on the linear predictor (as an offset variable), which makes for an adjusted estimate
rather than an unadjusted estimate as for O/E. So, exp(a) can be interpreted as the
odds ratios for individuals, given their covariate pattern (a conditional estimate),
while O/E reflects the overall average miscalibration (a marginal estimate).

The calibration slope can be estimated from the recalibration model
logit(ynew = 1) = a + boverall * logit(ŷ) = a + boverall * linear predictor. The

deviation of the calibration slope from 1 (“miscalibration”) can be tested by a model
that includes an offset variable:

logit ynew ¼ 1ð Þ ¼ aþ bmiscalibration � linear predictorþ offsetðlinear predictorÞ:

The slope coefficient boverall reflects the deviations from the ideal slope of 1, and
can be tested with Wald or LR statistics (Table 15.8).

For a survival outcome, the calibration slope boverall can be assessed as

Table 15.8 Calibration tests for prediction model y * a + boverall * ŷ. H0 and H1 indicate the null
and alternative hypothesis, respectively

H0 H1 df

Calibration-in-the-large a = 0 | boverall = 1 a <> 0 | boverall = 1 1

Calibration slope boverall = 1 boverall <> 1 1

Recalibration a = 0 and boverall = 1 a <> 0 or boverall <> 1 2
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log hazard ynew ¼ 1ð Þð Þ ¼ h0 þ boverall � linear predictor:

The model for deviation from a slope of 1 is

log hazard ynew ¼ 1ð Þð Þ ¼ h0 þ bmiscalibration
� linear predictorþ offsetðlinear predictorÞ:

Testing of coefficient bmiscalibration is as usual, i.e., with a Wald test or LR test.
This recalibration test for a = 0 and b = 1 has several advantages. It can pick up

common patterns of miscalibration, i.e., systematic differences between the new
data and the model development data, and overfitting of the effects of predictors.
Moreover, the test parameters a and boverall are well interpretable, provided that a |
boverall = 1 is reported (rather than a with boverall left free). The slope boverall can
directly be taken from the re-calibration model (where a is left free).

With a parametric survival model, we can specify parameters which reflect
differences in average survival, after adjustment for predictor effects. Van
Houwelingen transformed the baseline hazard from a Cox model to a Weibull
model [623]. The Weibull model has two parameters to describe the baseline hazard
parametrically (Chap. 4). These two parameters can be refitted for external vali-
dation data, together with a single coefficient for the linear predictor, to estimate a
recalibrated model.

15.3.4 Assessment of Moderate Calibration

Moderate calibration can best be assessed graphically as discussed above with the
calibration plot (Sect. 15.3.1). Smooth curves can be constructed with the loess
smoother, which may be considered nonparametric, or with a spline smoother such
as a restricted cubic spline [26, 602]. A formal test might be done for nonlinearity:
compare the fit with an rcs versus a linear offset term. In addition to graphical
inspection of grouped predictions, we may perform a chi-square test for observed
versus expected numbers by group. This test is the often used Hosmer–Lemeshow
(HL) test [257].

For the HL test, patients are grouped typically by decile of predicted probability.
The sum of predicted probabilities is the number of expected outcomes; this
expected number is compared to the observed number in the 10 groups with a
chi-square test. At model development, this chi-square test has eight degrees of
freedom; at external validation the degrees of freedom are nine. There are many
drawbacks to the H-L test [225, 256]. First, there flexibility in the grouping: should
we always use deciles to group predictions in tenths, or make the quantiles
dependent on the sample size? Should we group by risk interval, e.g., 0–10%, 11–
20%, etc. (“interval grouping”)? Second, the test has poor power to detect mis-
calibration in the common form of systematic differences between outcomes in the
new data and the model development data, or to detect overfitting of the effects of
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predictors. Some proposed that the H-L test should only be used in model devel-
opment, in addition to more specific tests on model assumptions, such as tests for
linearity (adding nonlinear transformations) and additivity (adding interaction
terms). Reported H-L tests are usually nonsignificant if they reflect apparent vali-
dation on the data that were also used to construct the model. Such nonsignificant
results may contribute to the face validity of a model as perceived by some readers,
but have no scientific meaning.

Various other measures are available for moderate calibration. An intuitively
appealing measure of calibration is the absolute difference between smoothed
observed outcomes and predicted probabilities (Harrell’s E statistic) [225]. This
measure is related to the calibration plot, and depends on the way the 0/1 outcomes
are smoothed. The difference between smoothed observed outcomes and predicted
probabilities can well be judged visually in a calibration plot such as Fig. 15.11,
with the distribution of predictions at the x-axis. We can also summarize the
miscalibration in a single index such as the estimated calibration index (ECI) [621],
which also summarizes the distance between a smooth calibration curve and the
ideal 45° line.

15.3.5 Assessment of Strong Calibration

The concept of strong calibration is related to goodness-of-fit, which relates to the
ability of a model to fit a given set of data. Ideally, we would identify a true
underlying model, which may be utopic (Chap. 5) [602]. Typically, there is no
single goodness-of-fit test which has good power against all kinds of lack of fit of a
prediction model. Examples of lack of fit are missed nonlinearities, interactions, or
an inappropriate link function between the linear predictor and the outcome. Such
deviations are better assessed by adding nonlinear terms to a model, adding
interaction terms, and examining alternative link functions, if sample size allows for
such flexibility in modeling strategy.

An interesting approach is the Goeman–Le Cessie goodness-of-fit test [187,
324]. It assesses the alternative hypothesis that any nonlinearities or interaction
effects have been missed in a logistic regression model. Such neglected effects can
be detected by studying patterns in the residuals: observations close to each other in
covariate space which deviate from the model in the same direction. The approach
is to smooth the regression residuals and to test whether these smoothed residuals
have more variance than expected under the null hypothesis. This deviation occurs
when residuals that are close together in the covariate space are correlated. The test
statistic is a sum of squared smoothed residuals.

Another approach to goodness-of-fit is to study observed versus expected out-
comes in subgroups of patients, defined by predictor values. For example, we can
assess the difference between observed versus expected outcomes in males and
females, or other subgroups of patients. If the effect of the subgroup is not well
modeled, e.g., an interaction was missed, this might be reflected in this assessment.
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There are, however, more direct ways of assessing the influence of subgroup
characteristics, as was discussed in Chap. 13 on model specification. So, this check
for calibration is also more for face validity of the model and for convincing
potential users than a serious check of calibration. Measures for assessment of
calibration are summarized in Table 15.9.

15.3.6 Calibration of Survival Predictions

In a survival context, we can assess calibration-in-the-large with a model-based
approach [116]. This involves using a Poisson model which uses the linear pre-
dictor as an offset. Additionally, we can fit the linear predictor based on the original
prediction model as a predictor to obtain the calibration slope. Furthermore, we can
fit a model with the linear predictor as an offset and adjusting for a set of dummy
variables created by deciles of the linear predictor from the original prediction
model. A score test for the group effect of this set is asymptotically equivalent to the
Grønnesby and Borgan, or Nam–D’Agostino tests, which are survival analysis
variants of the Hosmer–Lemeshow test [132]. Again, these tests produce a p-value
that is difficult to interpret: with small external validation samples, we lack statis-
tical power to detect miscalibration. On the other hand, we will commonly find
statistically significant miscalibration with large external validation samples. These
tests are therefore not very useful.

A calibration plot can also be produced. The calibration of a model can be
studied at fixed time points. We can group patients for calculation of survival rates
with the Kaplan–Meier method. Harrell suggests to use at least 50 subjects per
group, depending on the hazard of the outcome [225]. This observed survival may
be compared to the mean predicted survival from the prediction model. A smoothed
calibration curve can be obtained by comparing Cox–Snell residuals on the
cumulative probability scale against the right-censored survival times [225]. We can
also plot the observed t-year risk of the outcome for each tenth of patients (and 95%
confidence intervals) against the predicted risk estimated from the Poisson
regression model [116]. This model-based approach can be extended to replace the
groups with splines. These approaches depend on the baseline hazard being
available either for at least some specific time points [471].

15.3.7 Example: Calibration in Testicular Cancer
Prediction Model

For the prediction model of residual mass histology, we plot the actual outcome
versus predicted for the validation sample (Fig. 15.12). We include the distribution
of predicted risks, such that discrimination can also be judged. The results for five
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risk groups of predicted risk are shown. Tests for miscalibration included the
overall test for calibration-in-the-large and calibration slope, and the Goeman–Le
Cessie test, which were nonsignificant for model development and external vali-
dation (Table 15.10). Note that assessment of calibration makes little sense in the
development data, while it is essential at external validation.

15.3.8 *R Code for Assessing Calibration

Calibration plots were made by an extension of Harrell’s val.prob function
called val.prob.ci.2 [602]. This function also provides assessment of

Fig. 15.12 Validity of predictions of tumor in the testicular cancer development sample (n = 544)
and in the validation sample (n = 273). The distribution of predicted probabilities is shown at the
bottom of the graphs, separately for those with tumor and those with necrosis (“Tum” vs. “Nec”).
The triangles indicate the observed frequencies by tenth of predicted probability

Table 15.10 Calibration of testicular cancer prediction modela

Development External validation

Calibration-in-the-large 0 –0.03

Calibration slope 0.97a 0.74

Calibration tests

Overall miscalibration p = 1 p = 0.13

Hosmer–Lemeshow p = 0.66 p = 0.42

Goeman–Le Cessieb p = 0.63 p = 0.94
aInternal validation with 500 bootstrap resamples using Harrell’s validate function
bTest statistics of squared smoothed residuals calculated with an R program from Jelle Goeman,
available at www.clinicalpredictionmodels.org
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calibration-in-the-large, calibration slope, and the calibration test p-value. Goeman
developed R code for the functions mlogit (for binary of multinomial logistic
regression), smoothU (for calculation of smoothed residuals), and testfit (for
the Goeman-Le Cessie goodness-of-fit test).

15.3.9 Calibration and Discrimination

The calibration plot can be extended into a “validation plot” as a central tool to
visualize model performance [568]. Moderate calibration is shown by observed
outcomes being close to prediction, while discrimination aspects can be indicated
with the distribution of the predicted probabilities. The distribution can be shown
by a histogram or density distribution. We can also make separate histograms for
those with and without the outcome for further insights (see, e.g., Figs. 15.10 and
15.12). It also helps to see the separation according to quantiles of predicted
probabilities. For example, when deciles are used to define tenths, these will be
relatively far apart for a good discriminating model.

Calibration-in-the-large is a phenomenon that is fully independent of discrimi-
nation. For example, we can change the incidence of the outcome in a case–control
study, but the discrimination will be unaffected. The calibration slope, however, has
a direct mathematical relation with discrimination [629]. If the calibration slope is
below unity, the discrimination is also lower at external validation. Hence, over-
fitted models will show both poor calibration and poor discrimination when vali-
dated in new patients (Chap. 19).

Weak to strong calibration is possible with poor discrimination, for example,
when the range of predicted probabilities is small, such as between 9 and 11% for
an average incidence of the outcome of 10%. At external validation, such a small
range in predictions may arise from a narrow selection of patients (homogeneous
case-mix). A drop in discriminative ability compared to the development setting can
hence be explained by overfitting (calibration poor), or a more homogeneous
case-mix (independent of calibration, see Chap. 19) [629]. On the other hand, a well
discriminating model can have poor calibration, which can be corrected with var-
ious updating methods (Chap. 20).

15.4 Concluding Remarks

In this chapter, we have discussed a number of performance measures for prediction
models; many more can be used, as already systematically discussed in work by
Hilden, Bjerregaard, and Habbema in the 1970s [215–217, 247, 248]. Many per-
formance measures are related to each other, e.g., the c statistic is related to the
Mann–Whitney U statistic, which is calculated as a rank order test for the difference
between predictions by outcome. The c statistic is also linearly related to Somers’
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D statistic (c = D/2 + 0.5). Recently proposed measures for reclassification have
many links to more traditional measures [428, 429].

From a simple statistical perspective, we want a small distance between observed
outcome y and predicted outcome ŷ. Explained variation (R2) can be used to
indicate performance, and quantifies the predictability of the outcome: how much
do we know already about the phenomena that lead to the outcome [491]?
Diagnostic prediction models would hence be expected to have higher R2 than
prognostic models with long-term outcome. Indeed, prognostic models usually only
have R2 around 20–30%. This indicates that substantial uncertainty remains at the
individual level; we can only provide probabilities, and we are far away from
providing certainty on the individual outcome [13, 150].

We have focused on measures that are in wide use in medical research nowa-
days, including the concordance statistic (c, or area under the ROC curve, AUC) for
discrimination, and various tests for calibration and goodness-of-fit. We gave some
attention to Lorenz curves, although these are not often used; we did not discuss
predictiveness curves, which provide useful insight in some applications [432]. The
c statistic has been criticized by some, and should not be the only criterion in
assessment of model performance. Especially, c is considered to be rather insen-
sitive to inclusion of additional predictors in prediction models, such as novel
biomarkers [107, 426]. Our theoretical examples and case study show that the
c statistic is a key measure; it is closely related to other performance measures such
as R2 and Brier score [434]. Improvements in model fit will also show improve-
ments in c statistic.

In principle, we might focus our modeling strategy on optimizing performance
measures such as the c statistic. Indeed, estimation algorithms have been described
that maximize the c statistic rather than the log likelihood [431].

Compared to current practice, calibration should receive more attention, espe-
cially when externally validating prediction models [103]. The recalibration test and
its components (calibration-in-the-large and calibration slope, with recalibration
parameters a and b) should be used routinely in performance assessment at external
validation of prediction models.

15.4.1 Bibliographic Notes

The framework of a recalibration model was already proposed by Cox [114], and
has been supported by many other researchers for evaluation of model performance
[109, 225, 379, 380, 626]. Nice illustrations of diagnostic test evaluation with ROC
curves are available at: http://www.anaesthetist.com/mnm/stats/roc/ and illustra-
tions of Lorenz curves and the Gini index are at: http://en.wikipedia.org/wiki/Gini_
coefficient.
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Questions

15:1 Overall performance measures
Overall performance measures for logistic regression models include Brier
score and R2 type of measures, such as Nagelkerke’s R2.

(a) What values can Brier scores and R2 take?
(b) What types of scoring rule are Brier and R2?
(c) What are disadvantages of Brier and R2?

15:2 Lorenz curve and incidence
In a Lorenz curve, the visual impression of a model with a c statistic of 0.80
depends on the incidence of the outcome.

(a) What happens when a Lorenz curve is made for situation with 1%
incidence, such as a screening setting?

(b) And what for 99% incidence?

15:3 Interpretation of validation graphs
The validity of predictions can well be judged graphically. How do you
judge

(a) calibration-in-the-large?
(b) calibration slope?
(c) discrimination?

15:4 Relations between calibration, discrimination, and overall performance
Explain the differences and the relation between calibration, discrimination,
and overall performance measures.
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Chapter 16
Evaluation of Clinical Usefulness

Background Performance measures such as discrimination and calibration con-
sider the full range of risk predictions. We may also want to know whether a
prediction model is useful to support medical decision-making: is the model ben-
eficial to guide selection of subjects for screening, for diagnostic work-up, or
decision-making on therapy? For such decisions, we need a cutoff for the predicted
probability (“decision threshold”, or “classification cutoff”, see Chap. 2). Patients
with predictions above the cutoff are classified as positive; those under the cutoff as
negative. We will use the term “clinical usefulness” for a model’s ability to make
such classifications better than a default policy without the prediction model.

We consider performance measures for classification from a decision-analytic
perspective and discuss their relations with performance measures as discussed in
the previous chapter. Finally, we discuss study designs for measuring the actual
impact of decision rules in clinical practice.

16.1 Clinical Usefulness

In the previous chapter, we saw that the distance between the predicted outcome
and actual outcome (y – ŷ) is central to quantify overall model performance for
regression models [231]. For classification, we replace ŷ by a binary classifier, such
that we classify subjects as positive or negative. The distance y – ŷ is 0 for a correct
classification and 1 for an incorrect classification. It can be summarized in the error
rate (mean(misclassifications)).

A critical issue is the choice of cutoff to classify subjects as positive or negative.
The cutoff is set to 50% as a default in some statistical packages. This implies that
false-positive and false-negative classifications are equally important, which may be
considered “absurd” in medical prediction problems [205]. Missing a patient with
the event (a diagnosis or poor prognostic outcome) is usually more important than
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incorrect classification of a patient without the outcome; false-negative errors are
more important than false-positive errors. This implies a threshold below 50%. We
will consider informal and formal approaches to determining the optimal cutoff
below.

The optimal cutoff is defined by the decision context, not by statistical criteria.
Once a cutoff is chosen, clinical usefulness measures can be defined. These should
consider the relative weight of false-positive and false-negative classifications, e.g.,
in a kind of weighted error rate [642]. A further approach is to study model
performance over the whole range of possible cutoffs, as is done with the receiver
operating characteristic (ROC) curve, but now for a “decision curve” [608, 648].

16.1.1 Intuitive Approach to the Cutoff

We consider two situations: treatment for bacterial meningitis and abandoning
treatment for patients with traumatic brain injury. Bacterial meningitis is a severe
infectious disease, with usually good outcome when treated early with antibiotics,
but poor outcome when not treated in time. Several prediction models have been
developed to predict the diagnosis “bacterial meningitis” among patients presenting
at the emergency ward. If the probabilities from such models are used for
decision-making, we should use a rather low cutoff, such as not to miss bacterial
meningitis cases.

Several prediction models have been developed for patients with traumatic brain
injury. If presenting characteristics are dismal (e.g., high age, severe trauma, poor
remaining brain function), the risk of a poor long-term outcome is high. Some
researchers have tried to define patients who should not be treated because of very
high risk of poor outcome. The cutoff was set close to 100%, since we only want to
refrain from treatment in case of near certainty of a poor outcome.

16.1.2 Decision-Analytic Approach: Benefit Versus Harm

The cutoff for treatment against no treatment can formally be defined with a
decision-analytic approach (Table 16.1) [648]. The loss (or “costs” in a broad
sense) can include patient outcomes (mortality, morbidity, quality of life) as well as
economic costs (including diagnostic work-up, therapeutic interventions, admission
costs, costs of follow-up, etc.).

Table 16.1 Costs of
classification of subjects
according to a decision
threshold (“cutoff”)

Event No event

Treatment: Risk >= cutoff cTP cFP

No treatment: Risk < cutoff cFN cTN

cTP and cFP: costs of True- and False-Positive classifications
cFN and cTN: costs of False- and True-Negative classifications,
respectively
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We focus on two groups of subjects: those with the event if not treated, and those
without the event if not treated. In the first group, the costs relate to undertreatment
(false-negative classifications), in the second group to overtreatment (false-positive
classifications). In the first group, the costs of these false-negative classifications are
referred to as cFN in Table 16.1. These should be compared to the costs of
true-positive classifications (cTP); the difference cFN – cTP is the benefit of
treatment for those who would have the event without treatment.

In the second group, relevant costs are for those without the event if not treated,
who are treated (“overtreated”). The costs of these false-positive classifications
(cFP) should be compared to the costs of true-negative classifications (cTN); the
difference cFP – cTN is the harm of overtreatment for those who would not have the
event anyway.

Specifying a mathematical loss function leads to a simple definition for the
optimal decision threshold: the (odds of the) cutoff corresponds to the relative
weight of harm versus benefit [172, 420]. Patients with probabilities above the
threshold should be treated, those below the threshold not.

Odds(cutoff) = (cFP – cTN)/(cFN – cTP), where cTP and cFP refer to costs of
True- and False-Positive classifications, and cFN and cTN to costs of False- and
True-Negative classifications, respectively. Equivalently, we can write: Odds
(cutoff) = Harm/Benefit.

• Benefit occurs for those with the event when not treated (cFN – cTP); it relates
to the correct treatment of those with the event of interest.

• Harm occurs for those without the event when not treated (cFP – cTN); it relates
to the unnecessary treatment of those without the event.

So, we note that only the differences between treated and non-treated situations
are relevant to decision-making.

16.1.3 Accuracy Measures for Clinical Usefulness

If benefit and harm are weighted equally, the odds of the threshold is 1:1, or a
threshold probability of 50%. This cutoff is by default considered in the calculation
of the error rate, which is defined as (FN + FP)/N (Table 16.2). The complement is
the accuracy rate: (TN + TP)/N. Often FN classifications are more important than
FP classifications, which makes the accuracy rate not a sensible indicator of clinical
usefulness [205]. Other disadvantages include that the accuracy rate by definition is
high for a frequent or infrequent outcome. For example, if the average mortality is
7% after an acute MI, the accuracy is 93% when we classify all patients as
survivors.

The accuracy rate is usually calculated at the simplistic cutoff of 50%, but can
also be calculated at clinically defendable thresholds [642]. The harm-to-benefit
ratio that underpins the choice of the cutoff should then be used to calculate a
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weighted accuracy, or its complement, the weighted error rate. We can express the
TN classifications in units of the TP classifications, such that the weighted accuracy
is calculated as (TP + w TN)/n. Similarly, the weighted error rate can be calculated
as (FN + w FP)/n. These rates can also be calculated for a default policy, which
would be followed without using the prediction model. The default policy could be
“treat all” or “treat none”. The improvement that is obtained by making decisions
based on predictions from the model is the difference between the weighted
accuracy obtained with the model versus the weighted accuracy of the default
policy [642].

16.1.4 Decision Curve Analysis

In practice, it is often difficult to define the optimal threshold precisely. Difficulties
may lie at the population level, i.e., that we do not have sufficient data to quantify
harms and benefits for the typical threshold in a decision problem. Moreover, the
relative weight of harms and benefits may differ from patient to patient, necessi-
tating individual thresholds [648].

An impression of the order of magnitude of the typical threshold can usually be
obtained from clinical experts. We could consider lower and upper values for the
threshold, with a gray area in between. This approach was, for example, followed in
classifying patients with possibly indolent prostate cancer, where those with
probabilities <30% were advised to undergo surgery, and those with probabilities
>60% to undergo active surveillance [562].

It is attractive to study a range of clinically plausible decision thresholds. This
approach was worked out by Vickers and Elkin [648]. They constructed a “decision
curve”, which considers a threshold over the range 0–1. The method starts as
explained above, by noting that the threshold is directly related to the
harm-to-benefit ratio. Next, they create a plot which shows the net benefit of
treating patients according to the prediction model. The formula for net benefit goes
back to work published in 1884:

Net Benefit ¼ NB ¼ TP�wFPð Þ=n;

where TP is the number of true-positive classifications, FP the number of false-positive
classifications, w is a weight equal to the odds of the threshold (pt/(1 – pt)), or the ratio
of harm to benefit, and n is the total number of subjects [424]. The crucial issue is the

Table 16.2 Classification of
subjects according to a
decision threshold

Event No event

Treatment: Risk >= cutoff TP FP

No treatment: Risk < cutoff FN TN

TP and FP: numbers of True- and False-Positive classifications;
FN and TN: numbers of False- and True-Negative classifications,
respectively
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weight w. For example, a threshold of 10% means that w = 1/9: the FP classifications
are valued at one-ninth of a TP classification. Conversely, w = 1:4 implies a threshold
of 20%.

The net benefit (NB) of a prediction model should be compared to default
policies of “treat none” or “treat all”. Treat none means that the NB is zero (since
TP and FP are zero). The NB for “treat all” depends on the threshold and the event
rate. The NB of a well-calibrated prediction model is at the maximum when the
threshold is at the event rate. At this point, the policy “treat all” has a NB of zero, as
well as the policy “treat none”.

If the prediction model required efforts such as obtaining data from extra medical
tests that were invasive, burdensome, or costly, an extended version of the net
benefit formula can be used as given below:

NB ¼ TP � w FPð Þ=n � test harm;

where test harm is expressed per patient in units of the TP result [648].
Alternatively, we can calculate the difference in NB obtained from a test to define
the maximum test harm. This is the test trade-off: the inverse of the NB indicates the
minimum number of patients that we should be willing to undergo the test per
positive net benefit [39]. For example, if the NB is 0.01 without considering test
harm, we should accept that at least 100 patients are tested per net true positive.

The interpretation of the net benefit is in units of the true positives; how many
more patients are correctly treated (TP decisions) at the same rate of not treating
those who do not need treatment (TN decisions)? For interpretation of a decision
curve, we need to identify a range of plausible threshold probabilities for treatment
and study the benefit at all values within this range.

16.1.5 Interpreting Net Benefit in Decision Curves

We present decision curves for prediction models with increasing c statistics in
Fig. 16.1. With a c statistic of 0.5, the net benefit (NB) is identical to the strategy
“Treat all” below the decision threshold; no gain is obtained from using such a poor
decision model. With a near-perfect model (c = 0.98), the NB appears to be sub-
stantial over the whole range of thresholds from 0 to 100%. With 50% incidence,
the maximum NB is 0.5 at a threshold of 0%. “Treat all” implies 50% correct and
50% incorrect classifications at this threshold. For the 10% incidence, the maximum
NB is 0.1. The 0% threshold reflects zero weight for false-positive classifications,
which may not be realistic in most medical settings. It would always lead to a
“Treat all” strategy: there are no perceived downsides of overtreatment.

For thresholds lower than the incidence (or “event rate”), we would follow a
“Treat all” strategy by default, since this strategy provides higher net benefit than
“treat none”. By basing decisions on a prediction model, we hope to achieve higher
net benefit, which implies that some interventions (tests or treatments) are avoided.
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This is a reduction in overtreatment (less false positives), at the expense of missing
some true positives. We might therefore want to express net benefit in net fractions
of interventions avoided, so in terms of net true negatives (Fig. 16.2). We calculate
the net fraction of interventions avoided as the difference between net benefit from
the prediction model minus the net benefit of “Treat all”, since this is the natural
reference [38, 39, 608]. We weight this difference by the benefit-to-harm ratio:

Fig. 16.1 Decision curves for prediction models with increasing c statistics (range: 0.5–0.98),
based on the distributions as used in Chap. 15, for incidence (or “event rate”) 50 and 10%. We note
that the Net Benefit (NB) strongly depends on the c statistic, and that a near-perfect model
(c = 0.98) is always clinically useful. “Treat all” is associated with a positive NB for thresholds
below 50 and 10% (left and right panels, respectively); “Treat none” is dominant to “Treat all” for
thresholds above the overall incidence

Fig. 16.2 Decision curves for prediction models with increasing c statistics (range: 0.5–0.98), based
on the distributions as used in Chap. 15, for incidence 50 and 10%. We note that the fraction of Net
Interventions Avoided, or the Net Benefit expressed as true negatives, strongly depends on the
c statistic. A near-perfect model (c = 0.98) always avoids a substantial number of interventions. The
maximum is 50%with an incidence of 50% (left panel) and 90%with an incidence of 10% (right panel).
As in Fig. 16.1, “Treat none” is dominant to “Treat all” for thresholds above the overall incidence
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Net interventions avoided ¼ NB�NB ‘‘treat all00½ �ð Þ � B=H:

Weuse the benefit-to-harm ratio (B/H) rather than the harm-to-benefit ratio, or 1/w.
The fraction interventions avoided has 0% as a reference for “Treat all”. So, Fig. 16.2
is amirror image of Fig. 16.1, with a non-informativemodel being equivalent to “treat
none” above the decision threshold.

The maximum gain from using a prediction model is when the threshold is equal
to the incidence of the outcome or event rate [429]. Note that the threshold at the
event rate may not be clinically defendable [302, 608]. The default policies of “treat
all” or “treat none” both have a net benefit of zero at the event rate. Table 16.3
shows that the maximum gain is less than 0.01 at an incidence of 1%; but increases
to over 0.4 for a near-perfect prediction model in the setting of incidence 50%. Net
benefit refers here to identifying true-positive cases. If we reverse the coding the
outcome, we consider identifying the true negatives, for whom interventions can be
avoided.

16.1.6 Example: Clinical Usefulness of Prediction
in Testicular Cancer

In the testicular cancer example, the residual mass histology is classified as residual
tumor versus benign (necrosis). Malignant histology should surgically be resected,
but resection of benign tissue is harmful (risks of surgical complications, hospital
admission, costs). A decision analysis suggested a threshold of 70% for the prob-
ability of benign histology, or 30% for residual tumor [557]. This implies a ratio of
3:7 for unnecessary versus necessary surgery. The clinical relevance of resection of
residual tumor is more than twice as important as unnecessary resection of benign
tissue.

At model development, the sensitivity and specificity were 92% and 42%,
respectively, at a cutoff of 30% for the probability of tumor (Table 16.4). At ex-
ternal validation, only 23 patients had predictions below 30%. The specificity was

Table 16.3 Net benefit of
various prediction models at
decision thresholds equal to
incidences of the outcome.
The default policies of treat
all or treat none have a net
benefit of zero at these points.
Net benefit is expressed in
units of true-positive
decisions (TP)

Prediction model Incidence

c statistic 10% 50%

0.5 0 0

0.64 0.020 0.10

0.69 0.028 0.14

0.76 0.039 0.19

0.84 0.052 0.26

0.92 0.068 0.34

0.98 0.085 0.42
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lower (21%) and the sensitivity higher (96%) than at model development. The
accuracy rate was (102 + 275)/544 = 69% at development, and, remarkably,
slightly better at validation: (16 + 190)/273 = 75%. The error rates are the com-
plements of the accuracy rate (31 and 25%).

Resection of all masses leads to 299 tumor resections, but also to 245 unnec-
essary resections. This is a better choice than resection in none, since the average
probability of tumor tissue was 55%, which is above the threshold of 30%. Using
the model with a cutoff of 30% would lead to 275 necessary resections plus 102
correct omissions of resection in patients with necrosis. Missing 299 – 275 = 24
patients with tumor (FN decisions) is more than compensated by the increase in
correct omission of resection from 0 to 102 (TN decisions). The Net Benefit = (TP
– w FP)/n = (275 – 3/7 * 143)/544 = 0.393, in contrast to (299 – 3/7 * 245)/
544 = 0.357 for resection in all.

In the validation sample, resection of all masses would lead to 197 tumor
resections and 76 unnecessary resections. Using the model with a cutoff of 30%
would lead to 190 necessary resections plus 16 correct omissions of resection in
patients with necrosis. The Net Benefit = (TP – w FP)/n = (190–3/7 * 60)/
273 = 0.602, in contrast to (197 – 3/7 * 76)/273 = 0.602 for resection in all. Hence,
the model is not clinically useful in the validation setting. Put simply: sparing
resection in 16 patients with necrosis does not compensate missing tumor in 7,
when we weigh tumor as 7/3 of necrosis (Table 16.4).

16.1.7 Decision Curves for Testicular Cancer Example

Thus far, we assumed a constant utility function, i.e., a weight of 3:7 for necro-
sis:tumor, for the decision to perform surgery on a residual mass in a testicular
cancer patient. The corresponding threshold of 30% for the probability of tumor is

Table 16.4 Classification table for the development (n = 544) and validation (n = 273) sets of
testicular cancer patients at a cutoff for the risk of residual tumor of 30%. Sensitivity to detect
tumor, specificity to detect necrosis, and net benefit (NB) in units of tumors detected are calculated
for both data sets

Development (n = 544) Validation (n = 273)

Necrosis Tumor Necrosis Tumor

Prediction <30% 102 24 16 7

Prediction >= 30% 143 275 60 190

245 299 76 197

Spec = 42% Sens = 92% Spec = 21% Sens = 96%

NBmodel = 0.393 NBmodel = 0.602

NBtreat all = 0.357 NBtreat all = 0.602

Increase in NB = 0.036 Increase in NB = 0
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an average and may vary for individual patients based on their personal weighing of
surgical risks against increased chances of long-term survival [648]. Instead of a
single relative weight, we may consider a range of weights in a decision curve for
the testicular cancer prediction model (Fig. 16.3). This curve shows that the model
is clinically useful for thresholds over 20% risk of tumor in the development
sample, or harm-to-benefit ratios over 1:4; equivalent to thresholds for the proba-
bility of necrosis below 80%. In the validation sample, the model is only useful in
the range of 55–95% for the probability of tumor, confirming that the model is not
clinically useful in the validation setting when we assume a decision threshold of
30% [567]. The lines for resection in all and resection in none cross at the
prevalence of tumor histology (55% and 72%, respectively). At these points, the
model would have maximum gain in net benefit. Uncertainty can be indicated with
95% confidence intervals from a bootstrap procedure if desired [302].

We can correct the estimates of net benefit for statistical optimism by a
cross-validation procedure (Fig. 16.4). We can also plot the net benefit in units of
net unnecessary resections prevented, where we focus on not resecting patients with
benign residual masses (with necrosis, Fig. 16.4). Finally, some may prefer to
assess net benefit scaled to the event rate (standardized net benefit, Fig. 16.4) [302].

16.1.8 Verification Bias and Clinical Usefulness

The general policy is to resect residual masses if detected on CT scan. This implies
resection if the radiologist considers a lymph node as enlarged, i.e., >10 mm.

Fig. 16.3 Decision curves of predictions of tumor in patients with testicular cancer in the
development sample (n = 544) and in the validation sample (n = 273). We note that the
5-predictor model can slightly be improved in the development sample by adding the tumor
marker LDH. The 5-predictor model is not clinically useful in the validation setting around the
relevant risk threshold of 30%. The lines for resection in all and resection in none cross at the
frequencies of tumor (55% and 72%, respectively). In the validation sample, 95% confidence
intervals are based on bootstrap sampling
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Patients masses <= 10 mm are generally not considered candidates for resection,
and these patients are hence not included in our evaluations of clinical usefulness
[644]. Such verification bias affects performance measures such as sensitivity and
specificity, and also the clinical usefulness measures. The conclusion from
Fig. 16.3 is that the prediction model has limited to no clinical usefulness; hence,
we cannot easily reduce resections in those who underwent resection under current
policies. There is, however, a large group of patients who are currently not con-
sidered for resection. Among the patients with small or “normal” residual masses,
some will harbor residual tumor cells. These patients likely would benefit from
resection, while they are currently not considered candidates in most centers. An
exploratory analysis in 241 patients from a MRC/EORTC trial suggested that 84
(31%) of these might be candidates for resection, using the decision threshold of
30% risk of tumor [645]. For a full evaluation of NB, we might consider imputation
of outcomes in those not undergoing resection, if we have access to the distribution
of predictor values [122].

Fig. 16.4 Decision curves for patients with testicular cancer in the development sample
(n = 544). a Cross-validation with 10 folds; b Net benefit in terms of unnecessary resections of
necrosis prevented; the treat none line crosses at 45% for the probability of necrosis; panels c and
d show results for standardized net benefit, i.e., NB divided by event rate

318 16 Evaluation of Clinical Usefulness



16.1.9 *R Code

Classification tables can readily be calculated with the table command. Andrew
Vickers maintains a function dca for R and Stata which enables drawing decision
curves (https://www.mskcc.org/departments/epidemiology-biostatistics/
biostatistics/decision-curve-analysis). The rmda package provides many func-
tions for decision curve analysis, with or without standardization to event rate
(which makes NB similar to Relative Utility [37, 607]). Options include confidence
intervals and perform optimism correction. Examples of decision curve code are at
www.clinicalpredictionmodels.org. Key R code is shown below:

library(rmda)
# Model development
baseline.model <- decision_curve(tum ~ 

ter+preafp+prehcg+sqpost+reduc10, #fitting a logistic model
data = n544, bootstraps = 500) # bootstrap for 95% CI

set.seed(1) # for reproducibility of cross-validation in models
baseline.model.cv   <- cv_decision_curve(tum ~ 
ter+preafp+prehcg+sqpost+reduc10, data=n544, folds=10) # CV, 10 folds

LDH.model <- decision_curve(tum ~ ...+lnldhst, ...)
set.seed(1) # identical folds as above in CV
LDH.model.cv <- cv_decision_curve(tum ~ ... +lnldhst, folds=10) # CV
# Validation
val$pred <- plogis(predict(full, val)) # predict with full model, 5 
predictors
val.5pred <- decision_curve(tum ~ pred, data = val,

fitted.risk =T, bootstraps = 500) # validation with 95% CI based on B
# Plot the curves
par(mfrow=c(1,2), mar=c(4.2,4.2,3,.5), pty="m")
plot_decision_curve(list(baseline.model,LDH.model), # Basic + LDH in Dev

curve.names=c("5 predictors","plus LDH"), standardize = F, # NB
confidence.intervals=F, xlab="Risk threshold", # Change labels
cost.benefit.xlab= "Harm:Benefit Ratio", ...)

plot_decision_curve(val.5pred, curve.names=c("5 predictors"),
standardize = F, confidence.intervals=T, ...) # Basic in Val

# End plot Figure 16.3 #

# Show results with optimism correction in development setting
plot_decision_curve(list(baseline.model.cv, LDH.model.cv),

curve.names = c("CV 5 predictors", "CV plus LDH"), ...) # Fig 16.4A
# With opt-out rather than opt-in
set.seed(1)
full.cv.o   <- cv_decision_curve(tum ~ ..., ..., policy="opt-out")
set.seed(1)
LDH.model.cv.o <- cv_decision_curve(tum ~ ..., ..., policy="opt-out
plot_decision_curve(list(full.cv.o, LDH.model.cv.o),

curve.names = c("CV 5 predictors", "CV plus LDH"), 
cost.benefit.xlab = "Benefit:Harm Ratio") # Fig 16.4B

# Standardized
plot_decision_curve(list(...), standardize = T,...) # Fig 16.4C and D
# End plot Figure 16.4 #
summary(baseline.model, measure="NB") # Summary of analysis

16.1 Clinical Usefulness 319

https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis
https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/decision-curve-analysis


16.2 Discrimination, Calibration, and Clinical Usefulness

From a statistical perspective, some may argue that discrimination is the primary
criterion of a prediction model, since miscalibration can relatively easily be cor-
rected when we apply a model in a new setting. The debate on recalibration is
especially strong on the issue of assessment of incremental value, where recali-
bration may be desired if we purely focus on the value of the marker [38].
Recalibration would not be appropriate if we focus on real-life decision-making,
since we do not know about any miscalibration yet when we apply a model in
practice [330, 331]. Hence, clinical usefulness of a model in clinical practice
depends at least on the combination of discrimination and calibration. Obviously,
some discriminative ability is important for any clinical usefulness, as is clear from
the decision curves in Fig. 16.1. Some refer to c statistics over 0.7 as “acceptable”
or “modest”, over 0.8 as “good”, and over 0.9 as “excellent”. This is, however, very
problematic: it is not possible to indicate a minimum value for the c statistic to
make a model clinically useful. In addition to not considering calibration aspects,
the consequences of decisions are not considered in the c statistic.

Once the ratio of harms to benefits is used to define a clinically relevant
threshold, the distribution of predictions around this threshold is a major determi-
nant of clinical usefulness. The net benefit of a model with well-calibrated pre-
dictions is maximum if the decision threshold has the same value as the incidence of
the outcome: threshold = event rate [429]. Approximately, half of the predictions
are then above and the other half below the threshold. If nearly all predictions are
above or below the threshold, the model cannot be clinically useful.

16.2.1 Discrimination, Calibration, and Net Benefit
in the Testicular Cancer Case Study

As an example, we review the performance of the testicular cancer prediction model
according to various criteria (Table 16.5). We note that overall performance, dis-
crimination, and calibration look quite satisfactory, although predictive effects were
slightly weaker than anticipated at external validation (calibration slope 0.74). The
external validation data set was relatively small, hence providing limited power for
tests of miscalibration. The clinical usefulness measures show a less fortunate
pattern. Sensitivity is quite high but specificity is low. Hence, we can spare only
few patients with necrosis a resection. Indeed, there was no clinical usefulness at the
cutoff of 30% in the external data set. Hence, reasonable calibration and discrim-
ination are necessary but not sufficient for clinical usefulness; it is crucially
important where the threshold is located in the risk distribution. If the threshold
would be closer to the event rate, the clinical usefulness would be higher. We can
illustrate the impact of poor to good discrimination and poor to good calibration on
net benefit with a web application (Fig. 16.5).
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16.2.2 Aims of Prediction Models and Performance
Measures

Performance measures have different relevance in relation to the aim of the pre-
diction model (see also Chap. 2). As discussed above, clinical usefulness requires
considering a decision threshold, which is determined by the relative weight of
harms and benefits of a test strategy or treatment. Clinical usefulness then depends
on the combination of calibration, discrimination, and the distribution of predictions
around the decision threshold.

• One application of a model is in targeting preventive activities to certain
“high-risk” groups for efficient use of sparse resources. Discrimination is then
the primary requirement; the main issue is to reasonably order subjects
according to risk. If sparse resources are not an issue, the targeting should be
based on harm to benefit considerations, making clinical usefulness the most
relevant aspect of performance.

• If the aim is to inform or make decisions in clinical practice, calibration is an
essential requirement. Miscalibration implies that we provide biased informa-
tion, which can lead to worse decision-making than with a default policy that
ignores the model predictions (a loss in net benefit). Of course, discriminative
ability is also required, but limited discrimination will lead to a limited, but
never a negative, net benefit. Miscalibration can lead to poorer decision-making

Table 16.5 Summary of performance measures for the prediction model in testicular cancer case
study

Aspect Measure Development Validation

Overall performance R2 38% 27%

Brierscaled 28% 20%

Discrimination c statistic 0.81 0.79

Discrimination
slope

0.29 0.24

Lorenz
curve

p25 9% 13%

p75 58% 65%

Calibration Calibration-in-
the-large

– –0.03

Calibration slope 0.97*1 0.74

Test for
miscalibration

p = 1 p = 0.13

Clinical usefulness at threshold p
(tumor) = 30%

Sensitivity 92% 96%

Specificity 42% 21%

Accuracy 69% 75%

Net Benefit—
resection in all

0.39 –

0.36 = 0.03*2
0.60 −
0.60 = 0

*Internally validated measure by bootstrapping1 and cross-validation2
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than without the prediction model [606]. Further exploration of this issue is
provided in Chap. 19.

• Furthermore, prediction models may have several roles in research. In RCTs,
inclusion criteria can be according to a model, e.g., to select high-risk groups for
investigation of a new treatment. For such an application, both calibration and
discrimination are essential. Vickers et al. have described a method to determine
eligibility for an RCT-based on net benefit considerations, including the
expected effect of a treatment [649].

• Another use of prediction models is for covariate adjustment in an RCT. Then
discrimination is most important. If no strong predictors are known, covariate
adjustment has no benefit over unadjusted analysis in an RCT. Calibration is not

Fig. 16.5 Screenshot from Daan Nieboer’s ShinyApp webpage that interactively shows the
fascinating relation between calibration, discrimination, and clinical usefulness https://
dcacalibration.shinyapps.io/dcacalibration/
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an issue when covariate effects are included in a model to estimate adjusted
treatment effects.

• When a prediction model is used for confounder adjustment or case-mix
adjustment, calibration is also automatically corrected for. Confounder adjust-
ment can be achieved with various approaches, such as traditional regression
analyses including the exposure and confounders, and propensity score
adjustment. Discrimination of a model with confounders can range from low to
high values, which does not make the adjustment less or more valid. With very
high discrimination, we may even suspect that we adjust for a predictor that is
too close to the outcome that we want to analyze; hence, very high discrimi-
nation is suspicious. Similarly, a high c statistic of a propensity score does not
imply validity; it merely means that we can predict who gets treatment and who
gets not. Most relevant is that all relevant confounders are included in the
adjustment, i.e., covariates that are associated with treatment decisions and with
outcome. The latter requires subject knowledge rather than statistical criteria.

• Another goal may be to assess the clinical utility of a new marker or test [651].
In Chap. 15, we discussed the net reclassification improvement (NRI) as a
summary measure for reclassification by a marker for those with an event
(higher risk is desired) and those without an event (lower risk is desired).
The NRI can also be used for risk categorization. In the case of a binary
classification, the NRI for events is the change in sensitivity, and the NRI for
nonevents is the change in specificity. The sum is the change in Youden index,
which implicitly weights events versus nonevents by the event rate [426, 564]. It
hence falls short as measure for clinical usefulness. A weighted variant of the
NRI has been proposed (wNRI), which is consistent with the increase in Net
Benefit [427]. Decision curves are increasingly recognized as important tools to
show the incremental clinical utility over a range of clinically plausible
thresholds [608, 651].

16.2.3 Summary Points

• Discriminative ability is the primary requirement if we want to use the model to
identify a high-risk group, or use the model to perform covariate adjustment in a
randomized controlled trial.

• For informing patients and medical decision-making, calibration is the primary
requirement, which determines clinical usefulness together with discrimination
and the distribution of predictions around the decision threshold.
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16.3 From Prediction Models to Decision Rules

Prediction models provide diagnostic or prognostic probabilities. They may assist
medical decision-making without dictating to clinicians what to do precisely. One
motivation for providing probabilities only is that decision thresholds may differ
from patient to patient. Some argue, however, that prediction models will more
likely have an impact on clinical practice when clear actions are defined in relation
to the predictions [451]. They favor presentation as a decision rule rather than as a
prediction model.

Few prediction rules have undergone formal analysis to determine whether they
improve outcomes when used in clinical practice (“impact analysis”) [558]. The
clinical impact of most published prediction or decision rules is unknown.

For application as a decision rule, prediction models may require simplification
to provide clear advice on actions with high and low predictions. A decision
threshold has to be defined, either chosen informally or by formal decision analysis,

Table 16.6 Developing and evaluating clinical prediction models and decision rules [451]

Level of evidence Definitions and standards of
evaluation

Clinical implications

Level 1

Derivation of
prediction model

Identification of predictors for
multivariable model; blinded
assessment of outcomes

Needs validation and further
evaluation before using in actual
patient care

Level 2

Narrow validation of
prediction model

Assessment of predictive ability
when tested prospectively in
one setting; blinded assessment
of outcomes

Needs validation in varied
settings; may use predictions
cautiously in patients similar to
sample studied

Level 3

Broad validation of
prediction model

Assessment of predictive ability
in varied settings with wide
spectrum of patients and
physicians

Needs impact analysis; may use
predictions with confidence in
their accuracy

Level 4

Narrow impact
analysis of prediction
model used as
decision rule

Prospective demonstration in
one setting that use of decision
rule improves physicians’
decisions (quality or
cost-effectiveness of patient
care)

May use cautiously to inform
decisions in settings similar to
that studied

Level 5

Broad impact analysis
of prediction model
used as decision rule

Prospective demonstration in
varied settings that use of
decision rule improves
physicians’ decisions for wide
spectrum of patients

May use in varied settings with
confidence that its use will
benefit patient care quality or
effectiveness
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considering the relative weights of false-negative and false-positive decisions. In
some diagnostic rules, we may not want to miss any patient with the outcome of
interest (e.g., Ottawa Ankle rules [196], CT head rules [519]). This implies that we
aim for a sensitivity of 100%, and hope for reasonable specificity. We accept
false-positive classifications, since the 100% sensitivity implies an infinite cost of
false-negative classifications.

Reilly et al. have proposed a set of criteria for assessing the impact of prediction
models as decision rules (Table 16.6) [451]. These progressive evidentiary stan-
dards emphasize that a prediction model rises to the level of a decision rule only if
clinicians use its predictions to help make decisions for patients (“level 5”).

The first level of evidence is at the development of a prediction model. Reilly et al.
emphasize the model selection aspects (“Identification of predictors”) and blinded
assessment of outcomes. We have seen that overfitting and measures to prevent
overoptimistic expectations of model performance are important to consider.

Levels 2 and 3 are related to model validation, which indeed is essential before
application of a model can be recommended. Validation in multiple settings is
required to gain insight in between setting heterogeneity. If such heterogeneity is
limited, we may be somewhat confident that we can apply a model for a new setting
(see Chap. 21).

Levels 4 and 5 consider impact analysis, where a prediction model is used as a
decision rule. We assess whether the rule improves physicians’ decisions, and
ideally also whether patient outcomes improve. Prediction rules might hence con-
tribute to quality of care and better cost-effectiveness.

16.3.1 Performance of Decision Rules

Sensitivity and specificity are often used as performance criteria for a decision rule.
As discussed before, these criteria may also be used for validation of a prediction
model at certain cutoffs. Decision rules generally may improve physicians’ speci-
ficity more than sensitivity; physicians ascribe greater value to true-positive deci-
sions (provide care to patients who need it, benefit) than to true-negative decisions
(withhold care from patients who do not need it, preventing harm). This is
equivalent to weighing FN more than FP classifications, or a ratio of harm to benefit
less than 1. This implies a threshold for treatment below 50%. An important issue is
that the sensitivity and specificity of a decision rule in clinical practice is not only
influenced by the quality of the prediction model but also by the adherence of
clinicians to the rule. Validation of a prediction model may indicate the efficacy of a
rule (the maximum that can be attained with 100% adherence), while impact
analysis will indicate the effectiveness in practice.

Clinicians may choose to overrule the decision rule, which may improve sen-
sitivity and/or specificity. But overruling may also dilute the effects of the rule [75].
There may be various barriers to the clinical use of decision rules, such as skep-
ticism of guidelines (in general and with respect to the specific rule), questions on
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the clinical sensibility of the rule, too high confidence in clinical judgment, fear of
medicolegal risks, concern that important factors are not addressed by the decision
rule, concern on patient safety; and practical issues such as availability of the rule at
the time of decision-making, and ease of use.

An impact analysis should ideally be designed as an RCT [289]. Randomization
by center is an obvious approach to organizational changes such as using a decision
rule in practice. But there is a risk for contaminating intervention and control groups
and the logistic and economic challenges of multicenter studies are substantial.
Some previous evidence of impact is required, which may come from single center
evaluations. Such evaluation quantifies the actual effects of using the rule in clinical
practice, which is critical information when planning multicenter (“level 5”) studies.
The Ottawa Ankle rules provide an excellent case study for model development,
validation, and impact assessment [437, 569].

16.3.2 Treatment Benefit in Prognostic Subgroups

Prediction models may indicate subgroups of patients with a poor prognosis, often
suggesting that these patients may need more aggressive treatment. Note that this
assumes a curative intend. In contrast, in oncology, palliative treatments are gen-
erally considered when cure is not possible, and more aggressive treatment may do
more harm than good. Prediction models may also define good prognosis groups,
where less intensive treatment may be sufficient. For example, the International
Germ Cell Classification proposed a distinction in good, intermediate, and poor
prognosis groups [4]. In this clinical area, several RCTs have been performed. More
aggressive treatment was studied in “poor risk” patients (e.g., high dose instead of
standard dose chemotherapy), and less intensive therapy in “good prognosis”
patients (e.g., three instead of four cycles of cisplatin-based chemotherapy).

16.3.3 Evaluation of Classification Systems

New classification systems will come up which include genetic profiles or other
novel biomarkers. Systematic studies are required to validate these new systems,
and provide evidence on any treatment benefits in subgroups as indicated by such
new classification systems. For example, the MINDACT [88] and TAILORx [524]
trials evaluated a genetic profile to indicate which women with early-stage breast
cancer might benefit from chemotherapy. For efficient design, the MINDACT trial
focused on the patients whose risk classification was discordant between the genetic
profile and the traditional classification with clinical–pathological information only.
Women who were determined to be at high risk for relapse of breast cancer by both
the genetic profile and traditional clinical pathological criteria received
chemotherapy, as is current standard practice. Those who were low risk by both
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criteria did not receive chemotherapy. However, the women who were determined
to be at high risk for distant relapse by one criterion and low risk by the other were
randomly assigned to one of two arms. Such as study is important for the evaluation
of treatment benefit, but also validates the prognostic model by comparing out-
comes between various prognostic groups under standard treatment. The design of
trials of markers in oncology is discussed in more detail elsewhere [483].

A limitation of this design is that differences between groups may be small,
leading to large sample sizes requirements. Indeed, the MINDACT trial was
eventually found to be underpowered to provide reliable answers to regulators on
the exclusion of benefit of chemotherapy [88]. Moreover, the prognostic value of a
classification can usually well be determined in observational data, e.g., in a
prospective validation study. The definition of low- and high-risk groups should
relate to the expected benefits and harms. In the case of early breast cancer, the
benefits of chemotherapy may be relatively small, casting doubt on the choice of
the threshold for what is considered “high risk” [88]. In contrast, the TAILORx trial
considered benefit of chemotherapy across a continuous risk score, which allows
for a more refined assessment of which women with early breast cancer should be
treated with chemotherapy [524].

16.4 Concluding Remarks

In this chapter, we have discussed measures for clinical usefulness of prediction
models. We should not naively calculate error rates (or accuracy), with implicit
equal weighing of false-positive and false-negative classifications. We noted that
the c statistic was not sufficient to indicate clinical usefulness, although a low
c statistic made it unlikely that a model was clinically useful. Good calibration was
required, and the distribution of predictions had to be on both sides of the decision
threshold. Usefulness is high for a perfectly calibrated model, with a substantial
c statistic, in a clinical problem where the decision threshold is equal to the event
rate [429]. A further discussion follows in Chap. 19.

Note that the determination of the decision threshold is fully independent from
developing and validating the prediction model. The threshold is determined by
clinical context. It should ideally be based on a formal weighting of harms and
benefit of a treatment, compared to the alternatives of no treatment and treatment for
all. Clinical usefulness is hence context dependent, and not in the hands of the
modeler [302, 608, 651]. Impact of a prediction model as a decision rule is one
further step in the evaluation [250, 451].

Compared to current practice, calibration should receive more attention when
evaluating prediction models. The recalibration test and its components (calibration-
in-the-large and calibration slope) should be used routinely in performance assess-
ment in external data. We note that measures of clinical usefulness are increasingly
being considered [608]. Decision curves are promising tools by providing simple
graphs to summarize a model’s quality for a range of plausible decision thresholds.
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Questions

16:1 Calculation of Net Benefit (Sect. 16.1.5).

Net Benefit is defined as: NB = (TP – w FP)/n, where TP means a
true-positive classification, FP false-positive classification, w the
harm-to-benefit ratio, and n the sample size.
(a) What is the NB if we classify all subjects as positive, in a setting of

50% incidence of the outcome, and a relative weight of FP classifi-
cations as 1:1?

(b) And what if the relative weight of FP classifications is 1:2?
(c) Recalculate the sensitivity, specificity, accuracy, and net benefit for

the 273 validation patients in Table 16.4.

16:2 Decision curves (Fig. 16.1).

(a) Why is the “Treat all” strategy in Fig. 16.1 associated with a negative
NB for thresholds over 50%?

(b) What will happen to the decision curves when a lower incidence than
50% is considered? Or a higher incidence?

16:3 Verification bias (Sect. 16.1.8).

What is verification bias? How does it affect clinical usefulness, e.g., in the
right panel of Fig. 16.2?

16:4 Usefulness for decision-making versus research purposes.

When would you consider a model clinically useful? And when useful for
research?

16:5. Critical reflection on an Editorial.

Consider the Editorial in JNCI on discrimination, calibration, and interpre-
tation of risks [150].
(a) What is wrong in Fig. 2? Compare to Fig. 16.5 (https://dcacalibration.

shinyapps.io/dcacalibration/).
(b) What is the decision threshold for this problem? What is the basis for this

threshold?
(c) How clinically useful is the Gail model with this threshold, according to

Net Benefit?
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Chapter 17
Validation of Prediction Models

Background A prediction model should provide valid outcome predictions for
new patients. Essentially, the data set to develop a model is not of interest other than
to learn for the future. Validation, hence, is an important aspect of the process of
predictive modeling. An important distinction is between apparent, internal and
external validation. In this chapter, we focus on internal and external validation
techniques, with illustrations in case studies.

17.1 Internal Versus External Validation, and Validity

A general framework for validation and validity concepts is shown in Fig. 17.1. We
develop a model within a sample of patients that is representative for an underlying
population. This underlying population has specific characteristics, e.g., a specific
hospital with a certain profile of how patients come to this hospital. By necessity,
the sample is historic in nature, although we generally will aim for recent data,
which are representative of current practice. At least we should determine the
internal validity (or “reproducibility” [285]) of our predictive model for this
underlying population. We do so by testing the model in our development sample
(“internal validation”). Internal validation is the process of determining internal
validity. Internal validation assesses validity for the setting where the development
data originated from.

A further aspect is the external validity (or “generalizability”/“transportability”)
of the prediction model to populations that are “plausibly related” [285].
Generalizability is a desired property from both a scientific and practical perspec-
tive. Scientifically speaking hypotheses and theories are stronger when their gen-
eralizability is larger. Practically, we hope to be able to validly apply a prediction
model to our specific setting, that may be different in some respects from the model
development setting. To know whether such application is reasonable, external
validity needs to have been assessed for a setting similar to that for the intended
application and the performance needs to have been found adequate. If no

© Springer Nature Switzerland AG 2019
E. W. Steyerberg, Clinical Prediction Models, Statistics for Biology
and Health, https://doi.org/10.1007/978-3-030-16399-0_17

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16399-0_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16399-0_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16399-0_17&amp;domain=pdf
https://doi.org/10.1007/978-3-030-16399-0_17


validation results are available for the setting, or setting similar to where the model
will be applied, such application is essentially a leap of faith. Alternatively, vali-
dation may have been performed and have suggested ways for model updating
(Chaps. 20 and 21).

The definition of “plausibly related” populations is not self-evident. It requires
subject knowledge and expert judgment on epidemiological study design aspects
[130]. We define “plausibly related” as that populations can be thought of as parts
of a “superpopulation” (Fig. 17.1). We could also state that we consider popula-
tions that would be reasonable to apply the previously developed model.
Populations will be slightly different, e.g., treated at different hospitals or in dif-
ferent time frames. Various aspects may differ between these populations, e.g., the
selection of patients (e.g., referral center versus more standard setting, or primary
care versus secondary care, severity of disease), and definitions of predictors and
outcome. Also, the degree of measurement error may differ between settings [355].

For example, a superpopulation could be formed by “patients with an acute MI”.
The GUSTO-I trial would represent a subpopulation, defined by the inclusion
criteria for this trial, the participating centers, and the time of accrual. We can think
of further subpopulations within the trial, defined by regions, countries, and
centers [536].

17.1.1 Assessment of Internal and External Validity

We learn about external validity by testing the model in samples from other settings
than the model development setting (sample 2 to i in Fig. 17.1, “external valida-
tion”). These samples are fully independent from the development data. The more
often the model is externally validated and the more diverse these settings, the more

Fig. 17.1 A conceptual framework on internal versus external validation, and validity. We
consider a superpopulation, consisting of several subpopulations (referred to as “settings”). We
develop a model in sample 1 from setting 1. Internal validation is the process of determining
internal validity for setting 1. External validation is the process of determining generalizability to
settings 2 to i
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we learn about the generalizability of the model. This is similar to the approach to
assessing any scientific hypothesis [285].

In the case of prediction models, we may often find that the baseline risk differs
across settings. One example was the validation of the nomogram for prediction of
indolent cancer [562]. This model was developed for a clinical setting, with an
overall probability of indolent cancer of 20%. Validation was in a screening setting
with 50% probability of indolent cancer. This difference in baseline risk could not
be explained by differences in predictors. If we have multiple validation studies, we
can better quantify the heterogeneity in baseline risk and in predictor effects
between validation settings [457].

17.2 Internal Validation Techniques

Several techniques can be used to assess internal validity. Some of the most
common in medical research are discussed here (Table 17.1).

17.2.1 Apparent Validation

With apparent validation, model performance is assessed directly in the sample
where it was derived from (Fig. 17.2). Naturally, this leads to an optimistic estimate
of performance, since model parameters were optimized for the sample. However,

Table 17.1 Overview of characteristics of some techniques for internal validation

Method Development Validation

Apparent Original 100% Original 100%

Split-sample 50–67% of original Independent 50–33%

Cross-validationa

Classical 2 � 50% to 10 � 90% of original Independent 2 � 50% to 10 � 10%

Jack-knife n � (n – 1 of original) Independent n � 1 patient

Bootstrap Bootstrap sample of size n Original 100%
aMore stable cross-validation results are obtained by repeating the cross-validation many times,
e.g., 10 times (“multi-fold cross-validation”, 10 � 10 fold cross-validation)

Fig. 17.2 Apparent
validation refers to assessing
model performance in the
sample where the model was
derived from
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we use 100% of the available data to develop the model, and 100% of the data to
test the model. Hence, the procedure gives optimistic but rather stable estimates of
performance.

17.2.2 Split-Sample Validation

With split-sample validation, the sample is randomly divided into two groups. This
very classical approach is similar to the design of an external validation study,
where subjects are fully independent from the development study. However, the
split in derivation and test set is at random in split-sample validation. In one group
the model is created (e.g., 50% of the data) and in the other, the model performance
is evaluated (e.g., the other 50% of the data, Fig. 17.3). Typical splits are as 50:50,
or 2:1 [13].

Several aspects need attention with respect to split-sample validation. If samples
are split fully at random, substantial imbalances may occur with respect to the
distribution of predictors and the outcome. For example, if we perform split-sample
validation with a small subsample from GUSTO-I (n = 429), the average incidence
of 30-day mortality is 5.6% (24/429), but it may easily be 4% in a 50% random part
and 7% in another part. Similarly, the distribution of predictors may vary. For
predictors with skewed distributions, the consequences may be even worse. For
example, a random development sample may not contain any patient with shock
which occurred in only 1.6% (7/429). A practical possibility is to stratify the
random sampling by outcome and relevant predictors.

The drawbacks of split-sample methods are numerous [225, 382, 533]. One
major objection is related to variance. Only part of the data is used for model
development, leading to less stable model results compared to development with all
development data. Also, the validation part is relatively small, leading to unreliable
assessment of model performance. Further, the investigator may be unlucky in the
split; the model may show a very poor performance in the random validation part. It
is not more than human that the investigator is tempted to repeat the splitting
process until more favorable results are found. Another objection is related to bias.
We obtain an assessment of the performance when a part of the data is used, while
we want to know the performance of a model based on the full sample.

In sum, split-sample validation is a classical but inefficient approach to model
validation. It dates from the time before efficient but computer-intensive methods
were available, such as bootstrapping [148]. Simulation studies have shown that
rather large sample sizes are required to make split-sample validation reasonable
[547]. But with large samples, the apparent validity is already a good indicator of
model performance. Hence, we may conclude that split-sample validation is a
method “that works when we do not need it” [533, 546]. It should be replaced in
medical research by more efficient internal validation techniques, and by approa-
ches to assess external validity.
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17.2.3 Cross-Validation

Cross-validation is an extension of split-sample validation, aiming for more stability
(Fig. 17.4). A prediction model is tested on a random part (a fold) that was left out
from the sample. The model is developed in the remaining part of the sample. This
process is repeated for consecutive fractions of patients. For example, the data set
may be split by deciles to create groups containing 1/10th of the patients each, with
model development in 9 of the 10 and testing in 1 of the 10. This is repeated 10
times (“10-fold cross-validation”). In this way, all patients have served once to test
the model. The performance may be estimated as the average over all assessments
[225]. A more elegant solution is to estimate the performance in one round for all
left out folds. The predictions for each fold were then each time based on the
remainder of the sample.

Compared to split-sample validation, cross-validation can use a larger part of the
sample for model development (e.g., 90%). This is an advantage. However, the whole
cross-validation procedure may need to be repeated several times to obtain truly stable
results, for example, 10 times 10-fold cross-validation. The most extreme
cross-validation is to leave out each patient once, which is equivalent to the jack-knife
procedure [148]. With large numbers of patients, this procedure is not very efficient.

A limitation of cross-validation is that the procedure may not properly reflect all
sources of model uncertainty, such as the model instability caused by automated
variable selection methods. An example is at www.clinicalpredictionmodels.org,
where we consider the stability of a backward stepwise selection procedure in the
large subsample from GUSTO-I (sample 4, n = 785, 52 deaths). A 10-fold
cross-validation procedure suggests a quite stable selection of “important predic-
tors”: SHO, A65, HIG, and HRT. In contrast, bootstrapping shows a much wider

Fig. 17.3 Split-sample
validation refers to assessing
model performance in a 50%
random part of the sample,
with model development in
the other 50%

Fig. 17.4 Cross-validation
refers to assessing model
performance consecutively in
a random part of the sample,
with model development in
the other parts. With 10-fold
cross-validation, 10 parts with
1/10 of the sample serve as
validation parts
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variability. The underestimation of variability is easily recognized for jack-knife
cross-validation, where the development sample is identical to the full sample
except for 1 patient. Hence, largely the same predictors will generally be selected in
each jack-knife sample as in the full sample. Such model uncertainty can better be
captured with bootstrap validation.

17.2.4 Bootstrap Validation

As discussed in Chap. 5, bootstrapping reflects the process of sampling from the
underlying population (Fig. 17.5). Bootstrap samples are drawn with replacement
from the original sample, reflecting the drawing of samples from an underlying
population. Bootstrap samples are of the same size as the original sample [148]. In
the context of model validation, 200 bootstraps may often be sufficient to obtain
stable estimates, but in one simulation study, we reached a plateau only after 500
bootstrap repetitions [535]. With current computer power, bootstrap validation is a
feasible technique for most prediction problems with at least 500 repetitions.

For bootstrap validation a prediction model is developed in each bootstrap
sample. This model is evaluated both in the bootstrap sample and in the original
sample. The first reflects apparent validation, the second reflects validation in new
subjects. The difference in performance indicates the optimism. This optimism is
subtracted from the apparent performance of the original model in the original
sample [148, 225, 542, 547]. The bootstrap was illustrated for estimation of opti-
mism in Chap. 5.

Advantages of bootstrap validation are various. The optimism-corrected per-
formance estimate is rather stable, since samples of size n are used to develop the
model as well as to test the model. This is similar to apparent validation, and an
advantage over split-sample and cross-validation methods. Compared to apparent
validation, some uncertainty is added by having to estimate the optimism. When
sufficient bootstraps are taken, say at least 500 repetitions, this additional uncer-
tainty is small beyond the uncertainty that is inherent to analyzing a small sample.

Importantly, simulations have shown that bootstrap validation can appropriately
reflect all sources of model uncertainty, especially variable selection [535].

Fig. 17.5 Bootstrap
validation refers to assessing
model performance in the
original sample for a model
(Model 1*) that was
developed in a bootstrap
sample (Sample 1*), drawn
with replacement from the
original sample
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The bootstrap also seems to work reasonably well in high-dimensional settings of
genetic markers, where the number of potential predictors is larger than the number
of patients (“p > n problems”), although some modifications may need to be
considered [494].

Disadvantages of bootstrap validation, and other resampling methods such as
cross-validation, include that only automated modeling strategies can be used, such
as fitting a full model without selection, or following an automated stepwise
selection approach. In many analyses, intermediate steps are made, such as col-
lapsing categories of variables, truncation of outliers or omission of influential
observations, assessing linearity visually in a plot, testing some interaction terms,
studying both univariate and multivariable p-values, or assessing proportionality of
hazards for a Cox regression model. It may be difficult to repeat all these steps in a
bootstrap procedure. In such situations, it may be reasonable to at least validate the
full model containing all predictors to obtain a first impression of the optimism
[225]. For example, when we consider 30 candidate predictors, and build a final
model with predictors that have multivariable p < 0.20 in a backward stepwise
selection procedure, after univariate screening with, e.g., p < 0.50, the optimism
can be approximated by validating the full 30-predictor model. Another reasonable
approximation for the optimism in this example may be to simply perform back-
ward stepwise selection with p < 0.20, ignoring the univariate screening. We would
definitely be cheating if we validated the finally selected model and ignored all
selection steps. In one study, we found an optimism estimate of 0.07 for the
c statistic when we replayed all modeling steps (based on univariate and multi-
variable p-values) in contrast to only 0.01 when we considered the final model as
predefined [535].

17.2.5 Internal Validation Combined with Imputation

As discussed in Chaps. 7 and 8, missing values may be imputed multiple times to
allow for optimal statistical analysis. It is not immediately clear how internal val-
idation, such as cross-validation or bootstrapping, should be combined with such
multiple imputation (MI) [493, 641]. For validation of model performance, it has
been proposed to distinguish between ideal model performance and pragmatic
model performance [677]. The first refers to the model’s performance in a future
clinical setting without missing values in predictors. The latter refers to the model’s
performance in a real-world clinical setting where some individuals have missing
predictors. We focus on assessing the ideal model performance. Pragmatic model
performance may be assessed for example by a set of partial prediction models
constructed for each potential observed pattern of predictors: submodels [167].
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We can think of two main approaches when using multiple imputation (MI):

(1) M imputed data sets are created and bootstrapping is applied to each of them;
(2) B bootstrap samples of the original data set (including missing values) are

drawn and in each of these samples the data are (multiply) imputed.

Approach 1 is computationally simpler than approach 2, since imputation takes
more computer time than bootstrap cross-validation. An attractive variant of
approach 2 might be to do only 1 imputation per bootstrap sample [74]. Approaches
1 and 2 have been applied and compared for issues such as estimation of 95%
confidence intervals of predictors and variable selection [244, 669, 678]. It appears
that we may well follow approach 1 (bootstrap within imputed sets) to estimate
model performance for a future setting with complete data [677]. The
optimism-corrected estimates are derived per imputed data set and subsequently
pooled to give an overall estimate for the expected model performance. A detailed
case study is provided in Chap. 23.

17.3 External Validation Studies

External validation of models is essential to assess general applicability of a pre-
diction model. Where internal validation techniques are all characterized by random
splitting of development and test samples, external validation considers patients that
differ in some respect from the development patients (Fig. 17.1). External valida-
tion studies may address aspects of historic (or temporal), geographical (or spatial),
methodological and spectrum transportability [285]. Temporal transportability
refers to performance when a model is tested in different historical periods.
Especially relevant is a model’s validity in more recently treated patients.
Geographic transportability refers to testing in patients from other places, e.g., other
hospitals or other regions. Methodological transportability refers to testing with data
collected by using alternative methods, e.g., when comorbidity data are collected
from claims data rather than from patients’ charts. Spectrum transportability refers
to testing in patients who are, on average, more (or less) advanced in their disease
process, or who have a somewhat different disease [285]. Spectrum transportability
is relevant when models are developed in secondary care and validated in primary
care, or models developed in randomized trials are validated in broader, less
selected samples.

In addition to these aspects, we may consider whether external validation was
performed by the same investigators who developed the model, or by investigators
not involved at the development stage [513]. If model performance is found ade-
quate by fully independent investigators, in their specific setting, this is more
convincing than when this result was found by investigators who also developed the
model.

A simple distinction in types of external validation studies is shown in
Table 17.2: temporal validation (validation in more recent patients), geographic
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validation (validation in other places), and fully independent validation (by other
investigators at other sites). Mixed forms of these types can occur in practice. For
example, we validated a testicular cancer prediction model in 172 patients: 100
more recently treated patients from hospitals that participated in the model devel-
opment phase and 72 from a hospital not included among the development centers
[545].

17.3.1 Temporal Validation

With temporal validation, we typically validate a model in more recently treated
patients. A straightforward approach is to split the development data into two parts:
one part containing early treated patients to develop the model and another part
containing the most recently treated patients to assess the performance. Note that
this is a non-random split.

17.3.2 *Example: Validation of a Model for Lynch
Syndrome

We aimed to predict the prevalence of Lynch-syndrome-related genetic defects
(MLH1 or MSH2 mutations) based in proband and relative characteristics (“family
history”). Predictors included type of cancer diagnosis, age, and number of affected
relatives. We developed a model with 898 patients who were tested between 2000
and 2003. This model was tested in a validation sample containing 1016 patients
who were tested between 2003 and 2004 [40, 534].

In the validation sample, the outcome definition was slightly different, since not
only mutations but also deletions of genes were assessed. This may have con-
tributed to the slightly higher prevalence of mutations (15% at validation versus
14% at development), while the case-mix remained similar (mean predicted prob-
ability for validation sample 13%). This difference in prevalence may easily be
adjusted for by using a slightly higher intercept in the logistic regression model
(+0.25). The effects of the predictors were similar in the development and validation
samples. Also, the discriminative ability remained at a similar level as at devel-
opment with c statistic around 0.80.

Table 17.2 Types of external validation studies [285]

Method Characteristics

Temporal validation Prospective testing, more recent patients

Geographic validation Multisite testing

Fully independent validation Other investigators at other site(s)
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The good performance at external validation may not be too surprising given that
definitions of predictors were exactly the same. For the final model, both data sets
were combined, such that 1914 patients were analyzed. This leads to more stable
estimation of the effects of the predictors [40]. Later on, more validations were
performed, including an international validation across multiple cohorts, including
population-based and clinic-based cohorts [290] (Table 17.3).

Table 17.3 Multivariable logistic regression analysis for the PREMM model for Lynch syndrome
prediction. Effects of predictors are shown for the development (n = 898) and validation
(n = 1016) patients (OR, odds ratio), as well as in the combined data set (n = 1914) used for
estimation of the final prediction model. Model performance includes assessment of discrimination
and calibration

Development,
n = 898

Validation,
n = 1016

Combined,
n = 1914

Predictors OR [95% CI] OR [95% CI] OR [95% CI]

Proband

CRC 1 2.2 [1.9–2.5] 7.0 [6.0–8.1] 3.8 [3.6–4.1]

CRC 2+ 8.2 [5.6–12] 37 [25–55] 16 [14–20]

Adenoma 1.8 [1.5–2.2] 1.5 [1.2–1.7] 1.5 [1.4–1.6]

Endometrial cancer 2.5 [2.1–3.1] 7.1 [6.1–8.2] 4.2 [3.9–4.6]

Other HNPCC cancer 2.1 [1.7–2.5] 1.4 [1.1–1.8] 1.8 [1.6–2.0]

Family history

CRC in first/second degreea 2.3 [2.1–2.5] 3.0 [2.8–3.3] 2.6 [2.5–2.7]

CRC 2 in first degree 3.1 [2.6–3.6] 4.2 [3.6–4.8] 3.6 [3.4–3.8]

Endometrial cancer first/
second degreea

2.7 [2.4–3.2] 2.7 [2.3–3.1] 2.6 [2.4–2.8]

Endometrial cancer 2 in first
degree

6.5 [1.8–24] 26 [6.0–113] 12 [6.3–23]

Other HNPCC cancer 1.5 [1.4–1.7] 1.4 [1.4–1.6] 1.5 [1.4–1.6]

Age at diagnosis

CRCb 1.5 [1.5–1.5] 1.4 [1.4–1.4] 1.4 [1.4–1.4]

Endometrial cancerc 1.3 [1.2–1.4] 1.4 [1.3–1.4] 1.3 [1.3–1.4]

Model performance

c statistic 0.79 [0.76–0.83]d 0.80 [0.76–0.84]e 0.80 [0.77–0.83]d

Mean observed versus
predicted

14% versus 14% 15% versus 13%e 15% versus 15%

Calibration slope 0.85d 1.26 [1.03–1.49]e 0.94d

aFamily history coded as first-degree + 0.5 second-degree relatives, with first-degree relatives
coded as 0 or 1 and second-degree relatives coded as 0, 1, 2+
bAge effect for colorectal cancer and/or adenoma in probands, and colorectal cancer in first- and
second-degree relatives
cAge effect for endometrial cancer in probands, in first-degree and in second-degree relatives
dInternal validation by bootstrapping for c statistic and calibration slope
eExternal validation for c statistic, mean observed and predicted probabilities, and calibration slope
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17.3.3 Geographic Validation

With geographic validation, we evaluate a predictive model according to site or
hospital. Geographic validation can be seen as a variant of cross-validation. It could
be labeled “leave-one-center-out cross-validation” [546]. Importantly, standard
cross-validation makes splits in the data at random; with geographic validation the
splits are not at random. Some examples are shown in Table 17.4. Geographic
validation is often possible with collaborative studies, and more meaningful than a
standard cross-validation procedure [473].

A drawback of such geographical validations is that validation samples may get
quite small, leading to unreliable results. Setting-specific results should not be
overinterpreted, for example, as showing that “the model was not valid for hospital
X”, or for “cohort #4” in an individual patients data meta-analysis [457]. For
example, in the testicular cancer case study, we found overall adequate calibration
for patients treated in each of the participating studies (Fig. 17.6) [645]. The overall
intercept may have been too low for study #6 however. Note that we perform
multiple, small, subgroup analyses, with multiple testing. Emphasis should be on
quantifying the amount of heterogeneity beyond chance [30, 31, 457]. Differences
between settings will always seem to be present with small numbers (Chap. 21). On
the other hand, remarkable findings for a specific setting may indicate a need for
further validation and updating before applying the model in this setting (see
Chap. 20) and trigger further research.

17.3.4 Fully Independent Validation

Finally, we discuss external validation by independent investigators (“fully inde-
pendent validation”). Other investigators may use slightly different definitions of
predictors, outcome, and study patients that were differently selected compared to
the development setting. An example of that is a prostate cancer model developed
for clinically seen patients and validated in patients selected by a systematic
screening program (European Study on Prostate Cancer, ERSPC) [562]. Here,

Table 17.4 Examples of studies with external validation according to site (“leave-one-center-out
cross-validation”)

Model Development Validation Site

Testicular
cancer [551]

6 � 5
groups

6 � 1
group

A group consisted of a single hospital or a
previously published patient series

Chlamydia
trachomatis
[192]

4 � 3
regions

4 � 1
region

Municipality health centers organizing
regional case finding

DRASTIC
study [314]

5 � 4
hospitals

5 � 1
hospital

Large hospitals participating in an RCT+ a
category “other”
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case-mix seemed similar, but a severe underestimation of relatively innocent
(“indolent”) cancer probability was found (Table 17.5). This phenomenon was
addressed by a new logistic model intercept, while keeping the regression coeffi-
cients close to their original values.

Similarly, it was found that a prediction model for the selection of patients
undergoing in vitro fertilization for single embryo transfer needed an adjustment
when a model developed at one hospital was applied in another center. Again, a
systematic difference remained even after adjustment for well-known and important
predictors [262]. This difference in average outcome (“calibration-in-the-large”) is
an important motivation for recalibration of model predictions as a simple but
important updating technique (see Chap. 20).

Some examples of fully independent validation studies with their main conclu-
sions are listed in Table 17.6. It seems that fully external validation studies often
provide more unfavorable results than weaker tests of validity, especially more
unfavorable compared to internal validation results [13, 103, 513, 666].

Fig. 17.6 Results of external validation by study group (internal-external validation) [473, 546]
for the testicular cancer prediction model for prediction of residual tumor based on development
and validation sets (n = 1094 total). We note c statistics around 0.8 for all studies, with overall
minor miscalibration [645]
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17.3.5 Reasons for Poor Validation

Unfavorable results at validation may often be explained by inadequate model
development. Sample size may have been relatively small, or patients were selected
from a single center. This was for example noted in a review of over 25 models in
traumatic brain injury [436]. Also, statistical analysis may often have been sub-
optimal, e.g., with stepwise selection in relatively small samples with many
potential predictors, and no shrinkage of regression coefficients to compensate for
overfitting [563].

Other explanations include true differences between development and validation
settings, especially in coding of predictors and outcome. Measurement error may
cause invalidity [355, 414]. The problem of transportability of models that incor-
porate laboratory tests results was already recognized in the 80s for a prediction rule
for jaundice, where lab measurement units were not consistent [500]. Indeed, the
validation of a model that was previously developed by others is often more difficult
than anticipated. If a nomogram is presented with some nonlinear terms, it is not so
easy to derive a formula to calculate outcome predictions for new patients. So, it is

Table 17.5 Performance of three previous nomograms for indolent prostate cancer developed by
Kattan et al. [295] validated in 247 ERSPC patients [562]

Performance parameter Nomogram

Base Medium Full

Area under the ROC
curve

Kattan
et al.

0.64 0.74 0.79

ERSPC 0.61 [0.54–0.68] 0.72 [0.66–0.78] 0.76 [0.70–0.82]

Calibration in the large Predicted 24% 22% 15%

Observed 49% [43–55%] 49% [43–55%] 49% [43–55%]

Calibration slope Predicted 1 1 1

Observed 0.78 [0.32–1.24] 0.87 [0.55–1.19] 1.07 [0.74–1.40]

Base: serum PSA + clinical stage + biopsy Gleason grade 1 and 2
Medium: Base + US volume + %positive cores
Full: Base + US volume + mm cancerous tissue + mm noncancerous tissue

Table 17.6 Examples of studies with fully independent external validation

Model Development Validation Conclusions

Prostate
cancer

Two hospitals [295] Screening setting
(ERSPC) [562]

Intercept problem

Aneurysm
mortality

One hospital + meta-analysis
[555]

UK small aneurysm trial
[71] and another hospital
[304]

Missing predictors;
poor/moderate
performance

Renal
artery
stenosis

RCT [314] One French hospital
[366]

“reasonably valid”
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quite likely that errors are made at such external validation studies. Units of
measurement and the intercept value require special attention. Contacting the
authors may help to prevent mistakes.

Moreover, variables required for a model may not be available at validation.
A constant value can be filled in (e.g., the mean or median), but obviously this
limits the external performance of a model. For example, a Dutch model for
abdominal aneurysm mortality was validated in the UK small aneurysm study,
while 2 of the 7 predictors were not available [71]. In a validation study with
patients from Rotterdam, all predictors except 1 were available and a better external
performance was found [304]. A better approach may be to use submodels for
validation. Such submodels do not contain all predictors, but are readily applicable
in the presence of missingness [167].

Another strategy to facilitate external validation is followed in the Observational
Health Data Sciences and Informatics (OHDSI) program (https://www.ohdsi.org/).
Here a common data model is used to standardize data structure and language
across a wide range of data bases. An R package is available for building and
validating patient level predictive models using data in common data model format
[452].

17.4 Concluding Remarks

We considered several approaches to internal and external validation. For internal
validation, bootstrapping appears most attractive, provided that we can replay all
modeling steps. This may sometimes be difficult, e.g., when decisions on coding of
predictors and selection of predictors are made in the modeling process. Several
variants of bootstrapping are under study, which may be more efficient than the
standard procedure.

Any internal validation technique should be seen as validating the modeling
process rather than a specific model [232]. For example, when a split-sample
validation is followed, e.g., to convince physicians who are skeptical of modern
developments, the final model should still be derived from the full sample. It would
be a waste of precious information if the final model were only based on a random
part of the sample [533]. Differences in regression coefficients will generally be
small, since the split was at random, and the data have overlap, but the estimates of
the full sample will be more stable. If a stepwise selection procedure was followed
in the random part of the study, it should be repeated in the full study sample. This
may result in a different model specification. Arguably, this is preferable to sticking
to results from only part of the available data.

The same reasoning holds for cross-validation and bootstrap validation.
Especially with bootstrap validation we may well illustrate the instability of step-
wise selection procedures (see Chap. 11). The final model may only be selected in a
few of the bootstrap samples [27, 563]. Such model uncertainty has to be taken into
account in the optimism estimate for the final model.
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If external validation has been performed, we may similarly define the final
model from the combined data set (development plus validation). This was done in
the Lynch syndrome case study (Table 17.3) [40]. The regression coefficients in the
final model are a compromise between the estimates in the development and val-
idation sample. This combination of data assumes that the two samples represent
the same population, which is not necessarily the case (Chap. 20). If relevant
differences are found, a setting-specific intercept, or setting-specific interaction
terms for predictor effects, may be included (see Chaps. 20 and 21).
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Questions

17:1. Stability of internal validation techniques (Table 17.1)

(a) Split-sample validation is notoriously unstable. In contrast, apparent
validation and bootstrap validation share stability in the estimation of
model performance. Do you agree?

(b) Cross-validation eventually uses 100% of the sample for validation;
why might multi-fold cross-validation help?

17:2 Interpretation of external validation (Fig. 17.6)
Figure 17.6 can be interpreted in different ways. One perspective is to
emphasize the similarity in performance between settings. Alternatively, we
might focus on specific subset, which shows a systematic miscalibration.
What would be your view on the performance of these subsets? Consider a
fixed effect and random effect perspective (see also Chap. 20).

17:3 Problems with internal validation [67]
Interpret the published results on “internal validation” in Table 2 from an
Ann Int Med paper (http://www.annals.org/cgi/reprint/143/4/265.pdf).

(a) What do you think went wrong?
(b) What do you think of the interpretation provided in the text?
(c) What do you think about the “corrected Table 2”, published as an

erratum? http://www.annals.org/cgi/reprint/144/8/620.pdf.
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Chapter 18
Presentation Formats

Background The presentation of a prediction model deserves careful attention.
Epidemiologic regression analyses commonly concentrate on estimation of relative
effects, with presentation of tables with odds ratios or hazard ratios, and their
confidence intervals. Such tables are usually not sufficient to calculate absolute
risks, which require a baseline risk. This is a model intercept for continuous or
binary outcomes or a baseline hazard for survival outcomes. We need to separate
presentations that generate predictions (“prediction models”) from presentations
that generate advice for a decision (“decision rules”) . Various presentation formats
are possible for such prediction models and for decision rules, some of which will
be discussed in this chapter. We illustrate the creation of some formats at a technical
level for the testicular cancer case study.

18.1 Prediction Models Versus Decision Rules

A clinical prediction model provides an estimate of absolute risk, based on the
combination of several patient characteristics. For a good prediction model, the
prediction for an individual patient can span a wide range, from relatively low to
relatively high. The interpretation of the predictions and any actions is left to the
treating physician and/or the patient. We can also present a decision rule, where a
specific course of action is suggested depending on the combination of patient
characteristics. Decision rules are hence not synonymous with prediction models
[451]. Decision rules require more subject matter input, e.g., from clinical experts,
especially on the choice of a cutoff point for predictions (see Chap. 16).

Some have argued that presentation as a decision rule leads more easily to a wide
application of a model. Examples include decision rules for traumatic injuries to the
ankle/foot, knee, cervical spine, and head (“Ottawa rules”). The developers of the
rules suggest substantial impact, and conclude that emergency physicians should
adopt these clinical decision rules to standardize care and reduce costs [437]. Decision
rules may also be a natural extension of heuristic rules that humans tend to use [182].
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We discuss several options for presentation of prediction models and clinical
decision rules (Table 18.1). Formats differ on aspects such as the medium by which
they are presented (on paper or electronically), the level of detail in the predictions
(rough indications of risk or exact probabilities), presence of indicators of

Table 18.1 Some examples of presentation formats for clinical prediction models and clinical
decision rules

Rule Characteristics Pros Cons Example

Prediction models

Regression
formula

Simple, follows
directly from
analysis

Can be
implemented
in
computerized
format

Leaves work to the
user; difficult to
calculate
confidence
intervals

Predicted response
dose, formula in
abstract [265]

Spreadsheet Includes exact
calculations,
exact 95%
confidence
intervals

Standard
software,
familiar to
many

Needs user to open
specific file

Survival after
surgery for lung
cancer [52]

Web
application

Includes exact
calculations,
exact 95%
confidence
intervals

Easy to use
from www

Storing previous
cases may not be
so easy

PREDICT (https://
www.predict.nhs.
uk/) to asses benefit
of treatment for
breast cancer [87]

Nomogram Includes quite
exact
calculations,
approximate 95%
confidence
intervals

Quite exact
predictions

Difficult to
understand at first
sight

Prostate cancer
recurrence [294]

Score chart Includes
approximate
calculations,
approximate 95%
confidence
intervals

Easy to
understand

Approximate
predictions

DRASTIC
prediction rule for
renal artery stenosis
[314]

Table Includes averaged
calculations,
approximate 95%
confidence
intervals can be
added

Very easy to
understand
and use have
to be
categorized

Predictions by
predictor
combination;
continuous
predictors

Framingham risk
equation to identify
candidates of statin
therapy [674]

Specific
formats

Based on specific
interest of
audience

Should appeal
specifically to
target
audience

Less easy to
understand for
nontarget audience

Relevance of pre-
and
postchemotherapy
mass size in
testicular cancer,
for radiologists
[553]

(continued)
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uncertainty (e.g., 95% confidence intervals around predictions), and user-
friendliness (simple to complex formats).

Box 18.1 Regression Formula for Prediction of the Individual
Follicle-Stimulating Hormone Threshold [265]
FSH response dose = 4 body mass index (in kg/m2) + 32 clomiphene citrate
resistance (yes = 1 or no = 0) + 7 initial free insulin-like growth factor-I (in
ng/mL) + 6 initial serum FSH level (in IU/L) – 51.

18.2 Presenting Clinical Prediction Models

Clinical prediction models provide probabilities of diagnostic or prognostic out-
comes. We discuss detailed presentations with a regression formula, a nomogram,
or a score chart (Table 18.1).

18.2.1 Regression Formulas

Clinical prediction models can be presented in various formats. The simplest form
is to present the final regression formula. An example is the regression formula
presented in the abstract of a study in anovulatory infertile women (Box 18.1)
[265].

Table 18.1 (continued)

Rule Characteristics Pros Cons Example

Decision rules

Regression
tree

Simple, large
groups

Very easy to
understand
and use

Unstable if based
on raw data

Goldman diagnostic
index for acute MI
[188]

Score chart
rule

Score based on
highly rounded
coefficients

Rule simple
to understand

Inaccurate
predictions

CT rule for minor
head injury [519]

Survival by
group

Simple, large
groups

Very easy to
understand
and use

Stable but cutoffs
based on
distribution of risk
rather than
decision-analytic
considerations

IGCC classification
for testicular cancer
[4]

Meta-model
tree

Simple, large
groups

Easy to
understand
and use

Continuous
predictors have to
be categorized

Testicular cancer
group with >70%
benign tissue [552]
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Calculation of predictions with a regression formula incorporates two steps. The
first step is to calculate the linear predictor. The linear predictor is central to
regression models such as linear, logistic, polytomous, Cox, and many parametric
survival models. In the linear predictor, we multiply regression coefficients with
predictor values. Definitions and encoding of the predictors have to be clear to the
user. For binary predictors, a 0/1 coding is convenient, which makes that patients
without a characteristic have a score of zero. For categorical predictors, dummy
variables are usually constructed. The reference category for these dummy variables
can be based on frequency (e.g., the most common category is the reference), or on
clinical considerations. For continuous variables, the units have to be clear. For
example, units for concentrations are important (by weight, e.g., mg/dl, or
molecular count, e.g., mmol/l). Also, continuous predictors are sometimes centered
to the mean value, which should then be subtracted from the original value when
using the regression formula. For interpretation of relative effects, scaling may be
different from that in the prediction formula, e.g., with age per 10 years, or blood
pressure per 10 mmHg. Continuous predictors are sometimes standardized by
dividing by the standard deviation in the sample; this may seem attractive but
hampers transportability to other settings.

The second step is to translate the linear predictor values to units on the outcome
scale. For a logistic model, we use the logistic transformation to estimate proba-
bilities of the outcome (p(y = 1)). For survival, we can estimate survival proba-
bilities, e.g., at 1, 2, or 5 years, median survival, or other quantiles of survival. With
a Cox model, we need the baseline hazard function to estimate these survival
probabilities S(t): S(t) = h0(t) * exp(linear predictor), where h0(t) indicates the
baseline hazard function for time t. Some parametric survival models have one or
two constants to define baseline risk similar to other regression models. Predictions
from such parametric models are straightforward to calculate and are more stable at
the end of follow-up (Chap. 4).

Shrinkage can be incorporated in the translation from linear predictor to pre-
dictions. One way is to standardize predictor values, such that the average of the
linear predictor is zero [627]. We can then multiply the linear predictor with the
shrinkage factor. The average of the predictions will then remain reasonably cor-
rect. However, a systematic error will arise when the range of predictions is wide, or
the shrinkage severe, because of the nonlinearity in the translation from linear
predictor to prediction. As an alternative, we can shrink regression coefficients and
re-estimate the intercept for proper calibration-in-the-large.

Regression formulas can serve as the basis for computerized implementation, in
mobile phones, hospital information systems or electronic patient records, web
pages, or spreadsheets (see www.nomograms.org). One example is a spreadsheet to
show survival after surgery for lung cancer, where a model is presented including
seven predictors. The predicted survival curve was calculated according to the
individual predictor values, with an approximate 95% confidence interval [52].
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Web-based calculators become more and more common. From R, Shiny
applications can be set up for WWW presentation. Specific websites are available
for detailed calculation of predictions, some with the option to estimate the impact
of treatment. For example, the PREDICT tool shows how breast cancer treatments
after surgery might improve survival rates (www.predict.nhs.uk). Once details
about the patient and their cancer have been entered, the tool shows how different
treatments would be expected to improve survival rates up to 15 years after diag-
nosis. These individualized estimates of benefit of treatment rely on available data
on prognostic effects and on the effectiveness of treatment. The optimal combina-
tion of prognosis and treatment effect is a vivid area of research [300, 333, 630].

18.2.2 Confidence Intervals for Predictions

Uncertainty around predictions for linear regression models can be presented with
confidence intervals and prediction intervals. Confidence intervals indicate the
uncertainty around the average and become very small with very large sample size.
For example, a growth curve predicting length by age will have a very tight con-
fidence interval when based on millions of adolescents. Prediction intervals for
individual subjects will however remain of substantial size because of the vari-
ability in the population.

For predicted probabilities, the fact that a probability is estimated reflects the
inherent uncertainty of the prediction process. Confidence intervals around pre-
dicted probabilities can become quite small with large sample size, but the pre-
diction for an individual remains a probability. With regression analysis, predictions
can approach, but never reach, 0 or 1.

Uncertainty in survival can be indicated around probabilities at time points in
follow-up. We can also indicate uncertainty around survival duration, e.g., median
survival surrounded by 2.5, 25, 75, and 97.5% quantiles. The latter quantiles will
cover a substantial width, even with infinite sample size, similar to the prediction
intervals in linear regression.

Confidence intervals are only a valid indication of the uncertainty of the pre-
diction model if there is no systematic bias in the predictions. The total uncertainty
in a prediction is the sum of systematic and random errors. Miscalibration of
predictions is an example of a systematic error, which may be due to various
differences between the development setting and the setting where the model is
applied, e.g., coding of predictors, missed predictors with different distributions,
and truly differential effects (Chaps. 17 and 19). Hence, we must be cautious in the
interpretation of predictions when the confidence interval is small because of a large
sample size. On the other hand, a model derived from a small data set will show
large confidence intervals, which is a useful warning against overinterpretation of
predictions.

Meta-analyses commonly quantify variability between studies in random effect
analyses. Inclusion of the between-study heterogeneity leads to wider confidence
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intervals for a treatment effect than a fixed effect estimate that ignores such
between-study heterogeneity [246]. Similar to treatment effects, we may include
between-study heterogeneity in prediction intervals for predictions for individuals.

Furthermore, one might argue that the values of the predictions remain of pri-
mary interest for decision-making, and uncertainty is less relevant [295]. If we
cannot make a better estimate than the one provided by the model, following that
estimate is the best we can do, even when the estimate is uncertain.

Technically, confidence intervals are calculated with the standard error (SE) of a
prediction. The standard error is calculated from the covariance matrix of the
regression model. If shrinkage was applied, it may be reasonable to still use the
covariance matrix of the original, unshrunken, model. With a penalized model, we
can use the covariance matrix of the penalized model, which will result in slightly
smaller standard errors of predictions than the original model.

Every combination of predictor values leads to a different standard error of the
prediction. The same linear predictor value can have a different standard error, since
different combinations of predictor values may lead to the same sum. This is
handled easily in a regression formula, in a spreadsheet, or web-based calculation,
but more complicated in paper-based presentation formats such as nomograms and
score charts. In the latter formats, using the mean or median standard error can be
considered to indicate uncertainty for a given linear predictor value [225].

If we want to communicate uncertainty, we might try to estimate the effective
number of patients similar to the patient where the prediction is made. This
assessment can be based on a comparison of SEs: the SE for an individualized
prediction will be larger than the SE for a prediction for the full sample. This ratio is
more unfavorable with more extreme covariate patterns, where uncertainty for a
prediction is large.

18.2.3 Nomograms

Nomograms are graphical presentations of a prediction model. Nomograms have a
long history in the pre-computer era, with a more recent role as presentation format
of a clinical prediction model [353]. Again, two steps are discerned. The calculation
of the linear predictor is essentially as for a regression formula: each predictor value
corresponds to a regression weight. The nomogram has a reference line for reading
scoring points (e.g., 0–100 or 0–10, Fig. 18.1). The user manually totals the points
and the total corresponds linearly to the linear predictor. The second step is the
transformation of the linear predictor to predictions, which can be read at the
bottom of the nomogram. Predictions can be in the form of a probability, median
survival, or other quantities. Harrell’s nomogram function is a valuable tool to
develop these presentations [225].
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Fig. 18.1 Nomogram for prediction of the nature of residual histology based on six predictors in a
penalized logistic regression model. Teratoma: absence of teratoma elements in the primary tumor;
Pre.AFP: prechemotherapy AFP normal; Pre.HCG: prechemotherapy HCG normal; LDHst:
standardized prechemotherapy LDH (LDH divided by upper limit of normal values; one means
values equal to upper normal); Post.size: postchemotherapy mass size in mm. Reduction: %
Reduction in size during chemotherapy, e.g., 50–10 mm = 80%

Box 18.2 Instruction to physicians using the model in their care:

Determine the patient’s value for each predictor, and draw a straight line
upward to the points axis to determine how many points toward benign his-
tology the patient receives. Sum the points received for each predictor and
locate this sum on the total points axis. Draw a straight line down to find the
patient’s predicted probability of residual tumor or necrosis (benign histology).

Box 18.3 Instruction to patient:

“Mr. X, if we had 100 men exactly like you, we would expect that the
chemotherapy was fully successful in approximately <predicted probability
from nomogram * 100>, as reflected in fully benign disease at surgical
resection of your abdominal lymph nodes.” (Text based on Kattan et al.
[295]; note that the number 100 may be debated, since the effective sample
size for some covariate patterns may be far less.)

Nomograms have especially been promoted for urological tumors, such as
prostate cancer [97, 467]. Advantages are several. The relative importance of the
predictors can be judged by the length of the lines with nomogram scores, provided
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that the predictor values on the lines are based on the distribution of the predictor in
the data under study. Hence, the reader obtains a visual impression of the relevance
of a predictor in the model, relative to the other predictors. Furthermore, interaction
terms can be handled. Separate lines are constructed usually, such that only one axis
has to be read to obtain a score corresponding to a predictor value. Complex
models, e.g., survival models with time-dependent covariates can also be presented
as nomograms [296]. The translation of the total points to the probability or survival
scale is relatively easy. Scales can be extended with approximate confidence
intervals (e.g., with the median standard error per tenth of predicted risk), or
additional scales for the outcome, e.g., 25 and 75 survival percentiles [225]. Color
versions are also possible [596].

Disadvantages of nomogram presentations include the relative complexity at first
sight, the inaccuracy of readings when many predictors are included, and the
inaccuracy of translation to the final outcome. It is not clear yet whether clinicians
prefer nomograms to other formats such as score charts.

18.2.4 Score Chart

Score charts are another simple presentation format for clinical prediction models.
The first step is to round regression coefficients to scores. A simple approach is to
multiply coefficients by 10 and round them. However, we can often find lower
numbers for multiplication that still allow for a sufficiently refined prediction. Some
analysts define scores by dividing through the smallest coefficient of a binary
predictor, which then has by definition a score of 1. The other predictors get
rounded scores. This procedure is suboptimal, since it capitalizes on the estimate of
one coefficient. This leads to unnecessary extra uncertainty in the rounded coeffi-
cients. It is preferable to search for a common denominator across all coefficients.
A score chart for the testicular cancer model is shown in Table 18.2, with corre-
sponding probabilities in Fig. 18.2.

18.2.5 Tables with Predictions

Predictions can sometimes be presented in table format, but this may require some
simplifications of the model. Especially, we need to categorize continuous pre-
dictors, which implies a loss of information (see for an example from the
Framingham Heart Study [674]. Also, the adult treatment panel III (ATP III) pre-
sents a number of tools for detailed calculations on the web (http://www.
cvriskcalculator.com/). An interactive risk assessment tool is presented to estimate
10-year risk for “hard” coronary heart disease outcomes (myocardial infarction and
coronary death), and calculators are downloadable for local use.
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A simple table has been successful in providing indications for statin treatment.
This table defines absolute 10-year risks of cardiovascular events by smoking
status, hypertension, diabetes, cholesterol to HDL-cholesterol ratio, and sex.
Moreover, colors were added corresponding to treatment advice: treat with a statin,
do not treat with a statin, or treat in the presence of a family history of cardio-
vascular disease [195].

Table 18.2 Score chart for estimation of the probability of benign tissue after chemotherapy for
metastatic testicular cancer with continuous predictors

Characteristic Scores Sum score

Primary tumor

No teratoma elements 1

Prechemotherapy tumor markers

AFP normal 1

HCG normal 1

LDH times normal

Values 0.6 1 1.6 2.5 4 6

Scoresa –0.5 0 0.5 1 1.5 2

Postchemotherapy size (mm)

Values <5 10 20 40 70

Scoresa +0.5 0 –0.5 –1 –

1.5

Reduction in size

Values Increase 0% 50% 100%

Scoresa –1 0 1 2

Total score (add all) …

Probability of benign tissue and 95% CI
from Fig. 18.2

… %
[…% - …
%]

aIntermediate scores can be estimated with linear interpolation

Fig. 18.2 Probability of
necrosis (benign tissue) in
relation to the sum score from
Table 18.2. Number of
patients with each score are
indicated at the bottom, and
reflected in the size of the
dots. 95% confidence
intervals are shown around
the predicted probabilities

18.2 Clinical Prediction Models 353



A tabular presentation was considered as a simple way to present the testicular
cancer model [550]. The advantage is that decisions can easily be coupled to the
predictions. In this case, a clear treatment advice was linked to predictions over
90% (follow-up) and prediction below 60% (resection, Table 18.3). In between is a
gray area, where treatment decision-making is not straightforward and may depend
on various factors, such as feasibility of close follow-up, experience of surgeon, and
the technical difficulty of the surgery. All patients with a large (� 50 mm) or
increased mass should undergo resection, as well as all with less than two favorable
characteristics. This tabular format however implies a severe loss of overall dis-
criminative ability (c decreases from 0.839 to 0.773).

18.2.6 Specific Formats

Specific formats may appeal to certain audiences. For example, radiologists are
important in the monitoring of treatment of cancer. They usually compare images
obtained during or after treatment with images made before treatment. Hence, a
presentation of prediction model might focus on the information in such images.
This was attempted for the relevance of pre- and postchemotherapy mass size in the
testicular cancer prediction example (Fig. 18.3) [553]. We created iso-probability
curves for combinations of pre- and postchemotherapy mass size, based on the
underlying logistic regression function. The graph shows that the postchemotherapy
size was more relevant than the prechemotherapy size; probabilities increase
sharply with smaller postchemotherapy size. This is caused by a direct effect of
postchemotherapy size, in combination with a strong effect of reduction in size
(larger reductions with smaller postchemotherapy sizes).

Table 18.3 Probability of benign tissue in relation to the sum of five favorable characteristics and
mass size for the testicular cancer case study. P(Nec): Probability of necrosis

Sum of favorable characteristics*
Residual mass size 0 1 2 3 4 5
0 – 9 mm

Resection
p>60% p>70% p>80% Follow-up

P(Nec) > 90%10 – 19 mm
20 – 29 mm p>60%
30 – 49 mm p>70% p>80%
>= 50 mm, 
or increased mass

P(Nec) <= 60%

aSum of five characteristics: Primary tumor teratoma negative; prechemotherapy AFP normal;
prechemotherapy HCG normal; prechemotherapy LDH elevated; and reduction in mass size
� 70%
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18.2.7 Black-Box Presentations

Machine learning (ML) models will increasingly be used to develop prediction
models. Some methods, such as the LASSO or elastic net, are extensions of tra-
ditional regression methods. Models developed with these methods can transpar-
ently be presented. Availability of a formula is important to allow for validation and
updation of models by other researchers.

Model availability is also important for models developed with artificial intel-
ligence (AI) methods, such as neural nets and black-box algorithms such as deep
learning. These may not be presented explicitly in a formula. In the field of ML and
AI, the need to transparency typically focuses on interpretability of the algorithm
[444]. The more important issue to allow for external validation studies by inde-
pendent researchers. Apart from potential overfitting due to small sample size or
very flexible modeling, predictive performance, and especially calibration, is

Fig. 18.3 Predictions for benign histology based on prechemotherapy and postchemotherapy
mass size, and by score of four prognostic characteristics (no teratoma elements in primary tumor,
normal AFP, normal HCG, or elevated LDH). Lines indicate probabilities of 50–90 of benign
tissue. Patients with a score of zero always had predicted probabilities below 50%. For example, a
postchemotherapy size of 20 mm after a prechemotherapy size of 100 mm results in a probability
around 90% when the score is 4, but a probability around 65% when the score is 2
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expected to vary across time and place [504]. In addition, performance tends to vary
depending on characteristics of measurement tools, such as biomarker assay kits or
imaging machines [181]. Also, electronic health record (EHR) data handling
depends on location. As a result, there is no guarantee that any predictive algorithm
will work as advertised, even when the development study included an external
validation or when the algorithm received regulatory approval [444, 504].

For validation, we need to have access to the algorithm to generate predictions.
Proprietary issues may make this difficult. For updating, an option is to do reverse
engineering, with model predictions generated by an algorithm for a wide combi-
nation of predictor values. A regression model can then be fitted on these predic-
tions as a meta-model, with fine-tuning to a specific setting (Chaps. 20 and 21).
Alternative approaches are possible, also for methods such as support vector
machines (SVM) [597]. These approaches include the interval coded scoring
(ICS) system, which imposes that the effect of each variable on the estimated risk is
constant within consecutive intervals [598]. Such an approach makes that complex
models can still be used in clinical encounters.

18.3 Case Study: Clinical Prediction Model for Testicular
Cancer Model

18.3.1 Regression Formula from Logistic Model

In the testicular cancer case study, we concentrate on prediction of a benign his-
tology (“necrosis”) after chemotherapy for metastatic disease; the complement of
prediction of residual tumor. A logistic regression model with five or six predictors
was fitted. Bootstrapping suggests a uniform shrinkage factor of s of approximately
0.95. Further, a penalty factor of four was used in a penalized maximum likelihood
procedure (Table 18.4).

The formula with shrunk coefficients is

lpshrunk ¼�0:95þ 0:83 � Teratomaþ 0:82 � Pre:AFPþ 0:71 � Pre:HCGþ 0:89 � ln LDHstð Þ
�0:26 � sqrt Post:sizeð Þþ 0:014 � Reduction;

where Teratoma = 1 if teratoma elements were present in the primary tumor, 0
otherwise; Pre.AFP = 1 if prechemotherapy AFP was elevated, 0 if normal; Pre.
HCG = 1 if prechemotherapy HCG was elevated, 0 if normal; ln(LDHst) refers to
the natural logarithm of the prechemotherapy LDH value, standardized to the upper
limit of local normal limits; sqrt(Post.size) refers to the square root of the
postchemotherapy size in mm; Reduction refers to the reduction is size during
chemotherapy in %.
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The formula with penalized coefficients is

lppenalized ¼� 1:09þ 0:87 � Teratomaþ 0:86 � Pre:AFPþ 0:73 � Pre:HCGþ 0:88 � ln LDHstð Þ
�0:26 � sqrt Post:sizeð Þþ 0:016 � Reduction:

The formula to calculate predicted probabilities is simply:

P ¼ 1= 1þ e �lpð Þ
� �

:

If we want to calculate confidence intervals, we need the covariance matrix,
which looks like

The square root of the diagonal indicates the variance of the regression coeffi-
cients. The off-diagonal numbers are used for calculation of the variance of specific
combinations of predictor values: SEprediction = transpose(X) * covariance matrix *
X. A detailed example is provided for the EuroSCORE, which predicts cardiac
operative risks [375]. The predictions for the testicular cancer histology are pre-
sented with 95% confidence in an Excel spreadsheet, which is available at www.
clinicalpredictionmodels.org.

18.3.2 Nomogram

A nomogram can easily be constructed with Harrell’s rms library:

Table 18.4 Regression coefficients in logistic regression models for postchemotherapy histology
in testicular cancer, with uniform shrinkage (s = 0.95), penalized ML estimation (penalty factor l =
4), and the scores for a score chart (multiplication by 10 or 10/8 to achieve simpler scores)

Predictor Coeforig Coefshrunk Coefpen 10* Coefpen 10/8* coef

Teratoma 0.909 0.825 0.873 9 1

Pre.AFP 0.903 0.819 0.860 9 1

Pre.HCG 0.783 0.710 0.729 7 1

Log(LDHst) 0.985 0.894 0.884 9 1

Sqrt(Post.size) −0.292 −0.264 −0.261 −3 0

Reduction (%) 0.016 0.014 0.016 0 0
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We used a maximum of 10 points in Fig. 18.1, accepting some loss in accuracy
in summing the points corresponding to each predictor value. The total points
correspond linearly to the linear predictor, which correspond to p(residual tumor)
and to p(necrosis) (or benign histology) through the logistic transformation
(plogis).

18.3.3 *Score Chart

A score chart for the testicular cancer prediction model was shown in Table 18.2.
We considered the following steps with some technical details:

(1) Multiply and round regression coefficients of binary predictors and dummy
variables of categorical predictors.

(2) Search for score for continuous predictors, continuous or categorized.
(3) Estimate the multiplication factor for the scores.
(4) Estimate the intercept corresponding to the scores; check the deterioration in

discriminative performance; present as score chart.

These steps are explained with R code at www.clinicalpredictionmodels.org.
For point (4), we note that the discriminative ability would deteriorate sub-

stantially if we would categorize the continuous predictors. A drop in c statistic
from 0.839 to 0.808 (Table 18.5). The tabular presentation in Table 18.3 leads to an
even larger drop (to 0.77). Hence, categorization made for a simplified presentation
at the cost of performance, while rounding had limited effect.
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18.3.4 Summary Points

• Many presentation formats are possible, as illustrated for the testicular cancer
model that predicts the presence of tumor versus benign tissue after
chemotherapy.

• User-friendliness may vary, and empirical evidence on what formats clinicians
prefer is limited.

• The discriminative ability may suffer from overly simple presentations.
• Web-based presentations and apps become increasingly popular.
• Predictive algorithms in medicine should be free and easily available to allow

independent validation and updating for different settings, irrespective of their
development by traditional regression, machine learning, or artificial intelli-
gence methods.

18.4 Presenting Clinical Decision Rules

18.4.1 Regression Tree

Some modeling techniques, such as regression and classification trees, more nat-
urally lead to decision rules. A regression tree classifies patients according to a
(usually limited) number of characteristics (Chap. 4). It is therefore often possible
for clinical experts to link treatment recommendations to the various groups defined
by the tree. Once these treatments have been defined, the tree can often be refor-
matted for easier application. This was done for the Goldman diagnostic index for
acute MI. Based on a tree analysis of 482 patients suspected of acute MI, a decision
protocol was constructed in the format of a simple flowchart considering nine
clinical factors [188]. Tree presentations are generally considered to be easy to
understand. However, as discussed before, deriving a stable, reliable tree requires
large amounts of data: trees are very data-hungry and may often have suboptimal
performance; their use for prediction modeling should be discouraged [20, 23, 612,
613].

Table 18.5 Discriminatory ability of different formats of presentation the testicular cancer
prediction model

Format Table/Figure C statistic

Logistic formula/nomogram/graphical Table 18.4/Fig. 18.1/Fig. 18.3 0.839

Rounded scores Table 18.2/Fig. 18.2 0.838

Categorized scores Tables at website 0.808

Tabular Table 18.3 0.773
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18.4.2 Score Chart Rule

Scores can be based on severely rounded coefficients, e.g., counting each predictor
as one point. This may be reasonable when the actual regression coefficients are
similar in magnitude. When coefficients vary in magnitude, an alternative is to
define minor and major risk factors [519]. Such major rounding of coefficients leads
to less accurate predictions than the original rule. Especially, calibration may suffer
[376]. The advantage of severe rounding is that it is possible to remember such
decision rules by heart, in contrast to more refined prediction models [36].

A simple rule can be defined as that exceeding a certain score is an indication for
a certain action. An example is the difficult issue of which patients should have a
CT scan after minor head injury (defined as having sustained blunt injury to the
head, with normal or minimally altered level of consciousness upon presentation,
i.e., a Glasgow Coma Scale score of 13–15). In one recent study, a detailed pre-
diction model was developed, from which a simple decision rule was derived.
Major and minor risk factors were defined based on rounding of the regression
coefficients from a logistic model, and categorization of continuous predictors (such
as age: <40: zero score; 40–59: minor; � 60: major). The decision rule was CT scan
in case of presence of at least one major or two minor risk factors (out of a list of ten
major and eight minor risk factors) [519]. With this rule, the sensitivity was 100%
for neurosurgical interventions (at apparent validation). This high sensitivity was
important, since patients requiring neurosurgical interventions should not be mis-
sed. Internal validation by bootstrapping showed however that we should not
expect 100% sensitivity in new patients. The average sensitivity from a bootstrap
validation procedure was 96%, with 100% sensitivity in 56% of the boot-
strap samples. On the other hand, many CT scans would still be made in those
without an important outcome (specificity only 25%, or a false-positive CT scan
rate of 75%). Implementation of the decision rule was expected to reduce the
number of CTs by approximately 25%. Hence, most patients with minor head
injury should have a CT scan if we want to exclude serious injury.

18.4.3 Survival Groups

Results from survival analyses are often presented by grouped predictions, e.g.,
quarters. Such grouping can be linked to treatment recommendations. Survival can
also be shown in relation to specific combinations of risk factors, similar to a
regression tree. This approach was followed for the IGCC classification [4]. Five
predictors were considered: two were coded as dichotomous predictors (poor versus
good), and three tumor markers were coded as low, intermediate, and high
according to their level. A good prognosis group contained patients without
intermediate or poor risk characteristics. An intermediate group contained patients
with intermediate levels of tumor markers, but no poor risk characteristics. A poor
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prognosis group contained patients with at least one high tumor marker or a poor
risk factor. The numbers of patients were approximately 50%, 35%, and 15%, with
5-year survival of 92%, 80%, and 50%, respectively. The choice of risk group
definitions was motivated by the idea to study more aggressive new therapy in the
poor risk group (e.g., stem cell therapy), and less aggressive therapy in the good
prognosis group (e.g., three instead of four cycles of chemotherapy) [125].

Such risk classifications present predictions for groups of patients, which is
expected to lead to stable predictions at a group level. Note that the definition of the
risk groups is often motivated by the distribution of risk rather than by
decision-analytic considerations [615].

18.4.4 Meta-Model

Another option is to develop a meta-model, which describes an underlying, more
complex model with a certain level of accuracy. A meta-model is a model that
predicts the predictions from an underlying model. It aims to capture the general
patterns and inherits any shrinkage of coefficients from the underlying more
complex model [227]. For a decision rule, we may categorize the predictions from
the underlying model at a relevant cutoff, e.g., as needing treatment versus no
treatment. Subsequently, we can predict membership of either category. The
meta-model can be presented in various forms, for example, as a tree. A tree may be
an attractive format for this step because of its intuitive communication, although
we risk some refinement in risk predictions (see, e.g., Fig. 18.4 [552]).

Testicular cancer patient after
chemotherapy for metastatic disease

no yes

0 or 1 true 2 or 3 true

Reduction >50%?

Necrosis in 
134/398 (34%)

Reduction >70%?
Primary teratoma - ? 
Prechemo AFP normal?

Necrosis in 
111/146 (76%)

Fig. 18.4 Decision rule for patients with testicular cancer [552]. Resection is advised if necrosis
(benign histology) is unlikely (34% vs. 76%)
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18.5 Concluding Remarks

The presentation format is an important issue in prediction modeling. The overview
in this chapter intends to give inspiration for presentation of prediction models and
decision rules. The format should match with the intended audience; some clinical
areas have a more quantitative orientation than others. Also, some formats have
become more or less standard in certain areas, for example, nomograms for prostate
cancer, and survival curves by quarter in oncology in general [97]. Graphical
presentations may sometimes be considered, e.g., to show predictions in relation to
a single continuous predictor and one or two categorical predictors. There is no
convincing evidence on the preference of certain presentation formats over others
for optimal communication of individualized predictions [580].

We can imagine that the ongoing automatization, e.g., with electronic patient
records, will enable the direct and easy availability of predictions from detailed and
rather complex prediction models. Hence, computerized presentations have the
future, both for prediction models and decision rules. Especially attractive is the
combination of prognostic evidence as summarized in a prediction model with
evidence on the relative effect of a treatment as found in a randomized controlled
trial or summarized in a meta-analysis [300, 630]. A positive example is the
PREDICT model [87]. A serious point of attention is the transparency of machine
learning and AI models, where proprietary interests may conflict with openness,
and hence obstruct assessment of generalizability (part III).
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Questions

18:1. Testicular cancer presentation formats
Calculate predicted probabilities for a man with a postchemotherapy mass of
12 mm, which was 24 mm before chemotherapy, who had no teratoma
elements in his primary tumor, elevated AFP, normal HCG, and three times
normal LDH levels, using

(a) the nomogram (Fig. 18.1),
(b) the score chart (Table 18.2 with Fig. 18.2),
(c) the simplified table (Table 18.3),
(d) the graphs for radiologists (Fig. 18.3),
(e) the penalized regression formula (Sect. 18.3.1), and
(f) the classification tree (Fig. 18.4).

18:2. Continuous predictors in a score chart (Sect. 18.3.3)

(a) What specific challenges are posed by continuous predictors in a score
chart?

(b) What is the disadvantage of categorizing scores for a score chart (see
Table 18.5)?

18:3. Odds ratios or regression coefficients for scores [388]
Several investigators have used odds ratios to derive scores for logistic
regression models, which are added in a sum score.

(a) Why is this incorrect?
(b) What kind of deviations will occur if some odds ratios are small and

some very large?

18:4. Prediction models and decision rules

(a) What is the difference between a prediction model and a decision rule?
(b) How can we derive a decision rule from a prediction model?
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Part III
Generalizability of Prediction Models

Generalizability refers to the external validity of predictions from a model. The
quality of predictions can be quantified by various performance measures, e.g.,
related to calibration, discrimination, and clinical usefulness. These measures reflect
the validity of regression coefficients and the specific case-mix of the external
setting.

For generalizability, internal validity is a minimum prerequisite. To achieve
internal validity, we need to follow the seven steps outlined in Part II. In Part III, we
first consider differences between populations that may affect generalizability
(Chap. 19). Next, we consider approaches to updating of a prediction model for a
specific setting (Chap. 20). Finally, we consider the situation that a prediction model
is applied in multiple settings. Detection of differences between settings may then
actually be the purpose of the analysis, for example, the comparison of quality of
care providers, such as hospitals, in a league table (“provider profiling”, Chap. 21).



Chapter 19
Patterns of External Validity

Background Generalizability depends on the quality of the prediction model as
developed for the development setting (internal validity), and on characteristics of
the population where the model is applied (validity of regression coefficients, and
distribution of predictor values). The general framework of the validity of predic-
tions was discussed in Chap. 17 (see in particular Fig. 17.1). Here, we first consider
a number of typical situations that we may encounter when a prediction model is
applied externally. Theoretical relations are illustrated with a large sample simu-
lation and findings in some case studies. Approximate power calculations are given
for tests of invalidity of a prediction model.

19.1 Determinants of External Validity

We concentrate on the external validity of predictions for a binary outcome y. We
consider a number of differences between populations that determine this external
validity, related to case-mix and regression coefficients b (Table 19.1).

19.1.1 Case-Mix

With case-mix, we refer to the distribution of predictors X that are included in the
regression model y * X, as well as the distribution of predictors that are not
included in the model, either observable or unobservable. Predictors not included in
the model are referred to as “missed predictors” (“Z”), despite the fact that some
may, in fact, be observable. Since the linear predictor (lp) is a linear function of the
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predictors X, we will for simplicity consider one predictor x in the model y * x.
Here, x represents a linear combination of X. Similarly, the missed predictors Z are
represented as one variable z in the regression model Y * x + z.

19.1.2 Differences in Case-Mix

A different case-mix may be encountered because the setting differs compared to
the development situation; e.g., model development in secondary care, and vali-
dation in a primary or tertiary care setting. Or a model was developed in patients
participating in a randomized controlled trial (RCT) and is applied in a less selected
population. Such situations make that the distribution of observed predictors X is
different between development and validation setting. The distribution of missed
predictors Z may also differ when we apply a model in a different setting; per
definition, such differences cannot be excluded a priori. Missed predictors Z may be
fully independent of X, or be correlated. Finally, the design of a study may cause
differences in the incidence of the outcome y, and may hence influence the
case-mix. For example, a case–control design can be followed, where the ratio of
cases to controls is different than in the underlying population.

19.1.3 Differences in Regression Coefficients

Regression coefficients b can be different between settings because of true differ-
ences between populations. Various reasons can be thought of, including definitions
of predictors, the definition of the outcome, and a different selection of patients.

Table 19.1 Potential differences between populations that determine external validity

Scenario Characteristic Differences Example

Case-mix Distribution
of observed
predictors X

Different selection, e.g., more
severe patients are selected; or
inclusion criteria smaller/wider

Validation in the
referral center;
validation in/outside
RCT

Distribution
of missed
predictors Z

Different selection based on
predictors not considered in the
model

Validation in different
settings

Distribution
of outcome y

Retrospective sampling of cases
and controls

Case–control design

Coefficients Coefficients
b smaller
than expected

Overfitted model is validated Validation of model
from small
development sample

Coefficients
b different

Truly different population Validation in different
settings
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In practice, the coefficients b are not known for the development setting, but
only estimated from a finite sample size. The same holds for a validation sample
from a validation setting. This makes that it is virtually impossible that exactly the
same regression coefficients are found when a regression model is re-estimated in a
validation sample. Even if the underlying coefficients are identical, some of the
re-estimated coefficients will be larger and some smaller than in the development
sample due to sampling error.

Another problem is that regression coefficients may on average have been
overestimated because of overfitting in the development data set. Such overfitting is
most likely for models developed in small data sets with a relatively large number
of (candidate) predictors (see, e.g., Chaps. 5, 11 and 13). Specifically, if models
have been developed with stepwise selection methods, or variants, we must fear that
the regression coefficients were estimated too extremely [94, 267, 541, 563].
Shrinkage or penalization of coefficients at model development may limit the risk of
overestimation of coefficients for predictive purposes (Chap. 13). Shrinkage or
penalization methods, however, have not been applied for many currently available
prediction models.

19.2 Impact on Calibration, Discrimination, and Clinical
Usefulness

In the following, we will consider various scenarios for differences between pop-
ulations (Table 19.1). We will study the impact of these differences on calibration,
discrimination, and clinical usefulness of prediction models for binary outcomes.
We simulate an outcome y which depends on x and a missed predictor z (both with
standard Normal distribution). In the development population, we estimate a
logistic regression model with an intercept b0 and coefficient b1 for x, while in fact
the outcome y is determined by x and z. The missed predictor z and x are uncor-
related, weakly correlated, or moderately correlated (Pearson correlation coeffi-
cients r 0, 0.33, 0.5, Table 19.2 and Fig. 19.1).

19.2.1 Simulation Setup

We create a validation population to apply a previously developed model. Various
differences are simulated for the validation population compared to the develop-
ment population. We first consider populations (n = 500,000) and later samples of
smaller size to illustrate sampling variability and statistical power. We consider a
scenario inspired by the testicular cancer case study, with an average prevalence of
residual tumor tissue close to 50%, and a decision threshold for the probability of
residual tumor of 30% (Chaps. 15 and 16). We consider a good discriminating
model, with c statistic of 0.81. This c statistic is achieved with a logistic regression
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model with a single predictor x, with x normally distributed and regression coef-
ficient b 1.5. We can hence define the linear predictor as lp = 1.5 * x.

We generate the outcome y with the inclusion of the missed predictor z (uncor-
related or correlated). In the underlying model, the lp is a function of x and z. With
uncorrelated x − z, we define the lp as lp =2.1 * x +1.5 * z. The adjusted regres-
sion coefficient for x is 2.1 rather than 1.5. This may be surprising. It is related to
the “stratification” or “conditioning” effect in nonlinear models such as logistic
regression and Cox regression models, or “non-collapsibility of odds ratios” [210].
In nonlinear models, adjusted effects are more extreme than unadjusted effects when
a covariate is considered that is related to the outcome, but uncorrelated to other
covariates. This is well known in the analysis of randomized clinical trials (see
Chaps. 2 and 22) [174, 233, 463, 537]. In unadjusted analysis, the coefficient for
x is 1.5 (Table 19.2).

For moderately correlated x − z data (r = 0.5, Fig. 19.1), we define the lp as
lp = 1.2 * x +1.5 * z. Now the adjusted regression coefficient b is 1.2 rather than
1.5, which is caused by the positive correlation between x and z. This is classical
confounding: the confounding effect of this correlation was stronger than the
stratification effect. The adjusted coefficient is smaller than the unadjusted coeffi-
cient (1.2 vs. 1.5, Table 19.2). An intermediate situation was identified by trial and
error, where the correlation between x and z was 0.33, such that the negative effect
of confounding and positive effect of stratification on z are exactly balanced in the
adjusted analysis. The true model was lp = 1.5 * x +1.5 * z.

Table 19.2 Design of simulations with predictor x and missed predictor z, for a logistic regression
model y * x + z (“adjusted analysis”) and y * x (“unadjusted analysis”)

Correlation x − z Adjusted coefficients Unadjusted coefficient

Pearson r = 0, R2= 0% 2.1 * x + 1.5 * z 1.5 * x

Pearson r = 0.33, R2= 11% 1.5 * x + 1.5 * z 1.5 * x

Pearson r = 0.5, R2= 25% 1.2 * x + 1.5 * z 1.5 * x

Fig. 19.1 Correlation between x (represented in the linear predictor) and z (a missed predictor),
with no to moderate correlation. Illustration above with n = 1000; n = 500,000 in further
simulations
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In both development and validation settings, we study predictions only in
relation to x, since z is a missed predictor. The observed relation is lp = 1.5 * x at
development, with a c statistic of 0.81. At validation, we hope to see y = 0 + 1 * lp
in a logistic regression model (see Chap. 15 and 21 for more background on this
“recalibration model”) [114]. The relation between y and lp may be influenced by
changes in the distribution of the x, z, or y, or differences in the regression coef-
ficients that determine the lp (see Table 19.1).

19.2.2 Performance Measures

We concentrate on a limited number of indicators of calibration, discrimination, and
clinical usefulness, although many more performance measures can be considered
for validation of predictions for binary outcomes (see Chaps. 15 and 16). For
calibration we consider calibration-in-the-large (intercept given that slope b is set to
1, a|b = 1) and the calibration slope (b). Both are determined in logistic regression
models: y * lp. The linear predictor lp is entered as an offset variable (a|b = 1), or
as the only predictor (slope b) in a logistic regression model estimated in the
validation data. The c statistic is used to indicate discriminative ability (Chap. 15).
For clinical usefulness, we calculate the net benefit (NB), with the formula
NB = (TP − w FP)/n, where TP is the number of true positive classifications, FP
the number of false positive classifications, and w is a weight equal to the odds of
the threshold (cutoff/(1 − cutoff)), or the ratio of harm to benefit (see Chap. 16).
We compare the NB of the model with a cutoff at 30% with the strategy with the
next best NB (“treat all”, or “treat none”). With an incidence of the outcome at 50%
and a threshold of 30%, “treat all” has the next best NB: for every 100 patients, 50
true positive classifications are made, and 50 false positive classifications (which
are weighted as 3/7). The NB of “treat all” hence is 50 − 3/7 * 50 = 28.6/100
patients. A clinically useful model should have a NB higher than this reference
value.

Together, these performance measures may be referred to as “ABCD”. The
letters relate to performance measures as: (A) for the intercept given that slope b is
set to 1, a|b = 1; (B) for the calibration slope b; (C) for the c statistic; (D) for
decision-analytic, the Net Benefit [565].

When the considered model is applied in the development population, the cal-
ibration is perfect (a|b = 1 = 0; slope b = 1) and discrimination good (c = 0.81,
Fig. 19.2). The increase in NB by 0.055 means that 5.5 more true positive classi-
fications are obtained per 100 patients, at the same number of false positive clas-
sifications (see Chap. 16). The model performance is identical whether uncorrelated
or correlated missed predictors are present, since the model is always y = 1.5 * x
(Table 19.2).
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19.3 Distribution of Predictors

We consider various selection mechanisms based on observed predictors X and
missed predictors Z. Such selection is an example of missing not at random
(MNAR, Chap. 7). We know that the regression coefficient of a single predictor
x remains unbiased with a MNAR mechanism (Chap. 7). Hence, calibration will be
unaffected. Of interest is any influence on discrimination and clinical usefulness.

19.3.1 More or Less Severe Case-Mix According to X

Subjects may be more likely to be included in the validation setting because they
have higher x values (“more suspect cases”). For example, we may assume that only
the higher x values are represented (correlation with missingness status r = 0.62, R2

39%). This leads to a more severe case-mix at validation.

n <- 500000
x <- rnorm(n) # standard normal x
xM <- ifelse(rnorm(n=n,sd=.8) < x, x, NA) # 50% missing, r=0.62

In our particular simulation, the more severe case-mix is associated with
somewhat less spread in predictions, and hence a lower c statistic (0.77 instead of
0.81, Fig. 19.3). Moreover, only a few patients have predictions below the

Fig. 19.2 Calibration, discrimination, and clinical usefulness when the prediction model is
applied in a population with an identical distribution of predictor x and missed predictor z (from
left to right: r = 0, r = 0.33, r = 0.5; n = 500,000). a|b = 1: intercept given slope b is 1; slope b:
calibration slope in a calibration model y * lp; c stat: c statistic indicating discriminative ability;
NB: Net Benefit compared to “treat all”. The value of 0.055 means that 5.5 more true positive
classifications are made per 100 patients, at the same number of false positive classifications (see
Chap. 16). Triangles represent tenths of patients grouped by similar predicted probability. The
distribution of patients is indicated with spikes at the bottom of the graph, separately for those with
and without the outcome

372 19 Patterns of External Validity



threshold of 30%, reducing the NB to 0.006 instead of 0.055. The prediction model
would be judged of very limited utility in this validation setting. If the missingness
was even more selective (r > 0.75), the NB would become zero, meaning that “treat
all” would be as good a policy as using the prediction model. In contrast, a less
severe case-mix led to a higher NB (NB 0.104, Fig. 19.3, right panel) . This is
explained by the fact that the risk threshold now falls approximately in the middle
of the risk distribution, which compensates for the lower c statistic. The patterns in
Fig. 19.3 were identical with uncorrelated or correlated z.

19.3.2 *Interpretation of Testicular Cancer Validation

These findings are important for the interpretation of the external validity of the
testicular cancer example presented in Chaps. 15 and 16. When applied in more
severe patients treated at a tertiary referral center (Indiana University Medical
Center [644], we noted a decrease in clinical usefulness of the prediction model.
But we have to realize that not all testicular cancer patients undergo surgical
resection; there is “verification bias“ [45]. Typically a selection is made toward
those with a suspicion of residual tumor (e.g., larger residual masses). If all tes-
ticular cancer patients were considered, the model would also indicate resection in
some of the patients who were not candidates for resection under current policies.
Clinical usefulness would hence be judged higher.

Fig. 19.3 Influence of selection of more or less severe cases according to predictor x. 50% of the
subjects were selected, with higher or lower likelihood of selection with higher x values.
Validation with a less severe case-mix makes the prediction model clinically more useful by
having more predictions below the cutoff (right panel)
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19.3.3 More or Less Heterogeneous Case-Mix According
to X

Another situation is that a more heterogeneous setting is considered, which is fully
represented by the X values. For example, inclusion criteria may be wider in sur-
veys of patients with traumatic brain injury (TBI) compared to randomized con-
trolled trials (RCTs) [465]. RCTs typically have a list of inclusion and exclusion
criteria. If these criteria apply to predictors that are all considered in the prediction
model, the distribution of X values will be more heterogeneous in surveys. Note that
the selection on X values may lead to extrapolation of model predictions in the
validation data beyond observed X values in the development data.

The heterogeneity in case-mix translates into a higher discriminative ability; we
can distinguish more patients with very low or very high prediction (c statistic 0.90
instead of 0.81, Fig. 19.4 left panel). More patients have predictions below the
postulated threshold of 30%, doubling the NB (0.104 instead of 0.055). The pre-
diction model would be judged quite useful in this more heterogeneous validation
setting. The reverse is found for validation in a setting with less heterogeneity
(lower c statistic, 0.75; lower NB, 0.03, Fig. 19.4, right panel). These patterns were
identical with uncorrelated or correlated z.

19.3.4 More or Less Severe Case-Mix According to Z

Similar to distributions of observed predictors, distributions of missed predictors
Z may also differ between development and validation settings. We will see that the
correlation between observed predictors X and missed predictors Z is especially
relevant for calibration.

Fig. 19.4 Influence of selection of more or less heterogeneous cases according to observed
predictor values. Approximately 35% of the subjects were selected, with a higher or lower
likelihood of selection with more extreme x values. Validation with a more heterogeneous
case-mix makes the prediction model more discriminatory and clinically more useful (left panel)
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The first situation is that a prediction model is applied in a setting of more or less
severe cases, according to predictors which are not (or not fully) captured in the
prediction model. A more severe case-mix mainly causes a systematic miscali-
bration of predictions (Fig. 19.5, top row). The calibration-in-the-large (a|b = 1)
values are around 0.7, which reflects that approximately twice as many cases are
found than predicted (odds ratio exp(0.7) = 2.0). The calibration slope is around 1.
Without correlation between x and z (r = 0, Fig. 19.5, upper left panel), the slope is
1.1, which is explained by the reduced stratification effect of z in the regression
model. In the development setting, the stratification effect was such that the adjusted
coefficient was 2.1 for an unadjusted coefficient of 1.5 for x; with less stratification,
the unadjusted coefficient is 1.1 * 1.5 = 1.65. With moderate correlation (r = 0.5,
Fig. 19.5, upper right panel), the confounding effect was weaker, leading to an
unadjusted coefficient of 0.93 * 1.5 = 1.4 for x.

The discrimination follows the same pattern as the calibration slope, with values
around the original estimate of c = 0.81. The poor calibration causes the model to
have at most small clinical usefulness. The NB of the model may even become
negative (−0.003 in Fig. 19.5, upper right panel). This means that worse decisions
are made with the model than the reference strategy of “treat all”. This can be
understood by realizing that the model assigns patients with a prediction under 30%
to “no treatment”, while predictions are systematically too low. Many among those

Fig. 19.5 Influence of selection of more or less severe cases according to a missed predictor
(x − z correlation 0, 0.33 or 0.5). 50% of the subjects were selected, with higher or lower
likelihood of selection with higher z values
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with a prediction under 30% have actual probabilities over 30% and should have
been classified for “treat”. On balance, the loss of inappropriately withholding
treatment from those with actual probabilities over 30% was larger than the gain of
reducing false positive classifications (100% with a “treat all” strategy).

The reverse pattern is noted when selection is on less severe patients according
to some missed predictor (Fig. 19.5, lower row). Calibration-in-the-large is the
main problem. Interestingly, the clinical usefulness is now increased, despite this
miscalibration. The various impacts of miscalibration on clinical usefulness can be
examined in Daan Nieboer’s online ShinyApp: https://dcacalibration.shinyapps.io/
dcacalibration/.

19.3.5 More or Less Heterogeneous Case-Mix According
to Z

Similar to observed predictors, we can imagine that missed predictors Z may have a
more or less heterogeneous distribution in a validation setting. Such distributional
changes affect the calibration slope, but not calibration-in-the-large (Fig. 19.6). The

Fig. 19.6 Influence of selection of more or less heterogeneous cases according to a missed
predictor z (x − z correlation 0, 0.33 or 0.5). Approximately 35% of the subjects were selected,
with higher or lower likelihood of selection with more extreme z values
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specific patterns in calibration again reflect the balance of stratification and con-
founding effects. Discrimination and clinical usefulness were better with higher
calibration slopes.

19.4 Distribution of Observed Outcome y

A case–control design allows for separate sampling of cases (y = 1) and controls
(y = 0). Cases and controls should come from the same underlying populations, as
would be considered in a cohort study (Chap. 3). In the examples thus far, the ratio
of cases and controls was 1:1 (50% incidence of the outcome y). The effect of
manipulating the outcome incidence is reflected in calibration-in-the-large. With a
ratio of 2 cases to 1 control, the odds ratio of the intercept is 2. Indeed, the
coefficient is 0.69, or log(2) (Fig. 19.7, left panel). Conversely, a ratio of 1 case to 2
controls leads to an intercept of −0.69. With a proper case–control design, the
effects of predictors remain identical (calibration slope = 1), as well as the c statistic
(0.81). Calculation of clinical usefulness is only sensible after correction of the
intercept, which can be seen as translating a case–control design back to clinical
practice [302].

In a traditional case–control design, the number of controls in the population is
unknown. This makes it impossible to correctly adjust the intercept. In a nested
case–control design, we sample the cases and controls from a defined underlying
cohort. The number of controls is known in such a design, which makes it
straightforward to adjust the intercept, for example by weighting the controls by the
inverse of their sampling ratio.

Fig. 19.7 Influence of a case–control design on the model intercept; calibration slope and
discrimination remain unaffected. The ratio of cases to controls was set to 2:1 (left,) and 1:2 (right
panel), corresponding to the miscalibration of +log(2) and log(0.5)
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19.5 Coefficients b

19.5.1 Coefficient of Linear Predictor < 1

Overfitting is a major problem of predictive modeling (Chaps. 4–18). At external
validation, we may often find a less predictive effect of the linear predictor lp. This
reduced effect might have been detected already at internal validation. It should
have led to the incorporation of a shrinkage or a penalty factor to compensate for
overfitting. True differences in predictive effects may also play a role, for example,
caused by definition and selection issues.

A typical shrinkage factor found at internal validation is 0.8; more severe
overfitting might lead to a shrinkage factor of 0.6. At external validation, we find
that such patterns of overfitting lead to a reduction in discriminative ability (c 0.77
or 0.72 instead of 0.81) and a reduction in clinical usefulness (Net Benefit 0.037 or
0.014 instead of 0.055, Fig. 19.8).

19.5.2 Coefficients b Different

In addition to being overestimated on average, regression coefficients may truly
differ between development and validation settings. Various causes can be imag-
ined, all related to the validation population not being “plausibly related” anymore
to the development population [285]. Terrin et al. considered various scenarios of
different effects of predictors in a validation setting. In simulation studies, they
simulated weaker effects of predictors, motivated by clinical scenarios, and found
reductions in c statistic from 0.75 to 0.72 [578].

Fig. 19.8 Influence of overfitting in model development. The slope of the linear predictor is 0.8 or
0.6, with lower discriminative ability (c = 0.77 or 0.72), and lower clinical usefulness (net benefit
0.037 or 0.014)

378 19 Patterns of External Validity



In Chap. 5, we used an arbitrary example of differences in predictor effects, with
predictors having 0.5 or 1.5 times the effect of the development setting:
x = 0.5 * x1+ 1.5 * x2 + ��� + 0.5 * x9+ 1.5 * x10. We use this example here for
illustration, and a more extreme situation, with very small effects at validation (5
x variables with effect 0.25). These misfits led to calibration slopes of 0.84 and 0.67,
and lower discriminative ability and clinical usefulness (Fig. 19.9). Hence, differ-
ences between effects in the development setting versus the validation setting may
seriously deteriorate model performance.

19.6 Summary of Patterns of Invalidity

We summarize the patterns of invalidity in Table 19.3.

• Calibration

In the development setting, the calibration was perfect, the c statistic 0.81 and the
Net Benefit of applying the model 0.055. Calibration remained perfect when the
validation setting consisted of more or less severe patients according to predictor
values, or more or less heterogeneous patients according to observed or missed
predictor values. Calibration can be systematically disturbed by a more or less
severe distribution of missed predictor values (z, e.g., intercept +0.7 or −0.7).
A similar disturbance can be caused by a case–control design; however, the case–
control ratio is under the influence of the researcher, while the distribution of a
missed predictor usually is not. Miscalibration can also be caused by overfitting at
model development (e.g., slope 0.8 or 0.6), or truly differential predictive effects

Fig. 19.9 Influence of differences in regression coefficients between development and validation
setting. Regression coefficients were 0.5 smaller or 1.5 times as large in the left panel (overall
effect: slope 0.84), and 0.25 or 1.5 times as large in the right panel (overall effect: slope 0.68). In
the right panel, discriminative ability and clinical usefulness were affected substantially (c statistic
0.74, net benefit only 0.023)
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(coefficients of individual predictors 0.25/0.5/1.5 times as large, details at www.
clinicalpredictionmodels.org).

• Discrimination

Discriminative ability is mathematically related to the calibration slope, with a
lower c statistic associated with a lower calibration slope at validation [629].
Another reason for a lower c statistic is a less heterogeneous case-mix (e.g.,
slope = 1, but c = 0.75 instead of 0.81, Fig. 19.4, right panel). Indeed, a high
c statistic such as 0.90 was found for a more heterogeneous setting (Fig. 19.4, left

Table 19.3 Patterns of invalidity for a prediction model for binary outcomes in relation to
differences between development and validation populations

Scenario Characteristics Differences a|b = 1 b c stat NB

Development
setting

y = 1.5 * x (x * N
(0,1))

– 0 1 0.81 0.055

Case-mix in
validation setting

Distribution of
observed predictors X

More severe
patients

0 1 0.77 0.006

Less severe
patients

0 1 0.77 0.104

More
heterogeneous

0 1 0.90 0.104

Less
heterogeneous

0 1 0.75 0.030

Distribution of missed
predictors Z

More severe
patientsa

log(2) 1 0.81 0.001

Less severe
patientsa

−log(2) 1 0.81 0.109

More
heterogeneousa

0 1 0.83 0.062

Less
heterogeneousa

0 1 0.81 0.053

Distribution of
outcomes y

2 times more
cases

log(2) 1 0.81 NA

2 times less
cases

−log(2) 1 0.81 NA

Coefficients in
validation setting

Coefficients b smaller
than expected

Slope 0.8 0 0.8 0.77 0.037

Slope 0.6 0 0.6 0.72 0.014

Coefficients b
different

X effects * 0.5
or 1.5

0 0.84 0.78 0.040

X effects *
0.25 or 1.5

0 0.68 0.74 0.023

aFor correlation x − z of 0.33; detailed results in Figs. 19.5 and 19.6
a|b = 1: intercept given that calibration slope b is 1, indicating “calibration-in-the-large”; b:
calibration slope; c stat: concordance statistic to indicate discriminative ability; NB net benefit; NA
not applicable
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panel). More heterogeneity in missed predictors had only small effects (Fig. 19.6).
These examples illustrate that discrimination is determined by the combination
of validity of estimated regression coefficients b and case-mix. Poor discrimination
can hence result from both aspects (i.e., poor calibration, and/or relatively homo-
geneous case-mix).

• Clinical usefulness

Tables 19.3 and 19.4 highlight the importance of calibration for clinical usefulness.
A systematic miscalibration, e.g., caused by a more severe case-mix according to a
missed predictor z, may lead to a model without clinical usefulness. With incorrect
calibration, we can make systematically wrong decisions. This is not the case if
predictions are moderately calibrated [606]. Discrimination and calibration slope
are linked, and a lower calibration slope or lower discrimination are hence both
associated with a lower clinical usefulness.

Perfect calibration and good discrimination protect us against negative clinical
usefulness [602]. Discrimination is important; better discrimination may lead to
better decision-making. If a model has no discriminative ability, it cannot improve
upon a default strategy of treating all/none. Discrimination is hence a necessary but
not sufficient condition for clinical usefulness.

When applying the model in more or less severe patients, the c statistic was 0.77
for both settings, but clinical usefulness was only 0.006 for a more severe setting
and 0.104 for a less severe setting. These findings are in line with the lack of
clinical usefulness of the testicular cancer case study in Chap. 16, where we noted
that few patients had a prediction below the threshold of 30% for the probability of
tumor tissue at external validation.

Case-mix is also very relevant, especially for variables that are not in the model
(Z). The case-mix in observed predictors (X) affects clinical usefulness through the

Table 19.4 Combinations of differences between development and validation populations and
their impact on the validity of a prediction model for binary outcomes

Scenario x z Coefficients a|b = 1 b c stat NB

Change of
setting

– More
severe

X effects * 0.5
or 1.5

0.67 0.87 0.78 −0.008

−0.67 0.87 0.78 0.098
– Less

severe

RCT versus
survey

More
heterogeneous

More
severe

X effects * 0.5
or 1.5

0.64 1.04 0.88 0.027

0.69 0.59 0.65 −0.036

Less
heterogeneous

More
severe

−0.68 1.03 0.88 0.167

−0.68 0.59 0.65 0.037
More
heterogeneous

Less
severe

Less
heterogeneous

Less
severe
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distribution of predictions around the decision threshold, while leaving calibration
largely intact. The case-mix in missed predictors (Z) may predominantly affect
clinical usefulness through poor calibration-in-the-large

19.6.1 Other Scenarios of Invalidity

Thus far, we considered one element at a time for differences between development
and validation populations. All simulation results depend on the specific parameters
chosen; with more extreme parameter settings, differences will be larger. We can
consider other scenarios that are also plausible at validation of a prediction model,
where we combine differences in the distribution of x, z, and regression coefficients
b (Table 19.4). Detailed results are provided at www.clinicalpredictionmodels.org.

19.7 Reference Values for Performance

Two types of reference values are useful to interpret the validity of a prediction
model [629]:

1. The performance if the model would be fully valid, given the case-mix in the
validation sample: a model-based performance estimate.

2. The performance with coefficients optimized for the validation data: a refitted
model.

Such reference values are useful to obtain insight into what is happening at
validation: are there merely differences in case-mix or differences in regression
coefficients compared to the development setting?

19.7.1 Model-Based Performance: Performance
if the Model Is Valid

The distribution of predictors X should be taken into account to indicate a model’s
performance under the condition that the model predictions are valid in the vali-
dation sample. For a regression model, this means that the regression coefficients
for predictors X and the model intercept are fully correct for the validation setting.

For calibration, obvious reference values are 0 for calibration-in-the-large, and 1
for the calibration slope. For discrimination, a practical approach is to simulate the
outcome y for the observed case-mix in X, given that the prediction model is
correct. This is simply obtained by first calculating the predictions for each subject
in the validation data, and subsequently randomly assigning an outcome y based on
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this prediction. With at least 100 repetitions for each patient, a stable estimate of the
reference values is obtained. We illustrate the calculation below for 1000 repetitions
per patient in a logistic regression model.

Analytic alternatives are available. The Gonen and Heller c statistic was origi-
nally proposed for Cox regression models, estimating performance if the model is
valid [190]. This approach was extended by Van Klaveren to logistic regression and
other types of models. The expected c statistic for the situation that the model is
correct is labeled the model-based concordance (“mbc”) [629].

19.7.2 Performance with Refitting

Another type of reference value is the performance obtained by refitting the model
in the validation data. The regression coefficients are then optimized for the vali-
dation data, and hence provide an upper bound for the performance, which would
be obtained if the coefficients from the development setting were exactly equal to
those in the validation setting. This upper bound does not only depend on case-mix,
but also on the effects of predictors in the validation setting. It is hence not simple to
compare performance between development and validation settings: differences
may be attributable to both case-mix and/or coefficients.

19.7.3 *Examples: Testicular Cancer and TBI

We apply the calculation of reference values to the testicular cancer and traumatic
brain injury (TBI) case studies (Table 19.5). Prediction models were developed
with n = 544 testicular cancer patients (n = 245, 45%, with benign histology), and
n = 2036 TBI patients (n = 798, 39%, with an unfavorable 6-month outcome). The
544 testicular cancer patients are mostly from secondary care centers [551], while
external validation was in 273 patients from a tertiary care center [644]. A benign
outcome was less frequent among these patients (n = 76/273, 28%). The 2036 TBI

Table 19.5 Examples of reference values for performance of two prediction models, developed in
one setting and applied in another setting

Example Measure Apparent Internally
validated

Externally
validated

Model-based Refitted

Testicular cancer:
secondary care !
tertiary referral

c stat
R2

0.818
38.9%

0.812
37.4%

0.785
26.7%

0.824
37.0%

0.819
34.2%

Traumatic brain
injury: RCT !
surveys

c stat
R2

0.767
27.9%

0.765
27.3%

0.816
37.1%

0.804
35.3%

0.819
38.0%
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patients were from the Tirilazad randomized controlled trials [259], with validation
in three largely unselected series (UK 4 center study, European Brain Injury
Consortium survey, Traumatic Coma Databank, n = 2090) [357]. These patients
more often had an unfavorable outcome at 6 months (n = 1249/2090, 60%) com-
pared to the development sample.

In the testicular cancer case study, the apparent c statistic was 0.818, with 0.006
optimism according to a bootstrap procedure. At external validation, the c statistic
was 0.785, while 0.824 was expected based on the case-mix of the predictor
variables (the mbc, “model-based”, Table 19.5). When the model was refitted, the
performance was slightly lower than this reference value (c statistic 0.819 vs.
0.824). A similar pattern was noted for the R2 statistic. We might test the statistical
significance of these differences in performance but concentrate here on the point
estimates.

In the TBI case study, the apparent c statistic was 0.767, with negligible opti-
mism. Surprisingly, the c statistic was higher at external validation (0.816), while
0.804 was expected based on the case-mix of the predictor variables. When the
model was refitted, the performance was higher again (refitted c 0.819 vs. mbc
0.804). A similar pattern was noted for the R2 statistic.

The interpretation of Table 19.5 is a follows:

1. Internal validation corrects for the statistical problem of overfitting in the
development setting; case-mix is unchanged.

2. External validation tests the model in a sample from a new setting, where both
case-mix and coefficients may be different than in the development sample.

3. The reference performance corrects for the new case-mix according to predictor
values in the validation sample, while keeping the coefficients at the values from
the development setting.

4. The refitted performance corrects for the new case-mix and estimates optimal
regression coefficients in the validation sample.

The poorer external performance of the testicular cancer model is not explained by
case-mix, at least not in the distribution of observed predictor values, since the
reference performance was very similar to that in the development sample. The
poorer external validity should hence be attributed to differences in regression
coefficients between the settings. The refitted performance was similar to the ref-
erence performance, indicating that the predictors had similar predictiveness in both
settings when refitted.

The better external performance of the TBI model is partly explained by
case-mix, since the reference performance was higher than in the development
sample. The surprisingly good external validity should further be attributed to
differences in regression coefficients between the settings; predictive effects were
overall stronger in the validation setting (calibration slope 1.08), in line with the
even better refitted performance (“refitted” c 0.819, Table 19.5).
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19.7.4 *R Code for reference values

# fit in development data
fit   <- lrm(y ~ x1+x2+ ..., data=dev.data, linear.predictors=T)
# refit in validation data: refitted reference performance
fit.val  <- update(fit, data=val.data)

# linear predictor for validation data
lp   <- predict(fit,newdata=val.data)
# External validation
val.prob.ci.2(logit=lp,y=val.data$y, ... ) # with confidence intervals

# Reference value if model valid: simulation of outcomes
n   <- nrow(validation.data)
nsamples <- 1000 # for stable results
perf.m <- matrix(nrow=nsamples*n, ncol=2)
perf.m[,1] <- rep(lp, nsamples) # repeat linear predictor nsamples times
# Generate y for validation data
perf.m[,2] <- ifelse(runif(length(perf.m[,1]))<=plogis(perf.m[,1]), 1, 0)
# Determine reference values
perf.ref <- val.prob(logit=perf.m[,1],y=perf.m[,2], ... )

# Alternative: use analytical solution for the model-based c statistic 
h ps://github.com/David-van-Klaveren/mbc

19.8 Validation Sample Size

Thus far, we examined theoretical patterns of invalidity with very large simulated
samples. The testicular cancer and TBI case studies (Sect. 19.7.3) considered more
limited sample sizes for model development and validation; differences in model
performance might at least partly be attributed to chance. Performance parameters
for calibration (model intercept, a|b = 1; calibration slope, b), and discrimination
(c statistic), and decision-analytic measures of clinical usefulness (Net Benefit, NB)
are subject to sampling error in real life.

19.8.1 Uncertainty in Validation of Performance

We first illustrate some of the empirical behavior of measures for calibration and
discrimination of logistic regression models. The prediction model is the same as
before, with a linear predictor in the logistic regression model defined by 10 nor-
mally distributed X variables, each with a regression coefficient of 0.76 (see
Sect. 19.5.2). The model has a c statistic of 0.812. We consider small to large
sample sizes for model development (Ndev = 100 to Ndev = 10,000) and for model
validation (Nval = 100 to Nval = 10,000), with outcome incidence 50% or 10%.
Simulations are first performed under the Null hypothesis, i.e., that both samples
originate from the same underlying population (Table 19.6). Case-mix and
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Table 19.6 Estimation of calibration and discrimination of logistic regression models in small to
large sample sizes for model development and for model validation

Scenario Events/Ndev Events/Nval Estimated performance at validation
(mean ± SE)

a|b = 1 Slope b c statistic

Incidence 50%
Large sizes

5000/10,000 5000/10,000 0 ± 0.03 1.00 ± 0.03 0.81 ± 0.004

Small development samples 50/100 5000/10,000 0 ± 0.28 0.64 ± 0.15 0.77 ± 0.017

100/200 0 ± 0.17 0.82 ± 0.13 0.79 ± 0.010

250/500 0 ± 0.12 0.92 ± 0.09 0.80 ± 0.006

500/1000 0 ± 0.08 0.95 ± 0.07 0.81 ± 0.005

1000/2000 0 ± 0.06 0.97 ± 0.05 0.81 ± 0.004

Small validation samples 5000/10,000 50/100 0 ± 0.24 1.06 ± 0.24 0.82 ± 0.043

100/200 0 ± 0.16 1.03 ± 0.17 0.81 ± 0.030

250/500 0 ± 0.11 1.01 ± 0.10 0.80 ± 0.018

500/1000 0 ± 0.08 1.00 ± 0.07 0.81 ± 0.014

1000/2000 0 ± 0.06 1.00 ± 0.05 0.81 ± 0.009

Small development samples,
half size validation

50/100 25/50 0 ± 0.52 0.71 ± 0.31 0.77 ± 0.070

100/200 50/100 0 ± 0.34 0.83 ± 0.25 0.79 ± 0.048

250/500 100/200 0 ± 0.20 0.95 ± 0.18 0.80 ± 0.030

500/1000 250/500 0 ± 0.13 0.98 ± 0.11 0.81 ± 0.018

1000/2000 500/1000 0 ± 0.10 0.99 ± 0.09 0.81 ± 0.014

Small development samples,
equal size validation samples

50/100 50/100 0 ± 0.44 0.66 ± 0.23 0.77 ± 0.051

75/150 75/150 0 ± 0.32 0.77 ± 0.22 0.78 ± 0.039

100/200 100/200 0 ± 0.27 0.82 ± 0.19 0.79 ± 0.033

175/350 175/350 0 ± 0.19 0.89 ± 0.15 0.80 ± 0.023

250/500 250/500 0 ± 0.15 0.93 ± 0.13 0.80 ± 0.019

500/1000 500/1000 0 ± 0.11 0.97 ± 0.09 0.81 ± 0.014

1000/2000 1000/2000 0 ± 0.08 0.99 ± 0.07 0.81 ± 0.010

Incidence 10%
Large sizes

1000/9000 1000/9000 0 ± 0.05 1.00 ± 0.05 0.83 ± 0.007

Selected combinations of
development and validation
sample sizes

50/450 50/450 0 ± 0.25 0.85 ± 0.18 0.81 ± 0.033

100/900 0 ± 0.23 0.85 ± 0.15 0.81 ± 0.021

200/1800 0 ± 0.19 0.86 ± 0.14 0.81 ± 0.018

1000/9000 0 ± 0.18 0.86 ± 0.14 0.81 ± 0.010

100/900 50/450 0 ± 0.22 0.93 ± 0.17 0.82 ± 0.032

100/900 0 ± 0.18 0.93 ± 0.13 0.82 ± 0.021

200/1800 0 ± 0.15 0.93 ± 0.11 0.82 ± 0.015

1000/9000 0 ± 0.13 0.93 ± 0.11 0.82 ± 0.008

200/1800 50/450 0 ± 0.19 0.95 ± 0.15 0.82 ± 0.031

100/900 0 ± 0.18 0.96 ± 0.13 0.82 ± 0.022

200/1800 0 ± 0.11 0.97 ± 0.10 0.83 ± 0.017

1000/9000 0 ± 0.09 0.96 ± 0.07 0.82 ± 0.007

1000/9000 50/450 0 ± 0.17 1.01 ± 0.15 0.83 ± 0.030

100/900 0 ± 0.13 0.99 ± 0.10 0.83 ± 0.021

200/1800 0 ± 0.09 1.00 ± 0.07 0.83 ± 0.015

Numbers are mean ± standard error (SE) in validation samples, as observed in simulations (100–1000
repetitions for sufficiently stable results)
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regression coefficients were hence identical in both settings, and estimates may vary
only because of finite sample sizes at the development and/or validation. Finite
sample size implies a risk of overfitting at model development, and limited preci-
sion both at development and validation.

With 50% incidence of the outcome in very large development and validation
sizes (Ndev = 10,000 and Nval = 10,000), the standard errors (SE) are small: the SE
around the calibration-in-the-large and calibration slope b is 0.03, the SE around the
c statistic is 0.004. With 10% incidence, Ndev = 10,000 and Nval = 10,000, the SEs
are larger, corresponding to the lower number of events (1000 instead of 5000).

(a) We find that the average calibration-in-the-large is approximately 0 in all
scenarios; the standard error (SE) depends on the size of the development
sample and the size of the validation sample. With only 100 subjects for model
development, the SE is 0.28 if validation is in 10,000 subjects; if validation is in
50 or 100 subjects, the SE is much larger (±0.52 and ±0.44, respectively).
A quite low SE (±0.06) is found with at least n = 2000 for model development
and 10,000 for model validation, or with a reversal of this design (development
n = 10,000, validation n = 2000).

(b) The calibration slope b is below 1 when small samples are used for model
development (e.g., average b = 0.65 with Ndev = 100 and Nval = 10,000,
reflecting a clear need for shrinkage of coefficients, or use of penalization, see
Chap. 13). In contrast, small validation samples lead to an upward bias for the
slope (e.g., average b = 1.08 with Ndev = 10,000 and Nval = 100). The SE is
somewhat larger with small validation samples than with small development
samples (e.g., Ndev = 100: SE ± 0.15; Nval = 100: SE ± 0.25).

(c) The discriminative ability (c statistic) was 0.81 in the population, but smaller
with small development samples (e.g., c = 0.77 with Ndev = 100,
Nval = 10,000). Again, small validation samples led to an upward bias (e.g.,
c = 0.82 with Ndev = 10,000 and Nval = 100). The SE was markedly higher
with small validation samples (e.g., Ndev = 100: SE ± 0.017; Nval = 100:
SE ± 0.043). Apparently, small development samples lead to poor discrimi-
nating models, which can reliably be quantified with large validation
samples. Small validation samples lead anyway to uncertain estimates of
discrimination.

19.8.2 *Estimating Standard Errors in Validation Studies

In Table 19.6, we calculated standard errors (SEs) empirically by studying the
distribution of coefficients over samples. In Table 19.7, we use the asymptotic SE
for the performance measures. The SE of calibration-in-the-large and calibration
slope are obtained from the variance estimates in the logistic regression models
which have the linear predictor as the only independent variable. We may assume
that the parameters a and b are Normally distributed, such that the SE can directly
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be used for a 95% confidence interval. If calibration-in-the-large is expressed as an
observed over expected ratio, it needs a log transformation, which makes it a
univariate logistic regression coefficient [521].

The SE of the c statistic is calculated with standard formulas for rank order
statistics [223]. We found that the asymptotic SEs agreed rather well with the
empirical estimates, although one might consider the logit transformation when
calculating 95% confidence intervals for the c statistic [521].

19.8.3 Summary Points

• Variability is substantial with small development samples, and especially with
small validation samples.

• The effective sample size is largely determined by the number of events rather
than the total sample size.

• We can base 95% confidence intervals directly on SE estimates for calibration-
in-the-large and calibration slope, while the c statistic may benefit from a logit
transformation.

19.9 Design of External Validation Studies

The variability in performance has implications for the design and power of vali-
dation studies [438, 520]. We have seen in Chap. 17 that the bootstrap is generally
useful for internal validation purposes. Despite its inefficiency, some researchers

Table 19.7 Required differences between development and validation settings (effect sizes) for
80% power when validating a logistic regression model in a setting with 50 or 10% incidence of
the outcome

Scenario Events/N val a|b = 1 <> 1a slope b < 1b c < creference
b

Incidence 50% 50/100 ±0.67, OR = 1.96 <0.40 <−0.107

100/200 ±0.45, OR = 1.57 <0.58 <−0.077

250/500 ±0.31, OR = 1.36 <0.75 <−0.045

500/1000 ±0.22, OR = 1.25 <0.83 <−0.035

1000/2000 ±0.17, OR = 1.18 <0.88 <−0.022

Incidence 10% 50/450 ±0.45, OR = 1.61 <0.63 <−0.075

100/900 ±0.34, OR = 1.44 <0.75 <−0.052

200/1800 ±0.25, OR = 1.29 <0.83 <−0.037

OR odds ratio
a2-sided statistical test in a logistic regression model with the linear predictor based on the
development sample as an offset variable
b1-sided test in a logistic regression model with the linear predictor as the only predictor
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may like a split-sample approach to convince their readership. This design has
severe limitations: in small samples, we should aim to estimate internal validity,
which is better done by bootstrapping or cross-validation, e.g., 10 � 10-fold
(Chap. 17). In large samples, we should aim to estimate external validity and assess
heterogeneity in performance, which is well possible with a leave-one-out
cross-validation by site, study, or another meaningful nonrandom split [30, 31,
473, 546].

If a split is considered, a common ratio is 2/3 of the sample for model devel-
opment and 1/3 for validation. According to Table 19.6, a lower variability of
performance is obtained with a 50:50 split-sample design; but this design has more
optimism in calibration slope and discrimination. A 2:1 ratio may be a reasonable
balance between optimizing bias and variability.

For external validation we may sometimes choose a temporal validation design
[285]. We then face the same question on how to choose the size of the develop-
ment data set versus the size of the more recent validation set. With spatial vali-
dation, e.g., “leave-one-center-out” cross-validation, the validation sets may be
much smaller than the development set. The results in Table 19.6 show that this
makes the performance quite uncertain in each validation part per se. The hetero-
geneity in performance over splits may, however, be of particular interest, and can
be estimated by using multiple splits.

Another situation is that a model was published, and we simply wish to exter-
nally validate this model for our setting. Then, we do not have access to the
development data. We set up a fully independent external validation study, and
wonder about a reasonable sample size, accepting the developed model as rea-
sonable to test. This design requires some estimates of statistical power to detect
relevant differences in performance.

19.9.1 Power of External Validation Studies

Traditional power calculations depend on various quantities: statistical Type I and
Type II error; the variability in the quantity we want to test, and the “clinically
relevant” difference we do not want to miss. Type I error is conventionally set at
5%, and type II error at 20% (power 80%). The variability of performance measures
is shown in Table 19.6. Note that these are empirically derived standard errors for 1
specific logistic regression model (with 10 normally distributed predictors). In
practice, we may only know the asymptotic (i.e. estimated) standard error of some
measures such as the model intercept, which depends on the event rate and numbers
of events [460]. Clinically relevant differences may be context-dependent. For
logistic regression models we might consider a systematic over or underestimation
by 1.5 times the odds of the outcome (intercept + or − ln(1.5)), a calibration slope
less than 0.8 (difference 0.2 with ideal slope of 1), and a decrease in c statistic by
more than 0.05 (given the same case-mix). These numbers are arbitrary, and some
may consider a decrease in c statistic by 0.02 already relevant.
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Some specific issues come up in power calculations for validation studies. The
first is whether we should perform one-sample or two-sample tests. If we consider
the prediction model as a fixed system generating predictions, a one-sample test is
reasonable to test whether the validation performance deviates from hypothesized
values. For calibration, these values are obvious: 0 for calibration-in-the-large, and
1 for calibration slope. For the c statistic, we may consider the reference value
assuming identical case-mix in the validation setting (model-based performance
estimate, see Sect. 19.7).

Alternatively, we might consider a two-sample test, including uncertainty in the
estimate from the development setting. This is natural for the c statistic, and in fact
also for calibration statistics such as intercept (reference: 0) and calibration slope
(reference: 1), since the reference values of 0 and 1 are estimates in the develop-
ment setting rather than fixed quantities.

A further issue is whether we should perform 1-sided or 2-sided tests.
Calibration-in-the-large asks for a 2-sided test, since the incidence in the validation
setting may be higher or lower than predicted. But for calibration slope, we could
test for slope b < 1, rather than slope <> 1, assuming we are primarily interested in
overfitting. Similarly, only a decrease in discrimination is an interesting alternative
hypothesis. Finally, one might argue that we should consider the assessment of
validity as an assessment of equivalence in model performance: is the observed
performance in the validation in line with our expectations? This implies that we
change the Null hypothesis to stating that the model is invalid, and test whether the
model performance is within reasonable limits from the expected value. The rea-
sonable limits may be context-dependent, similar to defining “clinically relevant”
differences in traditional sample size calculations.

19.9.2 *Calculating Sample Sizes for Validation Studies

We first approximate the statistical power given the standard error under the null
hypothesis, i.e., the model was actually valid in the development and validation
setting. We consider standard errors for model development with a large devel-
opment sample size, such that the predominant source of variability is the validation
sample size in Table 19.7. We might then use 1-sample tests for all performance
measures. In situations with relatively small development size, a 2-sample test
might be more appropriate.

One and two-sided tests may be used as follows:

• For calibration-in-the-large, it may reasonable to use a 2-sided test for: a|
b = 1 <> 1.

• For calibration slope, a 1-sided test may be used to test slope b < 1.
• For the c statistic, a 1-sided test may be used for deterioration in performance

(c < creference).
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The critical values1 for power calculations are determined by Type I and Type II
error, which we set at 5% (1-sided or 2-sided) and 20% (1-sided). The critical value
is 1.96 + 0.84 = 2.80 for 2-sided tests, and 1.64 + 0.84 = 2.49 for 1-sided tests.
We multiply these critical values with the SE to obtain the minimum differences
that can be detected with 80% power (Table 19.7).

As expected, small validation sizes only reach 80% power to detect quite a
substantial invalidity. For example, if we validate a model in a sample with 50
events and 50 nonevents, we have 80% power to detect a calibration-in-the-large
problem with approximately twice too high, or twice too low predictions (Odds
Ratio 1.96); a dramatically poor calibration slope (less than 0.4), and a decrease in
c statistic over 0.1 (Table 19.7). To detect a more modest calibration-in-the-large
problem, such as 1.25 times too low or too high predictions, we would need at least
500 events and 500 nonevents (total n > 1000). This sample size would also have
80% power for a slope less than 0.83, and a decrease in c by 0.035. With more
nonevents (incidence of outcome 10%), the picture is slightly better in terms of the
number of events required, but the total sample size should be at least 2000 (200
events) for reasonable power.

In further analysis, we simulate power in the case that the developed prediction
model is invalid for the validation setting. We create a model with coefficients 0.76
for 10 normally distributed predictors x1 to x10, and validate this model in a setting
where the coefficients are 0.5 or 1.5 times as large. In the validation setting, cali-
bration-in-the-large is fine (average 0), but the slope is 0.84 instead of 1, and the
c statistic is 0.778 instead of 0.821 in the development setting (change −0.043).

If we validate this model with 500 events among 1000, Table 19.7 suggests that
we may expect 80% power if the slope would be <0.83 in the validation setting;
this is confirmed in Table 19.8 (78% power to detect a deterioration in slope, if
slope b < 0.84). For a decrease in c statistic by −0.043, we expect that more than
250 events and 250 nonevents are required (Table 19.7). Indeed, the statistical
power is 87% with 500 events (Table 19.8).

Table 19.8 Power for testing slope < 1 (true value 0.84) and a c statistic decrease of −0.043 (true
decrease 0.821–0.778)

Scenario Events/Nval Slope b 0.84
SE, power

c statistic −0.043
SE, power

Incidence 50% 50/100 0.20; 15% 0.046; 11%

100/200 0.14; 25% 0.032; 24%

250/500 0.088; 50% 0.021; 57%

500/1000 0.062; 78% 0.014; 87%
1000/2000 0.044; 97% 0.010; 99%

Bold: example discussed in the text

1Critical value: the value that a test statistic must exceed for the null hypothesis to be rejected.
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19.9.3 Rules for Sample Size of Validation Studies

Various studies have suggested rules of thumb for sample sizes of validation
studies. These often relate to the number of events required, which is the limiting
factor for the effective sample size with low event rates. As noted in Chap. 3, the
total number of patients n is also relevant; combined the numbers of events and total
n determine the event rate. So, 100 events among 1000 imply more statistical power
than 100 among 200 patients. The number of events is the key factor for validation
studies in low incidence settings.

Most studies support the claim that at least 100–200 events are required for
reasonable statistical power [104, 423, 533, 643]. Another study suggested a formula
that allows the user to specify the sample size, with a focus on an expected cali-
bration index (ECI) [416]. This index is based on the squared difference between the
observed risk (obtained by smooth calibration curves) and the risk predicted by the
model. If a model is well calibrated, it will have a low ECI value. If we require the
calibration index to be under some value, such as ECI < 1.25, the required sample
size was 69 events among 640. With 100 events (among 938), calibration perfor-
mance could more reliably be determined. A recent simulation study started from a
reported split-sample validation with only 3 events among 10 patients [533]. Such as
low number is obviously too low for any meaningful interpretation. Expanding
validation sizes to 100 events or 500 events showed a much narrower variance of the
c statistic for models with true c statistics of 0.7, 0.8, or 0.9 (Fig. 19.10).

Fig. 19.10 Estimates of c statistics in 100,000 simulations of validation of a prediction model with a
true c-statistic (indicating discriminative ability) of either 0.7, 0.8, or 0.9, in a situation with 500
events (1167 nonevents), 100 events (233 nonevents), or 3 events (7 nonevents). We note an
extremely wide distribution of estimates with 3 events, with a spike at 1.0 (perfect separation) [533]
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19.9.4 Summary Points

• The variability of external validation assessments depends on the size of the
development sample and the size of the validation sample.

• For statistical testing, we may accept the prediction model as given, and hence
perform 1-sample tests, with one-sided testing for a calibration slope < 1 and a
decrease in c statistic.

• For such tests to have reasonable power, we need at least 100 events and at least
100 nonevents in external validation studies, but preferably more (>250 events).
With lower numbers the uncertainty in performance measures is large.

19.10 Concluding Remarks

The performance of a prediction model in a new setting (“generalizability“, or
“transportability”) essentially depends on two aspects: (1) the validity of the
regression coefficients, and (2) the case-mix in the validation setting.

(1) The validity of regression coefficients can be assessed by comparing regression
coefficients between settings. Indeed, we note that some validation studies
report on the coefficients in their validation sample and compare these to the
previous estimates from a development sample. With relatively small devel-
opment and validation samples, it would be highly coincidental if coefficients
agreed perfectly. Even if the two samples came from exactly the same under-
lying population, chance processes will cause the coefficients in both samples to
differ from each other to some extent, with some coefficients larger and some
smaller than expected from the development sample. Moreover, correlations
between predictors may make that differences in estimated coefficients have
ultimately limited impact on estimated probabilities. True differences in coef-
ficients between settings may be due to differences in selection of patients, the
definition of predictors and outcome, and other reasons.

(2) Differences in case-mix between development and validation setting are usually
considered informally, by comparing patient characteristic in a kind of
“Table 19.1”. One usually makes only informal comparisons to the case-mix in
the development sample. Some rather simple statistical measures have previ-
ously been proposed for an assessment of comparability, such as the “M
statistic” to compare trauma populations [70]. With this approach, predicted
probabilities of patients are grouped, for example as 0–25%, 26–50%, 51–75%,
76–90%, 91–95%, and 96–100%. The fraction of patients in these groups at
validation is compared to the fraction at model development. The smaller of the
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two fractions is summed over all groups. This creates a number ranging from 0
to 1. M-values close to 1 indicate a perfect match with the development
case-mix, while 0 indicates a total discrepancy between the two samples. An
arbitrary cutoff point of 0.88 has been suggested, and studies with M-values
below 0.88 should be “interpreted cautiously” [70].
A more interesting approach is to develop a membership model, if we have
access to both the development and validation data. We can then predict
membership of the validation sample in contrast to the development sample
[130]. If such prediction is well possible, as reflected in a high membership
c statistic, the validation sample differs substantially from the development
data. If the validation and development sample arose at random from the same
underlying population, the expected membership c statistic is 0.5.

We followed a simple and systematic approach to study the influence of differences
in case-mix and regression coefficients on validated model performance.
Differences in predictor distributions (“X”) do not affect calibration, and only dis-
crimination aspects, as long as the model is correctly specified for the range of
X values examined. If nonlinearities and/or interactions had been missed at model
development, we can imagine that shifting to another predictor distribution may
impact on calibration as well. Furthermore, we may assume that a very different
distribution in X implies that differences in missed predictors (“Z”) are also likely.
Differences in missed predictors between settings may severely invalidate a pre-
diction model, both with respect to calibration (especially calibration-in-the-large)
and discrimination. When predictions are systematically miscalibrated, we can
make systematically wrong decisions based on the model [606]. This may lead to a
negative Net Benefit of using the model, compared to a default policy without using
the model. It is therefore important to perform external validation studies [56, 451].

We also noted that the distribution of predictors can formally be taken into
account in the calculation of reference values for model performance, given that the
model is valid in the validation sample. This may be very useful to obtain insight
into what is happening at validation: differences in case-mix and/or differences in
regression coefficients?

Finally, we studied design issues of validation studies for prediction models for
binary outcomes. If a temporal split is made, a 2:1 ratio may be reasonable. This
limits overfitting at development, and still gives reasonable power at validation. As
a rule of thumb, the validation data set should contain at least 100 events and 100
nonevents for reasonable power [104, 643]. For the detection of smaller but still
quite relevant invalidity, higher sample sizes are advisable, e.g., 250 events and 250
nonevents, or 100 events and 900 nonevents. More theoretical approaches are
discussed elsewhere for specific contexts [614, 683].
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Can we anticipate poor validity? The PROBAST (Prediction model Risk Of Bias
ASsessment Tool) group recently proposed a set of 20 signaling questions across 4
domains (participants, predictors, outcome, and analysis) to assess the risk of bias
and applicability concerns [389]. The intent is to support systematic reviews of
prediction modeling studies, where it is important to examine the risk of bias and
applicability to the intended population and setting. The 20 questions were based on
expert opinion, and no support is available as yet that poor scores relate to poor
validity (see Chap. 24). This is in contrast to therapeutic [679] and diagnostic [337,
480] studies, where specific design characteristics have been found to relate to bias.
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Questions

19:1 Differences between populations (Table 19.1)
Consider a model that is developed with logistic regression analysis in a
sample of 100 patients in a clinical setting. The model is validated in a
screening setting.

(a) What would you expect for the event rate (prevalence of outcomes)?
One characteristic is measured more precisely in the screening setting,
with a lower detection threshold for being labeled a “positive” predictor
value. What differences would you expect with respect to:

(b) Case-mix, i.e., the distributions of predictor values
(c) Regression coefficients

19:2 Validity of a model
What would happen to the calibration and discrimination of a prediction
model if

(a) units of measurement were wrong, e.g., mg/dl versus mmol/L?
(b) a simpler measurement device was used, with random deviations

compared to the measurements in the development setting;
(c) a more heterogeneous case-mix was present in the validation setting;
(d) a treatment was used which was very effective for all patients;
(e) a treatment was used which was very effective for one subgroup;

19:3 Influence of case-mix on clinical usefulness
A less severe case-mix led to a higher Net Benefit than a more severe
case-mix (NB 0.104 vs. 0.006, Fig. 19.3). How do you explain this finding?

19:4 Disturbance of calibration
We found that calibration was not disturbed when the validation setting
consisted of (1) more or less severe patients according to predictor values, or
(2) more or less heterogeneous patients according to observed or missed
predictor values.

(a) What does disturb calibration-in-the-large?
(b) What does disturb the calibration slope?

19:5 Discrimination and clinical usefulness

(a) Why is discrimination a necessary but not sufficient condition for
clinical usefulness?

19:6 Reference values for performance (Sect. 19.7)
Reference values indicate a model’s performance under the condition that the
model predictions are valid in the validation sample.

(a) How is it possible that the reference value for performance can be better
than the performance estimate in the development setting?
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19:7 Power of validation studies (Table 19.7)
Suppose we wish to detect a possible deterioration in calibration-in-the-large
with an odds ratio of 1.5, and a calibration slope < 0.8.

(a) What sample size is required with 50% event rate for each of these
performance measures?

(b) What sample size would you recommend?

19.10 Concluding Remarks 397



Chapter 20
Updating for a New Setting

Background A prediction model ideally provides valid predictions of outcome for
individual patients at another setting than where the model was developed, e.g.,
differing in time and place. The validity of predictions can be assessed by com-
paring observed outcomes and predictions when empirical data from this external
setting are available. Various patterns of invalidity may, however, be observed as
we have seen in Chap. 19. Detection of calibration-in-the-large problems should
have top priority since miscalibration can cause systematically wrong
decision-making with the model (negative net benefit). Obviously, we may sub-
sequently aim to update the model to improve predictions for future patients from
the new setting. We discuss several approaches for updating a previously developed
model. The risk is that simply re-estimating all regression coefficients in a model
might replace reliable but slightly biased estimates by unbiased but very unreliable
ones, particularly if the validation data set is relatively small.

We start with considering updating methods that focus on recalibration (reesti-
mation of the intercept, and/or updating of the slope of the linear predictor). Next,
we turn to more structural model revisions (re-estimation of some or all regression
coefficients, model extension with more predictors). For illustration, we consider
case studies with updating of a previously developed logistic regression model, a
regression tree, and a previously developed Cox regression model. We conclude
that parsimonious updating methods may often be preferable to more extensive
model revisions, which should only be attempted with relatively large validation
samples, in combination with shrinkage or penalization of differences between the
updated model and the previously developed model.
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20.1 Updating Only the Baseline Risk

The external validity (or generalizability) of model predictions is important when a
previously developed model is applied in another setting, such as another medical
center, and/or in a more recent time period. When empirical data are available, we
can assess the external validity according to measures such as calibration and
discrimination. Also, we may consider updating a previously developed model,
such that the prediction model is adjusted to local and/or contemporary
circumstances.

The first issue to consider is calibration-in-the-large. The mean observed out-
come should be equal to the mean of the predicted outcomes; for a survival out-
come, the number of observed deaths should agree with the predicted number.
Calibration-in-the-large is controlled by the model intercept for continuous and
dichotomous outcomes and by the baseline hazard function in a survival model.
Several approaches can be followed to adjust the intercept for a new setting.

20.1.1 Simple Updating Methods

A simple approach is to consider the mean observed outcome in the new setting,
and compare this to the mean of the development setting. The difference is used to
update the baseline risk. This is a naïve Bayesian approach, based on a univariate
comparison of outcomes incidences in the development and validation setting. This
approach has been shown to work reasonably well in a number of case studies,
suggesting that differences in mean outcome are often largely attributable to factors
outside the model [92, 392].

Similarly, it is possible to present a prediction model with the explicit option to
use a setting-specific intercept. An example is the score chart for operative mortality
for elective aortic aneurysm surgery (Chap. 14) [555]. Another example is a model
to guide the indication for a CT scan in patients with minor head injury [519]. The
model was developed in a setting with 243 of 3181 (7.6%) presenting with
intracranial traumatic lesions. The model was presented with a range from 2.5 to
15% for the “prior probability” of an intracranial traumatic lesion. Such a simple
adjustment is directly applicable if the case-mix between development and vali-
dation samples is fully comparable with respect to the predictors in the model.
A variant is to use the mean outcome and the mean of predictor values in the
calculation of the required update of the intercept [348]. The intercept adjustment
reflects differences between settings in other aspects than captured by the predic-
tors; these were referred to as Z variables in the previous chapter, in contrast to the
predictors X in the model.

A special case is infectious disease prediction, where seasonal patterns are
important and epidemics occur. These background incidences have an impact on
the intercept of prediction rules for infectious diseases [162, 455].
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20.2 Approaches to More Extensive Updating

In addition to calibration-in-the-large, further aspects of calibration need to be
considered. These may conveniently be studied in the context of a general recali-
bration model, where the linear predictor based on the previously developed model
is the only covariate, as discussed in previous chapters [114]. This model has only
two free parameters: intercept a and calibration slope boverall. A simple updating
method might focus on recalibration, i.e. that the updated model has a new intercept
a and new regression coefficients based on the multiplication of the original
coefficients with boverall. This recalibration approach has been followed for updating
of a previously developed model in the context of risk-adjustment [131, 272] and
prediction [176, 380, 514, 623]. We may also consider more extensive updating
methods (“model revision”), such as reestimation of regression coefficients of some
or all predictor variables, [515, 584] and considering more covariables for the
inclusion of the model (“model extension”, following terminology proposed by Van
Houwelingen) [623]. These approaches are illustrated in the following section with
a case study in the GUSTO-I data.

20.2.1 Eight Updating Methods for Predicting Binary
Outcomes

We consider 8 updating methods for predictions of binary outcomes (Table 20.1).
For illustration, we assume that a previously developed logistic regression model is
available with 8 predictors, but that 8 more are of interest as potential predictors for
the validation setting. The described methods generalize to updating of any pre-
viously developed prediction model. The methods are ordered according to the
number of parameters that are estimated for updating of the original model [536].

• No updating

The first method is not to allow for any updating, that is to keep all regression
coefficients fixed at their original value, including the intercept. The linear predictor
lp for method 1 (lp1) is calculated as

lp1 ¼ aorig þ borig � X1::8;

where aorig indicates the intercept from the original study; borig the regression
coefficients from the original study; and X1…8 the 8 predictors in the new (vali-
dation) sample. This method provides a reference upon which improvement should
be obtained with any updating method.
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• Recalibration

The second and third methods are simple recalibration methods. Updating of the
intercept a intends to correct “calibration-in-the-large”, i.e. to make the average
predicted probability equal to the observed overall event rate:

lp2 ¼ anew þ lp1:

Hereto we may fit a logistic regression model in the validation sample with the
intercept a as the only free parameter and the linear predictor lp1 as an offset
variable (i.e., the slope is fixed at unity).

In method 3, we update both the intercept a and the overall calibration slope
boverall by fitting a logistic regression model in the validation sample with lp1 as the
only covariable:

lp3 ¼ anew þ boveralllp1:

This method has also been labeled “logistic calibration” [227].

• Model revision

Methods 4 and 5 reestimate more parameters in the model, referred to as “model
revision”. With method 4, we first perform method 3, and then test whether pre-
dictors have an effect that is clearly different in the validation sample. We hereto

Table 20.1 Updating methods considered for a previously developed TIMI-II logistic regression
model with 8 predictors in GUSTO-I where 8 more predictors were available [536]

Nr Label Notation Predictors
considered

Parameters
tested

Parameters
estimated

No updating

1 Apply original prediction
model

– 8 0 0

Recalibration

2 Update intercept a 8 0 1

3 Recalibration of intercept
and slope

a + calibration
slope boverall

8 0 2

Model revision

4 Recalibration + selective
reestimation

a + boverall + c1..8|
p� 0.05

8 8 2–9

5 Reestimation a + b1..8 8 0 9

Model extension

6 Recalibration + selective
reestimation + selective
extension

a + boverall + c1..8|
p� 0.05 + b9..16|
p� 0.05

16 16 2–17

7 Reestimation + selective
extension

a + b1..8 + b9..16|
p� 0.05

16 8 9–17

8 Reestimation + extension a + b1..16 16 0 17
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perform likelihood ratio tests of model extensions in a forward stepwise manner,
considering the predictor with the strongest difference first. We may extend the
revised model until all differences in predictive effects have p > 0.05 for each
predictor (or another p-value, or use AIC). As a maximum, 7 predictors could be
selected, since boverall was always included in the model. The number of estimated
parameters could hence vary between 2 and 9. The linear predictor becomes

lp4 ¼ anew þ boveralllp1 þ c1::8jp� 0:05 � X1::8jp� 0:05;

where a maximum of 7 out of the 8 predictors is selected, and ci indicates the
deviation from the recalibrated coefficient: ci = bi − boverall lp1. We estimate ci with
a logistic regression model in the validation sample with the recalibrated linear
predictor lp3 as an offset variable (i.e. the slope is fixed at unity).

With method 5 we fit the 8-predictor model in the validation data:

lp5 ¼ anew þ bnew � X1::8;

where anew and bnew indicate the intercept and 8 regression coefficients for the
validation sample. Note that method 4 falls in between method 3 and 5: if selection
of ci is extremely stringent (p-value of 0), method 4 is equal to method 3 (no
individual coefficients reestimated), and if selection is extremely liberal (p-value of
1), method 4 is equal to method 5 (all individual coefficients reestimated). We label
method 4 recalibration + selective reestimation.

• Model extension

Methods 6–8 consider additional predictors: “model extension” methods.
Method 6 is a variant of method 4: we recalibrate the original model with an
intercept a and the overall calibration slope boverall, and test 16 predictors for
statistically significant effects. The linear predictor becomes

lp6 ¼ anew þ boveralllp1 þ c1::8jp� 0:05 � X1::8jp� 0:05 þ c9::16jp� 0:05 � X9::16jp� 0:05;

where at most 15 out of the 16 predictors are selected.
Method 7 is a variant of method 5, where we reestimate the original model and

selectively extend the model with more predictors X9..16 that have statistically
significant predictive effects in the validation sample:

lp7 ¼ anew þ bnew � X1::8 þ c9::16jp� 0:05 � X9::16jp� 0:05:

With method 8 we fit a model with 16 predictors, i.e., 8 from the original model
and 8 additional predictors:

lp8 ¼ anew þ bnew � X1::16
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20.3 Validation and Updating in GUSTO-I

For an illustration of updating methods, we consider a prediction model for patients
with acute MI that was developed with logistic regression analysis in the TIMI-II
trial [395]. This trial included 3339 patients treated in 50 US centers between 1986
and 1988 [583]. The model was developed with backward stepwise selection
methods and some continuous predictors were dichotomized. Although these
approaches may be considered quite suboptimal for model development [563], we
might consider the “TIMI-II model” relevant for generating predictions in
GUSTO-I.

The TIMI-II model included eight dichotomous predictors: shock, age > 65
years, high risk (anterior infarct location or previous MI), diabetes, hypotension
(systolic blood pressure < 100 mmHg), tachycardia (pulse > 80 beats per minute),
relief of chest pain > 1 h, female gender. The outcome was 42-day mortality, in
contrast to 30-day mortality in GUSTO-I [1, 329]. We first validated this model in
patients from the GUSTO-I trial (n = 40,830, Fig. 20.1).

20.3.1 Validity of TIMI-II Model for GUSTO-I

We note that the observed mortality in GUSTO-I is systematically lower than
predicted (Fig. 20.1). This may be attributed to the slight difference in outcome
definition (30-day mortality in GUSTO-I versus 42-day mortality in TIMI-II) and
improvements in care for acute MI patients.

The validity is further assessed by comparing the regression coefficients between
TIMI-II and GUSTO-I (Table 20.2). We note that the coefficients are reasonably

Fig. 20.1 Calibration plot of
the TIMI-II model (developed
in n = 3339) [395] to predict
30-day mortality after acute
myocardial infarction in
GUSTO-I (n = 40,830) [329].
Triangles are based on tenths
of patients with similar
predicted probabilities. The
distribution of predicted
probabilities is shown at the
x-axis (vertical lines, stratified
by 30-day status). We note
that the predicted risks are
systematically too high; e.g.,
the highest tenth has a mean
predicted probability of 35%
while the observed frequency
is 27% [536]
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similar, although the coefficients of Age > 65 and Hypotension are somewhat larger
in GUSTO-I, and those of Shock, High risk, and Diabetes smaller.

We further study the estimated coefficients in smaller parts of the GUSTO-I data
set (Table 20.2). A total of 23,034 patients are included from the US. Within the
US, 2188 patients are from the West region, including 429 patients in “sample 5”.
The logistic regression coefficient of diabetes is close to zero in the West region and
negative in sample 5. The effect of sex has vanished in the smallest sample.

20.3.2 Updating the TIMI-II Model for GUSTO-I

We illustrate the application of the updating methods 2, 3, and 4 in Table 20.3.
Corresponding to the observed miscalibration in Fig. 20.1, the intercepts are neg-
ative (around –0.3) when method 2 is applied, with somewhat more extreme esti-
mates in the smaller validation sets. The corresponding odds ratios are between 0.63
in sample 5 (OR = e−0.47, p = 0.03) and 0.76 in the total GUSTO-I data set
(OR = e−0.28, p < 0.001), indicating that the predicted probabilities are approxi-
mately 1.3–1.6 times too high. The calibration slopes are close to 1 (method 3).

Method 4 updates the original model as in method 3 plus an estimation of
coefficients that are clearly different from overall recalibrated values. We find that
the differences in effects of Age > 65, High risk, Diabetes, Hypotension, and
Tachycardia are statistically significant in the total GUSTO-I data set. No statisti-
cally significant deviations are observed in the smallest sample, obviating a clear
need for reestimation of individual coefficients (Table 20.3).

The results of method 5, reestimating all model coefficients, were already shown
in Table 20.2. For updating methods 6–8, 8 additional predictors are considered.
These are height, weight, hypertension, smoking, hypercholesterolemia, previous
angina, family history, and ST elevation in > 4 leads. These 8 additional predictors
are to some extent correlated to the 8 TIMI-II predictors. In a 16-predictor model,

Table 20.2 Logistic regression coefficients ± standard error in the TIMI-II data and in parts of
the GUSTO-I data [536]

Predictors TIMI-II
n = 3339

GUSTO-I
Total
n = 40,830

GUSTO-I
US patients
n = 23,034

GUSTO-I
W region
n = 2188

GUSTO-I
Sample 5
n = 429

Shock 1.79 ± 0.29 1.60 ± 0.08 1.56 ± 0.11 2.39 ± 0.41 2.96 ± 0.92

Age > 65 0.99 ± 0.18 1.43 ± 0.05 1.34 ± 0.06 1.64 ± 0.22 1.37 ± 0.49

High risk 0.92 ± 0.26 0.71 ± 0.04 0.70 ± 0.06 0.85 ± 0.21 0.76 ± 0.50

Diabetes 0.74 ± 0.19 0.28 ± 0.05 0.31 ± 0.07 0.07 ± 0.25 –0.11± 0.64

Hypotension 0.69 ± 0.27 1.19 ± 0.06 1.19 ± 0.07 1.22 ± 0.25 1.39 ± 0.57

Tachycardia 0.59 ± 0.16 0.62 ± 0.04 0.61 ± 0.06 0.65 ± 0.20 0.88 ± 0.49

Time to relief 0.53 ± 0.20 0.50 ± 0.05 0.51 ± 0.06 0.26 ± 0.21 0.68 ± 0.54

Sex 0.47 ± 0.19 0.43 ± 0.04 0.47 ± 0.06 0.62 ± 0.20 –0.04 ± 0.51

Intercept –4.47 ± 0.35 –4.82 ± 0.06 –4.84 ± 0.09 –5.09 ± 0.30 –5.19 ± 0.72
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the 8 additional predictors are each statistically significant (p < 0.01) in the full
GUSTO-I data set (n = 40,830) and the US part (n = 23,034), but their predictive
effects are smaller than those of the 8 predictors from the TIMI-II model. In the
West region, only weight and ST elevation have statistically significant incremental
effects, while HTN and ST elevation had statistically significant effects in the
smallest sample.

20.3.3 Performance of Updated Models

We hope that updating improves the performance of the prediction model. The
calibration problem as noted in Fig. 20.1 is solved when the intercept is updated (all
methods except method 1). The c index of the TIMI-II model was around 0.78 with
methods 1–3 (Table 20.4). Updating of some (method 4) or all (method 5) of the
coefficients led to a somewhat higher apparent discriminative ability (c around 0.80
in the larger samples). The extension of the TIMI-II model with more predictors
increased the apparent discriminative ability further, although the increase was
small in the total data set (from 0.79 to 0.80).

Table 20.3 Illustration of updating of the TIMI-II model in parts of the GUSTO-I data according
to calibration methods (method 2 and 3) and model revision with statistically significant different
coefficients (method 4)

GUSTO-I
Total
n = 40,830

GUSTO-I
US patients
n = 23,034

GUSTO-I
Region 1
n = 2188

GUSTO-I
Sample 5
n = 429

Recalibration:
Method 2

a: intercept –0.28 ± 0.02 –0.34 ± 0.03 –0.36 ± 0.09 –0.47 ± 0.22

Method 3

a: intercept –0.28 ± 0.03 –0.39 ± 0.05 –0.10 ± 0.16 –0.26 ± 0.47

boverall: calibration slope 0.99 ± 0.02 0.98 ± 0.03 1.13 ± 0.09 1.11 ± 0.22

Model revision:
Method 4a

a: intercept –0.76 ± 0.15 –0.62 ± 0.17 –0.25 ± 0.36 –0.26 ± 0.47

boverall: calibration slope 0.91 ± 0.04 0.94 ± 0.04 1.14 ± 0.12 1.11 ± 0.22

c1: shock +0 +0 +0 +0

c2: age > 65 +0.53 ± 0.06 +0.42 ± 0.07 +0.49 ± 0.24 +0

c3: high risk –0.12 ± 0.06 –0.17 ± 0.07 +0 +0

c4: diabetes –0.39 ± 0.06 –0.38 ± 0.08 –0.79 ± 0.27 +0

c5: hypotension +0.56 ± 0.07 +0.52 ± 0.08 +0 +0

c6: tachycardia +0.09 ± 0.05 +0 +0 +0

c7: time to relief +0 +0 +0 +0

c8: sex +0 +0 +0 +0
aThe updated regression coefficients bi can be calculated as boverall * bi, TIMI + ci
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Since the apparent performance may be a severely optimistic estimate of per-
formance in new patients, we studied the internal validity of the updated prediction
models as identified with method 3, 5, and 8 for the smallest sample (n = 429).
Models were developed in 500 bootstrap samples (drawn with replacement from the
validation sample) and tested in the validation sample to estimate the optimism in
apparent performance measures. The optimism was smallest for the 2-parameter
model (method 3), and largest with the 17 parameter model (method 8), where
discrimination was expected to decrease from 0.85 to 0.77. The highest internal
validity was found for method 3, with optimism-corrected c 0.77. This suggests that
a model with updating of fewer parameters may perform better in independent data
than a more extensively updated model. This issue is systematically studied in
Sect. 20.4.

20.3.4 *R Code for Updating Methods

We start with defining 2 models in the GUSTO-I sample (sample 5, n = 429):

full8s <- lrm(DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX,data=gustos,x=T,y=T)
fulls  <- update(full8s, .~.+HEI+WEI+HTN+SMK+LIP+PAN+FAM+ST4)  

Table 20.4 Number of parameters estimated and apparent performance of updated versions of the
TIMI-II model in parts of the GUSTO-I data. Results are shown for methods 1–8 as defined in
Table 20.1

Method GUSTO-I
Total
n = 40,830

GUSTO-I
US patients
N = 23,034

GUSTO-I
W region
n = 2188

GUSTO-I
Sample 5
n = 429

Parameters estimated 1
2
3
4
5
6
7
8

0
1
2
7
9
17
17
17

0
1
2
6
9
13
17
17

0
1
2
4
9
5
11
17

0
1
2
2
9
3
11
17

Discrimination
(c statistic)

1
2
3
4
5
6
7
8

0.782
0.782
0.782
0.793
0.793
0.802
0.802
0.802

0.780
0.780
0.780
0.791
0.790
0.800
0.800
0.800

0.795
0.795
0.795
0.810
0.819
0.819
0.828
0.830

0.776
0.776
0.776
0.776
0.793
0.790
0.828
0.852
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The 8 coefficients in TIMI-II model were

timi8.par <- c(-4.465, 1.79, 0.99, 0.92, 0.74, 0.69, 0.59, 0.53, 0.47)

For method 1, we calculate the linear predictor:

lp1 <- full8s$x %*% timi8.par[-1] + timi8.par[1]

For methods 2 and 3, we update the intercept or recalibrate the model:

lp2 <- lrm.fit(y=full8s$y, offset=lp1)$linear.predictor 
lp3 <- lrm.fit(y=full8s$y, x=lp1)$linear.predictor 

For method 4, we test for deviations of effects, while always updating the intercept
and slope:

for (i in 1:8) # 8 predictors, examine each for different effect gamma
{fit4 <- lrm.fit(y=full8s$y, x=cbind(full8s$x[,i], lp1)) 
... } # some printing of results of fit4

For methods 5 and 8, we simply refit the model

lp5 <- full8s$linear.predictor 
lp8 <- fulls$linear.predictor 

For methods 6 and 7 we again examine contributions of predictors beyond the effect
of lp1. For example, method 7 works like

for (i in 9:16) # 8 more predictors, examine effects
{fit7 <- lrm.fit(y=fulls$y, x=cbind(fulls$x[,i], full8s$x)) 
... } # some printing of results of fit7

20.4 Shrinkage and Updating

Traditionally, regression coefficients are shrunken towards zero (see Chap. 13). For
model updating, we may consider shrinkage of regression coefficients of revised
models towards their recalibrated values [536, 623]. This implies that some
regression coefficients are pulled to higher values rather than towards zero.
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In traditional model development, a simple heuristic shrinkage factor can be
defined as (model v2 − df)/model v2 (see Chap. 13) [109]. Here model v2 refers to
the difference in −2 log-likelihood between a model with and without predictors,
and df refers to the degrees of freedom used by the predictors. We can use the same
formula in the context of model revision (method 4 and 5) and model extension
(methods 6–8, Table 20.1). The model v2 then refers to the difference in −2
log-likelihood between a model with reestimated predictors and the recalibrated
model, and df corresponds to the difference in degrees of freedom of these models.
Regression coefficients can be pulled towards their recalibrated values as obtained
with method 3. A motivation for this shrinkage approach was developed by Van
Houwelingen and is presented at www.clinicalpredictionmodels.org.

20.4.1 Shrinkage Towards Recalibrated Values in GUSTO-I

We apply shrinkage towards recalibrated values as obtained with method 3 for the
TIMI-II model, when applied in GUSTO-I. Re-estimated coefficients for the first 8
predictors are pulled towards boverall * bi,TIMI with methods 4 and 5. The coefficients
of the additional 8 predictors considered in methods 6–8 are shrunken towards zero,
since these predictors were not included in the TIMI-II model. The intercept of the
shrunken model was re-estimated to ensure that the sum of predicted probabilities
equaled the sum of observed outcomes (in our case: deaths). When stepwise
regression is applied to select predictors for the model, the degrees of freedom of the
candidate predictors should be considered in the formula [227, 627].

As an alternative, we may shrink coefficients towards the original TIMI coeffi-
cients. This is also straightforward with penalized maximum likelihood for model
re-estimation. Hereto we use the original model predictions as an offset variable in
the re-estimated logistic regression model.

For illustration, we consider updating of the TIMI-II model for the West region
in GUSTO-I (n = 2188, Table 20.5). Here, re-estimated coefficients were some-
what different from the recalibrated coefficients, with larger effects for Shock, Age,
and Hypotension, and smaller effects for Diabetes and Time to relief. The recali-
brated model v2 was 170, which increased by 24 to 194 for the re-estimated model.
The traditional shrinkage factor is (model v2 − df)/v2 = (194–8)/194 = 0.96. This
factor is used to shrink coefficients towards zero. The recalibration shrinkage factor
is (24–7)/24 = 0.71. This factor is used to shrink coefficients towards the recali-
brated values:

model5s ¼ anew þ boverall � bTIMI; 1::8 þ s � bWest; 1::8� boverall � bTIMI; 1::8

� �
;

Here, anew is the new model intercept, boverall is the recalibration slope, bTIMI, 1..8

are the 8 coefficients from the TIMI model, s is the shrinkage factor, and bWest, 1..8

are the coefficients optimized for the West region.
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Equivalently, we can write the shrunk model as a weighted sum of recalibrated
and TIMI coefficients:

model5s ¼ anew þ s � bWest; 1::8 þ 1�sð Þ � boverall � bTIMI; 1::8:

With s = 0.71, it is clear that the new model coefficients bWest, 1..8 as estimated in
the West region are more relevant than the coefficients bTIMI, 1..8 from TIMI (weight
1 − 0.71 = 0.29).

We can also examine the improvement of re-estimated coefficients over using
the original TIMI coefficients; this appears to be associated with an increase in
model v2 by 27. With df = 8, the shrinkage factor towards the original TIMI
coefficients becomes (model v2 − df)/v2 = (27–8)/27 = 0.70.

The final coefficients are surprisingly similar when shrunken to zero or pulled to
recalibrated values. The largest discrepancy is for Diabetes, where the re-estimated
coefficient was close to zero (0.07), while the recalibrated value was much higher
(0.84, Table 20.5). Shrinkage towards zero leaves the coefficient at 0.07, but pulling
towards the recalibrated value of 0.84 leads to a value of 0.29. Pulling towards
TIMI-II coefficients leads to slightly smaller coefficients. Shrinkage towards zero is
in the spirit of Bayesian analysis with an uninformative prior (coefficients are
assumed to be zero); Pulling toward (recalibrated) coefficients assumes that the
TIMI-II model is relevant for the new setting (coefficients are assumed to be close
to the TIMI-II values).

For comparison, we examine results from penalized maximum likelihood pro-
cedures (Table 20.5). In the re-estimated 8-predictor model, the optimal penalty
factor is 6. The same value is found when the TIMI coefficients are used as an offset
variable in the logistic regression model. The resulting penalized coefficients in the
standard formulation of the penalized model are quite similar to the “shrunken to
zero” coefficients. When penalized towards TIMI-II values, all coefficients are
slightly larger, and closer to the re-estimated coefficient values.

Table 20.5 Logistic regression coefficients in updated models for the West region of GUSTO-I
(n = 2188)

Predictor Reestimated Recalibrated TIMI Shrunken towards Penalized
towards

zero recal TIMI zero TIMI

Shock 2.40 2.02 1.79 2.30 2.29 2.21 2.37 2.38

Age > 65 1.64 1.12 0.99 1.57 1.49 1.44 1.53 1.60

High risk 0.85 1.04 0.92 0.81 0.90 0.87 0.80 0.85

Diabetes 0.07 0.84 0.74 0.07 0.29 0.27 0.07 0.10

Hypotension 1.22 0.78 0.69 1.17 1.09 1.06 1.16 1.19

Tachycardia 0.65 0.67 0.59 0.62 0.65 0.63 0.61 0.64

Time to relief 0.26 0.60 0.53 0.25 0.36 0.34 0.25 0.28

Female sex 0.62 0.53 0.47 0.60 0.60 0.58 0.61 0.62

Shrinkage and penalization were applied towards zero or towards (recalibrated) values of
coefficients from the TIMI-II model
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20.4.2 *R Code for Shrinkage and Penalization in Updating

We start with reestimating the 8-predictor model in the West region

full8  <- lrm(DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX,data=West,x=T,y=T) 

The original TIMI coefficients are in linear predictor 1, lp1

timi8.par <- c(-4.465, 1.79, 0.99, 0.92, 0.74, 0.69, 0.59, 0.53, 0.47) 
lp1  <- full8$x %*% timi8.par[-1] + timi8.par[1] 

Coefficients with traditional heuristic shrinkage are calculated as (v2 − df)/v2

s.orig <- (full8$stats[3]-full8$stats[4]) / full8$stats[3] 
full8.coef.s.orig <- s.orig * full8$coef[-1] 

Shrinkage towards recalibrated values is calculated as

full3  <- lrm.fit(y=full8$y, x=lp1) # recalibration model
model.chi2 <- deviance(full3)[2] - deviance(full8)[2] # delta χ2
df3   <- full8$stats[4]-full3$stats[4] # delta df (8-1=7)
s.recal <- (model.chi2 – df3)/model.chi2 # shrinkage towards recal TIMI
coef.s <- s.recal*full8$coef[-1] +    # wsum of full8 and recal TIMI

   (1-s.recal)*full3$coef[2]*timi8.par[-1] 

Shrinkage towards TIMI-II values is calculated as

full8.off  <- update(full8, offset=lp1) # offset model
s.off  <- (full8.off$stats[3]-full8.off$stats[4]) / full8.off$stats[3]   
coef.s.off  <- s.off * full8.off$coef[-1] + timi8.par[-1] 

Standard penalized maximum likelihood estimation is as

p  <- pentrace(full8, c(0,2,3,4,5,6,7,8,10,14,20), maxit=50) 
full.p <- update(full8, penalty=p$penalty) 

Penalization towards TIMI-II values is calculated as

p.o  <- pentrace(full8.off, c(0,2,3,4,5,6,7,8,10,14,20), maxit=50) 
full.o.p <- update(full8.off, penalty=p.o$penalty) # optimum lambda 6
coef.o.p <- full.o.p$coef + timi8.par 
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20.4.3 Bayesian Updating

Another approach, similar to shrinkage (see Chap. 13), is to use Bayesian esti-
mation methods for model updating. We assume that the development and vali-
dation samples come from an underlying superpopulation with some heterogeneity
between settings. We may attempt to use the estimated heterogeneity to obtain
Bayesian estimates of updated coefficients. An updated intercept aupdated can be
obtained with a simple formula [393]:

aupdated ¼ aoverall þ s2= s2 þr2
estimated

� � � aestimated� aoverallð Þ;

where aoverall is the overall mean estimate for the intercept; s2 is the variance
between development and validation settings (“heterogeneity”); and aestimated and
r2
estimated are the estimated intercept and its variance in the validation sample.

A relatively large sampling uncertainty (large r2
estimated) implies substantial

shrinkage for aestimated towards the overall mean a. In contrast, large heterogeneity
(large s2) implies that aestimated is not much shrunken towards the overall mean a.
The extreme is that s2 is infinity, i.e., each aestimated is used as estimate for aupdated.
Every setting is considered as unique and should have its own intercept. The latter
is implausible and argues for some form of Bayesian analysis. The challenge of
such a Bayesian analysis is especially that we need to specify a value for s2.

A full Bayesian approach is to elicit s2 from experts; they may, for example,
state that it is unlikely that the incidence of the outcome (adjusted for the prediction
model) is more than 4 times lower or higher than the original incidence [202, 203].
Interpreting these limits as 95% credibility intervals means that s � log(4)/
2 = 0.69, and s2 = 0.48. Stating that the limits are 2 times lower to 2 times higher
incidence implies s � log(2)/2 = 0.35, and s2 = 0.12, leading to more shrinkage.
The Empirical Bayes approach is to estimate s2 from the distribution of intercepts in
different validation samples. This approach will be followed in Chap. 21.

In addition to the baseline risk, we can in principle consider all model parameters
in a Bayesian framework, for example, the calibration slope or individual regression
coefficients [128]. A previously developed model serves as a prior which is com-
bined with new patient data using the likelihood function and Bayes rule to obtain
posterior estimates of the regression coefficients in the prediction model [573]. If
new data are observed, Bayes theorem can be used to update the prior distribution
to a posterior distribution p bjnew datað Þ using the likelihood of the observed data
l new datajbð Þ

p bjnew datað Þ ¼ l new datajbð Þp bð ÞR
l new datajbð Þp bð Þdb

We may use independent normal distributions as prior distributions for the
regression coefficients b of our prediction model with means from the previously
developed model and a standard deviation of log(4)/2. This means that we are 95%
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sure that the regression coefficients in the new situation lie between ¼ and 4 times
the original values on the odds scale [203]. The choice of prior variance determines
the amount of shrinkage of the regression coefficients towards the mean of the prior
distribution. We might also use the variance–covariance matrix of log odds ratios
from the development sample, and multiply by the sample size of the development
sample for an appropriate prior [573]. When applying the Bayesian approach the
variance should align with the expected degree of heterogeneity between the
development and update population.

20.5 Sample Size and Updating Strategy

The choice of updating method depends on various factors. The first requirement is
that it is reasonable to apply the previously developed model in the new setting
from a clinical point of view. The model should not evidently be overfitted, include
predictors with plausible effects, and have been developed with adequate statistical
methods given the sample size. Some other signaling questions are proposed in the
PROBAST checklist [389]. The relevance of the model should be supported by
reasonable validity in the sample from the new setting, i.e., some correlation should
be present between predictions and outcomes. If this not the case, we should not
consider updating methods, but may essentially consider the situation as developing
a new model [626]. Also, the size of the development sample may have been too
small to consider updating seriously. Possibly we can then start our updated model
with the selection as considered in the previous model, but directly re-estimate
coefficients (method 5, Table 20.1).

In the situation of a large development sample, we may have good confidence in
the previously estimated regression coefficients. If we only have a small validation
sample size, we should be modest in updating the model and recalibration may be
sufficient (methods 2 and 3, Table 20.1). In contrast, if we have a large validation
sample, more rigorous updating is reasonable. These hypotheses were examined in
a large simulation study within GUSTO-I, following the design shown in Fig. 20.2.

20.5.1 *Simulations of Sample Size, Shrinkage,
and Updating Strategy

Simulation studies were performed in GUSTO-I to increase our insights in the link
between sample size and updating strategy (Fig. 20.2). Validation sample sizes
ranged from n = 200 to n = 1000 in Fig. 20.3, and from n = 1000 to n = 10,000 in
Fig. 20.4. We find that a modest improvement in discriminative ability was
achieved by model reestimation and model revision (methods 4–8), if validation
sample sizes are relatively large and shrinkage is used. But with a relatively small
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validation sample, we should only attempt to improve calibration, i.e., with
updating of the model intercept (method 2) and calibration slope (method 3).
Shrinkage is essential to prevent overfitting in updated models from small valida-
tion samples (Figs. 20.3 and 20.5).

More extensive updating is beneficial if the previous model was based on a
relatively small sample (n = 500 instead of n = 3339), while a relatively large
validation sample was available (Fig. 20.5). See www.clinicalpredictionmodels.org
for more details [536].

20.5.2 A Closed Test for the Choice of Updating Strategy

As discussed above, sample size is important to balance the amount of evidence for
updating in the new patient sample and the danger of overfitting. An approximately
closed test can be considered to define the extensiveness of the updating to increase
progressively from a minimum (the original model) to a maximum (a completely
revised model) [640]. The procedure involves multiple testing with maintaining
approximately the chosen type I error rate. The closed test is similar to the testing

GUSTO-I data set
n = 40,830; 2851 died

US patients:
n = 23,034; 1565 died

Non-US patients:
n = 17,796; 1286 died
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Fig. 20.2 Schematic presentation of the sampling design of a simulation study in GUSTO-I. The
GUSTO-I data was split into 13 regions. The 7 US regions were West (W), South–East (SE),
South–West (SW), Massachusetts (MA), New England (NE), Mid-South/Mid-West (MS/MW),
and Great Lakes (GL). The 6 non-US regions were Belgium (BE), the Netherlands/United
Kingdom (NL/UK), middle Europe––including France, Spain, Germany, Poland-(MEUR), Israel
(IS), Canada (CN), and Australia/New Zealand (AU/NZ). Updating methods 1–8 were applied in
random samples from each region with sizes of 200, 500, or 1000 patients. Updated models were
tested in independent test samples with 1000 patients from the same region as where the validation
sample originated from
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procedure in the setting of fractional polynomials [477]. The testing procedure
consisted of the following steps for methods 5, 3, and 1 as discussed in Sect. 20.2.1:

1. Test the refitted model (method 5) against the original model (method 1); if the
refitted model provides a significantly better fit: continue, otherwise keep the
original model.

2. Test the refitted model (method 5) against the model with an updated intercept
(method 2); if the refitted model provides a significantly better fit: continue,
otherwise use the model with an updated intercept.

3. Test the refitted model (method 5) against the recalibrated model (method 3); if
the refitted model provides a significantly better fit: use the refitted model,
otherwise use the recalibrated model.

Standard statistical tests can be used for each step, such as the difference in the
−2 log-likelihood between the models that are compared.
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Fig. 20.3 Dotcharts showing the average results for 8 updating methods (numbers 1–8,
Table 20.1) with or without application of shrinkage in the updating of regression coefficients.
For methods 1–5, validation sample sizes were 200, 500, or 1000 (3 rows). For methods 6–8,
validation sample sizes were 500 or 1000 (2 rows). Validation samples were drawn from 13
regions within the GUSTO-I study (Fig. 20.2). Slope: calibration slope; Unreliability statistic:
chi-square test for calibration intercept and slope. Performance was determined in independent test
samples with n = 1000
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20.6 Validation and Updating of Tree Models

Prediction models developed with CART methods, or recursive partitioning, are
attractively presented as trees (see Chap. 4). Usually, predicted outcomes are pre-
sented for each branch. Validation can then be performed in different ways.

A radical validation approach is to redevelop a new tree in a validation sample,
and compare the structure. For example, we redeveloped a tree for the survival of
456 testicular cancer patients with a poor prognosis according to the International
Germ Cell Cancer Collaborative Group (IGCCCG) [616]. The statistically optimal
tree was very different from the tree as developed in a sample of 332 German
patients [310]. This approach to validation is similar to redeveloping a model with
stepwise methods in a validation sample, if stepwise methods were applied in a
development sample. It is highly unlikely that such a model building strategy
results in the same selection of predictors (Chap. 11). Model redevelopment gives
insight into the instability of the modeling procedure, but does not directly answer
the question to what extent the outcomes in the validation data are adequately
predicted by the old model.

A better validation strategy could be to accept the tree structure, but to
re-estimate the predictions of the outcome. For a binary outcome, these estimates
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Fig. 20.4 Dotcharts showing the results of simulation studies in the US patients from the
GUSTO-I study. Average results are shown for 8 updating methods (numbers 1–8), with or
without application of shrinkage in the updating of regression coefficients. Validation sample sizes
were 1000–10,000 (4 rows for each method), with test sample sizes of n = 10,000
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are simply the observed frequencies of the outcome in the branches. This is anal-
ogous to updating method 5 (model reestimation while accepting the model
structure, see Sect. 20.2.1). An illustration is in Fig. 20.6. Survival was generally
better at development than in the validation sample. A total of 125 patients was
expected to have died by 2 years, while the observed number was 199 (i.e., 1.6
times more deaths). Some revision of the tree structure might be inspired by the
validation findings. For example, no difference is noted between those with or
without Abdominal metastases in Fig. 20.6 (53% vs. 56% 2-year survival). This
split might be omitted for future predictions.

A more parsimonious strategy is to use a recalibration model, similar to method
3 (Table 20.1). For a binary outcome we model the outcome y as a function of a
new intercept a and calibration slope boverall:

y� aþ boverall � ŷ;
where y is the outcome, a the updated intercept, boverall the calibration slope, and ŷ
the predicted outcome by the original tree. If the outcome is binary, we may
transform ŷ to log(odds(ŷ)); for survival outcomes we could use the log(cumulative
hazard) of the Kaplan–Meier estimates at certain time points during follow-up: log
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Fig. 20.5 Dotcharts showing the results of simulation studies with smaller development samples
(n = 500 instead of n = 3339 for the original TIMI-II model). Average results are shown for 8
updating methods (numbers 1–8), with or without application of shrinkage in the updating of
regression coefficients. For methods 1–5, validation samples contained 200, 500, or 1000 patients
(3 rows). For methods 6–8, sample sizes were 500 or 1000 (2 rows)
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(−log(S(t|branch))), with S(t|branch) indicating survival at time t in a branch of the
tree. This approach preserves the relative effects, but updates the predictions to
obtain calibration-in-the-large, and compensates for overfitting.

In the testicular cancer example, we assessed the calibration slope in the model:

log � log SIGCCCG tjbranchð Þð Þð Þ ¼ aþ boverall � log � log Sdevelopment tjbranchð Þ� �� �
;

where S(t|branch) refers to the observed Kaplan–Meier survival probabilities for
tree branch, and boverall is the calibration slope. We found a = –0.19, and boverall
= 0.46. The predictive effects in the IGCCCG data were hence much less than at
model development (boverall < 1), consistent with the hypothesis that the original
tree was overfitted. This same pattern was noticed from a comparison of the dis-
criminative ability. The c statistic was 0.63 at model development, and only 0.56 at
validation.

20.7 Validation and Updating of Survival Models

Predictions of survival models involve a time dimension, e.g. for the fraction of
patients surviving 1, 2, or 5 years after the start of follow-up. The most common
prognostic model in medical research is the Cox proportional hazards model, which
can combine multiple prognostic factors to predict survival at different time points:

no yes 

mediastinum 

no yes Visceral 
metastases

Primary 
site 

Primary 
site 

Abdominal
metastases

testis

Original: 84% 
Update:  63% 

64% 
50% 

mediastinum testis

49% 
33% 

72% 
56% 

Original: 52% 
Update:  53% 

Fig. 20.6 Regression tree as developed for poor prognosis patients with non-seminomatous germ
cell cancer. The 2-year survival is shown for the development sample (“Original”, n = 332) and
for the validation sample (“Update”, n = 456) [616]
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S tjXð Þ ¼ S0 tð ÞexpðbXÞ;

where S(t|X) denotes the probability of being alive at time t for a patient with
predictors X; S0(t) denotes the baseline survival function for time t (usually for the
average of predictor values), and bX indicates the linear predictor (multiplication of
regression coefficients b with predictor values X). We can also write the survival
function based on the baseline cumulative hazard H0(t) as S(t|X) = exp(−H0(t) *
bX). The baseline cumulative hazard H0(t) = −log(S0(t)).

Hence, making predictions with the Cox model for individual patients requires
that we know the baseline survival (or baseline cumulative hazard) function as well
as the regression coefficients b [471].

• The full baseline survival function is usually not specified in publications, but
sometimes survival at clinically relevant time points is provided (e.g. 1, 2, and
5-year survival). Also Kaplan–Meier curves can provide the baseline survival
function graphically.

• The regression coefficients b are often provided in a table as hazard ratios (exp
(b)). This makes it possible to calculate a linear predictor for new patients.
Sometimes a simplified version of the model is presented as a “prognostic
index”, e.g., based on a sum score, or a count of the number of adverse prog-
nostic factors.

In the following, we discuss a case study on updating of a survival model, where
limited results were reported from the developed model, i.e., only 2- and 5-year
survival estimates for four prognostic groups.

20.7.1 *Validation of a Simple Index for Cancer Survival

A Cox regression model for overall survival for aggressive non-Hodgkin’s lym-
phoma was developed by an international group of investigators [2]. Five pre-
treatment clinical characteristics were considered: age, Karnovsky score, Ann Arbor
stage, extranodal sites and LDH scores. The five predictors are dichotomized for
use in the “international prognostic index” (IPI). The IPI score counts the number of
unfavorable predictors. The more extreme categories 0 and 1, and 4 and 5 are
combined, resulting in groups with IPI 1–4. The 2-year survival probabilities was
reported to range from 34 to 84%, and the 5-year probabilities from 26 to 73%
(Table 20.6).

The validity of the IPI was studied in a Dutch cohort from a population-based
registry of non-Hodgkin’s lymphoma patients [623]. Kaplan–Meier curves for each
of the 4 IPI groups showed a clear separation, while the observed survival proba-
bilities were lower than expected (Table 20.6). This discrepancy was attributed to
the selection of patients: clinical trials at model development versus a
population-based registry at model validation. The validation cohort was less
selected, e.g., with respect to age.
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The Kaplan–Meier curves answer the qualitative question of whether the dis-
criminative ability of the original model was retained in an external setting. More
quantitative questions relate to calibration: is there as a systematic difference
between predicted and observed survival for all IPI groups, and what is the pre-
dictive strength of the IPI in the validation setting? These questions were studied in
the recalibration framework [623].

20.7.2 Updating the Prognostic Index

The observed Kaplan–Meier probabilities can be considered as updated estimates of
survival for future Dutch non-Hodgkin’s lymphoma patients (Table 20.6).
However, this update only considers the grouping of the IPI. The Kaplan–Meier
curves are nonparametric, and allow for nonproportional hazards of the IPI risk
groups. Identical results can be obtained from a Cox regression model in the
validation sample with the 4 IPI groups as strata.

Recalibration of the IPI probabilities is an alternative approach, which may be
especially valuable in relatively small validation samples. The Dutch cohort of 426
patients may be considered too small for the Kaplan–Meier approach, since the
standard error around the survival estimates in Table 20.6 is around 5%, with 95%
confidence intervals of ±10% around the Kaplan–Meier survival probabilities in
Table 20.6.

20.7.3 Recalibration for Groups by Time Points

Simple recalibration is possible for the 2 time points (2 and 5 years), comparing the
predicted survival with the observed survival for groups of patients in a calibration
model on the log hazard scale:

Table 20.6 Validity of the original and updated IPI for a Dutch cohort of 426 non-Hodgkin’s
lymphoma patients

IPI 2-year survival 5-year survival

Original
(%)

K–M
(%)

Recalibrated
(%)

Original
(%)

K–M
(%)

Recalibrated
(%)

1 (n = 148) 84 78 78 73 61 58

2 (n = 110) 66 54 55 51 35 31

3 (n = 85) 54 39 41 43 15 23

4 (n = 83) 34 24 21 26 10 9

Updating was with Kaplan–Meier curves (Sect. 20.7.2) for the 4 IPI groups and a recalibration
procedure (Sect. 20.7.3, for groups by time points) [623]
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log � log S tjgð Þð Þð Þ ¼ aþ b � log � log Smodel tjgð Þð Þð Þ;

where S(t|g) refers to the observed Kaplan–Meier survival probabilities for the
groups g, and Smodel(t|g) to the predicted survival probabilities for these groups.
Setting b to 1 means that we accept the hazard ratios for the 4 IPI groups as
estimated in the development data set. This is analogous to method 2 for logistic
regression models (Tables 20.1 and 20.7).

With b = 1, Van Houwelingen reports that a = 0.37 at 2 years, and a = 0.56 at
5 years [623]. Hence, we make somewhat different corrections on the log hazard
scale for the 2 time points. The recalibrated survival probabilities are shown in
Table 20.6, calculated with the formula

Scal tjgð Þ ¼ expð� expðaþ log � log Smodel tjgð Þð Þð Þ:

20.7.4 Recalibration with a Regression Model

A further validity assessment is to study the calibration slope boverall in a Cox
regression model:

Scal tjbXð Þ ¼ S0;new tð Þexpðboverall�bXÞ;

where Scal(t|bX) refers to the recalibrated survival, S0, new (t) to the recalibrated
baseline survival function, and boverall to the calibration slope for the linear pre-
dictor bX. A Cox regression with the linear predictor bX as the single covariable
assumes proportional effects of the IPI during follow-up. The baseline hazard
function is updated, and a calibration slope is identified to calibrate the linear
predictor to the new setting. This approach is more or less analogous to method 3
for logistic regression models (Tables 20.1 and 20.7).

Such recalibration requires that we know the linear predictor for the 4 IPI
classes. The original regression coefficients for the 4 IPI classes were not published,
but we can approximate the coefficients from the published 2-year and 5-year
survival probabilities [623]. Hereto we rewrite the Cox survival formula S(t|
X) = S0(t)

exp(bX) as log(−log(S(t|X))) = log(−log(S0(t))) + bX.

Table 20.7 Updating approaches for the IPI classification in non-Hodgkin’s lymphoma

Method Approach Proportionality assumption and
baseline hazard

bIPI

– Kaplan–Meier Nonproportional, free Free

2 Kaplan–Meier recalibration Nonproportional, free Original

3a Cox, recalibrate IPI Proportional, free Recalibrated

3b Weibull, recalibrate IPI Proportional, recalibrated Recalibrated
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The Weibull model can be used for the baseline survival function S0(t), which
specifies that log(−log(S0(t))) = b0 + b1* log(t). The Weibull model is attractive
since it specifies the baseline survival with only 2 parameters. Other parametric
models can also be used. The Weibull model reads like b0 + b1 * log(tj) + biXi with
j = 2, 5 and i = 1, 2, 3, 4 for the 4 IPI groups. Since we do not have access to the
original IPI data, we use a simple linear regression model to fit the parameters. The
IPI-Weibull model becomes

log �log S0 tð Þð Þð Þ ¼ �0:319þ 0:439 � log tð Þþ PI;

with PI = − 1.638; −0.824; −0.514; and 0 for IPI = 1–4, respectively. A reasonable
fit is found for the observed 2- and 5-year estimates (Fig. 20.7). When this PI is
used in a Cox regression model, the coefficient is 1.03 (SE 0.10). This indicates a
very similar predictive effect of the IPI in the validation sample compared to the
development sample [623]. More extensive approaches are discussed at www.
clinicalpredictionmodels.org.

20.7.5 Summary Points

• The International Prognostic Index (IPI) could be updated in at least 4 ways with
different freedom for the baseline hazard, with or without a proportionality
assumption on the effect of the IPI, and with different assumptions on the
validity of the previously estimated regression coefficients (Table 20.7).

• Kaplan–Meier estimates can be generated for the 4 IPI groups separately, which
implies re-estimation of the baseline hazard, and new, separate effects for the
relative effects implied by IPI.

Fig. 20.7 Survival according
to the International Prognostic
Index (IPI) for non-Hodgkin’s
lymphoma patients. The
reported 2- and 5-year
survival probabilities are
shown, with the Weibull
approximation of survival
with lines from 0 to 10 years
of follow-up (“IPI-Weibull
model”) [623]
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• Kaplan–Meier estimates can also be used in a recalibration procedure per time
point, preserving the original IPI effects.

• A Cox regression model can be used to re-estimate the baseline hazard, while
recalibrating the IPI effects.

• A Weibull model can be used for a more parametric recalibration of the baseline
hazard and the relative effects implied by IPI.

20.8 Continuous Updating

So far, we assumed that a validation sample with a fixed size was available for
model updating. The updating strategy then depends, among other considerations,
on the size of this validation sample, and on the size of the development sample.
We can also imagine a more dynamic situation, where a previously developed
model is applied in a new setting, with a continuous accumulation of patient
numbers over time [514, 515, 573]. The prediction model might gradually adapt to
the new setting as a self-learning system [119, 120]. It is reasonable to start with
parsimonious updating methods, such as recalibration, and gradually move to
model revision and model extension following the framework set out in Table 20.1.

The extensiveness of updating approaches can be guided by testing of specific
model parameters, or by the closed test, as described in Sect. 20.5.2. A note of caution
is that repeated testing as data accumulate implies multiple testing with a higher
likelihood of rejecting the validity of the previously developed prediction model.

20.8.1 *Precision and Updating Strategy

The question is when to move on to more extensive updating in the dynamic
situation with gradually increasing numbers of patients. We should not use more
extensive updating methods too early, since updated predictions may then be
unbiased but quite imprecise, and lead to poorer model performance instead of
better performance for the new setting [536]. Statistically, we can try to set a
minimum number of patients before thinking about updating the intercept. In
Table 19.6, we reported standard errors (SEs) for the intercept for different sample
sizes in the situation that the prediction model was fully valid for the validation
setting. With 50 events among 100 or 500 subjects, the SEs were 0.24 and 0.17;
with 100 events 0.16 and 0.13, respectively. So, if we would start early with
updating the intercept, considerable variability would be introduced. A compromise
is to consider statistical testing of the difference in the intercept. Testing is tech-
nically already possible after a few events have occurred. An important issue is the
p-value to consider for updating; we may use p < 0.05 as a default selection rule,
but we should feel free to use higher p-values, such as implied by Akaike’s
Information Criterion (AIC, equal to p < 0.157 with 1 df). This holds for a specific
test for intercept updating and for the closed test (Sect. 20.5.2).
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A similar discussion holds for the calibration slope. In Table 19.6 we found that
the SE was between 0.10–0.15 for 50–100 events. Again, we may test for a
deviation from the ideal value of 1, and requiring p < 0.05 before updating the
slope. If the model was developed in a small sample, a slope below 1 is likely in the
validation data, arguing for a higher p-value and/or a one-sided test for the alter-
native hypothesis “slope < 1”.

20.8.2 *Continuous Updating in GUSTO-I

For illustration we consider continuous updating of the TIMI-II model in the West
region of GUSTO-I. Tests for model improvement can be considered for increas-
ingly complex models (Table 20.8). We consider the dynamic situation of
increasing sample size for a self-learning system. Sample size refers in this context
to the number of patients with predictors and the outcome known. In the GUSTO-I
example, the outcome is 30-day mortality, which is hence known to the analyst
without much delay. If a more long-term outcome is specified, e.g., 1-year survival,
the delay is obviously longer before updating analyses can start. We arbitrary start
testing for a difference in intercept from a sample size after including 100 patients in
the validation sample, which implies at least approximately 7 events with an
incidence of 30-day mortality of 7% in GUSTO-I. Inclusion is supposed to increase
with calendar time. We note that the p-value for a different intercept is still high at
n = 100 (p = 0.64 in this example, Fig. 20.8). The p-value decreases rapidly, to
p < 0.05 at n = 170 in this example. The calibration slope is not statistically dif-
ferent from 1 in the full sample of n = 2188; in the dynamic situation, the p-value
was over 0.50 for n < 500. From n = 500, we also start testing for model revision
and model extension. The “model extension” method approaches statistical sig-
nificance around n = 650, while model revision does so only at n > 1500
(Fig. 20.8). Around n = 650, we might only recalibrate the effects of the first 8
predictors, and extend the model with shrunken effects for 8 more predictors. Model
extension is not statistically significant between n = 700 and n = 2000; with
shrinkage of regression coefficients, the difference would anyway be small between

Table 20.8 Possible tests for model improvement in a dynamic updating strategy for the TIMI-II
model in GUSTO-I

Method Label Parameter dfmodel dfmodel improvement
2 Update intercept Intercept 1 1 (vs. TIMI-II model)

3 Recalibration Intercept and slope 2 1 (vs. updated
intercept)

5 Model revision Reestimate coefficients 9 7 (vs. recalibrated
model)

Closed Closed test
procedure

Reestimation/slope/
intercept

– –

8 Model extension Reestimation + extension 17 8 (vs. reestimated
model)
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predictions with or without the 8 additional predictors. From n > 1500 we would
re-estimate the effects of the first 8 predictors.

This example illustrates how continuous updating can be applied. Somewhat
higher p-values might also be used for testing of updating parameters. We may
furthermore rely on shrinkage methods to prevent “over-updating”, just as
shrinkage prevents overfitting in standard model development.

20.8.3 *Other Dynamic Modeling Approaches

Various alternative approaches are possible for dynamic model updating, including
dynamic model averaging [447]. For example, an extended Kalman filter was
applied in a case study to adjust the regression coefficients of a model describing the
factors associated with the type of operation children with appendicitis received
[370]. This approach is similar to Bayesian logistic regression, but also introduces a
“forgetting” factor allowing older data to have less heavy weight compared to
newer data when updating the model. In the empirical example, the dynamic model
showed similar model fit to the best static models measured using the Brier score.

A challenge in methodological comparisons of updating approaches is that a fair
assessment of validity should be performed for the updated model [575]. This is
easy for the situation that we have two data sets: development and validation, where
validation is repeatedly split in a part for updating and for testing (using
cross-validation or bootstrapping). For a dynamic situation with a continuous
accumulation of patient data, such validation is less straightforward. Overall, any
more refined updating method, such as closed testing, Bayesian updating, and
Kalman filtering, is expected to perform better than naïve refitting of a prediction
model to be self-learning in the more recent data [575]. Some examples are dis-
cussed below.

Fig. 20.8 Continuous
updating with accumulating
numbers of patients in the
West region from GUSTO-I.
The p-value for the validity of
the intercept is significant
from n > 170; the p-value for
the calibration slope does not
reach significance even at
n = 2188 (the total West
region); model revision and
model extension are
statistically significant from
n > 1500 and n > 2000
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• Three case studies were examined, which all confirmed that the closed testing
procedure performed well [640]. The examples were on patients with prostate
cancer, traumatic brain injury and children at risk of a serious infection pre-
senting with fever. The need for updating the prostate cancer model was
completely driven by a different model intercept in the update sample. Separate
testing of model revision against the original model showed statistically sig-
nificant results, but led to overfitting (calibration slope at validation = 0.86).
The closed testing procedure selected recalibration in the large as update
method, without overfitting. The advantage of the closed testing procedure was
confirmed by the other two examples.

• Updating approaches have also been applied in prediction models for mortality
after cardiac surgery [245, 514, 575]. Previously developed prediction models
severely overestimated the mortality rates in more recent patients. All studied
updating approaches showed similar performance at validation. Extensive
updating methods should not be applied in smaller subgroups of type of surgery
since these methods showed poor performance at validation, while recalibration
and Bayesian approaches performed adequately.

• Another study considered yearly data from five international prostate biopsy
cohorts (3 in the US, 1 in Austria, 1 in England) [573]. Six methods for annual
risk updating were compared:

1. Static use of the online US-developed Prostate Cancer Prevention Trial Risk
Calculator (PCPTRC; equivalent to method 1 before);

2. recalibration of the PCPTRC (method 3);
3. revision of the PCPTRC; building a new model each year using logistic

regression (method 5);
4. Bayesian updating;
5. Random forests (a variant of method 5).

All methods performed similarly with respect to discrimination, except for
random forests, which performed worse. All methods except for random forests
greatly improved calibration over the static PCPTRC. This case study confirmed
that a simple annual recalibration of a general online risk tool for prostate cancer
could improve its accuracy with respect to the local patient practice at hand.

• Machine-learning and more traditional regression-based models all benefited
from dynamic updating in case studies on hospital-acquired acute kidney injury
[120] and 30-day hospital mortality [119].

20.9 Concluding Remarks

Recalibration methods are attractive because of their stability, which is related to
the fact that few parameters are estimated [114, 623]. The disadvantage of simple
recalibration methods is a potential for bias in the individual regression coefficients.
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In contrast, the model revision may lead to a lower bias but higher variance in the
updated model, since more parameters are estimated [536]. Re-estimation of
coefficients and model extension with new predictors should not be considered too
early, since our simulations indicated that the predictive performance of an updated
model can be worse than the original model (e.g. a lower discriminative ability)
[536].

Some shrinkage or penalization is hence required. Bayesian and dynamic
modeling approaches also effectively combine evidence from new data with an
existing prediction model. Shrinkage methods in model updating may not only
improve calibration, but also discrimination. This is in contrast to traditional model
development, where shrinkage does merely improve calibration and has no sub-
stantial impact on discrimination. Note that the shrinkage factor is zero unless the
chi-square is larger than the df used in model estimation (s = (model v2 − df)/
model v2). This sets an effective limit to the p-values for testing; e.g. with 8 df, the
chi-square has to be larger than 8, which is equivalent to p < 0.43.

We can also envision a combination of selection and shrinkage of updated
effects through the application of the LASSO. This would limit overfitting and
accept the coefficients from the original model until sufficient evidence is gathered
in support of differential effects.

From a clinical perspective, the key question is whether a previously developed
model is reasonable to apply in a new setting. Some further examples are in
Table 20.9. The question of applicability requires subject knowledge. From a sta-
tistical perspective, the sample sizes of both the validation data set and the
development data set are crucial in the choice of an updating method. Our simu-
lations in Figs. 20.3, 20.4 and 20.5 and other studies support the idea that sub-
stantial sample sizes are required before an improvement in discriminative ability is
achieved by updating of regression coefficients.

A specific situation of model updating is that we consider a new predictor, which
was not part of a previously developed model. For example, a new biomarker may
be promising, with the prognostic value shown in a meta-analysis. If we know the
correlation of this biomarker with traditional predictors, we may update the
regression coefficients in a multivariable model with both the traditional predictors
and the biomarker. An illustration is available for coronary heart disease [258]. If
individual patient data are available, updating of a previously developed model with
a biomarker may be achieved by imputation of the missing biomarker in those
patients with missing values [405].

20.9.1 Further Illustrations of Updating

Approaches to validation and updating of prediction models have been applied in
various medical studies. Extensive practical examples include

• A research line on increasingly improving the prediction of Lynch syndrome
based on personal and family cancer history. An initial model (“PREMM1,2”)
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was developed using logistic regression in a cohort of 898 individuals and
subsequently prospectively validated in 1016 patients, with updating of the
intercept [40]. This model was extended subsequently to PREMM1,2,6 [291]
and PREMM5 [292], with some further updating attempts [193]. A large scale,
international external validation was also performed [290], and assessment of
impact in clinical practice [632].

• A model to predict growth in children with growth hormone deficiency was
updated with Dutch data [124].

• Various studies focused on the validity and updating options for prediction
models in the field of prostate cancer [405, 562, 573].

• Diagnosing coronary artery disease among patients with stable chest pain [176,
177] with some large scale validation studies [145, 178] and model extensions
[144].

• Validation and updating of the EUROSCORE for prediction of in-hospital death
after cardiac surgery [245, 514, 575].

Table 20.9 Examples of updating of previously developed prediction models

Patients Outcome Development Validation Updating

Patients with
suspect
personal or
family burden
of cancer [40]

Lynch
syndrome

First series of
tested
patients
(n = 898)

Second
series of
tested
patients
(n = 1016)

Combined model with
intercept from second
series

Children with
growth
hormone
deficiency
[124]

Growth Kabi
Pharmacia
International
Growth
Study
database
(n = 593)

Dutch
Growth
Foundation
database
(n = 136)

Ŷc = Ŷo + (2.15 − 0.19
* Ŷo), where Ŷc and Ŷo

are the calibrated and
original predictions

Men
undergoing
prostatectomy
for prostate
cancer [562]

Indolent
cancer

Clinical
series
(n = 409)
[295]

European
randomized
study on
screening
for prostate
cancer
(n = 247)

Recalibration of
intercept and rounding of
coefficients for score
chart

Patients
with stable
chest pain
[176]

Coronary
artery
disease

Literature
review

14 hospitals
(n = 2260)
and 18
hospitals
(n = 5677)

Model revision was
necessary to correct
overestimation especially
in women

Patients
undergoing
cardiac
surgery [514]

In-hospital
death

EuroSCORE
database
(n = 13,302)
[404]

16 Dutch
hospitals
(n = 95,240)

Improved
calibration-in-the large
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Questions

20:1 Simple updating of model intercept
Suppose a model predicts an average operative mortality for elective aortic
aneurysm surgery of 8%, but we observe 10 deaths out of 200 (5%) in
another series from another hospital.

(a) What would be the most naïve update of the model intercept?
(b) What problems should be considered in such a naïve update?

20:2 Model updating framework (Table 20.1)
Which updating methods can be seen as nested models, i.e., that a next
updating method is an extension of a previous, simpler, method?

20:3 Updating strategies (Table 20.1)
What updating strategy makes sense when major improvements in care have
taken place

(a) for all patients
(b) for a subgroup of patients

20:4 Shrinkage and recalibration (Table 20.5)
We note that the shrunken coefficients for female sex are very similar,
whatever method is applied (0.60, 0.60, and 0.58 for shrinkage towards zero,
recalibrated coefficients, or TIMI coefficients, respectively). How is this
possible?

20:5 Performance of updated models (Table 20.4 and Figs. 20.3, 20.4 and 20.5).
We note that the c statistic for method 8 (Reestimation + extension, 16
predictors) seems to perform best in all parts of GUSTO-I. Performance
seems especially good in the smallest sample (sample5, n = 429, c = 0.852).

(a) How do you explain this high apparent c statistic?
(b) How is it possible that reestimation can lead to a poorer performing

model at validation in independent patients (Fig. 20.3)?
(c) Does consideration of 8 more predictors in methods 6–8 lead to better

models compared to method 5 in Figs. 20.3, 20.4 and 20.5?

20:6 Continuous updating (Fig. 20.8)
In Fig. 20.8, we note that the p-value for updating of the intercept decreases
quickly to small, statistically significant, values. How do you explain this
pattern?

20:7 Validation and updating of a Framingham model
Consider the paper by D’Agostino on the validity of the Framingham risk
function to other populations [118]. What is the essential strategy for vali-
dation and updating of predictions?

20.9 Concluding Remarks 429



Chapter 21
Updating for Multiple Settings

Background Updating of a prediction model should be considered after validation
for a single new setting as discussed in Chap. 20. We can also consider updating for
a range of settings, such as multiple hospitals. We can consider such settings as
parts of an underlying superpopulation. This makes the settings to some extent
related, while on the other hand, patients are more similar within settings. We may
first quantify the distribution of differences between settings, and subsequently
update the model to setting-specific values considering this distribution. This
approach is well possible with random effects models or Empirical Bayes estima-
tion. We illustrate the approach for logistic regression models.

We may specifically be interested in differences between centers in the context
of quality assessment. We illustrate some methods for estimation of differences and
rank ordering between centers for patients with stroke (“provider profiling”), where
adjustment for predicted risk is needed before meaningful interpretation is possible.

21.1 Differences in Outcome

21.1.1 Testing for Calibration-in-the-Large

We first concentrate on systematic differences between settings in outcome,
reflected in calibration-in-the-large. We consider the situation of differences
between hospitals in logistic regression models, and subsequently turn to survival
models. For logistic regression models, we can simply include “hospital” as a
categorical variable in a prediction model, and test for statistical significance of the
differences between hospitals. Such an analysis can be performed without adjust-
ment for predictors (“unadjusted”, or “crude” comparison), or with adjustment for
important predictors of outcome (“adjusted” comparison). The differences that
remain after adjustment are of interest, both from the viewpoint of the applicability
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of a prediction model across centers, and from the viewpoint of provider profiling
(the comparison of the quality across centers) [62].

A theoretical objection to this “fixed-effect“ approach is that “hospital” is
actually measured at a higher level than at the patient level. This argues for using a
multilevel (or “mixed”) model, where hospital is at the first level, and patients are
considered within hospitals [131]. The hospital is defined as a random factor, and
patient characteristics are considered as fixed factors (within hospitals). We then
estimate the distribution of the random effects, and can test for significance of this
distribution, i.e., that the distribution is wider than expected based on chance alone.

21.1.2 *Illustration of Heterogeneity in GUSTO-I

Several prediction models can be considered for application in patients suffering
from an acute myocardial infarction (MI). We focus on the TIMI-II model, as
defined before (Chap. 20). This model includes eight dichotomous predictors [395].
We apply the TIMI-II model in patients from the GUSTO-I trial, with special
attention to the validity in geographic groups [539]. Patients were entered in
GUSTO-I between 1990 and 1993 at 1 of 1082 participating hospitals in 14
countries. We distinguished 16 geographical regions within the GUSTO-I
trial (Fig. 20.2): 8 in the United States, 6 in Europe (based on combinations of
neighboring countries), and 2 other regions (Canada and Australia/New Zealand).
These regions included on average 2552 patients and 178 deaths. Furthermore, we
performed more detailed analyses based on geographically related groups of hos-
pitals. The number of patients per hospital was too low for meaningful analyses at
the hospital level (average n = 38, expected 2.4 deaths). Grouping resulted in 121
small and 48 large groups, consisting of on average 9 and 23 hospitals and at least
20 and 50 deaths, respectively. The distinction in 16 regions, 48 large groups, and
121 small groups were considered to study regional heterogeneity.

We first test for regional differences in logistic regression models that included
dummy variables for each region or group of hospitals. All such tests were highly
statistically significant, indicating that the regional differences in 30-day mortality
could not reasonably be explained by chance (Table 21.1). We used the TIMI-II
model in 2 ways: as an offset variable, and with refitting of the regression coeffi-
cients. With an offset, the regression coefficients were kept at the values as esti-
mated in TIMI-II, and the intercept and center effects were the free parameters. We
found slightly higher v2 statistics if the original TIMI-II coefficients were used (as
shown in Table 21.1) rather than refitted coefficients (not shown).

Second, we test for regional differences in a random effects logistic regression
model, where region or groups of hospitals are considered as a random factor, and
the TIMI-II coefficients are considered in an offset variable. We may try to compare
models with the random effect to models without the random effect, although some
worry that the log likelihood may not be fair to compare. If a likelihood ratio test is
calculated, a 2-sided p-value may be obtained by dividing by 2 [518].
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An advantage of the random effects model is that we can interpret the values of
the heterogeneity between groups (variance: s2). The standard deviation (s) reflects
differences between groups on the original scale (here: the logistic scale), corrected
for random noise. We find that s2 is around 0.025 (s around 0.16). The hetero-
geneity was similar between small or large subsamples and between the 16 regions.
The between center variance can be expressed in various ways, including the
median odds ratio for logistic regression models [24], and the median hazard ratio
for survival differences [32].

21.1.3 Updating for Better Calibration-in-the-Large

If differences in outcome between centers are relevant (e.g., statistically significant
and with substantial magnitude), we may want to update the prediction model with
center-specific estimates of the intercept [626]. In the traditional, fixed effects,
approach we could simply use the intercepts per center after adjusting for patient
characteristics as center-specific estimates (Table 21.2). These estimates may often
be quite unstable, and show a relatively wide distribution. This will especially occur
when many small settings are considered, i.e., with relatively few patients and/or
events.

Alternatively, we consider the hospital effects as a distribution, commonly
specified as a normal distribution with a mean and standard deviation reflecting the
heterogeneity between hospitals. This leads to Empirical Bayes (EB) estimation
(Table 21.2) [626]. The formula for EB adjusted center effects is [393]

aEB ¼ lþ s2=ðs2 þr2
i Þ � ðai � lÞ;

Table 21.1 Testing for heterogeneity in mortality across groups in GUSTO-I, with adjustment
according to the TIMI-II model. Groups refer to testing of intercept differences, slopes refer to
testing of differential calibration slopes by group

Groups Groups as fixed effects Slopes as fixed effects

Regions 16 v2 = 69, 15 df, p < 0.0001 v2 = 18, 15 df, p = 0.24

Large subsamples 48 v2 = 102, 47 df, p < 0.0001 v2 = 53, 47 df, p = 0.25

Small subsamples 121 v2 = 197, 120 df, p < 0.0001 v2 = 117, 120 df, p = 0.56

Table 21.2 Approaches for testing and estimation of differences between settings to correctly
estimate average outcomes

Approach Testing Estimation

Fixed effects Setting as categorical variable Adjusted intercepts

Random effects Heterogeneity across settings Empirical Bayes (direct or two-step)
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where l is the overall mean estimate; s2 is the variance between settings
(“heterogeneity”); and ai and ri

2 are the estimated hospital-specific intercepts and
their variances. The traditional fixed effect estimates ai are shrunken towards the
overall mean l. The extent of shrinkage depends on s2 and ri

2. A relatively large
sampling uncertainty (large ri

2) implies substantial shrinkage for ai towards the
overall mean l. In contrast, large heterogeneity (large s2) implies that ai is not much
shrunken towards the overall mean l. An infinite value for s2 implies that the fixed
effect estimates ai are used as estimates for aEB. Every setting is then considered as
unique and needs its own intercept.

21.1.4 Empirical Bayes Estimates

There are two broadly applied approaches to EB estimation: a direct, one-step, and
a two-step approach [83]. The direct approach is to use a random effects model,
where the distribution of random effects and the updated intercepts are estimated in
one step. This model may have difficulties in the joint estimation of random effects
for multiple differences between centers. For example, we may want to estimate
heterogeneity in both intercept and calibration slope, but find that the model esti-
mation does not converge.

The two-step approach starts with a traditional fixed effect analysis of between
center differences. We may choose one large center as the reference category for
comparison of intercepts, but preferably we compare differences to the average
outcome. Technically, this can be achieved by studying each center while including
an offset variable based on predictions for all centers. For each center, we obtain an
estimate of the difference to the average outcome, and a standard error (SE). For the
second step, we use the center-specific estimates as outcomes in a linear random
effects model for continuous outcomes, with weights according to the variance of
the fixed effect estimates. With this second step, we estimate the heterogeneity
between centers for use in the EB formula. The uncertainty in determining the
heterogeneity is ignored in this two-step procedure, while it is included in the direct
approach. Several examples of the two-step approach are available for medical
prediction problems [83, 518, 539, 626].

21.1.5 *Illustration of Updating in GUSTO-I

We may wonder how large the differences between centers are relative to each
other, and whether a simple overall update of the intercept from the TIMI-II model
would be sufficient in GUSTO-I [539]. We use the TIMI-II model as an offset
variable for updating in the GUSTO-I data.

With a fixed effects approach, we estimate the difference in intercept for each
group within GUSTO-I compared to the predicted log odds from TIMI-II. We also
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obtain standard errors for these differences. The R code is shown in Sect. 21.4.
With a random effects model (e.g., glmer function in the lme4 package in R), we
can directly obtain EB estimates of the intercepts per group.

We find that the overall intercept should be updated with the value –0.27.
Regional differences as estimated with traditional fixed effect methods were sub-
stantially reduced in the Empirical Bayes estimation, whether 16 regions, 48 large
subsamples, or 121 small subsamples were considered (Fig. 21.1). The EB estimates
for the two extreme regions are –0.49 and –0.02, while the fixed effect estimates are –
0.59 and +0.11. Hence, we would traditionally estimate that one region had a much
lower mortality than observed in TIMI-II (–0.59), and one region a slightly higher
mortality (+0.11). With EB estimation, these estimates are shrunken towards the
average of –0.27. Not surprisingly, these two extremes had the smallest and second
smallest sample size among the regions. The same patterns are observed for groups of
hospitals, with shrinkage to values between –0.56 and –0.02 for large and between –

0.58 and –0.002 for small subsamples. We can conclude that a substantial part of the
variability in adjusted intercepts of the smaller groups can be attributed to chance.
Adjusted estimates correct for case-mix differences according to the TIMI-II model,
while EB estimates additionally adjust for chance.

21.1.6 Testing and Updating of Predictor Effects

Next to the intercept, an obvious question is whether the effects of predictors differ by
setting. A simple approach is to test for interactions between predictor effects by setting.
This is the traditional fixed effects approach. We can also consider the effect of one or
more predictors as having distributions across settings in a random effects model.

Fig. 21.1 Updating of intercepts of the TIMI-II model for subsamples in GUSTO-I. The overall
intercept adjustment is –0.27 (dotted line - - -). We note a substantial variability in fixed effect
adjusted intercept estimates for the smaller groups (121 small subsamples), which are shrunken
towards the average with Empirical Bayes estimation in a random effects model. Also among the 16
regions, we note that smaller regions have more shrinkage of their model intercepts towards the
overall intercept
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It is more parsimonious to study interactions by setting for the linear predictor of
the prediction model, since the linear predictor summarizes the effects of predictors.
The assessment of heterogeneity in calibration slope is also possible in a random
effects model.

21.1.7 *Heterogeneity of Predictor Effects in GUSTO-I

We study the calibration slope for the (log odds of the) TIMI-II predictions of
30-day mortality for regional groups in GUSTO-I. We hereto use the linear pre-
dictor based on the TIMI-II model as the only predictor for updating in the
GUSTO-I data.

We find that the calibration slope should be updated to the value 1.00; overall,
there is no need for updating of the slope. In a fixed effect analysis, we test
interactions with groups and find that there is overall no such interaction within
GUSTO-I (Table 21.1). This finding is confirmed in random effect models, where a
very small distribution is estimated around the overall recalibration slope. The EB
estimates of the slopes are very close to the overall slope of 1.00.

In addition, we tested for fixed effect interactions of effects of individual pre-
dictors by group, e.g., age * setting, and shock * setting [539]. None of these
overall tests for interaction were statistically significant, suggesting that is it rea-
sonable to assume a single effect of each predictor across the geographical areas in
GUSTO-I.

We conclude that the variability in the effects of predictors is small in GUSTO-I.
Hence, no updating by group is necessary beyond the simple update of the model
intercept (with –0.27). This small variability may potentially be explained by the
fact that predictors were registered according to uniform definitions, were relatively
objective characteristics with limited measurement error (e.g., age), and that the
quality of data collection was controlled well in this large-scale trial. Indeed, neither
did we find heterogeneous predictor effects in a registry of 14,857 heart failure
patients [31]. In contrast, comparisons across less controlled settings may show less
consistency with respect to the effects of predictors, e.g., in meta-analyses of studies
with quite different definitions of predictors.

21.1.8 *R Code for Random Effect Analyses in GUSTO-I

The essential R code for some of the random analyses in GUSTO-I is shown below,
with a full script at the web.
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library(lme4) # linear and generalized linear random effect models
timi8.par <- c(-4.465, 1.79, 0.99, 0.92, 0.74, 0.69, 0.59, 0.53, 0.47)
full8 <- lrm(DAY30~SHO+A65+HIG+DIA+HYP+HRT+TTR+SEX, data=gusto, x=T)
lp1  <- full8$x %*% timi8.par[-1] + timi8.par[1] # lp1 based on TIMI-II

Test differences between regions (Table 21.1).

Fixed and random effects with lp1 (including TIMI-II coefficients) as offset for 16
regions:

full.o  <- glm(gusto$DAY30~1, offset=lp1, family=binomial) # α -.27
full8.REGL.o <- glm(gusto$DAY30~gusto$REGL,offset=lp1,family=bin) # fixed
fullr.REGL.o <- glmer(gusto$DAY30~1+(1|gusto$REGL), offset=lp1,

family=binomial) # random effects for region

Estimate calibration slopes between centers (Table 21.1).

full8.REGL.lp <- lrm(DAY30~as.factor(gusto$REGL)*lp1, data=gusto) # fixed
fullr.lp.REGL <- glmer(DAY30~lp1 + (1|REGL) + (0+lp1|REGL), 

family=binomial, data=gusto) # α -.27, β 1.00

21.2 Provider Profiling

The applicability of prediction models across centers requires an assessment of differ-
ences between centers [30, 31]. Differences between centers are also central in com-
parisons of the quality of centers as part of provider profiling[408]. Provider profiling
often includes outcomes such as mortality and morbidity, but may also include measures
such as patient satisfaction, and organizational issues such as procedures and processes
of delivering care [135]. In addition to testing and estimation of differences between
centers, a specific aspect of provider profiling is that we may want to rank centers
according to their performance in league tables [189]. Such ranking would enable
patients and other stakeholders to choose the best provider for a specific health problem.
Moreover, a relatively poor performance might be an incentive for a provider to criti-
cally review the processes of care delivery, and stimulate improvements. Such feedback
should lead to a continuous quality improvement [556]. Provider profiling according to
the outcome is surrounded by many methodological problems [367, 407, 505, 507, 518,
539]. Observational data are analyzed, which generally need to be interpreted with more
caution than an experimental study. Some argue that we should concentrate on the direct
measurement of adherence to clinical and managerial standards [338]. If we aim to
compare outcome across centers, two methodological issues are essential: (1) case-mix
adjustment and (2) dealing with statistical uncertainty.
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1. Case-mix adjustment should appropriately capture differences between centers
in patient characteristics that are outside the influence of actions in the center.
Instead of predictors, we now consider these patient characteristics as con-
founders, since they may be both related to setting and outcome. Some centers
may treat more severe patients, which hampers a fair comparison with a center
with less severe patients. We want to compare centers after adjusting for con-
founding factors. Choosing an appropriate adjustment model is not easy, and
may be limited by the type of data that is available. For example, administrative
databases may not include all potential confounders, and have problems in
coding. For example, postoperative complications may be miscoded as
comorbidities [224]. Moreover, end points assessment is often nonstandardized
[506].

2. Second, substantial differences between centers may appear in traditional, fixed
effect analysis, with or without adjustment for confounders. But this picture is
noisy. We have seen that EB estimation is a more conservative solution,
compensating for the randomness in the fixed effect analysis. EB estimates
hence allow for a better interpretation of any differences between centers that
remain after adjustment for case-mix [338, 367, 407, 505, 507, 518, 539].

21.2.1 Ranking of Centers: The Expected Rank

The first attempts of provider profiling already included league tables: rankings
were made for physician-specific mortality after coronary artery bypass grafting
surgery in New York State [199]. There is ample experience with the ranking of
schools [189]. Ranking is also very popular in the lay press [660].

Many argue that the uncertainty in differences between centers needs to be
reflected in such league tables. The key problem with ranking is that one center has
to be first and one has to be last. One approach was illustrated for league tables of
in vitro fertilization clinics, where the uncertainty in rank was indicated with a 95%
confidence interval around the rank [367]. If ranking is very noisy, the confidence
intervals are very wide.

Another approach is to use expected ranks [320, 624], which is similar to the
idea of using a median rank from a distribution of ranks [189]. The expected rank is
determined by the probability that the performance at center i is better than at
another center j: P(aEB, i > aEB, j). We use the EB estimates of differences ai and aj,
since these are considered better reflections of any true differences between centers.
Practically, we can calculate this probability from the standardized difference in
performance estimates:
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ðaEB;i�aEB;jÞ=pðvar(aEB;iÞþ var(aEB;jÞÞ:

We take the sum of these probabilities over all comparisons with centers j :
P

PðaEB;i [ aEB;j); where j 6¼ i. The expected rank ER is estimated as

ERi ¼ 1þ
X

PðaEB;i [ aEB;j)

¼ 1þ
X

UðaEB;i � aEB;jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarðaEB;iÞþ varðaEB;jÞÞ

q
;

where j 6¼ i, and U is the normal distribution function. We assume that low values
of aEB are good; if the low value is quite certain, the rank should be close to 1.
Indeed, we note that if the summed probability that center i has worse outcomes
than any other center j is low, the rank remains close to 1. If this probability is high,
the rank becomes high (poor performance). Such ranking is possible if the differ-
ences aEB, i – aEB, j are large relative to the SE of this difference
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðaEB;iÞþ varðaEB;jÞ
p Þ: If the standardized differences are close to zero, this
corresponds to overlap between posterior probability intervals, and expected ranks
are around the mid-rank.

For better interpretation, we can scale the expected ranks ER between 0 and
100%:PCERi ¼ 100 � ERi�0:5ð Þ=Ncenters,

where PCER stands for “PerCentiles based on Expected Ranks”. The PCERi can
be interpreted as the probability that the performance in center i is better than in any
randomly selected other center. If the ER is 1 for a center, this indicates a much
better performance than the other centers. If the comparison is with 9 other centers
(Ncenters = 10), the PCER becomes 5%; if the comparison is with 99 other centers
(Ncenters = 100), the PCER becomes 0.5%. The definition, hence, accounts for the
discrete nature of the number of centers.

In summary, the ER and PCER incorporate both the magnitude of the difference
of a particular center compared to other centers and the uncertainty in this differ-
ence. These measures for ranking need further empirical support for their appli-
cability. We illustrate the ranking of centers in a case study of outcome after stroke,
after considering traditional and EB estimation for between center differences.

21.2.2 *Example: Provider Profiling in Stroke

We consider differences in outcome between 10 hospitals in the Netherlands [341].
The participating sites comprised 1 small (<400 beds), 4 intermediate (400–800
beds), and 5 large centers (>800 beds). Two centers were university hospitals. All
but 1 hospital had a stroke unit, 8 were participating in a regional stroke service,
and 9 were equipped for thrombolytic therapy. The sample consisted of 505 patients
with complete data on potential confounders and outcome. The distributions of age
and stroke subtype varied substantially by hospital (Table 21.3).
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At 1 year, 268 (53%) patients had a poor outcome (dead: n = 143, Rankin scale
score 3, 4, or 5: n = 125). The fraction of patients with a poor outcome varied
between centers in unadjusted analysis, with apparently best results in hospital 6
(29% poor outcome) and worst in hospital 8 (78%, Table 21.3). These differences
were highly significant in a traditional fixed effects analysis of differences between
hospitals (v2 = 48, 9 df, p < 0.0001, Table 21.4), and were partly explained by a
higher age of patients in hospitals with worse outcome. For example, hospitals 2, 5,
and 8 had over 70% poor outcome, but mean ages of 73, 74, and 70 years
(Table 21.3). Adjusting for all 12 potential confounders led to halving of the dif-
ferences seen in unadjusted analysis (v2 = 23 instead of 48, Table 21.4). This
pattern was also seen in the random effect analysis, where the estimated s2 (indi-
cating heterogeneity between centers) with adjustment for 12 confounders was half
that of the unadjusted s2 (0.17 vs. 0.34).

Table 21.3 Characteristics of 10 hospitals treating 505 patients with acute brain ischemia

Hospital n Age
(years)

Sex (male)
(%)

Stroke subtype (Brain
infarction) (%)

Poor
outcome (%)

1 39 77 46 97 59

2 92 73 54 95 72

3 31 69 61 97 35

4 41 65 59 80 44

5 22 74 55 91 73

6 24 65 67 63 29

7 99 68 65 94 39

8 37 70 41 92 78

9 50 71 56 88 54

10 70 72 47 81 46

Total 505 71 55 89 53

Table 21.4 Traditional fixed effect and Empirical Bayes (EB) estimates for differences in poor
outcome between 10 hospitals, adjusted for 12 confounders. Values are logistic regression
coefficients

Hospital n Unadjusted v2 = 48 Adjusted v2 = 23 EBadj s
2 = 0.17

1 39 0.24 –0.29 –0.18

2 92 0.81 0.24 0.31

3 31 –0.72 0.32 –0.49

4 41 –0.37 –0.39 –0.22

5 22 0.86 0.91 0.3

6 24 –1.01 –0.47 –0.19

7 99 –0.55 –0.15 –0.11

8 37 1.17 1.16 0.53

9 50 0.04 0 0

10 70 –0.29 –0.09 –0.07
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21.2.3 *Estimating Differences Between Centers

We can estimate the differences between centers in logistic regression models,
where we compare each center to the average. The traditional fixed effects change
considerably between an unadjusted and an adjusted analysis with 12 confounders.
Hospital 1 seems to perform relatively poorly in unadjusted analysis (positive
coefficient), while an adjusted analysis indicates that this hospital performs relative
good (negative coefficient, Fig. 21.2). Changes for other hospitals were only noted
quantitatively, without changing sign, with adjusted differences generally closer to
zero. Further changes were seen with Empirical Bayes estimation of differences. All
differences were reduced, especially for smaller centers (e.g., hospital 5: deviation
+0.91 to +0.33).

The uncertainty around the estimated differences between centers is indicated in
Fig. 21.2 for the adjusted and Empirical Bayes (EB) analyses. We note that EB
estimation does not affect the point estimate nor the confidence interval for the
larger centers, such as hospitals 2 and 7. For smaller centers, such as hospitals 5, 6,
and 8, the point estimates for the deviation from the average are shrunken, and the
confidence intervals smaller. None of the centers has a deviation that is significantly
away from zero in the EB estimation, while the overall heterogeneity is statistically
significant (Table 21.4).

Differences between centers can be summarized in a median odds ratio
(MOR) [322]. The MOR is defined as the median of the odds ratios for two patients
with the same covariates from different hospitals, comparing the patient at higher
risk of the outcome and the patient at the lower risk of the outcome. The MOR
hence reflects the typical difference between providers. Differences in risk may be
quantified by the cluster-specific random effects, assuming a normal distribution:

Fig. 21.2 Differences in poor outcome between 10 centers with traditionally adjusted, fixed effect,
estimates, and Empirical Bayes estimates. We note that estimates of relatively small centers (e.g.,
5, 6, and 8) are shrunk substantially towards to average with EB estimation

21.2 Provider Profiling 441



MOR ¼ exp
p

2s2
� � � U�1 0:75ð Þ� �

;

where U – 1(0.75) = 0.6745; the 75th percentile of a standard normal distribution
[24]. For the stroke patients, s2 was estimated as 0.17, and hence, the MOR was exp
(√(2 * 0.17) * 0.67) = exp(0.39) = 1.48. Hence, in half such comparisons, the odds of
poor outcome would be less than 1.5 for a patient at the hospital at higher risk compared
to a similar patient (with the same predictor values) at the hospital at lower risk.

We can also consider ranges for the effect distribution (s2), e.g., the 95% range
[–1.96 * s to +1.96 * s]. We then find that the best centers at the 2.5% percentile
would have 0.45 times the average risk, and the worst centers at the 97.5% per-
centile 2.2 times the average risk, so a 95% range of 0.45–2.2 for the odds ratio of
poor outcome after acute brain ischemia (a fivefold difference).

21.2.4 *Ranking of Centers

We can rank hospitals in unadjusted, adjusted and EB analyses (Fig. 21.3). The EB
analyses are preferable for estimation of the magnitude of differences between
hospitals. Ranking of hospital based on EB estimates does, however, not circum-
vent the problem that one hospital has to be at the top and one at the bottom of a
league table. We should also incorporate the uncertainty in the ranking, since there
can still be substantial variability in the EB estimates of differences between hos-
pitals. We, therefore, may consider the Expected Rank (ER) and Percentile
Expected Rank (PCER) of each hospital (formulas in Sect. 21.2.2) [320, 624].

The Expected Rank (ER) can be calculated with consideration of the probability
that a hospital is worse than any other hospital. Figure 21.3 shows that this
approach leads to shrinkage of the ranks towards the median rank of 5.5 for the 10
hospitals [344]. Hospital 8 has rank 10 (poorest performance) in unadjusted, ad-
justed and EB analyses, but the ER or EPC is 9.1 or 9.2, respectively, meaning that
approximately 1 out of 10 centers is expected to be worse than this center

Fig. 21.3 Ranks of the 10
hospitals in unadjusted,
adjusted, Empirical Bayes
(EB) analyses, and the
Expected Rank (ER). Dot size
is based on the square root of
the sample size per hospital.
According to all analyses,
hospital 8 ranks as the
poorest. Hospital 6 seemed to
do best in unadjusted analysis
(rank 1), shifted to rank 2 in
adjusted analysis, to rank 3 in
EB analysis, and has an ER
around 4
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(Fig. 21.3). Hospital 6 seemed to do best in unadjusted analysis (rank 1), shifted to
rank 2 in adjusted analysis, to rank 3 in EB analysis, and has an ER around 4.

We can also express these shrunk ranks on a 0–100% scale in the PCER. Hospital 8
has a PCER of 86%, which means that there is a 86% probability that the performance
in hospital 8 is worse than any randomly selected other center. Hospital 6 has PCER
36%. Hospital 3 ranks highest, with PCER 17%, meaning that there is only 17%
probability that any randomly selected other center is better than this center. Note that
all these estimates are under the implausible assumptions that the statistical model is
fully correct, the data are reliable, and that no residual confounding is present.

21.2.5 *R Code for Provider Profiling

Some of the R code for the analyses in the stroke example is shown below; a full
script is available at www.clinicalpredictionmodels.org. We use the lme4 library in
R; many other implementations are available, which may give different results with
small sample sizes [335].

Estimate differences between centers (Table 21.4) and rank centers (Fig. 21.3).

# Fit a full model 12 predictors (only patient characteristics) 
full <- lrm(RANKI1J2~AGE+ ... 11 char,data=cva)
# Use offset for effect estimation; approximate; not fully correct
full.ZH.o <- glm(cva$RANKI1J2~cva$ZHCLUCO, offset=full$linear.predictors,

family=binomial) # chi2 22.7, p=0.007
# with random effect: tau 0.396; lme4 package
fullr.ZH.Laplace.o <- glmer(RANKI1J2~(1|ZHCLUCO),
offset=full$linear.predictors, family=binomial, data=cva)

# posterior center effects
coef(fullr.ZH.Laplace.o)[[1]][,1] # coef
# the SE of the posterior center effects can be extracted
attr(ranef(fullr.ZH.Laplace.o,condVar=TRUE)$ZHCLUCO,"postVar") # SE

ER  <- rep(NA,10) # Expected Rank (ER)
for (i in 1:10) { # coef and SE are in Rtable
ER[i] <- 1+ (sum(pnorm((Rtable[i,1] - Rtable[,1][-i]) / 

sqrt(Rtable[i,4]^2+Rtable[-i,4]^2)))) }
ER # 10 ranks: [1] 4.13 8.50 1.96 ... 
PCER   <- 100*(ER-0.5)/10 # Percentile Expected Rank

# Results for Fig 21.3
unadj adjusted EB ER  EPC
unadj adjusted EB   ER  EPC

[1,]     7        4  4 4.18 4.03
[2,]     8        8  9 8.15 8.05
[3,]     2        1  1 2.16 2.10
...
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21.2.6 Guidelines for Provider Profiling

Some guidelines have been suggested for statistical methods for public reporting of
health outcomes. A list with seven preferred attributes of the statistical modeling
was suggested [315]:

(1) clear and explicit definition of patient sample,
(2) clinical coherence of model variables,
(3) sufficiently high-quality and timely data,
(4) designation of a reference time before which covariates are derived and after

which outcomes are measured,
(5) use of an appropriate outcome and a standardized period of outcome assessment,
(6) application of an analytical approach that takes into account the multilevel

organization of data,
(7) disclosure of the methods used to compare outcomes, including disclosure of

performance of risk-adjustment methodology in derivation and validation samples.

Attributes 1–5 are more general in nature than attributes 6 and 7 [505]. We have
focused in this chapter on the latter 2 attributes, especially attribute 6 (“multilevel
organization of data”, implying random effects analysis and EB estimation) [24, 32,
407, 408].

21.2.7 Concluding Remarks

We started this chapter with some considerations on the local applicability of
prediction models. Specifically, we studied the influence of place of treatment
(“center”) on calibration of predictions. Calibration-in-the-large can be improved by
adjusting the intercept in a regression model. The intercept is equivalent to the
baseline hazard function in a survival model. The two main approaches to updating
of the baseline risk are a fixed effect and a random effects approach.

If we consider only one specific setting, a fixed effect approach is most natural,
although we might also perform some type of Bayesian updating of the intercept (see
Chap. 20). If we consider multiple settings, such as multiple hospitals, Empirical
Bayes updating has advantages, as illustrated with the GUSTO-I and stroke exam-
ples. Many more applications have been published over recent years. EB estimation is
attractive whether we update the intercept, calibration slope, or effects of individual
predictor effects per center.

There may be some confusion about naming and notation in traditional and
random effect models. We refer to adjusted estimates in line with standard epi-
demiological nomenclature, where crude estimates are synonymous to unadjusted,
fixed effect estimates. Furthermore, random effects models are also known as mixed
effect models, hierarchical, or multilevel models. A random effects model for
between center differences may also be labeled a “random intercept model with
common slopes” for the predictor effects.
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The methodological issues around multicenter applicability of prediction models
are very similar to issues in provider profiling. For provider profiling, we assume
that the predictor effects are identical across settings, similar to traditional con-
founder correction in epidemiology. This is similar to assuming a “global model” in
meta-analysis of prediction models: predictor effects are assumed to be common
across settings while the baseline risk may vary [83]. If predictor effects differ by
setting, the comparison between settings becomes conditional on the specific values
of the predictor, similar to the interpretation of predictive effects in the presence of
statistical interaction. The randomness of estimates per setting can also be included
in the ranking, as was illustrated with the “Expected Rank” and related measures.

Finally, we note that many of the assessments of heterogeneity between hospitals,
regions, or other types of clusters are similar to assessments of heterogeneity between
studies in the context of a meta-analysis. In meta-analysis, the minimum conditioning is
for study, equivalent to allowing the baseline risk to vary across prediction models.
More flexibility can be considered in meta-analyses of prediction models, by allowing
the calibration slope to vary by study, and even the predictor effects. The focus in
meta-analyses may be on summary estimates of predictor effects, while we focused
here primarily on the validity of the predictions from the model across multiple settings.

21.2.8 *Further Literature

Accurate registration and case-mix adjustment have received substantial attention in
debates around provider profiling. The issues of estimation of differences and
ranking under uncertainty have only more recently received more attention. Indeed,
the uncertainty in estimates per center has a large impact on the interpretation of
provider profiling attempts. A summary measure may be to estimate “rankability”:
s2/(s2 + median(r)2) [618]. This measure is an example of a variance partition
coefficient (VPC), where various variants have been described of the form
VPC = s2/(s2 + r2) [24]. Such VPC measures may assist in interpreting between
center differences, in addition to measures such as the median odds ratio
(MOR) [322]. Austin and others caution against naïve interpretation of the change
in between center heterogeneity with and without predictors: the nonlinear nature of
logistic and Cox regression models makes that s2 can increase if predictors are
added to a model that are associated with risk in poorer performing centers [24].

Individual centers are often too small to reliably determine whether they are an
outlier (either good or bad) [24, 33, 166, 339, 408, 409]. The uncertainty in per center
estimates can be examined in various ways, including bootstrapping [189]. Various
graphical possibilities have emerged to indicate performance while taking into
account uncertainty. One key presentation is the funnel plot [526]. Funnel plots avoid
spurious ranking of centers into league tables by plotting control limits around the
estimated performance based on the precision of the estimates [498]. Furthermore, the
performance of a center over time can be monitored in a CUSUM graph [211].

21.2 Provider Profiling 445



Questions

21:1 Heterogeneity across GUSTO-I (Table 21.1)

(a) The estimate of regional variability, s2, is larger when we consider
the smaller subsamples (0.033 versus 0.025 for regions). What
might be an explanation for this larger s2?

(b) How do you explain the much larger spread between adjusted,
fixed effect, intercepts between the 121 small subsamples com-
pared to the 16 regions? Why are these shrunk more?

(c) Consider a subsample where we estimate a logistic regression
coefficient of 0.4 for the difference to the (adjusted) average
outcome (SE of estimate: 0.5, traditional fixed effect analysis).
What is the EB estimate if the heterogeneity s2 across centers is
0.2, 0.5, or 2? Use the formula from section 21.1.3 for aEB.

21:2 Provider profiling (Sect. 21.2)

(a) Mention at least two key problems of ranking providers, such as
hospitals.

(b) Why is ranking especially difficult for relatively small hospitals?

21:3 Case-mix adjustment (Table 21.3)
Verify (1) that centers with a many good outcomes of stroke had mostly
lower aged patients in Table 21.3, and (2) that case-mix adjustment halves
the apparent heterogeneity between centers in Table 21.4.

21:4 Rankability of stroke outcomes

(a) The heterogeneity in the stroke outcomes is substantial and sta-
tistically significant (Table 21.4). Nevertheless, the Expected
Ranks of quite some centers are close to the median rank of 5.5 in
Fig. 21.3. How do you explain this modest rankability?

(b) Calculate the rankability according to the formula q = s2 / s2 +
median(s2), with s2 indicating the between center variance. Use
the s2 estimate from Table 21.3. Use Fig. 21.2 to determine the
median(s) (and median(s2)).
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Part IV
Applications

In this final part, we apply the framework to model development and validation as
set out in parts II and III to two case studies. In Chap. 22, we discuss prediction
modeling for patients with an acute myocardial infarction as enrolled in the
GUSTO-I trial. In Chap. 23, we present a case study on prediction in survival data,
with the extra complication of model selection in multiply imputed data sets.
Finally, we give some practical advice on the main issues in prediction modeling,
discuss reporting guidelines (specifically: TRIPOD), and describe the medical
problems used throughout the text with the available data sets (Chap. 24).



Chapter 22
Case Study on a Prediction of 30-Day
Mortality

Background Binary outcomes are encountered in many medical prediction prob-
lems, including diagnostic problems (presence of disease) and prognostic outcomes
(occurrence of complications, short-term mortality). In this book, one key example of
a binary outcome is 30-day mortality in patients suffering from an acute myocardial
infarction. A prediction model was developed in over 40,000 patients from the
GUSTO-I trial. We review the development of this model according to the seven
steps of the checklist for developing valid prediction models presented in Part II.
Moreover, we discuss the design and results of a number of methodological studies
that were performed in the GUSTO-I data set.

22.1 GUSTO-I Study

22.1.1 Acute Myocardial Infarction

Acute myocardial infarction (“heart attack”) is caused by the formation of a clot in one
of the coronary arteries that supply blood to the heart muscle. Acute MI is a major
public health problem. Mortality is substantial in the period immediately after the event,
and also during the years after surviving the initial infarction. Some patients die before
reaching the hospital. Patients seen in hospitals are reported to have an average mor-
tality within 30 days around 6–15%, with improvement over time [316].

The risk of 30-day mortality strongly depends on various prognostic factors
(Table 22.1). In younger patients, risks are much lower than in older patients. Other
patient demographics are also important (gender, length, weight), as well as the
presence of risk factors (hypertension, diabetes, smoking, family history) and the
history of previous cardiovascular events (previous MI, angina, stroke, bypass
surgery). Relevant presenting characteristics include the location of the infarction
and the extent of ECG abnormalities. Very important is the acute state of the patient
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as reflected by blood pressure, heart rate, and left ventricular function (e.g., pres-
ence of shock).

22.1.2 *Treatment Results from GUSTO-I

Various drugs and treatments are nowadays available for acute MI, including drugs that
attack the clot (“thrombolytics”) and acute revascularization, such as percutaneous
interventions (“PTCA”) [297]. GUSTO-I is one of the major randomized controlled
trials that compared alternative treatments for acute MI. Specifically, the comparison
was on efficacy of four intravenous thrombolytic regimens [1]. Earlier studies had
shown that a new and more expensive thrombolytic drug, tissue plasminogen activator
(“tPA”), restored blood flow through the coronary arteries more quickly and more often
than alternative drug regimens. The hypothesis in GUSTO-I was that tPA would show
a 1% absolute reduction in 30-day mortality [1]. Treatments in the three other arms
included streptokinase (SK), an older and less expensive thrombolytic drug, which was
given with two different regimens of heparin (a drug that helps keep the coronary artery
open after the initial breakup of the clot by a thrombolytic drug), and a combination of
tPA and streptokinase. The trial enrolled 41,021 patients admitted to 1081 hospitals in
15 countries. The trial convincingly showed a benefit of tPA treatment (p < 0.001).

The GUSTO-I trial provides a rich and unique source of information. Various
substudies have been reported, often in major general and cardiovascular journals.
The large number of patients from all over the world make for a good base to draw
reliable conclusions. GUSTO-I has, hence, contributed to major progress in our
knowledge of acute MI.

22.1.3 Prognostic Modeling in GUSTO-I

In the GUSTO-I trial, a comprehensive set of prognostic factors was collected,
which was first used for prognostic modeling by Dr Kerry Lee at Duke University,

Table 22.1 Categories of predictors for 30-day mortality in acute MI [329]

Categories Examples

Demographics Age, sex, weight, height, geographical site

Risk factors Diabetes, hypertension, smoking status, hypercholesterolemia, family
history of MI

Other history Previous MI, angina, cerebrovascular disease (e.g., stroke), bypass
surgery, angioplasty

Cardiac state Location of infarction, electrocardiogram abnormalities

Presenting
characteristics

Systolic and diastolic blood pressure, heart rate, left ventricular function
(e.g., presence of shock, Killip class)
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representing a team of GUSTO-I investigators [329]. The Lee et al. paper in
Circulation is quite extensive compared to other prognostic studies published in
medical journals. It provides many statistical details on several predictive modeling
issues for logistic regression [329]. The paper is freely available from the
Circulation website [328]; the Abstract is in Box 22.1. We review the paper with
the model development checklist (Table 22.2).

Table 22.2 Checklist for developing valid prediction models applied to the GUSTO-I analysis by
Lee et al. in Circulation [328, 329]

Step Specific issues GUSTO-I model

General considerations

Research
question

Aim: predictors/prediction? Both

Intended
application

Clinical practice/research? Clinical practice

Outcome Clinically relevant? 30-day mortality

Predictors Reliable measurement?
comprehensiveness

Standard clinical workup; extensive set of
candidate predictors

Study design Retrospective/prospective? cohort;
case control

RCT data: prospective cohort

Statistical
model

Appropriate for research question
and type of outcome?

Logistic regression

Sample size Sufficient for aim? >40,000 patients; 2851 events: excellent

Seven modeling steps

1. Preliminary Inspection of data
Missing values

Table 1 (here: Table 22.3)
Single imputation

2. Coding of
predictors

Continuous predictors
Combining categorical predictors
Combining predictors with similar
effects

Extensive checks of transformations for
continuous predictors
Categories kept separate

3. Model
specification

Appropriate selection of main
effects?
Assessment of assumptions
(distributional, linearity and
additivity)?

Stepwise selection
Additivity checked with interaction terms,
one included

4. Model
estimation

Shrinkage included?
External information used?

Not necessary
No

5. Model
performance

Appropriate measures used? Calibration and discrimination

6. Model
validation

Internal validation including model
specification and estimation?
External validation?

Bootstrap and 10-fold cross-validation
No external validation

7. Model
presentation

Format appropriate for audience No; formula in appendix; later paper
focused on clinical application

Validity

Internal:
overfitting

Sufficient attempts to limit and
correct for overfitting?

Large sample size, predictors from literature

External:
generalizability

Predictions valid for plausibly
related populations?

Large set of predictors, representing
important domains; not assessed in this
study
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Box 22.1 Predictors of 30-Day Mortality in the Era of Reperfusion for
Acute Myocardial Infarction: Results From an International Trial of
41,021 Patients. Lee et al., Circulation 1995; 91:1659–1668 [328, 329]

Background Despite remarkable advances in the treatment of acute
myocardial infarction, substantial early patient mortality remains.
Appropriate choices among alternative therapies depend on an estimate of
the patient’s risk. Individual patients reflect a combination of clinical fea-
tures that influence prognosis, and these factors must be appropriately
weighted to produce an accurate assessment of risk. Prior studies to define
prognosis either were performed before the widespread use of thrombolysis
or were limited in sample size or spectrum of data. Using the large popu-
lation of the GUSTO-I trial, we performed a comprehensive analysis of
relations between baseline clinical data and 30-day mortality and developed
a multivariable statistical model for risk assessment in candidates for
thrombolytic therapy.

Methods and Results For the 41,021 patients enrolled in GUSTO-I, a
randomized trial of four thrombolytic strategies, relations between clinical
descriptors routinely collected at initial presentation, and death within
30 days (which occurred in 7% of the population) were examined with both
univariable and multivariable analyses. Variables studied included demo-
graphics, history and risk factors, presenting characteristics, and treatment
assignment. Risk modeling was performed with logistic multiple regression
and validated with bootstrapping techniques. Multivariable analysis identified
age as the most significant factor influencing 30-day mortality, with rates of
1.1% in the youngest decile (<45 years) and 20.5% in patients >75 (adjusted
v2 = 717, P < 0.0001). Other factors most significantly associated with
increased mortality were lower systolic blood pressure (v2 = 550,
P < 0.0001), higher Killip class (v2 = 350, P < 0.0001), elevated heart rate
(v2 = 275, P < 0.0001), and anterior infarction (v2 = 143, P < 0.0001).
Together, these five characteristics contained 90% of the prognostic infor-
mation in the baseline clinical data. Other significant though less important
factors included previous myocardial infarction, height, time to treatment,
diabetes, weight, smoking status, type of thrombolytic, previous bypass
surgery, hypertension, and prior cerebrovascular disease. Combining prog-
nostic variables through logistic regression, we produced a validated model
that stratified patient risk and accurately estimated the likelihood of death.

Conclusions The clinical determinants of mortality in patients treated
with thrombolytic therapy within 6 h of symptom onset are multifactorial
and the relations complex. Although a few variables contain most of the
prognostic information, many others contribute additional independent
prognostic information. Through consideration of multiple characteristics,
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including age, medical history, physiological significance of the infarction,
and medical treatment, the prognosis of an individual patient can be accu-
rately estimated.

22.2 General Considerations of Model Development

22.2.1 Research Question and Intended Application

The title of the paper mentions “Predictors of 30-day mortality …”, and indeed
insight in prognostic effects is an aspect that receives much attention in this paper.
But the text also states that the goal of the study was to develop a multivariable
statistical model “with patient data routinely collected at initial presentation that
would be clinically useful in managing patients who are candidates for thrombolytic
therapy” [329]. So, research questions relate both to insight in the relevance of
predictors and to obtaining predictions, as is common in prediction research [508].
“Managing patients with acute MI” likely refers to making appropriate decisions
among alternative therapies, including the more expensive thrombolytic drug
(tPA) and the cheaper drug (streptokinase). The authors argue rightly that these
choices should depend on an estimate of the patient’s risk. This issue is further
expanded on in a subsequent paper by Califf et al. [86]. The key role of baseline risk
for decision-making is illustrated on acute MI treatment by thrombolytics in at least
two other publications [184, 298].

The authors provide statements on the requirements for such a prognostic model:
“To be broadly useful, a risk-assessment algorithm should include all clinically
relevant prognostic indicators and should be derived from a population that rep-
resents the types of patients seen in clinical practice so that stable estimates of true
risk relations can be assessed. A useful model should appropriately weight clini-
cally relevant predictors and be validated in a population with a broad spectrum of
patients and hospital settings”. According to the authors, the GUSTO-I trial data set
fulfills these requirements.

22.2.2 Outcome and Predictors

The outcome was 30-day mortality. This is a “hard” end point, and it was the
primary end point in the analysis of treatment efficacy in this trial [329]. For
decision-making on therapy, mortality, and quality of life in the longer term may be
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more relevant. The gain by using a more expensive thrombolytic drug (tPA) is then
reflected in a better (quality adjusted) life expectancy [60].

The study considers many potential predictors. A comprehensive set of
approximately 25 characteristics was considered, based on subject matter knowl-
edge (input from expert clinicians, literature). An overview of the main charac-
teristics is provided in Table 22.3, with their relations to 30-day mortality in
univariate logistic regression analyses.

Table 22.3 Illustration of the effects of some key prognostic factors in predicting 30-day
mortality in acute MI. The v2 statistics are based on the difference in −2 log likelihood between a
logistic regression model with one predictor and a model without the predictor

Predictor Overall
n = 40,830

Deaths
n = 2,851

Unadjusted v2

Median [25–75p] Median [25–75p]

Age (years) 62 [52–70] 72 [64–78] 2099 (1 df )

Systolic BP (mmHg) 130 [112–144] 120 [100–140] 733 (1 df )a

n col% n row%

Killip 1388 (3 df )

I 34,825 85% 1,773 5.1%

II 5,141 13% 716 14%

III 551 1.3% 181 33%

IV 313 0.6% 181 58%

Location of infarction 354 (2 df )

Anterior 15,900 39% 1,582 9.9%

Inferior 23,704 58% 1,181 5.0%

Other 1,226 3% 88 7.2%

Previous MI 6,726 16% 807 12% 271 (1 df )

Diabetesb 6,005 15% 653 11% 146 (1 df )

Smokingb 483 (2 df )

Current 17,543 43% 736 4.2%

Ex-smoker 11,210 27% 805 7.2%

Never smoked 12,077 30% 1,310 11%

Thrombolytic therapyb 15 (3 df )

SK + iv hep 10,377 25% 770 7.4%

SK + subcut hep 9,796 24% 705 7.2%

tPA + SK 10,504 26% 723 7.0%

tPA + iv hep 10,344 25% 653 6.3%

Total n 40,830 100% 2,851 7.0% –

MI myocardial infarction; SK Streptokinase; tPA tissue plasminogen activator; hep heparin
aSystolic BP with winsorizing above 120 mmHg
bData corrected compared to the original publication [329]
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22.2.3 Study Design and Analysis

The data come from a RCT. Data collection was prospective, with rigorous quality
control on predictor information and outcome assessment. The inclusion criteria for
GUSTO-I were relatively liberal, making the findings probably well generalizable
to other acute MI patients.

The choice of the statistical model does not receive much attention in the paper;
logistic regression is assumed to be suitable for this situation with a dichotomous
outcome (dead/alive). The model can approach nonlinear models by including
interactions and nonlinear terms, which were examined.

A total of 2,851 patients had died by 30 days. Thirty-nine percent of the deaths
(1125) occurred within 24 h; more than half (55%) occurred within 48 h of ran-
domization. This number of events provides an exceptional and excellent basis for
prognostic modeling.

22.3 Seven Modeling Steps in GUSTO-I

22.3.1 Preliminary

An overview of the data is provided in Table 22.3 [329]. The outcome (30-day
mortality) was complete for 40,830 of the 41,021 patients (99.5%). Distributions of
some candidate predictors were quite skewed, e.g., for Killip class (a measure of left
ventricular function). Categories III or IV were present in only 2% of the patients;
these categories represent patients in shock.

Missing values occurred for various candidate predictors, but usually only in a
small fraction. Missing values were imputed for further statistical analysis (“single
imputation”, see Chaps. 7 and 8). Imputation was based on the correlation among
predictors, which were exploited with flexible functions (transcan function in S
+ software, the pre-R era). Details on the missing values were not provided, nor
were analyses repeated with complete cases only.

22.3.2 Coding of Predictors

Much attention was given to the transformations of continuous predictors. Linear
and restricted cubic spline functions were used to describe the relations between
predictor and mortality (see Chap. 10). For further analysis, some simplifying
transformations were chosen, including winsorizing of values (for example for
systolic blood pressure).
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For categorical variables, detailed categorizations were kept as such for statistical
analysis, which was reasonable given the large sample size. For example, many
studies consider the location of infarction as anterior versus other. In GUSTO-I, the
coding was as anterior (39%), inferior (58%), or other (3%), where “other” included
posterior, lateral and apical locations. Also, Killip class was considered as a cate-
gorical variable, despite that class III and class IV each contained only 1% of the
patients. The ordinal nature of this predictor was ignored in the analyses.

22.3.3 Model Specification

The authors state that they aimed to identify which variables were most strongly
related to short-term mortality. This answers a research question related to
hypothesis testing, rather than prediction per se [508]. The specific technique used
for selection is not explicitly stated, but likely only statistically significant variables
were considered as predictors (p < 0.05).

The authors tested interactions among the predictors, i.e., they examined whether
the prognostic relation of a predictor differed by levels of other predictors (“addi-
tivity assumption”, Chap. 12). In the Results, the authors state:

Only one interaction among these factors was significant to the degree that it was appro-
priate to include in the model—the interaction between age and Killip class.

Linearity of predictors was assessed in detail; transformations chosen at univariate
analysis were also used in multivariable analysis.

22.3.4 Model Estimation

Regression coefficients were estimated with standard logistic regression analysis,
which maximizes the log likelihood of the fit of the model to the data. More
advanced methods are available (Chap. 13), but these modern estimation methods
are less relevant in very large data sets such as GUSTO-I.

22.3.5 Model Performance

Discrimination and calibration were studied to indicate model performance. The
area under the receiver operating characteristic curve (AUC, equivalent to the c
statistic) was used to study discrimination. The authors explain that the AUC
measures the concordance of predictions with actual outcomes (how well the pre-
dictions rank order patients with respect to their outcomes) and that AUC is a
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simple transformation of Somer’s D rank correlation between the model predictions
and actual outcomes.

Calibration of the model predictions was assessed graphically and by compar-
ison of the average model prediction to the observed mortality rate across tenths of
risk. The latter grouping procedure is often used in the Hosmer–Lemeshow
goodness of fit test, which we discourage to use (Chap. 15). Further, the authors
compared predictions and observed mortality within specific subgroups of patients
with different risk levels. This method is not often performed to study calibration of
prediction models [602]. First, it is only reasonable with large numbers of patients
in the subgroups, as in GUSTO-I. More importantly, it is only a check on marginals
of predictions according to predictor values. The comparison with observed out-
comes will only show violations of nonlinearity for continuous variables. It is
insensitive to having missed interactions in the model. We discussed various other
measures for calibration in Chap. 15. Clinical usefulness was not evaluated
explicitly.

22.3.6 Model Validation

GUSTO-I is a very large data set. This makes that the performance of the model can
be assessed reliably in a simple and direct way, i.e., on the same patients that were
used to develop the model. Optimism in performance would be a problem in
relatively small data sets, i.e., either that many predictors were considered, or that
relatively few events were available for the logistic regression analysis. Both are not
the case in GUSTO-I. Nevertheless, the authors embarked on attempts to validate
the predictive performance of the model, especially the AUC. The authors explain
their approach clearly:

First, 10-fold cross validation was performed: the model was fitted on a randomly selected
subset of 90% of the study patients, and the resulting fit was tested on the remaining 10%.
This process was repeated 10 times to estimate the extent to which the predictive accuracy
of the model (based on the entire sample) was overoptimistic. Second, for each of 100
bootstrap samples (samples of the same size as the original population but with patients
drawn randomly, with replacement, from the full study population), the model was refitted
and then tested on the original sample, again to estimate the degree to which the predictive
accuracy of the model would be expected to deteriorate when applied to an independent
sample of patients [329].

A more extensive description of these validation techniques was provided in
Chap. 17. Model optimism was negligible, both in the 10-fold cross-validation
procedure and with bootstrapping. This was as expected, since the sample size was
very large with a relatively small number of predictors.
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22.3.7 Presentation

Results of the modeling process were presented in various ways. The relevance of
each predictor was shown by an ANOVA table, where the contribution of each
predictor was indicated by the drop in an adjusted v2 statistic. A simple table is
obtained in R (rms library) for the five prognostic factors that were considered
most important [86]:
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A graphical illustration is more attractive (Fig. 22.1, plot(anova(fit))). It
appears that age with interactions with Killip is associated with a contribution to the
v2 statistic of 1392; if analyzed as a main effect the contribution was 1380. Killip
contributes 434 (389 in a model without interaction). Systolic blood pressure (with
winsorizing at 120 mmHg) and a high pulse also contribute substantially. The
interaction between age and Killip class is of relatively minor importance (v2 = 31).

Fig. 22.1 Prognostic importance of five key predictors for 30-mortality in GUSTO-I [86]. Age
stands out as the dominant prognostic factor (v2 1392, plus interaction effect v2 31)
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Interestingly, the choice of thrombolytic therapy had an adjusted v2 of only 15 in
the prediction model [86], which is small compared to the importance of the other
predictors. This phenomenon is observed in many prognostic evaluations of RCTs:
treatment has a statistically significant impact on outcome, but its relevance is small
compared to other prognostic factors.

Odds ratios (ORs) for the effect of predictors were shown graphically [329].
Odds ratios are calculated from the logistic regression coefficients as OR = exp
(coef). An OR larger than 1 indicates that the risk of mortality is increased, while an
OR smaller than 1 indicates that the risk of mortality is decreased (e.g., lower risk
with higher systolic blood pressure, Fig. 22.2). For continuous variables, the ORs
were presented as the odds of death for patients at the 75th percentile of the
distribution of the predictor versus patients at the 25th percentile. We show ORs on
the log scale for easier interpretation of the relative magnitude of effects. At a log
scale, an OR of 4 is twice as far away from 1 as an odds ratio of 2, consistent with a
doubling in prognostic effect.

22.3.8 Predictions

The Appendix of the Circulation paper lists a formula which can be used to cal-
culate the probability of 30-day mortality for an individual patient [329]. This
formula is difficult to follow because it includes cubic spline transformations. A far
easier presentation was done for the model with five key predictors (Table 22.4)
[86].

Fig. 22.2 Odds ratios for five key predictors for 30-mortality in GUSTO-I [86]. 95 and 99%
confidence intervals are shown. Age and Killip class have very strong relative effects, and all
confidence intervals are small
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Box 22.2 Formula from the Appendix of the Lee et al. paper [328, 329]
Risk Model for 30-Day Mortality

Probability of death within 30 days = 1/[1 + exp (−L)], where
L = 3.81 + 0.0762 age −0.0398 min(SBP, 120) + 2.08 [Killip class
II] + 3.62 [Killip class III] + 4.04 [Killip class IV] − 0.0211 heart rate +
0.0394 (heart rate − 50)+ − 0.0397 height + 0.000184 (height − 154.9)+

3

− 0.000898 (height − 165.1)+
3 + 0.00159 (height − 172.0)+

3 − 0.00107
(height − 177.3)+

3 + 0.000194 (height − 185.4)+
3 + ….

Explanatory notes:

1. Brackets are interpreted as [c] = 1 if the patient falls into category c,
[c] = 0 otherwise.

2. (x)+ = x if x > 0, (x)+ = 0 otherwise.
3. For systolic blood pressure (SBP), values >120 mmHg are winsorized.

Table 22.4 Score chart to
estimate 30-day mortality
after acute MI [86]. Note that
the interaction between age
and Killip is represented in a
table for easy application

Predictor Values Points

Age (years) Killip class

I II III IV

40 28 42 54 59

50 38 49 59 65

60 47 56 64 70

70 57 63 70 76

80 66 70 75 82

90 75 77 81 88

100 85 84 86 94

Systolic BP
(mmHg)

40 34

80 17

120+ 0

Heart rate (beats/
min)

10 9

30 5

50 0

90 9

130 17

Infarct location Anterior 6

Inferior 0

Other 3

Previous MI Yes 5

Total Add
points

…
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22.4 Validity

22.4.1 Internal Validity: Overfitting

Overfitting was of limited relevance, because of the very large sample size. Quite
extensive checks of assumptions were performed for a substantial number of can-
didate predictors, but this “data hungry” approach was reasonable in such a huge
data set. Overfitting was assessed by cross-validation and bootstrapping, and found
to be irrelevant.

22.4.2 External Validity: Generalizability

Will predictions be valid for plausibly related populations? External validity was
not assessed in the paper. We note however that a large set of predictors was
considered and included in the model, representing important domains of
predictors.

Various other models have been developed to predict short-term mortality after
acute MI, some before and some after the development of the GUSTO-I model.
Usually, large sample sizes were available, such that model development could start
de novo. Examples of models developed earlier were the TIMI-II model [395], the
GISSI-II model [361], and a model from a Belgium center [142].

Interestingly, we found that these different models for acute MI may have a
similar performance, e.g., an AUC around 0.8, but provide very different predic-
tions for individual patients [540]. These differences were attributable to choice of
predictors rather than to differences in regression coefficients, highlighting the
importance of model selection issues (Chap. 11).

22.4.3 Summary Points

• The Lee et al. paper is an excellent illustration of many of the essential steps in
developing a valid prediction model

• Nowadays, we can readily deal with missing values in a slightly more sophis-
ticated way than single imputation, although single imputation is much better
than a complete case analysis (Chap. 7)

• A limitation of the model is the translation into clinical practice of the full
model; an easily applicable format was used for a reduced model with 5 key
predictors [86]
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• Moreover, generalizability to current clinical practice is doubtful since the
treatments have changed substantially since the years that patients were enrolled
in GUSTO-I (early 1990s). We expect a need for model updating, at least of the
model intercept.

22.5 Translation into Clinical Practice

The model presented in Circulation is not easily applicable in the presented form.
Many predictors were included, while it was found that 90% of the prognostic
information was contained in five variables:

A perspective on the overall contribution of various components of the baseline clinical
data to the prediction of mortality can be obtained by use of the global chi-square statistic
from the logistic model as an index of prognostic information. This index from the full
model can be compared with reduced models containing a smaller number of variables. The
likelihood ratio chi-square statistic for the full model containing all of the prognostic factors
was 4379. In contrast, this statistic for a model containing age alone was 2099, meaning
that age provides nearly half the prognostic information. Adding other variables provides an
increased proportion of information; combining age, systolic blood pressure, Killip class,
heart rate, infarct location, and age-by-Killip-class interaction provides approximately 90%
of the total prognostic information contained in this array of baseline clinical characteristics
[329].

Further, the presentation in the Appendix as a formula is probably frightening to
most clinicians. A simpler format was required. Both issues were addressed in a
later publication, which focused on decision-making on thrombolytic therapy [86].

22.5.1 Score Chart for Choosing Thrombolytic Therapy

Five predictors were considered and presented in a table to derive a summary score
for a patient (see Chap. 18). Age and Killip class were included as main effects and
with interaction terms. The interaction effect is nicely illustrated in Table 22.4 and
Fig. 22.3. At younger ages, Killip class makes a substantial difference.
Equivalently, age matters among those with Killip class I, but less among those
with higher Killip classes. At the end of the age range (age 100 years), some strange
patterns arise, with Killip class I patients having a higher score than those with
Killip class II or III. This is a biologically implausible pattern. It illustrates that even
in a huge data set such as GUSTO-I, artifacts can show up. These artifacts may be
due to the specification of the logistic model with a linear interaction term, or to the
specific sample. The implausible pattern could have been prevented by placing
some restrictions on the interactions, as was done for a prediction model for renal
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artery stenosis [314] and illustrated in Chap. 12 for age effects in the Lynch syn-
drome model.

22.5.2 From Predictions to Decisions

The score from Table 22.4 corresponds to a probability of 30-day mortality with or
without tPA treatment (Table 22.5). We can, hence, determine the benefit of
administering tPA instead of streptokinase from this table. A substantial benefit
should be estimated before treating with tPA since this drug is expensive and has a
substantial risk of side effects (especially bleeding) [184, 298]. Note that the tPA
reduction shows an increase with the score on an absolute scale (Fig. 22.4). The
relative reduction was, however, more or less constant at 15% on the odds scale
(odds ratio 0.81 in a model with five key predictors). So, the same relative benefit

Fig. 22.3 Score chart to estimate 30-day mortality after acute MI, presenting the same model as in
Table 22.4. Note that the interaction between age and Killip is represented as age effects per Killip
category for easy application in practice
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leads to substantially different absolute benefits [300]. This observation has been
made for many other diseases as well (see Chap. 2).

As an example, we consider the score for a hypothetical 65-year-old male. The
score would be 60 points for the combination of age 65 and Killip class II, 8 points
for a systolic blood pressure of 100 mmHg, 5 points for heart rate 75 bpm, 6 points
for anterior infarct location, and no points for previous MI. The total is 79 points.
When treated with tPA, his 30-day mortality risk is estimated as approximately
16%, while SK would be predicted to lead to a mortality of approximately 19%. So,
tPA would be expected to reduce mortality by approximately 3%.

Table 22.5 Translation of score from Table 22.4 into estimated mortality with streptokinase
(SK) or tPA treatment [86]

Score SK mortality (%) tPA mortality (%) tPA reduction (%)

30 0.4 0.4 –

40 0.8 0.8 0.01

50 1.7 1.4 0.3

60 3.5 2.8 0.8

70 10 8.3 1.7

80 20 17 3

90 40 35 5

Fig. 22.4 Absolute benefit in 30-day mortality by accelerated tPA treatment compared to
streptokinase (SK) in relation to baseline mortality risk. We note that the absolute benefit increases
with increasing baseline risk, while we assume a constant relative risk effect (Odds Ratio for tPA
0.81 in a logistic model with 5 key predictors, 95% CI 0.73 − 0.90). Dots reflect difference in
proportions of patients who died in groups defined by quantiles of predicted risk, comparing tPA
versus SK. Solid line represents the differences between two rcs fits with 5 knots (4 df) for those
randomized to tPA and those randomized to SK [86]
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22.5.3 Covariate Adjustment in GUSTO-I

The effects of adjustment for predictors have been described for the GUSTO-I data
in at least two methodological studies [332, 537]. Both studies considered the effect
of tPA versus streptokinase. The first study considered adjustment for age or a
comprehensive set of 17 predictors (age plus 16 other baseline characteristics)
[537]. The second study used another approach and adjusted for the 5 most
important predictors [86, 332].

In the first analysis, it was found that patients were 0.17 years older in the tPA
group (61.03 years, n = 10,348) than in the two SK groups (60.86 years,
n = 20,162) [537]. This difference should be fully attributed to chance, and a formal
test to compare the ages makes no sense if a proper randomization procedure was
followed [501]. However, we know that age is a very strong predictor. The uni-
variate regression coefficient for age was 0.082 per year. We estimated the differ-
ence in treatment effect that was attributable to age imbalance by multiplying the
difference in mean age with the regression coefficient: 0.17 * 0.082 = 0.014. The
0.17 years older age of the tPA group made that the treatment effect was under-
estimated by 0.014 on the logistic scale. The adjusted treatment effect corrects for
this imbalance. But it also provides a stratified estimate, which has an expectation
further from zero [174, 463]. This stratification effect was calculated as the
remaining part of the difference between unadjusted and adjusted treatment effect
[537].

The unadjusted treatment effect was an OR of 0.853 (coefficient −0.1586), and
the adjusted estimate was an OR 0.829 (coefficient −0.1878, 18% more extreme).
Age imbalance explained −0.014 or 9% of the difference, leaving another 9%
attributable to stratification. Some argue that unadjusted treatment effects are biased
if we are interested in more personalized treatment effect estimates [174, 233].

The key treatment comparison in tPA versus streptokinase we made in 30,510
patients [86]. It was estimated that an adjusted analysis with 26,900 patients would
have the same power as the original unadjusted analysis of 30,510 patients. Such a
12% reduction in sample size is a major argument in favor of adjusted analyses to
test for treatment effect [537]. Either sample sizes could be reduced, or the sample
size could be kept at the number based on a traditional, unadjusted, analysis, while
the actual analysis would give more statistical power.

Much more can be said on the modeling of treatment effects in randomized
clinical trials, which is mostly beyond the scope of this book. Adjusted analyses
were the primary analysis in about half of recently reported RCTs across various
fields [18]. Advantages are that adjusted analyses have more power, and that
adjusted treatment effects may be more relevant for clinical practice. Note that
adjusted p-values of a particular trial do not necessarily have to be more extreme
than those from an unadjusted analysis [332]. However, since we are more inter-
ested in the adjusted than the unadjusted effect, the adjusted p-value is arguably
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preferable. The actual gain in power depends on the strength of the prognostic
relations of predictors to outcome. Some argue that adjusted analyses make sense
once a specific type of correlation exceeds 0.2 [441]. Finally, any adjustment
procedure should be prespecified in the trial protocol, to prevent a search for the
adjustment model that gives the most impressive estimate or most extreme p-value
for the treatment effect.

22.6 Concluding Remarks

The GUSTO-I case study illustrates many of the steps that need to be considered in
the development of a valid prediction model [329]. It is fortunate that the paper is
freely accessible [328], and that we can make parts of this rich data set available for
practical experience in prediction modeling (Chap. 24, data courtesy: Duke Clinical
Research Institute, Durham, NC). The decision-making implications were well
addressed in another study [86], which used a slightly simplified prediction model.
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Questions

22:1 Estimate 30-day mortality (Table 22.4, and spreadsheet)
Consider a male patient with Killip class I, a systolic blood pressure of
100 mmHg, heart rate 80 bpm, anterior infarct location, and with a previous
MI. Use the simple table (Table 22.4) to estimate 30-day mortality and
compare this estimate to the more exact calculation with the full regression
formula (spreadsheet at www.clinicalpredictionmodel.org).

(a) What is the risk of mortality from acute MI if this patient is 55 years old?
(b) What if he were 75 years old?

Now consider decision-making on tPA treatment.

(c) What is the impact of age on prioritizing tPA treatment based on the reduction
in 30-day mortality?

(d) What might be the priority if we consider gain in life expectancy instead of
30-day mortality?

(e) What is the threshold for the ratio between life expectancies of a 75 versus a
55-year-old patient in this example?

22:2 Stratification and treatment effects
We study the effect of a hypothetical treatment, with and without stratification
for gender. The Table with results is presented below. We compare 30-day
mortality (“Dead”) between treatments A and B.

Table: hypothetical treatment effect in a randomized controlled trial, with
stratification by gender.

Men Women

Treatment Dead Survived Dead Survived

A
B

10
18

80
72

72
80

18
10

(a) What is the odds ratio for the treatment effect (A vs. B) among men?
(b) And among women?
(c) What is the OR for treatment if we do not stratify by gender?
(d) Is treatment balanced by gender?
(e) How do you explain these findings?
(f) What is the OR of gender, ignoring treatment?
(g) What is the OR of gender, conditional on treatment?
(h) What would happen if gender had no prognostic effect, i.e., the OR for gender

was 1?
(i) How do these results explain the impact of covariate adjustment in GUSTO-I?

Specifically, the unadjusted OR was 0.853 and the adjusted OR 0.829, while
imbalance only accounted for a difference of −0.014 on the log odds scale?
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Chapter 23
Case Study on Survival Analysis:
Prediction of Cardiovascular Events

Background Survival is an important long-term outcome in prognostic research,
including medical areas such as cardiovascular disease and oncology. We consider
a model for the occurrence of vascular events in patients with symptomatic car-
diovascular disease. Patient data were from the Second Manifestations of ARTerial
disease (SMART) study. We go through the seven steps of the checklist for
developing valid prediction models, as presented in Part II. Specific focus is on the
combination of models specification and estimation with the LASSO in combina-
tion with multiple imputation of missing values. The data set and R code are made
available at the book’s website (www.clinicalpredictionmodels.org).

23.1 Prognosis in the SMART Study

The SMART study is an ongoing prospective cohort study coordinated by
University Medical Center Utrecht, the Netherlands, and initiated by Prof. Van der
Graaf and colleagues [137, 512]. Many prediction models in the field of cardio-
vascular disease are developed with data from subjects without clinically manifest
atherosclerosis [666]. These include the Framingham risk score, PROCAM, and
SCORE [17, 590, 674]. These models may be able to rank patients with clinically
manifest disease according to risk, but would be expected to underestimate absolute
risk in patients with clinically manifest cardiovascular disease [151].

Assessment of absolute risk is important for secondary prevention. According to
the current guidelines, all patients who experienced a symptomatic cardiovascular
event should be considered as at high risk (more than 20% absolute risk on a future
event in the next 10 years). No further categorization is available.
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Relevant outcomes in patients with cardiovascular disease (coronary artery
disease, cerebral artery disease, peripheral arterial disease, and abdominal aortic
aneurysm) include stroke, myocardial infarction or cardiovascular death. Hard
outcomes are generally preferred because they lead to better comparability between
studies and hence a better generalizability. The aim in the current study was to
develop a prediction model for patients with cardiovascular disease. We estimate
the 1-, 3-, and 5-year risks on the occurrence of vascular events (stroke, myocardial
infarction, or cardiovascular death).

23.1.1 Patients in SMART

We consider 3873 patients who were enrolled in the study in the period of
September 1996 and March 2006; the cohort has since been expanded [609].
Patients had a clinical manifestation of atherosclerosis (transient ischemic attack,
ischemic stroke, peripheral arterial disease, abdominal aortic aneurysm, or coronary
heart disease). After written informed consent, they underwent a standardized
vascular screening including a health questionnaire for clinical information, labo-
ratory assessment and anthropometric measurements at enrolment. During
follow-up, patients were biannually asked to fill in a questionnaire on hospital-
izations and outpatient clinic visits. The end points of interest for the present study
were (acute) vascular death, (non-)fatal ischemic stroke or (non-)fatal myocardial
infarction, and the composite end point of any of these vascular events
(Table 23.1). If a patient had multiple events, the first recorded event was used for
analysis. Data were available on 14,530 person-years collected during a mean
follow-up of 3.8 years (range 0–9 years). A total of 460 events occurred, corre-
sponding to a 5-year cumulative incidence of 14.2% (1–0.858 free of events). The
9-year incidence was 1–0.725 = 27.5%, so already above the clinically defined
threshold of 20% 10-year risk (Fig. 23.1).

23.2 General Considerations in SMART

23.2.1 Research Question and Intended Application

The aim was to develop a prediction model for long-term outcome. Given the
available follow-up, 1-, 3-, and 5-year risks could be assessed reliably. Achieving
adequate predictions was more prominent than insight in the predictor effects per se
(Table 23.1). The intended application was inpatient counseling; a high absolute
risk might motivate patients to change inappropriate lifestyles and to comply with
their medication regimens.
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Table 23.1 Checklist for developing a valid prediction model in the SMART study

Step Specific issues SMART model

General considerations

Research
question

Aim: predictors/prediction? Emphasis on prediction

Intended
application

Clinical practice/research? Clinical practice

Outcome Clinically relevant? Hard cardiovascular events

Predictors Reliable measurement?
Comprehensiveness

Detailed workup; comprehensive set of
candidate predictors

Study design Retrospective/prospective?
Cohort; case control

Prospective cohort

Statistical
model

Appropriate for research
question and type of
outcome?

Cox regression

Sample size Sufficient for aim? 3873 patients, 460 events: very good

7 modeling steps

1. Preliminary Inspection of data
Missing values

Table 23.3
Multiple imputation

2. Coding of
predictors

Continuous predictors
Combining categorical
predictors
Combining predictors with
similar effects

Winsorizing and splines for continuous
predictors
Sum score for cardiovascular history

3. Model
specification

Appropriate selection of main
effects?
Assessment of assumptions
(distributional, linearity and
additivity)?

Stepwise selection with high p-value and
LASSO
Additivity checked with interaction terms
Proportional hazards checked

4. Model
estimation

Shrinkage included?
External information used?

Penalized estimation with LASSO
No

5. Model
performance

Appropriate measures used? Focus on discrimination

6. Model
validation

Internal validation including
model specification and
estimation?
External validation?

Bootstrap within imputed set including
all modeling stepsm such as cv for
LASSO optimal penalty
No external validation

7. Model
presentation

Format appropriate for
audience

Nomogram

Validity

Internal:
overfitting

Sufficient attempts to limit
and correct for overfitting?

Large sample size, predictors from
literature, LASSO for selection and
shrinkage

External:
generalizability

Predictions valid for plausibly
related populations?

Large set of predictors, representing
important domains; not assessed in this
study
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23.2.2 Outcome and Predictors

The primary outcome was any cardiovascular event, comprising cardiovascular
death, nonfatal stroke, and nonfatal myocardial infarction. Combining different
events is a common approach in vascular research to increase statistical power.
A cardiovascular event occurred in 460 patients during follow-up.

The selection of predictors was motivated by characteristics included in
Framingham and SCORE models. The relation with future events has also been
established for several traditional risk factors, including hyperhomocysteinemia,
intima–media thickness, and creatinine. Other candidate predictors were demo-
graphics (sex and age), and risk factors for vascular events in the general population
(smoking, alcohol use, body mass index (BMI), diastolic and systolic blood pres-
sure, lipids, and diabetes).

It is well conceivable that indicators of the extent of atherosclerosis are very
relevant to predict events in patients with symptomatic atherosclerosis. Such
indicators are the location of symptomatic vascular disease (cerebral, coronary,
peripheral arterial disease, or AAA), and markers of the extent of atherosclerosis
(homocysteine, creatinine, albumin, intima–media thickness (IMT), and presence of
a carotid artery stenosis, Table 23.2).

Fig. 23.1 Overall fraction of patients free of events during 9 years of follow-up. In total, 460
patients had a cardiovascular event, for a 5-year risk of cardiovascular events of 14.2% (1 – 0.858)
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Table 23.2 Potential predictors in the SMART study data set (n = 3,873). Relatively many
missing values were present for different ways to measure blood pressure

Characteristics

Demographics

Female sex (“SEX”, n, 0 missing) 975 (25%)

Age (“AGE”, in years, 0 missing) 60 [52–68]

Classical risk factors

Smoking (“SMOKING”, n (%), 25 missing)

Never 693 (18%)

Former 2711 (70%)

Current 444 (12%)

Packyears (“PACKYRS”, in years, 21 missing) 20 [6–34]

Alcohol (“ALCOHOL”, n (%), 25 missing)

Never 751 (20%)

Former 408 (11%)

Current 2689 (69%)

Body mass index (“BMI”, in kg/m2, 3 missing) 26.7 (24–29)

Diabetes (“DIABETES”, n (%), 40 missing) 846 (22%)

Blood pressure

Systolic, by hand (“SYSTH”, in mmHg, 1498 missing) 140 (126–155)

Systolic, automatic (“SYSTBP”, in mmHg, 1223 missing) 139 (127–154)

Diastolic, by hand (“DIASTH”, in mmHg, 1499 missing) 82 (75–90)

Diastolic, automatic (“DIASTBP”, in mmHg, 1221 missing) 79 (73–86)

Lipid levels

Total cholesterol (“CHOL”, in mmol/L, 18 missing) 5.1 [4.4–5.9]

High-density lipoprotein cholesterol (“HDL”, mmol/L, 30 missing) 1.17 [0.96–1.42]

Low-density lipoprotein cholesterol (“LDL”, mmol/L, 216 missing) 3.06 [2.39–3.83]

Triglycerides (“TRIG”, mmol/L, 28 missing) 1.54 [1.12–2.23]

Previous symptomatic atherosclerosis

Cerebral (“CEREBRAL”, n (%), 0 missing) 1147 (30%)

Coronary (“CARDIAC”, n (%), 0 missing) 2160 (56%)

Peripheral (“PERIPH”, n (%), 0 missing) 940 (24%)

Abdominal aortic aneurysm (“AAA”, n (%), 0 missing) 416 (11%)

Markers of atherosclerosis

Homocysteine (“HOMOC”, µmol/L, 463 missing) 12.8 [10.3–15.7]

Glutamine (“GLUT”, µmol/L, 19 missing) 5.7 [5.3–6.5]

Creatinine clearance (“CREAT”, mL/min, 17 missing) 89 [78–101]

Albumin (“ALBUMIN”, n (%), 207 missing)

No 2897 (79%)

Micro 655 (18%)

Macro 114 (3%)

Intima–media thickness (“IMT”, mm, 98 missing) 0.88 [0.75–1.07]

Carotid artery stenosis >50% (“STENOSIS”, n (%), 93 missing) 722 (19%)
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23.2.3 Study Design and Analysis

The SMART study is designed as an ongoing, prospective dynamic cohort study.
Patients are enrolled when presenting at the hospital, with follow-up starting from
study inclusion. We used the Cox regression model, which is the default statistical
model for survival outcomes. This model is appropriate for prediction of an out-
come at relatively short term such as 5-year cumulative incidence of cardiovascular
events. For long-term predictions (e.g., 10-year incidences), a parametric model
might be preferable such as a Weibull model. A Weibull model provides more
stable estimates at the end of the follow-up [89].

With respect to sample size, the balance of 460 events and approximately 25
candidate predictors is quite reasonable (Table 23.2). This implies 18 events per
variable (EPV).

23.3 Preliminary Modeling Steps in the SMART Cohort

Missing values were an important issue in the development of the prediction model.
We first discuss patterns of missing values, followed by strategies for imputation.

23.3.1 Patterns of Missing Values

Many missing values were noted among four variables that relate to blood pressure
measurements (two for diastolic and two for systolic pressure, >30% missing,
Fig. 23.2). In the first years of the study, blood pressure was measured combined
with measurement of the distensibility of the carotid artery wall (“SYSTBP” and
“DIASTBP” variables). Four years after the start of the study, it was decided to
measure blood pressure with the conventional sphygmomanometry as well (“by
hand”). This measurement is considered in most current guidelines. Hence, con-
ventional diastolic and systolic measurements (“SYSTH” and “DIASTH” variables)
are obvious candidate predictors for our model rather than the automated mea-
surements. Nearly, all patients had at least one type of blood pressure measurement,
with Pearson correlation coefficients 0.69 and 0.59 for systolic and diastolic blood
pressure measurements in 1155 and 1156 patients with conventional as well as
automatic measurements available, respectively. This correlation enabled a rea-
sonably accurate imputation of the “SYSTH” and “DIASTH” variables.

The variable homocysteine (“HOMOC”) had 463 missings (12%, Table 23.3,
Fig. 23.2, upper left panel). In the early years of the study, both homocysteine
(“HOMOC”) and conventional sphygmomanometry blood pressure measurements
(“SYSTH” and “DIASTH” variables) were not performed, leading to some corre-
lation of missingness between these variables (Fig. 23.3).
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Fig. 23.2 Patterns of missing data in the SMART study (n = 3873, VIM library)

Table 23.3 Impact of various transformations of predictors in a univariate Cox regression models
for the SMART study; complete case analysis

Predictor Coding Wald v2 df

Age Linear 97 1

Squared 125 2

(Age–55)+: linear effect after age 55 119 1

(Age–50)+
2: squared effect after age 50 130 2

Restricted cubic spline, 3 df 125 3

<50, 50–59.9, 60–69.9, � 70 93 3

<60, � 60 72 1

Creatinine Linear 93 1

Restricted cubic spline, 3 df 116 3

Restricted cubic spline, 2 df 99 2

Log 131 1

Blood pressure
(conventional reading)

Linear systolic 15 1

Restricted cubic spline systolic, 2 df 15 2

Linear diastolic 0.7 1

Restricted cubic spline diastolic, 2 df 2 2

Previous symptomatic
atherosclerosis

Sumscore 0–4 96 1

Sumscore 0–5 (AAA = 2) 119 1

Separate terms 123 4

Cerebral 36 1

Coronary 19 1

Peripheral 23 1

Abdominal Aneurysm Aorta 97 1
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For the other variables, we assume also that missingness was more related to
logistic reasons, because all patients underwent the same screening protocol. The
decision to measure variables was not obviously dependent on other observations
(no MAR mechanism), the values of the characteristic itself, or characteristics not
available in our dataset (no MNAR mechanisms).

Only 925 patients had no missing values among the 18 potential predictors
(Fig. 23.2, right panel and Fig. 23.3, right panel). A total of 975 had 2 missings
values (mostly: 1 type of blood pressure measurement not performed). A few
patients had many missings (18 with 7 or more missings, Fig. 23.3, right panel).

23.3.2 Imputation of Missing Values

Missing data per predictor would lead to a substantial loss of information if only
complete cases were used in the multivariable model. We, therefore, used multiple
imputation techniques. We compared two main strategies:

1. Single imputation: The set of first imputations from the mice object was used
for analyses (single imputation, SI). We also compared imputations generated
by aregImpute. As a check for stability, we repeated the SI procedure for
another set of imputations.

2. Multiple imputation: We used the fit.mult.impute function to combine
model estimates over the m imputed data sets. We used m = 10 for the number
of imputations. Next, we created a stacked data set of weighted observations:
We put each imputed set below each other, with weight 1/m for each patient. So,
in our case, the stacked data set had n = 38730 records, each with weight 0.1.
The stacked data set allowed for model selection more easily than working with
the results over each separate, completed data set. This was important for
stepwise selection and for the LASSO.

The imputation with mice led to quite reasonable replacements for the missing
values (Fig. 23.4). Especially, the distributions were very similar for the four blood
pressure measurements. Similar results were noted with aregImpute.

Fig. 23.3 Patterns in the combinations of missing values in the SMART study
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23.3.3 R Code for Missing Values and Imputation

Overall survival is easy to plot:

Important insights in missing values are obtained with the aggr function in the
VIM package:

The patterns of missings can also be studied with the na.patterns function
from rms:

Imputation with aregImpute:

Fig. 23.4 Distribution of imputed and original values with mice in the SMART study
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Imputation with mice:

Create SI set:

Create stacked set:

23.4 Coding of Predictors

23.4.1 Extreme Values

Before any modeling started, the distributions of all potential predictors were
carefully examined for extreme values. Biologically implausible values were set to
missing values, and remaining extreme values were winsorized by shifting the
values approximately below the 1st centile and above the 99th centile to “truncation
points” (Chap. 9).

As an example, we consider intima–media thickness (IMT, Fig. 23.5). The mean
IMT was 0.94 mm, but some patients had measurements as high as 4 mm. These
high values are the result of plaque formation in the carotid artery, and may have an
unduly large influence on estimates of cardiovascular event risk. A total of 51
values higher than 1.83 were shifted to 1.83 (the upper truncation point), and 13
values below 0.47 were shifted to 0.47 (the lower truncation point). We note a
substantial effect of this winsorizing procedure on the relation between IMT and
outcome (Fig. 23.5, right panel). A restricted cubic spline based on the original
IMT values flattens off with high IMT (>1.5 mm), while a restricted cubic spline
based on the winsorized IMT values is very close to a straight line. This finding
illustrates that winsorizing may obviate the need for a nonlinear transformation.
Before winsorizing, the Cox regression coefficient for a linear IMT variable was
0.91, while it was 1.36 after. The univariate model v2 improved from 61 before to
75 (1 df). Similarly, we winsorized body mass index, lipids (Cholesterol, HDL,
LDL, Triglycerides), homocysteine and creatinine levels by shifting values below
the 1st and above the 99th centile to the truncation points.
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23.4.2 Transforming Continuous Predictors

Age is an important predictor in cardiovascular disease. We considered several age
transformations (Fig. 23.6, Table 23.3). In our cohort, the Wald v2 of the linear fit
was 97. Adding age2 increased the v2 to125, but there was a biologically
implausible increased risk below age 40 years. Based on visual inspection, it may
be judged reasonable to assume no age effect till age 55, and a linear effect for age
>55 years (“(Age–55)+” variable, v

2 119). A transformation such as (Age–50)+
2 led

to an even better model (v2 130, Fig. 23.6). A restricted cubic spline with 3 df (4
knots) did not describe the relation of age to outcome better (v2 125). Categorizing
by quartiles has a clearly lower performance (v2 93). Such categorization should not
be used because jumps in predictions are unnatural. Dichotomizing at age 60 years
(close to the median of 61 years) led to an even more substantial decrease per-
formance (v2 72, Table 23.3), illustrating that dichotomization is “a bad idea”
[472].

Other continuous predictor variables were examined in a similar way; some
examples are shown in Table 23.3. For creatinine, a log transformation gave the
best fit. A linear coding of systolic blood pressure was reasonable, and diastolic
blood pressure had no effect when we analyzed the conventional blood pressure
measurements together (“SYSTH” and “DIASTH” variables).

Fig. 23.5 Distribution of intima–media thickness (IMT, in mm, left panel) before and after
truncation, and a plot of the effect of IMT on cardiovascular events in a univariate Cox regression
model (right panel). The original IMT values are sometimes extremely high, leading to a spline
with flattens off with high IMT values. The winsorized IMT values have a smaller range and lead
to a quite linear relation (solid line, linear term; dotted line, spline)
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23.4.3 Combining Predictors with Similar Effects

Combining predictors with similar effects can be an effective way to limit the
degrees of freedom of predictors in a model (Chap. 10). In atherosclerotic patients,
several variables reflect the extent of atherosclerosis. The affected organs reflect the
load of atherosclerosis in one particular patient. The location of symptomatic events
(cerebral, coronary, abdominal aortic aneurysm (AAA), peripheral artery disease)
can be entered separately in the model. For each parameter we would spend 1 df,
resulting in a model v2 of 123 (4 df, Table 23.3). If we combine the presence of
previous vascular events in 1 variable, simply by assuming equal weights for each
condition, the model v2 is 96 (1 df). The difference of the two models is a v2 of 27,
which is highly significant at 3 df. Separate terms hence lead to a much better fit.
When we test for the separate contributions of each localization it appears that the
contribution of AAA is considerably higher than the contribution of the other
localizations. Once we attribute 2 points for the presence of an AAA, the sumscore
performs remarkable better (range 0–5, model v2 119, close to 123 for separate
terms, Table 23.3).

Fig. 23.6 Transformations of age in univariate analysis of the SMART study. Upper left: age
linear and age plus age squared; Upper right: age linear after 55 years (“Age–55)+)” and age
squared above 50 years (“Age–50)+

2)”; Lower left: restricted cubic spline, 4 knots, 3 df; Lower
right: age categorized in 4 groups (3 df)
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23.4.4 R Code for coding

IMT with and without winsorizing

Age effects

Previous symptomatic atherosclerosis
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23.5 Model Specification

23.5.1 A Full Model

A full, main effects model was defined which included the common demographics
age and sex, important classical risk factors (smoking status, alcohol use, body
mass index, blood pressure, lipid levels, and diabetes), the sum score for previous
symptoms of atherosclerosis, and finally markers of the extent of the atherosclerotic
process (including hyperhomocysteinemia, creatinin, intima–media thickness of the
carotid artery, carotid artery stenosis, and albuminuria). We focused on systolic
blood pressure since recent publications stress the more important role of systolic
rather than diastolic blood pressure in predicting cardiovascular events [571].
Indeed, the effect of systolic blood pressure was stronger than that of diastolic blood
pressure in univariate analysis (Table 23.3).

The full model consisted of 14 predictors. We show the results across the 10
imputed sets in Table 23.4. Several predictors had rather limited contributions to
model v2. Predictors with a large prognostic strength were age and the sumscore for
symptoms of atherosclerosis (each v2 33). The marker of renal damage creatinine
had a v2 of 13. Other characteristics had smaller prognostic relevance, with some
impact of the general marker of atherosclerosis intima–media thickness (v2 7), and a
minor contribution of homocysteine. The classical risk factors had at most a v2 of
5.6 (for HDL) and hence hardly contributed to the model predictions (Table 23.5).

We tested interactions between the predictors and sex by including cross-product
terms with predictors in the full model (overall v2 17.5, 16 df, p = 0.35). The
strongest interaction was between sex and the sumscore for previous symptomatic
atherosclerosis (v2 6.7, 1 df, p = 0.01). In all, the interactions were not considered
relevant enough to include an interaction term with sex in the model. We also tested
proportionality of hazards over follow-up time. The overall test was not statistically
significant (overall v2 26, 17 df, p = 0.07, cox.zph function), with some
non-proportionality suggested for age and smoking.

23.5.2 Impact of Imputation

Fitting the full model was repeated in the complete cases (n = 2053), and
with variants of imputation. We compare the fits obtained with the complete cases;
single imputations (aregImpute or mice, two sets of SI analyses); and multiple
imputations (weighted analysis in stacked data, or Rubin’s rules with fit.mult.
impute). The regression coefficients were estimated mostly quite consistently
between approaches (Fig. 23.7). The two strongest predictors were age and the
sumscore (HISTCAR2), which had no missings, and hence had very similar esti-
mates of the regression coefficients. Estimates differed most for predictors with
many missings and weak prognostic effects, such as systolic blood pressure

482 23 Case Study on Survival Analysis



(SYSTH) and homocysteine (HOMOC). The effect of SEX was very small.
Estimates were close to zero in CC and imputation analyses, albeit contrary in sign.

We also studied the standard errors of the coefficients (Fig. 23.8). As expected,
the standard errors were largest in the CC analysis. The variants of SI gave similar
results. Analysis of stacked data provided a kind of average over SI sets; it provided
a lower variance estimate than Rubin’s rules. So, the stacked data approach worked
fine for estimation of coefficients, but underestimated the variance over imputations.

Table 23.4 Hazard ratios (HR) and contribution to Cox regression model (v2 and df) of the
predictors in a full model for 3873 patients in the SMART study. Results are from 10 imputed data
sets

Predictor HR [95% CI]* v2 df

(Age–50)+
2 (68 vs. 52 years) 1.5 [1.3–1.7] 33 1

Gender (male) 0.9 [0.7–1.2] 0.2 1

Classical risk factors

Smoking 1.6 2

Never 0.8 [0.6–1.1]

Former 1

Current 1.1 [0.7 –1.6]

Alcohol 1.2 2

Never 1.1 [0.9–1.4]

Former 1

Current 1.0 [0.7–1.3]

Body mass index (kg/m2, 29 vs. 24) 0.9 [0.8–1.0] 2.7 1

Systolic blood pressure (mmHg, 156 vs. 127) 1.0 [0.9–1.2] 0.7 1

HDL (1.42 vs. 0.96) 0.8 [0.7–1.0] 5.6 1

Diabetes 1.2 [1.0–1.5] 2.7 1

Previous symptomatic atherosclerosis

Sumscore (AAA 2 points, per 1 point) 1.4 [1.3–1.6] 33 1

Markers of atherosclerosis

Homocysteine (mmol/l, 16 vs. 10.5) 1.0 [0.9–1.1] 0.4 1

Creatinine (mmol/l, 101 vs. 78) 1.2 [1.1–1.2] 13 1

Albumin 9 2

No 1.0

Micro 1.3 [1.0–1.6]

Macro 1.8 [1.2–2.7]

Intima–media thickness (mm, 1.07 vs. 0.75) 1.2 [1.0–1.3] 7.4 1

Carotid artery stenosis >50% 1.2 [1.0–1.5] 2.6 1

* Hazard ratio [95% confidence interval] refers to interquartile range for continuous predictors
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Fig. 23.7 Estimated coefficients in Cox regression models with complete case (CC) analysis
(n = 2053), or analyses with some form of imputation. SI1 and SI2: 2 sets of single imputations,
with aregImpute or mice algorithms. A weighted regression was performed in stacked data
(“mice, stacked”) and the mean over 10 imputed sets was taken (“mice, MI”; using fit.mult.
impute)

Fig. 23.8 Estimated standard error in Cox regression models with complete case (CC) analysis
(n = 2053), or analyses with some form of imputation, as in Fig. 23.7. mice, MI applied Rubin’s
rules for appropriate estimation of the variance (with fit.mult.impute)
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23.5.3 R Code for Full Model with Imputation

The full model in complete data, without imputation:

The full model in 10 imputed data sets:

Compare various estimates of coefficients:

23.6 Model Selection and Estimation

23.6.1 Stepwise Selection

We judged our sample size as large enough to allow for some model reduction for
easier practical application (460 events, full model with 17 df, ignoring that the
coding of predictors also consumed some effective degrees of freedom). One
approach was to apply a backward selection procedure with a higher than standard
p-value. We used Akaike’s Information Criterium (AIC), which implies p < 0.157
for selection of predictors with 1 df [14]. A promising alternative is to apply the
LASSO method, which achieves selection of predictors by shrinking some coeffi-
cients to zero by setting a constraint on the sum of the absolute standardized
coefficients [582].

Both the stepwise selection and LASSO methods were applied in the stacked
data set [678]. The application of the backward stepwise procedure was relatively
straightforward. We rely on estimates of the coefficients in the weighted regression,
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and realize that we may slightly underestimate the variance of predictors with many
imputed values. The alternative was to use the fit.mult.impute procedure
multiple times to drop candidate predictors sequentially. In both cases, we selected
a model with 9 predictors out of the original 14. The regression coefficients from
the selected model were very similar when estimated in the stacked data or with
Rubin’s rules (Table 23.5).

23.6.2 LASSO for Selection with Imputed Data

The LASSO model requires a search for the optimal penalty factor (k). This may be
performed by a cross-validation procedure for a single imputed data set (Fig. 23.9).
This cross-validation did not work properly with weighted regression in the stacked

Table 23.5 Cox regression coefficients in the full model, in a stepwise selected model (using
Akaike’s Information Criterion), and in the LASSO model

Predictor Full (mice, MI) Stepwise (AIC) LASSO

(Age–50)+
2 (years above 50) 0.13 0.13 0.12

Gender (male) –0.05 not selected not selected

Smoking

Never 0 not selected not selected

Former 0.17

Current 0.25

Alcohol not selected not selected

Never 0

Former –0.15

Current –0.12

Body mass index (kg/m2) –0.023 –0.025 –0.01

Blood pressure (/10 mmHg) 0.026 not selected 0.019

HDL –0.38 –0.40 –0.27

Diabetes 0.18 0.18 0.11

Previous vascular disease 0.33 0.35 0.33

Homocysteine (/10 mmol/l) 0.073 not selected 0.070

Log(creatinine) (mmol/l) 0.55 0.71 0.55

Albumin

No 0 0 0

Micro 0.24 0.29 0.21

Macro 0.57 0.60 0.51

Intima–media thickness (mm) 0.50 0.55 0.49

Carotid artery stenosis >50% 0.18 0.21 0.16
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data set. As a pragmatic alternative, the optimal penalty (lambda) was determined
within each imputed set. The lambda values were found to vary considerably
(Fig. 23.10). The mean effective shrinkage factor was 0.94; the typical degrees of
freedom 13 (range 10–17), and the mean apparent discriminative ability 0.697
(range 0.6930–0.703) across the 10 imputed sets.

Fig. 23.9 LASSO in the first data set where missing values were completed by mice. The
coefficient path shows that more coefficients remain in the model with less penalty (a higher L1
Norm, the sum of the absolute standardized coefficients). The optimal penalty according to
cross-validation was 0.003; log(Lambda) = log(0.003) = −5.8 (right graph)

Fig. 23.10 Results of the LASSO procedure per imputed data set. Row A indicates the first
imputed set, with lambda = 0.003 as shown in Fig. 23.9
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The mean penalty was 0.0034 and used in the stacked data set to fit a LASSO
model. This model included one component of the smoking and one of the alcohol
variables. To drop these, we may slightly increase the penalty to 0.004 rather than
0.0034; alternatively, the grouped LASSO might be used. The final LASSO model
then resembled the stepwise model, with 11 predictors left, and slightly shrunk
coefficients (Table 23.5).

23.7 Model Performance and Internal Validation

Discrimation of the full model was indicated by the c statistic, which was 0.697.
The apparent performance of the stepwise model and the LASSO model were very
similar: 0.694 and 0.695 respectively. More relevant is the optimism-corrected
performance. We hereto performed a bootstrap procedure within each imputed data
set. This is a pragmatic approach to the combination of model selection in imputed
data, which may provide quite reasonable estimates op optimism-corrected per-
formance [401]. The optimism was determined as usual within each imputed data
set, and results averaged to provide the overall optimism-corrected performance
estimates. All model selection and estimation steps were repeated within each
bootstrap sample.

23.7.1 Estimation of Optimism in Performance

More specifically, the following steps were followed, in line with what was dis-
cussed in Sect. 5.3.4 (Calculation of optimism-corrected performance). We also
show the key R commands. We label the imputed data set I and the bootstrap
sample within an imputed set Bi. The samples Bi are created by an index j, drawn
with replacement from I. We focus on the internal validation of the LASSO model,
since the internal validation of the full model and the stepwise model can be done
per imputed set I with the validate function in rms:

0. Consider an imputed data set I with imputation i out of 1:m imputed sets, as
above.
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1. Construct a LASSO model in the imputed sample I

2. Draw a bootstrap sample Bi with replacement from the imputed sample

3. Construct a model in sample Bi replaying every step that was done in the
imputed sample I, especially model specification steps such as selection of
predictors. Determine the bootstrap performance as the apparent performance in
sample Bi.

4. Apply model from Bi to the original sample I without any modification to
determine the test performance

5. Calculate the optimism as the difference between bootstrap performance and test
performance

6. Repeat steps 1–4 many times, at least 200, to obtain a stable mean estimate of
the optimism.

7. Subtract the mean optimism estimate (step 6) from the apparent performance in
each imputed set I to obtain the optimism-corrected performance estimate
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The validated performance across the imputations follows the pattern for the

apparent performance, where the concordance statistics for the full, stepwise and
LASSO models were 0.697, 0.694, and 0.695, respectively (Fig. 23.11). Validated
concordance statistics (c) confirm that the full model has the best performance
according to bootstrapping within each imputed set. The mean of the
optimism-corrected c statistics was 0.687. The mean optimism was 0.014; when we
apply this to the apparent fit over the stacked data the optimism-corrected estimate
is 0.683. The LASSO performance is second best in most imputed sets (mean
c 0.682), and backward stepwise selection based on AIC is not much worse (mean
c 0.677, Fig. 23.11). Overall, we may expect a c statistic around 0.68 in similar
patients as used for development of the SMART prediction model.

We also evaluated the calibration slope that may be expected after the LASSO
procedure. The LASSO led to effective shrinkage by a factor of 0.94. According to

Fig. 23.11 Validated concordance statistics for different modeling approaches in each of the 10
imputed data sets. The full model has the best performance according to bootstrapping within each
imputed set; and the LASSO is second best in most imputed sets, and backward stepwise selection
based on AIC is not much worse
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bootstrap validation, the expected calibration was 0.99, so very close to the perfect value
of unity.

23.7.2 Model Presentation

The results of the modeling process can be presented in various ways. From
Table 23.4, we learn about the relative contributions of each predictor to the model;
a graphical depiction is shown in Fig. 23.12. For a survival model such as the
SMART prediction model, we may summarize the discriminative ability by a
grouped Kaplan–Meier plot (Fig. 23.13). Finally, we may present the LASSO
model as a nomogram (Fig. 23.14). In the nomogram, we can judge the relative
importance of each predictor by the number of points attributed over the range of
the predictor, and we can calculate 3-year and 5-year survival estimates. Survival
relates here to the probability of being free of a cardiovascular event.

Fig. 23.12 Relative contribution of each predictor to the full prediction model, using the
chi-square statistics information as presented in Table 23.4
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Fig. 23.13 Fractions of patients free of events in 4 groups according to prognostic risk profile
from the LASSO model. In group 1, only 33 of 969 had a cardiovascular event, for a 5-year risk of
cardiovascular events of 4.6% (1–0.954). In group 4, 247 of 968 had a cardiovascular event, for a
5-year risk of 27% (1–0.73)

Fig. 23.14 Nomogram for the LASSO model developed with multiple imputation in the SMART
study (n = 3873) to predicted 3-year and 5-year survival (probability of being free of a
cardiovascular event). For example, a 75-year-old patient, with a BMI of 28, HDL 1, no diabetes,
previous aortic aneurysm but no other symptoms of atherosclerosis (HISTCAR2 = 2), a creatinine
value of 100, low albumin, no carotid stenosis, IMT of 1 mm, has a total points score of
5 + 1 + 3 + 0 + 2 + 2 + 0 + 0 + 2 = 15. This corresponds to predicted 3- and 5-year survival of
approximately 85% and 75% respectively

492 23 Case Study on Survival Analysis



23.7.3 R Code for Presentation of a Survival Model

Relative contributions of each predictor in full model

Nomogram for the LASSO model; copy coefficients to a cph object

Four prognostic groups in Kaplan–Meier curve, which are as follows:

23.8 Concluding Remarks

This case study illustrates how a prediction model can be developed and internally
validated for a survival analysis problem, with an advanced modeling procedure
(LASSO) in multiply imputed data. Some further methodological work is needed to
improve on the somewhat pragmatic choices on combining LASSO with imputation.
Most modeling steps could be considered in the bootstrap procedure for internal
validation.

This case study also confirms the distinction between risk factors in the general
population (without cardiovascular disease) and prognostic factors in patients with
symptomatic disease. Classical risk factors such as smoking, alcohol use, BMI,
blood pressure, HDL, and diabetes, had very limited prognostic value in the clinical
setting. These characteristics are hence not useful to predict future events once the
cardiovascular disease has developed. Indicators of previous symptomatic cardio-
vascular disease and the extent of atherosclerosis were more useful. This finding is
similar to findings in the GUSTO-I study (Chap. 22), where e.g., smoking was
associated with a better outcome after acute MI: risk factors may not be prognostic
once the disease has developed.
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Questions

23:1 Composite outcomes (Sect. 23.2.2 and Table 23.1)
Outcomes were combined in the presented analyses.

(a) What assumptions does this imply about the effects of the predictors for
each outcome?

(b) How could this be tested? See Glynn and Rosner [186]

23:2 Missing values (Figs. 23.2 and 23.3)

(a) Some might argue to exclude patients with many missing values. What
would be a reasonable number as maximum of missing values per
patient in the current analysis?

(b) Others might argue to exclude candidate predictors with many missing
values. What would be a reasonable number as maximum of missing
values per predictor in the current analysis?

(c) We note that missing values occur together for some predictors. We could
also choose to exclude patients with missing values (“NA”) in specific
combinations predictors. Which would you choose?

23:3 Effects of LASSO versus stepwise selection (Table 23.5)
We select largely the same predictors with a LASSO procedure as with
stepwise selection using AIC.

(a) How is it possible to obtain the same selection with these different
methods?

(b) The effect of age is similar to both methods, while the effect of BMI is
very weak according to the LASSO. How is this possible?

23:4 Variability between imputations and bootstrap samples

(a) How large is the variability between imputations for the penalty factor
lambda in Fig. 23.10?

(b) Is this variation relevant?
(c) The current internal validation settings were: 200 bootstraps within 10

sets of imputations, with 10-fold cross-validation within each
bootstrap. So, B = 200; m = 10; cv = 10, for a total of 20,000 model
fits. How might we better balance these numbers?

23:5 Combining LASSO and imputation
In the case study, we estimated the mean lambda over imputed data sets, and
used the mean lambda in stacked data to fit single LASSO model. An
alternative is to fit LASSO models in every imputed set, and take the mean
coefficients across imputations [401].

(a) What are the advantages of the latter approach (mean(coefficients))?
(b) What are the advantages of the case study approach (coefficients | mean

(k))?
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Chapter 24
Overall Lessons and Data Sets

Background In this final chapter, we summarize some lessons learnt on devel-
opment, validation, and updating of prediction models, based on the empirical
experience from case studies as described in this book, and modeling experience in
other medical prediction problems. We consider the essential elements to successful
modeling: appropriate methods; sufficient sample size; emphasis on validation;
using, not ignoring, subject matter knowledge. We also reflect further on modern
machine learning techniques. Reporting guidelines and risk of bias tools are dis-
cussed. We end this chapter with a description of the case studies used throughout
this book, where data sets are available through the book’s website.

24.1 Sample Size

Developing a valid prediction model from a relatively small data set has proven to
be hard. Many empirical examples are availability of poor performance at external
validation [13, 513]. Overfitting is a severe problem; it is common to ask too much
from a small sample [563]. Asking many questions is natural: data collection in
empirical studies is costly, and we are curious about what patterns emerge from our
precious data. Small data sets, hence, might merely serve to explore rather than to
derive firm relations. Yet, we need such firm relations for accurate predictions.
Also, we need strong predictors [431]; hence, when we have only a few relatively
weak predictors it is tempting to search further for additional predictors [266]. An
honest internal validation procedure should reveal the optimism that is associated
with the full modeling procedure, including any searches for interesting patterns
[94, 535, 563, 685]. Harrell and others have observed that model uncertainty
usually is more important for optimism in model performance than parameter
uncertainty [225]. Hence, this step should never be forgotten, and careful reporting
is needed [303]. See Chatfield [94] and others for a more theoretical but
well-readable discussion on model uncertainty [34, 138, 222]. Below, we further
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illustrate the impact of model uncertainty, specifically, the problematic role of
stepwise selection to develop prediction models, and the harm that can be done by
studying more predictors beyond a core set of predictors.

24.1.1 Model Selection, Estimation, and Sample Size

Simulations in GUSTO-I and other studies clarified the relation between model
selection (use of stepwise methods vs. a full model), estimation (maximum likeli-
hood, ML; shrinkage based on bootstrapping; penalization), and sample size [542,
543]. We first study an 8-predictor model in small and large subsamples with on
average 24 and 59 events, respectively. We first focus on discriminative ability
(c statistic, or area under the ROC curve, Fig. 24.1), and then on calibration (slope
of the linear predictor, Fig. 24.2).

• Model selection strategies were addressed in Chaps. 10 and 11. Some pros and
many cons of stepwise methods were discussed. The GUSTO-I simulations
confirm that stepwise methods are rather harmful in small samples, with a
median c statistic (or area under the ROC statistic) of 0.72 at validation if we use
the traditional criterion of p < 0.05 for selection of predictors (Fig. 24.1, left
panel). A full model reaches a c statistic around 0.76.

• Model estimation strategies were discussed in Chaps. 13 and 14. Penalized (or
“regularized”) regression can be performed with a L2 penalty (“ridge regres-
sion”) or a L1 penalty (LASSO). The c statistic was not affected much by
penalized estimation, although the best-validated performance was achieved by
the full model with penalized regression (c = 0.766).

Fig. 24.1 Discriminative ability in relation to model selection, estimation, and sample size for an
8-predictor model developed in subsamples from the GUSTO-I trial (see Chap. 22). Small and large
subsamples included on average 24 and 59 events, respectively (30-day mortality). Models were
created with stepwise selection (p < 0.05, AIC (p < 0.157), p < 0.50) and with fitting a full model,
with estimation by standard maximum likelihood (ML), shrinkage of regression coefficients (based
on bootstrap validation), and penalized maximum likelihood. Moreover, we applied the LASSO for
model selection by shrinking some parameters towards zero. Model performance was assessed in the
development samples and the part of GUSTO-I that was not used for model development.
Substantially better performance was noted for models derived from the larger subsamples
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• The key relevance of an adequate sample size for model development and
validation was stressed throughout this book, and specifically in Chaps. 5, 17,
20 and 21.

– We note a substantially better validated performance if models were con-
structed in larger samples (Fig. 24.1, right panel). The best performance was
found for the full model with penalized regression (c = 0.783). The LASSO
performance was close (c = 0.781), and stepwise with p < 0.05 remained
suboptimal (c = 0.767). The performance in the full GUSTO-I data with a
full model was slightly higher (n = 40,830, 2,851 events, c = 0.793).

– We also note less variability in performance with larger sample sizes (smaller
interquartile range, Fig. 24.1). The variability in apparent performance was
larger than at validation, in line with the discussion in Chap. 19.

– Sample size also affected the optimism in apparent performance estimates
(dotted lines in Fig. 24.1). The optimism was around +0.06 for the small
samples, and +0.02 for the larger samples.

In sum, stepwise selection led to poor discriminative ability at validation, partic-
ularly with small development samples; shrinkage or penalized estimation had
limited impact; and a larger sample size alleviated the problems. The event per
variable (EPV) ratio was 24/8 = 3 for the small samples and still below 10 for the
larger samples (59/8 = 7.4).

24.1.2 Calibration Improvement by Penalization

All models provided on average correct predictions (calibration-in-the-large). We
further focused on the calibration slope, which reflects whether predictions were too
extreme (see Chap. 17). Model selection had limited impact on calibration; the

Fig. 24.2 Calibration slope in relation to model selection, estimation, and sample size for an
8-predictor model developed in subsamples from the GUSTO-I trial (see legend Fig. 24.1).
Substantially better performance was noted for models with shrinkage or penalization compared to
standard maximum likelihood (ML) estimation
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slope was around 0.7 when models were developed in small samples with maxi-
mum likelihood estimation (Fig. 24.2). Shrinkage or penalization was important,
bringing slopes closer to the ideal value of 1. Particularly, good calibration was
noted for the LASSO. A larger sample size led to improved calibration with any of
the methods, although standard ML estimation still led to too extreme predictions
(slope around 0.87, Fig. 24.2, right panel).

24.1.3 Poorer Performance with More Predictors

When we study more predictors, we would expect that we could obtain better
performing models. Remarkably, this was not the case in simulations in GUSTO-I
[542]. A full model with 17 predictors had at most similar performance to a full
8-predictor model, when we applied penalized maximum likelihood estimation
(c = 0.783 with 8 or 17 predictors, Fig. 24.3). Backward stepwise selection with
p < 0.05 led to similarly poor models when 17 predictors were considered instead
of 8 (c = 0.763 with 17 vs. c = 0.767 with 8 predictors). Hence, when we start with
too many predictors, stepwise selection methods may not be able to save us, even if
all predictors are of prognostic relevance (all p < 0.01 in the full GUSTO data set;
c = 0.805 for 17 vs. c = 0.793 for 8 predictors). The balance between the number
of predictors and number of events should be for candidate predictors, not the
number of selected predictors (Chap. 4).

As expected, the calibration slope was poorer with 17 rather than 8 predictors
with standard maximum likelihood (ML) estimation. This reflected more overfit-
ting. Shrinkage or penalization resolved the calibration problem (Fig. 24.4).

Fig. 24.3 Discriminative ability in relation to the number of predictors (see legend of Fig. 24.1).
We note that models estimated with 17 rather than 8 predictors had more optimism and were not
performing better at validation
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24.1.4 Model Selection with Noise Predictors

Results were thus far for modeling in a context with strong to weak predictors with
sets of 8 or 17 predictors. We might hope that stepwise selection would be of
benefit in a situation of some true and some noise predictors. We hereto randomly
permute the 9 extra predictors in the 17-predictor model compared to the
8-predictor model. The discriminative performance of this model is obviously lower
than the model with true predictors (c = 0.789 for 8 + 9 noise vs. c = 0.805 for 17
true predictors). Figure 24.5 illustrates that a full model with penalized estimation is
still the best choice, either with L2 penalty (ridge) or L1 penalty (LASSO). An even
better model would arise if we did not consider any of the 9 extra predictors;
whether these are true (Fig. 24.3) or noise predictors (Fig. 24.5).

Fig. 24.4 Calibration slope in relation to the number of predictors (see legend of Fig. 24.1). We
note that models estimated with 17 rather than 8 predictors suffered more from overfitting with
standard maximum likelihood (ML) estimation. Shrinkage or penalization resolved the calibration
problem

Fig. 24.5 Discriminative ability and the impact of noise predictors (see legend of Fig. 24.1). Any
models estimated with 17 predictors performed worse than a model starting with 8 true predictors
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24.1.5 Potential Solutions

A potential solution for small sample size is to perform collaborative studies
(Table 24.1). For example, instead of analyzing a single-center retrospective cohort
study, we may collect data from multiple centers, leading to a multicenter cohort
study. Apart from simply increasing sample size other advantages occur. The
multiple centers may be slightly different from each other, in local protocols for
diagnostic workup, treatment choices, definition of predictors, etc. Such hetero-
geneity needs to be quantified to understand the generalizability of the resulting
model [457]. If it were derived from a single center, the results might be typical for
that setting, rather than represent “current practice”. Also, cross-validation becomes
possible, where we leave out one center to test a model that was developed on other
centers (Chaps. 17 and 19) [546].

Table 24.1 Problem areas with prognostic modeling, and potential solutions with their benefits

Problem Characterization Potential solutions Benefits

Sample size Asking too much from
the data relative to its
size

Balance research
question and
modeling approach
with available
information

Less overfitting

Particularistic, single
center samples used

Collaborative efforts Statistical and
epidemiological
advantages (standard
errors decrease with
larger sample size;
generalizability
increases;
cross-validation possible
for external validation)

Validation Internal validity is a
minimum requirement

Bootstrap validation Honest impression of
model performance for
similar patients

External validity
important as a second
aim

Multicenter/
international studies
for external
validation

Impression of model
performance in plausibly
related settings

Subject
matter
knowledge

Use rather than ignore Literature review;
expert opinion

Model stability; less
overfitting

500 24 Overall Lessons and Data Sets



24.1.6 R Code for Model Selection and Penalization

The full 8-predictor is simply:

Stepwise selection:

Shrink coefficients by bootstrapping:

Penalized regression, L2 penalty for ridge regression:

Penalized regression, L1 penalty for LASSO regression:

Random permutation was by the sample command:
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24.2 Validation

Internal and external validations deserve our full attention in prediction modeling.
Patterns in a data set have no meaning if these patterns are invalid outside the
specific data set. First, we need to check internal validity [546]. The bootstrap is a
very useful tool for this purpose, but we should be careful to apply it honestly, i.e.,
not secretly forget some model specification steps [535]. Second, we are concerned
about external validity; if a model is only applicable in strict settings, we are astray
from serious science [285].

Sample size is important both for development and validation samples. If sample
size is insufficient at model development, overfitting will occur. If sample size is
insufficient at model validation, we may falsely conclude that a model performs
satisfactorily, while substantial invalidity may in fact exist.

24.2.1 Examples of Internal and External Validation

Some models may generalize well if developed according to the principles outlined
in Part II, but other models require at least an adjustment for the average, case mix
adjusted incidence of the outcome. In GUSTO-I, we noted that the variability by
subsample or region was largely attributable to chance, but this was in the context
of a randomized trial, with a specific protocol (Chap. 22). A previously developed
model (TIMI-II) required updating of the intercept [536, 540]. In the testicular
cancer example, we noted some differences between centers, but the sample sizes
were not large enough to draw a firm conclusion on similarity of the intercept across
settings (Chap. 19) [645]. In the stroke example, substantial differences between
centers were noted that were beyond chance (Chap. 21) [341]. Systematic differ-
ences can sometimes be attributed to specific circumstances; for example, a sys-
tematically poorer than predicted outcome was noted in patients from developing
and middle-income countries [435].

The internal, temporal and geographic validity was also studied for outcome
prediction models in stroke [311]. Internal validation was not enough, and some
form of external validation was necessary for a good impression of model perfor-
mance in new patients. This was partly caused by problems to fully capture all
modeling steps in the internal validation procedure, which hence resulted in still too
optimistic estimates of model performance. A study in children with fever also
emphasized that external validation was necessary beyond internal validation [56].
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24.3 Subject Matter Knowledge Versus Machine Learning

24.3.1 Exploiting Subject Matter Knowledge

Throughout this book, using subject matter knowledge has been emphasized.
Examples of valid models that were built from scratch are rare. Most successful
models combine well-known predictors and limit the use of the data set to some
fine-tuning of the model specification. For example, we may eliminate some main
effects that do not contribute to outcome prediction. On the other hand, we may
include some non-linear terms that are important to capture the relation of a con-
tinuous predictor with the outcome. We may also include some interactions, if these
are very strong. The main role of the data set then is to quantify the predictor–
outcome relations, and provide an impression of the performance of the model. As
discussed in Chap. 1, we aim to avoid the situation that we develop a model without
some knowledge on which predictors to include, in what functional form, and
unknown effects (see Table 1.1).

Model updating is a formal approach to use prior knowledge (Chaps. 20 and 21).
We start with assuming that a prior model is valid for a new setting. We modify
coefficients and add other predictors if indicated by the data under study. Such
model updating is only possible if a reasonable prior multivariable model exists. We
are back at standard model development if only univariate associations are known,
or qualitative statements on the strength of a predictive effects.

Several disadvantages can be mentioned for modeling with subject knowledge.
First, we may miss important new predictors. We should be prepared to take this
risk, since searching for new predictors has many risks of its own, including tes-
timation bias, instability of the search, and false positive discoveries [268]. Second,
we may object that we do not discover new knowledge. We only combine what is
known already. This is, however, precisely the role of prediction models in med-
icine: they quantify what is already known. Knowledge discovery is a phase before
we can start serious prediction modeling. Prediction models may have a role
beyond systematic review of prognostic factors, as is starting to be promoted by the
Cochrane collaboration [459]. Systematic reviews may provide summaries of rel-
ative risks; prediction models provide absolute risks.

We may be interested in a prediction model that includes new predictors, such as
a genetic marker, or other types of biomarker or imaging characteristic. We first
would need robust evidence on the univariate effect of the marker, and preferably
also on its effect adjusted for other important predictors [373]. If this evidence is
sufficient, we could study the performance of the marker when integrated into a
prediction model. Of interest is the incremental value of the marker [293]. Several
performance criteria can be used, such as increase in discriminative ability,
reclassification, and decision curve analysis (see Chap. 16) [429, 561, 564].

Maarten van Smeden, LUMC, Leiden, published an attractive flowchart to guide
model developers (Fig. 24.6) [633]. The key issues to consider include:
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Fig. 24.6 Maarten van Smeden’s flowchart for the question: should a new prediction model be
developed? [633]
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• Is a prediction model of interest?
• What is the audience?
• Are high-quality data from the relevant subjects available?
• Is there no existing prediction model to validate and update from?
• Is sample size adequate?
• Are predictors known and likely available in the envisioned setting?

If questions are answered with “No”, prediction model development should not be
pursued. Importantly if a model is developed or validated, it should be reported in a
transparent way, specifically, following the TRIPOD guideline [105, 390].

24.3.2 Machine Learning and Big Data

Machine learning approaches generally follow a different philosophy (see also
Chap. 4). The idea is to extract patterns from data more agnostically, with less
human involvement in the modeling [283]. Very large sample sizes are then needed,
which may become more and more within reach in the Big Data era [43]. One
example is the OHDSI Observational Health Data Sciences and Informatics
(OHDSI) program https://www.ohdsi.org/. Very large data sets are made accessible
through adoption of a Common Data Model. For prediction modeling, the LASSO
is used as a default [452]. The LASSO takes a nice position, since it can be regarded
as an extension of traditional regression analysis, and as a prime example of ma-
chine learning.

Various other machine learning and artificial intelligence techniques are gaining
popularity [181, 444]. Specifically, deep learning techniques (including convolu-
tional neural networks) have been applied successfully for learning from radio-
logical images [346]. Deep learning algorithms may increasingly beat humans in
discovering patterns in such images and assist computerized diagnosis.

24.4 Reporting of Prediction Models and Risk of Bias

24.4.1 Reporting Guidelines

Reporting of prediction models is often unclear, with a lack of detail on methods and
results. Various reporting guidelines have been proposed, following the CONSORT
initiative for randomized clinical trials, STARD for diagnostic studies and REMARK
for prognostic factor studies. All are readily available and maintained at http://www.
equator-network.org/. In 2015, a specific reporting guideline was proposed for the
development or validation of prediction models: Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [105].
The TRIPOD initiative developed a set of recommendations for the reporting of studies
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developing, validating, or updating a prediction model, whether for diagnostic or
prognostic purposes. The central claim is: “Only with full and clear reporting of
information on all aspects of a prediction model can risk of bias and potential use-
fulness of prediction models be adequately assessed.”

An extensive list of potential items was reduced and revised by discussion
among methodologists, health care professionals, and journal editors. The resulting
TRIPOD Statement is a checklist of 22 items. The TRIPOD Statement aims to
improve the transparency of the reporting of a prediction model study regardless of
the study methods used. Importantly, an explanation and elaboration document
provides detail on many aspects of model development or validation [383].

The checklist has 22 items (Table 24.2, also available at www.tripod-statement.
org). The items relate to title and abstract to enable retrieval by readers and for
systematic reviews; the introduction to clarify the context and purpose of the model;
the methods used and results, with items as discussed in this book; the discussion,
where attention is needed on both limitations for internal and external validity since
these impact on the potential clinical use of the model. Some other information is
also required such as the availability of supplementary material (which should be
encouraged, specifically the statistical code that was used for analysis) and the
source of funding. Related checklists include:

• REporting recommendations for tumor MARKer prognostic studies
(REMARK) [373]

• RiGoR: reporting guidelines to address common sources of bias in risk model
development [303]

• Strengthening the reporting of Genetic RIsk Prediction Studies: GRIPS [280].

The need for transparency is recognized by many in the scientific world,
including editors of journals. The practical adherence is unfortunately still limited.
An underlying difficulty is whether all 22 items are really critical for the assessment
of risk of bias and potential usefulness of prediction models.

24.4.2 Risk of Bias Assessment

Various tools have been proposed to assess the risk of bias in prediction models.
One such tool is PROBAST (“Prediction model Risk Of Bias ASsessment Tool”)
[389]. This tool intends to assess the risk of bias and applicability of diagnostic and
prognostic prediction model studies. Similar to TRIPOD, the tool was only
informed by expert judgment. This is in contrast to therapeutic [679] and diagnostic
[337, 480] studies, where various design characteristics have been found to relate to
bias in estimated treatment effects or test characteristics. PROBAST is organized
into 4 domains: participants, predictors, outcome, and analysis, with 20 signaling
questions. Risk of bias was defined to occur when shortcomings in study design,
conduct, or analysis are expected to lead to systematically distorted estimates of
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Table 24.2 The TRIPOD checklist for prediction model development and validation [105]

Section/Topic Item Checklist item

Title and abstract

Title 1 D;V Identify the study as developing and/or validating a multivariable
prediction model, the target population, and the outcome to be
predicted

Abstract 2 D;V Provide a summary of objectives, study design, setting,
participants, sample size, predictors, outcome, statistical analysis,
results, and conclusions

Introduction

Background
and objectives

3a D;V Explain the medical context (including whether diagnostic or
prognostic) and rationale for developing or validating the
multivariable prediction model, including references to existing
models

3b D;V Specify the objectives, including whether the study describes the
development or validation of the model or both

Methods

Source of data 4a D;V Describe the study design or source of data (e.g., randomized
trial, cohort, or registry data), separately for the development and
validation data sets, if applicable

4b D;V Specify the key study dates, including start of accrual; end of
accrual; and, if applicable, end of follow-up.

Participants 5a D;V Specify key elements of the study setting (e.g., primary care,
secondary care, general population) including number and
location of centers

5b D;V Describe eligibility criteria for participants

5c D;V Give details of treatments received, if relevant

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction
model, including how and when assessed

6b D;V Report any actions to blind assessment of the outcome to be
predicted

Predictors 7a D;V Clearly define all predictors used in developing or validating the
multivariable prediction model, including how and when they
were measured

7b D;V Report any actions to blind assessment of predictors for the
outcome and other predictors

Sample size 8 D;V Explain how the study size was arrived at

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case
analysis, single imputation, multiple imputation) with details of
any imputation method

Statistical analysis
methods

10a D Describe how predictors were handled in the analyses

10b D Specify type of model, all model-building procedures (including
any predictor selection), and method for internal validation

10c V For validation, describe how the predictions were calculated

10d D;V Specify all measures used to assess model performance and, if
relevant, to compare multiple models

10e V Describe any model updating (e.g., recalibration) arising from the
validation, if done

(continued)
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Table 24.2 (continued)

Section/Topic Item Checklist item

Risk groups 11 D;V Provide details on how risk groups were created, if done

Development
versus validation

12 V For validation, identify any differences from the development
data in setting, eligibility criteria, outcome, and predictors

Results

Participants 13a D;V Describe the flow of participants through the study, including the
number of participants with and without the outcome and, if
applicable, a summary of the follow-up time. A diagram may be
helpful

13b D;V Describe the characteristics of the participants (basic
demographics, clinical features, available predictors), including
the number of participants with missing data for predictors and
outcome

13c V For validation, show a comparison with the development data of
the distribution of important variables (demographics, predictors
and outcome)

Model
development

14a D Specify the number of participants and outcome events in each
analysis

14b D If done, report the unadjusted association between each candidate
predictor and outcome

Model
specification

15a D Present the full prediction model to allow predictions for
individuals (i.e., all regression coefficients, and model intercept
or baseline survival at a given time point)

15b D Explain how to the use the prediction model

Model
performance

16 D;V Report performance measures (with CIs) for the prediction model

Model-updating 17 V If done, report the results from any model updating (i.e., model
specification, model performance)

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative
sample, few events per predictor, missing data)

Interpretation 19a V For validation, discuss the results with reference to performance
in the development data, and any other validation data

19b D;V Give an overall interpretation of the results, considering
objectives, limitations, results from similar studies, and other
relevant evidence

Implications 20 D;V Discuss the potential clinical use of the model and implications
for future research

Other information

Supplementary
information

21 D;V Provide information about the availability of supplementary
resources, such as study protocol, Web calculator, and data sets

Funding 22 D;V Give the source of funding and the role of the funders for the
present study

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to
a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. See also
the TRIPOD Explanation and Elaboration document [383]
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model predictive performance. Only limited empirical evidence is available on this
relation for the suggested 20 questions. We might summarize the key risks of bias
in prediction models as:

(1) application of sensible methods;
(2) adequate sample size.

Of course, application of sensible methods is not so straightforward for prediction
modeling; although some red flags are easily identified, e.g. in Fig. 24.6. Neither is
the definition of an adequate sample size easy.

PROBAST may prove relevant for the broader perspective of applicability of
prediction models, which relates to external validity. PROBAST was designed for
systematic reviews, where an earlier checklist is also available: CHecklist for
critical Appraisal and data extraction for systematic Reviews of prediction
Modeling Studies (CHARMS) [384]. The CHARMS checklist aims to support the
design of systematic reviews of prediction model studies, and to determine what to
extract and appraise in primary studies. Seven key items are listed related to the
framing of the review question, and 11 domains are considered to extract and
critically appraise the primary studies.

24.5 Data Sets

We considered many examples throughout the text. For some case studies,
empirical data are available through www.clinicalpredictionmodels.org
(Table 24.3). These case studies are discussed below in a simple format. First, we
list the abstract of the key publication of the study, if relevant. We then list the
contents of the data sets. The data sets are made available for didactic purposes
only. If publication by any means is pursued, investigators are required to contact
the authors of the original publication and the author of this book.

Table 24.3 Summary of case studies with data sets available at www.clinicalpredictionmodels.
org

Case study Characterization N patients (events); predictors

GUSTO-I Prediction of 30-day mortality in
acute myocardial infarction

Original: n = 40,830 (2851). West region
n = 2,188 (135); Sample4, n = 785 (52);
Sample5, n = 429 (24); 17 predictors

SMART Prediction of secondary
cardiovascular events

n = 3873 (460); 26 predictors

Testicular
cancer

Diagnosis of residual mass
histology (benign vs. other, or in
3 categories)

Development, n = 544 (245 benign);
validation, n = 273 (76 benign); 6
predictors

Abdominal
aortic
aneurysm

Prediction of perioperative
mortality after elective surgery

n = 238 (18); 7 predictors

Traumatic
brain injury

Prediction of 6-month outcome n = 2159; 503 deaths, 851 unfavorable
outcome; 14 predictors
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24.5.1 GUSTO-I Prediction Models

The key publication of prediction in GUSTO-I is by Kerry Lee (Circulation, 1995, see
Box 22.1) [329]. Many other publications are available that use the GUSTO-I data,
including a practical prediction tool by Rob Califf [86]. Small parts of the GUSTO-I
data set are made available: sample5 contains 429 patients, sample4 785 patients, and
the West region sample 2188. The patients partly overlap, which can be identified by
matching on the 17 predictors and the outcome in the data set (Table 24.4).

Several methodological studies have been performed with the GUSTO-I data-
base. Ennis et al. compared a variety of modern learning methods, including logistic
regression, Tree, GAM, and MARS methods (see Chap. 6) [153]. The GUSTO-I
data set has also been instrumental to compare various aspects of predictive
modeling strategies [536, 539, 540]. The large size of GUSTO-I makes that sub-
samples can be created where models can be developed, which can subsequently be
tested on an independent part of the data set. This approach has been followed to
empirically test many aspects of logistic regression modeling, such as the selection
of predictors in a prognostic model and estimation of regression coefficients
(Figs. 24.1, 24.2, 24.3, 24.4 and 24.5) [541−543, 547].

24.5.2 SMART Case Study

The SMART (Second Manifestations of ARTerial disease) study was discussed in
detail in Chap. 23 [512]. The 7 modeling steps from part II were followed, and R
code is available to perform the described analyses. A description of the data is
shown in Table 24.5.

Table 24.5 SMART study data set (n = 3,873). The primary outcome was a cardiovascular
event, which occurred in 460 patients during follow-up (5-year cumulative incidence: 14%)

Name Description (coding: no/yes is coded as 0/1) Development
460/3,873

Tevent Time to cardiovascular event (days) 1370

Event Cardiovascular event (clinical, 0/1) 460

Sex 1 = Male, 2 = Female sex 25%

Age Age (years) 60

Diabetes Ever diabetes (0/1) 22%

Cerebral Ever cerebrovascular disease (0/1) 30%

Cardiac Ever cardiovascular disease (0/1) 56%

AAA Ever abdominal aortic aneurysm (0/1) 11%

Periph Ever periferal vascular disease (0/1) 24%
(continued)
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24.5.3 Testicular Cancer Case Study

The key publication for clinicians is a paper in JCO in 1995 [551], with a validation
study in the same journal in 1998 [545]. Some methodological aspects are discussed
in a paper in Statistics in Medicine in 2001 (Box 24.1, Table 24.6) [566].

Box 24.1 Abstract of the methodological paper on prediction of residual
mass histology in testicular cancer patients [566]. Residual mass histol-
ogy in testicular cancer: development and validation of a clinical pre-
diction rule

Ewout W. Steyerberg; Yvonne Vergouwe; H. Jan Keizer and J. Dik F.
Habbema for the ReHiT study group

After chemotherapy for metastatic non-seminomatous testicular cancer,
surgical resection is a generally accepted treatment to remove remnants of the
initial metastases, since residual tumor may still be present (mature teratoma
or viable cancer cells). In this paper, we review the development and external

Table 24.5 (continued)

Name Description (coding: no/yes is coded as 0/1) Development
460/3,873

Stenosis Carotic stenosis � 50% by duplex (0/1) 19%

Systbp Systolic blood pressure (automatic, in mmHg) 141

Diastbp Diastolic blood pressure (automatic, in mmHg) 80

Systh Systolic blood pressure (by hand, in mmHg) 142

Diasth Diastolic blood pressure (by hand, in mmHg) 82

Length Length (m) 1.74

Weight Weight (kg) 81

BMI Body mass index (kg/m2) 26.7

Chol Cholesterol level (mmol/L) 5.2

HDL High-density lipoprotein cholesterol (mmol/L) 1.2

LDL Low-density lipoprotein cholesterol (mmol/L) 3.1

Trig Triglycerides level (mmol/L) 1.9

Homoc Homocysteine level (µmol/L) 13.8

Glut Glutamine (µmol/L) 6.3

Creat Creatinine clearance (mL/min) 98

IMT Intima media thickness (mm) 0.93

Albumin Albumin in urine: 1 = No; 2 = Low; 3 = High 79%/18%/3%

Smoking Smoking status: 1 = No; 2 = Former; 3 = Current 18%/70%/12%

Packyrs Packyears smoked 23

Alcohol Alcohol consumption: 1 = No; 2 = Former; 3 = Current 20%/11%/70%
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validation of a logistic regression model to predict the absence of residual
tumor.

Three sources of information were used. A quantitative review identified 6
relevant predictors from 19 published studies (996 resections) [554]. Second,
a development data set included individual data of 544 patients from 6 centers
[551]. This data set was used to assess the predictive relations of 5 continuous
predictors, which resulted in dichotomization for two, and a log, square root,
and linear transformation for 3 other predictors. The multiple logistic
regression coefficients were reduced with a shrinkage factor (0.95) to improve
calibration, based on a bootstrapping procedure. Third, a validation data set
included 172 more recently treated patients [545]. The model showed ade-
quate calibration and good discrimination in the development and in the
validation sample (areas under the ROC curve 0.83 and 0.82).

This study illustrates that a careful modeling strategy may result in an
adequate predictive model. Further study of model validity may stimulate
application in clinical practice.

Table 24.6 Description of testicular cancer development (n = 544) and validation set (n = 273).
The primary outcome was a benign histology at postchemotherapy resection, which occurred in 45
and 28%, respectively

Name Description (coding: no/yes is coded as 0/1) Development
245/544 (45%)

Validation
76/273
(28%)

patkey Patient ID – –

hosp Institution ID – –

orchyr Year of orchiedectomy (surgical removal of
primary tumor)

1985 1993

histr3 Histology at resection: 1 = necrosis;
2 = teratoma; 3 = viable cancer

45%/42%/13% 28%/58%/
13%

ter primary tumor teratoma-negative? (0–1) 46% 38%

preafp Prechemotherapy AFP normal? (0–1) 34% 25%

prehcg Prechemotherapy HCG normal? (0–1) 38% 27%

lnldhst Ln of standardized prechemotherapy LDH
(LDH/upper limit of local normal value)

0.46
(LDHst 2.0)

NA

sqpost Square root of postchemotherapy mass size
(original mass size in mm)

5.1 (33 mm) 7.8 (70 mm)

reduc10 Reduction in mass size per 10%: (pre-pos)/
pre*10

4.5 (=45%) 1.4 (=14%)

nec Necrosis at resection (0–1) 45% 28%

matter Mature teratoma versus cancer, if not necrosis
(0–1)

77% 82%

dev Part of data set: 1 = Development (n = 544);
0 = Validation (n = 273)

1 0
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24.5.4 Abdominal Aortic Aneurysm Case Study

The Leiden cohort contained 246 patients undergoing elective surgery for an
abdominal aortic aneurysm; 238 were included in the analyses. Results are
described in detail in a Ph.D. thesis by Dr. Alexander de Mol van Otterloo (cur-
rently working as a surgeon in The Hague). The prediction model based on the
combination of the Leiden data and literature data was published in 1995 (Box 24.2,
Table 24.7) [555], with methods addressed later in more detail [544].

Box 24.2 Abstract of the paper on prediction of perioperative mortality
in AAA [555]. Perioperative mortality of elective abdominal aortic
aneurysm surgery. A clinical prediction rule based on literature and
individual patient data

Steyerberg EW, Kievit J, de Mol Van Otterloo JC, van Bockel JH,
Eijkemans MJ, Habbema JD.

BACKGROUND: Abdominal aortic aneurysm surgery is a major vascular
procedure with a considerable risk of (mainly cardiac) mortality.

OBJECTIVE: To estimate elective perioperative mortality, we developed a
clinical prediction rule based on several well-established risk factors: age,
gender, a history of myocardial infarction, congestive heart failure, ischemia
on the electrocardiogram, pulmonary impairment, and renal impairment.

METHODS: Two sources of data were used: (1) individual patient data
from 246 patients operated on at the University Hospital Leiden (the
Netherlands) and (2) studies published in the literature between 1980 and
1994. The Leiden data were analyzed with univariate and multivariable
logistic regression. Literature data were pooled with meta-analysis tech-
niques. The clinical prediction rule was based on the pooled odds ratios from
the literature, which were adapted by the regression results of the Leiden data.

RESULTS: The strongest adverse risk factors in the literature were con-
gestive heart failure and cardiac ischemia on the electrocardiogram, followed
by renal impairment, history of myocardial infarction, pulmonary impair-
ment, and female gender. The literature data further showed that a 10-year
increase in age more than doubled the surgical risk. In the Leiden data, most
multivariate effects were smaller than the univariate effects, which is
explained by the positive correlation between the risk factors. In the clinical
prediction rule, cardiac, renal, and pulmonary comorbidity is the most
important risk factors, while age per se has a moderate effect on mortality.

CONCLUSIONS: A readily applicable clinical prediction rule can be based
on the combination of literature data and individual patient data. The risk
estimates may be useful for clinical decision making in individual patients.
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24.5.5 Traumatic Brain Injury Data Set

Prognostic studies based on patients included in the Tirilazad trials are described in
detail in a Ph.D. thesis by Chantal Hukkelhoven. The publication that presents a
prognostic model is in a neurosurgical journal (Box 24.3, Table 24.8) [259]. More
extensive data became available through an IPD meta-analysis project: IMPACT
(see Chap. 8, led by Andrew Maas). This resulted in a range of methods intensive
publications [129, 242, 340, 342, 343, 357, 358, 398, 559].

Box 24.3 Abstract of the paper on prediction of outcome in traumatic
brain injury [259]. Predicting outcome after traumatic brain injury:
development and validation of a prognostic score based on admission
characteristics

Hukkelhoven CW, Steyerberg EW, Habbema JD, Farace E, Marmarou A,
Murray GD, Marshall LF, Maas AI.

The early prediction of outcome after traumatic brain injury (TBI) is
important for several purposes, but no prognostic models have yet been
developed with proven generalizability across different settings. The objec-
tive of this study was to develop and validate prognostic models that use the
information available at admission to estimate 6-month outcome after severe
or moderate TBI. To this end, this study evaluated mortality and unfavorable
outcome, that is, death, and vegetative or severe disability on the Glasgow
Outcome Scale (GOS), at 6 months post-injury.

Prospectively collected data on 2269 patients from two multicenter clinical
trials were used to develop prognostic models for each outcome with logistic
regression analysis. We included seven predictive characteristics age, motor
score, pupillary reactivity, hypoxia, hypotension, computed tomography
classification, and traumatic subarachnoid hemorrhage. The models were
validated internally with bootstrapping techniques. External validity was
determined in prospectively collected data from two relatively unselected

Table 24.7 Aortic aneurysm data set (n = 238). The primary outcome was surgical mortality,
which occurred in only 18 patients (7.6%)

Name Description (coding: no/yes is coded as 0/1) Development 18/238 (8%)

Sex Female sex (0/1) 9%

Age10 Age in decades 6.6 (66 years)

MI Infarction on ECG (0/1) 24%

CHF Congestive heart failure (0/1) 34%

Ischemia Ischemia on ECG (0/1) 35%

Lung Lung comorbidity (0/1) 19%

Renal Renal comorbidity (0/1) 6%

Status Perioperative mortality (0/1) 8%
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surveys in Europe (n = 796) and in North America (n = 746). We evaluated
the discriminative ability, that is, the ability to distinguish patients with dif-
ferent outcomes, with the area under the receiver operating characteristic
curve (AUC). Further, we determined calibration, that is, an agreement
between predicted and observed outcome.

The models discriminated well in the development population (AUC 0.78–
0.80). External validity was even better (AUC 0.83–0.89). Calibration was
less satisfactory, with poor external validity in the North American survey
(p < 0.001). Especially, observed risks were higher than predicted for poor
prognosis patients. A score chart was derived from the regression models to
facilitate clinical application.

Relatively simple prognostic models using baseline characteristics can
accurately predict 6-month outcome in patients with severe or moderate TBI.
The high discriminative ability indicates the potential of this model for
classifying patients according to prognostic risk.

Table 24.8 Traumatic brain injury data set (n = 2159). Patients are from the International and US
Tirilazad trials. The primary outcome was 6 months Glasgow Outcome Scale (range 1 for dead to
5 for good recovery)

Name Description (coding: no/yes is coded as 0/1) Development
n = 2159

trial Tirilazad international (n = 1118)/US (n = 1041) –

d.gos GOS at 6 months

1 = dead 23%

2 = vegetative 4%

3 = severe disability 12%

4 = moderate disability 16%

5 = good recovery 44%

d.mort Mortality at 6 months (0/1) 23%

d.unfav Unfavorable outcome at 6 months (0/1) 39%

age Age (in years, median [interquartile range]) 29 [21–42]

d.motor Admission motor score (1–6, median) 4

d.pupil Pupillary reactivity (1 = both reactive/2 = one reactive/3 = no
reactive pupils)

70%/14%/16%

pupil.i Single imputed pupillary reactivity (1/2/3) 70%/14%/16%

hypoxia Hypoxia before/at admission (0/1) 22%

hypotens Hypotension before/at admission 19%

ctclass Marshall CT classification (1–6, median) 2

tsah tSAH at CT (0/1) 46%

edh EDH at CT (0/1) 13%

cisterns Compressed cisterns at CT (0 = no/1 = slightly compressed/
2 = fully compressed)

57%/26%/10%

(continued)
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24.6 Concluding Remarks

In this final chapter, we considered some key elements to successful prediction
modeling. Appropriate methods should be used, such as avoiding stepwise selection
with the standard p-value of 0.05 in small data sets, and rather use penalization
procedures, such as the LASSO. A sufficient sample size is important to avoid
deterioration of model performance at validation. Compared to machine learning,
sensible modeling in small data sets requires exploiting subject matter knowledge.
Reporting guidelines and risk of bias tools were discussed and were found to be in
need of empirical underpinning, since many items are currently only motivated by
common sense.

Some data sets are made available to promote practical experience with the
described techniques in this book. Many other medical data sets are available
nowadays which can be used to train researchers in prediction modeling, and
readers are encouraged to examine these. Data sharing initiatives may lead to a
world of Big Data, where both traditional and more advanced statistical models may
prove useful, including machine learning and artificial intelligence algorithms. The
author welcomes any comments and suggestions for improvement of the text of this
book, the questions at the end of each chapter, the practical exercises at the web,
and usefulness of data sets.

Table 24.8 (continued)

Name Description (coding: no/yes is coded as 0/1) Development
n = 2159

shift Midline shift > 5 mm at CT (0/1) 18%

glucose Glucose at admission (mmol/l, median [interquartile range]) 8.2 [6.7–10.4]

glucoset Truncated glucose values (median [interquartile range]) 8.2 [6.7–10.4]

ph pH (median [interquartile range]) 7.4 [7.3–7.5]

sodium Sodium (mmol/l, median [interquartile range]) 140 [137–142]

sodiumt Truncated sodium (median [interquartile range]) 140 [137–142]

hb Hb (g/dl, median [interquartile range]) 12.8 [10.9–4.3]

hbt Truncated hb (median [interquartile range]) 12.8 [10.9–4.3]

*‘d.’ variables denote: ‘derived’
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Questions

24:1 Impact of sample size (Fig. 24.1).

In Fig. 24.1, we note that the validated discriminative ability (area under
ROC curve, or c statistic) does increase by considering a larger sample size;
but the apparent performance decreases.
(a) Why does a larger sample size lead to a lower apparent performance?
(b) And a higher validated performance?
(c) How can the validated performance be estimated?
(d) Why is the discriminative ability of models with ML estimation iden-

tical to models with shrinkage based on bootstrap validation?

24:2 Number of predictors and impact of sample size (Fig. 24.3).

Figure 24.3 does not show improvement by considering 17 rather than 8
predictors.
(a) How is it possible that considering more predictors does not increase

the discriminative ability?
(b) What is the slope of the linear predictor (or calibration slope) with

standard ML estimation, with 17 or 8 predictors?
(c) And what is the slope with shrinkage or penalized estimation, with 17

or 8 predictors?
(d) What would you do if 17 candidate predictors were available in a data

set with approximately 50 events, and the aim was to make a model for
predictions in individual patients?
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